65 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
71 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
72 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
73 Attribute::DereferenceableOrNull, Attribute::NoAlias,
74 Attribute::NonNull, Attribute::NoUndef,
75 Attribute::Range, Attribute::NoFPClass})
76 CallerAttrs.removeAttribute(Attr);
78 if (CallerAttrs.hasAttributes())
82 if (CallerAttrs.contains(Attribute::ZExt) ||
83 CallerAttrs.contains(Attribute::SExt))
94 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
111 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
121 IsSExt =
Call->paramHasAttr(ArgIdx, Attribute::SExt);
122 IsZExt =
Call->paramHasAttr(ArgIdx, Attribute::ZExt);
123 IsNoExt =
Call->paramHasAttr(ArgIdx, Attribute::NoExt);
124 IsInReg =
Call->paramHasAttr(ArgIdx, Attribute::InReg);
125 IsSRet =
Call->paramHasAttr(ArgIdx, Attribute::StructRet);
126 IsNest =
Call->paramHasAttr(ArgIdx, Attribute::Nest);
127 IsByVal =
Call->paramHasAttr(ArgIdx, Attribute::ByVal);
137 "multiple ABI attributes?");
153std::pair<SDValue, SDValue>
163 Args.reserve(
Ops.size());
166 for (
unsigned i = 0; i <
Ops.size(); ++i) {
168 Type *Ty = i < OpsTypeOverrides.
size() && OpsTypeOverrides[i]
169 ? OpsTypeOverrides[i]
178 Entry.IsZExt = !Entry.IsSExt;
182 Entry.IsSExt = Entry.IsZExt =
false;
184 Args.push_back(Entry);
188 if (LC == RTLIB::UNKNOWN_LIBCALL || !LibcallName)
195 Type *OrigRetTy = RetTy;
198 bool zeroExtend = !signExtend;
203 signExtend = zeroExtend =
false;
219 LLVMContext &Context, std::vector<EVT> &MemOps,
unsigned Limit,
220 const MemOp &
Op,
unsigned DstAS,
unsigned SrcAS,
221 const AttributeList &FuncAttributes)
const {
222 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
223 Op.getSrcAlign() <
Op.getDstAlign())
228 if (VT == MVT::Other) {
232 VT = MVT::LAST_INTEGER_VALUETYPE;
233 if (
Op.isFixedDstAlign())
240 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
251 unsigned NumMemOps = 0;
255 while (VTSize >
Size) {
266 else if (NewVT == MVT::i64 &&
278 if (NewVT == MVT::i8)
287 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
289 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
299 if (++NumMemOps > Limit)
302 MemOps.push_back(VT);
327 bool IsSignaling)
const {
332 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
333 &&
"Unsupported setcc type!");
336 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
337 bool ShouldInvertCC =
false;
341 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
342 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
343 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
347 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
348 (VT == MVT::f64) ? RTLIB::UNE_F64 :
349 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
353 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
354 (VT == MVT::f64) ? RTLIB::OGE_F64 :
355 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
359 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
360 (VT == MVT::f64) ? RTLIB::OLT_F64 :
361 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
371 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
372 (VT == MVT::f64) ? RTLIB::OGT_F64 :
373 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
376 ShouldInvertCC =
true;
379 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
380 (VT == MVT::f64) ? RTLIB::UO_F64 :
381 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
385 ShouldInvertCC =
true;
388 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
389 (VT == MVT::f64) ? RTLIB::UO_F64 :
390 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
391 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
392 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
393 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
397 ShouldInvertCC =
true;
400 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
401 (VT == MVT::f64) ? RTLIB::OGE_F64 :
402 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
405 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
406 (VT == MVT::f64) ? RTLIB::OGT_F64 :
407 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
410 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
411 (VT == MVT::f64) ? RTLIB::OLE_F64 :
412 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
415 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
416 (VT == MVT::f64) ? RTLIB::OLT_F64 :
417 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
435 if (LC1Impl == RTLIB::Unsupported) {
437 "no libcall available to soften floating-point compare");
441 if (ShouldInvertCC) {
443 CCCode = getSetCCInverse(CCCode, RetVT);
446 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
451 if (LC2Impl == RTLIB::Unsupported) {
453 "no libcall available to soften floating-point compare");
457 "unordered call should be simple boolean");
467 auto Call2 =
makeLibCall(DAG, LC2, RetVT,
Ops, CallOptions, dl, Chain);
470 CCCode = getSetCCInverse(CCCode, RetVT);
471 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
514 return DAG.
getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
524 if (!TM.shouldAssumeDSOLocal(GV))
544 const APInt &DemandedElts,
547 unsigned Opcode =
Op.getOpcode();
566 if (!Op1C || Op1C->isOpaque())
570 const APInt &
C = Op1C->getAPIntValue();
575 EVT VT =
Op.getValueType();
592 EVT VT =
Op.getValueType();
607 "ShrinkDemandedOp only supports binary operators!");
608 assert(
Op.getNode()->getNumValues() == 1 &&
609 "ShrinkDemandedOp only supports nodes with one result!");
611 EVT VT =
Op.getValueType();
620 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
621 "ShrinkDemandedOp only supports operands that have the same size!");
625 if (!
Op.getNode()->hasOneUse())
641 unsigned Opcode =
Op.getOpcode();
642 if (Opcode == ISD::PTRADD) {
651 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
675 const APInt &DemandedElts,
695 bool AssumeSingleUse)
const {
696 EVT VT =
Op.getValueType();
712 EVT VT =
Op.getValueType();
730 switch (
Op.getOpcode()) {
736 EVT SrcVT = Src.getValueType();
737 EVT DstVT =
Op.getValueType();
743 if (NumSrcEltBits == NumDstEltBits)
748 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
749 unsigned Scale = NumDstEltBits / NumSrcEltBits;
753 for (
unsigned i = 0; i != Scale; ++i) {
754 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
755 unsigned BitOffset = EltOffset * NumSrcEltBits;
758 DemandedSrcBits |=
Sub;
759 for (
unsigned j = 0; j != NumElts; ++j)
761 DemandedSrcElts.
setBit((j * Scale) + i);
766 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
771 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
772 unsigned Scale = NumSrcEltBits / NumDstEltBits;
776 for (
unsigned i = 0; i != NumElts; ++i)
777 if (DemandedElts[i]) {
778 unsigned Offset = (i % Scale) * NumDstEltBits;
780 DemandedSrcElts.
setBit(i / Scale);
784 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
798 return Op.getOperand(0);
800 return Op.getOperand(1);
811 return Op.getOperand(0);
813 return Op.getOperand(1);
823 return Op.getOperand(0);
825 return Op.getOperand(1);
831 return Op.getOperand(0);
835 return Op.getOperand(1);
841 if (std::optional<unsigned> MaxSA =
844 unsigned ShAmt = *MaxSA;
845 unsigned NumSignBits =
848 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
856 if (std::optional<unsigned> MaxSA =
859 unsigned ShAmt = *MaxSA;
863 unsigned NumSignBits =
902 if (NumSignBits >= (
BitWidth - ExBits + 1))
915 EVT SrcVT = Src.getValueType();
916 EVT DstVT =
Op.getValueType();
917 if (IsLE && DemandedElts == 1 &&
933 !DemandedElts[CIdx->getZExtValue()])
944 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
947 if (DemandedSubElts == 0)
957 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
958 for (
unsigned i = 0; i != NumElts; ++i) {
959 int M = ShuffleMask[i];
960 if (M < 0 || !DemandedElts[i])
963 IdentityLHS &= (M == (int)i);
964 IdentityRHS &= ((M - NumElts) == i);
970 return Op.getOperand(0);
972 return Op.getOperand(1);
992 unsigned Depth)
const {
993 EVT VT =
Op.getValueType();
1006 unsigned Depth)
const {
1020 "SRL or SRA node is required here!");
1023 if (!N1C || !N1C->
isOne())
1070 unsigned ShiftOpc =
Op.getOpcode();
1071 bool IsSigned =
false;
1075 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1080 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1086 if (NumZero >= 2 && NumSigned < NumZero) {
1091 if (NumSigned >= 1) {
1099 if (NumZero >= 1 && NumSigned < NumZero) {
1119 EVT VT =
Op.getValueType();
1133 Add.getOperand(1)) &&
1164 unsigned Depth,
bool AssumeSingleUse)
const {
1167 "Mask size mismatches value type size!");
1172 EVT VT =
Op.getValueType();
1174 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1176 "Unexpected vector size");
1179 APInt DemandedElts = OriginalDemandedElts;
1204 bool HasMultiUse =
false;
1205 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1214 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1223 switch (
Op.getOpcode()) {
1227 if (!DemandedElts[0])
1232 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1239 if (DemandedElts == 1)
1268 EVT MemVT = LD->getMemoryVT();
1285 APInt DemandedVecElts(DemandedElts);
1287 unsigned Idx = CIdx->getZExtValue();
1291 if (!DemandedElts[Idx])
1308 if (!!DemandedVecElts)
1321 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
1323 APInt DemandedSrcElts = DemandedElts;
1324 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
1336 if (!!DemandedSubElts)
1338 if (!!DemandedSrcElts)
1348 if (NewSub || NewSrc) {
1349 NewSub = NewSub ? NewSub :
Sub;
1350 NewSrc = NewSrc ? NewSrc : Src;
1363 if (Src.getValueType().isScalableVector())
1366 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1367 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
1390 EVT SubVT =
Op.getOperand(0).getValueType();
1391 unsigned NumSubVecs =
Op.getNumOperands();
1393 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1394 APInt DemandedSubElts =
1395 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1397 Known2, TLO,
Depth + 1))
1400 if (!!DemandedSubElts)
1410 APInt DemandedLHS, DemandedRHS;
1415 if (!!DemandedLHS || !!DemandedRHS) {
1421 if (!!DemandedLHS) {
1427 if (!!DemandedRHS) {
1439 if (DemandedOp0 || DemandedOp1) {
1440 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1441 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1476 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1488 unsigned NumSubElts =
1509 Known2, TLO,
Depth + 1))
1535 if (DemandedOp0 || DemandedOp1) {
1536 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1537 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1556 Known2, TLO,
Depth + 1)) {
1580 if (DemandedOp0 || DemandedOp1) {
1581 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1582 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1593 for (
int I = 0;
I != 2; ++
I) {
1596 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1597 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1599 for (
int J = 0; J != 2; ++J) {
1652 if (
C->getAPIntValue() == Known2.
One) {
1661 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1673 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1674 uint64_t ShiftAmt = ShiftC->getZExtValue();
1677 : Ones.
lshr(ShiftAmt);
1694 if (!
C || !
C->isAllOnes())
1704 if (DemandedOp0 || DemandedOp1) {
1705 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1706 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1717 Known, TLO,
Depth + 1))
1720 Known2, TLO,
Depth + 1))
1732 Known, TLO,
Depth + 1))
1735 Known2, TLO,
Depth + 1))
1743 Known, TLO,
Depth + 1))
1746 Known2, TLO,
Depth + 1))
1789 if (std::optional<unsigned> KnownSA =
1791 unsigned ShAmt = *KnownSA;
1801 if (std::optional<unsigned> InnerSA =
1803 unsigned C1 = *InnerSA;
1805 int Diff = ShAmt - C1;
1824 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1842 InnerOp, DemandedElts,
Depth + 2)) {
1843 unsigned InnerShAmt = *SA2;
1844 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1846 (InnerBits - InnerShAmt + ShAmt) &&
1874 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1885 Op.getNode()->hasOneUse()) {
1896 assert(DemandedSize <= SmallVTBits &&
1897 "Narrowed below demanded bits?");
1927 Flags.setNoUnsignedWrap(IsNUW);
1932 NewShiftAmt, Flags);
1958 if (std::optional<unsigned> MaxSA =
1960 unsigned ShAmt = *MaxSA;
1961 unsigned NumSignBits =
1964 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1974 if (std::optional<unsigned> KnownSA =
1976 unsigned ShAmt = *KnownSA;
1986 if (std::optional<unsigned> InnerSA =
1988 unsigned C1 = *InnerSA;
1990 int Diff = ShAmt - C1;
2006 if (std::optional<unsigned> InnerSA =
2008 unsigned C1 = *InnerSA;
2010 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
2022 if (
Op->getFlags().hasExact())
2057 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2071 if (std::optional<unsigned> MaxSA =
2073 unsigned ShAmt = *MaxSA;
2077 unsigned NumSignBits =
2086 DemandedElts,
Depth + 1))
2110 if (std::optional<unsigned> KnownSA =
2112 unsigned ShAmt = *KnownSA;
2119 if (std::optional<unsigned> InnerSA =
2121 unsigned LowBits =
BitWidth - ShAmt;
2127 if (*InnerSA == ShAmt) {
2137 unsigned NumSignBits =
2139 if (NumSignBits > ShAmt)
2149 if (
Op->getFlags().hasExact())
2186 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2196 DemandedElts,
Depth + 1))
2209 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2215 Known, TLO,
Depth + 1))
2231 Known2 <<= (IsFSHL ? Amt : (
BitWidth - Amt));
2232 Known >>= (IsFSHL ? (
BitWidth - Amt) : Amt);
2239 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2241 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2242 if (DemandedOp0 || DemandedOp1) {
2243 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2244 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2256 Known2, TLO,
Depth + 1))
2272 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2288 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2293 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2312 unsigned Opc =
Op.getOpcode();
2319 unsigned NumSignBits =
2323 if (NumSignBits >= NumDemandedUpperBits)
2389 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2421 unsigned MinSignedBits =
2423 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2426 if (!AlreadySignExtended) {
2444 InputDemandedBits.
setBit(ExVTBits - 1);
2454 if (Known.
Zero[ExVTBits - 1])
2458 if (Known.
One[ExVTBits - 1]) {
2468 EVT HalfVT =
Op.getOperand(0).getValueType();
2482 Known = KnownHi.
concat(KnownLo);
2491 EVT SrcVT = Src.getValueType();
2500 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2511 APInt InDemandedElts = DemandedElts.
zext(InElts);
2522 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2532 EVT SrcVT = Src.getValueType();
2537 APInt InDemandedElts = DemandedElts.
zext(InElts);
2542 InDemandedBits.
setBit(InBits - 1);
2548 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2585 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2595 EVT SrcVT = Src.getValueType();
2602 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2607 APInt InDemandedElts = DemandedElts.
zext(InElts);
2616 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2625 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2638 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2643 switch (Src.getOpcode()) {
2654 if (Src.getNode()->hasOneUse()) {
2666 std::optional<unsigned> ShAmtC =
2668 if (!ShAmtC || *ShAmtC >=
BitWidth)
2670 unsigned ShVal = *ShAmtC;
2700 Known.
Zero |= ~InMask;
2701 Known.
One &= (~Known.Zero);
2707 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2708 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2717 if (CIdx->getAPIntValue().ult(NumSrcElts))
2724 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2733 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2735 TLO.
DAG.
getNode(
Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2745 case ISD::BITCAST: {
2749 EVT SrcVT = Src.getValueType();
2759 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2760 SrcVT != MVT::f128) {
2762 EVT Ty = OpVTLegal ? VT : MVT::i32;
2766 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2767 if (!OpVTLegal && OpVTSizeInBits > 32)
2769 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2779 unsigned Scale =
BitWidth / NumSrcEltBits;
2783 for (
unsigned i = 0; i != Scale; ++i) {
2784 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2785 unsigned BitOffset = EltOffset * NumSrcEltBits;
2787 if (!
Sub.isZero()) {
2788 DemandedSrcBits |=
Sub;
2789 for (
unsigned j = 0; j != NumElts; ++j)
2790 if (DemandedElts[j])
2791 DemandedSrcElts.
setBit((j * Scale) + i);
2795 APInt KnownSrcUndef, KnownSrcZero;
2797 KnownSrcZero, TLO,
Depth + 1))
2802 KnownSrcBits, TLO,
Depth + 1))
2804 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2806 unsigned Scale = NumSrcEltBits /
BitWidth;
2810 for (
unsigned i = 0; i != NumElts; ++i)
2811 if (DemandedElts[i]) {
2814 DemandedSrcElts.
setBit(i / Scale);
2818 APInt KnownSrcUndef, KnownSrcZero;
2820 KnownSrcZero, TLO,
Depth + 1))
2826 KnownSrcBits, TLO,
Depth + 1))
2832 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2854 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2870 if (
Op.getOperand(0).getValueType() !=
Op.getOperand(1).getValueType())
2878 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2883 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2892 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2909 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2911 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2912 if (DemandedOp0 || DemandedOp1) {
2913 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2914 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2928 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2929 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2941 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2968 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2971 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2972 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2976 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2977 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2985 Op.getOpcode() !=
ISD::SUB, Flags.hasNoSignedWrap(),
2986 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
3007 Known.
Zero |= SignMask;
3008 Known.
One &= ~SignMask;
3025 Known, TLO,
Depth + 1) ||
3039 Known.
Zero &= ~SignMask0;
3040 Known.
One &= ~SignMask0;
3055 Known.
Zero ^= SignMask;
3056 Known.
One ^= SignMask;
3067 if (
Op.getValueType().isScalableVector())
3086 auto *C = dyn_cast<ConstantSDNode>(V);
3087 return C && C->isOpaque();
3108 const APInt &DemandedElts,
3114 APInt KnownUndef, KnownZero;
3128 const APInt &UndefOp0,
3129 const APInt &UndefOp1) {
3132 "Vector binop only");
3137 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3139 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3140 const APInt &UndefVals) {
3141 if (UndefVals[Index])
3157 for (
unsigned i = 0; i != NumElts; ++i) {
3176 bool AssumeSingleUse)
const {
3177 EVT VT =
Op.getValueType();
3178 unsigned Opcode =
Op.getOpcode();
3179 APInt DemandedElts = OriginalDemandedElts;
3193 "Mask size mismatches value type element count!");
3202 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3206 if (DemandedElts == 0) {
3221 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3226 if (NewOp0 || NewOp1) {
3229 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3237 if (!DemandedElts[0]) {
3244 case ISD::BITCAST: {
3246 EVT SrcVT = Src.getValueType();
3253 for (
unsigned I = 0;
I != NumElts; ++
I) {
3254 if (DemandedElts[
I]) {
3255 unsigned Offset =
I * EltSize;
3268 if (NumSrcElts == NumElts)
3270 KnownZero, TLO,
Depth + 1);
3272 APInt SrcDemandedElts, SrcZero, SrcUndef;
3276 if ((NumElts % NumSrcElts) == 0) {
3277 unsigned Scale = NumElts / NumSrcElts;
3289 for (
unsigned i = 0; i != NumElts; ++i)
3290 if (DemandedElts[i]) {
3291 unsigned Ofs = (i % Scale) * EltSizeInBits;
3292 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3304 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3308 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3309 unsigned Elt = Scale * SrcElt + SubElt;
3310 if (DemandedElts[Elt])
3318 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3319 if (SrcDemandedElts[i]) {
3321 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3323 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3331 if ((NumSrcElts % NumElts) == 0) {
3332 unsigned Scale = NumSrcElts / NumElts;
3340 for (
unsigned i = 0; i != NumElts; ++i) {
3341 if (DemandedElts[i]) {
3371 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3373 bool Updated =
false;
3374 for (
unsigned i = 0; i != NumElts; ++i) {
3385 for (
unsigned i = 0; i != NumElts; ++i) {
3387 if (
SrcOp.isUndef()) {
3389 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3397 EVT SubVT =
Op.getOperand(0).getValueType();
3398 unsigned NumSubVecs =
Op.getNumOperands();
3400 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3403 APInt SubUndef, SubZero;
3407 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3408 KnownZero.
insertBits(SubZero, i * NumSubElts);
3413 bool FoundNewSub =
false;
3415 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3419 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3420 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3421 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3437 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3439 APInt DemandedSrcElts = DemandedElts;
3440 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3443 if (!DemandedSubElts)
3446 APInt SubUndef, SubZero;
3452 if (!DemandedSrcElts && !Src.isUndef())
3466 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3469 if (NewSrc || NewSub) {
3470 NewSrc = NewSrc ? NewSrc : Src;
3471 NewSub = NewSub ? NewSub :
Sub;
3473 NewSub,
Op.getOperand(2));
3482 if (Src.getValueType().isScalableVector())
3485 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3486 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3488 APInt SrcUndef, SrcZero;
3498 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3514 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3515 unsigned Idx = CIdx->getZExtValue();
3516 if (!DemandedElts[Idx])
3519 APInt DemandedVecElts(DemandedElts);
3522 KnownZero, TLO,
Depth + 1))
3531 APInt VecUndef, VecZero;
3545 APInt UndefSel, ZeroSel;
3551 APInt DemandedLHS(DemandedElts);
3552 APInt DemandedRHS(DemandedElts);
3553 APInt UndefLHS, ZeroLHS;
3554 APInt UndefRHS, ZeroRHS;
3562 KnownUndef = UndefLHS & UndefRHS;
3563 KnownZero = ZeroLHS & ZeroRHS;
3567 APInt DemandedSel = DemandedElts & ~KnownZero;
3568 if (DemandedSel != DemandedElts)
3581 APInt DemandedLHS(NumElts, 0);
3582 APInt DemandedRHS(NumElts, 0);
3583 for (
unsigned i = 0; i != NumElts; ++i) {
3584 int M = ShuffleMask[i];
3585 if (M < 0 || !DemandedElts[i])
3587 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3588 if (M < (
int)NumElts)
3591 DemandedRHS.
setBit(M - NumElts);
3597 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3598 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3599 if (FoldLHS || FoldRHS) {
3600 LHS = FoldLHS ? TLO.
DAG.
getUNDEF(LHS.getValueType()) : LHS;
3601 RHS = FoldRHS ? TLO.
DAG.
getUNDEF(RHS.getValueType()) : RHS;
3608 APInt UndefLHS, ZeroLHS;
3609 APInt UndefRHS, ZeroRHS;
3618 bool Updated =
false;
3619 bool IdentityLHS =
true, IdentityRHS =
true;
3621 for (
unsigned i = 0; i != NumElts; ++i) {
3622 int &M = NewMask[i];
3625 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3626 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3630 IdentityLHS &= (M < 0) || (M == (
int)i);
3631 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3636 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3644 for (
unsigned i = 0; i != NumElts; ++i) {
3645 int M = ShuffleMask[i];
3648 }
else if (M < (
int)NumElts) {
3654 if (UndefRHS[M - NumElts])
3656 if (ZeroRHS[M - NumElts])
3665 APInt SrcUndef, SrcZero;
3667 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3668 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3676 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3677 DemandedSrcElts == 1) {
3690 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3691 Op->isOnlyUserOf(Src.getNode()) &&
3692 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3694 EVT SrcVT = Src.getValueType();
3701 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3715 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3716 APInt UndefLHS, ZeroLHS;
3738 APInt UndefRHS, ZeroRHS;
3742 APInt UndefLHS, ZeroLHS;
3747 KnownZero = ZeroLHS & ZeroRHS;
3753 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3765 APInt UndefRHS, ZeroRHS;
3769 APInt UndefLHS, ZeroLHS;
3774 KnownZero = ZeroLHS;
3775 KnownUndef = UndefLHS & UndefRHS;
3780 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3791 APInt SrcUndef, SrcZero;
3797 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3802 KnownUndef &= DemandedElts0;
3803 KnownZero &= DemandedElts0;
3808 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3815 KnownZero |= SrcZero;
3816 KnownUndef &= SrcUndef;
3817 KnownUndef &= ~KnownZero;
3821 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3829 KnownZero, TLO,
Depth + 1))
3834 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3849 KnownZero, TLO,
Depth + 1))
3856 KnownZero, TLO,
Depth))
3862 TLO,
Depth, AssumeSingleUse))
3868 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3882 const APInt &DemandedElts,
3884 unsigned Depth)
const {
3889 "Should use MaskedValueIsZero if you don't know whether Op"
3890 " is a target node!");
3897 unsigned Depth)
const {
3904 unsigned Depth)
const {
3916 unsigned Depth)
const {
3925 unsigned Depth)
const {
3930 "Should use ComputeNumSignBits if you don't know whether Op"
3931 " is a target node!");
3948 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3949 " is a target node!");
3960 "Should use SimplifyDemandedBits if you don't know whether Op"
3961 " is a target node!");
3974 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3975 " is a target node!");
4008 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4009 " is a target node!");
4016 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4028 "Should use canCreateUndefOrPoison if you don't know whether Op"
4029 " is a target node!");
4035 const APInt &DemandedElts,
4038 unsigned Depth)
const {
4043 "Should use isKnownNeverNaN if you don't know whether Op"
4044 " is a target node!");
4049 const APInt &DemandedElts,
4052 unsigned Depth)
const {
4057 "Should use isSplatValue if you don't know whether Op"
4058 " is a target node!");
4073 CVal = CN->getAPIntValue();
4074 EltWidth =
N.getValueType().getScalarSizeInBits();
4081 CVal = CVal.
trunc(EltWidth);
4087 return CVal.
isOne();
4129 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4132 return N->isAllOnes() && SExt;
4141 DAGCombinerInfo &DCI)
const {
4170 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4173 AndC->getAPIntValue().getActiveBits());
4200 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4208 if (DCI.isBeforeLegalizeOps() ||
4237 DAGCombinerInfo &DCI)
const {
4241 SelectionDAG &DAG = DCI.DAG;
4278SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4280 const SDLoc &
DL)
const {
4291 ConstantSDNode *C01;
4320 auto checkConstants = [&
I1, &I01]() ->
bool {
4325 if (checkConstants()) {
4333 if (!checkConstants())
4339 const unsigned KeptBits =
I1.logBase2();
4340 const unsigned KeptBitsMinusOne = I01.
logBase2();
4343 if (KeptBits != (KeptBitsMinusOne + 1))
4348 SelectionDAG &DAG = DCI.DAG;
4357 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4361SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4363 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4365 "Should be a comparison with 0.");
4367 "Valid only for [in]equality comparisons.");
4369 unsigned NewShiftOpcode;
4372 SelectionDAG &DAG = DCI.DAG;
4375 auto Match = [&NewShiftOpcode, &
X, &
C, &
Y, &DAG,
this](
SDValue V) {
4379 unsigned OldShiftOpcode =
V.getOpcode();
4380 switch (OldShiftOpcode) {
4392 C =
V.getOperand(0);
4393 ConstantSDNode *CC =
4397 Y =
V.getOperand(1);
4399 ConstantSDNode *
XC =
4402 X, XC, CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4419 EVT VT =
X.getValueType();
4434 DAGCombinerInfo &DCI)
const {
4437 "Unexpected binop");
4443 SelectionDAG &DAG = DCI.DAG;
4465 if (!DCI.isCalledByLegalizer())
4466 DCI.AddToWorklist(YShl1.
getNode());
4481 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4484 EVT CTVT = CTPOP.getValueType();
4485 SDValue CTOp = CTPOP.getOperand(0);
4505 for (
unsigned i = 0; i <
Passes; i++) {
4554 auto getRotateSource = [](
SDValue X) {
4556 return X.getOperand(0);
4563 if (
SDValue R = getRotateSource(N0))
4596 if (!C1 || !C1->
isZero())
4621 if (
Or.getOperand(0) ==
Other) {
4622 X =
Or.getOperand(0);
4623 Y =
Or.getOperand(1);
4626 if (
Or.getOperand(1) ==
Other) {
4627 X =
Or.getOperand(1);
4628 Y =
Or.getOperand(0);
4638 if (matchOr(F0, F1)) {
4645 if (matchOr(F1, F0)) {
4661 const SDLoc &dl)
const {
4671 bool N0ConstOrSplat =
4673 bool N1ConstOrSplat =
4681 if (N0ConstOrSplat && !N1ConstOrSplat &&
4684 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4690 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4695 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4704 const APInt &C1 = N1C->getAPIntValue();
4720 !Attr.hasFnAttr(Attribute::MinSize)) {
4724 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4755 const APInt &C1 = N1C->getAPIntValue();
4771 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4772 MinBits =
C->getAPIntValue().countr_one();
4783 MinBits = LN0->getMemoryVT().getSizeInBits();
4787 MinBits = LN0->getMemoryVT().getSizeInBits();
4798 MinBits >= ReqdBits) {
4803 if (MinBits == 1 && C1 == 1)
4822 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4856 unsigned bestWidth = 0, bestOffset = 0;
4857 if (Lod->isSimple() && Lod->isUnindexed() &&
4858 (Lod->getMemoryVT().isByteSized() ||
4860 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4862 unsigned maskWidth = origWidth;
4866 origWidth = Lod->getMemoryVT().getSizeInBits();
4870 for (
unsigned width = 8; width < origWidth; width *= 2) {
4875 unsigned maxOffset = origWidth - width;
4876 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4877 if (Mask.isSubsetOf(newMask)) {
4878 unsigned ptrOffset =
4880 unsigned IsFast = 0;
4881 assert((ptrOffset % 8) == 0 &&
"Non-Bytealigned pointer offset");
4886 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4887 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4889 bestOffset = ptrOffset / 8;
4890 bestMask = Mask.lshr(offset);
4904 if (bestOffset != 0)
4908 Lod->getPointerInfo().getWithOffset(bestOffset),
4909 Lod->getBaseAlign());
4988 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4995 return DAG.
getSetCC(dl, VT, ZextOp,
4997 }
else if ((N1C->isZero() || N1C->isOne()) &&
5044 return DAG.
getSetCC(dl, VT, Val, N1,
5047 }
else if (N1C->isOne()) {
5130 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
5137 const APInt &C1 = N1C->getAPIntValue();
5139 APInt MinVal, MaxVal;
5161 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5181 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5229 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5230 VT, N0, N1,
Cond, DCI, dl))
5237 bool CmpZero = N1C->isZero();
5238 bool CmpNegOne = N1C->isAllOnes();
5239 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5242 unsigned EltBits = V.getScalarValueSizeInBits();
5243 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5251 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5254 Hi = RHS.getOperand(0);
5259 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5262 Hi = LHS.getOperand(0);
5270 unsigned HalfBits = EltBits / 2;
5281 if (IsConcat(N0,
Lo,
Hi))
5282 return MergeConcat(
Lo,
Hi);
5320 const APInt &C1 = N1C->getAPIntValue();
5335 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5336 if (AndRHS->getAPIntValue().isPowerOf2() &&
5343 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5363 const APInt &AndRHSC = AndRHS->getAPIntValue();
5415 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5423 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5444 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5445 bool IsFabs = N0.
getOpcode() == ISD::FABS;
5463 if (CFP->getValueAPF().isInfinity()) {
5464 bool IsNegInf = CFP->getValueAPF().isNegative();
5475 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5484 "Integer types should be handled by FoldSetCC");
5490 if (UOF ==
unsigned(EqTrue))
5495 if (NewCond !=
Cond &&
5498 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5505 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5542 bool LegalRHSImm =
false;
5550 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5558 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5568 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5573 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5582 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5588 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5591 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5594 if (
SDValue V = foldSetCCWithOr(VT, N0, N1,
Cond, dl, DCI))
5603 if (!
isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5605 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5608 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5621 N0 = DAG.
getNOT(dl, Temp, OpVT);
5630 Temp = DAG.
getNOT(dl, N0, OpVT);
5637 Temp = DAG.
getNOT(dl, N1, OpVT);
5644 Temp = DAG.
getNOT(dl, N0, OpVT);
5651 Temp = DAG.
getNOT(dl, N1, OpVT);
5660 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5688 GA = GASD->getGlobal();
5689 Offset += GASD->getOffset();
5693 if (
N->isAnyAdd()) {
5698 Offset += V->getSExtValue();
5703 Offset += V->getSExtValue();
5724 unsigned S = Constraint.
size();
5727 switch (Constraint[0]) {
5758 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5759 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5787 std::vector<SDValue> &
Ops,
5790 if (Constraint.
size() > 1)
5793 char ConstraintLetter = Constraint[0];
5794 switch (ConstraintLetter) {
5814 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5824 if (ConstraintLetter !=
'n') {
5827 GA->getValueType(0),
5828 Offset + GA->getOffset()));
5833 BA->getBlockAddress(), BA->getValueType(0),
5834 Offset + BA->getOffset(), BA->getTargetFlags()));
5842 const unsigned OpCode =
Op.getOpcode();
5845 Op =
Op.getOperand(1);
5849 Op =
Op.getOperand(0);
5866std::pair<unsigned, const TargetRegisterClass *>
5872 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5877 std::pair<unsigned, const TargetRegisterClass *> R =
5889 std::pair<unsigned, const TargetRegisterClass *> S =
5890 std::make_pair(PR, RC);
5935 unsigned maCount = 0;
5941 unsigned LabelNo = 0;
5944 ConstraintOperands.emplace_back(std::move(CI));
5948 if (OpInfo.multipleAlternatives.size() > maCount)
5949 maCount = OpInfo.multipleAlternatives.size();
5951 OpInfo.ConstraintVT = MVT::Other;
5954 switch (OpInfo.Type) {
5957 if (OpInfo.isIndirect) {
5958 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5964 assert(!
Call.getType()->isVoidTy() &&
"Bad inline asm!");
5966 OpInfo.ConstraintVT =
5970 assert(ResNo == 0 &&
"Asm only has one result!");
5971 OpInfo.ConstraintVT =
5977 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5988 if (OpInfo.CallOperandVal) {
5989 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5990 if (OpInfo.isIndirect) {
5991 OpTy =
Call.getParamElementType(ArgNo);
5992 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5997 if (STy->getNumElements() == 1)
5998 OpTy = STy->getElementType(0);
6003 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
6024 if (!ConstraintOperands.empty()) {
6026 unsigned bestMAIndex = 0;
6027 int bestWeight = -1;
6033 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6035 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6036 cIndex != eIndex; ++cIndex) {
6045 if (OpInfo.hasMatchingInput()) {
6047 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6048 if ((OpInfo.ConstraintVT.isInteger() !=
6049 Input.ConstraintVT.isInteger()) ||
6050 (OpInfo.ConstraintVT.getSizeInBits() !=
6051 Input.ConstraintVT.getSizeInBits())) {
6062 weightSum += weight;
6065 if (weightSum > bestWeight) {
6066 bestWeight = weightSum;
6067 bestMAIndex = maIndex;
6074 cInfo.selectAlternative(bestMAIndex);
6079 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6080 cIndex != eIndex; ++cIndex) {
6087 if (OpInfo.hasMatchingInput()) {
6090 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6091 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6093 OpInfo.ConstraintVT);
6094 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6096 Input.ConstraintVT);
6097 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6098 OpInfo.ConstraintVT.isFloatingPoint();
6099 const bool InOpIsIntOrFP =
Input.ConstraintVT.isInteger() ||
6100 Input.ConstraintVT.isFloatingPoint();
6101 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6102 (MatchRC.second != InputRC.second)) {
6104 " with a matching output constraint of"
6105 " incompatible type!");
6111 return ConstraintOperands;
6146 if (maIndex >= (
int)
info.multipleAlternatives.size())
6147 rCodes = &
info.Codes;
6149 rCodes = &
info.multipleAlternatives[maIndex].Codes;
6153 for (
const std::string &rCode : *rCodes) {
6156 if (weight > BestWeight)
6157 BestWeight = weight;
6170 Value *CallOperandVal =
info.CallOperandVal;
6173 if (!CallOperandVal)
6176 switch (*constraint) {
6240 Ret.reserve(OpInfo.Codes.size());
6255 Ret.emplace_back(Code, CType);
6273 "need immediate or other");
6278 std::vector<SDValue> ResultOps;
6280 return !ResultOps.empty();
6288 assert(!OpInfo.Codes.empty() &&
"Must have at least one constraint");
6291 if (OpInfo.Codes.size() == 1) {
6292 OpInfo.ConstraintCode = OpInfo.Codes[0];
6299 unsigned BestIdx = 0;
6300 for (
const unsigned E =
G.size();
6307 if (BestIdx + 1 == E) {
6313 OpInfo.ConstraintCode =
G[BestIdx].first;
6314 OpInfo.ConstraintType =
G[BestIdx].second;
6318 if (OpInfo.ConstraintCode ==
"X" && OpInfo.CallOperandVal) {
6322 Value *v = OpInfo.CallOperandVal;
6328 OpInfo.ConstraintCode =
"i";
6335 OpInfo.ConstraintCode = Repl;
6349 EVT VT =
N->getValueType(0);
6354 bool UseSRA =
false;
6360 APInt Divisor =
C->getAPIntValue();
6382 "Expected matchUnaryPredicate to return one element for scalable "
6389 Factor = Factors[0];
6407 EVT VT =
N->getValueType(0);
6412 bool UseSRL =
false;
6418 APInt Divisor =
C->getAPIntValue();
6443 "Expected matchUnaryPredicate to return one element for scalable "
6450 Factor = Factors[0];
6493 EVT VT =
N->getValueType(0);
6529 bool IsAfterLegalization,
6530 bool IsAfterLegalTypes,
6533 EVT VT =
N->getValueType(0);
6559 if (
N->getFlags().hasExact())
6568 const APInt &Divisor =
C->getAPIntValue();
6570 int NumeratorFactor = 0;
6581 NumeratorFactor = 1;
6584 NumeratorFactor = -1;
6601 SDValue MagicFactor, Factor, Shift, ShiftMask;
6609 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6610 "Expected matchUnaryPredicate to return one element for scalable "
6618 MagicFactor = MagicFactors[0];
6619 Factor = Factors[0];
6621 ShiftMask = ShiftMasks[0];
6667 SDValue Q = GetMULHS(N0, MagicFactor);
6697 bool IsAfterLegalization,
6698 bool IsAfterLegalTypes,
6701 EVT VT =
N->getValueType(0);
6727 if (
N->getFlags().hasExact())
6737 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6743 const APInt& Divisor =
C->getAPIntValue();
6745 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6749 if (Divisor.
isOne()) {
6750 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6751 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6755 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6760 "We shouldn't generate an undefined shift!");
6762 "We shouldn't generate an undefined shift!");
6764 "Unexpected pre-shift");
6771 UseNPQ |= magics.
IsAdd;
6772 UsePreShift |= magics.
PreShift != 0;
6787 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6795 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6796 "Expected matchUnaryPredicate to return one for scalable vectors");
6803 PreShift = PreShifts[0];
6804 MagicFactor = MagicFactors[0];
6805 PostShift = PostShifts[0];
6857 Q = GetMULHU(Q, MagicFactor);
6870 NPQ = GetMULHU(NPQ, NPQFactor);
6889 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6903 if (SplatValue != Values.
end()) {
6908 Replacement = *SplatValue;
6912 if (!AlternativeReplacement)
6915 Replacement = AlternativeReplacement;
6925SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6928 DAGCombinerInfo &DCI,
6929 const SDLoc &
DL)
const {
6931 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6933 for (SDNode *
N : Built)
6934 DCI.AddToWorklist(
N);
6942TargetLowering::prepareUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6944 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6945 SmallVectorImpl<SDNode *> &Created)
const {
6952 "Only applicable for (in)equality comparisons.");
6954 SelectionDAG &DAG = DCI.DAG;
6965 bool ComparingWithAllZeros =
true;
6966 bool AllComparisonsWithNonZerosAreTautological =
true;
6967 bool HadTautologicalLanes =
false;
6968 bool AllLanesAreTautological =
true;
6969 bool HadEvenDivisor =
false;
6970 bool AllDivisorsArePowerOfTwo =
true;
6971 bool HadTautologicalInvertedLanes =
false;
6974 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6980 const APInt &
Cmp = CCmp->getAPIntValue();
6982 ComparingWithAllZeros &=
Cmp.isZero();
6988 bool TautologicalInvertedLane =
D.ule(Cmp);
6989 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6994 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
6995 HadTautologicalLanes |= TautologicalLane;
6996 AllLanesAreTautological &= TautologicalLane;
7002 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7005 unsigned K =
D.countr_zero();
7006 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7007 APInt D0 =
D.lshr(K);
7010 HadEvenDivisor |= (
K != 0);
7013 AllDivisorsArePowerOfTwo &= D0.
isOne();
7017 unsigned W =
D.getBitWidth();
7019 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7032 "We are expecting that K is always less than all-ones for ShSVT");
7035 if (TautologicalLane) {
7061 if (AllLanesAreTautological)
7066 if (AllDivisorsArePowerOfTwo)
7071 if (HadTautologicalLanes) {
7086 "Expected matchBinaryPredicate to return one element for "
7097 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7101 "Expecting that the types on LHS and RHS of comparisons match.");
7111 if (HadEvenDivisor) {
7124 if (!HadTautologicalInvertedLanes)
7130 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7137 SDValue TautologicalInvertedChannels =
7147 DL, SETCCVT, SETCCVT);
7149 Replacement, NewCC);
7157 TautologicalInvertedChannels);
7167SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7170 DAGCombinerInfo &DCI,
7171 const SDLoc &
DL)
const {
7173 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
7175 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
7176 for (SDNode *
N : Built)
7177 DCI.AddToWorklist(
N);
7185TargetLowering::prepareSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7187 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7188 SmallVectorImpl<SDNode *> &Created)
const {
7212 "Only applicable for (in)equality comparisons.");
7214 SelectionDAG &DAG = DCI.DAG;
7228 if (!CompTarget || !CompTarget->
isZero())
7231 bool HadIntMinDivisor =
false;
7232 bool HadOneDivisor =
false;
7233 bool AllDivisorsAreOnes =
true;
7234 bool HadEvenDivisor =
false;
7235 bool NeedToApplyOffset =
false;
7236 bool AllDivisorsArePowerOfTwo =
true;
7239 auto BuildSREMPattern = [&](ConstantSDNode *
C) {
7247 APInt
D =
C->getAPIntValue();
7251 HadIntMinDivisor |=
D.isMinSignedValue();
7254 HadOneDivisor |=
D.isOne();
7255 AllDivisorsAreOnes &=
D.isOne();
7258 unsigned K =
D.countr_zero();
7259 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7260 APInt D0 =
D.
lshr(K);
7262 if (!
D.isMinSignedValue()) {
7265 HadEvenDivisor |= (
K != 0);
7270 AllDivisorsArePowerOfTwo &= D0.
isOne();
7274 unsigned W =
D.getBitWidth();
7276 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7282 if (!
D.isMinSignedValue()) {
7285 NeedToApplyOffset |=
A != 0;
7292 "We are expecting that A is always less than all-ones for SVT");
7294 "We are expecting that K is always less than all-ones for ShSVT");
7334 if (AllDivisorsAreOnes)
7339 if (AllDivisorsArePowerOfTwo)
7342 SDValue PVal, AVal, KVal, QVal;
7344 if (HadOneDivisor) {
7364 QAmts.
size() == 1 &&
7365 "Expected matchUnaryPredicate to return one element for scalable "
7383 if (NeedToApplyOffset) {
7395 if (HadEvenDivisor) {
7410 if (!HadIntMinDivisor)
7416 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7451 MaskedIsZero, Fold);
7459 EVT VT =
Op.getValueType();
7482 bool LegalOps,
bool OptForSize,
7484 unsigned Depth)
const {
7486 if (
Op.getOpcode() == ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7488 return Op.getOperand(0);
7499 EVT VT =
Op.getValueType();
7500 unsigned Opcode =
Op.getOpcode();
7504 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7510 auto RemoveDeadNode = [&](
SDValue N) {
7511 if (
N &&
N.getNode()->use_empty())
7520 std::list<HandleSDNode> Handles;
7531 if (LegalOps && !IsOpLegal)
7548 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7556 return N.isUndef() ||
7557 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7561 if (LegalOps && !IsOpLegal)
7578 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7592 Handles.emplace_back(NegX);
7603 if (NegX && (CostX <= CostY)) {
7607 RemoveDeadNode(NegY);
7616 RemoveDeadNode(NegX);
7623 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7648 Handles.emplace_back(NegX);
7659 if (NegX && (CostX <= CostY)) {
7663 RemoveDeadNode(NegY);
7669 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7677 RemoveDeadNode(NegX);
7684 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7687 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7696 Handles.emplace_back(NegZ);
7704 Handles.emplace_back(NegX);
7715 if (NegX && (CostX <= CostY)) {
7716 Cost = std::min(CostX, CostZ);
7719 RemoveDeadNode(NegY);
7725 Cost = std::min(CostY, CostZ);
7728 RemoveDeadNode(NegX);
7734 case ISD::FP_EXTEND:
7738 return DAG.
getNode(Opcode,
DL, VT, NegV);
7754 RemoveDeadNode(NegLHS);
7759 Handles.emplace_back(NegLHS);
7772 RemoveDeadNode(NegLHS);
7773 RemoveDeadNode(NegRHS);
7777 Cost = std::min(CostLHS, CostRHS);
7778 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7807 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7820 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7848 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7849 Result.push_back(
Lo);
7850 Result.push_back(
Hi);
7853 Result.push_back(Zero);
7854 Result.push_back(Zero);
7865 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7866 Result.push_back(
Lo);
7867 Result.push_back(
Hi);
7872 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7887 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7890 Result.push_back(
Lo);
7897 Result.push_back(
Hi);
7910 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7917 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
7970 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
7971 DAG, Kind, LL, LH, RL, RH);
7973 assert(Result.size() == 2);
8005 unsigned Opcode =
N->getOpcode();
8006 EVT VT =
N->getValueType(0);
8013 "Unexpected opcode");
8019 APInt Divisor = CN->getAPIntValue();
8027 if (Divisor.
uge(HalfMaxPlus1))
8045 unsigned TrailingZeros = 0;
8059 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
8060 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
8062 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
8066 if (TrailingZeros) {
8134 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8135 Result.push_back(QuotL);
8136 Result.push_back(QuotH);
8142 if (TrailingZeros) {
8147 Result.push_back(RemL);
8163 EVT VT =
Node->getValueType(0);
8173 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
8176 EVT ShVT = Z.getValueType();
8182 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8183 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8184 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8186 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8194 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8198 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8201 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8202 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8207 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8209 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8212 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8213 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8216 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8221 if (
Node->isVPOpcode())
8224 EVT VT =
Node->getValueType(0);
8240 EVT ShVT = Z.getValueType();
8310 EVT VT =
Node->getValueType(0);
8328 if (!AllowVectorOps && VT.
isVector() &&
8346 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8348 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8354 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8365 assert(
Node->getNumOperands() == 3 &&
"Not a double-shift!");
8366 EVT VT =
Node->getValueType(0);
8417 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8419 EVT SrcVT = Src.getValueType();
8420 EVT DstVT =
Node->getValueType(0);
8424 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8427 if (
Node->isStrictFPOpcode())
8490 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8493 EVT SrcVT = Src.getValueType();
8494 EVT DstVT =
Node->getValueType(0);
8515 if (
Node->isStrictFPOpcode()) {
8517 {
Node->getOperand(0), Src });
8518 Chain = Result.getValue(1);
8532 if (
Node->isStrictFPOpcode()) {
8534 Node->getOperand(0),
true);
8540 bool Strict =
Node->isStrictFPOpcode() ||
8559 if (
Node->isStrictFPOpcode()) {
8561 { Chain, Src, FltOfs });
8583 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8593 if (
Node->isStrictFPOpcode())
8597 EVT SrcVT = Src.getValueType();
8598 EVT DstVT =
Node->getValueType(0);
8602 if (
Node->getFlags().hasNonNeg() &&
8650 unsigned Opcode =
Node->getOpcode();
8651 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8655 if (
Node->getFlags().hasNoNaNs()) {
8657 EVT VT =
Node->getValueType(0);
8676 EVT VT =
Node->getValueType(0);
8679 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8683 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8689 if (!
Node->getFlags().hasNoNaNs()) {
8702 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1,
Node->getFlags());
8708 if ((
Node->getFlags().hasNoNaNs() ||
8711 (
Node->getFlags().hasNoSignedZeros() ||
8714 unsigned IEEE2018Op =
8715 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8717 return DAG.
getNode(IEEE2018Op, dl, VT,
Node->getOperand(0),
8718 Node->getOperand(1),
Node->getFlags());
8735 unsigned Opc =
N->getOpcode();
8736 EVT VT =
N->getValueType(0);
8738 bool IsMax =
Opc == ISD::FMAXIMUM;
8744 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8745 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8749 bool MinMaxMustRespectOrderedZero =
false;
8753 MinMaxMustRespectOrderedZero =
true;
8767 if (!
N->getFlags().hasNoNaNs() &&
8776 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8799 unsigned Opc =
Node->getOpcode();
8800 EVT VT =
Node->getValueType(0);
8802 bool IsMax =
Opc == ISD::FMAXIMUMNUM;
8807 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8810 if (!Flags.hasNoNaNs()) {
8821 return DAG.
getNode(NewOp,
DL, VT, LHS, RHS, Flags);
8826 if (Flags.hasNoNaNs() ||
8828 unsigned IEEE2019Op =
8829 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8831 return DAG.
getNode(IEEE2019Op,
DL, VT, LHS, RHS, Flags);
8836 if ((Flags.hasNoNaNs() ||
8840 unsigned IEEE2008Op =
Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8842 return DAG.
getNode(IEEE2008Op,
DL, VT, LHS, RHS, Flags);
8862 if (
Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8887 bool IsOrdered = NanTest ==
fcNone;
8888 bool IsUnordered = NanTest ==
fcNan;
8891 if (!IsOrdered && !IsUnordered)
8892 return std::nullopt;
8894 if (OrderedMask ==
fcZero &&
8900 return std::nullopt;
8907 EVT OperandVT =
Op.getValueType();
8919 if (OperandVT == MVT::ppcf128) {
8922 OperandVT = MVT::f64;
8929 bool IsF80 = (ScalarFloatVT == MVT::f80);
8933 if (Flags.hasNoFPExcept() &&
8936 bool IsInvertedFP =
false;
8940 FPTestMask = InvertedFPCheck;
8941 IsInvertedFP =
true;
8953 OrderedFPTestMask = FPTestMask;
8955 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8957 if (std::optional<bool> IsCmp0 =
8960 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8967 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8970 if (FPTestMask ==
fcNan &&
8976 bool IsOrderedInf = FPTestMask ==
fcInf;
8979 : UnorderedCmpOpcode,
8990 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8995 : UnorderedCmpOpcode,
9006 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9025 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
9026 IsOrdered ? OrderedOp : UnorderedOp);
9049 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9051 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
9058 bool IsInverted =
false;
9061 Test = InvertedCheck;
9077 const unsigned ExplicitIntBitInF80 = 63;
9078 APInt ExpMask = Inf;
9080 ExpMask.
clearBit(ExplicitIntBitInF80);
9094 const auto appendResult = [&](
SDValue PartialRes) {
9104 const auto getIntBitIsSet = [&]() ->
SDValue {
9105 if (!IntBitIsSetV) {
9106 APInt IntBitMask(BitSize, 0);
9107 IntBitMask.
setBit(ExplicitIntBitInF80);
9112 return IntBitIsSetV;
9140 appendResult(PartialRes);
9149 appendResult(ExpIsZero);
9159 else if (PartialCheck ==
fcZero)
9163 appendResult(PartialRes);
9176 appendResult(PartialRes);
9179 if (
unsigned PartialCheck =
Test &
fcInf) {
9182 else if (PartialCheck ==
fcInf)
9189 appendResult(PartialRes);
9192 if (
unsigned PartialCheck =
Test &
fcNan) {
9193 APInt InfWithQnanBit = Inf | QNaNBitMask;
9195 if (PartialCheck ==
fcNan) {
9208 }
else if (PartialCheck ==
fcQNan) {
9220 appendResult(PartialRes);
9225 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9228 APInt ExpLimit = ExpMask - ExpLSB;
9241 appendResult(PartialRes);
9264 EVT VT =
Node->getValueType(0);
9271 if (!(Len <= 128 && Len % 8 == 0))
9330 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9341 EVT VT =
Node->getValueType(0);
9350 if (!(Len <= 128 && Len % 8 == 0))
9362 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9365 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9369 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9372 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9373 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9377 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9382 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9383 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9394 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9397 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9399 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9400 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9410 EVT VT =
Node->getValueType(0);
9449 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9460 EVT VT =
Node->getValueType(0);
9474 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9477 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9482 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9491 :
APInt(64, 0x0218A392CD3D5DBFULL);
9505 for (
unsigned i = 0; i <
BitWidth; i++) {
9531 EVT VT =
Node->getValueType(0);
9591 EVT VT =
Node->getValueType(0);
9599 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9613 EVT SrcVT = Source.getValueType();
9614 EVT ResVT =
N->getValueType(0);
9623 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9631 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9632 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9639 EVT MaskVT = Mask.getValueType();
9649 true, &VScaleRange);
9668 SDValue HighestIdx = DAG.
getNode(ISD::VECREDUCE_UMAX,
DL, StepVT, ActiveElts);
9673 bool IsNegative)
const {
9675 EVT VT =
N->getValueType(0);
9729 EVT VT =
N->getValueType(0);
9806 EVT VT =
N->getValueType(0);
9810 unsigned Opc =
N->getOpcode();
9819 "Unknown AVG node");
9831 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9840 LHS = DAG.
getNode(ExtOpc, dl, ExtVT, LHS);
9841 RHS = DAG.
getNode(ExtOpc, dl, ExtVT, RHS);
9883 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9888 EVT VT =
N->getValueType(0);
9895 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9946 EVT VT =
N->getValueType(0);
9955 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9964 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9974 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9978 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9979 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9980 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9984 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9988 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9989 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9992 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9993 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9998 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
9999 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
10002 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
10003 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
10006 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10007 DAG.
getConstant(255ULL << 8, dl, VT), Mask, EVL);
10010 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10011 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10012 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10013 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10014 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10015 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10016 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10022 EVT VT =
N->getValueType(0);
10065 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
10082 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
10085 EVT VT =
N->getValueType(0);
10104 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
10109 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10115 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10120 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10126 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10131 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10137 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10143std::pair<SDValue, SDValue>
10147 SDValue Chain = LD->getChain();
10148 SDValue BasePTR = LD->getBasePtr();
10149 EVT SrcVT = LD->getMemoryVT();
10150 EVT DstVT = LD->getValueType(0);
10182 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10183 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10186 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10187 unsigned ShiftIntoIdx =
10198 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
10205 return std::make_pair(
Value, Load.getValue(1));
10214 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10216 ExtType, SL, DstEltVT, Chain, BasePTR,
10217 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10218 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10229 return std::make_pair(
Value, NewChain);
10236 SDValue Chain = ST->getChain();
10237 SDValue BasePtr = ST->getBasePtr();
10239 EVT StVT = ST->getMemoryVT();
10265 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10269 unsigned ShiftIntoIdx =
10278 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10279 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10285 assert(Stride &&
"Zero stride!");
10289 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10297 Chain, SL, Elt,
Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10298 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10307std::pair<SDValue, SDValue>
10310 "unaligned indexed loads not implemented!");
10311 SDValue Chain = LD->getChain();
10313 EVT VT = LD->getValueType(0);
10314 EVT LoadedVT = LD->getMemoryVT();
10330 LD->getMemOperand());
10331 SDValue Result = DAG.
getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10332 if (LoadedVT != VT)
10336 return std::make_pair(Result, newLoad.
getValue(1));
10344 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10350 SDValue StackPtr = StackBase;
10353 EVT PtrVT =
Ptr.getValueType();
10354 EVT StackPtrVT = StackPtr.getValueType();
10360 for (
unsigned i = 1; i < NumRegs; i++) {
10363 RegVT, dl, Chain,
Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10364 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10367 Load.getValue(1), dl, Load, StackPtr,
10378 8 * (LoadedBytes -
Offset));
10381 LD->getPointerInfo().getWithOffset(
Offset), MemVT, LD->getBaseAlign(),
10382 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10387 Load.getValue(1), dl, Load, StackPtr,
10394 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10399 return std::make_pair(Load, TF);
10403 "Unaligned load of unsupported type.");
10412 Align Alignment = LD->getBaseAlign();
10413 unsigned IncrementSize = NumBits / 8;
10424 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10429 LD->getPointerInfo().getWithOffset(IncrementSize),
10430 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10433 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain,
Ptr, LD->getPointerInfo(),
10434 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10439 LD->getPointerInfo().getWithOffset(IncrementSize),
10440 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10452 return std::make_pair(Result, TF);
10458 "unaligned indexed stores not implemented!");
10459 SDValue Chain = ST->getChain();
10461 SDValue Val = ST->getValue();
10463 Align Alignment = ST->getBaseAlign();
10465 EVT StoreMemVT = ST->getMemoryVT();
10481 Result = DAG.
getStore(Chain, dl, Result,
Ptr, ST->getPointerInfo(),
10482 Alignment, ST->getMemOperand()->getFlags());
10490 EVT PtrVT =
Ptr.getValueType();
10493 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10501 Chain, dl, Val, StackPtr,
10504 EVT StackPtrVT = StackPtr.getValueType();
10512 for (
unsigned i = 1; i < NumRegs; i++) {
10515 RegVT, dl, Store, StackPtr,
10519 ST->getPointerInfo().getWithOffset(
Offset),
10520 ST->getBaseAlign(),
10521 ST->getMemOperand()->getFlags()));
10540 Load.getValue(1), dl, Load,
Ptr,
10541 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10542 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10549 "Unaligned store of unknown type.");
10553 unsigned IncrementSize = NumBits / 8;
10573 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10574 ST->getMemOperand()->getFlags());
10579 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10580 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10591 bool IsCompressedMemory)
const {
10594 EVT MaskVT = Mask.getValueType();
10596 "Incompatible types of Data and Mask");
10597 if (IsCompressedMemory) {
10600 "Cannot currently handle compressed memory with scalable vectors");
10606 MaskIntVT = MVT::i32;
10630 "Cannot index a scalable vector within a fixed-width vector");
10641 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10655 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10664 DAG, VecPtr, VecVT,
10682 "Converting bits to bytes lost precision");
10684 "Sub-vector must be a vector with matching element type");
10688 EVT IdxVT = Index.getValueType();
10719 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10720 Args.emplace_back(DAG.
getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10727 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
10736 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10737 return CallResult.first;
10748 EVT VT =
Op.getOperand(0).getValueType();
10750 if (VT.
bitsLT(MVT::i32)) {
10768 unsigned Opcode =
Node->getOpcode();
10810 {Op0, Op1, DAG.getCondCode(CC)})) {
10817 {Op0, Op1, DAG.getCondCode(CC)})) {
10845 unsigned Opcode =
Node->getOpcode();
10848 EVT VT = LHS.getValueType();
10851 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
10867 unsigned OverflowOp;
10882 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
10883 "addition or subtraction node.");
10891 unsigned BitWidth = LHS.getScalarValueSizeInBits();
10894 SDValue SumDiff = Result.getValue(0);
10895 SDValue Overflow = Result.getValue(1);
10917 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
10937 if (LHSIsNonNegative || RHSIsNonNegative) {
10939 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
10945 if (LHSIsNegative || RHSIsNegative) {
10947 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
10957 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
10961 unsigned Opcode =
Node->getOpcode();
10964 EVT VT = LHS.getValueType();
10965 EVT ResVT =
Node->getValueType(0);
10996 unsigned Opcode =
Node->getOpcode();
11000 EVT VT = LHS.getValueType();
11005 "Expected a SHLSAT opcode");
11006 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
11038 EVT VT = LHS.getValueType();
11039 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11041 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11043 "Signed flag should only be set when HiLHS and RiRHS are null");
11051 unsigned HalfBits = Bits / 2;
11096 EVT VT = LHS.getValueType();
11097 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11101 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11102 if (WideVT == MVT::i16)
11103 LC = RTLIB::MUL_I16;
11104 else if (WideVT == MVT::i32)
11105 LC = RTLIB::MUL_I32;
11106 else if (WideVT == MVT::i64)
11107 LC = RTLIB::MUL_I64;
11108 else if (WideVT == MVT::i128)
11109 LC = RTLIB::MUL_I128;
11139 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11140 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11142 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11143 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11146 "Ret value is a collection of constituent nodes holding result.");
11149 Lo = Ret.getOperand(0);
11150 Hi = Ret.getOperand(1);
11152 Lo = Ret.getOperand(1);
11153 Hi = Ret.getOperand(0);
11163 "Expected a fixed point multiplication opcode");
11168 EVT VT = LHS.getValueType();
11169 unsigned Scale =
Node->getConstantOperandVal(2);
11185 SDValue Product = Result.getValue(0);
11186 SDValue Overflow = Result.getValue(1);
11197 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11198 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
11202 SDValue Product = Result.getValue(0);
11203 SDValue Overflow = Result.getValue(1);
11207 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
11212 "Expected scale to be less than the number of bits if signed or at "
11213 "most the number of bits if unsigned.");
11214 assert(LHS.getValueType() == RHS.getValueType() &&
11215 "Expected both operands to be the same type");
11227 Lo = Result.getValue(0);
11228 Hi = Result.getValue(1);
11231 Hi = DAG.
getNode(HiOp, dl, VT, LHS, RHS);
11249 if (Scale == VTSize)
11295 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11320 "Expected a fixed point division opcode");
11322 EVT VT = LHS.getValueType();
11344 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11347 unsigned LHSShift = std::min(LHSLead, Scale);
11348 unsigned RHSShift = Scale - LHSShift;
11412 { LHS, RHS, CarryIn });
11419 LHS.getValueType(), LHS, RHS);
11421 EVT ResultType =
Node->getValueType(1);
11432 DAG.
getSetCC(dl, SetCCType, Result,
11441 SetCC = DAG.
getSetCC(dl, SetCCType, Result, LHS, CC);
11454 LHS.getValueType(), LHS, RHS);
11456 EVT ResultType =
Node->getValueType(1);
11463 SDValue Sat = DAG.
getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11482 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11483 ResultType, ResultType);
11489 EVT VT =
Node->getValueType(0);
11497 const APInt &
C = RHSC->getAPIntValue();
11499 if (
C.isPowerOf2()) {
11501 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
11504 Overflow = DAG.
getSetCC(dl, SetCCVT,
11506 dl, VT, Result, ShiftAmt),
11519 static const unsigned Ops[2][3] =
11545 Result = BottomHalf;
11552 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11557 EVT RType =
Node->getValueType(1);
11562 "Unexpected result type for S/UMULO legalization");
11570 EVT VT =
Op.getValueType();
11593 "Expanding reductions for scalable vectors is undefined.");
11602 for (
unsigned i = 1; i < NumElts; i++)
11603 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i],
Node->getFlags());
11606 if (EltVT !=
Node->getValueType(0))
11622 "Expanding reductions for scalable vectors is undefined.");
11632 for (
unsigned i = 0; i < NumElts; i++)
11633 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i], Flags);
11640 EVT VT =
Node->getValueType(0);
11649 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11654 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11669 EVT SrcVT = Src.getValueType();
11670 EVT DstVT =
Node->getValueType(0);
11675 assert(SatWidth <= DstWidth &&
11676 "Expected saturation width smaller than result width");
11680 APInt MinInt, MaxInt;
11691 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11692 Src = DAG.
getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11693 SrcVT = Src.getValueType();
11715 if (AreExactFloatBounds && MinMaxLegal) {
11719 Clamped = DAG.
getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11721 Clamped = DAG.
getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11724 dl, DstVT, Clamped);
11736 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11775 EVT OperandVT =
Op.getValueType();
11790 SDValue NarrowBits = DAG.
getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11801 Op.getValueType());
11805 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11809 SDValue AbsNarrowAsWide = DAG.
getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11816 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11818 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11819 return DAG.
getNode(ISD::BITCAST, dl, ResultVT,
Op);
11825 EVT VT =
Node->getValueType(0);
11828 if (
Node->getConstantOperandVal(1) == 1) {
11829 return DAG.
getNode(ISD::FP_TO_BF16, dl, VT,
Node->getOperand(0));
11831 EVT OperandVT =
Op.getValueType();
11843 EVT I32 =
F32.changeTypeToInteger();
11869 EVT I16 = I32.
isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11871 return DAG.
getNode(ISD::BITCAST, dl, VT,
Op);
11879 assert(
Node->getValueType(0).isScalableVector() &&
11880 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11882 EVT VT =
Node->getValueType(0);
11904 EVT PtrVT = StackPtr.getValueType();
11923 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
11946 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
11959 EVT MaskVT = Mask.getValueType();
11976 bool HasPassthru = !Passthru.
isUndef();
11982 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
11985 APInt PassthruSplatVal;
11986 bool IsSplatPassthru =
11989 if (IsSplatPassthru) {
11993 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
11994 }
else if (HasPassthru) {
12004 Popcount = DAG.
getNode(ISD::VECREDUCE_ADD,
DL, PopcountVT, Popcount);
12008 ScalarVT,
DL, Chain, LastElmtPtr,
12014 for (
unsigned I = 0;
I < NumElms;
I++) {
12018 Chain,
DL, ValI, OutPtr,
12030 if (HasPassthru &&
I == NumElms - 1) {
12040 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
12043 Chain,
DL, LastWriteVal, OutPtr,
12048 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
12055 SDValue MulLHS =
N->getOperand(1);
12056 SDValue MulRHS =
N->getOperand(2);
12064 unsigned ExtOpcLHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_UMLA
12067 unsigned ExtOpcRHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_SMLA
12071 if (ExtMulOpVT != MulOpVT) {
12072 MulLHS = DAG.
getNode(ExtOpcLHS,
DL, ExtMulOpVT, MulLHS);
12073 MulRHS = DAG.
getNode(ExtOpcRHS,
DL, ExtMulOpVT, MulRHS);
12078 !ConstantOne.
isOne())
12085 std::deque<SDValue> Subvectors = {Acc};
12086 for (
unsigned I = 0;
I < ScaleFactor;
I++)
12090 while (Subvectors.size() > 1) {
12091 Subvectors.push_back(
12093 Subvectors.pop_front();
12094 Subvectors.pop_front();
12097 assert(Subvectors.size() == 1 &&
12098 "There should only be one subvector after tree flattening");
12100 return Subvectors[0];
12106 SDValue EVL,
bool &NeedInvert,
12108 bool IsSignaling)
const {
12109 MVT OpVT = LHS.getSimpleValueType();
12111 NeedInvert =
false;
12112 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
12113 bool IsNonVP = !EVL;
12128 bool NeedSwap =
false;
12129 InvCC = getSetCCInverse(CCCode, OpVT);
12145 if (OpVT == MVT::i1) {
12160 DAG.
getNOT(dl, LHS, MVT::i1));
12165 DAG.
getNOT(dl, RHS, MVT::i1));
12170 DAG.
getNOT(dl, LHS, MVT::i1));
12175 DAG.
getNOT(dl, RHS, MVT::i1));
12198 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12203 "If SETO is expanded, SETOEQ must be legal!");
12220 NeedInvert = ((
unsigned)CCCode & 0x8U);
12261 SetCC1 = DAG.
getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12262 SetCC2 = DAG.
getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12264 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12265 SetCC2 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12270 SetCC1 = DAG.
getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12271 SetCC2 = DAG.
getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12273 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12274 SetCC2 = DAG.
getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12281 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2);
12286 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12298 EVT VT =
Node->getValueType(0);
12310 unsigned Opcode =
Node->getOpcode();
12348 std::optional<unsigned> ByteOffset;
12352 int Elt = ConstEltNo->getZExtValue();
12366 unsigned IsFast = 0;
12379 if (ResultVT.
bitsGT(VecEltVT)) {
12386 NewPtr, MPI, VecEltVT, Alignment,
12396 if (ResultVT.
bitsLT(VecEltVT))
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool isSigned(unsigned int Opcode)
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
LLVM_ABI APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool shouldExpandCmpUsingSelects(EVT VT) const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
bool isSignUnknown() const
Returns true if we don't know the sign bit.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
ArrayRef< Type * > OpsTypeOverrides
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount