LLVM 22.0.0git
VPlanPatternMatch.h
Go to the documentation of this file.
1//===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the VPlan values and recipes, based on
11// LLVM's IR pattern matchers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
16#define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
17
18#include "VPlan.h"
19
20namespace llvm {
22
23template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
24 return P.match(V);
25}
26
27template <typename Pattern> bool match(VPUser *U, const Pattern &P) {
28 auto *R = dyn_cast<VPRecipeBase>(U);
29 return R && match(R, P);
30}
31
32template <typename Val, typename Pattern> struct VPMatchFunctor {
33 const Pattern &P;
34 VPMatchFunctor(const Pattern &P) : P(P) {}
35 bool operator()(Val *V) const { return match(V, P); }
36};
37
38/// A match functor that can be used as a UnaryPredicate in functional
39/// algorithms like all_of.
40template <typename Val = VPUser, typename Pattern>
44
45template <typename Class> struct class_match {
46 template <typename ITy> bool match(ITy *V) const { return isa<Class>(V); }
47};
48
49/// Match an arbitrary VPValue and ignore it.
51
52template <typename Class> struct bind_ty {
53 Class *&VR;
54
55 bind_ty(Class *&V) : VR(V) {}
56
57 template <typename ITy> bool match(ITy *V) const {
58 if (auto *CV = dyn_cast<Class>(V)) {
59 VR = CV;
60 return true;
61 }
62 return false;
63 }
64};
65
66/// Match a specified VPValue.
68 const VPValue *Val;
69
70 specificval_ty(const VPValue *V) : Val(V) {}
71
72 bool match(VPValue *VPV) const { return VPV == Val; }
73};
74
75inline specificval_ty m_Specific(const VPValue *VPV) { return VPV; }
76
77/// Stores a reference to the VPValue *, not the VPValue * itself,
78/// thus can be used in commutative matchers.
80 VPValue *const &Val;
81
82 deferredval_ty(VPValue *const &V) : Val(V) {}
83
84 bool match(VPValue *const V) const { return V == Val; }
85};
86
87/// Like m_Specific(), but works if the specific value to match is determined
88/// as part of the same match() expression. For example:
89/// m_Mul(m_VPValue(X), m_Specific(X)) is incorrect, because m_Specific() will
90/// bind X before the pattern match starts.
91/// m_Mul(m_VPValue(X), m_Deferred(X)) is correct, and will check against
92/// whichever value m_VPValue(X) populated.
93inline deferredval_ty m_Deferred(VPValue *const &V) { return V; }
94
95/// Match an integer constant or vector of constants if Pred::isValue returns
96/// true for the APInt. \p BitWidth optionally specifies the bitwidth the
97/// matched constant must have. If it is 0, the matched constant can have any
98/// bitwidth.
99template <typename Pred, unsigned BitWidth = 0> struct int_pred_ty {
100 Pred P;
101
102 int_pred_ty(Pred P) : P(std::move(P)) {}
103 int_pred_ty() : P() {}
104
105 bool match(VPValue *VPV) const {
106 if (!VPV->isLiveIn())
107 return false;
108 Value *V = VPV->getLiveInIRValue();
109 if (!V)
110 return false;
111 assert(!V->getType()->isVectorTy() && "Unexpected vector live-in");
112 const auto *CI = dyn_cast<ConstantInt>(V);
113 if (!CI)
114 return false;
115
116 if (BitWidth != 0 && CI->getBitWidth() != BitWidth)
117 return false;
118 return P.isValue(CI->getValue());
119 }
120};
121
122/// Match a specified integer value or vector of all elements of that
123/// value. \p BitWidth optionally specifies the bitwidth the matched constant
124/// must have. If it is 0, the matched constant can have any bitwidth.
127
129
130 bool isValue(const APInt &C) const { return APInt::isSameValue(Val, C); }
131};
132
133template <unsigned Bitwidth = 0>
135
139
143
147
149 bool isValue(const APInt &C) const { return C.isAllOnes(); }
150};
151
152/// Match an integer or vector with all bits set.
153/// For vectors, this includes constants with undefined elements.
157
159 bool isValue(const APInt &C) const { return C.isZero(); }
160};
161
162struct is_one {
163 bool isValue(const APInt &C) const { return C.isOne(); }
164};
165
166/// Match an integer 0 or a vector with all elements equal to 0.
167/// For vectors, this includes constants with undefined elements.
171
172/// Match an integer 1 or a vector with all elements equal to 1.
173/// For vectors, this includes constants with undefined elements.
175
176/// Matching combinators
177template <typename LTy, typename RTy> struct match_combine_or {
178 LTy L;
179 RTy R;
180
181 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
182
183 template <typename ITy> bool match(ITy *V) const {
184 return L.match(V) || R.match(V);
185 }
186};
187
188template <typename LTy, typename RTy> struct match_combine_and {
189 LTy L;
190 RTy R;
191
192 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
193
194 template <typename ITy> bool match(ITy *V) const {
195 return L.match(V) && R.match(V);
196 }
197};
198
199/// Combine two pattern matchers matching L || R
200template <typename LTy, typename RTy>
201inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
202 return match_combine_or<LTy, RTy>(L, R);
203}
204
205/// Combine two pattern matchers matching L && R
206template <typename LTy, typename RTy>
207inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
208 return match_combine_and<LTy, RTy>(L, R);
209}
210
211/// Match a VPValue, capturing it if we match.
212inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; }
213
214/// Match a VPInstruction, capturing if we match.
216
217template <typename Ops_t, unsigned Opcode, bool Commutative,
218 typename... RecipeTys>
220 Ops_t Ops;
221
222 template <typename... OpTy> Recipe_match(OpTy... Ops) : Ops(Ops...) {
223 static_assert(std::tuple_size<Ops_t>::value == sizeof...(Ops) &&
224 "number of operands in constructor doesn't match Ops_t");
225 static_assert((!Commutative || std::tuple_size<Ops_t>::value == 2) &&
226 "only binary ops can be commutative");
227 }
228
229 bool match(const VPValue *V) const {
230 auto *DefR = V->getDefiningRecipe();
231 return DefR && match(DefR);
232 }
233
234 bool match(const VPSingleDefRecipe *R) const {
235 return match(static_cast<const VPRecipeBase *>(R));
236 }
237
238 bool match(const VPRecipeBase *R) const {
239 if (std::tuple_size_v<Ops_t> == 0) {
240 auto *VPI = dyn_cast<VPInstruction>(R);
241 return VPI && VPI->getOpcode() == Opcode;
242 }
243
244 if ((!matchRecipeAndOpcode<RecipeTys>(R) && ...))
245 return false;
246
247 if (R->getNumOperands() != std::tuple_size<Ops_t>::value) {
248 assert(Opcode == Instruction::PHI &&
249 "non-variadic recipe with matched opcode does not have the "
250 "expected number of operands");
251 return false;
252 }
253
254 auto IdxSeq = std::make_index_sequence<std::tuple_size<Ops_t>::value>();
255 if (all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
256 return Op.match(R->getOperand(Idx));
257 }))
258 return true;
259
260 return Commutative &&
261 all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
262 return Op.match(R->getOperand(R->getNumOperands() - Idx - 1));
263 });
264 }
265
266private:
267 template <typename RecipeTy>
268 static bool matchRecipeAndOpcode(const VPRecipeBase *R) {
269 auto *DefR = dyn_cast<RecipeTy>(R);
270 // Check for recipes that do not have opcodes.
271 if constexpr (std::is_same_v<RecipeTy, VPScalarIVStepsRecipe> ||
272 std::is_same_v<RecipeTy, VPCanonicalIVPHIRecipe> ||
273 std::is_same_v<RecipeTy, VPDerivedIVRecipe>)
274 return DefR;
275 else
276 return DefR && DefR->getOpcode() == Opcode;
277 }
278
279 /// Helper to check if predicate \p P holds on all tuple elements in Ops using
280 /// the provided index sequence.
281 template <typename Fn, std::size_t... Is>
282 bool all_of_tuple_elements(std::index_sequence<Is...>, Fn P) const {
283 return (P(std::get<Is>(Ops), Is) && ...);
284 }
285};
286
287template <unsigned Opcode, typename... OpTys>
289 Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ false,
292
293template <unsigned Opcode, typename... OpTys>
295 Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ true,
297
298template <unsigned Opcode, typename... OpTys>
299using VPInstruction_match = Recipe_match<std::tuple<OpTys...>, Opcode,
300 /*Commutative*/ false, VPInstruction>;
301
302template <unsigned Opcode, typename... OpTys>
303inline VPInstruction_match<Opcode, OpTys...>
304m_VPInstruction(const OpTys &...Ops) {
305 return VPInstruction_match<Opcode, OpTys...>(Ops...);
306}
307
308/// BuildVector is matches only its opcode, w/o matching its operands as the
309/// number of operands is not fixed.
313
314template <typename Op0_t>
316m_Freeze(const Op0_t &Op0) {
318}
319
320template <typename Op0_t>
325
326template <typename Op0_t>
331
332template <typename Op0_t>
337
338template <typename Op0_t>
343
344template <typename Op0_t, typename Op1_t, typename Op2_t>
346m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
348}
349
350template <typename Op0_t, typename Op1_t>
352m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) {
354}
355
356template <typename Op0_t>
358m_AnyOf(const Op0_t &Op0) {
360}
361
362template <unsigned Opcode, typename Op0_t>
366
367template <typename Op0_t>
371
372template <typename Op0_t>
376
377template <typename Op0_t>
381
382template <typename Op0_t>
385m_ZExtOrSExt(const Op0_t &Op0) {
386 return m_CombineOr(m_ZExt(Op0), m_SExt(Op0));
387}
388
389template <typename Op0_t>
391m_ZExtOrSelf(const Op0_t &Op0) {
392 return m_CombineOr(m_ZExt(Op0), Op0);
393}
394
395template <unsigned Opcode, typename Op0_t, typename Op1_t>
397 const Op1_t &Op1) {
399}
400
401template <unsigned Opcode, typename Op0_t, typename Op1_t>
403m_c_Binary(const Op0_t &Op0, const Op1_t &Op1) {
405}
406
407template <typename Op0_t, typename Op1_t>
409m_c_Add(const Op0_t &Op0, const Op1_t &Op1) {
411}
412
413template <typename Op0_t, typename Op1_t>
418
419template <typename Op0_t, typename Op1_t>
424
425template <typename Op0_t, typename Op1_t>
427m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) {
429}
430
431/// Match a binary AND operation.
432template <typename Op0_t, typename Op1_t>
434m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1) {
436}
437
438/// Match a binary OR operation. Note that while conceptually the operands can
439/// be matched commutatively, \p Commutative defaults to false in line with the
440/// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative
441/// version of the matcher.
442template <typename Op0_t, typename Op1_t>
444m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
446}
447
448template <typename Op0_t, typename Op1_t>
450m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
452}
453
454/// Cmp_match is a variant of BinaryRecipe_match that also binds the comparison
455/// predicate. Opcodes must either be Instruction::ICmp or Instruction::FCmp, or
456/// both.
457template <typename Op0_t, typename Op1_t, unsigned... Opcodes>
458struct Cmp_match {
459 static_assert((sizeof...(Opcodes) == 1 || sizeof...(Opcodes) == 2) &&
460 "Expected one or two opcodes");
461 static_assert(
462 ((Opcodes == Instruction::ICmp || Opcodes == Instruction::FCmp) && ...) &&
463 "Expected a compare instruction opcode");
464
468
469 Cmp_match(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1)
470 : Predicate(&Pred), Op0(Op0), Op1(Op1) {}
471 Cmp_match(const Op0_t &Op0, const Op1_t &Op1) : Op0(Op0), Op1(Op1) {}
472
473 bool match(const VPValue *V) const {
474 auto *DefR = V->getDefiningRecipe();
475 return DefR && match(DefR);
476 }
477
478 bool match(const VPRecipeBase *V) const {
479 if ((m_Binary<Opcodes>(Op0, Op1).match(V) || ...)) {
480 if (Predicate)
481 *Predicate = cast<VPRecipeWithIRFlags>(V)->getPredicate();
482 return true;
483 }
484 return false;
485 }
486};
487
488/// SpecificCmp_match is a variant of Cmp_match that matches the comparison
489/// predicate, instead of binding it.
490template <typename Op0_t, typename Op1_t, unsigned... Opcodes>
495
497 : Predicate(Pred), Op0(LHS), Op1(RHS) {}
498
499 bool match(const VPValue *V) const {
500 CmpPredicate CurrentPred;
501 return Cmp_match<Op0_t, Op1_t, Opcodes...>(CurrentPred, Op0, Op1)
502 .match(V) &&
504 }
505};
506
507template <typename Op0_t, typename Op1_t>
512
513template <typename Op0_t, typename Op1_t>
514inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp>
515m_ICmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) {
516 return Cmp_match<Op0_t, Op1_t, Instruction::ICmp>(Pred, Op0, Op1);
517}
518
519template <typename Op0_t, typename Op1_t>
520inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp>
521m_SpecificICmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) {
523 Op1);
524}
525
526template <typename Op0_t, typename Op1_t>
527inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
528m_Cmp(const Op0_t &Op0, const Op1_t &Op1) {
530 Op1);
531}
532
533template <typename Op0_t, typename Op1_t>
534inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
535m_Cmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) {
537 Pred, Op0, Op1);
538}
539
540template <typename Op0_t, typename Op1_t>
541inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
542m_SpecificCmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) {
544 MatchPred, Op0, Op1);
545}
546
547template <typename Op0_t, typename Op1_t>
549 Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr,
550 /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>,
554
555template <typename Op0_t, typename Op1_t>
557 const Op1_t &Op1) {
558 return m_CombineOr(
559 Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr,
560 /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>(
561 Op0, Op1),
565 Op1)));
566}
567
568template <typename Op0_t, typename Op1_t, typename Op2_t>
570m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
572 {Op0, Op1, Op2});
573}
574
575template <typename Op0_t>
578 Instruction::Xor, int_pred_ty<is_all_ones>, Op0_t>>
583
584template <typename Op0_t, typename Op1_t>
585inline match_combine_or<
588m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) {
589 return m_CombineOr(
591 m_Select(Op0, Op1, m_False()));
592}
593
594template <typename Op0_t, typename Op1_t>
596m_LogicalOr(const Op0_t &Op0, const Op1_t &Op1) {
597 return m_Select(Op0, m_True(), Op1);
598}
599
600template <typename Op0_t, typename Op1_t, typename Op2_t>
602 false, VPScalarIVStepsRecipe>;
603
604template <typename Op0_t, typename Op1_t, typename Op2_t>
606m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
607 return VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
608}
609
610template <typename Op0_t, typename Op1_t, typename Op2_t>
613
614template <typename Op0_t, typename Op1_t, typename Op2_t>
616m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
617 return VPDerivedIV_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
618}
619
620/// Match a call argument at a given argument index.
621template <typename Opnd_t> struct Argument_match {
622 /// Call argument index to match.
623 unsigned OpI;
624 Opnd_t Val;
625
626 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
627
628 template <typename OpTy> bool match(OpTy *V) const {
629 if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
630 return Val.match(R->getOperand(OpI));
631 if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
632 return Val.match(R->getOperand(OpI));
633 if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
634 if (isa<CallInst>(R->getUnderlyingInstr()))
635 return Val.match(R->getOperand(OpI + 1));
636 return false;
637 }
638};
639
640/// Match a call argument.
641template <unsigned OpI, typename Opnd_t>
642inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
643 return Argument_match<Opnd_t>(OpI, Op);
644}
645
646/// Intrinsic matchers.
648 unsigned ID;
649
650 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
651
652 template <typename OpTy> bool match(OpTy *V) const {
653 if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
654 return R->getVectorIntrinsicID() == ID;
655 if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
656 return R->getCalledScalarFunction()->getIntrinsicID() == ID;
657 if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
658 if (const auto *CI = dyn_cast<CallInst>(R->getUnderlyingInstr()))
659 if (const auto *F = CI->getCalledFunction())
660 return F->getIntrinsicID() == ID;
661 return false;
662 }
663};
664
665/// Intrinsic matches are combinations of ID matchers, and argument
666/// matchers. Higher arity matcher are defined recursively in terms of and-ing
667/// them with lower arity matchers. Here's some convenient typedefs for up to
668/// several arguments, and more can be added as needed
669template <typename T0 = void, typename T1 = void, typename T2 = void,
670 typename T3 = void>
671struct m_Intrinsic_Ty;
672template <typename T0> struct m_Intrinsic_Ty<T0> {
674};
675template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
676 using Ty =
678};
679template <typename T0, typename T1, typename T2>
684template <typename T0, typename T1, typename T2, typename T3>
689
690/// Match intrinsic calls like this:
691/// m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
692template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
693 return IntrinsicID_match(IntrID);
694}
695
696template <Intrinsic::ID IntrID, typename T0>
697inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
699}
700
701template <Intrinsic::ID IntrID, typename T0, typename T1>
702inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
703 const T1 &Op1) {
705}
706
707template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
708inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
709m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
710 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
711}
712
713template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
714 typename T3>
716m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
717 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
718}
719
721 template <typename ITy> bool match(ITy *V) const {
722 VPValue *Val = dyn_cast<VPValue>(V);
723 return Val && Val->isLiveIn();
724 }
725};
726
728
729template <typename SubPattern_t> struct OneUse_match {
730 SubPattern_t SubPattern;
731
732 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
733
734 template <typename OpTy> bool match(OpTy *V) {
735 return V->hasOneUse() && SubPattern.match(V);
736 }
737};
738
739template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
740 return SubPattern;
741}
742
743} // namespace VPlanPatternMatch
744} // namespace llvm
745
746#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define T
#define T1
MachineInstr unsigned OpIdx
#define P(N)
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition VPlan.h:3576
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:980
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2847
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3645
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:176
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:171
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1479
A recipe for handling GEP instructions.
Definition VPlan.h:1765
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1436
LLVM Value Representation.
Definition Value.h:75
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< Instruction::Freeze, Op0_t > m_Freeze(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::ZExt, Op0_t > m_ZExt(const Op0_t &Op0)
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
int_pred_ty< is_specific_int, Bitwidth > specific_intval
int_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
SpecificCmp_match< Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp > m_SpecificCmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1)
match_combine_or< VPInstruction_match< VPInstruction::Not, Op0_t >, AllRecipe_commutative_match< Instruction::Xor, int_pred_ty< is_all_ones >, Op0_t > > m_Not(const Op0_t &Op0)
int_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Add, Op0_t, Op1_t > m_c_Add(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
SpecificCmp_match< Op0_t, Op1_t, Instruction::ICmp > m_SpecificICmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::AnyOf, Op0_t > m_AnyOf(const Op0_t &Op0)
VPScalarIVSteps_match< Op0_t, Op1_t, Op2_t > m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
Recipe_match< std::tuple< OpTys... >, Opcode, false, VPInstruction > VPInstruction_match
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Opcode, Op0_t > m_Unary(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::Mul, Op0_t, Op1_t > m_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
Cmp_match< Op0_t, Op1_t, Instruction::ICmp > m_ICmp(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Instruction::Mul, Op0_t, Op1_t > m_Mul(const Op0_t &Op0, const Op1_t &Op1)
specificval_ty m_Specific(const VPValue *VPV)
match_combine_or< Recipe_match< std::tuple< Op0_t, Op1_t >, Instruction::GetElementPtr, false, VPReplicateRecipe, VPWidenGEPRecipe >, match_combine_or< VPInstruction_match< VPInstruction::PtrAdd, Op0_t, Op1_t >, VPInstruction_match< VPInstruction::WidePtrAdd, Op0_t, Op1_t > > > GEPLikeRecipe_match
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPMatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
specific_intval< 0 > m_SpecificInt(uint64_t V)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
Recipe_match< std::tuple< Op0_t, Op1_t, Op2_t >, 0, false, VPDerivedIVRecipe > VPDerivedIV_match
AllRecipe_match< Instruction::Sub, Op0_t, Op1_t > m_Sub(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Instruction::SExt, Op0_t > m_SExt(const Op0_t &Op0)
specific_intval< 1 > m_True()
Recipe_match< std::tuple< OpTys... >, Opcode, false, VPWidenRecipe, VPReplicateRecipe, VPWidenCastRecipe, VPInstruction, VPWidenSelectRecipe > AllRecipe_match
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
Recipe_match< std::tuple< OpTys... >, Opcode, true, VPWidenRecipe, VPReplicateRecipe, VPInstruction > AllRecipe_commutative_match
deferredval_ty m_Deferred(VPValue *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
bool match(Val *V, const Pattern &P)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
OneUse_match< T > m_OneUse(const T &SubPattern)
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
AllRecipe_match< Instruction::Trunc, Op0_t > m_Trunc(const Op0_t &Op0)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, Op0_t > m_ZExtOrSelf(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
Argument_match< Opnd_t > m_Argument(const Opnd_t &Op)
Match a call argument.
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
Recipe_match< std::tuple< Op0_t, Op1_t, Op2_t >, 0, false, VPScalarIVStepsRecipe > VPScalarIVSteps_match
int_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
DWARFExpression::Operation Op
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1847
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:851
Intrinsic matches are combinations of ID matchers, and argument matchers.
A recipe for widening select instructions.
Definition VPlan.h:1719
Match a call argument at a given argument index.
unsigned OpI
Call argument index to match.
Argument_match(unsigned OpIdx, const Opnd_t &V)
Cmp_match is a variant of BinaryRecipe_match that also binds the comparison predicate.
Cmp_match(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1)
Cmp_match(const Op0_t &Op0, const Op1_t &Op1)
bool match(const VPValue *V) const
bool match(const VPRecipeBase *V) const
bool match(const VPSingleDefRecipe *R) const
bool match(const VPValue *V) const
bool match(const VPRecipeBase *R) const
SpecificCmp_match is a variant of Cmp_match that matches the comparison predicate,...
SpecificCmp_match(CmpPredicate Pred, const Op0_t &LHS, const Op1_t &RHS)
Stores a reference to the VPValue *, not the VPValue * itself, thus can be used in commutative matche...
Match an integer constant or vector of constants if Pred::isValue returns true for the APInt.
bool isValue(const APInt &C) const
Match a specified integer value or vector of all elements of that value.
match_combine_and< typename m_Intrinsic_Ty< T0, T1 >::Ty, Argument_match< T2 > > Ty
match_combine_and< typename m_Intrinsic_Ty< T0 >::Ty, Argument_match< T1 > > Ty
match_combine_and< IntrinsicID_match, Argument_match< T0 > > Ty
Intrinsic matches are combinations of ID matchers, and argument matchers.
match_combine_and< typename m_Intrinsic_Ty< T0, T1, T2 >::Ty, Argument_match< T3 > > Ty
match_combine_and(const LTy &Left, const RTy &Right)
match_combine_or(const LTy &Left, const RTy &Right)