46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
55 case VPInterleaveEVLSC:
58 case VPWidenStoreEVLSC:
66 ->getCalledScalarFunction()
68 case VPWidenIntrinsicSC:
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
78 case VPReductionEVLSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
89 case VPWidenSelectSC: {
93 assert((!
I || !
I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
106 case VPInstructionSC:
108 case VPWidenLoadEVLSC:
113 ->mayReadFromMemory();
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
128 case VPReductionEVLSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
134 case VPWidenIntOrFpInductionSC:
137 case VPWidenSelectSC: {
141 assert((!
I || !
I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
160 case VPInstructionSC:
162 case VPWidenCallSC: {
166 case VPWidenIntrinsicSC:
169 case VPReductionEVLSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
176 case VPWidenIntOrFpInductionSC:
178 case VPWidenPointerInductionSC:
180 case VPWidenSelectSC: {
184 assert((!
I || !
I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
188 case VPInterleaveEVLSC:
191 case VPWidenLoadEVLSC:
193 case VPWidenStoreEVLSC:
198 "mayHaveSideffects result for ingredient differs from this "
201 case VPReplicateSC: {
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
211 assert(!Parent &&
"Recipe already in some VPBasicBlock");
213 "Insertion position not in any VPBasicBlock");
219 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
227 "Insertion position not in any VPBasicBlock");
262 UI = IG->getInsertPos();
264 UI = &WidenMem->getIngredient();
267 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
277 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
301 std::optional<unsigned> Opcode;
308 OpR =
Op->getDefiningRecipe();
311 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
334 Opcode =
Widen->getOpcode();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
338 :
Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
340 :
Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
346 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
347 ExtAType = GetExtendKind(OpR);
351 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
352 ExtAType = GetExtendKind(RedPhiOp1R);
358 return Reduction->computeCost(VF, Ctx);
360 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
361 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
362 PhiType, VF, ExtAType, ExtBType,
363 Opcode, Ctx.CostKind);
367 auto &Builder = State.Builder;
370 "Unhandled partial reduction opcode");
374 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
378 CallInst *V = Builder.CreateIntrinsic(
379 RetTy, Intrinsic::experimental_vector_partial_reduce_add,
380 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
388 O << Indent <<
"PARTIAL-REDUCE ";
396 assert(OpType == Other.OpType &&
"OpType must match");
398 case OperationType::OverflowingBinOp:
399 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
400 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
402 case OperationType::Trunc:
406 case OperationType::DisjointOp:
409 case OperationType::PossiblyExactOp:
410 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
412 case OperationType::GEPOp:
415 case OperationType::FPMathOp:
416 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
417 FMFs.NoInfs &= Other.FMFs.NoInfs;
419 case OperationType::NonNegOp:
422 case OperationType::Cmp:
425 case OperationType::Other:
432 assert(OpType == OperationType::FPMathOp &&
433 "recipe doesn't have fast math flags");
445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
449template <
unsigned PartOpIdx>
452 if (U.getNumOperands() == PartOpIdx + 1)
453 return U.getOperand(PartOpIdx);
457template <
unsigned PartOpIdx>
476 "Set flags not supported for the provided opcode");
477 assert((getNumOperandsForOpcode(Opcode) == -1u ||
479 "number of operands does not match opcode");
483unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
494 case Instruction::Alloca:
495 case Instruction::ExtractValue:
496 case Instruction::Freeze:
497 case Instruction::Load:
510 case Instruction::ICmp:
511 case Instruction::FCmp:
512 case Instruction::Store:
521 case Instruction::Select:
528 case Instruction::Call:
529 case Instruction::GetElementPtr:
530 case Instruction::PHI:
531 case Instruction::Switch:
539bool VPInstruction::doesGeneratePerAllLanes()
const {
543bool VPInstruction::canGenerateScalarForFirstLane()
const {
549 case Instruction::Freeze:
550 case Instruction::ICmp:
551 case Instruction::PHI:
552 case Instruction::Select:
569 IRBuilderBase &Builder = State.
Builder;
572 "only PtrAdd opcodes are supported for now");
588 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
590 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
598 IRBuilderBase &Builder = State.
Builder;
617 case Instruction::ExtractElement: {
620 unsigned IdxToExtract =
628 case Instruction::Freeze: {
632 case Instruction::FCmp:
633 case Instruction::ICmp: {
639 case Instruction::PHI: {
642 case Instruction::Select: {
667 {VIVElem0, ScalarTC},
nullptr, Name);
683 if (!V1->getType()->isVectorTy())
703 "Requested vector length should be an integer.");
710 {AVL, VFArg, State.Builder.getTrue()});
716 assert(Part != 0 &&
"Must have a positive part");
747 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
771 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
801 RecurKind RK = PhiR->getRecurrenceKind();
803 "Unexpected reduction kind");
804 assert(!PhiR->isInLoop() &&
805 "In-loop FindLastIV reduction is not supported yet");
817 for (
unsigned Part = 1; Part <
UF; ++Part)
818 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
832 RecurKind RK = PhiR->getRecurrenceKind();
834 "should be handled by ComputeFindIVResult");
840 for (
unsigned Part = 0; Part <
UF; ++Part)
841 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
843 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
848 Value *ReducedPartRdx = RdxParts[0];
849 if (PhiR->isOrdered()) {
850 ReducedPartRdx = RdxParts[
UF - 1];
853 for (
unsigned Part = 1; Part <
UF; ++Part) {
854 Value *RdxPart = RdxParts[Part];
856 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
862 Opcode = Instruction::Add;
867 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
874 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
881 return ReducedPartRdx;
889 "invalid offset to extract from");
893 assert(
Offset <= 1 &&
"invalid offset to extract from");
907 "can only generate first lane for PtrAdd");
927 Value *Res =
nullptr;
932 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
935 : Builder.CreateSub(LaneToExtract, VectorStart);
936 Value *Ext = State.VF.isScalar()
938 : Builder.CreateExtractElement(
941 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
942 Res = Builder.CreateSelect(Cmp, Ext, Res);
961 Value *Res =
nullptr;
962 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
963 Value *TrailingZeros =
993 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
996 case Instruction::FNeg:
997 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
998 case Instruction::UDiv:
999 case Instruction::SDiv:
1000 case Instruction::SRem:
1001 case Instruction::URem:
1002 case Instruction::Add:
1003 case Instruction::FAdd:
1004 case Instruction::Sub:
1005 case Instruction::FSub:
1006 case Instruction::Mul:
1007 case Instruction::FMul:
1008 case Instruction::FDiv:
1009 case Instruction::FRem:
1010 case Instruction::Shl:
1011 case Instruction::LShr:
1012 case Instruction::AShr:
1013 case Instruction::And:
1014 case Instruction::Or:
1015 case Instruction::Xor: {
1023 RHSInfo = Ctx.getOperandInfo(RHS);
1034 return Ctx.TTI.getArithmeticInstrCost(
1035 Opcode, ResultTy, Ctx.CostKind,
1036 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1037 RHSInfo, Operands, CtxI, &Ctx.TLI);
1039 case Instruction::Freeze:
1041 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1043 case Instruction::ExtractValue:
1044 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1046 case Instruction::ICmp:
1047 case Instruction::FCmp: {
1051 return Ctx.TTI.getCmpSelInstrCost(
1053 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1054 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1057 return std::nullopt;
1069 assert(!doesGeneratePerAllLanes() &&
1070 "Should only generate a vector value or single scalar, not scalars "
1078 case Instruction::Select: {
1082 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1083 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1088 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1091 case Instruction::ExtractElement:
1101 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1105 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1106 return Ctx.TTI.getArithmeticReductionCost(
1112 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1119 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1120 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1126 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1135 unsigned Multiplier =
1140 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1147 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1148 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1153 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1154 VecTy, Ctx.CostKind, 0);
1164 "unexpected VPInstruction witht underlying value");
1172 getOpcode() == Instruction::ExtractElement ||
1183 case Instruction::PHI:
1194 assert(!State.Lane &&
"VPInstruction executing an Lane");
1197 "Set flags not supported for the provided opcode");
1200 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1203 bool GeneratesPerAllLanes = doesGeneratePerAllLanes();
1204 if (GeneratesPerAllLanes) {
1205 for (
unsigned Lane = 0, NumLanes = State.VF.getFixedValue();
1206 Lane != NumLanes; ++Lane) {
1207 Value *GeneratedValue = generatePerLane(State,
VPLane(Lane));
1208 assert(GeneratedValue &&
"generatePerLane must produce a value");
1209 State.set(
this, GeneratedValue,
VPLane(Lane));
1214 Value *GeneratedValue = generate(State);
1217 assert(GeneratedValue &&
"generate must produce a value");
1220 !GeneratesPerFirstLaneOnly) ||
1221 State.VF.isScalar()) &&
1222 "scalar value but not only first lane defined");
1223 State.set(
this, GeneratedValue,
1224 GeneratesPerFirstLaneOnly);
1231 case Instruction::ExtractElement:
1232 case Instruction::Freeze:
1233 case Instruction::FCmp:
1234 case Instruction::ICmp:
1235 case Instruction::Select:
1236 case Instruction::PHI:
1269 case Instruction::ExtractElement:
1271 case Instruction::PHI:
1273 case Instruction::FCmp:
1274 case Instruction::ICmp:
1275 case Instruction::Select:
1276 case Instruction::Or:
1277 case Instruction::Freeze:
1311 case Instruction::FCmp:
1312 case Instruction::ICmp:
1313 case Instruction::Select:
1323#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1331 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1343 O <<
"combined load";
1346 O <<
"combined store";
1349 O <<
"active lane mask";
1352 O <<
"EXPLICIT-VECTOR-LENGTH";
1355 O <<
"first-order splice";
1358 O <<
"branch-on-cond";
1361 O <<
"TC > VF ? TC - VF : 0";
1367 O <<
"branch-on-count";
1373 O <<
"buildstructvector";
1379 O <<
"extract-lane";
1382 O <<
"extract-last-element";
1385 O <<
"extract-penultimate-element";
1388 O <<
"compute-anyof-result";
1391 O <<
"compute-find-iv-result";
1394 O <<
"compute-reduction-result";
1409 O <<
"first-active-lane";
1412 O <<
"reduction-start-vector";
1415 O <<
"resume-for-epilogue";
1437 State.set(
this, Cast,
VPLane(0));
1448 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1449 State.set(
this,
VScale,
true);
1458#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1461 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1467 O <<
"wide-iv-step ";
1471 O <<
"step-vector " << *ResultTy;
1474 O <<
"vscale " << *ResultTy;
1480 O <<
" to " << *ResultTy;
1487 PHINode *NewPhi = State.Builder.CreatePHI(
1488 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1495 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1500 State.set(
this, NewPhi,
VPLane(0));
1503#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1506 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1521 "PHINodes must be handled by VPIRPhi");
1524 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1536 "can only update exiting operands to phi nodes");
1546#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1549 O << Indent <<
"IR " << I;
1561 auto *PredVPBB = Pred->getExitingBasicBlock();
1562 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1569 if (Phi->getBasicBlockIndex(PredBB) == -1)
1570 Phi->addIncoming(V, PredBB);
1572 Phi->setIncomingValueForBlock(PredBB, V);
1577 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1582 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1583 "Number of phi operands must match number of predecessors");
1584 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1585 R->removeOperand(Position);
1588#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1602#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1608 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1613 std::get<1>(
Op)->printAsOperand(O);
1626 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1628 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1632 for (
const auto &[Kind,
Node] : Metadata)
1633 I.setMetadata(Kind,
Node);
1638 for (
const auto &[KindA, MDA] : Metadata) {
1639 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1640 if (KindA == KindB && MDA == MDB) {
1646 Metadata = std::move(MetadataIntersection);
1650 assert(State.VF.isVector() &&
"not widening");
1651 assert(Variant !=
nullptr &&
"Can't create vector function.");
1662 Arg = State.get(
I.value(),
VPLane(0));
1665 Args.push_back(Arg);
1671 CI->getOperandBundlesAsDefs(OpBundles);
1673 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1676 V->setCallingConv(Variant->getCallingConv());
1678 if (!V->getType()->isVoidTy())
1684 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1685 Variant->getFunctionType()->params(),
1689#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1692 O << Indent <<
"WIDEN-CALL ";
1704 O <<
" @" << CalledFn->
getName() <<
"(";
1710 O <<
" (using library function";
1711 if (Variant->hasName())
1712 O <<
": " << Variant->getName();
1718 assert(State.VF.isVector() &&
"not widening");
1731 Arg = State.get(
I.value(),
VPLane(0));
1737 Args.push_back(Arg);
1741 Module *M = State.Builder.GetInsertBlock()->getModule();
1745 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1750 CI->getOperandBundlesAsDefs(OpBundles);
1752 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1757 if (!V->getType()->isVoidTy())
1774 auto *V =
Op->getUnderlyingValue();
1777 Arguments.push_back(UI->getArgOperand(Idx));
1786 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1792 : Ctx.Types.inferScalarType(
Op));
1797 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1802 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1824#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1827 O << Indent <<
"WIDEN-INTRINSIC ";
1828 if (ResultTy->isVoidTy()) {
1856 Value *Mask =
nullptr;
1858 Mask = State.get(VPMask);
1861 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1865 if (Opcode == Instruction::Sub)
1866 IncAmt = Builder.CreateNeg(IncAmt);
1868 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1870 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1885 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1891 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1904 {PtrTy, IncTy, MaskTy});
1907 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1908 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1911#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1914 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1917 if (Opcode == Instruction::Sub)
1920 assert(Opcode == Instruction::Add);
1933 O << Indent <<
"WIDEN-SELECT ";
1957 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1958 State.set(
this, Sel);
1970 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1971 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1980 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1981 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1985 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1988 return Ctx.TTI.getArithmeticInstrCost(
1989 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1990 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands,
SI);
1999 Pred = Cmp->getPredicate();
2000 return Ctx.TTI.getCmpSelInstrCost(
2001 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
2002 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
2005VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2018 case OperationType::OverflowingBinOp:
2019 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2020 Opcode == Instruction::Mul ||
2021 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2022 case OperationType::Trunc:
2023 return Opcode == Instruction::Trunc;
2024 case OperationType::DisjointOp:
2025 return Opcode == Instruction::Or;
2026 case OperationType::PossiblyExactOp:
2027 return Opcode == Instruction::AShr;
2028 case OperationType::GEPOp:
2029 return Opcode == Instruction::GetElementPtr ||
2032 case OperationType::FPMathOp:
2033 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2034 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2035 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2036 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2040 case OperationType::NonNegOp:
2041 return Opcode == Instruction::ZExt;
2043 case OperationType::Cmp:
2044 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2045 case OperationType::Other:
2052#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2055 case OperationType::Cmp:
2058 case OperationType::DisjointOp:
2062 case OperationType::PossiblyExactOp:
2066 case OperationType::OverflowingBinOp:
2072 case OperationType::Trunc:
2078 case OperationType::FPMathOp:
2081 case OperationType::GEPOp:
2084 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2089 case OperationType::NonNegOp:
2093 case OperationType::Other:
2101 auto &Builder = State.Builder;
2103 case Instruction::Call:
2104 case Instruction::Br:
2105 case Instruction::PHI:
2106 case Instruction::GetElementPtr:
2107 case Instruction::Select:
2109 case Instruction::UDiv:
2110 case Instruction::SDiv:
2111 case Instruction::SRem:
2112 case Instruction::URem:
2113 case Instruction::Add:
2114 case Instruction::FAdd:
2115 case Instruction::Sub:
2116 case Instruction::FSub:
2117 case Instruction::FNeg:
2118 case Instruction::Mul:
2119 case Instruction::FMul:
2120 case Instruction::FDiv:
2121 case Instruction::FRem:
2122 case Instruction::Shl:
2123 case Instruction::LShr:
2124 case Instruction::AShr:
2125 case Instruction::And:
2126 case Instruction::Or:
2127 case Instruction::Xor: {
2131 Ops.push_back(State.get(VPOp));
2133 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2144 case Instruction::ExtractValue: {
2148 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2149 State.set(
this, Extract);
2152 case Instruction::Freeze: {
2154 Value *Freeze = Builder.CreateFreeze(
Op);
2155 State.set(
this, Freeze);
2158 case Instruction::ICmp:
2159 case Instruction::FCmp: {
2161 bool FCmp = Opcode == Instruction::FCmp;
2167 C = Builder.CreateFCmpFMF(
2189 State.get(
this)->getType() &&
2190 "inferred type and type from generated instructions do not match");
2197 case Instruction::UDiv:
2198 case Instruction::SDiv:
2199 case Instruction::SRem:
2200 case Instruction::URem:
2205 case Instruction::FNeg:
2206 case Instruction::Add:
2207 case Instruction::FAdd:
2208 case Instruction::Sub:
2209 case Instruction::FSub:
2210 case Instruction::Mul:
2211 case Instruction::FMul:
2212 case Instruction::FDiv:
2213 case Instruction::FRem:
2214 case Instruction::Shl:
2215 case Instruction::LShr:
2216 case Instruction::AShr:
2217 case Instruction::And:
2218 case Instruction::Or:
2219 case Instruction::Xor:
2220 case Instruction::Freeze:
2221 case Instruction::ExtractValue:
2222 case Instruction::ICmp:
2223 case Instruction::FCmp:
2230#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2233 O << Indent <<
"WIDEN ";
2242 auto &Builder = State.Builder;
2244 assert(State.VF.isVector() &&
"Not vectorizing?");
2249 State.set(
this, Cast);
2273 if (WidenMemoryRecipe ==
nullptr)
2275 if (!WidenMemoryRecipe->isConsecutive())
2277 if (WidenMemoryRecipe->isReverse())
2279 if (WidenMemoryRecipe->isMasked())
2287 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2290 CCH = ComputeCCH(StoreRecipe);
2293 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2294 Opcode == Instruction::FPExt) {
2305 return Ctx.TTI.getCastInstrCost(
2306 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2310#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2313 O << Indent <<
"WIDEN-CAST ";
2324 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2331 : ConstantFP::get(Ty,
C);
2334#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2339 O <<
" = WIDEN-INDUCTION ";
2343 O <<
" (truncated to " << *TI->getType() <<
")";
2356 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2360#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2365 O <<
" = DERIVED-IV ";
2389 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2396 AddOp = Instruction::Add;
2397 MulOp = Instruction::Mul;
2399 AddOp = InductionOpcode;
2400 MulOp = Instruction::FMul;
2409 Type *VecIVTy =
nullptr;
2410 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2411 if (!FirstLaneOnly && State.VF.isScalable()) {
2415 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2416 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2419 unsigned StartLane = 0;
2420 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2422 StartLane = State.Lane->getKnownLane();
2423 EndLane = StartLane + 1;
2427 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2432 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2435 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2438 if (!FirstLaneOnly && State.VF.isScalable()) {
2439 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2440 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2442 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2443 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2444 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2445 State.set(
this,
Add);
2452 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2454 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2455 Value *StartIdx = Builder.CreateBinOp(
2460 "Expected StartIdx to be folded to a constant when VF is not "
2462 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2463 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2468#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2473 O <<
" = SCALAR-STEPS ";
2479 assert(State.VF.isVector() &&
"not widening");
2487 if (areAllOperandsInvariant()) {
2504 auto *NewGEP = State.Builder.CreateGEP(
GEP->getSourceElementType(),
Ops[0],
2507 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2508 State.set(
this,
Splat);
2522 if (isIndexLoopInvariant(
I - 1))
2530 auto *NewGEP = State.Builder.CreateGEP(
GEP->getSourceElementType(),
Ptr,
2532 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2533 "NewGEP is not a pointer vector");
2534 State.set(
this, NewGEP);
2538#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2541 O << Indent <<
"WIDEN-GEP ";
2542 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2544 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2548 O <<
" = getelementptr";
2558 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2559 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2560 ?
DL.getIndexType(Builder.getPtrTy(0))
2561 : Builder.getInt32Ty();
2565 auto &Builder = State.Builder;
2567 bool IsUnitStride = Stride == 1 || Stride == -1;
2569 IsUnitStride, CurrentPart, Builder);
2573 if (IndexTy != RunTimeVF->
getType())
2574 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2576 Value *NumElt = Builder.CreateMul(
2577 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2579 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2581 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2585 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2588 State.set(
this, ResultPtr,
true);
2591#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2596 O <<
" = vector-end-pointer";
2603 auto &Builder = State.Builder;
2606 true, CurrentPart, Builder);
2613 State.set(
this, ResultPtr,
true);
2616#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2621 O <<
" = vector-pointer ";
2632 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2634 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2637 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2641#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2644 O << Indent <<
"BLEND ";
2666 assert(!State.Lane &&
"Reduction being replicated.");
2670 "In-loop AnyOf reductions aren't currently supported");
2676 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2681 if (State.VF.isVector())
2682 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2684 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2690 if (State.VF.isVector())
2694 NewRed = State.Builder.CreateBinOp(
2696 PrevInChain, NewVecOp);
2697 PrevInChain = NewRed;
2698 NextInChain = NewRed;
2703 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2705 NextInChain = State.Builder.CreateBinOp(
2707 PrevInChain, NewRed);
2709 State.set(
this, NextInChain,
true);
2713 assert(!State.Lane &&
"Reduction being replicated.");
2715 auto &Builder = State.Builder;
2727 Mask = State.get(CondOp);
2729 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2739 NewRed = Builder.CreateBinOp(
2743 State.set(
this, NewRed,
true);
2749 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2753 std::optional<FastMathFlags> OptionalFMF =
2760 "Any-of reduction not implemented in VPlan-based cost model currently.");
2766 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2771 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2776 ExpressionTypes ExpressionType,
2780 ExpressionRecipes.begin(), ExpressionRecipes.end())
2783 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2787 "expression cannot contain recipes with side-effects");
2791 for (
auto *R : ExpressionRecipes)
2792 ExpressionRecipesAsSetOfUsers.
insert(R);
2798 if (R != ExpressionRecipes.back() &&
2799 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2800 return !ExpressionRecipesAsSetOfUsers.contains(U);
2805 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2807 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2812 R->removeFromParent();
2819 for (
auto *R : ExpressionRecipes) {
2820 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2821 auto *
Def =
Op->getDefiningRecipe();
2822 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2825 LiveInPlaceholders.push_back(
new VPValue());
2826 R->setOperand(Idx, LiveInPlaceholders.back());
2832 for (
auto *R : ExpressionRecipes)
2833 R->insertBefore(
this);
2836 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2839 ExpressionRecipes.clear();
2844 Type *RedTy = Ctx.Types.inferScalarType(
this);
2848 "VPExpressionRecipe only supports integer types currently.");
2851 switch (ExpressionType) {
2852 case ExpressionTypes::ExtendedReduction: {
2853 return Ctx.TTI.getExtendedReductionCost(
2857 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2859 case ExpressionTypes::MulAccReduction:
2860 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2863 case ExpressionTypes::ExtMulAccReduction:
2864 return Ctx.TTI.getMulAccReductionCost(
2867 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2874 return R->mayReadFromMemory() || R->mayWriteToMemory();
2882 "expression cannot contain recipes with side-effects");
2886#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2890 O << Indent <<
"EXPRESSION ";
2896 switch (ExpressionType) {
2897 case ExpressionTypes::ExtendedReduction: {
2906 << *Ext0->getResultType();
2907 if (Red->isConditional()) {
2914 case ExpressionTypes::MulAccReduction:
2915 case ExpressionTypes::ExtMulAccReduction: {
2923 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2925 : ExpressionRecipes[0]);
2933 << *Ext0->getResultType() <<
"), (";
2941 << *Ext1->getResultType() <<
")";
2943 if (Red->isConditional()) {
2955 O << Indent <<
"REDUCE ";
2975 O << Indent <<
"REDUCE ";
3003 assert((!Instr->getType()->isAggregateType() ||
3005 "Expected vectorizable or non-aggregate type.");
3008 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3012 Cloned->
setName(Instr->getName() +
".cloned");
3013 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3017 if (ResultTy != Cloned->
getType())
3028 State.setDebugLocFrom(
DL);
3033 auto InputLane = Lane;
3037 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3041 State.Builder.Insert(Cloned);
3043 State.set(RepRecipe, Cloned, Lane);
3047 State.AC->registerAssumption(
II);
3053 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3054 "Expected a recipe is either within a region or all of its operands "
3055 "are defined outside the vectorized region.");
3062 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3063 "must have already been unrolled");
3069 "uniform recipe shouldn't be predicated");
3070 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3075 State.Lane->isFirstLane()
3078 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3098 Ctx.SkipCostComputation.insert(UI);
3101 case Instruction::GetElementPtr:
3107 case Instruction::Call: {
3113 for (
const VPValue *ArgOp : ArgOps)
3114 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3116 if (CalledFn->isIntrinsic())
3119 switch (CalledFn->getIntrinsicID()) {
3120 case Intrinsic::assume:
3121 case Intrinsic::lifetime_end:
3122 case Intrinsic::lifetime_start:
3123 case Intrinsic::sideeffect:
3124 case Intrinsic::pseudoprobe:
3125 case Intrinsic::experimental_noalias_scope_decl: {
3128 "scalarizing intrinsic should be free");
3135 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3137 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3139 if (CalledFn->isIntrinsic())
3140 ScalarCallCost = std::min(
3144 return ScalarCallCost;
3154 for (
Type *VectorTy :
3156 ScalarizationCost += Ctx.TTI.getScalarizationOverhead(
3159 false, Ctx.CostKind);
3166 for (
auto *
Op : ArgOps) {
3172 ScalarizationCost +=
3173 Ctx.TTI.getOperandsScalarizationOverhead(Tys, Ctx.CostKind);
3176 return ScalarCallCost * VF.
getFixedValue() + ScalarizationCost;
3178 case Instruction::Add:
3179 case Instruction::Sub:
3180 case Instruction::FAdd:
3181 case Instruction::FSub:
3182 case Instruction::Mul:
3183 case Instruction::FMul:
3184 case Instruction::FDiv:
3185 case Instruction::FRem:
3186 case Instruction::Shl:
3187 case Instruction::LShr:
3188 case Instruction::AShr:
3189 case Instruction::And:
3190 case Instruction::Or:
3191 case Instruction::Xor:
3192 case Instruction::ICmp:
3193 case Instruction::FCmp:
3197 case Instruction::Load:
3198 case Instruction::Store: {
3200 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3201 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3202 Type *ScalarPtrTy = Ctx.Types.inferScalarType(
getOperand(IsLoad ? 0 : 1));
3207 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI);
3208 return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3209 ScalarPtrTy,
nullptr,
nullptr, Ctx.CostKind);
3217 return Ctx.getLegacyCost(UI, VF);
3220#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3223 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3232 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3250 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3253 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3257 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3259 "Expected to replace unreachable terminator with conditional branch.");
3261 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3262 CondBr->setSuccessor(0,
nullptr);
3263 CurrentTerminator->eraseFromParent();
3275 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3280 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3282 "operand must be VPReplicateRecipe");
3296 if (State.hasVectorValue(
this))
3297 State.reset(
this, VPhi);
3299 State.set(
this, VPhi);
3307 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3308 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3311 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3312 if (State.hasScalarValue(
this, *State.Lane))
3313 State.reset(
this, Phi, *State.Lane);
3315 State.set(
this, Phi, *State.Lane);
3318 State.reset(
getOperand(0), Phi, *State.Lane);
3322#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3325 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3337 ->getAddressSpace();
3340 : Instruction::Store;
3347 "Inconsecutive memory access should not have the order.");
3357 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3359 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty,
Ptr,
IsMasked, Alignment,
3366 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3371 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3377 return Cost += Ctx.TTI.getShuffleCost(
3388 auto &Builder = State.Builder;
3389 Value *Mask =
nullptr;
3390 if (
auto *VPMask =
getMask()) {
3393 Mask = State.get(VPMask);
3395 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3401 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask,
nullptr,
3402 "wide.masked.gather");
3405 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3408 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment,
"wide.load");
3412 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3413 State.set(
this, NewLI);
3416#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3419 O << Indent <<
"WIDEN ";
3431 Value *AllTrueMask =
3432 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3433 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3434 {Operand, AllTrueMask, EVL},
nullptr, Name);
3443 auto &Builder = State.Builder;
3447 Value *Mask =
nullptr;
3449 Mask = State.get(VPMask);
3453 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3458 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3459 nullptr,
"wide.masked.gather");
3461 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3462 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3470 State.set(
this, Res);
3487 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3491 return Cost + Ctx.TTI.getShuffleCost(
3496#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3499 O << Indent <<
"WIDEN ";
3511 auto &Builder = State.Builder;
3513 Value *Mask =
nullptr;
3514 if (
auto *VPMask =
getMask()) {
3517 Mask = State.get(VPMask);
3519 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3522 Value *StoredVal = State.get(StoredVPValue);
3526 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3533 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3535 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3537 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3544 O << Indent <<
"WIDEN store ";
3554 auto &Builder = State.Builder;
3557 Value *StoredVal = State.get(StoredValue);
3561 Value *Mask =
nullptr;
3563 Mask = State.get(VPMask);
3567 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3570 if (CreateScatter) {
3572 Intrinsic::vp_scatter,
3573 {StoredVal, Addr, Mask, EVL});
3576 Intrinsic::vp_store,
3577 {StoredVal, Addr, Mask, EVL});
3598 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3602 return Cost + Ctx.TTI.getShuffleCost(
3607#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3610 O << Indent <<
"WIDEN vp.store ";
3618 auto VF = DstVTy->getElementCount();
3620 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3621 Type *SrcElemTy = SrcVecTy->getElementType();
3622 Type *DstElemTy = DstVTy->getElementType();
3623 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3624 "Vector elements must have same size");
3628 return Builder.CreateBitOrPointerCast(V, DstVTy);
3635 "Only one type should be a pointer type");
3637 "Only one type should be a floating point type");
3641 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3642 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3648 const Twine &Name) {
3649 unsigned Factor = Vals.
size();
3650 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3654 for (
Value *Val : Vals)
3655 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3660 if (VecTy->isScalableTy()) {
3661 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3662 return Builder.CreateVectorInterleave(Vals, Name);
3669 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3670 return Builder.CreateShuffleVector(
3703 assert(!State.Lane &&
"Interleave group being replicated.");
3705 "Masking gaps for scalable vectors is not yet supported.");
3711 unsigned InterleaveFactor = Group->
getFactor();
3718 auto CreateGroupMask = [&BlockInMask, &State,
3719 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3720 if (State.VF.isScalable()) {
3721 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3722 assert(InterleaveFactor <= 8 &&
3723 "Unsupported deinterleave factor for scalable vectors");
3724 auto *ResBlockInMask = State.get(BlockInMask);
3732 Value *ResBlockInMask = State.get(BlockInMask);
3733 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3736 "interleaved.mask");
3737 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3738 ShuffledMask, MaskForGaps)
3742 const DataLayout &DL = Instr->getDataLayout();
3745 Value *MaskForGaps =
nullptr;
3749 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3753 if (BlockInMask || MaskForGaps) {
3754 Value *GroupMask = CreateGroupMask(MaskForGaps);
3756 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3758 PoisonVec,
"wide.masked.vec");
3760 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3767 if (VecTy->isScalableTy()) {
3770 assert(InterleaveFactor <= 8 &&
3771 "Unsupported deinterleave factor for scalable vectors");
3772 NewLoad = State.Builder.CreateIntrinsic(
3775 nullptr,
"strided.vec");
3778 auto CreateStridedVector = [&InterleaveFactor, &State,
3779 &NewLoad](
unsigned Index) ->
Value * {
3780 assert(Index < InterleaveFactor &&
"Illegal group index");
3781 if (State.VF.isScalable())
3782 return State.Builder.CreateExtractValue(NewLoad, Index);
3788 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3792 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3799 Value *StridedVec = CreateStridedVector(
I);
3802 if (Member->getType() != ScalarTy) {
3809 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3811 State.set(VPDefs[J], StridedVec);
3821 Value *MaskForGaps =
3824 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3828 unsigned StoredIdx = 0;
3829 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3831 "Fail to get a member from an interleaved store group");
3841 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3845 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3849 if (StoredVec->
getType() != SubVT)
3858 if (BlockInMask || MaskForGaps) {
3859 Value *GroupMask = CreateGroupMask(MaskForGaps);
3860 NewStoreInstr = State.Builder.CreateMaskedStore(
3861 IVec, ResAddr, Group->
getAlign(), GroupMask);
3864 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3871#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3875 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
3876 IG->getInsertPos()->printAsOperand(O,
false);
3886 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
3887 if (!IG->getMember(i))
3890 O <<
"\n" << Indent <<
" store ";
3892 O <<
" to index " << i;
3894 O <<
"\n" << Indent <<
" ";
3896 O <<
" = load from index " << i;
3904 assert(!State.Lane &&
"Interleave group being replicated.");
3905 assert(State.VF.isScalable() &&
3906 "Only support scalable VF for EVL tail-folding.");
3908 "Masking gaps for scalable vectors is not yet supported.");
3914 unsigned InterleaveFactor = Group->
getFactor();
3915 assert(InterleaveFactor <= 8 &&
3916 "Unsupported deinterleave/interleave factor for scalable vectors");
3923 Value *InterleaveEVL = State.Builder.CreateMul(
3924 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
3928 Value *GroupMask =
nullptr;
3934 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
3939 CallInst *NewLoad = State.Builder.CreateIntrinsic(
3940 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
3951 NewLoad = State.Builder.CreateIntrinsic(
3954 nullptr,
"strided.vec");
3956 const DataLayout &DL = Instr->getDataLayout();
3957 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3963 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
3965 if (Member->getType() != ScalarTy) {
3983 const DataLayout &DL = Instr->getDataLayout();
3984 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
3992 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3994 if (StoredVec->
getType() != SubVT)
4004 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4005 {IVec, ResAddr, GroupMask, InterleaveEVL});
4014#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4018 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4019 IG->getInsertPos()->printAsOperand(O,
false);
4030 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4031 if (!IG->getMember(i))
4034 O <<
"\n" << Indent <<
" vp.store ";
4036 O <<
" to index " << i;
4038 O <<
"\n" << Indent <<
" ";
4040 O <<
" = vp.load from index " << i;
4051 unsigned InsertPosIdx = 0;
4052 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4053 if (
auto *Member = IG->getMember(Idx)) {
4054 if (Member == InsertPos)
4058 Type *ValTy = Ctx.Types.inferScalarType(
4064 unsigned InterleaveFactor = IG->getFactor();
4069 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4070 if (IG->getMember(IF))
4075 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4076 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4078 if (!IG->isReverse())
4081 return Cost + IG->getNumMembers() *
4083 VectorTy, VectorTy, {}, Ctx.CostKind,
4087#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4090 O << Indent <<
"EMIT ";
4092 O <<
" = CANONICAL-INDUCTION ";
4098 return IsScalarAfterVectorization &&
4102#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4106 "unexpected number of operands");
4107 O << Indent <<
"EMIT ";
4109 O <<
" = WIDEN-POINTER-INDUCTION ";
4125 O << Indent <<
"EMIT ";
4127 O <<
" = EXPAND SCEV " << *Expr;
4134 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4138 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4141 VStep = Builder.CreateVectorSplat(VF, VStep);
4143 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4145 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4146 State.set(
this, CanonicalVectorIV);
4149#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4152 O << Indent <<
"EMIT ";
4154 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4160 auto &Builder = State.Builder;
4164 Type *VecTy = State.VF.isScalar()
4165 ? VectorInit->getType()
4169 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4170 if (State.VF.isVector()) {
4172 auto *One = ConstantInt::get(IdxTy, 1);
4175 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4176 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4177 VectorInit = Builder.CreateInsertElement(
4183 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4184 Phi->addIncoming(VectorInit, VectorPH);
4185 State.set(
this, Phi);
4192 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4197#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4200 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4217 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4218 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4219 Value *StartV = State.get(StartVPV, ScalarPHI);
4223 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4224 "recipe must be in the vector loop header");
4227 State.set(
this, Phi, IsInLoop);
4229 Phi->addIncoming(StartV, VectorPH);
4232#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4235 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4240 if (VFScaleFactor != 1)
4241 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4248 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4249 State.set(
this, VecPhi);
4252#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4255 O << Indent <<
"WIDEN-PHI ";
4267 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4270 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4271 Phi->addIncoming(StartMask, VectorPH);
4272 State.set(
this, Phi);
4275#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4278 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4286#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4289 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a single (scalar) element into a VectorType value.
VectorType * getType() const
Overload to return most specific vector type.
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Vector takeVector()
Clear the SetVector and return the underlying vector.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
std::optional< InstructionCost > getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.