47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
56 case VPInterleaveEVLSC:
59 case VPWidenStoreEVLSC:
67 ->getCalledScalarFunction()
69 case VPWidenIntrinsicSC:
71 case VPCanonicalIVPHISC:
72 case VPBranchOnMaskSC:
73 case VPFirstOrderRecurrencePHISC:
74 case VPReductionPHISC:
75 case VPScalarIVStepsSC:
79 case VPReductionEVLSC:
81 case VPVectorPointerSC:
82 case VPWidenCanonicalIVSC:
85 case VPWidenIntOrFpInductionSC:
86 case VPWidenLoadEVLSC:
90 case VPWidenSelectSC: {
94 assert((!
I || !
I->mayWriteToMemory()) &&
95 "underlying instruction may write to memory");
107 case VPInstructionSC:
109 case VPWidenLoadEVLSC:
114 ->mayReadFromMemory();
117 ->getCalledScalarFunction()
118 ->onlyWritesMemory();
119 case VPWidenIntrinsicSC:
121 case VPBranchOnMaskSC:
122 case VPFirstOrderRecurrencePHISC:
123 case VPPredInstPHISC:
124 case VPScalarIVStepsSC:
125 case VPWidenStoreEVLSC:
129 case VPReductionEVLSC:
131 case VPVectorPointerSC:
132 case VPWidenCanonicalIVSC:
135 case VPWidenIntOrFpInductionSC:
138 case VPWidenSelectSC: {
142 assert((!
I || !
I->mayReadFromMemory()) &&
143 "underlying instruction may read from memory");
157 case VPFirstOrderRecurrencePHISC:
158 case VPPredInstPHISC:
159 case VPVectorEndPointerSC:
161 case VPInstructionSC:
163 case VPWidenCallSC: {
167 case VPWidenIntrinsicSC:
170 case VPReductionEVLSC:
172 case VPScalarIVStepsSC:
173 case VPVectorPointerSC:
174 case VPWidenCanonicalIVSC:
177 case VPWidenIntOrFpInductionSC:
179 case VPWidenPointerInductionSC:
181 case VPWidenSelectSC: {
185 assert((!
I || !
I->mayHaveSideEffects()) &&
186 "underlying instruction has side-effects");
189 case VPInterleaveEVLSC:
192 case VPWidenLoadEVLSC:
194 case VPWidenStoreEVLSC:
199 "mayHaveSideffects result for ingredient differs from this "
202 case VPReplicateSC: {
204 return R->getUnderlyingInstr()->mayHaveSideEffects();
212 assert(!Parent &&
"Recipe already in some VPBasicBlock");
214 "Insertion position not in any VPBasicBlock");
220 assert(!Parent &&
"Recipe already in some VPBasicBlock");
226 assert(!Parent &&
"Recipe already in some VPBasicBlock");
228 "Insertion position not in any VPBasicBlock");
263 UI = IG->getInsertPos();
265 UI = &WidenMem->getIngredient();
268 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
278 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
302 std::optional<unsigned> Opcode;
308 OpR =
Op->getDefiningRecipe();
311 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
334 Opcode =
Widen->getOpcode();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
338 :
Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
340 :
Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
344 if (!ExtBR &&
Widen->getOperand(1)->isLiveIn()) {
347 InputTypeB = InputTypeA;
354 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
355 ExtAType = GetExtendKind(OpR);
359 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
360 ExtAType = GetExtendKind(RedPhiOp1R);
366 return Reduction->computeCost(VF, Ctx);
368 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
369 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
370 PhiType, VF, ExtAType, ExtBType,
371 Opcode, Ctx.CostKind);
375 auto &Builder = State.Builder;
378 "Unhandled partial reduction opcode");
382 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
387 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
388 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
393#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396 O << Indent <<
"PARTIAL-REDUCE ";
404 assert(OpType == Other.OpType &&
"OpType must match");
406 case OperationType::OverflowingBinOp:
407 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
408 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
410 case OperationType::Trunc:
414 case OperationType::DisjointOp:
417 case OperationType::PossiblyExactOp:
418 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
420 case OperationType::GEPOp:
423 case OperationType::FPMathOp:
424 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
425 FMFs.NoInfs &= Other.FMFs.NoInfs;
427 case OperationType::NonNegOp:
430 case OperationType::Cmp:
433 case OperationType::Other:
440 assert(OpType == OperationType::FPMathOp &&
441 "recipe doesn't have fast math flags");
453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
457template <
unsigned PartOpIdx>
460 if (U.getNumOperands() == PartOpIdx + 1)
461 return U.getOperand(PartOpIdx);
465template <
unsigned PartOpIdx>
484 "Set flags not supported for the provided opcode");
485 assert((getNumOperandsForOpcode(Opcode) == -1u ||
487 "number of operands does not match opcode");
491unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
502 case Instruction::Alloca:
503 case Instruction::ExtractValue:
504 case Instruction::Freeze:
505 case Instruction::Load:
518 case Instruction::ICmp:
519 case Instruction::FCmp:
520 case Instruction::Store:
529 case Instruction::Select:
536 case Instruction::Call:
537 case Instruction::GetElementPtr:
538 case Instruction::PHI:
539 case Instruction::Switch:
551bool VPInstruction::canGenerateScalarForFirstLane()
const {
557 case Instruction::Freeze:
558 case Instruction::ICmp:
559 case Instruction::PHI:
560 case Instruction::Select:
586 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
588 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
596 IRBuilderBase &Builder = State.
Builder;
615 case Instruction::ExtractElement: {
618 unsigned IdxToExtract =
626 case Instruction::Freeze: {
630 case Instruction::FCmp:
631 case Instruction::ICmp: {
637 case Instruction::PHI: {
640 case Instruction::Select: {
665 {VIVElem0, ScalarTC},
nullptr, Name);
681 if (!V1->getType()->isVectorTy())
701 "Requested vector length should be an integer.");
708 {AVL, VFArg, State.Builder.getTrue()});
714 assert(Part != 0 &&
"Must have a positive part");
745 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
769 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
799 RecurKind RK = PhiR->getRecurrenceKind();
801 "Unexpected reduction kind");
802 assert(!PhiR->isInLoop() &&
803 "In-loop FindLastIV reduction is not supported yet");
815 for (
unsigned Part = 1; Part <
UF; ++Part)
816 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
830 RecurKind RK = PhiR->getRecurrenceKind();
832 "should be handled by ComputeFindIVResult");
838 for (
unsigned Part = 0; Part <
UF; ++Part)
839 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
841 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
846 Value *ReducedPartRdx = RdxParts[0];
847 if (PhiR->isOrdered()) {
848 ReducedPartRdx = RdxParts[
UF - 1];
851 for (
unsigned Part = 1; Part <
UF; ++Part) {
852 Value *RdxPart = RdxParts[Part];
854 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
860 Opcode = Instruction::Add;
865 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
872 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
879 return ReducedPartRdx;
887 "invalid offset to extract from");
891 assert(
Offset <= 1 &&
"invalid offset to extract from");
905 "can only generate first lane for PtrAdd");
925 Value *Res =
nullptr;
930 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
931 Value *VectorIdx = Idx == 1
933 : Builder.
CreateSub(LaneToExtract, VectorStart);
936 : Builder.CreateExtractElement(
939 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
940 Res = Builder.CreateSelect(Cmp, Ext, Res);
959 Value *Res =
nullptr;
960 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
961 Value *TrailingZeros =
991 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
994 case Instruction::FNeg:
995 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
996 case Instruction::UDiv:
997 case Instruction::SDiv:
998 case Instruction::SRem:
999 case Instruction::URem:
1000 case Instruction::Add:
1001 case Instruction::FAdd:
1002 case Instruction::Sub:
1003 case Instruction::FSub:
1004 case Instruction::Mul:
1005 case Instruction::FMul:
1006 case Instruction::FDiv:
1007 case Instruction::FRem:
1008 case Instruction::Shl:
1009 case Instruction::LShr:
1010 case Instruction::AShr:
1011 case Instruction::And:
1012 case Instruction::Or:
1013 case Instruction::Xor: {
1021 RHSInfo = Ctx.getOperandInfo(RHS);
1032 return Ctx.TTI.getArithmeticInstrCost(
1033 Opcode, ResultTy, Ctx.CostKind,
1034 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1035 RHSInfo, Operands, CtxI, &Ctx.TLI);
1037 case Instruction::Freeze:
1039 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1041 case Instruction::ExtractValue:
1042 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1044 case Instruction::ICmp:
1045 case Instruction::FCmp: {
1049 return Ctx.TTI.getCmpSelInstrCost(
1051 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1052 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1068 "Should only generate a vector value or single scalar, not scalars "
1076 case Instruction::Select: {
1080 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1081 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1086 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1089 case Instruction::ExtractElement:
1099 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1103 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1104 return Ctx.TTI.getArithmeticReductionCost(
1110 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1117 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1118 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1124 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1133 unsigned Multiplier =
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1145 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1146 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1151 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1152 VecTy, Ctx.CostKind, 0);
1162 "unexpected VPInstruction witht underlying value");
1170 getOpcode() == Instruction::ExtractElement ||
1181 case Instruction::PHI:
1192 assert(!State.Lane &&
"VPInstruction executing an Lane");
1195 "Set flags not supported for the provided opcode");
1198 Value *GeneratedValue = generate(State);
1201 assert(GeneratedValue &&
"generate must produce a value");
1202 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1207 !GeneratesPerFirstLaneOnly) ||
1208 State.VF.isScalar()) &&
1209 "scalar value but not only first lane defined");
1210 State.set(
this, GeneratedValue,
1211 GeneratesPerFirstLaneOnly);
1218 case Instruction::ExtractElement:
1219 case Instruction::Freeze:
1220 case Instruction::FCmp:
1221 case Instruction::ICmp:
1222 case Instruction::Select:
1223 case Instruction::PHI:
1257 case Instruction::ExtractElement:
1259 case Instruction::PHI:
1261 case Instruction::FCmp:
1262 case Instruction::ICmp:
1263 case Instruction::Select:
1264 case Instruction::Or:
1265 case Instruction::Freeze:
1305 case Instruction::FCmp:
1306 case Instruction::ICmp:
1307 case Instruction::Select:
1317#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1325 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1337 O <<
"combined load";
1340 O <<
"combined store";
1343 O <<
"active lane mask";
1346 O <<
"EXPLICIT-VECTOR-LENGTH";
1349 O <<
"first-order splice";
1352 O <<
"branch-on-cond";
1355 O <<
"TC > VF ? TC - VF : 0";
1361 O <<
"branch-on-count";
1367 O <<
"buildstructvector";
1373 O <<
"extract-lane";
1376 O <<
"extract-last-element";
1379 O <<
"extract-penultimate-element";
1382 O <<
"compute-anyof-result";
1385 O <<
"compute-find-iv-result";
1388 O <<
"compute-reduction-result";
1403 O <<
"first-active-lane";
1406 O <<
"reduction-start-vector";
1409 O <<
"resume-for-epilogue";
1431 State.set(
this, Cast,
VPLane(0));
1442 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1443 State.set(
this,
VScale,
true);
1452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1455 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1461 O <<
"wide-iv-step ";
1465 O <<
"step-vector " << *ResultTy;
1468 O <<
"vscale " << *ResultTy;
1474 O <<
" to " << *ResultTy;
1481 PHINode *NewPhi = State.Builder.CreatePHI(
1482 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1489 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1494 State.set(
this, NewPhi,
VPLane(0));
1497#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1500 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1515 "PHINodes must be handled by VPIRPhi");
1518 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1530 "can only update exiting operands to phi nodes");
1540#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1543 O << Indent <<
"IR " << I;
1555 auto *PredVPBB = Pred->getExitingBasicBlock();
1556 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1563 if (Phi->getBasicBlockIndex(PredBB) == -1)
1564 Phi->addIncoming(V, PredBB);
1566 Phi->setIncomingValueForBlock(PredBB, V);
1571 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1576 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1577 "Number of phi operands must match number of predecessors");
1578 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1579 R->removeOperand(Position);
1582#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1596#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1602 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1607 std::get<1>(
Op)->printAsOperand(O);
1620 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1622 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1626 for (
const auto &[Kind,
Node] : Metadata)
1627 I.setMetadata(Kind,
Node);
1632 for (
const auto &[KindA, MDA] : Metadata) {
1633 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1634 if (KindA == KindB && MDA == MDB) {
1640 Metadata = std::move(MetadataIntersection);
1644 assert(State.VF.isVector() &&
"not widening");
1645 assert(Variant !=
nullptr &&
"Can't create vector function.");
1656 Arg = State.get(
I.value(),
VPLane(0));
1659 Args.push_back(Arg);
1665 CI->getOperandBundlesAsDefs(OpBundles);
1667 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1670 V->setCallingConv(Variant->getCallingConv());
1672 if (!V->getType()->isVoidTy())
1678 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1679 Variant->getFunctionType()->params(),
1683#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1686 O << Indent <<
"WIDEN-CALL ";
1698 O <<
" @" << CalledFn->
getName() <<
"(";
1704 O <<
" (using library function";
1705 if (Variant->hasName())
1706 O <<
": " << Variant->getName();
1712 assert(State.VF.isVector() &&
"not widening");
1725 Arg = State.get(
I.value(),
VPLane(0));
1731 Args.push_back(Arg);
1735 Module *M = State.Builder.GetInsertBlock()->getModule();
1739 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1744 CI->getOperandBundlesAsDefs(OpBundles);
1746 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1751 if (!V->getType()->isVoidTy())
1768 auto *V =
Op->getUnderlyingValue();
1771 Arguments.push_back(UI->getArgOperand(Idx));
1780 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1786 : Ctx.Types.inferScalarType(
Op));
1791 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1796 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1818#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1821 O << Indent <<
"WIDEN-INTRINSIC ";
1822 if (ResultTy->isVoidTy()) {
1850 Value *Mask =
nullptr;
1852 Mask = State.get(VPMask);
1855 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1859 if (Opcode == Instruction::Sub)
1860 IncAmt = Builder.CreateNeg(IncAmt);
1862 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1864 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1879 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1885 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1898 {PtrTy, IncTy, MaskTy});
1901 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1902 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1905#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1908 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1911 if (Opcode == Instruction::Sub)
1914 assert(Opcode == Instruction::Add);
1927 O << Indent <<
"WIDEN-SELECT ";
1949 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1950 State.set(
this, Sel);
1962 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1963 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1971 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1972 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1976 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1979 return Ctx.TTI.getArithmeticInstrCost(
1980 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1981 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands,
SI);
1990 Pred = Cmp->getPredicate();
1991 return Ctx.TTI.getCmpSelInstrCost(
1992 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1993 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1996VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2009 case OperationType::OverflowingBinOp:
2010 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2011 Opcode == Instruction::Mul ||
2012 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2013 case OperationType::Trunc:
2014 return Opcode == Instruction::Trunc;
2015 case OperationType::DisjointOp:
2016 return Opcode == Instruction::Or;
2017 case OperationType::PossiblyExactOp:
2018 return Opcode == Instruction::AShr;
2019 case OperationType::GEPOp:
2020 return Opcode == Instruction::GetElementPtr ||
2023 case OperationType::FPMathOp:
2024 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2025 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2026 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2027 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2028 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2032 case OperationType::NonNegOp:
2033 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2034 case OperationType::Cmp:
2035 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2036 case OperationType::Other:
2043#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2046 case OperationType::Cmp:
2049 case OperationType::DisjointOp:
2053 case OperationType::PossiblyExactOp:
2057 case OperationType::OverflowingBinOp:
2063 case OperationType::Trunc:
2069 case OperationType::FPMathOp:
2072 case OperationType::GEPOp:
2075 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2080 case OperationType::NonNegOp:
2084 case OperationType::Other:
2092 auto &Builder = State.Builder;
2094 case Instruction::Call:
2095 case Instruction::Br:
2096 case Instruction::PHI:
2097 case Instruction::GetElementPtr:
2098 case Instruction::Select:
2100 case Instruction::UDiv:
2101 case Instruction::SDiv:
2102 case Instruction::SRem:
2103 case Instruction::URem:
2104 case Instruction::Add:
2105 case Instruction::FAdd:
2106 case Instruction::Sub:
2107 case Instruction::FSub:
2108 case Instruction::FNeg:
2109 case Instruction::Mul:
2110 case Instruction::FMul:
2111 case Instruction::FDiv:
2112 case Instruction::FRem:
2113 case Instruction::Shl:
2114 case Instruction::LShr:
2115 case Instruction::AShr:
2116 case Instruction::And:
2117 case Instruction::Or:
2118 case Instruction::Xor: {
2122 Ops.push_back(State.get(VPOp));
2124 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2135 case Instruction::ExtractValue: {
2139 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2140 State.set(
this, Extract);
2143 case Instruction::Freeze: {
2145 Value *Freeze = Builder.CreateFreeze(
Op);
2146 State.set(
this, Freeze);
2149 case Instruction::ICmp:
2150 case Instruction::FCmp: {
2152 bool FCmp = Opcode == Instruction::FCmp;
2158 C = Builder.CreateFCmpFMF(
2180 State.get(
this)->getType() &&
2181 "inferred type and type from generated instructions do not match");
2188 case Instruction::UDiv:
2189 case Instruction::SDiv:
2190 case Instruction::SRem:
2191 case Instruction::URem:
2196 case Instruction::FNeg:
2197 case Instruction::Add:
2198 case Instruction::FAdd:
2199 case Instruction::Sub:
2200 case Instruction::FSub:
2201 case Instruction::Mul:
2202 case Instruction::FMul:
2203 case Instruction::FDiv:
2204 case Instruction::FRem:
2205 case Instruction::Shl:
2206 case Instruction::LShr:
2207 case Instruction::AShr:
2208 case Instruction::And:
2209 case Instruction::Or:
2210 case Instruction::Xor:
2211 case Instruction::Freeze:
2212 case Instruction::ExtractValue:
2213 case Instruction::ICmp:
2214 case Instruction::FCmp:
2221#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2224 O << Indent <<
"WIDEN ";
2233 auto &Builder = State.Builder;
2235 assert(State.VF.isVector() &&
"Not vectorizing?");
2240 State.set(
this, Cast);
2264 if (WidenMemoryRecipe ==
nullptr)
2266 if (!WidenMemoryRecipe->isConsecutive())
2268 if (WidenMemoryRecipe->isReverse())
2270 if (WidenMemoryRecipe->isMasked())
2278 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2281 CCH = ComputeCCH(StoreRecipe);
2284 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2285 Opcode == Instruction::FPExt) {
2296 return Ctx.TTI.getCastInstrCost(
2297 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2304 O << Indent <<
"WIDEN-CAST ";
2315 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2322 : ConstantFP::get(Ty,
C);
2325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2330 O <<
" = WIDEN-INDUCTION ";
2334 O <<
" (truncated to " << *TI->getType() <<
")";
2347 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2351#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2356 O <<
" = DERIVED-IV ";
2380 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2387 AddOp = Instruction::Add;
2388 MulOp = Instruction::Mul;
2390 AddOp = InductionOpcode;
2391 MulOp = Instruction::FMul;
2400 Type *VecIVTy =
nullptr;
2401 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2402 if (!FirstLaneOnly && State.VF.isScalable()) {
2406 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2407 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2410 unsigned StartLane = 0;
2411 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2413 StartLane = State.Lane->getKnownLane();
2414 EndLane = StartLane + 1;
2418 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2423 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2426 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2429 if (!FirstLaneOnly && State.VF.isScalable()) {
2430 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2431 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2433 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2434 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2435 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2436 State.set(
this,
Add);
2443 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2445 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2446 Value *StartIdx = Builder.CreateBinOp(
2451 "Expected StartIdx to be folded to a constant when VF is not "
2453 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2454 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2459#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2464 O <<
" = SCALAR-STEPS ";
2470 assert(State.VF.isVector() &&
"not widening");
2477 if (areAllOperandsInvariant()) {
2497 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2498 State.set(
this,
Splat);
2504 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2511 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2518 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2519 "NewGEP is not a pointer vector");
2520 State.set(
this, NewGEP);
2524#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2527 O << Indent <<
"WIDEN-GEP ";
2528 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2530 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2534 O <<
" = getelementptr";
2544 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2545 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2546 ?
DL.getIndexType(Builder.getPtrTy(0))
2547 : Builder.getInt32Ty();
2551 auto &Builder = State.Builder;
2553 bool IsUnitStride = Stride == 1 || Stride == -1;
2555 IsUnitStride, CurrentPart, Builder);
2559 if (IndexTy != RunTimeVF->
getType())
2560 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2562 Value *NumElt = Builder.CreateMul(
2563 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2565 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2567 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2571 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2574 State.set(
this, ResultPtr,
true);
2577#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2582 O <<
" = vector-end-pointer";
2589 auto &Builder = State.Builder;
2592 true, CurrentPart, Builder);
2599 State.set(
this, ResultPtr,
true);
2602#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2607 O <<
" = vector-pointer ";
2618 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2620 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2623 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2630 O << Indent <<
"BLEND ";
2652 assert(!State.Lane &&
"Reduction being replicated.");
2656 "In-loop AnyOf reductions aren't currently supported");
2662 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2667 if (State.VF.isVector())
2668 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2670 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2676 if (State.VF.isVector())
2680 NewRed = State.Builder.CreateBinOp(
2682 PrevInChain, NewVecOp);
2683 PrevInChain = NewRed;
2684 NextInChain = NewRed;
2689 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2691 NextInChain = State.Builder.CreateBinOp(
2693 PrevInChain, NewRed);
2695 State.set(
this, NextInChain,
true);
2699 assert(!State.Lane &&
"Reduction being replicated.");
2701 auto &Builder = State.Builder;
2713 Mask = State.get(CondOp);
2715 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2725 NewRed = Builder.CreateBinOp(
2729 State.set(
this, NewRed,
true);
2735 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2739 std::optional<FastMathFlags> OptionalFMF =
2746 "Any-of reduction not implemented in VPlan-based cost model currently.");
2752 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2757 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2762 ExpressionTypes ExpressionType,
2765 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2766 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2770 "expression cannot contain recipes with side-effects");
2774 for (
auto *R : ExpressionRecipes)
2775 ExpressionRecipesAsSetOfUsers.
insert(R);
2781 if (R != ExpressionRecipes.back() &&
2782 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2783 return !ExpressionRecipesAsSetOfUsers.contains(U);
2788 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2790 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2795 R->removeFromParent();
2802 for (
auto *R : ExpressionRecipes) {
2803 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2804 auto *
Def =
Op->getDefiningRecipe();
2805 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2808 LiveInPlaceholders.push_back(
new VPValue());
2814 for (
auto *R : ExpressionRecipes)
2815 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2816 R->replaceUsesOfWith(LiveIn, Tmp);
2820 for (
auto *R : ExpressionRecipes)
2823 if (!R->getParent())
2824 R->insertBefore(
this);
2827 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2830 ExpressionRecipes.clear();
2835 Type *RedTy = Ctx.Types.inferScalarType(
this);
2839 "VPExpressionRecipe only supports integer types currently.");
2842 switch (ExpressionType) {
2843 case ExpressionTypes::ExtendedReduction: {
2844 return Ctx.TTI.getExtendedReductionCost(
2848 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2850 case ExpressionTypes::MulAccReduction:
2851 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2854 case ExpressionTypes::ExtNegatedMulAccReduction:
2855 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2856 Opcode = Instruction::Sub;
2858 case ExpressionTypes::ExtMulAccReduction: {
2859 return Ctx.TTI.getMulAccReductionCost(
2862 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2870 return R->mayReadFromMemory() || R->mayWriteToMemory();
2878 "expression cannot contain recipes with side-effects");
2882#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2886 O << Indent <<
"EXPRESSION ";
2892 switch (ExpressionType) {
2893 case ExpressionTypes::ExtendedReduction: {
2902 << *Ext0->getResultType();
2903 if (Red->isConditional()) {
2910 case ExpressionTypes::ExtNegatedMulAccReduction: {
2922 << *Ext0->getResultType() <<
"), (";
2926 << *Ext1->getResultType() <<
")";
2927 if (Red->isConditional()) {
2934 case ExpressionTypes::MulAccReduction:
2935 case ExpressionTypes::ExtMulAccReduction: {
2943 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2945 : ExpressionRecipes[0]);
2953 << *Ext0->getResultType() <<
"), (";
2961 << *Ext1->getResultType() <<
")";
2963 if (Red->isConditional()) {
2975 O << Indent <<
"REDUCE ";
2995 O << Indent <<
"REDUCE ";
3023 assert((!Instr->getType()->isAggregateType() ||
3025 "Expected vectorizable or non-aggregate type.");
3028 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3032 Cloned->
setName(Instr->getName() +
".cloned");
3033 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3037 if (ResultTy != Cloned->
getType())
3048 State.setDebugLocFrom(
DL);
3053 auto InputLane = Lane;
3057 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3061 State.Builder.Insert(Cloned);
3063 State.set(RepRecipe, Cloned, Lane);
3067 State.AC->registerAssumption(
II);
3073 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3074 "Expected a recipe is either within a region or all of its operands "
3075 "are defined outside the vectorized region.");
3082 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3083 "must have already been unrolled");
3089 "uniform recipe shouldn't be predicated");
3090 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3095 State.Lane->isFirstLane()
3098 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3116 auto *PtrR =
Ptr->getDefiningRecipe();
3119 Instruction::GetElementPtr) ||
3127 if (!Opd->isDefinedOutsideLoopRegions() &&
3141 while (!WorkList.
empty()) {
3143 if (!Cur || !Seen.
insert(Cur).second)
3146 for (
VPUser *U : Cur->users()) {
3148 if (InterleaveR->getAddr() == Cur)
3151 if (RepR->getOpcode() == Instruction::Load &&
3152 RepR->getOperand(0) == Cur)
3154 if (RepR->getOpcode() == Instruction::Store &&
3155 RepR->getOperand(1) == Cur)
3159 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3174 Ctx.SkipCostComputation.insert(UI);
3177 case Instruction::GetElementPtr:
3183 case Instruction::Call: {
3189 for (
const VPValue *ArgOp : ArgOps)
3190 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3192 if (CalledFn->isIntrinsic())
3195 switch (CalledFn->getIntrinsicID()) {
3196 case Intrinsic::assume:
3197 case Intrinsic::lifetime_end:
3198 case Intrinsic::lifetime_start:
3199 case Intrinsic::sideeffect:
3200 case Intrinsic::pseudoprobe:
3201 case Intrinsic::experimental_noalias_scope_decl: {
3204 "scalarizing intrinsic should be free");
3211 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3213 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3215 if (CalledFn->isIntrinsic())
3216 ScalarCallCost = std::min(
3220 return ScalarCallCost;
3227 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3229 case Instruction::Add:
3230 case Instruction::Sub:
3231 case Instruction::FAdd:
3232 case Instruction::FSub:
3233 case Instruction::Mul:
3234 case Instruction::FMul:
3235 case Instruction::FDiv:
3236 case Instruction::FRem:
3237 case Instruction::Shl:
3238 case Instruction::LShr:
3239 case Instruction::AShr:
3240 case Instruction::And:
3241 case Instruction::Or:
3242 case Instruction::Xor:
3243 case Instruction::ICmp:
3244 case Instruction::FCmp:
3248 case Instruction::SDiv:
3249 case Instruction::UDiv:
3250 case Instruction::SRem:
3251 case Instruction::URem: {
3258 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3267 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3274 case Instruction::Load:
3275 case Instruction::Store: {
3285 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3292 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3293 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3298 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3303 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3304 PtrTy, &Ctx.SE,
nullptr, Ctx.CostKind);
3314 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3316 bool EfficientVectorLoadStore =
3317 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3318 if (!(IsLoad && !PreferVectorizedAddressing) &&
3319 !(!IsLoad && EfficientVectorLoadStore))
3322 if (!EfficientVectorLoadStore)
3323 ResultTy = Ctx.Types.inferScalarType(
this);
3327 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3331 return Ctx.getLegacyCost(UI, VF);
3334#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3337 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3346 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3364 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3367 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3371 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3373 "Expected to replace unreachable terminator with conditional branch.");
3375 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3376 CondBr->setSuccessor(0,
nullptr);
3377 CurrentTerminator->eraseFromParent();
3389 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3394 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3396 "operand must be VPReplicateRecipe");
3407 "Packed operands must generate an insertelement or insertvalue");
3415 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3418 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3419 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3421 if (State.hasVectorValue(
this))
3422 State.reset(
this, VPhi);
3424 State.set(
this, VPhi);
3432 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3433 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3436 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3437 if (State.hasScalarValue(
this, *State.Lane))
3438 State.reset(
this, Phi, *State.Lane);
3440 State.set(
this, Phi, *State.Lane);
3443 State.reset(
getOperand(0), Phi, *State.Lane);
3447#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3450 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3462 ->getAddressSpace();
3465 : Instruction::Store;
3472 "Inconsecutive memory access should not have the order.");
3482 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3484 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty,
Ptr,
IsMasked, Alignment,
3491 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3496 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3502 return Cost += Ctx.TTI.getShuffleCost(
3513 auto &Builder = State.Builder;
3514 Value *Mask =
nullptr;
3515 if (
auto *VPMask =
getMask()) {
3518 Mask = State.get(VPMask);
3520 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3526 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask,
nullptr,
3527 "wide.masked.gather");
3530 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3533 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment,
"wide.load");
3537 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3538 State.set(
this, NewLI);
3541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3544 O << Indent <<
"WIDEN ";
3556 Value *AllTrueMask =
3557 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3558 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3559 {Operand, AllTrueMask, EVL},
nullptr, Name);
3568 auto &Builder = State.Builder;
3572 Value *Mask =
nullptr;
3574 Mask = State.get(VPMask);
3578 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3583 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3584 nullptr,
"wide.masked.gather");
3586 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3587 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3595 State.set(
this, Res);
3612 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3616 return Cost + Ctx.TTI.getShuffleCost(
3621#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3624 O << Indent <<
"WIDEN ";
3636 auto &Builder = State.Builder;
3638 Value *Mask =
nullptr;
3639 if (
auto *VPMask =
getMask()) {
3642 Mask = State.get(VPMask);
3644 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3647 Value *StoredVal = State.get(StoredVPValue);
3651 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3658 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3660 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3662 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3666#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3669 O << Indent <<
"WIDEN store ";
3679 auto &Builder = State.Builder;
3682 Value *StoredVal = State.get(StoredValue);
3686 Value *Mask =
nullptr;
3688 Mask = State.get(VPMask);
3692 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3695 if (CreateScatter) {
3697 Intrinsic::vp_scatter,
3698 {StoredVal, Addr, Mask, EVL});
3701 Intrinsic::vp_store,
3702 {StoredVal, Addr, Mask, EVL});
3723 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3727 return Cost + Ctx.TTI.getShuffleCost(
3732#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3735 O << Indent <<
"WIDEN vp.store ";
3743 auto VF = DstVTy->getElementCount();
3745 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3746 Type *SrcElemTy = SrcVecTy->getElementType();
3747 Type *DstElemTy = DstVTy->getElementType();
3748 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3749 "Vector elements must have same size");
3753 return Builder.CreateBitOrPointerCast(V, DstVTy);
3760 "Only one type should be a pointer type");
3762 "Only one type should be a floating point type");
3766 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3767 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3773 const Twine &Name) {
3774 unsigned Factor = Vals.
size();
3775 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3779 for (
Value *Val : Vals)
3780 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3785 if (VecTy->isScalableTy()) {
3786 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3787 return Builder.CreateVectorInterleave(Vals, Name);
3794 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3795 return Builder.CreateShuffleVector(
3828 assert(!State.Lane &&
"Interleave group being replicated.");
3830 "Masking gaps for scalable vectors is not yet supported.");
3836 unsigned InterleaveFactor = Group->
getFactor();
3843 auto CreateGroupMask = [&BlockInMask, &State,
3844 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3845 if (State.VF.isScalable()) {
3846 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3847 assert(InterleaveFactor <= 8 &&
3848 "Unsupported deinterleave factor for scalable vectors");
3849 auto *ResBlockInMask = State.get(BlockInMask);
3857 Value *ResBlockInMask = State.get(BlockInMask);
3858 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3861 "interleaved.mask");
3862 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3863 ShuffledMask, MaskForGaps)
3867 const DataLayout &DL = Instr->getDataLayout();
3870 Value *MaskForGaps =
nullptr;
3874 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3878 if (BlockInMask || MaskForGaps) {
3879 Value *GroupMask = CreateGroupMask(MaskForGaps);
3881 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3883 PoisonVec,
"wide.masked.vec");
3885 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3892 if (VecTy->isScalableTy()) {
3895 assert(InterleaveFactor <= 8 &&
3896 "Unsupported deinterleave factor for scalable vectors");
3897 NewLoad = State.Builder.CreateIntrinsic(
3900 nullptr,
"strided.vec");
3903 auto CreateStridedVector = [&InterleaveFactor, &State,
3904 &NewLoad](
unsigned Index) ->
Value * {
3905 assert(Index < InterleaveFactor &&
"Illegal group index");
3906 if (State.VF.isScalable())
3907 return State.Builder.CreateExtractValue(NewLoad, Index);
3913 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3917 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3924 Value *StridedVec = CreateStridedVector(
I);
3927 if (Member->getType() != ScalarTy) {
3934 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3936 State.set(VPDefs[J], StridedVec);
3946 Value *MaskForGaps =
3949 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3953 unsigned StoredIdx = 0;
3954 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3956 "Fail to get a member from an interleaved store group");
3966 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3970 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3974 if (StoredVec->
getType() != SubVT)
3983 if (BlockInMask || MaskForGaps) {
3984 Value *GroupMask = CreateGroupMask(MaskForGaps);
3985 NewStoreInstr = State.Builder.CreateMaskedStore(
3986 IVec, ResAddr, Group->
getAlign(), GroupMask);
3989 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3996#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4000 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4001 IG->getInsertPos()->printAsOperand(O,
false);
4011 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4012 if (!IG->getMember(i))
4015 O <<
"\n" << Indent <<
" store ";
4017 O <<
" to index " << i;
4019 O <<
"\n" << Indent <<
" ";
4021 O <<
" = load from index " << i;
4029 assert(!State.Lane &&
"Interleave group being replicated.");
4030 assert(State.VF.isScalable() &&
4031 "Only support scalable VF for EVL tail-folding.");
4033 "Masking gaps for scalable vectors is not yet supported.");
4039 unsigned InterleaveFactor = Group->
getFactor();
4040 assert(InterleaveFactor <= 8 &&
4041 "Unsupported deinterleave/interleave factor for scalable vectors");
4048 Value *InterleaveEVL = State.Builder.CreateMul(
4049 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4053 Value *GroupMask =
nullptr;
4059 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4064 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4065 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4076 NewLoad = State.Builder.CreateIntrinsic(
4079 nullptr,
"strided.vec");
4081 const DataLayout &DL = Instr->getDataLayout();
4082 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4088 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4090 if (Member->getType() != ScalarTy) {
4108 const DataLayout &DL = Instr->getDataLayout();
4109 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4117 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4119 if (StoredVec->
getType() != SubVT)
4129 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4130 {IVec, ResAddr, GroupMask, InterleaveEVL});
4139#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4143 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4144 IG->getInsertPos()->printAsOperand(O,
false);
4155 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4156 if (!IG->getMember(i))
4159 O <<
"\n" << Indent <<
" vp.store ";
4161 O <<
" to index " << i;
4163 O <<
"\n" << Indent <<
" ";
4165 O <<
" = vp.load from index " << i;
4176 unsigned InsertPosIdx = 0;
4177 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4178 if (
auto *Member = IG->getMember(Idx)) {
4179 if (Member == InsertPos)
4183 Type *ValTy = Ctx.Types.inferScalarType(
4189 unsigned InterleaveFactor = IG->getFactor();
4194 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4195 if (IG->getMember(IF))
4200 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4201 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4203 if (!IG->isReverse())
4206 return Cost + IG->getNumMembers() *
4208 VectorTy, VectorTy, {}, Ctx.CostKind,
4212#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4215 O << Indent <<
"EMIT ";
4217 O <<
" = CANONICAL-INDUCTION ";
4223 return IsScalarAfterVectorization &&
4227#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4231 "unexpected number of operands");
4232 O << Indent <<
"EMIT ";
4234 O <<
" = WIDEN-POINTER-INDUCTION ";
4250 O << Indent <<
"EMIT ";
4252 O <<
" = EXPAND SCEV " << *Expr;
4259 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4263 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4266 VStep = Builder.CreateVectorSplat(VF, VStep);
4268 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4270 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4271 State.set(
this, CanonicalVectorIV);
4274#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4277 O << Indent <<
"EMIT ";
4279 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4285 auto &Builder = State.Builder;
4289 Type *VecTy = State.VF.isScalar()
4290 ? VectorInit->getType()
4294 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4295 if (State.VF.isVector()) {
4297 auto *One = ConstantInt::get(IdxTy, 1);
4300 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4301 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4302 VectorInit = Builder.CreateInsertElement(
4308 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4309 Phi->addIncoming(VectorInit, VectorPH);
4310 State.set(
this, Phi);
4317 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4322#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4325 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4342 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4343 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4344 Value *StartV = State.get(StartVPV, ScalarPHI);
4348 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4349 "recipe must be in the vector loop header");
4352 State.set(
this, Phi, IsInLoop);
4354 Phi->addIncoming(StartV, VectorPH);
4357#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4360 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4365 if (VFScaleFactor != 1)
4366 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4373 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4374 State.set(
this, VecPhi);
4377#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4380 O << Indent <<
"WIDEN-PHI ";
4392 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4395 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4396 Phi->addIncoming(StartMask, VectorPH);
4397 State.set(
this, Phi);
4400#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4403 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4411#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4414 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static bool shouldUseAddressAccessSCEV(const VPValue *Ptr)
Returns true if Ptr is a pointer computation for which the legacy cost model computes a SCEV expressi...
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
bool canConstantBeExtended(const ConstantInt *CI, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.