46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
55 case VPInterleaveEVLSC:
58 case VPWidenStoreEVLSC:
66 ->getCalledScalarFunction()
68 case VPWidenIntrinsicSC:
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
78 case VPReductionEVLSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
89 case VPWidenSelectSC: {
93 assert((!
I || !
I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
106 case VPInstructionSC:
108 case VPWidenLoadEVLSC:
113 ->mayReadFromMemory();
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
128 case VPReductionEVLSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
134 case VPWidenIntOrFpInductionSC:
137 case VPWidenSelectSC: {
141 assert((!
I || !
I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
160 case VPInstructionSC:
162 case VPWidenCallSC: {
166 case VPWidenIntrinsicSC:
169 case VPReductionEVLSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
176 case VPWidenIntOrFpInductionSC:
178 case VPWidenPointerInductionSC:
180 case VPWidenSelectSC: {
184 assert((!
I || !
I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
188 case VPInterleaveEVLSC:
191 case VPWidenLoadEVLSC:
193 case VPWidenStoreEVLSC:
198 "mayHaveSideffects result for ingredient differs from this "
201 case VPReplicateSC: {
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
211 assert(!Parent &&
"Recipe already in some VPBasicBlock");
213 "Insertion position not in any VPBasicBlock");
219 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
227 "Insertion position not in any VPBasicBlock");
262 UI = IG->getInsertPos();
264 UI = &WidenMem->getIngredient();
267 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
277 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
301 std::optional<unsigned> Opcode;
308 OpR =
Op->getDefiningRecipe();
311 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
334 Opcode =
Widen->getOpcode();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
338 :
Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
340 :
Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
346 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
347 ExtAType = GetExtendKind(OpR);
351 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
352 ExtAType = GetExtendKind(RedPhiOp1R);
358 return Reduction->computeCost(VF, Ctx);
360 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
361 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
362 PhiType, VF, ExtAType, ExtBType,
363 Opcode, Ctx.CostKind);
367 auto &Builder = State.Builder;
370 "Unhandled partial reduction opcode");
374 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
378 CallInst *V = Builder.CreateIntrinsic(
379 RetTy, Intrinsic::experimental_vector_partial_reduce_add,
380 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
388 O << Indent <<
"PARTIAL-REDUCE ";
396 assert(OpType == Other.OpType &&
"OpType must match");
398 case OperationType::OverflowingBinOp:
399 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
400 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
402 case OperationType::Trunc:
406 case OperationType::DisjointOp:
409 case OperationType::PossiblyExactOp:
410 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
412 case OperationType::GEPOp:
415 case OperationType::FPMathOp:
416 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
417 FMFs.NoInfs &= Other.FMFs.NoInfs;
419 case OperationType::NonNegOp:
422 case OperationType::Cmp:
425 case OperationType::Other:
432 assert(OpType == OperationType::FPMathOp &&
433 "recipe doesn't have fast math flags");
445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
449template <
unsigned PartOpIdx>
452 if (U.getNumOperands() == PartOpIdx + 1)
453 return U.getOperand(PartOpIdx);
457template <
unsigned PartOpIdx>
476 "Set flags not supported for the provided opcode");
477 assert((getNumOperandsForOpcode(Opcode) == -1u ||
479 "number of operands does not match opcode");
483unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
494 case Instruction::Alloca:
495 case Instruction::ExtractValue:
496 case Instruction::Freeze:
497 case Instruction::Load:
510 case Instruction::ICmp:
511 case Instruction::FCmp:
512 case Instruction::Store:
521 case Instruction::Select:
528 case Instruction::Call:
529 case Instruction::GetElementPtr:
530 case Instruction::PHI:
531 case Instruction::Switch:
543bool VPInstruction::canGenerateScalarForFirstLane()
const {
549 case Instruction::Freeze:
550 case Instruction::ICmp:
551 case Instruction::PHI:
552 case Instruction::Select:
578 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
580 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
588 IRBuilderBase &Builder = State.
Builder;
607 case Instruction::ExtractElement: {
610 unsigned IdxToExtract =
618 case Instruction::Freeze: {
622 case Instruction::FCmp:
623 case Instruction::ICmp: {
629 case Instruction::PHI: {
632 case Instruction::Select: {
657 {VIVElem0, ScalarTC},
nullptr, Name);
673 if (!V1->getType()->isVectorTy())
693 "Requested vector length should be an integer.");
700 {AVL, VFArg, State.Builder.getTrue()});
706 assert(Part != 0 &&
"Must have a positive part");
737 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
761 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
791 RecurKind RK = PhiR->getRecurrenceKind();
793 "Unexpected reduction kind");
794 assert(!PhiR->isInLoop() &&
795 "In-loop FindLastIV reduction is not supported yet");
807 for (
unsigned Part = 1; Part <
UF; ++Part)
808 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
822 RecurKind RK = PhiR->getRecurrenceKind();
824 "should be handled by ComputeFindIVResult");
830 for (
unsigned Part = 0; Part <
UF; ++Part)
831 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
833 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
838 Value *ReducedPartRdx = RdxParts[0];
839 if (PhiR->isOrdered()) {
840 ReducedPartRdx = RdxParts[
UF - 1];
843 for (
unsigned Part = 1; Part <
UF; ++Part) {
844 Value *RdxPart = RdxParts[Part];
846 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
852 Opcode = Instruction::Add;
857 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
864 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
871 return ReducedPartRdx;
879 "invalid offset to extract from");
883 assert(
Offset <= 1 &&
"invalid offset to extract from");
897 "can only generate first lane for PtrAdd");
917 Value *Res =
nullptr;
922 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
923 Value *VectorIdx = Idx == 1
925 : Builder.
CreateSub(LaneToExtract, VectorStart);
932 Res = Builder.CreateSelect(Cmp, Ext, Res);
951 Value *Res =
nullptr;
952 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
953 Value *TrailingZeros =
983 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
986 case Instruction::FNeg:
987 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
988 case Instruction::UDiv:
989 case Instruction::SDiv:
990 case Instruction::SRem:
991 case Instruction::URem:
992 case Instruction::Add:
993 case Instruction::FAdd:
994 case Instruction::Sub:
995 case Instruction::FSub:
996 case Instruction::Mul:
997 case Instruction::FMul:
998 case Instruction::FDiv:
999 case Instruction::FRem:
1000 case Instruction::Shl:
1001 case Instruction::LShr:
1002 case Instruction::AShr:
1003 case Instruction::And:
1004 case Instruction::Or:
1005 case Instruction::Xor: {
1013 RHSInfo = Ctx.getOperandInfo(RHS);
1024 return Ctx.TTI.getArithmeticInstrCost(
1025 Opcode, ResultTy, Ctx.CostKind,
1026 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1027 RHSInfo, Operands, CtxI, &Ctx.TLI);
1029 case Instruction::Freeze:
1031 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1033 case Instruction::ExtractValue:
1034 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1036 case Instruction::ICmp:
1037 case Instruction::FCmp: {
1041 return Ctx.TTI.getCmpSelInstrCost(
1043 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1044 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1047 return std::nullopt;
1060 "Should only generate a vector value or single scalar, not scalars "
1068 case Instruction::Select: {
1072 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1073 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1078 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1081 case Instruction::ExtractElement:
1091 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1095 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1096 return Ctx.TTI.getArithmeticReductionCost(
1102 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1109 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1110 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1116 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1125 unsigned Multiplier =
1130 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1137 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1143 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1144 VecTy, Ctx.CostKind, 0);
1154 "unexpected VPInstruction witht underlying value");
1162 getOpcode() == Instruction::ExtractElement ||
1173 case Instruction::PHI:
1184 assert(!State.Lane &&
"VPInstruction executing an Lane");
1187 "Set flags not supported for the provided opcode");
1190 Value *GeneratedValue = generate(State);
1193 assert(GeneratedValue &&
"generate must produce a value");
1194 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1199 !GeneratesPerFirstLaneOnly) ||
1200 State.VF.isScalar()) &&
1201 "scalar value but not only first lane defined");
1202 State.set(
this, GeneratedValue,
1203 GeneratesPerFirstLaneOnly);
1210 case Instruction::ExtractElement:
1211 case Instruction::Freeze:
1212 case Instruction::FCmp:
1213 case Instruction::ICmp:
1214 case Instruction::Select:
1215 case Instruction::PHI:
1248 case Instruction::ExtractElement:
1250 case Instruction::PHI:
1252 case Instruction::FCmp:
1253 case Instruction::ICmp:
1254 case Instruction::Select:
1255 case Instruction::Or:
1256 case Instruction::Freeze:
1296 case Instruction::FCmp:
1297 case Instruction::ICmp:
1298 case Instruction::Select:
1308#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1316 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1328 O <<
"combined load";
1331 O <<
"combined store";
1334 O <<
"active lane mask";
1337 O <<
"EXPLICIT-VECTOR-LENGTH";
1340 O <<
"first-order splice";
1343 O <<
"branch-on-cond";
1346 O <<
"TC > VF ? TC - VF : 0";
1352 O <<
"branch-on-count";
1358 O <<
"buildstructvector";
1364 O <<
"extract-lane";
1367 O <<
"extract-last-element";
1370 O <<
"extract-penultimate-element";
1373 O <<
"compute-anyof-result";
1376 O <<
"compute-find-iv-result";
1379 O <<
"compute-reduction-result";
1394 O <<
"first-active-lane";
1397 O <<
"reduction-start-vector";
1400 O <<
"resume-for-epilogue";
1422 State.set(
this, Cast,
VPLane(0));
1433 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1434 State.set(
this,
VScale,
true);
1443#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1446 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1452 O <<
"wide-iv-step ";
1456 O <<
"step-vector " << *ResultTy;
1459 O <<
"vscale " << *ResultTy;
1465 O <<
" to " << *ResultTy;
1472 PHINode *NewPhi = State.Builder.CreatePHI(
1473 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1480 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1485 State.set(
this, NewPhi,
VPLane(0));
1488#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1506 "PHINodes must be handled by VPIRPhi");
1509 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1521 "can only update exiting operands to phi nodes");
1531#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1534 O << Indent <<
"IR " << I;
1546 auto *PredVPBB = Pred->getExitingBasicBlock();
1547 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1554 if (Phi->getBasicBlockIndex(PredBB) == -1)
1555 Phi->addIncoming(V, PredBB);
1557 Phi->setIncomingValueForBlock(PredBB, V);
1562 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1567 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1568 "Number of phi operands must match number of predecessors");
1569 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1570 R->removeOperand(Position);
1573#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1587#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1593 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1598 std::get<1>(
Op)->printAsOperand(O);
1611 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1613 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1617 for (
const auto &[Kind,
Node] : Metadata)
1618 I.setMetadata(Kind,
Node);
1623 for (
const auto &[KindA, MDA] : Metadata) {
1624 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1625 if (KindA == KindB && MDA == MDB) {
1631 Metadata = std::move(MetadataIntersection);
1635 assert(State.VF.isVector() &&
"not widening");
1636 assert(Variant !=
nullptr &&
"Can't create vector function.");
1647 Arg = State.get(
I.value(),
VPLane(0));
1650 Args.push_back(Arg);
1656 CI->getOperandBundlesAsDefs(OpBundles);
1658 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1661 V->setCallingConv(Variant->getCallingConv());
1663 if (!V->getType()->isVoidTy())
1669 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1670 Variant->getFunctionType()->params(),
1674#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1677 O << Indent <<
"WIDEN-CALL ";
1689 O <<
" @" << CalledFn->
getName() <<
"(";
1695 O <<
" (using library function";
1696 if (Variant->hasName())
1697 O <<
": " << Variant->getName();
1703 assert(State.VF.isVector() &&
"not widening");
1716 Arg = State.get(
I.value(),
VPLane(0));
1722 Args.push_back(Arg);
1726 Module *M = State.Builder.GetInsertBlock()->getModule();
1730 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1735 CI->getOperandBundlesAsDefs(OpBundles);
1737 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1742 if (!V->getType()->isVoidTy())
1759 auto *V =
Op->getUnderlyingValue();
1762 Arguments.push_back(UI->getArgOperand(Idx));
1771 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1777 : Ctx.Types.inferScalarType(
Op));
1782 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1787 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1809#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1812 O << Indent <<
"WIDEN-INTRINSIC ";
1813 if (ResultTy->isVoidTy()) {
1841 Value *Mask =
nullptr;
1843 Mask = State.get(VPMask);
1846 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1850 if (Opcode == Instruction::Sub)
1851 IncAmt = Builder.CreateNeg(IncAmt);
1853 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1855 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1870 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1876 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1889 {PtrTy, IncTy, MaskTy});
1892 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1893 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1896#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1899 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1902 if (Opcode == Instruction::Sub)
1905 assert(Opcode == Instruction::Add);
1918 O << Indent <<
"WIDEN-SELECT ";
1942 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1943 State.set(
this, Sel);
1955 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1956 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1965 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1966 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1970 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1973 return Ctx.TTI.getArithmeticInstrCost(
1974 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1975 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands,
SI);
1984 Pred = Cmp->getPredicate();
1985 return Ctx.TTI.getCmpSelInstrCost(
1986 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1987 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1990VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2003 case OperationType::OverflowingBinOp:
2004 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2005 Opcode == Instruction::Mul ||
2006 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2007 case OperationType::Trunc:
2008 return Opcode == Instruction::Trunc;
2009 case OperationType::DisjointOp:
2010 return Opcode == Instruction::Or;
2011 case OperationType::PossiblyExactOp:
2012 return Opcode == Instruction::AShr;
2013 case OperationType::GEPOp:
2014 return Opcode == Instruction::GetElementPtr ||
2017 case OperationType::FPMathOp:
2018 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2019 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2020 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2021 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2025 case OperationType::NonNegOp:
2026 return Opcode == Instruction::ZExt;
2028 case OperationType::Cmp:
2029 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2030 case OperationType::Other:
2037#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2040 case OperationType::Cmp:
2043 case OperationType::DisjointOp:
2047 case OperationType::PossiblyExactOp:
2051 case OperationType::OverflowingBinOp:
2057 case OperationType::Trunc:
2063 case OperationType::FPMathOp:
2066 case OperationType::GEPOp:
2069 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2074 case OperationType::NonNegOp:
2078 case OperationType::Other:
2086 auto &Builder = State.Builder;
2088 case Instruction::Call:
2089 case Instruction::Br:
2090 case Instruction::PHI:
2091 case Instruction::GetElementPtr:
2092 case Instruction::Select:
2094 case Instruction::UDiv:
2095 case Instruction::SDiv:
2096 case Instruction::SRem:
2097 case Instruction::URem:
2098 case Instruction::Add:
2099 case Instruction::FAdd:
2100 case Instruction::Sub:
2101 case Instruction::FSub:
2102 case Instruction::FNeg:
2103 case Instruction::Mul:
2104 case Instruction::FMul:
2105 case Instruction::FDiv:
2106 case Instruction::FRem:
2107 case Instruction::Shl:
2108 case Instruction::LShr:
2109 case Instruction::AShr:
2110 case Instruction::And:
2111 case Instruction::Or:
2112 case Instruction::Xor: {
2116 Ops.push_back(State.get(VPOp));
2118 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2129 case Instruction::ExtractValue: {
2133 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2134 State.set(
this, Extract);
2137 case Instruction::Freeze: {
2139 Value *Freeze = Builder.CreateFreeze(
Op);
2140 State.set(
this, Freeze);
2143 case Instruction::ICmp:
2144 case Instruction::FCmp: {
2146 bool FCmp = Opcode == Instruction::FCmp;
2152 C = Builder.CreateFCmpFMF(
2174 State.get(
this)->getType() &&
2175 "inferred type and type from generated instructions do not match");
2182 case Instruction::UDiv:
2183 case Instruction::SDiv:
2184 case Instruction::SRem:
2185 case Instruction::URem:
2190 case Instruction::FNeg:
2191 case Instruction::Add:
2192 case Instruction::FAdd:
2193 case Instruction::Sub:
2194 case Instruction::FSub:
2195 case Instruction::Mul:
2196 case Instruction::FMul:
2197 case Instruction::FDiv:
2198 case Instruction::FRem:
2199 case Instruction::Shl:
2200 case Instruction::LShr:
2201 case Instruction::AShr:
2202 case Instruction::And:
2203 case Instruction::Or:
2204 case Instruction::Xor:
2205 case Instruction::Freeze:
2206 case Instruction::ExtractValue:
2207 case Instruction::ICmp:
2208 case Instruction::FCmp:
2215#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2218 O << Indent <<
"WIDEN ";
2227 auto &Builder = State.Builder;
2229 assert(State.VF.isVector() &&
"Not vectorizing?");
2234 State.set(
this, Cast);
2258 if (WidenMemoryRecipe ==
nullptr)
2260 if (!WidenMemoryRecipe->isConsecutive())
2262 if (WidenMemoryRecipe->isReverse())
2264 if (WidenMemoryRecipe->isMasked())
2272 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2275 CCH = ComputeCCH(StoreRecipe);
2278 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2279 Opcode == Instruction::FPExt) {
2290 return Ctx.TTI.getCastInstrCost(
2291 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2298 O << Indent <<
"WIDEN-CAST ";
2309 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2316 : ConstantFP::get(Ty,
C);
2319#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2324 O <<
" = WIDEN-INDUCTION ";
2328 O <<
" (truncated to " << *TI->getType() <<
")";
2341 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2345#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2350 O <<
" = DERIVED-IV ";
2374 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2381 AddOp = Instruction::Add;
2382 MulOp = Instruction::Mul;
2384 AddOp = InductionOpcode;
2385 MulOp = Instruction::FMul;
2394 Type *VecIVTy =
nullptr;
2395 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2396 if (!FirstLaneOnly && State.VF.isScalable()) {
2400 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2401 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2404 unsigned StartLane = 0;
2405 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2407 StartLane = State.Lane->getKnownLane();
2408 EndLane = StartLane + 1;
2412 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2417 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2420 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2423 if (!FirstLaneOnly && State.VF.isScalable()) {
2424 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2425 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2427 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2428 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2429 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2430 State.set(
this,
Add);
2437 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2439 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2440 Value *StartIdx = Builder.CreateBinOp(
2445 "Expected StartIdx to be folded to a constant when VF is not "
2447 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2448 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2458 O <<
" = SCALAR-STEPS ";
2464 assert(State.VF.isVector() &&
"not widening");
2472 if (areAllOperandsInvariant()) {
2489 auto *NewGEP = State.Builder.CreateGEP(
GEP->getSourceElementType(),
Ops[0],
2492 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2493 State.set(
this,
Splat);
2507 if (isIndexLoopInvariant(
I - 1))
2515 auto *NewGEP = State.Builder.CreateGEP(
GEP->getSourceElementType(),
Ptr,
2517 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2518 "NewGEP is not a pointer vector");
2519 State.set(
this, NewGEP);
2523#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2526 O << Indent <<
"WIDEN-GEP ";
2527 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2529 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2533 O <<
" = getelementptr";
2543 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2544 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2545 ?
DL.getIndexType(Builder.getPtrTy(0))
2546 : Builder.getInt32Ty();
2550 auto &Builder = State.Builder;
2552 bool IsUnitStride = Stride == 1 || Stride == -1;
2554 IsUnitStride, CurrentPart, Builder);
2558 if (IndexTy != RunTimeVF->
getType())
2559 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2561 Value *NumElt = Builder.CreateMul(
2562 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2564 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2566 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2570 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2573 State.set(
this, ResultPtr,
true);
2576#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2581 O <<
" = vector-end-pointer";
2588 auto &Builder = State.Builder;
2591 true, CurrentPart, Builder);
2598 State.set(
this, ResultPtr,
true);
2601#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2606 O <<
" = vector-pointer ";
2617 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2619 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2622 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2626#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2629 O << Indent <<
"BLEND ";
2651 assert(!State.Lane &&
"Reduction being replicated.");
2655 "In-loop AnyOf reductions aren't currently supported");
2661 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2666 if (State.VF.isVector())
2667 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2669 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2675 if (State.VF.isVector())
2679 NewRed = State.Builder.CreateBinOp(
2681 PrevInChain, NewVecOp);
2682 PrevInChain = NewRed;
2683 NextInChain = NewRed;
2688 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2690 NextInChain = State.Builder.CreateBinOp(
2692 PrevInChain, NewRed);
2694 State.set(
this, NextInChain,
true);
2698 assert(!State.Lane &&
"Reduction being replicated.");
2700 auto &Builder = State.Builder;
2712 Mask = State.get(CondOp);
2714 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2724 NewRed = Builder.CreateBinOp(
2728 State.set(
this, NewRed,
true);
2734 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2738 std::optional<FastMathFlags> OptionalFMF =
2745 "Any-of reduction not implemented in VPlan-based cost model currently.");
2751 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2756 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2761 ExpressionTypes ExpressionType,
2765 ExpressionRecipes.begin(), ExpressionRecipes.end())
2768 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2772 "expression cannot contain recipes with side-effects");
2776 for (
auto *R : ExpressionRecipes)
2777 ExpressionRecipesAsSetOfUsers.
insert(R);
2783 if (R != ExpressionRecipes.back() &&
2784 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2785 return !ExpressionRecipesAsSetOfUsers.contains(U);
2790 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2792 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2797 R->removeFromParent();
2804 for (
auto *R : ExpressionRecipes) {
2805 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2806 auto *
Def =
Op->getDefiningRecipe();
2807 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2810 LiveInPlaceholders.push_back(
new VPValue());
2811 R->setOperand(Idx, LiveInPlaceholders.back());
2817 for (
auto *R : ExpressionRecipes)
2818 R->insertBefore(
this);
2821 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2824 ExpressionRecipes.clear();
2829 Type *RedTy = Ctx.Types.inferScalarType(
this);
2833 "VPExpressionRecipe only supports integer types currently.");
2836 switch (ExpressionType) {
2837 case ExpressionTypes::ExtendedReduction: {
2838 return Ctx.TTI.getExtendedReductionCost(
2842 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2844 case ExpressionTypes::MulAccReduction:
2845 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2848 case ExpressionTypes::ExtMulAccReduction:
2849 return Ctx.TTI.getMulAccReductionCost(
2852 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2859 return R->mayReadFromMemory() || R->mayWriteToMemory();
2867 "expression cannot contain recipes with side-effects");
2871#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2875 O << Indent <<
"EXPRESSION ";
2881 switch (ExpressionType) {
2882 case ExpressionTypes::ExtendedReduction: {
2891 << *Ext0->getResultType();
2892 if (Red->isConditional()) {
2899 case ExpressionTypes::MulAccReduction:
2900 case ExpressionTypes::ExtMulAccReduction: {
2908 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2910 : ExpressionRecipes[0]);
2918 << *Ext0->getResultType() <<
"), (";
2926 << *Ext1->getResultType() <<
")";
2928 if (Red->isConditional()) {
2940 O << Indent <<
"REDUCE ";
2960 O << Indent <<
"REDUCE ";
2988 assert((!Instr->getType()->isAggregateType() ||
2990 "Expected vectorizable or non-aggregate type.");
2993 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2997 Cloned->
setName(Instr->getName() +
".cloned");
2998 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3002 if (ResultTy != Cloned->
getType())
3013 State.setDebugLocFrom(
DL);
3018 auto InputLane = Lane;
3022 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3026 State.Builder.Insert(Cloned);
3028 State.set(RepRecipe, Cloned, Lane);
3032 State.AC->registerAssumption(
II);
3038 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3039 "Expected a recipe is either within a region or all of its operands "
3040 "are defined outside the vectorized region.");
3047 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3048 "must have already been unrolled");
3054 "uniform recipe shouldn't be predicated");
3055 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3060 State.Lane->isFirstLane()
3063 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3083 Ctx.SkipCostComputation.insert(UI);
3086 case Instruction::GetElementPtr:
3092 case Instruction::Call: {
3098 for (
const VPValue *ArgOp : ArgOps)
3099 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3101 if (CalledFn->isIntrinsic())
3104 switch (CalledFn->getIntrinsicID()) {
3105 case Intrinsic::assume:
3106 case Intrinsic::lifetime_end:
3107 case Intrinsic::lifetime_start:
3108 case Intrinsic::sideeffect:
3109 case Intrinsic::pseudoprobe:
3110 case Intrinsic::experimental_noalias_scope_decl: {
3113 "scalarizing intrinsic should be free");
3120 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3122 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3124 if (CalledFn->isIntrinsic())
3125 ScalarCallCost = std::min(
3129 return ScalarCallCost;
3139 for (
Type *VectorTy :
3141 ScalarizationCost += Ctx.TTI.getScalarizationOverhead(
3144 false, Ctx.CostKind);
3151 for (
auto *
Op : ArgOps) {
3157 ScalarizationCost +=
3158 Ctx.TTI.getOperandsScalarizationOverhead(Tys, Ctx.CostKind);
3161 return ScalarCallCost * VF.
getFixedValue() + ScalarizationCost;
3163 case Instruction::Add:
3164 case Instruction::Sub:
3165 case Instruction::FAdd:
3166 case Instruction::FSub:
3167 case Instruction::Mul:
3168 case Instruction::FMul:
3169 case Instruction::FDiv:
3170 case Instruction::FRem:
3171 case Instruction::Shl:
3172 case Instruction::LShr:
3173 case Instruction::AShr:
3174 case Instruction::And:
3175 case Instruction::Or:
3176 case Instruction::Xor:
3177 case Instruction::ICmp:
3178 case Instruction::FCmp:
3182 case Instruction::Load:
3183 case Instruction::Store: {
3185 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3186 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3187 Type *ScalarPtrTy = Ctx.Types.inferScalarType(
getOperand(IsLoad ? 0 : 1));
3192 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI);
3193 return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3194 ScalarPtrTy,
nullptr,
nullptr, Ctx.CostKind);
3202 return Ctx.getLegacyCost(UI, VF);
3205#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3208 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3217 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3235 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3238 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3242 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3244 "Expected to replace unreachable terminator with conditional branch.");
3246 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3247 CondBr->setSuccessor(0,
nullptr);
3248 CurrentTerminator->eraseFromParent();
3260 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3265 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3267 "operand must be VPReplicateRecipe");
3281 if (State.hasVectorValue(
this))
3282 State.reset(
this, VPhi);
3284 State.set(
this, VPhi);
3292 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3293 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3296 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3297 if (State.hasScalarValue(
this, *State.Lane))
3298 State.reset(
this, Phi, *State.Lane);
3300 State.set(
this, Phi, *State.Lane);
3303 State.reset(
getOperand(0), Phi, *State.Lane);
3307#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3310 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3322 ->getAddressSpace();
3325 : Instruction::Store;
3332 "Inconsecutive memory access should not have the order.");
3342 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3344 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty,
Ptr,
IsMasked, Alignment,
3351 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3356 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3362 return Cost += Ctx.TTI.getShuffleCost(
3373 auto &Builder = State.Builder;
3374 Value *Mask =
nullptr;
3375 if (
auto *VPMask =
getMask()) {
3378 Mask = State.get(VPMask);
3380 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3386 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask,
nullptr,
3387 "wide.masked.gather");
3390 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3393 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment,
"wide.load");
3397 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3398 State.set(
this, NewLI);
3401#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3404 O << Indent <<
"WIDEN ";
3416 Value *AllTrueMask =
3417 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3418 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3419 {Operand, AllTrueMask, EVL},
nullptr, Name);
3428 auto &Builder = State.Builder;
3432 Value *Mask =
nullptr;
3434 Mask = State.get(VPMask);
3438 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3443 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3444 nullptr,
"wide.masked.gather");
3446 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3447 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3455 State.set(
this, Res);
3472 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3476 return Cost + Ctx.TTI.getShuffleCost(
3481#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3484 O << Indent <<
"WIDEN ";
3496 auto &Builder = State.Builder;
3498 Value *Mask =
nullptr;
3499 if (
auto *VPMask =
getMask()) {
3502 Mask = State.get(VPMask);
3504 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3507 Value *StoredVal = State.get(StoredVPValue);
3511 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3518 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3520 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3522 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3526#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3529 O << Indent <<
"WIDEN store ";
3539 auto &Builder = State.Builder;
3542 Value *StoredVal = State.get(StoredValue);
3546 Value *Mask =
nullptr;
3548 Mask = State.get(VPMask);
3552 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3555 if (CreateScatter) {
3557 Intrinsic::vp_scatter,
3558 {StoredVal, Addr, Mask, EVL});
3561 Intrinsic::vp_store,
3562 {StoredVal, Addr, Mask, EVL});
3583 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3587 return Cost + Ctx.TTI.getShuffleCost(
3592#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3595 O << Indent <<
"WIDEN vp.store ";
3603 auto VF = DstVTy->getElementCount();
3605 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3606 Type *SrcElemTy = SrcVecTy->getElementType();
3607 Type *DstElemTy = DstVTy->getElementType();
3608 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3609 "Vector elements must have same size");
3613 return Builder.CreateBitOrPointerCast(V, DstVTy);
3620 "Only one type should be a pointer type");
3622 "Only one type should be a floating point type");
3626 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3627 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3633 const Twine &Name) {
3634 unsigned Factor = Vals.
size();
3635 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3639 for (
Value *Val : Vals)
3640 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3645 if (VecTy->isScalableTy()) {
3646 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3647 return Builder.CreateVectorInterleave(Vals, Name);
3654 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3655 return Builder.CreateShuffleVector(
3688 assert(!State.Lane &&
"Interleave group being replicated.");
3690 "Masking gaps for scalable vectors is not yet supported.");
3696 unsigned InterleaveFactor = Group->
getFactor();
3703 auto CreateGroupMask = [&BlockInMask, &State,
3704 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3705 if (State.VF.isScalable()) {
3706 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3707 assert(InterleaveFactor <= 8 &&
3708 "Unsupported deinterleave factor for scalable vectors");
3709 auto *ResBlockInMask = State.get(BlockInMask);
3717 Value *ResBlockInMask = State.get(BlockInMask);
3718 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3721 "interleaved.mask");
3722 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3723 ShuffledMask, MaskForGaps)
3727 const DataLayout &DL = Instr->getDataLayout();
3730 Value *MaskForGaps =
nullptr;
3734 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3738 if (BlockInMask || MaskForGaps) {
3739 Value *GroupMask = CreateGroupMask(MaskForGaps);
3741 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3743 PoisonVec,
"wide.masked.vec");
3745 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3752 if (VecTy->isScalableTy()) {
3755 assert(InterleaveFactor <= 8 &&
3756 "Unsupported deinterleave factor for scalable vectors");
3757 NewLoad = State.Builder.CreateIntrinsic(
3760 nullptr,
"strided.vec");
3763 auto CreateStridedVector = [&InterleaveFactor, &State,
3764 &NewLoad](
unsigned Index) ->
Value * {
3765 assert(Index < InterleaveFactor &&
"Illegal group index");
3766 if (State.VF.isScalable())
3767 return State.Builder.CreateExtractValue(NewLoad, Index);
3773 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3777 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3784 Value *StridedVec = CreateStridedVector(
I);
3787 if (Member->getType() != ScalarTy) {
3794 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3796 State.set(VPDefs[J], StridedVec);
3806 Value *MaskForGaps =
3809 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3813 unsigned StoredIdx = 0;
3814 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3816 "Fail to get a member from an interleaved store group");
3826 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3830 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3834 if (StoredVec->
getType() != SubVT)
3843 if (BlockInMask || MaskForGaps) {
3844 Value *GroupMask = CreateGroupMask(MaskForGaps);
3845 NewStoreInstr = State.Builder.CreateMaskedStore(
3846 IVec, ResAddr, Group->
getAlign(), GroupMask);
3849 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3856#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3860 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
3861 IG->getInsertPos()->printAsOperand(O,
false);
3871 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
3872 if (!IG->getMember(i))
3875 O <<
"\n" << Indent <<
" store ";
3877 O <<
" to index " << i;
3879 O <<
"\n" << Indent <<
" ";
3881 O <<
" = load from index " << i;
3889 assert(!State.Lane &&
"Interleave group being replicated.");
3890 assert(State.VF.isScalable() &&
3891 "Only support scalable VF for EVL tail-folding.");
3893 "Masking gaps for scalable vectors is not yet supported.");
3899 unsigned InterleaveFactor = Group->
getFactor();
3900 assert(InterleaveFactor <= 8 &&
3901 "Unsupported deinterleave/interleave factor for scalable vectors");
3908 Value *InterleaveEVL = State.Builder.CreateMul(
3909 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
3913 Value *GroupMask =
nullptr;
3919 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
3924 CallInst *NewLoad = State.Builder.CreateIntrinsic(
3925 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
3936 NewLoad = State.Builder.CreateIntrinsic(
3939 nullptr,
"strided.vec");
3941 const DataLayout &DL = Instr->getDataLayout();
3942 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3948 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
3950 if (Member->getType() != ScalarTy) {
3968 const DataLayout &DL = Instr->getDataLayout();
3969 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
3977 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3979 if (StoredVec->
getType() != SubVT)
3989 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
3990 {IVec, ResAddr, GroupMask, InterleaveEVL});
3999#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4003 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4004 IG->getInsertPos()->printAsOperand(O,
false);
4015 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4016 if (!IG->getMember(i))
4019 O <<
"\n" << Indent <<
" vp.store ";
4021 O <<
" to index " << i;
4023 O <<
"\n" << Indent <<
" ";
4025 O <<
" = vp.load from index " << i;
4036 unsigned InsertPosIdx = 0;
4037 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4038 if (
auto *Member = IG->getMember(Idx)) {
4039 if (Member == InsertPos)
4043 Type *ValTy = Ctx.Types.inferScalarType(
4049 unsigned InterleaveFactor = IG->getFactor();
4054 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4055 if (IG->getMember(IF))
4060 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4061 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4063 if (!IG->isReverse())
4066 return Cost + IG->getNumMembers() *
4068 VectorTy, VectorTy, {}, Ctx.CostKind,
4072#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4075 O << Indent <<
"EMIT ";
4077 O <<
" = CANONICAL-INDUCTION ";
4083 return IsScalarAfterVectorization &&
4087#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4091 "unexpected number of operands");
4092 O << Indent <<
"EMIT ";
4094 O <<
" = WIDEN-POINTER-INDUCTION ";
4110 O << Indent <<
"EMIT ";
4112 O <<
" = EXPAND SCEV " << *Expr;
4119 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4123 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4126 VStep = Builder.CreateVectorSplat(VF, VStep);
4128 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4130 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4131 State.set(
this, CanonicalVectorIV);
4134#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4137 O << Indent <<
"EMIT ";
4139 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4145 auto &Builder = State.Builder;
4149 Type *VecTy = State.VF.isScalar()
4150 ? VectorInit->getType()
4154 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4155 if (State.VF.isVector()) {
4157 auto *One = ConstantInt::get(IdxTy, 1);
4160 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4161 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4162 VectorInit = Builder.CreateInsertElement(
4168 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4169 Phi->addIncoming(VectorInit, VectorPH);
4170 State.set(
this, Phi);
4177 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4182#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4185 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4202 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4203 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4204 Value *StartV = State.get(StartVPV, ScalarPHI);
4208 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4209 "recipe must be in the vector loop header");
4212 State.set(
this, Phi, IsInLoop);
4214 Phi->addIncoming(StartV, VectorPH);
4217#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4220 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4225 if (VFScaleFactor != 1)
4226 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4233 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4234 State.set(
this, VecPhi);
4237#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4240 O << Indent <<
"WIDEN-PHI ";
4252 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4255 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4256 Phi->addIncoming(StartMask, VectorPH);
4257 State.set(
this, Phi);
4260#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4263 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4271#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4274 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a single (scalar) element into a VectorType value.
VectorType * getType() const
Overload to return most specific vector type.
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Vector takeVector()
Clear the SetVector and return the underlying vector.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
std::optional< InstructionCost > getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.