LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
40#include <cassert>
41
42using namespace llvm;
43using namespace llvm::VPlanPatternMatch;
44
46
47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
49
51 switch (getVPDefID()) {
52 case VPExpressionSC:
53 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
54 case VPInstructionSC:
55 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
56 case VPInterleaveEVLSC:
57 case VPInterleaveSC:
58 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
59 case VPWidenStoreEVLSC:
60 case VPWidenStoreSC:
61 return true;
62 case VPReplicateSC:
63 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
64 ->mayWriteToMemory();
65 case VPWidenCallSC:
66 return !cast<VPWidenCallRecipe>(this)
67 ->getCalledScalarFunction()
68 ->onlyReadsMemory();
69 case VPWidenIntrinsicSC:
70 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
71 case VPCanonicalIVPHISC:
72 case VPBranchOnMaskSC:
73 case VPFirstOrderRecurrencePHISC:
74 case VPReductionPHISC:
75 case VPScalarIVStepsSC:
76 case VPPredInstPHISC:
77 return false;
78 case VPBlendSC:
79 case VPReductionEVLSC:
80 case VPReductionSC:
81 case VPVectorPointerSC:
82 case VPWidenCanonicalIVSC:
83 case VPWidenCastSC:
84 case VPWidenGEPSC:
85 case VPWidenIntOrFpInductionSC:
86 case VPWidenLoadEVLSC:
87 case VPWidenLoadSC:
88 case VPWidenPHISC:
89 case VPWidenSC:
90 case VPWidenSelectSC: {
91 const Instruction *I =
92 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
93 (void)I;
94 assert((!I || !I->mayWriteToMemory()) &&
95 "underlying instruction may write to memory");
96 return false;
97 }
98 default:
99 return true;
100 }
101}
102
104 switch (getVPDefID()) {
105 case VPExpressionSC:
106 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
107 case VPInstructionSC:
108 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
109 case VPWidenLoadEVLSC:
110 case VPWidenLoadSC:
111 return true;
112 case VPReplicateSC:
113 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
114 ->mayReadFromMemory();
115 case VPWidenCallSC:
116 return !cast<VPWidenCallRecipe>(this)
117 ->getCalledScalarFunction()
118 ->onlyWritesMemory();
119 case VPWidenIntrinsicSC:
120 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
121 case VPBranchOnMaskSC:
122 case VPFirstOrderRecurrencePHISC:
123 case VPPredInstPHISC:
124 case VPScalarIVStepsSC:
125 case VPWidenStoreEVLSC:
126 case VPWidenStoreSC:
127 return false;
128 case VPBlendSC:
129 case VPReductionEVLSC:
130 case VPReductionSC:
131 case VPVectorPointerSC:
132 case VPWidenCanonicalIVSC:
133 case VPWidenCastSC:
134 case VPWidenGEPSC:
135 case VPWidenIntOrFpInductionSC:
136 case VPWidenPHISC:
137 case VPWidenSC:
138 case VPWidenSelectSC: {
139 const Instruction *I =
140 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
141 (void)I;
142 assert((!I || !I->mayReadFromMemory()) &&
143 "underlying instruction may read from memory");
144 return false;
145 }
146 default:
147 // FIXME: Return false if the recipe represents an interleaved store.
148 return true;
149 }
150}
151
153 switch (getVPDefID()) {
154 case VPExpressionSC:
155 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
156 case VPDerivedIVSC:
157 case VPFirstOrderRecurrencePHISC:
158 case VPPredInstPHISC:
159 case VPVectorEndPointerSC:
160 return false;
161 case VPInstructionSC:
162 return mayWriteToMemory();
163 case VPWidenCallSC: {
164 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
165 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
166 }
167 case VPWidenIntrinsicSC:
168 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
169 case VPBlendSC:
170 case VPReductionEVLSC:
171 case VPReductionSC:
172 case VPScalarIVStepsSC:
173 case VPVectorPointerSC:
174 case VPWidenCanonicalIVSC:
175 case VPWidenCastSC:
176 case VPWidenGEPSC:
177 case VPWidenIntOrFpInductionSC:
178 case VPWidenPHISC:
179 case VPWidenPointerInductionSC:
180 case VPWidenSC:
181 case VPWidenSelectSC: {
182 const Instruction *I =
183 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
184 (void)I;
185 assert((!I || !I->mayHaveSideEffects()) &&
186 "underlying instruction has side-effects");
187 return false;
188 }
189 case VPInterleaveEVLSC:
190 case VPInterleaveSC:
191 return mayWriteToMemory();
192 case VPWidenLoadEVLSC:
193 case VPWidenLoadSC:
194 case VPWidenStoreEVLSC:
195 case VPWidenStoreSC:
196 assert(
197 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
199 "mayHaveSideffects result for ingredient differs from this "
200 "implementation");
201 return mayWriteToMemory();
202 case VPReplicateSC: {
203 auto *R = cast<VPReplicateRecipe>(this);
204 return R->getUnderlyingInstr()->mayHaveSideEffects();
205 }
206 default:
207 return true;
208 }
209}
210
212 assert(!Parent && "Recipe already in some VPBasicBlock");
213 assert(InsertPos->getParent() &&
214 "Insertion position not in any VPBasicBlock");
215 InsertPos->getParent()->insert(this, InsertPos->getIterator());
216}
217
218void VPRecipeBase::insertBefore(VPBasicBlock &BB,
220 assert(!Parent && "Recipe already in some VPBasicBlock");
221 assert(I == BB.end() || I->getParent() == &BB);
222 BB.insert(this, I);
223}
224
226 assert(!Parent && "Recipe already in some VPBasicBlock");
227 assert(InsertPos->getParent() &&
228 "Insertion position not in any VPBasicBlock");
229 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
230}
231
233 assert(getParent() && "Recipe not in any VPBasicBlock");
235 Parent = nullptr;
236}
237
239 assert(getParent() && "Recipe not in any VPBasicBlock");
241}
242
245 insertAfter(InsertPos);
246}
247
253
255 // Get the underlying instruction for the recipe, if there is one. It is used
256 // to
257 // * decide if cost computation should be skipped for this recipe,
258 // * apply forced target instruction cost.
259 Instruction *UI = nullptr;
260 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
261 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
262 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
263 UI = IG->getInsertPos();
264 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
265 UI = &WidenMem->getIngredient();
266
267 InstructionCost RecipeCost;
268 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
269 RecipeCost = 0;
270 } else {
271 RecipeCost = computeCost(VF, Ctx);
272 if (UI && ForceTargetInstructionCost.getNumOccurrences() > 0 &&
273 RecipeCost.isValid())
275 }
276
277 LLVM_DEBUG({
278 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
279 dump();
280 });
281 return RecipeCost;
282}
283
285 VPCostContext &Ctx) const {
286 llvm_unreachable("subclasses should implement computeCost");
287}
288
290 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
292}
293
295 auto *VPI = dyn_cast<VPInstruction>(this);
296 return VPI && Instruction::isCast(VPI->getOpcode());
297}
298
301 VPCostContext &Ctx) const {
302 std::optional<unsigned> Opcode;
303 VPValue *Op = getOperand(0);
304 VPRecipeBase *OpR = Op->getDefiningRecipe();
305
306 // If the partial reduction is predicated, a select will be operand 0
308 OpR = Op->getDefiningRecipe();
309 }
310
311 Type *InputTypeA = nullptr, *InputTypeB = nullptr;
313 ExtBType = TTI::PR_None;
314
315 auto GetExtendKind = [](VPRecipeBase *R) {
316 if (!R)
317 return TTI::PR_None;
318 auto *WidenCastR = dyn_cast<VPWidenCastRecipe>(R);
319 if (!WidenCastR)
320 return TTI::PR_None;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
322 return TTI::PR_ZeroExtend;
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
324 return TTI::PR_SignExtend;
325 return TTI::PR_None;
326 };
327
328 // Pick out opcode, type/ext information and use sub side effects from a widen
329 // recipe.
330 auto HandleWiden = [&](VPWidenRecipe *Widen) {
331 if (match(Widen, m_Sub(m_ZeroInt(), m_VPValue(Op)))) {
332 Widen = dyn_cast<VPWidenRecipe>(Op->getDefiningRecipe());
333 }
334 Opcode = Widen->getOpcode();
335 VPRecipeBase *ExtAR = Widen->getOperand(0)->getDefiningRecipe();
336 VPRecipeBase *ExtBR = Widen->getOperand(1)->getDefiningRecipe();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->getOperand(0)
338 : Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->getOperand(0)
340 : Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
343
344 if (!ExtBR && Widen->getOperand(1)->isLiveIn()) {
345 auto *CI = cast<ConstantInt>(Widen->getOperand(1)->getLiveInIRValue());
346 if (canConstantBeExtended(CI, InputTypeA, ExtAType)) {
347 InputTypeB = InputTypeA;
348 ExtBType = ExtAType;
349 }
350 }
351 };
352
353 if (isa<VPWidenCastRecipe>(OpR)) {
354 InputTypeA = Ctx.Types.inferScalarType(OpR->getOperand(0));
355 ExtAType = GetExtendKind(OpR);
356 } else if (isa<VPReductionPHIRecipe>(OpR)) {
357 auto RedPhiOp1R = getOperand(1)->getDefiningRecipe();
358 if (isa<VPWidenCastRecipe>(RedPhiOp1R)) {
359 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
360 ExtAType = GetExtendKind(RedPhiOp1R);
361 } else if (auto Widen = dyn_cast<VPWidenRecipe>(RedPhiOp1R))
362 HandleWiden(Widen);
363 } else if (auto Widen = dyn_cast<VPWidenRecipe>(OpR)) {
364 HandleWiden(Widen);
365 } else if (auto Reduction = dyn_cast<VPPartialReductionRecipe>(OpR)) {
366 return Reduction->computeCost(VF, Ctx);
367 }
368 auto *PhiType = Ctx.Types.inferScalarType(getOperand(1));
369 return Ctx.TTI.getPartialReductionCost(getOpcode(), InputTypeA, InputTypeB,
370 PhiType, VF, ExtAType, ExtBType,
371 Opcode, Ctx.CostKind);
372}
373
375 auto &Builder = State.Builder;
376
377 assert(getOpcode() == Instruction::Add &&
378 "Unhandled partial reduction opcode");
379
380 Value *BinOpVal = State.get(getOperand(1));
381 Value *PhiVal = State.get(getOperand(0));
382 assert(PhiVal && BinOpVal && "Phi and Mul must be set");
383
384 Type *RetTy = PhiVal->getType();
385
386 CallInst *V =
387 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
388 {PhiVal, BinOpVal}, nullptr, "partial.reduce");
389
390 State.set(this, V);
391}
392
393#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
395 VPSlotTracker &SlotTracker) const {
396 O << Indent << "PARTIAL-REDUCE ";
398 O << " = " << Instruction::getOpcodeName(getOpcode()) << " ";
400}
401#endif
402
404 assert(OpType == Other.OpType && "OpType must match");
405 switch (OpType) {
406 case OperationType::OverflowingBinOp:
407 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
408 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
409 break;
410 case OperationType::Trunc:
411 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
412 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
413 break;
414 case OperationType::DisjointOp:
415 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
416 break;
417 case OperationType::PossiblyExactOp:
418 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
419 break;
420 case OperationType::GEPOp:
421 GEPFlags &= Other.GEPFlags;
422 break;
423 case OperationType::FPMathOp:
424 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
425 FMFs.NoInfs &= Other.FMFs.NoInfs;
426 break;
427 case OperationType::NonNegOp:
428 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
429 break;
430 case OperationType::Cmp:
431 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
432 break;
433 case OperationType::Other:
434 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
435 break;
436 }
437}
438
440 assert(OpType == OperationType::FPMathOp &&
441 "recipe doesn't have fast math flags");
442 FastMathFlags Res;
443 Res.setAllowReassoc(FMFs.AllowReassoc);
444 Res.setNoNaNs(FMFs.NoNaNs);
445 Res.setNoInfs(FMFs.NoInfs);
446 Res.setNoSignedZeros(FMFs.NoSignedZeros);
447 Res.setAllowReciprocal(FMFs.AllowReciprocal);
448 Res.setAllowContract(FMFs.AllowContract);
449 Res.setApproxFunc(FMFs.ApproxFunc);
450 return Res;
451}
452
453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
455#endif
456
457template <unsigned PartOpIdx>
458VPValue *
460 if (U.getNumOperands() == PartOpIdx + 1)
461 return U.getOperand(PartOpIdx);
462 return nullptr;
463}
464
465template <unsigned PartOpIdx>
467 if (auto *UnrollPartOp = getUnrollPartOperand(U))
468 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
469 return 0;
470}
471
472namespace llvm {
473template class VPUnrollPartAccessor<1>;
474template class VPUnrollPartAccessor<2>;
475template class VPUnrollPartAccessor<3>;
476}
477
479 const VPIRFlags &Flags, DebugLoc DL,
480 const Twine &Name)
481 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
482 VPIRMetadata(), Opcode(Opcode), Name(Name.str()) {
484 "Set flags not supported for the provided opcode");
485 assert((getNumOperandsForOpcode(Opcode) == -1u ||
486 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
487 "number of operands does not match opcode");
488}
489
490#ifndef NDEBUG
491unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
492 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
493 return 1;
494
495 if (Instruction::isBinaryOp(Opcode))
496 return 2;
497
498 switch (Opcode) {
501 return 0;
502 case Instruction::Alloca:
503 case Instruction::ExtractValue:
504 case Instruction::Freeze:
505 case Instruction::Load:
517 return 1;
518 case Instruction::ICmp:
519 case Instruction::FCmp:
520 case Instruction::Store:
528 return 2;
529 case Instruction::Select:
533 return 3;
535 return 4;
536 case Instruction::Call:
537 case Instruction::GetElementPtr:
538 case Instruction::PHI:
539 case Instruction::Switch:
540 // Cannot determine the number of operands from the opcode.
541 return -1u;
542 }
543 llvm_unreachable("all cases should be handled above");
544}
545#endif
546
550
551bool VPInstruction::canGenerateScalarForFirstLane() const {
553 return true;
555 return true;
556 switch (Opcode) {
557 case Instruction::Freeze:
558 case Instruction::ICmp:
559 case Instruction::PHI:
560 case Instruction::Select:
569 return true;
570 default:
571 return false;
572 }
573}
574
575/// Create a conditional branch using \p Cond branching to the successors of \p
576/// VPBB. Note that the first successor is always forward (i.e. not created yet)
577/// while the second successor may already have been created (if it is a header
578/// block and VPBB is a latch).
580 VPTransformState &State) {
581 // Replace the temporary unreachable terminator with a new conditional
582 // branch, hooking it up to backward destination (header) for latch blocks
583 // now, and to forward destination(s) later when they are created.
584 // Second successor may be backwards - iff it is already in VPBB2IRBB.
585 VPBasicBlock *SecondVPSucc = cast<VPBasicBlock>(VPBB->getSuccessors()[1]);
586 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
587 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
588 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
589 // First successor is always forward, reset it to nullptr
590 CondBr->setSuccessor(0, nullptr);
592 return CondBr;
593}
594
595Value *VPInstruction::generate(VPTransformState &State) {
596 IRBuilderBase &Builder = State.Builder;
597
599 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
600 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
601 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
602 auto *Res =
603 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
604 if (auto *I = dyn_cast<Instruction>(Res))
605 applyFlags(*I);
606 return Res;
607 }
608
609 switch (getOpcode()) {
610 case VPInstruction::Not: {
611 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
612 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
613 return Builder.CreateNot(A, Name);
614 }
615 case Instruction::ExtractElement: {
616 assert(State.VF.isVector() && "Only extract elements from vectors");
617 if (getOperand(1)->isLiveIn()) {
618 unsigned IdxToExtract =
619 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
620 return State.get(getOperand(0), VPLane(IdxToExtract));
621 }
622 Value *Vec = State.get(getOperand(0));
623 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
624 return Builder.CreateExtractElement(Vec, Idx, Name);
625 }
626 case Instruction::Freeze: {
628 return Builder.CreateFreeze(Op, Name);
629 }
630 case Instruction::FCmp:
631 case Instruction::ICmp: {
632 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
633 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
634 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
635 return Builder.CreateCmp(getPredicate(), A, B, Name);
636 }
637 case Instruction::PHI: {
638 llvm_unreachable("should be handled by VPPhi::execute");
639 }
640 case Instruction::Select: {
641 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
642 Value *Cond = State.get(getOperand(0), OnlyFirstLaneUsed);
643 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
644 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
645 return Builder.CreateSelect(Cond, Op1, Op2, Name);
646 }
648 // Get first lane of vector induction variable.
649 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
650 // Get the original loop tripcount.
651 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
652
653 // If this part of the active lane mask is scalar, generate the CMP directly
654 // to avoid unnecessary extracts.
655 if (State.VF.isScalar())
656 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
657 Name);
658
659 auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
660 auto PredTy = VectorType::get(
661 Int1Ty, State.VF * cast<ConstantInt>(getOperand(2)->getLiveInIRValue())
662 ->getZExtValue());
663 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
664 {PredTy, ScalarTC->getType()},
665 {VIVElem0, ScalarTC}, nullptr, Name);
666 }
668 // Generate code to combine the previous and current values in vector v3.
669 //
670 // vector.ph:
671 // v_init = vector(..., ..., ..., a[-1])
672 // br vector.body
673 //
674 // vector.body
675 // i = phi [0, vector.ph], [i+4, vector.body]
676 // v1 = phi [v_init, vector.ph], [v2, vector.body]
677 // v2 = a[i, i+1, i+2, i+3];
678 // v3 = vector(v1(3), v2(0, 1, 2))
679
680 auto *V1 = State.get(getOperand(0));
681 if (!V1->getType()->isVectorTy())
682 return V1;
683 Value *V2 = State.get(getOperand(1));
684 return Builder.CreateVectorSplice(V1, V2, -1, Name);
685 }
687 unsigned UF = getParent()->getPlan()->getUF();
688 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
689 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
690 Value *Sub = Builder.CreateSub(ScalarTC, Step);
691 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
692 Value *Zero = ConstantInt::get(ScalarTC->getType(), 0);
693 return Builder.CreateSelect(Cmp, Sub, Zero);
694 }
696 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
697 // be outside of the main loop.
698 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
699 // Compute EVL
700 assert(AVL->getType()->isIntegerTy() &&
701 "Requested vector length should be an integer.");
702
703 assert(State.VF.isScalable() && "Expected scalable vector factor.");
704 Value *VFArg = State.Builder.getInt32(State.VF.getKnownMinValue());
705
706 Value *EVL = State.Builder.CreateIntrinsic(
707 State.Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
708 {AVL, VFArg, State.Builder.getTrue()});
709 return EVL;
710 }
712 unsigned Part = getUnrollPart(*this);
713 auto *IV = State.get(getOperand(0), VPLane(0));
714 assert(Part != 0 && "Must have a positive part");
715 // The canonical IV is incremented by the vectorization factor (num of
716 // SIMD elements) times the unroll part.
717 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
718 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
720 }
722 Value *Cond = State.get(getOperand(0), VPLane(0));
723 auto *Br = createCondBranch(Cond, getParent(), State);
724 applyMetadata(*Br);
725 return Br;
726 }
728 // First create the compare.
729 Value *IV = State.get(getOperand(0), /*IsScalar*/ true);
730 Value *TC = State.get(getOperand(1), /*IsScalar*/ true);
731 Value *Cond = Builder.CreateICmpEQ(IV, TC);
732 return createCondBranch(Cond, getParent(), State);
733 }
735 return Builder.CreateVectorSplat(
736 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
737 }
739 // For struct types, we need to build a new 'wide' struct type, where each
740 // element is widened, i.e., we create a struct of vectors.
741 auto *StructTy =
743 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
744 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
745 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
746 FieldIndex++) {
747 Value *ScalarValue =
748 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
749 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
750 VectorValue =
751 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
752 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
753 }
754 }
755 return Res;
756 }
758 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
759 auto NumOfElements = ElementCount::getFixed(getNumOperands());
760 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
761 for (const auto &[Idx, Op] : enumerate(operands()))
762 Res = State.Builder.CreateInsertElement(Res, State.get(Op, true),
763 State.Builder.getInt32(Idx));
764 return Res;
765 }
767 if (State.VF.isScalar())
768 return State.get(getOperand(0), true);
769 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
771 // If this start vector is scaled then it should produce a vector with fewer
772 // elements than the VF.
773 ElementCount VF = State.VF.divideCoefficientBy(
774 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
775 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
776 Constant *Zero = Builder.getInt32(0);
777 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
778 Zero);
779 }
781 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
782 // and will be removed by breaking up the recipe further.
783 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
784 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
785 Value *ReducedPartRdx = State.get(getOperand(2));
786 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
787 ReducedPartRdx = Builder.CreateBinOp(
790 State.get(getOperand(Idx)), ReducedPartRdx, "bin.rdx");
791 return createAnyOfReduction(Builder, ReducedPartRdx,
792 State.get(getOperand(1), VPLane(0)), OrigPhi);
793 }
795 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
796 // and will be removed by breaking up the recipe further.
797 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
798 // Get its reduction variable descriptor.
799 RecurKind RK = PhiR->getRecurrenceKind();
801 "Unexpected reduction kind");
802 assert(!PhiR->isInLoop() &&
803 "In-loop FindLastIV reduction is not supported yet");
804
805 // The recipe's operands are the reduction phi, the start value, the
806 // sentinel value, followed by one operand for each part of the reduction.
807 unsigned UF = getNumOperands() - 3;
808 Value *ReducedPartRdx = State.get(getOperand(3));
809 RecurKind MinMaxKind;
812 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
813 else
814 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
815 for (unsigned Part = 1; Part < UF; ++Part)
816 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
817 State.get(getOperand(3 + Part)));
818
819 Value *Start = State.get(getOperand(1), true);
821 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
822 Sentinel);
823 }
825 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
826 // and will be removed by breaking up the recipe further.
827 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
828 // Get its reduction variable descriptor.
829
830 RecurKind RK = PhiR->getRecurrenceKind();
832 "should be handled by ComputeFindIVResult");
833
834 // The recipe's operands are the reduction phi, followed by one operand for
835 // each part of the reduction.
836 unsigned UF = getNumOperands() - 1;
837 VectorParts RdxParts(UF);
838 for (unsigned Part = 0; Part < UF; ++Part)
839 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
840
841 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
842 if (hasFastMathFlags())
844
845 // Reduce all of the unrolled parts into a single vector.
846 Value *ReducedPartRdx = RdxParts[0];
847 if (PhiR->isOrdered()) {
848 ReducedPartRdx = RdxParts[UF - 1];
849 } else {
850 // Floating-point operations should have some FMF to enable the reduction.
851 for (unsigned Part = 1; Part < UF; ++Part) {
852 Value *RdxPart = RdxParts[Part];
854 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
855 else {
857 // For sub-recurrences, each UF's reduction variable is already
858 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
859 if (RK == RecurKind::Sub)
860 Opcode = Instruction::Add;
861 else
862 Opcode =
864 ReducedPartRdx =
865 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
866 }
867 }
868 }
869
870 // Create the reduction after the loop. Note that inloop reductions create
871 // the target reduction in the loop using a Reduction recipe.
872 if (State.VF.isVector() && !PhiR->isInLoop()) {
873 // TODO: Support in-order reductions based on the recurrence descriptor.
874 // All ops in the reduction inherit fast-math-flags from the recurrence
875 // descriptor.
876 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
877 }
878
879 return ReducedPartRdx;
880 }
883 unsigned Offset = getOpcode() == VPInstruction::ExtractLastElement ? 1 : 2;
884 Value *Res;
885 if (State.VF.isVector()) {
886 assert(Offset <= State.VF.getKnownMinValue() &&
887 "invalid offset to extract from");
888 // Extract lane VF - Offset from the operand.
889 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
890 } else {
891 assert(Offset <= 1 && "invalid offset to extract from");
892 Res = State.get(getOperand(0));
893 }
895 Res->setName(Name);
896 return Res;
897 }
899 Value *A = State.get(getOperand(0));
900 Value *B = State.get(getOperand(1));
901 return Builder.CreateLogicalAnd(A, B, Name);
902 }
905 "can only generate first lane for PtrAdd");
906 Value *Ptr = State.get(getOperand(0), VPLane(0));
907 Value *Addend = State.get(getOperand(1), VPLane(0));
908 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
909 }
911 Value *Ptr =
913 Value *Addend = State.get(getOperand(1));
914 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
915 }
917 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
918 for (VPValue *Op : drop_begin(operands()))
919 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
920 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
921 }
923 Value *LaneToExtract = State.get(getOperand(0), true);
924 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
925 Value *Res = nullptr;
926 Value *RuntimeVF = getRuntimeVF(State.Builder, IdxTy, State.VF);
927
928 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
929 Value *VectorStart =
930 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
931 Value *VectorIdx = Idx == 1
932 ? LaneToExtract
933 : Builder.CreateSub(LaneToExtract, VectorStart);
934 Value *Ext = State.VF.isScalar()
935 ? State.get(getOperand(Idx))
936 : Builder.CreateExtractElement(
937 State.get(getOperand(Idx)), VectorIdx);
938 if (Res) {
939 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
940 Res = Builder.CreateSelect(Cmp, Ext, Res);
941 } else {
942 Res = Ext;
943 }
944 }
945 return Res;
946 }
948 if (getNumOperands() == 1) {
949 Value *Mask = State.get(getOperand(0));
950 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
951 true, Name);
952 }
953 // If there are multiple operands, create a chain of selects to pick the
954 // first operand with an active lane and add the number of lanes of the
955 // preceding operands.
956 Value *RuntimeVF =
957 getRuntimeVF(State.Builder, State.Builder.getInt64Ty(), State.VF);
958 unsigned LastOpIdx = getNumOperands() - 1;
959 Value *Res = nullptr;
960 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
961 Value *TrailingZeros =
962 State.VF.isScalar()
963 ? Builder.CreateZExt(
964 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
965 Builder.getFalse()),
966 Builder.getInt64Ty())
967 : Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(),
968 State.get(getOperand(Idx)),
969 true, Name);
970 Value *Current = Builder.CreateAdd(
971 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
972 if (Res) {
973 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
974 Res = Builder.CreateSelect(Cmp, Current, Res);
975 } else {
976 Res = Current;
977 }
978 }
979
980 return Res;
981 }
983 return State.get(getOperand(0), true);
984 default:
985 llvm_unreachable("Unsupported opcode for instruction");
986 }
987}
988
990 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
991 Type *ScalarTy = Ctx.Types.inferScalarType(this);
992 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
993 switch (Opcode) {
994 case Instruction::FNeg:
995 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
996 case Instruction::UDiv:
997 case Instruction::SDiv:
998 case Instruction::SRem:
999 case Instruction::URem:
1000 case Instruction::Add:
1001 case Instruction::FAdd:
1002 case Instruction::Sub:
1003 case Instruction::FSub:
1004 case Instruction::Mul:
1005 case Instruction::FMul:
1006 case Instruction::FDiv:
1007 case Instruction::FRem:
1008 case Instruction::Shl:
1009 case Instruction::LShr:
1010 case Instruction::AShr:
1011 case Instruction::And:
1012 case Instruction::Or:
1013 case Instruction::Xor: {
1016
1017 if (VF.isVector()) {
1018 // Certain instructions can be cheaper to vectorize if they have a
1019 // constant second vector operand. One example of this are shifts on x86.
1020 VPValue *RHS = getOperand(1);
1021 RHSInfo = Ctx.getOperandInfo(RHS);
1022
1023 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
1026 }
1027
1030 if (CtxI)
1031 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
1032 return Ctx.TTI.getArithmeticInstrCost(
1033 Opcode, ResultTy, Ctx.CostKind,
1034 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1035 RHSInfo, Operands, CtxI, &Ctx.TLI);
1036 }
1037 case Instruction::Freeze:
1038 // This opcode is unknown. Assume that it is the same as 'mul'.
1039 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1040 Ctx.CostKind);
1041 case Instruction::ExtractValue:
1042 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1043 Ctx.CostKind);
1044 case Instruction::ICmp:
1045 case Instruction::FCmp: {
1046 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
1047 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
1049 return Ctx.TTI.getCmpSelInstrCost(
1050 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
1051 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1052 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1053 }
1054 }
1055 llvm_unreachable("called for unsupported opcode");
1056}
1057
1059 VPCostContext &Ctx) const {
1061 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
1062 // TODO: Compute cost for VPInstructions without underlying values once
1063 // the legacy cost model has been retired.
1064 return 0;
1065 }
1066
1068 "Should only generate a vector value or single scalar, not scalars "
1069 "for all lanes.");
1071 getOpcode(),
1073 }
1074
1075 switch (getOpcode()) {
1076 case Instruction::Select: {
1077 // TODO: It may be possible to improve this by analyzing where the
1078 // condition operand comes from.
1080 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1081 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1082 if (!vputils::onlyFirstLaneUsed(this)) {
1083 CondTy = toVectorTy(CondTy, VF);
1084 VecTy = toVectorTy(VecTy, VF);
1085 }
1086 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1087 Ctx.CostKind);
1088 }
1089 case Instruction::ExtractElement:
1091 if (VF.isScalar()) {
1092 // ExtractLane with VF=1 takes care of handling extracting across multiple
1093 // parts.
1094 return 0;
1095 }
1096
1097 // Add on the cost of extracting the element.
1098 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1099 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1100 Ctx.CostKind);
1101 }
1102 case VPInstruction::AnyOf: {
1103 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1104 return Ctx.TTI.getArithmeticReductionCost(
1105 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1106 }
1108 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1109 if (VF.isScalar())
1110 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1112 CmpInst::ICMP_EQ, Ctx.CostKind);
1113 // Calculate the cost of determining the lane index.
1114 auto *PredTy = toVectorTy(ScalarTy, VF);
1115 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1116 Type::getInt64Ty(Ctx.LLVMCtx),
1117 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1118 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1119 }
1121 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1123 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1124 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1125
1126 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1127 cast<VectorType>(VectorTy),
1128 cast<VectorType>(VectorTy), Mask,
1129 Ctx.CostKind, VF.getKnownMinValue() - 1);
1130 }
1132 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1133 unsigned Multiplier =
1134 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1135 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1136 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1137 {ArgTy, ArgTy});
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1139 }
1141 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1142 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1143 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1144 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1145 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1146 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1147 }
1149 // Add on the cost of extracting the element.
1150 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1151 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1152 VecTy, Ctx.CostKind, 0);
1153 }
1155 if (VF == ElementCount::getScalable(1))
1158 default:
1159 // TODO: Compute cost other VPInstructions once the legacy cost model has
1160 // been retired.
1162 "unexpected VPInstruction witht underlying value");
1163 return 0;
1164 }
1165}
1166
1178
1180 switch (getOpcode()) {
1181 case Instruction::PHI:
1185 return true;
1186 default:
1187 return isScalarCast();
1188 }
1189}
1190
1192 assert(!State.Lane && "VPInstruction executing an Lane");
1193 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1195 "Set flags not supported for the provided opcode");
1196 if (hasFastMathFlags())
1197 State.Builder.setFastMathFlags(getFastMathFlags());
1198 Value *GeneratedValue = generate(State);
1199 if (!hasResult())
1200 return;
1201 assert(GeneratedValue && "generate must produce a value");
1202 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1205 assert((((GeneratedValue->getType()->isVectorTy() ||
1206 GeneratedValue->getType()->isStructTy()) ==
1207 !GeneratesPerFirstLaneOnly) ||
1208 State.VF.isScalar()) &&
1209 "scalar value but not only first lane defined");
1210 State.set(this, GeneratedValue,
1211 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1212}
1213
1216 return false;
1217 switch (getOpcode()) {
1218 case Instruction::ExtractElement:
1219 case Instruction::Freeze:
1220 case Instruction::FCmp:
1221 case Instruction::ICmp:
1222 case Instruction::Select:
1223 case Instruction::PHI:
1236 case VPInstruction::Not:
1243 return false;
1244 default:
1245 return true;
1246 }
1247}
1248
1250 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1252 return vputils::onlyFirstLaneUsed(this);
1253
1254 switch (getOpcode()) {
1255 default:
1256 return false;
1257 case Instruction::ExtractElement:
1258 return Op == getOperand(1);
1259 case Instruction::PHI:
1260 return true;
1261 case Instruction::FCmp:
1262 case Instruction::ICmp:
1263 case Instruction::Select:
1264 case Instruction::Or:
1265 case Instruction::Freeze:
1266 case VPInstruction::Not:
1267 // TODO: Cover additional opcodes.
1268 return vputils::onlyFirstLaneUsed(this);
1277 return true;
1280 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1281 // operand, after replicating its operands only the first lane is used.
1282 // Before replicating, it will have only a single operand.
1283 return getNumOperands() > 1;
1285 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1287 return Op == getOperand(0);
1290 return Op == getOperand(1);
1292 return Op == getOperand(0);
1293 };
1294 llvm_unreachable("switch should return");
1295}
1296
1298 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1300 return vputils::onlyFirstPartUsed(this);
1301
1302 switch (getOpcode()) {
1303 default:
1304 return false;
1305 case Instruction::FCmp:
1306 case Instruction::ICmp:
1307 case Instruction::Select:
1308 return vputils::onlyFirstPartUsed(this);
1312 return true;
1313 };
1314 llvm_unreachable("switch should return");
1315}
1316
1317#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1319 VPSlotTracker SlotTracker(getParent()->getPlan());
1320 print(dbgs(), "", SlotTracker);
1321}
1322
1324 VPSlotTracker &SlotTracker) const {
1325 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1326
1327 if (hasResult()) {
1329 O << " = ";
1330 }
1331
1332 switch (getOpcode()) {
1333 case VPInstruction::Not:
1334 O << "not";
1335 break;
1337 O << "combined load";
1338 break;
1340 O << "combined store";
1341 break;
1343 O << "active lane mask";
1344 break;
1346 O << "EXPLICIT-VECTOR-LENGTH";
1347 break;
1349 O << "first-order splice";
1350 break;
1352 O << "branch-on-cond";
1353 break;
1355 O << "TC > VF ? TC - VF : 0";
1356 break;
1358 O << "VF * Part +";
1359 break;
1361 O << "branch-on-count";
1362 break;
1364 O << "broadcast";
1365 break;
1367 O << "buildstructvector";
1368 break;
1370 O << "buildvector";
1371 break;
1373 O << "extract-lane";
1374 break;
1376 O << "extract-last-element";
1377 break;
1379 O << "extract-penultimate-element";
1380 break;
1382 O << "compute-anyof-result";
1383 break;
1385 O << "compute-find-iv-result";
1386 break;
1388 O << "compute-reduction-result";
1389 break;
1391 O << "logical-and";
1392 break;
1394 O << "ptradd";
1395 break;
1397 O << "wide-ptradd";
1398 break;
1400 O << "any-of";
1401 break;
1403 O << "first-active-lane";
1404 break;
1406 O << "reduction-start-vector";
1407 break;
1409 O << "resume-for-epilogue";
1410 break;
1411 default:
1413 }
1414
1415 printFlags(O);
1417
1418 if (auto DL = getDebugLoc()) {
1419 O << ", !dbg ";
1420 DL.print(O);
1421 }
1422}
1423#endif
1424
1426 State.setDebugLocFrom(getDebugLoc());
1427 if (isScalarCast()) {
1428 Value *Op = State.get(getOperand(0), VPLane(0));
1429 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1430 Op, ResultTy);
1431 State.set(this, Cast, VPLane(0));
1432 return;
1433 }
1434 switch (getOpcode()) {
1436 Value *StepVector =
1437 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1438 State.set(this, StepVector);
1439 break;
1440 }
1441 case VPInstruction::VScale: {
1442 Value *VScale = State.Builder.CreateVScale(ResultTy);
1443 State.set(this, VScale, true);
1444 break;
1445 }
1446
1447 default:
1448 llvm_unreachable("opcode not implemented yet");
1449 }
1450}
1451
1452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1454 VPSlotTracker &SlotTracker) const {
1455 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1457 O << " = ";
1458
1459 switch (getOpcode()) {
1461 O << "wide-iv-step ";
1463 break;
1465 O << "step-vector " << *ResultTy;
1466 break;
1468 O << "vscale " << *ResultTy;
1469 break;
1470 default:
1471 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1474 O << " to " << *ResultTy;
1475 }
1476}
1477#endif
1478
1480 State.setDebugLocFrom(getDebugLoc());
1481 PHINode *NewPhi = State.Builder.CreatePHI(
1482 State.TypeAnalysis.inferScalarType(this), 2, getName());
1483 unsigned NumIncoming = getNumIncoming();
1484 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1485 // TODO: Fixup all incoming values of header phis once recipes defining them
1486 // are introduced.
1487 NumIncoming = 1;
1488 }
1489 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1490 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1491 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1492 NewPhi->addIncoming(IncV, PredBB);
1493 }
1494 State.set(this, NewPhi, VPLane(0));
1495}
1496
1497#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1498void VPPhi::print(raw_ostream &O, const Twine &Indent,
1499 VPSlotTracker &SlotTracker) const {
1500 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1502 O << " = phi ";
1504}
1505#endif
1506
1507VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1508 if (auto *Phi = dyn_cast<PHINode>(&I))
1509 return new VPIRPhi(*Phi);
1510 return new VPIRInstruction(I);
1511}
1512
1514 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1515 "PHINodes must be handled by VPIRPhi");
1516 // Advance the insert point after the wrapped IR instruction. This allows
1517 // interleaving VPIRInstructions and other recipes.
1518 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1519}
1520
1522 VPCostContext &Ctx) const {
1523 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1524 // hence it does not contribute to the cost-modeling for the VPlan.
1525 return 0;
1526}
1527
1530 "can only update exiting operands to phi nodes");
1531 assert(getNumOperands() > 0 && "must have at least one operand");
1532 VPValue *Exiting = getOperand(0);
1533 if (Exiting->isLiveIn())
1534 return;
1535
1536 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastElement, {Exiting});
1537 setOperand(0, Exiting);
1538}
1539
1540#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1542 VPSlotTracker &SlotTracker) const {
1543 O << Indent << "IR " << I;
1544}
1545#endif
1546
1548 PHINode *Phi = &getIRPhi();
1549 for (const auto &[Idx, Op] : enumerate(operands())) {
1550 VPValue *ExitValue = Op;
1551 auto Lane = vputils::isSingleScalar(ExitValue)
1553 : VPLane::getLastLaneForVF(State.VF);
1554 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1555 auto *PredVPBB = Pred->getExitingBasicBlock();
1556 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1557 // Set insertion point in PredBB in case an extract needs to be generated.
1558 // TODO: Model extracts explicitly.
1559 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1560 Value *V = State.get(ExitValue, VPLane(Lane));
1561 // If there is no existing block for PredBB in the phi, add a new incoming
1562 // value. Otherwise update the existing incoming value for PredBB.
1563 if (Phi->getBasicBlockIndex(PredBB) == -1)
1564 Phi->addIncoming(V, PredBB);
1565 else
1566 Phi->setIncomingValueForBlock(PredBB, V);
1567 }
1568
1569 // Advance the insert point after the wrapped IR instruction. This allows
1570 // interleaving VPIRInstructions and other recipes.
1571 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1572}
1573
1575 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1576 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1577 "Number of phi operands must match number of predecessors");
1578 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1579 R->removeOperand(Position);
1580}
1581
1582#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1584 VPSlotTracker &SlotTracker) const {
1585 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1586 [this, &O, &SlotTracker](auto Op) {
1587 O << "[ ";
1588 Op.value()->printAsOperand(O, SlotTracker);
1589 O << ", ";
1590 getIncomingBlock(Op.index())->printAsOperand(O);
1591 O << " ]";
1592 });
1593}
1594#endif
1595
1596#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1597void VPIRPhi::print(raw_ostream &O, const Twine &Indent,
1598 VPSlotTracker &SlotTracker) const {
1600
1601 if (getNumOperands() != 0) {
1602 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1604 [&O, &SlotTracker](auto Op) {
1605 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1606 O << " from ";
1607 std::get<1>(Op)->printAsOperand(O);
1608 });
1609 O << ")";
1610 }
1611}
1612#endif
1613
1615 : VPIRMetadata(I) {
1616 if (!LVer || !isa<LoadInst, StoreInst>(&I))
1617 return;
1618 const auto &[AliasScopeMD, NoAliasMD] = LVer->getNoAliasMetadataFor(&I);
1619 if (AliasScopeMD)
1620 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1621 if (NoAliasMD)
1622 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1623}
1624
1626 for (const auto &[Kind, Node] : Metadata)
1627 I.setMetadata(Kind, Node);
1628}
1629
1631 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1632 for (const auto &[KindA, MDA] : Metadata) {
1633 for (const auto &[KindB, MDB] : Other.Metadata) {
1634 if (KindA == KindB && MDA == MDB) {
1635 MetadataIntersection.emplace_back(KindA, MDA);
1636 break;
1637 }
1638 }
1639 }
1640 Metadata = std::move(MetadataIntersection);
1641}
1642
1644 assert(State.VF.isVector() && "not widening");
1645 assert(Variant != nullptr && "Can't create vector function.");
1646
1647 FunctionType *VFTy = Variant->getFunctionType();
1648 // Add return type if intrinsic is overloaded on it.
1650 for (const auto &I : enumerate(args())) {
1651 Value *Arg;
1652 // Some vectorized function variants may also take a scalar argument,
1653 // e.g. linear parameters for pointers. This needs to be the scalar value
1654 // from the start of the respective part when interleaving.
1655 if (!VFTy->getParamType(I.index())->isVectorTy())
1656 Arg = State.get(I.value(), VPLane(0));
1657 else
1658 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1659 Args.push_back(Arg);
1660 }
1661
1664 if (CI)
1665 CI->getOperandBundlesAsDefs(OpBundles);
1666
1667 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1668 applyFlags(*V);
1669 applyMetadata(*V);
1670 V->setCallingConv(Variant->getCallingConv());
1671
1672 if (!V->getType()->isVoidTy())
1673 State.set(this, V);
1674}
1675
1677 VPCostContext &Ctx) const {
1678 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1679 Variant->getFunctionType()->params(),
1680 Ctx.CostKind);
1681}
1682
1683#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1685 VPSlotTracker &SlotTracker) const {
1686 O << Indent << "WIDEN-CALL ";
1687
1688 Function *CalledFn = getCalledScalarFunction();
1689 if (CalledFn->getReturnType()->isVoidTy())
1690 O << "void ";
1691 else {
1693 O << " = ";
1694 }
1695
1696 O << "call";
1697 printFlags(O);
1698 O << " @" << CalledFn->getName() << "(";
1699 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1700 Op->printAsOperand(O, SlotTracker);
1701 });
1702 O << ")";
1703
1704 O << " (using library function";
1705 if (Variant->hasName())
1706 O << ": " << Variant->getName();
1707 O << ")";
1708}
1709#endif
1710
1712 assert(State.VF.isVector() && "not widening");
1713
1714 SmallVector<Type *, 2> TysForDecl;
1715 // Add return type if intrinsic is overloaded on it.
1716 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1717 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1719 for (const auto &I : enumerate(operands())) {
1720 // Some intrinsics have a scalar argument - don't replace it with a
1721 // vector.
1722 Value *Arg;
1723 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1724 State.TTI))
1725 Arg = State.get(I.value(), VPLane(0));
1726 else
1727 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1728 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1729 State.TTI))
1730 TysForDecl.push_back(Arg->getType());
1731 Args.push_back(Arg);
1732 }
1733
1734 // Use vector version of the intrinsic.
1735 Module *M = State.Builder.GetInsertBlock()->getModule();
1736 Function *VectorF =
1737 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1738 assert(VectorF &&
1739 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1740
1743 if (CI)
1744 CI->getOperandBundlesAsDefs(OpBundles);
1745
1746 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1747
1748 applyFlags(*V);
1749 applyMetadata(*V);
1750
1751 if (!V->getType()->isVoidTy())
1752 State.set(this, V);
1753}
1754
1755/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1758 const VPRecipeWithIRFlags &R,
1759 ElementCount VF,
1760 VPCostContext &Ctx) {
1761 // Some backends analyze intrinsic arguments to determine cost. Use the
1762 // underlying value for the operand if it has one. Otherwise try to use the
1763 // operand of the underlying call instruction, if there is one. Otherwise
1764 // clear Arguments.
1765 // TODO: Rework TTI interface to be independent of concrete IR values.
1767 for (const auto &[Idx, Op] : enumerate(Operands)) {
1768 auto *V = Op->getUnderlyingValue();
1769 if (!V) {
1770 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1771 Arguments.push_back(UI->getArgOperand(Idx));
1772 continue;
1773 }
1774 Arguments.clear();
1775 break;
1776 }
1777 Arguments.push_back(V);
1778 }
1779
1780 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1781 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1782 SmallVector<Type *> ParamTys;
1783 for (const VPValue *Op : Operands) {
1784 ParamTys.push_back(VF.isVector()
1785 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1786 : Ctx.Types.inferScalarType(Op));
1787 }
1788
1789 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1790 FastMathFlags FMF =
1791 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1792 IntrinsicCostAttributes CostAttrs(
1793 ID, RetTy, Arguments, ParamTys, FMF,
1794 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1795 InstructionCost::getInvalid(), &Ctx.TLI);
1796 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1797}
1798
1800 VPCostContext &Ctx) const {
1802 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1803}
1804
1806 return Intrinsic::getBaseName(VectorIntrinsicID);
1807}
1808
1810 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1811 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1812 auto [Idx, V] = X;
1814 Idx, nullptr);
1815 });
1816}
1817
1818#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1820 VPSlotTracker &SlotTracker) const {
1821 O << Indent << "WIDEN-INTRINSIC ";
1822 if (ResultTy->isVoidTy()) {
1823 O << "void ";
1824 } else {
1826 O << " = ";
1827 }
1828
1829 O << "call";
1830 printFlags(O);
1831 O << getIntrinsicName() << "(";
1832
1834 Op->printAsOperand(O, SlotTracker);
1835 });
1836 O << ")";
1837}
1838#endif
1839
1841 IRBuilderBase &Builder = State.Builder;
1842
1843 Value *Address = State.get(getOperand(0));
1844 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1845 VectorType *VTy = cast<VectorType>(Address->getType());
1846
1847 // The histogram intrinsic requires a mask even if the recipe doesn't;
1848 // if the mask operand was omitted then all lanes should be executed and
1849 // we just need to synthesize an all-true mask.
1850 Value *Mask = nullptr;
1851 if (VPValue *VPMask = getMask())
1852 Mask = State.get(VPMask);
1853 else
1854 Mask =
1855 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1856
1857 // If this is a subtract, we want to invert the increment amount. We may
1858 // add a separate intrinsic in future, but for now we'll try this.
1859 if (Opcode == Instruction::Sub)
1860 IncAmt = Builder.CreateNeg(IncAmt);
1861 else
1862 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1863
1864 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1865 {VTy, IncAmt->getType()},
1866 {Address, IncAmt, Mask});
1867}
1868
1870 VPCostContext &Ctx) const {
1871 // FIXME: Take the gather and scatter into account as well. For now we're
1872 // generating the same cost as the fallback path, but we'll likely
1873 // need to create a new TTI method for determining the cost, including
1874 // whether we can use base + vec-of-smaller-indices or just
1875 // vec-of-pointers.
1876 assert(VF.isVector() && "Invalid VF for histogram cost");
1877 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1878 VPValue *IncAmt = getOperand(1);
1879 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1880 VectorType *VTy = VectorType::get(IncTy, VF);
1881
1882 // Assume that a non-constant update value (or a constant != 1) requires
1883 // a multiply, and add that into the cost.
1884 InstructionCost MulCost =
1885 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1886 if (IncAmt->isLiveIn()) {
1888
1889 if (CI && CI->getZExtValue() == 1)
1890 MulCost = TTI::TCC_Free;
1891 }
1892
1893 // Find the cost of the histogram operation itself.
1894 Type *PtrTy = VectorType::get(AddressTy, VF);
1895 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1896 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1897 Type::getVoidTy(Ctx.LLVMCtx),
1898 {PtrTy, IncTy, MaskTy});
1899
1900 // Add the costs together with the add/sub operation.
1901 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1902 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1903}
1904
1905#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1907 VPSlotTracker &SlotTracker) const {
1908 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1910
1911 if (Opcode == Instruction::Sub)
1912 O << ", dec: ";
1913 else {
1914 assert(Opcode == Instruction::Add);
1915 O << ", inc: ";
1916 }
1918
1919 if (VPValue *Mask = getMask()) {
1920 O << ", mask: ";
1921 Mask->printAsOperand(O, SlotTracker);
1922 }
1923}
1924
1926 VPSlotTracker &SlotTracker) const {
1927 O << Indent << "WIDEN-SELECT ";
1929 O << " = select ";
1930 printFlags(O);
1932 O << ", ";
1934 O << ", ";
1936 O << (isInvariantCond() ? " (condition is loop invariant)" : "");
1937}
1938#endif
1939
1941 // The condition can be loop invariant but still defined inside the
1942 // loop. This means that we can't just use the original 'cond' value.
1943 // We have to take the 'vectorized' value and pick the first lane.
1944 // Instcombine will make this a no-op.
1945 Value *Cond = State.get(getCond(), isInvariantCond());
1946
1947 Value *Op0 = State.get(getOperand(1));
1948 Value *Op1 = State.get(getOperand(2));
1949 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1950 State.set(this, Sel);
1951 if (auto *I = dyn_cast<Instruction>(Sel)) {
1953 applyFlags(*I);
1954 applyMetadata(*I);
1955 }
1956}
1957
1959 VPCostContext &Ctx) const {
1961 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1962 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1963 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1964
1965 VPValue *Op0, *Op1;
1966 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1967 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1968 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1969 // select x, y, false --> x & y
1970 // select x, true, y --> x | y
1971 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1972 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1973
1975 if (all_of(operands(),
1976 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1977 Operands.append(SI->op_begin(), SI->op_end());
1978 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1979 return Ctx.TTI.getArithmeticInstrCost(
1980 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1981 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1982 }
1983
1984 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1985 if (!ScalarCond)
1986 CondTy = VectorType::get(CondTy, VF);
1987
1989 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1990 Pred = Cmp->getPredicate();
1991 return Ctx.TTI.getCmpSelInstrCost(
1992 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1993 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1994}
1995
1996VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1997 AllowReassoc = FMF.allowReassoc();
1998 NoNaNs = FMF.noNaNs();
1999 NoInfs = FMF.noInfs();
2000 NoSignedZeros = FMF.noSignedZeros();
2001 AllowReciprocal = FMF.allowReciprocal();
2002 AllowContract = FMF.allowContract();
2003 ApproxFunc = FMF.approxFunc();
2004}
2005
2006#if !defined(NDEBUG)
2007bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
2008 switch (OpType) {
2009 case OperationType::OverflowingBinOp:
2010 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2011 Opcode == Instruction::Mul ||
2012 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2013 case OperationType::Trunc:
2014 return Opcode == Instruction::Trunc;
2015 case OperationType::DisjointOp:
2016 return Opcode == Instruction::Or;
2017 case OperationType::PossiblyExactOp:
2018 return Opcode == Instruction::AShr;
2019 case OperationType::GEPOp:
2020 return Opcode == Instruction::GetElementPtr ||
2021 Opcode == VPInstruction::PtrAdd ||
2022 Opcode == VPInstruction::WidePtrAdd;
2023 case OperationType::FPMathOp:
2024 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2025 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2026 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2027 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2028 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2029 Opcode == VPInstruction::WideIVStep ||
2032 case OperationType::NonNegOp:
2033 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2034 case OperationType::Cmp:
2035 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2036 case OperationType::Other:
2037 return true;
2038 }
2039 llvm_unreachable("Unknown OperationType enum");
2040}
2041#endif
2042
2043#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2045 switch (OpType) {
2046 case OperationType::Cmp:
2048 break;
2049 case OperationType::DisjointOp:
2050 if (DisjointFlags.IsDisjoint)
2051 O << " disjoint";
2052 break;
2053 case OperationType::PossiblyExactOp:
2054 if (ExactFlags.IsExact)
2055 O << " exact";
2056 break;
2057 case OperationType::OverflowingBinOp:
2058 if (WrapFlags.HasNUW)
2059 O << " nuw";
2060 if (WrapFlags.HasNSW)
2061 O << " nsw";
2062 break;
2063 case OperationType::Trunc:
2064 if (TruncFlags.HasNUW)
2065 O << " nuw";
2066 if (TruncFlags.HasNSW)
2067 O << " nsw";
2068 break;
2069 case OperationType::FPMathOp:
2071 break;
2072 case OperationType::GEPOp:
2073 if (GEPFlags.isInBounds())
2074 O << " inbounds";
2075 else if (GEPFlags.hasNoUnsignedSignedWrap())
2076 O << " nusw";
2077 if (GEPFlags.hasNoUnsignedWrap())
2078 O << " nuw";
2079 break;
2080 case OperationType::NonNegOp:
2081 if (NonNegFlags.NonNeg)
2082 O << " nneg";
2083 break;
2084 case OperationType::Other:
2085 break;
2086 }
2087 O << " ";
2088}
2089#endif
2090
2092 auto &Builder = State.Builder;
2093 switch (Opcode) {
2094 case Instruction::Call:
2095 case Instruction::Br:
2096 case Instruction::PHI:
2097 case Instruction::GetElementPtr:
2098 case Instruction::Select:
2099 llvm_unreachable("This instruction is handled by a different recipe.");
2100 case Instruction::UDiv:
2101 case Instruction::SDiv:
2102 case Instruction::SRem:
2103 case Instruction::URem:
2104 case Instruction::Add:
2105 case Instruction::FAdd:
2106 case Instruction::Sub:
2107 case Instruction::FSub:
2108 case Instruction::FNeg:
2109 case Instruction::Mul:
2110 case Instruction::FMul:
2111 case Instruction::FDiv:
2112 case Instruction::FRem:
2113 case Instruction::Shl:
2114 case Instruction::LShr:
2115 case Instruction::AShr:
2116 case Instruction::And:
2117 case Instruction::Or:
2118 case Instruction::Xor: {
2119 // Just widen unops and binops.
2121 for (VPValue *VPOp : operands())
2122 Ops.push_back(State.get(VPOp));
2123
2124 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2125
2126 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2127 applyFlags(*VecOp);
2128 applyMetadata(*VecOp);
2129 }
2130
2131 // Use this vector value for all users of the original instruction.
2132 State.set(this, V);
2133 break;
2134 }
2135 case Instruction::ExtractValue: {
2136 assert(getNumOperands() == 2 && "expected single level extractvalue");
2137 Value *Op = State.get(getOperand(0));
2139 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2140 State.set(this, Extract);
2141 break;
2142 }
2143 case Instruction::Freeze: {
2144 Value *Op = State.get(getOperand(0));
2145 Value *Freeze = Builder.CreateFreeze(Op);
2146 State.set(this, Freeze);
2147 break;
2148 }
2149 case Instruction::ICmp:
2150 case Instruction::FCmp: {
2151 // Widen compares. Generate vector compares.
2152 bool FCmp = Opcode == Instruction::FCmp;
2153 Value *A = State.get(getOperand(0));
2154 Value *B = State.get(getOperand(1));
2155 Value *C = nullptr;
2156 if (FCmp) {
2157 // Propagate fast math flags.
2158 C = Builder.CreateFCmpFMF(
2159 getPredicate(), A, B,
2161 } else {
2162 C = Builder.CreateICmp(getPredicate(), A, B);
2163 }
2164 if (auto *I = dyn_cast<Instruction>(C))
2165 applyMetadata(*I);
2166 State.set(this, C);
2167 break;
2168 }
2169 default:
2170 // This instruction is not vectorized by simple widening.
2171 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2172 << Instruction::getOpcodeName(Opcode));
2173 llvm_unreachable("Unhandled instruction!");
2174 } // end of switch.
2175
2176#if !defined(NDEBUG)
2177 // Verify that VPlan type inference results agree with the type of the
2178 // generated values.
2179 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2180 State.get(this)->getType() &&
2181 "inferred type and type from generated instructions do not match");
2182#endif
2183}
2184
2186 VPCostContext &Ctx) const {
2187 switch (Opcode) {
2188 case Instruction::UDiv:
2189 case Instruction::SDiv:
2190 case Instruction::SRem:
2191 case Instruction::URem:
2192 // If the div/rem operation isn't safe to speculate and requires
2193 // predication, then the only way we can even create a vplan is to insert
2194 // a select on the second input operand to ensure we use the value of 1
2195 // for the inactive lanes. The select will be costed separately.
2196 case Instruction::FNeg:
2197 case Instruction::Add:
2198 case Instruction::FAdd:
2199 case Instruction::Sub:
2200 case Instruction::FSub:
2201 case Instruction::Mul:
2202 case Instruction::FMul:
2203 case Instruction::FDiv:
2204 case Instruction::FRem:
2205 case Instruction::Shl:
2206 case Instruction::LShr:
2207 case Instruction::AShr:
2208 case Instruction::And:
2209 case Instruction::Or:
2210 case Instruction::Xor:
2211 case Instruction::Freeze:
2212 case Instruction::ExtractValue:
2213 case Instruction::ICmp:
2214 case Instruction::FCmp:
2215 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2216 default:
2217 llvm_unreachable("Unsupported opcode for instruction");
2218 }
2219}
2220
2221#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2223 VPSlotTracker &SlotTracker) const {
2224 O << Indent << "WIDEN ";
2226 O << " = " << Instruction::getOpcodeName(Opcode);
2227 printFlags(O);
2229}
2230#endif
2231
2233 auto &Builder = State.Builder;
2234 /// Vectorize casts.
2235 assert(State.VF.isVector() && "Not vectorizing?");
2236 Type *DestTy = VectorType::get(getResultType(), State.VF);
2237 VPValue *Op = getOperand(0);
2238 Value *A = State.get(Op);
2239 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2240 State.set(this, Cast);
2241 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2242 applyFlags(*CastOp);
2243 applyMetadata(*CastOp);
2244 }
2245}
2246
2248 VPCostContext &Ctx) const {
2249 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2250 // the legacy cost model, including truncates/extends when evaluating a
2251 // reduction in a smaller type.
2252 if (!getUnderlyingValue())
2253 return 0;
2254 // Computes the CastContextHint from a recipes that may access memory.
2255 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2256 if (VF.isScalar())
2258 if (isa<VPInterleaveBase>(R))
2260 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2261 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2263 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2264 if (WidenMemoryRecipe == nullptr)
2266 if (!WidenMemoryRecipe->isConsecutive())
2268 if (WidenMemoryRecipe->isReverse())
2270 if (WidenMemoryRecipe->isMasked())
2273 };
2274
2275 VPValue *Operand = getOperand(0);
2277 // For Trunc/FPTrunc, get the context from the only user.
2278 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2280 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2281 CCH = ComputeCCH(StoreRecipe);
2282 }
2283 // For Z/Sext, get the context from the operand.
2284 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2285 Opcode == Instruction::FPExt) {
2286 if (Operand->isLiveIn())
2288 else if (Operand->getDefiningRecipe())
2289 CCH = ComputeCCH(Operand->getDefiningRecipe());
2290 }
2291
2292 auto *SrcTy =
2293 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2294 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2295 // Arm TTI will use the underlying instruction to determine the cost.
2296 return Ctx.TTI.getCastInstrCost(
2297 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2299}
2300
2301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2303 VPSlotTracker &SlotTracker) const {
2304 O << Indent << "WIDEN-CAST ";
2306 O << " = " << Instruction::getOpcodeName(Opcode);
2307 printFlags(O);
2309 O << " to " << *getResultType();
2310}
2311#endif
2312
2314 VPCostContext &Ctx) const {
2315 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2316}
2317
2318/// A helper function that returns an integer or floating-point constant with
2319/// value C.
2321 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2322 : ConstantFP::get(Ty, C);
2323}
2324
2325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2327 VPSlotTracker &SlotTracker) const {
2328 O << Indent;
2330 O << " = WIDEN-INDUCTION ";
2332
2333 if (auto *TI = getTruncInst())
2334 O << " (truncated to " << *TI->getType() << ")";
2335}
2336#endif
2337
2339 // The step may be defined by a recipe in the preheader (e.g. if it requires
2340 // SCEV expansion), but for the canonical induction the step is required to be
2341 // 1, which is represented as live-in.
2343 return false;
2346 auto *CanIV = cast<VPCanonicalIVPHIRecipe>(&*getParent()->begin());
2347 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2348 getScalarType() == CanIV->getScalarType();
2349}
2350
2351#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2353 VPSlotTracker &SlotTracker) const {
2354 O << Indent;
2356 O << " = DERIVED-IV ";
2357 getStartValue()->printAsOperand(O, SlotTracker);
2358 O << " + ";
2359 getOperand(1)->printAsOperand(O, SlotTracker);
2360 O << " * ";
2361 getStepValue()->printAsOperand(O, SlotTracker);
2362}
2363#endif
2364
2366 // Fast-math-flags propagate from the original induction instruction.
2367 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2368 if (hasFastMathFlags())
2369 State.Builder.setFastMathFlags(getFastMathFlags());
2370
2371 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2372 /// variable on which to base the steps, \p Step is the size of the step.
2373
2374 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2375 Value *Step = State.get(getStepValue(), VPLane(0));
2376 IRBuilderBase &Builder = State.Builder;
2377
2378 // Ensure step has the same type as that of scalar IV.
2379 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2380 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2381
2382 // We build scalar steps for both integer and floating-point induction
2383 // variables. Here, we determine the kind of arithmetic we will perform.
2386 if (BaseIVTy->isIntegerTy()) {
2387 AddOp = Instruction::Add;
2388 MulOp = Instruction::Mul;
2389 } else {
2390 AddOp = InductionOpcode;
2391 MulOp = Instruction::FMul;
2392 }
2393
2394 // Determine the number of scalars we need to generate for each unroll
2395 // iteration.
2396 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2397 // Compute the scalar steps and save the results in State.
2398 Type *IntStepTy =
2399 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2400 Type *VecIVTy = nullptr;
2401 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2402 if (!FirstLaneOnly && State.VF.isScalable()) {
2403 VecIVTy = VectorType::get(BaseIVTy, State.VF);
2404 UnitStepVec =
2405 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2406 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2407 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2408 }
2409
2410 unsigned StartLane = 0;
2411 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2412 if (State.Lane) {
2413 StartLane = State.Lane->getKnownLane();
2414 EndLane = StartLane + 1;
2415 }
2416 Value *StartIdx0;
2417 if (getUnrollPart(*this) == 0)
2418 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2419 else {
2420 StartIdx0 = State.get(getOperand(2), true);
2421 if (getUnrollPart(*this) != 1) {
2422 StartIdx0 =
2423 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2424 getUnrollPart(*this)));
2425 }
2426 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2427 }
2428
2429 if (!FirstLaneOnly && State.VF.isScalable()) {
2430 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2431 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2432 if (BaseIVTy->isFloatingPointTy())
2433 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2434 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2435 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2436 State.set(this, Add);
2437 // It's useful to record the lane values too for the known minimum number
2438 // of elements so we do those below. This improves the code quality when
2439 // trying to extract the first element, for example.
2440 }
2441
2442 if (BaseIVTy->isFloatingPointTy())
2443 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2444
2445 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2446 Value *StartIdx = Builder.CreateBinOp(
2447 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2448 // The step returned by `createStepForVF` is a runtime-evaluated value
2449 // when VF is scalable. Otherwise, it should be folded into a Constant.
2450 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2451 "Expected StartIdx to be folded to a constant when VF is not "
2452 "scalable");
2453 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2454 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2455 State.set(this, Add, VPLane(Lane));
2456 }
2457}
2458
2459#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2461 VPSlotTracker &SlotTracker) const {
2462 O << Indent;
2464 O << " = SCALAR-STEPS ";
2466}
2467#endif
2468
2470 assert(State.VF.isVector() && "not widening");
2471 // Construct a vector GEP by widening the operands of the scalar GEP as
2472 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2473 // results in a vector of pointers when at least one operand of the GEP
2474 // is vector-typed. Thus, to keep the representation compact, we only use
2475 // vector-typed operands for loop-varying values.
2476
2477 if (areAllOperandsInvariant()) {
2478 // If we are vectorizing, but the GEP has only loop-invariant operands,
2479 // the GEP we build (by only using vector-typed operands for
2480 // loop-varying values) would be a scalar pointer. Thus, to ensure we
2481 // produce a vector of pointers, we need to either arbitrarily pick an
2482 // operand to broadcast, or broadcast a clone of the original GEP.
2483 // Here, we broadcast a clone of the original.
2484 //
2485 // TODO: If at some point we decide to scalarize instructions having
2486 // loop-invariant operands, this special case will no longer be
2487 // required. We would add the scalarization decision to
2488 // collectLoopScalars() and teach getVectorValue() to broadcast
2489 // the lane-zero scalar value.
2491 for (unsigned I = 0, E = getNumOperands(); I != E; I++)
2492 Ops.push_back(State.get(getOperand(I), VPLane(0)));
2493
2494 auto *NewGEP =
2495 State.Builder.CreateGEP(getSourceElementType(), Ops[0], drop_begin(Ops),
2496 "", getGEPNoWrapFlags());
2497 Value *Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2498 State.set(this, Splat);
2499 } else {
2500 // If the GEP has at least one loop-varying operand, we are sure to
2501 // produce a vector of pointers unless VF is scalar.
2502 // The pointer operand of the new GEP. If it's loop-invariant, we
2503 // won't broadcast it.
2504 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2505
2506 // Collect all the indices for the new GEP. If any index is
2507 // loop-invariant, we won't broadcast it.
2509 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2510 VPValue *Operand = getOperand(I);
2511 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2512 }
2513
2514 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2515 // but it should be a vector, otherwise.
2516 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2517 "", getGEPNoWrapFlags());
2518 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2519 "NewGEP is not a pointer vector");
2520 State.set(this, NewGEP);
2521 }
2522}
2523
2524#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2526 VPSlotTracker &SlotTracker) const {
2527 O << Indent << "WIDEN-GEP ";
2528 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2529 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2530 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2531
2532 O << " ";
2534 O << " = getelementptr";
2535 printFlags(O);
2537}
2538#endif
2539
2540static Type *getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride,
2541 unsigned CurrentPart, IRBuilderBase &Builder) {
2542 // Use i32 for the gep index type when the value is constant,
2543 // or query DataLayout for a more suitable index type otherwise.
2544 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2545 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2546 ? DL.getIndexType(Builder.getPtrTy(0))
2547 : Builder.getInt32Ty();
2548}
2549
2551 auto &Builder = State.Builder;
2552 unsigned CurrentPart = getUnrollPart(*this);
2553 bool IsUnitStride = Stride == 1 || Stride == -1;
2554 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ true,
2555 IsUnitStride, CurrentPart, Builder);
2556
2557 // The wide store needs to start at the last vector element.
2558 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2559 if (IndexTy != RunTimeVF->getType())
2560 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2561 // NumElt = Stride * CurrentPart * RunTimeVF
2562 Value *NumElt = Builder.CreateMul(
2563 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2564 // LastLane = Stride * (RunTimeVF - 1)
2565 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2566 if (Stride != 1)
2567 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2568 Value *Ptr = State.get(getOperand(0), VPLane(0));
2569 Value *ResultPtr =
2570 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2571 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2573
2574 State.set(this, ResultPtr, /*IsScalar*/ true);
2575}
2576
2577#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2579 VPSlotTracker &SlotTracker) const {
2580 O << Indent;
2582 O << " = vector-end-pointer";
2583 printFlags(O);
2585}
2586#endif
2587
2589 auto &Builder = State.Builder;
2590 unsigned CurrentPart = getUnrollPart(*this);
2591 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ false,
2592 /*IsUnitStride*/ true, CurrentPart, Builder);
2593 Value *Ptr = State.get(getOperand(0), VPLane(0));
2594
2595 Value *Increment = createStepForVF(Builder, IndexTy, State.VF, CurrentPart);
2596 Value *ResultPtr = Builder.CreateGEP(getSourceElementType(), Ptr, Increment,
2597 "", getGEPNoWrapFlags());
2598
2599 State.set(this, ResultPtr, /*IsScalar*/ true);
2600}
2601
2602#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2604 VPSlotTracker &SlotTracker) const {
2605 O << Indent;
2607 O << " = vector-pointer ";
2608
2610}
2611#endif
2612
2614 VPCostContext &Ctx) const {
2615 // Handle cases where only the first lane is used the same way as the legacy
2616 // cost model.
2618 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2619
2620 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2621 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2622 return (getNumIncomingValues() - 1) *
2623 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2624 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2625}
2626
2627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2629 VPSlotTracker &SlotTracker) const {
2630 O << Indent << "BLEND ";
2632 O << " =";
2633 if (getNumIncomingValues() == 1) {
2634 // Not a User of any mask: not really blending, this is a
2635 // single-predecessor phi.
2636 O << " ";
2637 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2638 } else {
2639 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2640 O << " ";
2641 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2642 if (I == 0)
2643 continue;
2644 O << "/";
2645 getMask(I)->printAsOperand(O, SlotTracker);
2646 }
2647 }
2648}
2649#endif
2650
2652 assert(!State.Lane && "Reduction being replicated.");
2653 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2656 "In-loop AnyOf reductions aren't currently supported");
2657 // Propagate the fast-math flags carried by the underlying instruction.
2658 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2659 State.Builder.setFastMathFlags(getFastMathFlags());
2660 Value *NewVecOp = State.get(getVecOp());
2661 if (VPValue *Cond = getCondOp()) {
2662 Value *NewCond = State.get(Cond, State.VF.isScalar());
2663 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2664 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2665
2666 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2667 if (State.VF.isVector())
2668 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2669
2670 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2671 NewVecOp = Select;
2672 }
2673 Value *NewRed;
2674 Value *NextInChain;
2675 if (IsOrdered) {
2676 if (State.VF.isVector())
2677 NewRed =
2678 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2679 else
2680 NewRed = State.Builder.CreateBinOp(
2682 PrevInChain, NewVecOp);
2683 PrevInChain = NewRed;
2684 NextInChain = NewRed;
2685 } else {
2686 PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2687 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2689 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2690 else
2691 NextInChain = State.Builder.CreateBinOp(
2693 PrevInChain, NewRed);
2694 }
2695 State.set(this, NextInChain, /*IsScalar*/ true);
2696}
2697
2699 assert(!State.Lane && "Reduction being replicated.");
2700
2701 auto &Builder = State.Builder;
2702 // Propagate the fast-math flags carried by the underlying instruction.
2703 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2704 Builder.setFastMathFlags(getFastMathFlags());
2705
2707 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2708 Value *VecOp = State.get(getVecOp());
2709 Value *EVL = State.get(getEVL(), VPLane(0));
2710
2711 Value *Mask;
2712 if (VPValue *CondOp = getCondOp())
2713 Mask = State.get(CondOp);
2714 else
2715 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2716
2717 Value *NewRed;
2718 if (isOrdered()) {
2719 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2720 } else {
2721 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2723 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2724 else
2725 NewRed = Builder.CreateBinOp(
2727 Prev);
2728 }
2729 State.set(this, NewRed, /*IsScalar*/ true);
2730}
2731
2733 VPCostContext &Ctx) const {
2734 RecurKind RdxKind = getRecurrenceKind();
2735 Type *ElementTy = Ctx.Types.inferScalarType(this);
2736 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2737 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2739 std::optional<FastMathFlags> OptionalFMF =
2740 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2741
2742 // TODO: Support any-of reductions.
2743 assert(
2745 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2746 "Any-of reduction not implemented in VPlan-based cost model currently.");
2747
2748 // Note that TTI should model the cost of moving result to the scalar register
2749 // and the BinOp cost in the getMinMaxReductionCost().
2752 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2753 }
2754
2755 // Note that TTI should model the cost of moving result to the scalar register
2756 // and the BinOp cost in the getArithmeticReductionCost().
2757 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2758 Ctx.CostKind);
2759}
2760
2762 ExpressionTypes ExpressionType,
2763 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2764 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2765 ExpressionRecipes(ExpressionRecipes), ExpressionType(ExpressionType) {
2766 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2767 assert(
2768 none_of(ExpressionRecipes,
2769 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2770 "expression cannot contain recipes with side-effects");
2771
2772 // Maintain a copy of the expression recipes as a set of users.
2773 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2774 for (auto *R : ExpressionRecipes)
2775 ExpressionRecipesAsSetOfUsers.insert(R);
2776
2777 // Recipes in the expression, except the last one, must only be used by
2778 // (other) recipes inside the expression. If there are other users, external
2779 // to the expression, use a clone of the recipe for external users.
2780 for (VPSingleDefRecipe *R : ExpressionRecipes) {
2781 if (R != ExpressionRecipes.back() &&
2782 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2783 return !ExpressionRecipesAsSetOfUsers.contains(U);
2784 })) {
2785 // There are users outside of the expression. Clone the recipe and use the
2786 // clone those external users.
2787 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2788 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2789 VPUser &U, unsigned) {
2790 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2791 });
2792 CopyForExtUsers->insertBefore(R);
2793 }
2794 if (R->getParent())
2795 R->removeFromParent();
2796 }
2797
2798 // Internalize all external operands to the expression recipes. To do so,
2799 // create new temporary VPValues for all operands defined by a recipe outside
2800 // the expression. The original operands are added as operands of the
2801 // VPExpressionRecipe itself.
2802 for (auto *R : ExpressionRecipes) {
2803 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2804 auto *Def = Op->getDefiningRecipe();
2805 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2806 continue;
2807 addOperand(Op);
2808 LiveInPlaceholders.push_back(new VPValue());
2809 }
2810 }
2811
2812 // Replace each external operand with the first one created for it in
2813 // LiveInPlaceholders.
2814 for (auto *R : ExpressionRecipes)
2815 for (auto const &[LiveIn, Tmp] : zip(operands(), LiveInPlaceholders))
2816 R->replaceUsesOfWith(LiveIn, Tmp);
2817}
2818
2820 for (auto *R : ExpressionRecipes)
2821 // Since the list could contain duplicates, make sure the recipe hasn't
2822 // already been inserted.
2823 if (!R->getParent())
2824 R->insertBefore(this);
2825
2826 for (const auto &[Idx, Op] : enumerate(operands()))
2827 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2828
2829 replaceAllUsesWith(ExpressionRecipes.back());
2830 ExpressionRecipes.clear();
2831}
2832
2834 VPCostContext &Ctx) const {
2835 Type *RedTy = Ctx.Types.inferScalarType(this);
2836 auto *SrcVecTy = cast<VectorType>(
2837 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2838 assert(RedTy->isIntegerTy() &&
2839 "VPExpressionRecipe only supports integer types currently.");
2840 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2841 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2842 switch (ExpressionType) {
2843 case ExpressionTypes::ExtendedReduction: {
2844 return Ctx.TTI.getExtendedReductionCost(
2845 Opcode,
2846 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2847 Instruction::ZExt,
2848 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2849 }
2850 case ExpressionTypes::MulAccReduction:
2851 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2852 Ctx.CostKind);
2853
2854 case ExpressionTypes::ExtNegatedMulAccReduction:
2855 assert(Opcode == Instruction::Add && "Unexpected opcode");
2856 Opcode = Instruction::Sub;
2858 case ExpressionTypes::ExtMulAccReduction: {
2859 return Ctx.TTI.getMulAccReductionCost(
2860 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2861 Instruction::ZExt,
2862 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2863 }
2864 }
2865 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2866}
2867
2869 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2870 return R->mayReadFromMemory() || R->mayWriteToMemory();
2871 });
2872}
2873
2875 assert(
2876 none_of(ExpressionRecipes,
2877 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2878 "expression cannot contain recipes with side-effects");
2879 return false;
2880}
2881
2882#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2883
2885 VPSlotTracker &SlotTracker) const {
2886 O << Indent << "EXPRESSION ";
2888 O << " = ";
2889 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2890 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2891
2892 switch (ExpressionType) {
2893 case ExpressionTypes::ExtendedReduction: {
2895 O << " +";
2896 O << " reduce." << Instruction::getOpcodeName(Opcode) << " (";
2898 Red->printFlags(O);
2899
2900 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2901 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2902 << *Ext0->getResultType();
2903 if (Red->isConditional()) {
2904 O << ", ";
2905 Red->getCondOp()->printAsOperand(O, SlotTracker);
2906 }
2907 O << ")";
2908 break;
2909 }
2910 case ExpressionTypes::ExtNegatedMulAccReduction: {
2912 O << " + reduce."
2914 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2915 << " (sub (0, mul";
2916 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2917 Mul->printFlags(O);
2918 O << "(";
2920 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2921 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2922 << *Ext0->getResultType() << "), (";
2924 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2925 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2926 << *Ext1->getResultType() << ")";
2927 if (Red->isConditional()) {
2928 O << ", ";
2929 Red->getCondOp()->printAsOperand(O, SlotTracker);
2930 }
2931 O << "))";
2932 break;
2933 }
2934 case ExpressionTypes::MulAccReduction:
2935 case ExpressionTypes::ExtMulAccReduction: {
2937 O << " + ";
2938 O << "reduce."
2940 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2941 << " (";
2942 O << "mul";
2943 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2944 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2945 : ExpressionRecipes[0]);
2946 Mul->printFlags(O);
2947 if (IsExtended)
2948 O << "(";
2950 if (IsExtended) {
2951 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2952 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2953 << *Ext0->getResultType() << "), (";
2954 } else {
2955 O << ", ";
2956 }
2958 if (IsExtended) {
2959 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2960 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2961 << *Ext1->getResultType() << ")";
2962 }
2963 if (Red->isConditional()) {
2964 O << ", ";
2965 Red->getCondOp()->printAsOperand(O, SlotTracker);
2966 }
2967 O << ")";
2968 break;
2969 }
2970 }
2971}
2972
2974 VPSlotTracker &SlotTracker) const {
2975 O << Indent << "REDUCE ";
2977 O << " = ";
2979 O << " +";
2980 printFlags(O);
2981 O << " reduce."
2984 << " (";
2986 if (isConditional()) {
2987 O << ", ";
2989 }
2990 O << ")";
2991}
2992
2994 VPSlotTracker &SlotTracker) const {
2995 O << Indent << "REDUCE ";
2997 O << " = ";
2999 O << " +";
3000 printFlags(O);
3001 O << " vp.reduce."
3004 << " (";
3006 O << ", ";
3008 if (isConditional()) {
3009 O << ", ";
3011 }
3012 O << ")";
3013}
3014
3015#endif
3016
3017/// A helper function to scalarize a single Instruction in the innermost loop.
3018/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
3019/// operands from \p RepRecipe instead of \p Instr's operands.
3020static void scalarizeInstruction(const Instruction *Instr,
3021 VPReplicateRecipe *RepRecipe,
3022 const VPLane &Lane, VPTransformState &State) {
3023 assert((!Instr->getType()->isAggregateType() ||
3024 canVectorizeTy(Instr->getType())) &&
3025 "Expected vectorizable or non-aggregate type.");
3026
3027 // Does this instruction return a value ?
3028 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3029
3030 Instruction *Cloned = Instr->clone();
3031 if (!IsVoidRetTy) {
3032 Cloned->setName(Instr->getName() + ".cloned");
3033 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3034 // The operands of the replicate recipe may have been narrowed, resulting in
3035 // a narrower result type. Update the type of the cloned instruction to the
3036 // correct type.
3037 if (ResultTy != Cloned->getType())
3038 Cloned->mutateType(ResultTy);
3039 }
3040
3041 RepRecipe->applyFlags(*Cloned);
3042 RepRecipe->applyMetadata(*Cloned);
3043
3044 if (RepRecipe->hasPredicate())
3045 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3046
3047 if (auto DL = RepRecipe->getDebugLoc())
3048 State.setDebugLocFrom(DL);
3049
3050 // Replace the operands of the cloned instructions with their scalar
3051 // equivalents in the new loop.
3052 for (const auto &I : enumerate(RepRecipe->operands())) {
3053 auto InputLane = Lane;
3054 VPValue *Operand = I.value();
3055 if (vputils::isSingleScalar(Operand))
3056 InputLane = VPLane::getFirstLane();
3057 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3058 }
3059
3060 // Place the cloned scalar in the new loop.
3061 State.Builder.Insert(Cloned);
3062
3063 State.set(RepRecipe, Cloned, Lane);
3064
3065 // If we just cloned a new assumption, add it the assumption cache.
3066 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3067 State.AC->registerAssumption(II);
3068
3069 assert(
3070 (RepRecipe->getParent()->getParent() ||
3071 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3072 all_of(RepRecipe->operands(),
3073 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3074 "Expected a recipe is either within a region or all of its operands "
3075 "are defined outside the vectorized region.");
3076}
3077
3080
3081 if (!State.Lane) {
3082 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3083 "must have already been unrolled");
3084 scalarizeInstruction(UI, this, VPLane(0), State);
3085 return;
3086 }
3087
3088 assert((State.VF.isScalar() || !isSingleScalar()) &&
3089 "uniform recipe shouldn't be predicated");
3090 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3091 scalarizeInstruction(UI, this, *State.Lane, State);
3092 // Insert scalar instance packing it into a vector.
3093 if (State.VF.isVector() && shouldPack()) {
3094 Value *WideValue =
3095 State.Lane->isFirstLane()
3096 ? PoisonValue::get(toVectorizedTy(UI->getType(), State.VF))
3097 : State.get(this);
3098 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3099 *State.Lane));
3100 }
3101}
3102
3104 // Find if the recipe is used by a widened recipe via an intervening
3105 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3106 return any_of(users(), [](const VPUser *U) {
3107 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3108 return !vputils::onlyScalarValuesUsed(PredR);
3109 return false;
3110 });
3111}
3112
3113/// Returns true if \p Ptr is a pointer computation for which the legacy cost
3114/// model computes a SCEV expression when computing the address cost.
3116 auto *PtrR = Ptr->getDefiningRecipe();
3117 if (!PtrR || !((isa<VPReplicateRecipe>(PtrR) &&
3119 Instruction::GetElementPtr) ||
3120 isa<VPWidenGEPRecipe>(PtrR) ||
3122 return false;
3123
3124 // We are looking for a GEP where all indices are either loop invariant or
3125 // inductions.
3126 for (VPValue *Opd : drop_begin(PtrR->operands())) {
3127 if (!Opd->isDefinedOutsideLoopRegions() &&
3129 return false;
3130 }
3131
3132 return true;
3133}
3134
3135/// Returns true if \p V is used as part of the address of another load or
3136/// store.
3137static bool isUsedByLoadStoreAddress(const VPUser *V) {
3139 SmallVector<const VPUser *> WorkList = {V};
3140
3141 while (!WorkList.empty()) {
3142 auto *Cur = dyn_cast<VPSingleDefRecipe>(WorkList.pop_back_val());
3143 if (!Cur || !Seen.insert(Cur).second)
3144 continue;
3145
3146 for (VPUser *U : Cur->users()) {
3147 if (auto *InterleaveR = dyn_cast<VPInterleaveBase>(U))
3148 if (InterleaveR->getAddr() == Cur)
3149 return true;
3150 if (auto *RepR = dyn_cast<VPReplicateRecipe>(U)) {
3151 if (RepR->getOpcode() == Instruction::Load &&
3152 RepR->getOperand(0) == Cur)
3153 return true;
3154 if (RepR->getOpcode() == Instruction::Store &&
3155 RepR->getOperand(1) == Cur)
3156 return true;
3157 }
3158 if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U)) {
3159 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3160 return true;
3161 }
3162 }
3163
3164 append_range(WorkList, cast<VPSingleDefRecipe>(Cur)->users());
3165 }
3166 return false;
3167}
3168
3170 VPCostContext &Ctx) const {
3172 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3173 // transform, avoid computing their cost multiple times for now.
3174 Ctx.SkipCostComputation.insert(UI);
3175
3176 switch (UI->getOpcode()) {
3177 case Instruction::GetElementPtr:
3178 // We mark this instruction as zero-cost because the cost of GEPs in
3179 // vectorized code depends on whether the corresponding memory instruction
3180 // is scalarized or not. Therefore, we handle GEPs with the memory
3181 // instruction cost.
3182 return 0;
3183 case Instruction::Call: {
3184 auto *CalledFn =
3186
3189 for (const VPValue *ArgOp : ArgOps)
3190 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3191
3192 if (CalledFn->isIntrinsic())
3193 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3194 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3195 switch (CalledFn->getIntrinsicID()) {
3196 case Intrinsic::assume:
3197 case Intrinsic::lifetime_end:
3198 case Intrinsic::lifetime_start:
3199 case Intrinsic::sideeffect:
3200 case Intrinsic::pseudoprobe:
3201 case Intrinsic::experimental_noalias_scope_decl: {
3202 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3203 ElementCount::getFixed(1), Ctx) == 0 &&
3204 "scalarizing intrinsic should be free");
3205 return InstructionCost(0);
3206 }
3207 default:
3208 break;
3209 }
3210
3211 Type *ResultTy = Ctx.Types.inferScalarType(this);
3212 InstructionCost ScalarCallCost =
3213 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3214 if (isSingleScalar()) {
3215 if (CalledFn->isIntrinsic())
3216 ScalarCallCost = std::min(
3217 ScalarCallCost,
3218 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3219 ElementCount::getFixed(1), Ctx));
3220 return ScalarCallCost;
3221 }
3222
3223 if (VF.isScalable())
3225
3226 return ScalarCallCost * VF.getFixedValue() +
3227 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3228 }
3229 case Instruction::Add:
3230 case Instruction::Sub:
3231 case Instruction::FAdd:
3232 case Instruction::FSub:
3233 case Instruction::Mul:
3234 case Instruction::FMul:
3235 case Instruction::FDiv:
3236 case Instruction::FRem:
3237 case Instruction::Shl:
3238 case Instruction::LShr:
3239 case Instruction::AShr:
3240 case Instruction::And:
3241 case Instruction::Or:
3242 case Instruction::Xor:
3243 case Instruction::ICmp:
3244 case Instruction::FCmp:
3246 Ctx) *
3247 (isSingleScalar() ? 1 : VF.getFixedValue());
3248 case Instruction::SDiv:
3249 case Instruction::UDiv:
3250 case Instruction::SRem:
3251 case Instruction::URem: {
3252 InstructionCost ScalarCost =
3254 if (isSingleScalar())
3255 return ScalarCost;
3256
3257 ScalarCost = ScalarCost * VF.getFixedValue() +
3258 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3259 to_vector(operands()), VF);
3260 // If the recipe is not predicated (i.e. not in a replicate region), return
3261 // the scalar cost. Otherwise handle predicated cost.
3262 if (!getParent()->getParent()->isReplicator())
3263 return ScalarCost;
3264
3265 // Account for the phi nodes that we will create.
3266 ScalarCost += VF.getFixedValue() *
3267 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3268 // Scale the cost by the probability of executing the predicated blocks.
3269 // This assumes the predicated block for each vector lane is equally
3270 // likely.
3271 ScalarCost /= getPredBlockCostDivisor(Ctx.CostKind);
3272 return ScalarCost;
3273 }
3274 case Instruction::Load:
3275 case Instruction::Store: {
3276 if (VF.isScalable() && !isSingleScalar())
3278
3279 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3280 // predicated cases.
3281 const VPRegionBlock *ParentRegion = getParent()->getParent();
3282 if (ParentRegion && ParentRegion->isReplicator())
3283 break;
3284
3285 bool IsLoad = UI->getOpcode() == Instruction::Load;
3286 const VPValue *PtrOp = getOperand(!IsLoad);
3287 // TODO: Handle cases where we need to pass a SCEV to
3288 // getAddressComputationCost.
3289 if (shouldUseAddressAccessSCEV(PtrOp))
3290 break;
3291
3292 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3293 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3294 const Align Alignment = getLoadStoreAlignment(UI);
3295 unsigned AS = getLoadStoreAddressSpace(UI);
3297 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3298 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3299
3300 Type *PtrTy = isSingleScalar() ? ScalarPtrTy : toVectorTy(ScalarPtrTy, VF);
3301
3302 InstructionCost ScalarCost =
3303 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3304 PtrTy, &Ctx.SE, nullptr, Ctx.CostKind);
3305 if (isSingleScalar())
3306 return ScalarCost;
3307
3308 SmallVector<const VPValue *> OpsToScalarize;
3309 Type *ResultTy = Type::getVoidTy(PtrTy->getContext());
3310 // Set ResultTy and OpsToScalarize, if scalarization is needed. Currently we
3311 // don't assign scalarization overhead in general, if the target prefers
3312 // vectorized addressing or the loaded value is used as part of an address
3313 // of another load or store.
3314 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3315 if (PreferVectorizedAddressing || !isUsedByLoadStoreAddress(this)) {
3316 bool EfficientVectorLoadStore =
3317 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3318 if (!(IsLoad && !PreferVectorizedAddressing) &&
3319 !(!IsLoad && EfficientVectorLoadStore))
3320 append_range(OpsToScalarize, operands());
3321
3322 if (!EfficientVectorLoadStore)
3323 ResultTy = Ctx.Types.inferScalarType(this);
3324 }
3325
3326 return (ScalarCost * VF.getFixedValue()) +
3327 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true);
3328 }
3329 }
3330
3331 return Ctx.getLegacyCost(UI, VF);
3332}
3333
3334#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3336 VPSlotTracker &SlotTracker) const {
3337 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3338
3339 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3341 O << " = ";
3342 }
3343 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3344 O << "call";
3345 printFlags(O);
3346 O << "@" << CB->getCalledFunction()->getName() << "(";
3348 O, [&O, &SlotTracker](VPValue *Op) {
3349 Op->printAsOperand(O, SlotTracker);
3350 });
3351 O << ")";
3352 } else {
3354 printFlags(O);
3356 }
3357
3358 if (shouldPack())
3359 O << " (S->V)";
3360}
3361#endif
3362
3364 assert(State.Lane && "Branch on Mask works only on single instance.");
3365
3366 VPValue *BlockInMask = getOperand(0);
3367 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3368
3369 // Replace the temporary unreachable terminator with a new conditional branch,
3370 // whose two destinations will be set later when they are created.
3371 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3372 assert(isa<UnreachableInst>(CurrentTerminator) &&
3373 "Expected to replace unreachable terminator with conditional branch.");
3374 auto CondBr =
3375 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3376 CondBr->setSuccessor(0, nullptr);
3377 CurrentTerminator->eraseFromParent();
3378}
3379
3381 VPCostContext &Ctx) const {
3382 // The legacy cost model doesn't assign costs to branches for individual
3383 // replicate regions. Match the current behavior in the VPlan cost model for
3384 // now.
3385 return 0;
3386}
3387
3389 assert(State.Lane && "Predicated instruction PHI works per instance.");
3390 Instruction *ScalarPredInst =
3391 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3392 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3393 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3394 assert(PredicatingBB && "Predicated block has no single predecessor.");
3396 "operand must be VPReplicateRecipe");
3397
3398 // By current pack/unpack logic we need to generate only a single phi node: if
3399 // a vector value for the predicated instruction exists at this point it means
3400 // the instruction has vector users only, and a phi for the vector value is
3401 // needed. In this case the recipe of the predicated instruction is marked to
3402 // also do that packing, thereby "hoisting" the insert-element sequence.
3403 // Otherwise, a phi node for the scalar value is needed.
3404 if (State.hasVectorValue(getOperand(0))) {
3405 auto *VecI = cast<Instruction>(State.get(getOperand(0)));
3407 "Packed operands must generate an insertelement or insertvalue");
3408
3409 // If VectorI is a struct, it will be a sequence like:
3410 // %1 = insertvalue %unmodified, %x, 0
3411 // %2 = insertvalue %1, %y, 1
3412 // %VectorI = insertvalue %2, %z, 2
3413 // To get the unmodified vector we need to look through the chain.
3414 if (auto *StructTy = dyn_cast<StructType>(VecI->getType()))
3415 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3416 VecI = cast<InsertValueInst>(VecI->getOperand(0));
3417
3418 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3419 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB); // Unmodified vector.
3420 VPhi->addIncoming(VecI, PredicatedBB); // New vector with inserted element.
3421 if (State.hasVectorValue(this))
3422 State.reset(this, VPhi);
3423 else
3424 State.set(this, VPhi);
3425 // NOTE: Currently we need to update the value of the operand, so the next
3426 // predicated iteration inserts its generated value in the correct vector.
3427 State.reset(getOperand(0), VPhi);
3428 } else {
3429 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3430 return;
3431
3432 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3433 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3434 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3435 PredicatingBB);
3436 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3437 if (State.hasScalarValue(this, *State.Lane))
3438 State.reset(this, Phi, *State.Lane);
3439 else
3440 State.set(this, Phi, *State.Lane);
3441 // NOTE: Currently we need to update the value of the operand, so the next
3442 // predicated iteration inserts its generated value in the correct vector.
3443 State.reset(getOperand(0), Phi, *State.Lane);
3444 }
3445}
3446
3447#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3449 VPSlotTracker &SlotTracker) const {
3450 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3452 O << " = ";
3454}
3455#endif
3456
3458 VPCostContext &Ctx) const {
3460 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3461 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3462 ->getAddressSpace();
3463 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3464 ? Instruction::Load
3465 : Instruction::Store;
3466
3467 if (!Consecutive) {
3468 // TODO: Using the original IR may not be accurate.
3469 // Currently, ARM will use the underlying IR to calculate gather/scatter
3470 // instruction cost.
3471 assert(!Reverse &&
3472 "Inconsecutive memory access should not have the order.");
3473
3475 Type *PtrTy = Ptr->getType();
3476
3477 // If the address value is uniform across all lanes, then the address can be
3478 // calculated with scalar type and broadcast.
3480 PtrTy = toVectorTy(PtrTy, VF);
3481
3482 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3483 Ctx.CostKind) +
3484 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty, Ptr, IsMasked, Alignment,
3485 Ctx.CostKind, &Ingredient);
3486 }
3487
3489 if (IsMasked) {
3490 Cost +=
3491 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3492 } else {
3493 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3495 : getOperand(1));
3496 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3497 OpInfo, &Ingredient);
3498 }
3499 if (!Reverse)
3500 return Cost;
3501
3502 return Cost += Ctx.TTI.getShuffleCost(
3504 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3505}
3506
3508 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3509 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3510 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3511 bool CreateGather = !isConsecutive();
3512
3513 auto &Builder = State.Builder;
3514 Value *Mask = nullptr;
3515 if (auto *VPMask = getMask()) {
3516 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3517 // of a null all-one mask is a null mask.
3518 Mask = State.get(VPMask);
3519 if (isReverse())
3520 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3521 }
3522
3523 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3524 Value *NewLI;
3525 if (CreateGather) {
3526 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3527 "wide.masked.gather");
3528 } else if (Mask) {
3529 NewLI =
3530 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3531 PoisonValue::get(DataTy), "wide.masked.load");
3532 } else {
3533 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3534 }
3536 if (Reverse)
3537 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3538 State.set(this, NewLI);
3539}
3540
3541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3543 VPSlotTracker &SlotTracker) const {
3544 O << Indent << "WIDEN ";
3546 O << " = load ";
3548}
3549#endif
3550
3551/// Use all-true mask for reverse rather than actual mask, as it avoids a
3552/// dependence w/o affecting the result.
3554 Value *EVL, const Twine &Name) {
3555 VectorType *ValTy = cast<VectorType>(Operand->getType());
3556 Value *AllTrueMask =
3557 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3558 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3559 {Operand, AllTrueMask, EVL}, nullptr, Name);
3560}
3561
3563 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3564 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3565 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3566 bool CreateGather = !isConsecutive();
3567
3568 auto &Builder = State.Builder;
3569 CallInst *NewLI;
3570 Value *EVL = State.get(getEVL(), VPLane(0));
3571 Value *Addr = State.get(getAddr(), !CreateGather);
3572 Value *Mask = nullptr;
3573 if (VPValue *VPMask = getMask()) {
3574 Mask = State.get(VPMask);
3575 if (isReverse())
3576 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3577 } else {
3578 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3579 }
3580
3581 if (CreateGather) {
3582 NewLI =
3583 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3584 nullptr, "wide.masked.gather");
3585 } else {
3586 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3587 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3588 }
3589 NewLI->addParamAttr(
3590 0, Attribute::getWithAlignment(NewLI->getContext(), Alignment));
3591 applyMetadata(*NewLI);
3592 Instruction *Res = NewLI;
3593 if (isReverse())
3594 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3595 State.set(this, Res);
3596}
3597
3599 VPCostContext &Ctx) const {
3600 if (!Consecutive || IsMasked)
3601 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3602
3603 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3604 // here because the EVL recipes using EVL to replace the tail mask. But in the
3605 // legacy model, it will always calculate the cost of mask.
3606 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3607 // don't need to compare to the legacy cost model.
3609 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3610 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3611 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3612 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3613 if (!Reverse)
3614 return Cost;
3615
3616 return Cost + Ctx.TTI.getShuffleCost(
3618 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3619}
3620
3621#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3623 VPSlotTracker &SlotTracker) const {
3624 O << Indent << "WIDEN ";
3626 O << " = vp.load ";
3628}
3629#endif
3630
3632 VPValue *StoredVPValue = getStoredValue();
3633 bool CreateScatter = !isConsecutive();
3634 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3635
3636 auto &Builder = State.Builder;
3637
3638 Value *Mask = nullptr;
3639 if (auto *VPMask = getMask()) {
3640 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3641 // of a null all-one mask is a null mask.
3642 Mask = State.get(VPMask);
3643 if (isReverse())
3644 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3645 }
3646
3647 Value *StoredVal = State.get(StoredVPValue);
3648 if (isReverse()) {
3649 // If we store to reverse consecutive memory locations, then we need
3650 // to reverse the order of elements in the stored value.
3651 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3652 // We don't want to update the value in the map as it might be used in
3653 // another expression. So don't call resetVectorValue(StoredVal).
3654 }
3655 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3656 Instruction *NewSI = nullptr;
3657 if (CreateScatter)
3658 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3659 else if (Mask)
3660 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3661 else
3662 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3663 applyMetadata(*NewSI);
3664}
3665
3666#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3668 VPSlotTracker &SlotTracker) const {
3669 O << Indent << "WIDEN store ";
3671}
3672#endif
3673
3675 VPValue *StoredValue = getStoredValue();
3676 bool CreateScatter = !isConsecutive();
3677 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3678
3679 auto &Builder = State.Builder;
3680
3681 CallInst *NewSI = nullptr;
3682 Value *StoredVal = State.get(StoredValue);
3683 Value *EVL = State.get(getEVL(), VPLane(0));
3684 if (isReverse())
3685 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3686 Value *Mask = nullptr;
3687 if (VPValue *VPMask = getMask()) {
3688 Mask = State.get(VPMask);
3689 if (isReverse())
3690 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3691 } else {
3692 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3693 }
3694 Value *Addr = State.get(getAddr(), !CreateScatter);
3695 if (CreateScatter) {
3696 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3697 Intrinsic::vp_scatter,
3698 {StoredVal, Addr, Mask, EVL});
3699 } else {
3700 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3701 Intrinsic::vp_store,
3702 {StoredVal, Addr, Mask, EVL});
3703 }
3704 NewSI->addParamAttr(
3705 1, Attribute::getWithAlignment(NewSI->getContext(), Alignment));
3706 applyMetadata(*NewSI);
3707}
3708
3710 VPCostContext &Ctx) const {
3711 if (!Consecutive || IsMasked)
3712 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3713
3714 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3715 // here because the EVL recipes using EVL to replace the tail mask. But in the
3716 // legacy model, it will always calculate the cost of mask.
3717 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3718 // don't need to compare to the legacy cost model.
3720 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3721 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3722 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3723 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3724 if (!Reverse)
3725 return Cost;
3726
3727 return Cost + Ctx.TTI.getShuffleCost(
3729 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3730}
3731
3732#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3734 VPSlotTracker &SlotTracker) const {
3735 O << Indent << "WIDEN vp.store ";
3737}
3738#endif
3739
3741 VectorType *DstVTy, const DataLayout &DL) {
3742 // Verify that V is a vector type with same number of elements as DstVTy.
3743 auto VF = DstVTy->getElementCount();
3744 auto *SrcVecTy = cast<VectorType>(V->getType());
3745 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3746 Type *SrcElemTy = SrcVecTy->getElementType();
3747 Type *DstElemTy = DstVTy->getElementType();
3748 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3749 "Vector elements must have same size");
3750
3751 // Do a direct cast if element types are castable.
3752 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3753 return Builder.CreateBitOrPointerCast(V, DstVTy);
3754 }
3755 // V cannot be directly casted to desired vector type.
3756 // May happen when V is a floating point vector but DstVTy is a vector of
3757 // pointers or vice-versa. Handle this using a two-step bitcast using an
3758 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3759 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3760 "Only one type should be a pointer type");
3761 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3762 "Only one type should be a floating point type");
3763 Type *IntTy =
3764 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3765 auto *VecIntTy = VectorType::get(IntTy, VF);
3766 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3767 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3768}
3769
3770/// Return a vector containing interleaved elements from multiple
3771/// smaller input vectors.
3773 const Twine &Name) {
3774 unsigned Factor = Vals.size();
3775 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3776
3777 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3778#ifndef NDEBUG
3779 for (Value *Val : Vals)
3780 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3781#endif
3782
3783 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3784 // must use intrinsics to interleave.
3785 if (VecTy->isScalableTy()) {
3786 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3787 return Builder.CreateVectorInterleave(Vals, Name);
3788 }
3789
3790 // Fixed length. Start by concatenating all vectors into a wide vector.
3791 Value *WideVec = concatenateVectors(Builder, Vals);
3792
3793 // Interleave the elements into the wide vector.
3794 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3795 return Builder.CreateShuffleVector(
3796 WideVec, createInterleaveMask(NumElts, Factor), Name);
3797}
3798
3799// Try to vectorize the interleave group that \p Instr belongs to.
3800//
3801// E.g. Translate following interleaved load group (factor = 3):
3802// for (i = 0; i < N; i+=3) {
3803// R = Pic[i]; // Member of index 0
3804// G = Pic[i+1]; // Member of index 1
3805// B = Pic[i+2]; // Member of index 2
3806// ... // do something to R, G, B
3807// }
3808// To:
3809// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3810// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3811// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3812// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3813//
3814// Or translate following interleaved store group (factor = 3):
3815// for (i = 0; i < N; i+=3) {
3816// ... do something to R, G, B
3817// Pic[i] = R; // Member of index 0
3818// Pic[i+1] = G; // Member of index 1
3819// Pic[i+2] = B; // Member of index 2
3820// }
3821// To:
3822// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3823// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3824// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3825// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3826// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3828 assert(!State.Lane && "Interleave group being replicated.");
3829 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3830 "Masking gaps for scalable vectors is not yet supported.");
3832 Instruction *Instr = Group->getInsertPos();
3833
3834 // Prepare for the vector type of the interleaved load/store.
3835 Type *ScalarTy = getLoadStoreType(Instr);
3836 unsigned InterleaveFactor = Group->getFactor();
3837 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3838
3839 VPValue *BlockInMask = getMask();
3840 VPValue *Addr = getAddr();
3841 Value *ResAddr = State.get(Addr, VPLane(0));
3842
3843 auto CreateGroupMask = [&BlockInMask, &State,
3844 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3845 if (State.VF.isScalable()) {
3846 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3847 assert(InterleaveFactor <= 8 &&
3848 "Unsupported deinterleave factor for scalable vectors");
3849 auto *ResBlockInMask = State.get(BlockInMask);
3850 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3851 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3852 }
3853
3854 if (!BlockInMask)
3855 return MaskForGaps;
3856
3857 Value *ResBlockInMask = State.get(BlockInMask);
3858 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3859 ResBlockInMask,
3860 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3861 "interleaved.mask");
3862 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3863 ShuffledMask, MaskForGaps)
3864 : ShuffledMask;
3865 };
3866
3867 const DataLayout &DL = Instr->getDataLayout();
3868 // Vectorize the interleaved load group.
3869 if (isa<LoadInst>(Instr)) {
3870 Value *MaskForGaps = nullptr;
3871 if (needsMaskForGaps()) {
3872 MaskForGaps =
3873 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3874 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3875 }
3876
3877 Instruction *NewLoad;
3878 if (BlockInMask || MaskForGaps) {
3879 Value *GroupMask = CreateGroupMask(MaskForGaps);
3880 Value *PoisonVec = PoisonValue::get(VecTy);
3881 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3882 Group->getAlign(), GroupMask,
3883 PoisonVec, "wide.masked.vec");
3884 } else
3885 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3886 Group->getAlign(), "wide.vec");
3887 applyMetadata(*NewLoad);
3888 // TODO: Also manage existing metadata using VPIRMetadata.
3889 Group->addMetadata(NewLoad);
3890
3892 if (VecTy->isScalableTy()) {
3893 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3894 // so must use intrinsics to deinterleave.
3895 assert(InterleaveFactor <= 8 &&
3896 "Unsupported deinterleave factor for scalable vectors");
3897 NewLoad = State.Builder.CreateIntrinsic(
3898 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3899 NewLoad->getType(), NewLoad,
3900 /*FMFSource=*/nullptr, "strided.vec");
3901 }
3902
3903 auto CreateStridedVector = [&InterleaveFactor, &State,
3904 &NewLoad](unsigned Index) -> Value * {
3905 assert(Index < InterleaveFactor && "Illegal group index");
3906 if (State.VF.isScalable())
3907 return State.Builder.CreateExtractValue(NewLoad, Index);
3908
3909 // For fixed length VF, use shuffle to extract the sub-vectors from the
3910 // wide load.
3911 auto StrideMask =
3912 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3913 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3914 "strided.vec");
3915 };
3916
3917 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3918 Instruction *Member = Group->getMember(I);
3919
3920 // Skip the gaps in the group.
3921 if (!Member)
3922 continue;
3923
3924 Value *StridedVec = CreateStridedVector(I);
3925
3926 // If this member has different type, cast the result type.
3927 if (Member->getType() != ScalarTy) {
3928 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3929 StridedVec =
3930 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3931 }
3932
3933 if (Group->isReverse())
3934 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3935
3936 State.set(VPDefs[J], StridedVec);
3937 ++J;
3938 }
3939 return;
3940 }
3941
3942 // The sub vector type for current instruction.
3943 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3944
3945 // Vectorize the interleaved store group.
3946 Value *MaskForGaps =
3947 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3948 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3949 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3950 ArrayRef<VPValue *> StoredValues = getStoredValues();
3951 // Collect the stored vector from each member.
3952 SmallVector<Value *, 4> StoredVecs;
3953 unsigned StoredIdx = 0;
3954 for (unsigned i = 0; i < InterleaveFactor; i++) {
3955 assert((Group->getMember(i) || MaskForGaps) &&
3956 "Fail to get a member from an interleaved store group");
3957 Instruction *Member = Group->getMember(i);
3958
3959 // Skip the gaps in the group.
3960 if (!Member) {
3961 Value *Undef = PoisonValue::get(SubVT);
3962 StoredVecs.push_back(Undef);
3963 continue;
3964 }
3965
3966 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3967 ++StoredIdx;
3968
3969 if (Group->isReverse())
3970 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3971
3972 // If this member has different type, cast it to a unified type.
3973
3974 if (StoredVec->getType() != SubVT)
3975 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3976
3977 StoredVecs.push_back(StoredVec);
3978 }
3979
3980 // Interleave all the smaller vectors into one wider vector.
3981 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3982 Instruction *NewStoreInstr;
3983 if (BlockInMask || MaskForGaps) {
3984 Value *GroupMask = CreateGroupMask(MaskForGaps);
3985 NewStoreInstr = State.Builder.CreateMaskedStore(
3986 IVec, ResAddr, Group->getAlign(), GroupMask);
3987 } else
3988 NewStoreInstr =
3989 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
3990
3991 applyMetadata(*NewStoreInstr);
3992 // TODO: Also manage existing metadata using VPIRMetadata.
3993 Group->addMetadata(NewStoreInstr);
3994}
3995
3996#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3998 VPSlotTracker &SlotTracker) const {
4000 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4001 IG->getInsertPos()->printAsOperand(O, false);
4002 O << ", ";
4004 VPValue *Mask = getMask();
4005 if (Mask) {
4006 O << ", ";
4007 Mask->printAsOperand(O, SlotTracker);
4008 }
4009
4010 unsigned OpIdx = 0;
4011 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4012 if (!IG->getMember(i))
4013 continue;
4014 if (getNumStoreOperands() > 0) {
4015 O << "\n" << Indent << " store ";
4017 O << " to index " << i;
4018 } else {
4019 O << "\n" << Indent << " ";
4021 O << " = load from index " << i;
4022 }
4023 ++OpIdx;
4024 }
4025}
4026#endif
4027
4029 assert(!State.Lane && "Interleave group being replicated.");
4030 assert(State.VF.isScalable() &&
4031 "Only support scalable VF for EVL tail-folding.");
4033 "Masking gaps for scalable vectors is not yet supported.");
4035 Instruction *Instr = Group->getInsertPos();
4036
4037 // Prepare for the vector type of the interleaved load/store.
4038 Type *ScalarTy = getLoadStoreType(Instr);
4039 unsigned InterleaveFactor = Group->getFactor();
4040 assert(InterleaveFactor <= 8 &&
4041 "Unsupported deinterleave/interleave factor for scalable vectors");
4042 ElementCount WideVF = State.VF * InterleaveFactor;
4043 auto *VecTy = VectorType::get(ScalarTy, WideVF);
4044
4045 VPValue *Addr = getAddr();
4046 Value *ResAddr = State.get(Addr, VPLane(0));
4047 Value *EVL = State.get(getEVL(), VPLane(0));
4048 Value *InterleaveEVL = State.Builder.CreateMul(
4049 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
4050 /* NUW= */ true, /* NSW= */ true);
4051 LLVMContext &Ctx = State.Builder.getContext();
4052
4053 Value *GroupMask = nullptr;
4054 if (VPValue *BlockInMask = getMask()) {
4055 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
4056 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
4057 } else {
4058 GroupMask =
4059 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4060 }
4061
4062 // Vectorize the interleaved load group.
4063 if (isa<LoadInst>(Instr)) {
4064 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4065 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
4066 "wide.vp.load");
4067 NewLoad->addParamAttr(0,
4068 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4069
4070 applyMetadata(*NewLoad);
4071 // TODO: Also manage existing metadata using VPIRMetadata.
4072 Group->addMetadata(NewLoad);
4073
4074 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
4075 // so must use intrinsics to deinterleave.
4076 NewLoad = State.Builder.CreateIntrinsic(
4077 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
4078 NewLoad->getType(), NewLoad,
4079 /*FMFSource=*/nullptr, "strided.vec");
4080
4081 const DataLayout &DL = Instr->getDataLayout();
4082 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
4083 Instruction *Member = Group->getMember(I);
4084 // Skip the gaps in the group.
4085 if (!Member)
4086 continue;
4087
4088 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
4089 // If this member has different type, cast the result type.
4090 if (Member->getType() != ScalarTy) {
4091 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
4092 StridedVec =
4093 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
4094 }
4095
4096 State.set(getVPValue(J), StridedVec);
4097 ++J;
4098 }
4099 return;
4100 } // End for interleaved load.
4101
4102 // The sub vector type for current instruction.
4103 auto *SubVT = VectorType::get(ScalarTy, State.VF);
4104 // Vectorize the interleaved store group.
4105 ArrayRef<VPValue *> StoredValues = getStoredValues();
4106 // Collect the stored vector from each member.
4107 SmallVector<Value *, 4> StoredVecs;
4108 const DataLayout &DL = Instr->getDataLayout();
4109 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
4110 Instruction *Member = Group->getMember(I);
4111 // Skip the gaps in the group.
4112 if (!Member) {
4113 StoredVecs.push_back(PoisonValue::get(SubVT));
4114 continue;
4115 }
4116
4117 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4118 // If this member has different type, cast it to a unified type.
4119 if (StoredVec->getType() != SubVT)
4120 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
4121
4122 StoredVecs.push_back(StoredVec);
4123 ++StoredIdx;
4124 }
4125
4126 // Interleave all the smaller vectors into one wider vector.
4127 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
4128 CallInst *NewStore =
4129 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
4130 {IVec, ResAddr, GroupMask, InterleaveEVL});
4131 NewStore->addParamAttr(1,
4132 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4133
4134 applyMetadata(*NewStore);
4135 // TODO: Also manage existing metadata using VPIRMetadata.
4136 Group->addMetadata(NewStore);
4137}
4138
4139#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4141 VPSlotTracker &SlotTracker) const {
4143 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4144 IG->getInsertPos()->printAsOperand(O, false);
4145 O << ", ";
4147 O << ", ";
4149 if (VPValue *Mask = getMask()) {
4150 O << ", ";
4151 Mask->printAsOperand(O, SlotTracker);
4152 }
4153
4154 unsigned OpIdx = 0;
4155 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4156 if (!IG->getMember(i))
4157 continue;
4158 if (getNumStoreOperands() > 0) {
4159 O << "\n" << Indent << " vp.store ";
4161 O << " to index " << i;
4162 } else {
4163 O << "\n" << Indent << " ";
4165 O << " = vp.load from index " << i;
4166 }
4167 ++OpIdx;
4168 }
4169}
4170#endif
4171
4173 VPCostContext &Ctx) const {
4174 Instruction *InsertPos = getInsertPos();
4175 // Find the VPValue index of the interleave group. We need to skip gaps.
4176 unsigned InsertPosIdx = 0;
4177 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4178 if (auto *Member = IG->getMember(Idx)) {
4179 if (Member == InsertPos)
4180 break;
4181 InsertPosIdx++;
4182 }
4183 Type *ValTy = Ctx.Types.inferScalarType(
4184 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4185 : getStoredValues()[InsertPosIdx]);
4186 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4187 unsigned AS = getLoadStoreAddressSpace(InsertPos);
4188
4189 unsigned InterleaveFactor = IG->getFactor();
4190 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4191
4192 // Holds the indices of existing members in the interleaved group.
4194 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4195 if (IG->getMember(IF))
4196 Indices.push_back(IF);
4197
4198 // Calculate the cost of the whole interleaved group.
4199 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4200 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4201 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4202
4203 if (!IG->isReverse())
4204 return Cost;
4205
4206 return Cost + IG->getNumMembers() *
4207 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4208 VectorTy, VectorTy, {}, Ctx.CostKind,
4209 0);
4210}
4211
4212#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4214 VPSlotTracker &SlotTracker) const {
4215 O << Indent << "EMIT ";
4217 O << " = CANONICAL-INDUCTION ";
4219}
4220#endif
4221
4223 return IsScalarAfterVectorization &&
4224 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4225}
4226
4227#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4229 VPSlotTracker &SlotTracker) const {
4230 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4231 "unexpected number of operands");
4232 O << Indent << "EMIT ";
4234 O << " = WIDEN-POINTER-INDUCTION ";
4236 O << ", ";
4238 O << ", ";
4240 if (getNumOperands() == 5) {
4241 O << ", ";
4243 O << ", ";
4245 }
4246}
4247
4249 VPSlotTracker &SlotTracker) const {
4250 O << Indent << "EMIT ";
4252 O << " = EXPAND SCEV " << *Expr;
4253}
4254#endif
4255
4257 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4258 Type *STy = CanonicalIV->getType();
4259 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4260 ElementCount VF = State.VF;
4261 Value *VStart = VF.isScalar()
4262 ? CanonicalIV
4263 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4264 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4265 if (VF.isVector()) {
4266 VStep = Builder.CreateVectorSplat(VF, VStep);
4267 VStep =
4268 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4269 }
4270 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4271 State.set(this, CanonicalVectorIV);
4272}
4273
4274#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4276 VPSlotTracker &SlotTracker) const {
4277 O << Indent << "EMIT ";
4279 O << " = WIDEN-CANONICAL-INDUCTION ";
4281}
4282#endif
4283
4285 auto &Builder = State.Builder;
4286 // Create a vector from the initial value.
4287 auto *VectorInit = getStartValue()->getLiveInIRValue();
4288
4289 Type *VecTy = State.VF.isScalar()
4290 ? VectorInit->getType()
4291 : VectorType::get(VectorInit->getType(), State.VF);
4292
4293 BasicBlock *VectorPH =
4294 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4295 if (State.VF.isVector()) {
4296 auto *IdxTy = Builder.getInt32Ty();
4297 auto *One = ConstantInt::get(IdxTy, 1);
4298 IRBuilder<>::InsertPointGuard Guard(Builder);
4299 Builder.SetInsertPoint(VectorPH->getTerminator());
4300 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4301 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4302 VectorInit = Builder.CreateInsertElement(
4303 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4304 }
4305
4306 // Create a phi node for the new recurrence.
4307 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4308 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4309 Phi->addIncoming(VectorInit, VectorPH);
4310 State.set(this, Phi);
4311}
4312
4315 VPCostContext &Ctx) const {
4316 if (VF.isScalar())
4317 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4318
4319 return 0;
4320}
4321
4322#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4324 VPSlotTracker &SlotTracker) const {
4325 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4327 O << " = phi ";
4329}
4330#endif
4331
4333 // Reductions do not have to start at zero. They can start with
4334 // any loop invariant values.
4335 VPValue *StartVPV = getStartValue();
4336
4337 // In order to support recurrences we need to be able to vectorize Phi nodes.
4338 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4339 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4340 // this value when we vectorize all of the instructions that use the PHI.
4341 BasicBlock *VectorPH =
4342 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4343 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4344 Value *StartV = State.get(StartVPV, ScalarPHI);
4345 Type *VecTy = StartV->getType();
4346
4347 BasicBlock *HeaderBB = State.CFG.PrevBB;
4348 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4349 "recipe must be in the vector loop header");
4350 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4351 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4352 State.set(this, Phi, IsInLoop);
4353
4354 Phi->addIncoming(StartV, VectorPH);
4355}
4356
4357#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4359 VPSlotTracker &SlotTracker) const {
4360 O << Indent << "WIDEN-REDUCTION-PHI ";
4361
4363 O << " = phi ";
4365 if (VFScaleFactor != 1)
4366 O << " (VF scaled by 1/" << VFScaleFactor << ")";
4367}
4368#endif
4369
4371 Value *Op0 = State.get(getOperand(0));
4372 Type *VecTy = Op0->getType();
4373 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4374 State.set(this, VecPhi);
4375}
4376
4377#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4379 VPSlotTracker &SlotTracker) const {
4380 O << Indent << "WIDEN-PHI ";
4381
4383 O << " = phi ";
4385}
4386#endif
4387
4388// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
4389// remove VPActiveLaneMaskPHIRecipe.
4391 BasicBlock *VectorPH =
4392 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4393 Value *StartMask = State.get(getOperand(0));
4394 PHINode *Phi =
4395 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4396 Phi->addIncoming(StartMask, VectorPH);
4397 State.set(this, Phi);
4398}
4399
4400#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4402 VPSlotTracker &SlotTracker) const {
4403 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4404
4406 O << " = phi ";
4408}
4409#endif
4410
4411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4413 VPSlotTracker &SlotTracker) const {
4414 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4415
4417 O << " = phi ";
4419}
4420#endif
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition Compiler.h:404
iv users
Definition IVUsers.cpp:48
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static bool shouldUseAddressAccessSCEV(const VPValue *Ptr)
Returns true if Ptr is a pointer computation for which the legacy cost model computes a SCEV expressi...
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:325
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:313
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:271
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2571
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2625
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2559
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2618
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2637
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2036
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition IRBuilder.h:567
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2333
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition IRBuilder.h:527
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2463
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1805
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2329
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Definition IRBuilder.h:1134
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2082
LLVMContext & getContext() const
Definition IRBuilder.h:203
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition IRBuilder.h:1725
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2439
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3786
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:3839
iterator end()
Definition VPlan.h:3823
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3852
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2433
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2428
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:82
VPRegionBlock * getParent()
Definition VPlan.h:174
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:205
VPlan * getPlan()
Definition VPlan.cpp:165
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:357
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:199
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:302
void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:126
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:424
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:419
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:397
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:409
friend class VPValue
Definition VPlanValue.h:303
unsigned getVPDefID() const
Definition VPlanValue.h:429
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3663
VPValue * getStartValue() const
Definition VPlan.h:3662
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2015
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1711
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
Definition VPlan.h:601
FastMathFlagsTy FMFs
Definition VPlan.h:665
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:659
CmpInst::Predicate CmpPredicate
Definition VPlan.h:658
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:663
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:823
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:660
CmpInst::Predicate getPredicate() const
Definition VPlan.h:805
ExactFlagsTy ExactFlags
Definition VPlan.h:662
bool hasNoSignedWrap() const
Definition VPlan.h:847
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:817
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:820
DisjointFlagsTy DisjointFlags
Definition VPlan.h:661
unsigned AllFlags
Definition VPlan.h:666
bool hasNoUnsignedWrap() const
Definition VPlan.h:836
NonNegFlagsTy NonNegFlags
Definition VPlan.h:664
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:768
Instruction & getInstruction() const
Definition VPlan.h:1376
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1351
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Definition VPlan.h:1101
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1061
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1017
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1051
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1064
@ FirstOrderRecurrenceSplice
Definition VPlan.h:990
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1055
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1014
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1011
@ VScale
Returns the value for vscale.
Definition VPlan.h:1066
@ CanonicalIVIncrementForPart
Definition VPlan.h:1004
bool hasResult() const
Definition VPlan.h:1140
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1180
unsigned getOpcode() const
Definition VPlan.h:1120
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2543
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2547
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2545
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2537
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2566
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2531
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2640
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2659
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2610
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
Definition VPlan.h:2797
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1266
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:3930
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1291
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1258
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:395
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:416
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:483
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:406
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2842
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2739
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2743
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2745
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2735
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2741
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3974
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition VPlan.h:4042
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2857
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2902
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
Definition VPlan.h:2931
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3728
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:522
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:587
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:524
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:931
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1458
operand_range operands()
Definition VPlanValue.h:267
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:243
unsigned getNumOperands() const
Definition VPlanValue.h:237
operand_iterator op_begin()
Definition VPlanValue.h:263
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:238
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:282
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1412
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
friend class VPExpressionRecipe
Definition VPlanValue.h:53
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1454
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:140
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:176
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:98
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1415
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:171
user_range users()
Definition VPlanValue.h:134
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
Definition VPlan.h:1915
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
operand_range args()
Definition VPlan.h:1668
Function * getCalledScalarFunction() const
Definition VPlan.h:1664
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1537
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
Definition VPlan.h:1812
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2071
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2182
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2191
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1602
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1605
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3166
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3163
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3203
Instruction & Ingredient
Definition VPlan.h:3157
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3160
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3217
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3210
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3207
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1440
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4306
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1049
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:733
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2211
auto cast_or_null(const Y &Val)
Definition Casting.h:715
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
bool canConstantBeExtended(const ConstantInt *CI, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1756
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:325
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1413
PHINode & getIRPhi()
Definition VPlan.h:1421
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:876
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:877
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:293
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3290
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
Definition VPlan.h:1757
VPValue * getCond() const
Definition VPlan.h:1753
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3371
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3374
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3335
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.