LLVM 22.0.0git
TargetTransformInfoImpl.h
Go to the documentation of this file.
1//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides helpers for the implementation of
10/// a TargetTransformInfo-conforming class.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16
20#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Operator.h"
25#include <optional>
26#include <utility>
27
28namespace llvm {
29
30class Function;
31
32/// Base class for use as a mix-in that aids implementing
33/// a TargetTransformInfo-compatible class.
35
36protected:
38
39 const DataLayout &DL;
40
42
43public:
45
46 // Provide value semantics. MSVC requires that we spell all of these out.
49
50 virtual const DataLayout &getDataLayout() const { return DL; }
51
52 // FIXME: It looks like this implementation is dead. All clients appear to
53 // use the (non-const) version from `TargetTransformInfoImplCRTPBase`.
54 virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
56 Type *AccessType,
58 // In the basic model, we just assume that all-constant GEPs will be folded
59 // into their uses via addressing modes.
60 for (const Value *Operand : Operands)
61 if (!isa<Constant>(Operand))
62 return TTI::TCC_Basic;
63
64 return TTI::TCC_Free;
65 }
66
67 virtual InstructionCost
69 const TTI::PointersChainInfo &Info, Type *AccessTy,
71 llvm_unreachable("Not implemented");
72 }
73
74 virtual unsigned
77 BlockFrequencyInfo *BFI) const {
78 (void)PSI;
79 (void)BFI;
80 JTSize = 0;
81 return SI.getNumCases();
82 }
83
84 virtual InstructionCost
89
90 virtual unsigned getInliningThresholdMultiplier() const { return 1; }
92 return 8;
93 }
95 return 8;
96 }
98 // This is the value of InlineConstants::LastCallToStaticBonus before it was
99 // removed along with the introduction of this function.
100 return 15000;
101 }
102 virtual unsigned adjustInliningThreshold(const CallBase *CB) const {
103 return 0;
104 }
105 virtual unsigned getCallerAllocaCost(const CallBase *CB,
106 const AllocaInst *AI) const {
107 return 0;
108 };
109
110 virtual int getInlinerVectorBonusPercent() const { return 150; }
111
113 return TTI::TCC_Expensive;
114 }
115
116 virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const { return 64; }
117
118 // Although this default value is arbitrary, it is not random. It is assumed
119 // that a condition that evaluates the same way by a higher percentage than
120 // this is best represented as control flow. Therefore, the default value N
121 // should be set such that the win from N% correct executions is greater than
122 // the loss from (100 - N)% mispredicted executions for the majority of
123 // intended targets.
125 return BranchProbability(99, 100);
126 }
127
128 virtual InstructionCost getBranchMispredictPenalty() const { return 0; }
129
130 virtual bool hasBranchDivergence(const Function *F = nullptr) const {
131 return false;
132 }
133
134 virtual bool isSourceOfDivergence(const Value *V) const { return false; }
135
136 virtual bool isAlwaysUniform(const Value *V) const { return false; }
137
138 virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
139 return false;
140 }
141
142 virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const {
143 return true;
144 }
145
146 virtual unsigned getFlatAddressSpace() const { return -1; }
147
149 Intrinsic::ID IID) const {
150 return false;
151 }
152
153 virtual bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; }
154 virtual bool
156 return AS == 0;
157 };
158
159 virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
160
161 virtual bool isSingleThreaded() const { return false; }
162
163 virtual std::pair<const Value *, unsigned>
165 return std::make_pair(nullptr, -1);
166 }
167
169 Value *OldV,
170 Value *NewV) const {
171 return nullptr;
172 }
173
174 virtual bool isLoweredToCall(const Function *F) const {
175 assert(F && "A concrete function must be provided to this routine.");
176
177 // FIXME: These should almost certainly not be handled here, and instead
178 // handled with the help of TLI or the target itself. This was largely
179 // ported from existing analysis heuristics here so that such refactorings
180 // can take place in the future.
181
182 if (F->isIntrinsic())
183 return false;
184
185 if (F->hasLocalLinkage() || !F->hasName())
186 return true;
187
188 StringRef Name = F->getName();
189
190 // These will all likely lower to a single selection DAG node.
191 // clang-format off
192 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
193 Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
194 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
195 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
196 Name == "sin" || Name == "sinf" || Name == "sinl" ||
197 Name == "cos" || Name == "cosf" || Name == "cosl" ||
198 Name == "tan" || Name == "tanf" || Name == "tanl" ||
199 Name == "asin" || Name == "asinf" || Name == "asinl" ||
200 Name == "acos" || Name == "acosf" || Name == "acosl" ||
201 Name == "atan" || Name == "atanf" || Name == "atanl" ||
202 Name == "atan2" || Name == "atan2f" || Name == "atan2l"||
203 Name == "sinh" || Name == "sinhf" || Name == "sinhl" ||
204 Name == "cosh" || Name == "coshf" || Name == "coshl" ||
205 Name == "tanh" || Name == "tanhf" || Name == "tanhl" ||
206 Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" ||
207 Name == "exp10" || Name == "exp10l" || Name == "exp10f")
208 return false;
209 // clang-format on
210 // These are all likely to be optimized into something smaller.
211 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
212 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
213 Name == "floorf" || Name == "ceil" || Name == "round" ||
214 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
215 Name == "llabs")
216 return false;
217
218 return true;
219 }
220
222 AssumptionCache &AC,
223 TargetLibraryInfo *LibInfo,
224 HardwareLoopInfo &HWLoopInfo) const {
225 return false;
226 }
227
228 virtual unsigned getEpilogueVectorizationMinVF() const { return 16; }
229
231 return false;
232 }
233
234 virtual TailFoldingStyle
235 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
237 }
238
239 virtual std::optional<Instruction *>
241 return std::nullopt;
242 }
243
244 virtual std::optional<Value *>
246 APInt DemandedMask, KnownBits &Known,
247 bool &KnownBitsComputed) const {
248 return std::nullopt;
249 }
250
251 virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
252 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
253 APInt &UndefElts2, APInt &UndefElts3,
254 std::function<void(Instruction *, unsigned, APInt, APInt &)>
255 SimplifyAndSetOp) const {
256 return std::nullopt;
257 }
258
262
265
266 virtual bool isLegalAddImmediate(int64_t Imm) const { return false; }
267
268 virtual bool isLegalAddScalableImmediate(int64_t Imm) const { return false; }
269
270 virtual bool isLegalICmpImmediate(int64_t Imm) const { return false; }
271
272 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
273 int64_t BaseOffset, bool HasBaseReg,
274 int64_t Scale, unsigned AddrSpace,
275 Instruction *I = nullptr,
276 int64_t ScalableOffset = 0) const {
277 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
278 // taken from the implementation of LSR.
279 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
280 }
281
282 virtual bool isLSRCostLess(const TTI::LSRCost &C1,
283 const TTI::LSRCost &C2) const {
284 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
285 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
286 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
287 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
288 }
289
290 virtual bool isNumRegsMajorCostOfLSR() const { return true; }
291
292 virtual bool shouldDropLSRSolutionIfLessProfitable() const { return false; }
293
295 return false;
296 }
297
298 virtual bool canMacroFuseCmp() const { return false; }
299
300 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
302 TargetLibraryInfo *LibInfo) const {
303 return false;
304 }
305
308 return TTI::AMK_None;
309 }
310
311 virtual bool isLegalMaskedStore(Type *DataType, Align Alignment,
312 unsigned AddressSpace) const {
313 return false;
314 }
315
316 virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment,
317 unsigned AddressSpace) const {
318 return false;
319 }
320
321 virtual bool isLegalNTStore(Type *DataType, Align Alignment) const {
322 // By default, assume nontemporal memory stores are available for stores
323 // that are aligned and have a size that is a power of 2.
324 unsigned DataSize = DL.getTypeStoreSize(DataType);
325 return Alignment >= DataSize && isPowerOf2_32(DataSize);
326 }
327
328 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) const {
329 // By default, assume nontemporal memory loads are available for loads that
330 // are aligned and have a size that is a power of 2.
331 unsigned DataSize = DL.getTypeStoreSize(DataType);
332 return Alignment >= DataSize && isPowerOf2_32(DataSize);
333 }
334
335 virtual bool isLegalBroadcastLoad(Type *ElementTy,
336 ElementCount NumElements) const {
337 return false;
338 }
339
340 virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
341 return false;
342 }
343
344 virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
345 return false;
346 }
347
349 Align Alignment) const {
350 return false;
351 }
352
354 Align Alignment) const {
355 return false;
356 }
357
358 virtual bool isLegalMaskedCompressStore(Type *DataType,
359 Align Alignment) const {
360 return false;
361 }
362
363 virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
364 unsigned Opcode1,
365 const SmallBitVector &OpcodeMask) const {
366 return false;
367 }
368
369 virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const {
370 return false;
371 }
372
373 virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const {
374 return false;
375 }
376
377 virtual bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
378 Align Alignment,
379 unsigned AddrSpace) const {
380 return false;
381 }
382
383 virtual bool isLegalMaskedVectorHistogram(Type *AddrType,
384 Type *DataType) const {
385 return false;
386 }
387
388 virtual bool enableOrderedReductions() const { return false; }
389
390 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) const {
391 return false;
392 }
393
394 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const {
395 return false;
396 }
397
398 virtual bool prefersVectorizedAddressing() const { return true; }
399
401 StackOffset BaseOffset,
402 bool HasBaseReg, int64_t Scale,
403 unsigned AddrSpace) const {
404 // Guess that all legal addressing mode are free.
405 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset.getFixed(), HasBaseReg,
406 Scale, AddrSpace, /*I=*/nullptr,
407 BaseOffset.getScalable()))
408 return 0;
410 }
411
412 virtual bool LSRWithInstrQueries() const { return false; }
413
414 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; }
415
416 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
417
418 virtual bool useAA() const { return false; }
419
420 virtual bool isTypeLegal(Type *Ty) const { return false; }
421
422 virtual unsigned getRegUsageForType(Type *Ty) const { return 1; }
423
424 virtual bool shouldBuildLookupTables() const { return true; }
425
427 return true;
428 }
429
430 virtual bool shouldBuildRelLookupTables() const { return false; }
431
432 virtual bool useColdCCForColdCall(Function &F) const { return false; }
433
435 return false;
436 }
437
439 unsigned ScalarOpdIdx) const {
440 return false;
441 }
442
444 int OpdIdx) const {
445 return OpdIdx == -1;
446 }
447
448 virtual bool
450 int RetIdx) const {
451 return RetIdx == 0;
452 }
453
455 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
456 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
457 ArrayRef<Value *> VL = {}) const {
458 return 0;
459 }
460
461 virtual InstructionCost
466
467 virtual bool supportsEfficientVectorElementLoadStore() const { return false; }
468
469 virtual bool supportsTailCalls() const { return true; }
470
471 virtual bool supportsTailCallFor(const CallBase *CB) const {
472 llvm_unreachable("Not implemented");
473 }
474
475 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) const {
476 return false;
477 }
478
480 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
481 return {};
482 }
483
484 virtual bool enableSelectOptimize() const { return true; }
485
486 virtual bool shouldTreatInstructionLikeSelect(const Instruction *I) const {
487 // A select with two constant operands will usually be better left as a
488 // select.
489 using namespace llvm::PatternMatch;
491 return false;
492 // If the select is a logical-and/logical-or then it is better treated as a
493 // and/or by the backend.
494 return isa<SelectInst>(I) &&
497 }
498
499 virtual bool enableInterleavedAccessVectorization() const { return false; }
500
502 return false;
503 }
504
505 virtual bool isFPVectorizationPotentiallyUnsafe() const { return false; }
506
508 unsigned BitWidth,
509 unsigned AddressSpace,
510 Align Alignment,
511 unsigned *Fast) const {
512 return false;
513 }
514
516 getPopcntSupport(unsigned IntTyWidthInBit) const {
517 return TTI::PSK_Software;
518 }
519
520 virtual bool haveFastSqrt(Type *Ty) const { return false; }
521
523 return true;
524 }
525
526 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; }
527
528 virtual InstructionCost getFPOpCost(Type *Ty) const {
530 }
531
532 virtual InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
533 const APInt &Imm,
534 Type *Ty) const {
535 return 0;
536 }
537
538 virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
540 return TTI::TCC_Basic;
541 }
542
543 virtual InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
544 const APInt &Imm, Type *Ty,
546 Instruction *Inst = nullptr) const {
547 return TTI::TCC_Free;
548 }
549
550 virtual InstructionCost
551 getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
552 Type *Ty, TTI::TargetCostKind CostKind) const {
553 return TTI::TCC_Free;
554 }
555
557 const Function &Fn) const {
558 return false;
559 }
560
561 virtual unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
562 virtual bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const {
563 return false;
564 }
565
566 virtual unsigned getRegisterClassForType(bool Vector,
567 Type *Ty = nullptr) const {
568 return Vector ? 1 : 0;
569 }
570
571 virtual const char *getRegisterClassName(unsigned ClassID) const {
572 switch (ClassID) {
573 default:
574 return "Generic::Unknown Register Class";
575 case 0:
576 return "Generic::ScalarRC";
577 case 1:
578 return "Generic::VectorRC";
579 }
580 }
581
582 virtual TypeSize
586
587 virtual unsigned getMinVectorRegisterBitWidth() const { return 128; }
588
589 virtual std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
590 virtual std::optional<unsigned> getVScaleForTuning() const {
591 return std::nullopt;
592 }
593 virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
594
595 virtual bool
599
600 virtual ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const {
601 return ElementCount::get(0, IsScalable);
602 }
603
604 virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
605 return 0;
606 }
607 virtual unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const {
608 return VF;
609 }
610
612 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
613 AllowPromotionWithoutCommonHeader = false;
614 return false;
615 }
616
617 virtual unsigned getCacheLineSize() const { return 0; }
618 virtual std::optional<unsigned>
620 switch (Level) {
622 [[fallthrough]];
624 return std::nullopt;
625 }
626 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
627 }
628
629 virtual std::optional<unsigned>
631 switch (Level) {
633 [[fallthrough]];
635 return std::nullopt;
636 }
637
638 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
639 }
640
641 virtual std::optional<unsigned> getMinPageSize() const { return {}; }
642
643 virtual unsigned getPrefetchDistance() const { return 0; }
644 virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
645 unsigned NumStridedMemAccesses,
646 unsigned NumPrefetches,
647 bool HasCall) const {
648 return 1;
649 }
650 virtual unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
651 virtual bool enableWritePrefetching() const { return false; }
652 virtual bool shouldPrefetchAddressSpace(unsigned AS) const { return !AS; }
653
655 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
657 TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
660 }
661
662 virtual unsigned getMaxInterleaveFactor(ElementCount VF) const { return 1; }
663
665 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
667 ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) const {
668 // Widenable conditions will eventually lower into constants, so some
669 // operations with them will be trivially optimized away.
670 auto IsWidenableCondition = [](const Value *V) {
671 if (auto *II = dyn_cast<IntrinsicInst>(V))
672 if (II->getIntrinsicID() == Intrinsic::experimental_widenable_condition)
673 return true;
674 return false;
675 };
676 // FIXME: A number of transformation tests seem to require these values
677 // which seems a little odd for how arbitary there are.
678 switch (Opcode) {
679 default:
680 break;
681 case Instruction::FDiv:
682 case Instruction::FRem:
683 case Instruction::SDiv:
684 case Instruction::SRem:
685 case Instruction::UDiv:
686 case Instruction::URem:
687 // FIXME: Unlikely to be true for CodeSize.
688 return TTI::TCC_Expensive;
689 case Instruction::And:
690 case Instruction::Or:
691 if (any_of(Args, IsWidenableCondition))
692 return TTI::TCC_Free;
693 break;
694 }
695
696 // Assume a 3cy latency for fp arithmetic ops.
698 if (Ty->getScalarType()->isFloatingPointTy())
699 return 3;
700
701 return 1;
702 }
703
704 virtual InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
705 unsigned Opcode1,
706 const SmallBitVector &OpcodeMask,
709 }
710
711 virtual InstructionCost
714 VectorType *SubTp, ArrayRef<const Value *> Args = {},
715 const Instruction *CxtI = nullptr) const {
716 return 1;
717 }
718
719 virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
720 Type *Src, TTI::CastContextHint CCH,
722 const Instruction *I) const {
723 switch (Opcode) {
724 default:
725 break;
726 case Instruction::IntToPtr: {
727 unsigned SrcSize = Src->getScalarSizeInBits();
728 if (DL.isLegalInteger(SrcSize) &&
729 SrcSize <= DL.getPointerTypeSizeInBits(Dst))
730 return 0;
731 break;
732 }
733 case Instruction::PtrToAddr: {
734 unsigned DstSize = Dst->getScalarSizeInBits();
735 assert(DstSize == DL.getAddressSizeInBits(Src));
736 if (DL.isLegalInteger(DstSize))
737 return 0;
738 break;
739 }
740 case Instruction::PtrToInt: {
741 unsigned DstSize = Dst->getScalarSizeInBits();
742 if (DL.isLegalInteger(DstSize) &&
743 DstSize >= DL.getPointerTypeSizeInBits(Src))
744 return 0;
745 break;
746 }
747 case Instruction::BitCast:
748 if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
749 // Identity and pointer-to-pointer casts are free.
750 return 0;
751 break;
752 case Instruction::Trunc: {
753 // trunc to a native type is free (assuming the target has compare and
754 // shift-right of the same width).
755 TypeSize DstSize = DL.getTypeSizeInBits(Dst);
756 if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedValue()))
757 return 0;
758 break;
759 }
760 }
761 return 1;
762 }
763
764 virtual InstructionCost
765 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
766 unsigned Index, TTI::TargetCostKind CostKind) const {
767 return 1;
768 }
769
770 virtual InstructionCost getCFInstrCost(unsigned Opcode,
772 const Instruction *I = nullptr) const {
773 // A phi would be free, unless we're costing the throughput because it
774 // will require a register.
775 if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput)
776 return 0;
777 return 1;
778 }
779
781 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
783 TTI::OperandValueInfo Op2Info, const Instruction *I) const {
784 return 1;
785 }
786
787 virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
789 unsigned Index, const Value *Op0,
790 const Value *Op1) const {
791 return 1;
792 }
793
794 /// \param ScalarUserAndIdx encodes the information about extracts from a
795 /// vector with 'Scalar' being the value being extracted,'User' being the user
796 /// of the extract(nullptr if user is not known before vectorization) and
797 /// 'Idx' being the extract lane.
799 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
800 Value *Scalar,
801 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const {
802 return 1;
803 }
804
807 unsigned Index) const {
808 return 1;
809 }
810
811 virtual InstructionCost
814 unsigned Index) const {
815 return 1;
816 }
817
818 virtual InstructionCost
819 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
820 const APInt &DemandedDstElts,
822 return 1;
823 }
824
825 virtual InstructionCost
828 // Note: The `insertvalue` cost here is chosen to match the default case of
829 // getInstructionCost() -- as prior to adding this helper `insertvalue` was
830 // not handled.
831 if (Opcode == Instruction::InsertValue &&
833 return TTI::TCC_Basic;
834 return TTI::TCC_Free;
835 }
836
837 virtual InstructionCost
838 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
840 TTI::OperandValueInfo OpInfo, const Instruction *I) const {
841 return 1;
842 }
843
844 virtual InstructionCost
845 getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
846 unsigned AddressSpace,
848 return 1;
849 }
850
851 virtual InstructionCost
852 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
853 bool VariableMask, Align Alignment,
855 const Instruction *I = nullptr) const {
856 return 1;
857 }
858
860 unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment,
861 TTI::TargetCostKind CostKind, const Instruction *I = nullptr) const {
862 return 1;
863 }
864
865 virtual InstructionCost
866 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
867 bool VariableMask, Align Alignment,
869 const Instruction *I = nullptr) const {
871 }
872
874 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
875 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
876 bool UseMaskForCond, bool UseMaskForGaps) const {
877 return 1;
878 }
879
880 virtual InstructionCost
883 switch (ICA.getID()) {
884 default:
885 break;
886 case Intrinsic::allow_runtime_check:
887 case Intrinsic::allow_ubsan_check:
888 case Intrinsic::annotation:
889 case Intrinsic::assume:
890 case Intrinsic::sideeffect:
891 case Intrinsic::pseudoprobe:
892 case Intrinsic::arithmetic_fence:
893 case Intrinsic::dbg_assign:
894 case Intrinsic::dbg_declare:
895 case Intrinsic::dbg_value:
896 case Intrinsic::dbg_label:
897 case Intrinsic::invariant_start:
898 case Intrinsic::invariant_end:
899 case Intrinsic::launder_invariant_group:
900 case Intrinsic::strip_invariant_group:
901 case Intrinsic::is_constant:
902 case Intrinsic::lifetime_start:
903 case Intrinsic::lifetime_end:
904 case Intrinsic::experimental_noalias_scope_decl:
905 case Intrinsic::objectsize:
906 case Intrinsic::ptr_annotation:
907 case Intrinsic::var_annotation:
908 case Intrinsic::experimental_gc_result:
909 case Intrinsic::experimental_gc_relocate:
910 case Intrinsic::coro_alloc:
911 case Intrinsic::coro_begin:
912 case Intrinsic::coro_begin_custom_abi:
913 case Intrinsic::coro_free:
914 case Intrinsic::coro_end:
915 case Intrinsic::coro_frame:
916 case Intrinsic::coro_size:
917 case Intrinsic::coro_align:
918 case Intrinsic::coro_suspend:
919 case Intrinsic::coro_subfn_addr:
920 case Intrinsic::threadlocal_address:
921 case Intrinsic::experimental_widenable_condition:
922 case Intrinsic::ssa_copy:
923 // These intrinsics don't actually represent code after lowering.
924 return 0;
925 }
926 return 1;
927 }
928
932 return 1;
933 }
934
935 // Assume that we have a register of the right size for the type.
936 virtual unsigned getNumberOfParts(Type *Tp) const { return 1; }
937
940 const SCEV *,
941 TTI::TargetCostKind) const {
942 return 0;
943 }
944
945 virtual InstructionCost
947 std::optional<FastMathFlags> FMF,
948 TTI::TargetCostKind) const {
949 return 1;
950 }
951
957
958 virtual InstructionCost
959 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
960 VectorType *Ty, std::optional<FastMathFlags> FMF,
962 return 1;
963 }
964
965 virtual InstructionCost
966 getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy,
968 return 1;
969 }
970
971 virtual InstructionCost
973 return 0;
974 }
975
977 MemIntrinsicInfo &Info) const {
978 return false;
979 }
980
981 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const {
982 // Note for overrides: You must ensure for all element unordered-atomic
983 // memory intrinsics that all power-of-2 element sizes up to, and
984 // including, the return value of this method have a corresponding
985 // runtime lib call. These runtime lib call definitions can be found
986 // in RuntimeLibcalls.h
987 return 0;
988 }
989
990 virtual Value *
992 bool CanCreate = true) const {
993 return nullptr;
994 }
995
996 virtual Type *
998 unsigned SrcAddrSpace, unsigned DestAddrSpace,
999 Align SrcAlign, Align DestAlign,
1000 std::optional<uint32_t> AtomicElementSize) const {
1001 return AtomicElementSize ? Type::getIntNTy(Context, *AtomicElementSize * 8)
1002 : Type::getInt8Ty(Context);
1003 }
1004
1006 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1007 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1008 Align SrcAlign, Align DestAlign,
1009 std::optional<uint32_t> AtomicCpySize) const {
1010 unsigned OpSizeInBytes = AtomicCpySize.value_or(1);
1011 Type *OpType = Type::getIntNTy(Context, OpSizeInBytes * 8);
1012 for (unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
1013 OpsOut.push_back(OpType);
1014 }
1015
1016 virtual bool areInlineCompatible(const Function *Caller,
1017 const Function *Callee) const {
1018 return (Caller->getFnAttribute("target-cpu") ==
1019 Callee->getFnAttribute("target-cpu")) &&
1020 (Caller->getFnAttribute("target-features") ==
1021 Callee->getFnAttribute("target-features"));
1022 }
1023
1024 virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
1025 unsigned DefaultCallPenalty) const {
1026 return DefaultCallPenalty;
1027 }
1028
1029 virtual bool areTypesABICompatible(const Function *Caller,
1030 const Function *Callee,
1031 const ArrayRef<Type *> &Types) const {
1032 return (Caller->getFnAttribute("target-cpu") ==
1033 Callee->getFnAttribute("target-cpu")) &&
1034 (Caller->getFnAttribute("target-features") ==
1035 Callee->getFnAttribute("target-features"));
1036 }
1037
1039 return false;
1040 }
1041
1043 return false;
1044 }
1045
1046 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1047 return 128;
1048 }
1049
1050 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
1051
1052 virtual bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
1053
1054 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1055 Align Alignment,
1056 unsigned AddrSpace) const {
1057 return true;
1058 }
1059
1060 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1061 Align Alignment,
1062 unsigned AddrSpace) const {
1063 return true;
1064 }
1065
1067 ElementCount VF) const {
1068 return true;
1069 }
1070
1072 return true;
1073 }
1074
1075 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1076 unsigned ChainSizeInBytes,
1077 VectorType *VecTy) const {
1078 return VF;
1079 }
1080
1081 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1082 unsigned ChainSizeInBytes,
1083 VectorType *VecTy) const {
1084 return VF;
1085 }
1086
1087 virtual bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const {
1088 return false;
1089 }
1090
1091 virtual bool preferInLoopReduction(RecurKind Kind, Type *Ty) const {
1092 return false;
1093 }
1094 virtual bool preferAlternateOpcodeVectorization() const { return true; }
1095
1096 virtual bool preferPredicatedReductionSelect() const { return false; }
1097
1098 virtual bool preferEpilogueVectorization() const { return true; }
1099
1100 virtual bool shouldConsiderVectorizationRegPressure() const { return false; }
1101
1102 virtual bool shouldExpandReduction(const IntrinsicInst *II) const {
1103 return true;
1104 }
1105
1106 virtual TTI::ReductionShuffle
1110
1111 virtual unsigned getGISelRematGlobalCost() const { return 1; }
1112
1113 virtual unsigned getMinTripCountTailFoldingThreshold() const { return 0; }
1114
1115 virtual bool supportsScalableVectors() const { return false; }
1116
1117 virtual bool enableScalableVectorization() const { return false; }
1118
1119 virtual bool hasActiveVectorLength() const { return false; }
1120
1122 SmallVectorImpl<Use *> &Ops) const {
1123 return false;
1124 }
1125
1126 virtual bool isVectorShiftByScalarCheap(Type *Ty) const { return false; }
1127
1134
1135 virtual bool hasArmWideBranch(bool) const { return false; }
1136
1137 virtual APInt getFeatureMask(const Function &F) const {
1138 return APInt::getZero(32);
1139 }
1140
1141 virtual bool isMultiversionedFunction(const Function &F) const {
1142 return false;
1143 }
1144
1145 virtual unsigned getMaxNumArgs() const { return UINT_MAX; }
1146
1147 virtual unsigned getNumBytesToPadGlobalArray(unsigned Size,
1148 Type *ArrayType) const {
1149 return 0;
1150 }
1151
1153 const Function &F,
1154 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const {}
1155
1156 virtual bool allowVectorElementIndexingUsingGEP() const { return true; }
1157
1158protected:
1159 // Obtain the minimum required size to hold the value (without the sign)
1160 // In case of a vector it returns the min required size for one element.
1161 unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const {
1163 const auto *VectorValue = cast<Constant>(Val);
1164
1165 // In case of a vector need to pick the max between the min
1166 // required size for each element
1167 auto *VT = cast<FixedVectorType>(Val->getType());
1168
1169 // Assume unsigned elements
1170 isSigned = false;
1171
1172 // The max required size is the size of the vector element type
1173 unsigned MaxRequiredSize =
1174 VT->getElementType()->getPrimitiveSizeInBits().getFixedValue();
1175
1176 unsigned MinRequiredSize = 0;
1177 for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
1178 if (auto *IntElement =
1179 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
1180 bool signedElement = IntElement->getValue().isNegative();
1181 // Get the element min required size.
1182 unsigned ElementMinRequiredSize =
1183 IntElement->getValue().getSignificantBits() - 1;
1184 // In case one element is signed then all the vector is signed.
1185 isSigned |= signedElement;
1186 // Save the max required bit size between all the elements.
1187 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
1188 } else {
1189 // not an int constant element
1190 return MaxRequiredSize;
1191 }
1192 }
1193 return MinRequiredSize;
1194 }
1195
1196 if (const auto *CI = dyn_cast<ConstantInt>(Val)) {
1197 isSigned = CI->getValue().isNegative();
1198 return CI->getValue().getSignificantBits() - 1;
1199 }
1200
1201 if (const auto *Cast = dyn_cast<SExtInst>(Val)) {
1202 isSigned = true;
1203 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
1204 }
1205
1206 if (const auto *Cast = dyn_cast<ZExtInst>(Val)) {
1207 isSigned = false;
1208 return Cast->getSrcTy()->getScalarSizeInBits();
1209 }
1210
1211 isSigned = false;
1212 return Val->getType()->getScalarSizeInBits();
1213 }
1214
1215 bool isStridedAccess(const SCEV *Ptr) const {
1216 return Ptr && isa<SCEVAddRecExpr>(Ptr);
1217 }
1218
1220 const SCEV *Ptr) const {
1221 if (!isStridedAccess(Ptr))
1222 return nullptr;
1223 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
1224 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
1225 }
1226
1228 int64_t MergeDistance) const {
1229 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
1230 if (!Step)
1231 return false;
1232 APInt StrideVal = Step->getAPInt();
1233 if (StrideVal.getBitWidth() > 64)
1234 return false;
1235 // FIXME: Need to take absolute value for negative stride case.
1236 return StrideVal.getSExtValue() < MergeDistance;
1237 }
1238};
1239
1240/// CRTP base class for use as a mix-in that aids implementing
1241/// a TargetTransformInfo-compatible class.
1242template <typename T>
1244private:
1245 typedef TargetTransformInfoImplBase BaseT;
1246
1247protected:
1249
1250public:
1253 TTI::TargetCostKind CostKind) const override {
1254 assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
1255 auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
1256 bool HasBaseReg = (BaseGV == nullptr);
1257
1258 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
1259 APInt BaseOffset(PtrSizeBits, 0);
1260 int64_t Scale = 0;
1261
1262 auto GTI = gep_type_begin(PointeeType, Operands);
1263 Type *TargetType = nullptr;
1264
1265 // Handle the case where the GEP instruction has a single operand,
1266 // the basis, therefore TargetType is a nullptr.
1267 if (Operands.empty())
1268 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
1269
1270 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
1271 TargetType = GTI.getIndexedType();
1272 // We assume that the cost of Scalar GEP with constant index and the
1273 // cost of Vector GEP with splat constant index are the same.
1274 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
1275 if (!ConstIdx)
1276 if (auto Splat = getSplatValue(*I))
1277 ConstIdx = dyn_cast<ConstantInt>(Splat);
1278 if (StructType *STy = GTI.getStructTypeOrNull()) {
1279 // For structures the index is always splat or scalar constant
1280 assert(ConstIdx && "Unexpected GEP index");
1281 uint64_t Field = ConstIdx->getZExtValue();
1282 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
1283 } else {
1284 // If this operand is a scalable type, bail out early.
1285 // TODO: Make isLegalAddressingMode TypeSize aware.
1286 if (TargetType->isScalableTy())
1287 return TTI::TCC_Basic;
1288 int64_t ElementSize =
1289 GTI.getSequentialElementStride(DL).getFixedValue();
1290 if (ConstIdx) {
1291 BaseOffset +=
1292 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
1293 } else {
1294 // Needs scale register.
1295 if (Scale != 0)
1296 // No addressing mode takes two scale registers.
1297 return TTI::TCC_Basic;
1298 Scale = ElementSize;
1299 }
1300 }
1301 }
1302
1303 // If we haven't been provided a hint, use the target type for now.
1304 //
1305 // TODO: Take a look at potentially removing this: This is *slightly* wrong
1306 // as it's possible to have a GEP with a foldable target type but a memory
1307 // access that isn't foldable. For example, this load isn't foldable on
1308 // RISC-V:
1309 //
1310 // %p = getelementptr i32, ptr %base, i32 42
1311 // %x = load <2 x i32>, ptr %p
1312 if (!AccessType)
1313 AccessType = TargetType;
1314
1315 // If the final address of the GEP is a legal addressing mode for the given
1316 // access type, then we can fold it into its users.
1317 if (static_cast<const T *>(this)->isLegalAddressingMode(
1318 AccessType, const_cast<GlobalValue *>(BaseGV),
1319 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
1320 Ptr->getType()->getPointerAddressSpace()))
1321 return TTI::TCC_Free;
1322
1323 // TODO: Instead of returning TCC_Basic here, we should use
1324 // getArithmeticInstrCost. Or better yet, provide a hook to let the target
1325 // model it.
1326 return TTI::TCC_Basic;
1327 }
1328
1331 const TTI::PointersChainInfo &Info, Type *AccessTy,
1332 TTI::TargetCostKind CostKind) const override {
1334 // In the basic model we take into account GEP instructions only
1335 // (although here can come alloca instruction, a value, constants and/or
1336 // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
1337 // pointer). Typically, if Base is a not a GEP-instruction and all the
1338 // pointers are relative to the same base address, all the rest are
1339 // either GEP instructions, PHIs, bitcasts or constants. When we have same
1340 // base, we just calculate cost of each non-Base GEP as an ADD operation if
1341 // any their index is a non-const.
1342 // If no known dependecies between the pointers cost is calculated as a sum
1343 // of costs of GEP instructions.
1344 for (const Value *V : Ptrs) {
1345 const auto *GEP = dyn_cast<GetElementPtrInst>(V);
1346 if (!GEP)
1347 continue;
1348 if (Info.isSameBase() && V != Base) {
1349 if (GEP->hasAllConstantIndices())
1350 continue;
1351 Cost += static_cast<const T *>(this)->getArithmeticInstrCost(
1352 Instruction::Add, GEP->getType(), CostKind,
1353 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
1354 {});
1355 } else {
1356 SmallVector<const Value *> Indices(GEP->indices());
1357 Cost += static_cast<const T *>(this)->getGEPCost(
1358 GEP->getSourceElementType(), GEP->getPointerOperand(), Indices,
1359 AccessTy, CostKind);
1360 }
1361 }
1362 return Cost;
1363 }
1364
1367 TTI::TargetCostKind CostKind) const override {
1368 using namespace llvm::PatternMatch;
1369
1370 auto *TargetTTI = static_cast<const T *>(this);
1371 // Handle non-intrinsic calls, invokes, and callbr.
1372 // FIXME: Unlikely to be true for anything but CodeSize.
1373 auto *CB = dyn_cast<CallBase>(U);
1374 if (CB && !isa<IntrinsicInst>(U)) {
1375 if (const Function *F = CB->getCalledFunction()) {
1376 if (!TargetTTI->isLoweredToCall(F))
1377 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
1378
1379 return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1);
1380 }
1381 // For indirect or other calls, scale cost by number of arguments.
1382 return TTI::TCC_Basic * (CB->arg_size() + 1);
1383 }
1384
1385 Type *Ty = U->getType();
1386 unsigned Opcode = Operator::getOpcode(U);
1387 auto *I = dyn_cast<Instruction>(U);
1388 switch (Opcode) {
1389 default:
1390 break;
1391 case Instruction::Call: {
1392 assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call");
1393 auto *Intrinsic = cast<IntrinsicInst>(U);
1394 IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB);
1395 return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind);
1396 }
1397 case Instruction::Br:
1398 case Instruction::Ret:
1399 case Instruction::PHI:
1400 case Instruction::Switch:
1401 return TargetTTI->getCFInstrCost(Opcode, CostKind, I);
1402 case Instruction::Freeze:
1403 return TTI::TCC_Free;
1404 case Instruction::ExtractValue:
1405 case Instruction::InsertValue:
1406 return TargetTTI->getInsertExtractValueCost(Opcode, CostKind);
1407 case Instruction::Alloca:
1408 if (cast<AllocaInst>(U)->isStaticAlloca())
1409 return TTI::TCC_Free;
1410 break;
1411 case Instruction::GetElementPtr: {
1412 const auto *GEP = cast<GEPOperator>(U);
1413 Type *AccessType = nullptr;
1414 // For now, only provide the AccessType in the simple case where the GEP
1415 // only has one user.
1416 if (GEP->hasOneUser() && I)
1417 AccessType = I->user_back()->getAccessType();
1418
1419 return TargetTTI->getGEPCost(GEP->getSourceElementType(),
1420 Operands.front(), Operands.drop_front(),
1421 AccessType, CostKind);
1422 }
1423 case Instruction::Add:
1424 case Instruction::FAdd:
1425 case Instruction::Sub:
1426 case Instruction::FSub:
1427 case Instruction::Mul:
1428 case Instruction::FMul:
1429 case Instruction::UDiv:
1430 case Instruction::SDiv:
1431 case Instruction::FDiv:
1432 case Instruction::URem:
1433 case Instruction::SRem:
1434 case Instruction::FRem:
1435 case Instruction::Shl:
1436 case Instruction::LShr:
1437 case Instruction::AShr:
1438 case Instruction::And:
1439 case Instruction::Or:
1440 case Instruction::Xor:
1441 case Instruction::FNeg: {
1443 TTI::OperandValueInfo Op2Info;
1444 if (Opcode != Instruction::FNeg)
1445 Op2Info = TTI::getOperandInfo(Operands[1]);
1446 return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
1447 Op2Info, Operands, I);
1448 }
1449 case Instruction::IntToPtr:
1450 case Instruction::PtrToAddr:
1451 case Instruction::PtrToInt:
1452 case Instruction::SIToFP:
1453 case Instruction::UIToFP:
1454 case Instruction::FPToUI:
1455 case Instruction::FPToSI:
1456 case Instruction::Trunc:
1457 case Instruction::FPTrunc:
1458 case Instruction::BitCast:
1459 case Instruction::FPExt:
1460 case Instruction::SExt:
1461 case Instruction::ZExt:
1462 case Instruction::AddrSpaceCast: {
1463 Type *OpTy = Operands[0]->getType();
1464 return TargetTTI->getCastInstrCost(
1465 Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I);
1466 }
1467 case Instruction::Store: {
1468 auto *SI = cast<StoreInst>(U);
1469 Type *ValTy = Operands[0]->getType();
1471 return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(),
1472 SI->getPointerAddressSpace(), CostKind,
1473 OpInfo, I);
1474 }
1475 case Instruction::Load: {
1476 // FIXME: Arbitary cost which could come from the backend.
1478 return 4;
1479 auto *LI = cast<LoadInst>(U);
1480 Type *LoadType = U->getType();
1481 // If there is a non-register sized type, the cost estimation may expand
1482 // it to be several instructions to load into multiple registers on the
1483 // target. But, if the only use of the load is a trunc instruction to a
1484 // register sized type, the instruction selector can combine these
1485 // instructions to be a single load. So, in this case, we use the
1486 // destination type of the trunc instruction rather than the load to
1487 // accurately estimate the cost of this load instruction.
1488 if (CostKind == TTI::TCK_CodeSize && LI->hasOneUse() &&
1489 !LoadType->isVectorTy()) {
1490 if (const TruncInst *TI = dyn_cast<TruncInst>(*LI->user_begin()))
1491 LoadType = TI->getDestTy();
1492 }
1493 return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
1495 {TTI::OK_AnyValue, TTI::OP_None}, I);
1496 }
1497 case Instruction::Select: {
1498 const Value *Op0, *Op1;
1499 if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
1500 match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1501 // select x, y, false --> x & y
1502 // select x, true, y --> x | y
1503 const auto Op1Info = TTI::getOperandInfo(Op0);
1504 const auto Op2Info = TTI::getOperandInfo(Op1);
1505 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
1506 Op1->getType()->getScalarSizeInBits() == 1);
1507
1509 return TargetTTI->getArithmeticInstrCost(
1510 match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty,
1511 CostKind, Op1Info, Op2Info, Operands, I);
1512 }
1513 const auto Op1Info = TTI::getOperandInfo(Operands[1]);
1514 const auto Op2Info = TTI::getOperandInfo(Operands[2]);
1515 Type *CondTy = Operands[0]->getType();
1516 return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
1518 CostKind, Op1Info, Op2Info, I);
1519 }
1520 case Instruction::ICmp:
1521 case Instruction::FCmp: {
1522 const auto Op1Info = TTI::getOperandInfo(Operands[0]);
1523 const auto Op2Info = TTI::getOperandInfo(Operands[1]);
1524 Type *ValTy = Operands[0]->getType();
1525 // TODO: Also handle ICmp/FCmp constant expressions.
1526 return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
1527 I ? cast<CmpInst>(I)->getPredicate()
1529 CostKind, Op1Info, Op2Info, I);
1530 }
1531 case Instruction::InsertElement: {
1532 auto *IE = dyn_cast<InsertElementInst>(U);
1533 if (!IE)
1534 return TTI::TCC_Basic; // FIXME
1535 unsigned Idx = -1;
1536 if (auto *CI = dyn_cast<ConstantInt>(Operands[2]))
1537 if (CI->getValue().getActiveBits() <= 32)
1538 Idx = CI->getZExtValue();
1539 return TargetTTI->getVectorInstrCost(*IE, Ty, CostKind, Idx);
1540 }
1541 case Instruction::ShuffleVector: {
1542 auto *Shuffle = dyn_cast<ShuffleVectorInst>(U);
1543 if (!Shuffle)
1544 return TTI::TCC_Basic; // FIXME
1545
1546 auto *VecTy = cast<VectorType>(U->getType());
1547 auto *VecSrcTy = cast<VectorType>(Operands[0]->getType());
1548 ArrayRef<int> Mask = Shuffle->getShuffleMask();
1549 int NumSubElts, SubIndex;
1550
1551 // Treat undef/poison mask as free (no matter the length).
1552 if (all_of(Mask, [](int M) { return M < 0; }))
1553 return TTI::TCC_Free;
1554
1555 // TODO: move more of this inside improveShuffleKindFromMask.
1556 if (Shuffle->changesLength()) {
1557 // Treat a 'subvector widening' as a free shuffle.
1558 if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
1559 return TTI::TCC_Free;
1560
1561 if (Shuffle->isExtractSubvectorMask(SubIndex))
1562 return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
1563 VecSrcTy, Mask, CostKind, SubIndex,
1564 VecTy, Operands, Shuffle);
1565
1566 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1567 return TargetTTI->getShuffleCost(
1568 TTI::SK_InsertSubvector, VecTy, VecSrcTy, Mask, CostKind,
1569 SubIndex,
1570 FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
1571 Operands, Shuffle);
1572
1573 int ReplicationFactor, VF;
1574 if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
1575 APInt DemandedDstElts = APInt::getZero(Mask.size());
1576 for (auto I : enumerate(Mask)) {
1577 if (I.value() != PoisonMaskElem)
1578 DemandedDstElts.setBit(I.index());
1579 }
1580 return TargetTTI->getReplicationShuffleCost(
1581 VecSrcTy->getElementType(), ReplicationFactor, VF,
1582 DemandedDstElts, CostKind);
1583 }
1584
1585 bool IsUnary = isa<UndefValue>(Operands[1]);
1586 NumSubElts = VecSrcTy->getElementCount().getKnownMinValue();
1587 SmallVector<int, 16> AdjustMask(Mask);
1588
1589 // Widening shuffle - widening the source(s) to the new length
1590 // (treated as free - see above), and then perform the adjusted
1591 // shuffle at that width.
1592 if (Shuffle->increasesLength()) {
1593 for (int &M : AdjustMask)
1594 M = M >= NumSubElts ? (M + (Mask.size() - NumSubElts)) : M;
1595
1596 return TargetTTI->getShuffleCost(
1598 VecTy, AdjustMask, CostKind, 0, nullptr, Operands, Shuffle);
1599 }
1600
1601 // Narrowing shuffle - perform shuffle at original wider width and
1602 // then extract the lower elements.
1603 // FIXME: This can assume widening, which is not true of all vector
1604 // architectures (and is not even the default).
1605 AdjustMask.append(NumSubElts - Mask.size(), PoisonMaskElem);
1606
1607 InstructionCost ShuffleCost = TargetTTI->getShuffleCost(
1609 VecSrcTy, VecSrcTy, AdjustMask, CostKind, 0, nullptr, Operands,
1610 Shuffle);
1611
1612 SmallVector<int, 16> ExtractMask(Mask.size());
1613 std::iota(ExtractMask.begin(), ExtractMask.end(), 0);
1614 return ShuffleCost + TargetTTI->getShuffleCost(
1615 TTI::SK_ExtractSubvector, VecTy, VecSrcTy,
1616 ExtractMask, CostKind, 0, VecTy, {}, Shuffle);
1617 }
1618
1619 if (Shuffle->isIdentity())
1620 return TTI::TCC_Free;
1621
1622 if (Shuffle->isReverse())
1623 return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy, VecSrcTy, Mask,
1624 CostKind, 0, nullptr, Operands,
1625 Shuffle);
1626
1627 if (Shuffle->isTranspose())
1628 return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy, VecSrcTy,
1629 Mask, CostKind, 0, nullptr, Operands,
1630 Shuffle);
1631
1632 if (Shuffle->isZeroEltSplat())
1633 return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy, VecSrcTy,
1634 Mask, CostKind, 0, nullptr, Operands,
1635 Shuffle);
1636
1637 if (Shuffle->isSingleSource())
1638 return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy,
1639 VecSrcTy, Mask, CostKind, 0, nullptr,
1640 Operands, Shuffle);
1641
1642 if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
1643 return TargetTTI->getShuffleCost(
1644 TTI::SK_InsertSubvector, VecTy, VecSrcTy, Mask, CostKind, SubIndex,
1645 FixedVectorType::get(VecTy->getScalarType(), NumSubElts), Operands,
1646 Shuffle);
1647
1648 if (Shuffle->isSelect())
1649 return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy, VecSrcTy, Mask,
1650 CostKind, 0, nullptr, Operands,
1651 Shuffle);
1652
1653 if (Shuffle->isSplice(SubIndex))
1654 return TargetTTI->getShuffleCost(TTI::SK_Splice, VecTy, VecSrcTy, Mask,
1655 CostKind, SubIndex, nullptr, Operands,
1656 Shuffle);
1657
1658 return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, VecSrcTy,
1659 Mask, CostKind, 0, nullptr, Operands,
1660 Shuffle);
1661 }
1662 case Instruction::ExtractElement: {
1663 auto *EEI = dyn_cast<ExtractElementInst>(U);
1664 if (!EEI)
1665 return TTI::TCC_Basic; // FIXME
1666 unsigned Idx = -1;
1667 if (auto *CI = dyn_cast<ConstantInt>(Operands[1]))
1668 if (CI->getValue().getActiveBits() <= 32)
1669 Idx = CI->getZExtValue();
1670 Type *DstTy = Operands[0]->getType();
1671 return TargetTTI->getVectorInstrCost(*EEI, DstTy, CostKind, Idx);
1672 }
1673 }
1674
1675 // By default, just classify everything remaining as 'basic'.
1676 return TTI::TCC_Basic;
1677 }
1678
1680 auto *TargetTTI = static_cast<const T *>(this);
1681 SmallVector<const Value *, 4> Ops(I->operand_values());
1682 InstructionCost Cost = TargetTTI->getInstructionCost(
1685 }
1686
1687 bool supportsTailCallFor(const CallBase *CB) const override {
1688 return static_cast<const T *>(this)->supportsTailCalls();
1689 }
1690};
1691} // namespace llvm
1692
1693#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSigned(unsigned int Opcode)
Hexagon Common GEP
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
#define T
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Class to represent array types.
A cache of @llvm.assume calls within a function.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:316
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition Operator.h:43
The optimization diagnostic interface.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This class represents a constant integer value.
const APInt & getAPInt() const
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:31
static StackOffset getScalable(int64_t Scalable)
Definition TypeSize.h:41
static StackOffset getFixed(int64_t Fixed)
Definition TypeSize.h:40
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Class to represent struct types.
Multiway switch.
Provides information about what library functions are available for the current target.
virtual InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const
virtual bool preferAlternateOpcodeVectorization() const
virtual bool isProfitableLSRChainElement(Instruction *I) const
virtual unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
virtual InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
virtual InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind) const
virtual const DataLayout & getDataLayout() const
virtual bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
virtual std::optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const
virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
virtual bool enableInterleavedAccessVectorization() const
virtual InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual InstructionCost getFPOpCost(Type *Ty) const
virtual unsigned getMaxInterleaveFactor(ElementCount VF) const
virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
virtual TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool isStridedAccess(const SCEV *Ptr) const
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const
virtual Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace) const
virtual TargetTransformInfo::VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
virtual bool enableAggressiveInterleaving(bool LoopHasReductions) const
virtual std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
virtual InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const
virtual bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
virtual bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty) const
virtual unsigned adjustInliningThreshold(const CallBase *CB) const
virtual InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
virtual bool shouldDropLSRSolutionIfLessProfitable() const
virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
virtual bool hasDivRemOp(Type *DataType, bool IsSigned) const
virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
virtual unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const
virtual bool isLegalICmpImmediate(int64_t Imm) const
virtual InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo, const Instruction *I) const
virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
virtual bool haveFastSqrt(Type *Ty) const
virtual ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
virtual bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
virtual unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
virtual std::optional< unsigned > getVScaleForTuning() const
virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const
virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const
virtual unsigned getNumberOfParts(Type *Tp) const
virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
virtual void getPeelingPreferences(Loop *, ScalarEvolution &, TTI::PeelingPreferences &) const
virtual std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
virtual bool useColdCCForColdCall(Function &F) const
virtual InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual unsigned getNumberOfRegisters(unsigned ClassID) const
virtual bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
virtual bool isLegalAddScalableImmediate(int64_t Imm) const
virtual bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
virtual bool shouldPrefetchAddressSpace(unsigned AS) const
virtual bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment) const
virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
virtual unsigned getMinVectorRegisterBitWidth() const
unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const
virtual bool shouldBuildLookupTablesForConstant(Constant *C) const
virtual bool isFPVectorizationPotentiallyUnsafe() const
virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
virtual InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const
virtual bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
virtual InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) const
virtual InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
virtual std::optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level) const
virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
virtual bool shouldTreatInstructionLikeSelect(const Instruction *I) const
virtual std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
virtual unsigned getEpilogueVectorizationMinVF() const
virtual std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
virtual bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
virtual void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize) const
virtual TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
virtual TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
virtual bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const
virtual unsigned getMaxPrefetchIterationsAhead() const
virtual bool allowVectorElementIndexingUsingGEP() const
virtual InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TTI::TargetCostKind CostKind) const
virtual TTI::ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
const SCEVConstant * getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr) const
virtual bool hasBranchDivergence(const Function *F=nullptr) const
virtual InstructionCost getArithmeticReductionCost(unsigned, VectorType *, std::optional< FastMathFlags > FMF, TTI::TargetCostKind) const
virtual bool isProfitableToHoist(Instruction *I) const
virtual const char * getRegisterClassName(unsigned ClassID) const
virtual InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *, FastMathFlags, TTI::TargetCostKind) const
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const
virtual bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
virtual InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind) const
virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
virtual bool isVectorShiftByScalarCheap(Type *Ty) const
virtual bool isLegalNTStore(Type *DataType, Align Alignment) const
virtual InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual APInt getFeatureMask(const Function &F) const
virtual std::optional< unsigned > getMinPageSize() const
virtual unsigned getRegUsageForType(Type *Ty) const
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const
virtual bool isElementTypeLegalForScalableVector(Type *Ty) const
virtual bool isLoweredToCall(const Function *F) const
virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const
virtual InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr) const
virtual bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty) const
virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const
virtual BranchProbability getPredictableBranchThreshold() const
virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
virtual InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
virtual bool isLegalToVectorizeStore(StoreInst *SI) const
virtual bool areInlineCompatible(const Function *Caller, const Function *Callee) const
virtual bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
virtual bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
virtual bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
virtual bool isMultiversionedFunction(const Function &F) const
virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const
virtual bool isNoopAddrSpaceCast(unsigned, unsigned) const
virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
virtual bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const
virtual bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) const
virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
virtual bool isLegalAddImmediate(int64_t Imm) const
virtual InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) const
virtual bool isLegalNTLoad(Type *DataType, Align Alignment) const
virtual InstructionCost getBranchMispredictPenalty() const
virtual bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const
virtual InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance) const
virtual Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
virtual bool enableMaskedInterleavedAccessVectorization() const
virtual Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize) const
virtual unsigned getInliningThresholdMultiplier() const
TargetTransformInfoImplBase(const DataLayout &DL)
virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
virtual bool isAlwaysUniform(const Value *V) const
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, const Instruction *I) const
virtual bool shouldExpandReduction(const IntrinsicInst *II) const
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
virtual unsigned getGISelRematGlobalCost() const
virtual InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) const
virtual bool isTypeLegal(Type *Ty) const
virtual unsigned getAssumedAddrSpace(const Value *V) const
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast) const
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
virtual InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const
virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef< std::tuple< Value *, User *, int > > ScalarUserAndIdx) const
virtual unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
virtual bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
virtual InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
virtual bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace) const
virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
virtual bool supportsTailCallFor(const CallBase *CB) const
virtual std::optional< unsigned > getMaxVScale() const
virtual bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
virtual InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
virtual bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
virtual bool shouldConsiderVectorizationRegPressure() const
virtual InstructionCost getMemcpyCost(const Instruction *I) const
virtual unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
virtual bool isSourceOfDivergence(const Value *V) const
virtual InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
virtual void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &, OptimizationRemarkEmitter *) const
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)=default
virtual bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
virtual bool supportsEfficientVectorElementLoadStore() const
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
virtual unsigned getMinTripCountTailFoldingThreshold() const
virtual TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const
virtual void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
bool supportsTailCallFor(const CallBase *CB) const override
bool isExpensiveToSpeculativelyExecute(const Instruction *I) const override
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TTI::TargetCostKind CostKind) const override
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
PopcntSupportKind
Flags indicating the kind of support for population count.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
MemIndexedMode
The type of load/store indexing.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_None
Don't prefer any addressing mode.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
CastContextHint
Represents a hint about the context in which a cast is used.
CacheLevel
The possible cache levels.
This class represents a truncation of integer types.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:62
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
FunctionAddr VTableAddr uintptr_t uintptr_t DataSize
Definition InstrProf.h:267
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
constexpr int PoisonMaskElem
RecurKind
These are the kinds of recurrences that we support.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
gep_type_iterator gep_type_begin(const User *GEP)
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Attributes of a target dependent hardware loop.
Information about a load/store intrinsic defined by the target.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Parameters that control the generic loop unrolling transformation.