LLVM 22.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanDominatorTree.h"
23#include "VPlanHelpers.h"
24#include "VPlanPatternMatch.h"
25#include "VPlanTransforms.h"
26#include "VPlanUtils.h"
28#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/Twine.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CFG.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
43#include "llvm/Support/Debug.h"
48#include <cassert>
49#include <string>
50
51using namespace llvm;
52using namespace llvm::VPlanPatternMatch;
53
54namespace llvm {
56}
57
59
61 "vplan-print-in-dot-format", cl::Hidden,
62 cl::desc("Use dot format instead of plain text when dumping VPlans"));
63
64#define DEBUG_TYPE "loop-vectorize"
65
66#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
68 const VPBasicBlock *Parent = R.getParent();
69 VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr);
70 R.print(OS, "", SlotTracker);
71 return OS;
72}
73#endif
74
76 const ElementCount &VF) const {
77 switch (LaneKind) {
79 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
80 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
81 Builder.getInt32(VF.getKnownMinValue() - Lane));
83 return Builder.getInt32(Lane);
84 }
85 llvm_unreachable("Unknown lane kind");
86}
87
88VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
89 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
90 if (Def)
91 Def->addDefinedValue(this);
92}
93
95 assert(Users.empty() && "trying to delete a VPValue with remaining users");
96 if (Def)
97 Def->removeDefinedValue(this);
98}
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
103 R->print(OS, "", SlotTracker);
104 else
106}
107
108void VPValue::dump() const {
109 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
111 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113 dbgs() << "\n";
114}
115
116void VPDef::dump() const {
117 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
119 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
120 print(dbgs(), "", SlotTracker);
121 dbgs() << "\n";
122}
123#endif
124
126 return cast_or_null<VPRecipeBase>(Def);
127}
128
130 return cast_or_null<VPRecipeBase>(Def);
131}
132
133// Get the top-most entry block of \p Start. This is the entry block of the
134// containing VPlan. This function is templated to support both const and non-const blocks
135template <typename T> static T *getPlanEntry(T *Start) {
136 T *Next = Start;
137 T *Current = Start;
138 while ((Next = Next->getParent()))
139 Current = Next;
140
141 SmallSetVector<T *, 8> WorkList;
142 WorkList.insert(Current);
143
144 for (unsigned i = 0; i < WorkList.size(); i++) {
145 T *Current = WorkList[i];
146 if (Current->getNumPredecessors() == 0)
147 return Current;
148 auto &Predecessors = Current->getPredecessors();
149 WorkList.insert_range(Predecessors);
150 }
151
152 llvm_unreachable("VPlan without any entry node without predecessors");
153}
154
155VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
156
157const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
158
159/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
161 const VPBlockBase *Block = this;
162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
163 Block = Region->getEntry();
164 return cast<VPBasicBlock>(Block);
165}
166
168 VPBlockBase *Block = this;
169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
170 Block = Region->getEntry();
171 return cast<VPBasicBlock>(Block);
172}
173
174void VPBlockBase::setPlan(VPlan *ParentPlan) {
175 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
176 Plan = ParentPlan;
177}
178
179/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
181 const VPBlockBase *Block = this;
182 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183 Block = Region->getExiting();
184 return cast<VPBasicBlock>(Block);
185}
186
188 VPBlockBase *Block = this;
189 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190 Block = Region->getExiting();
191 return cast<VPBasicBlock>(Block);
192}
193
195 if (!Successors.empty() || !Parent)
196 return this;
197 assert(Parent->getExiting() == this &&
198 "Block w/o successors not the exiting block of its parent.");
199 return Parent->getEnclosingBlockWithSuccessors();
200}
201
203 if (!Predecessors.empty() || !Parent)
204 return this;
205 assert(Parent->getEntry() == this &&
206 "Block w/o predecessors not the entry of its parent.");
207 return Parent->getEnclosingBlockWithPredecessors();
208}
209
211 const VPDominatorTree &VPDT) {
212 auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
213 if (!VPBB)
214 return false;
215
216 // If VPBB is in a region R, VPBB is a loop header if R is a loop region with
217 // VPBB as its entry, i.e., free of predecessors.
218 if (auto *R = VPBB->getParent())
219 return !R->isReplicator() && VPBB->getNumPredecessors() == 0;
220
221 // A header dominates its second predecessor (the latch), with the other
222 // predecessor being the preheader
223 return VPB->getPredecessors().size() == 2 &&
224 VPDT.dominates(VPB, VPB->getPredecessors()[1]);
225}
226
228 const VPDominatorTree &VPDT) {
229 // A latch has a header as its second successor, with its other successor
230 // leaving the loop. A preheader OTOH has a header as its first (and only)
231 // successor.
232 return VPB->getNumSuccessors() == 2 &&
233 VPBlockUtils::isHeader(VPB->getSuccessors()[1], VPDT);
234}
235
237 iterator It = begin();
238 while (It != end() && It->isPhi())
239 It++;
240 return It;
241}
242
244 ElementCount VF, LoopInfo *LI,
246 IRBuilderBase &Builder, VPlan *Plan,
247 Loop *CurrentParentLoop, Type *CanonicalIVTy)
248 : TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan),
249 CurrentParentLoop(CurrentParentLoop), TypeAnalysis(*Plan), VPDT(*Plan) {}
250
251Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) {
252 if (Def->isLiveIn())
253 return Def->getLiveInIRValue();
254
255 if (hasScalarValue(Def, Lane))
256 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
257
258 if (!Lane.isFirstLane() && vputils::isSingleScalar(Def) &&
260 return Data.VPV2Scalars[Def][0];
261 }
262
263 // Look through BuildVector to avoid redundant extracts.
264 // TODO: Remove once replicate regions are unrolled explicitly.
265 if (Lane.getKind() == VPLane::Kind::First && match(Def, m_BuildVector())) {
266 auto *BuildVector = cast<VPInstruction>(Def);
267 return get(BuildVector->getOperand(Lane.getKnownLane()), true);
268 }
269
271 auto *VecPart = Data.VPV2Vector[Def];
272 if (!VecPart->getType()->isVectorTy()) {
273 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
274 return VecPart;
275 }
276 // TODO: Cache created scalar values.
277 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
278 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
279 // set(Def, Extract, Instance);
280 return Extract;
281}
282
283Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) {
284 if (NeedsScalar) {
285 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
287 (hasScalarValue(Def, VPLane(0)) &&
288 Data.VPV2Scalars[Def].size() == 1)) &&
289 "Trying to access a single scalar per part but has multiple scalars "
290 "per part.");
291 return get(Def, VPLane(0));
292 }
293
294 // If Values have been set for this Def return the one relevant for \p Part.
295 if (hasVectorValue(Def))
296 return Data.VPV2Vector[Def];
297
298 auto GetBroadcastInstrs = [this](Value *V) {
299 if (VF.isScalar())
300 return V;
301 // Broadcast the scalar into all locations in the vector.
302 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
303 return Shuf;
304 };
305
306 if (!hasScalarValue(Def, {0})) {
307 assert(Def->isLiveIn() && "expected a live-in");
308 Value *IRV = Def->getLiveInIRValue();
309 Value *B = GetBroadcastInstrs(IRV);
310 set(Def, B);
311 return B;
312 }
313
314 Value *ScalarValue = get(Def, VPLane(0));
315 // If we aren't vectorizing, we can just copy the scalar map values over
316 // to the vector map.
317 if (VF.isScalar()) {
318 set(Def, ScalarValue);
319 return ScalarValue;
320 }
321
322 bool IsSingleScalar = vputils::isSingleScalar(Def);
323
324 VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1);
325 // Check if there is a scalar value for the selected lane.
326 if (!hasScalarValue(Def, LastLane)) {
327 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
328 // VPExpandSCEVRecipes can also be a single scalar.
330 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
331 "unexpected recipe found to be invariant");
332 IsSingleScalar = true;
333 LastLane = 0;
334 }
335
336 auto *LastInst = cast<Instruction>(get(Def, LastLane));
337 // Set the insert point after the last scalarized instruction or after the
338 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
339 // will directly follow the scalar definitions.
340 auto OldIP = Builder.saveIP();
341 auto NewIP = isa<PHINode>(LastInst)
342 ? LastInst->getParent()->getFirstNonPHIIt()
343 : std::next(BasicBlock::iterator(LastInst));
344 Builder.SetInsertPoint(&*NewIP);
345
346 // However, if we are vectorizing, we need to construct the vector values.
347 // If the value is known to be uniform after vectorization, we can just
348 // broadcast the scalar value corresponding to lane zero. Otherwise, we
349 // construct the vector values using insertelement instructions. Since the
350 // resulting vectors are stored in State, we will only generate the
351 // insertelements once.
352 Value *VectorValue = nullptr;
353 if (IsSingleScalar) {
354 VectorValue = GetBroadcastInstrs(ScalarValue);
355 set(Def, VectorValue);
356 } else {
357 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
358 assert(isa<VPInstruction>(Def) &&
359 "Explicit BuildVector recipes must have"
360 "handled packing for non-VPInstructions.");
361 // Initialize packing with insertelements to start from poison.
362 VectorValue = PoisonValue::get(toVectorizedTy(LastInst->getType(), VF));
363 for (unsigned Lane = 0; Lane < VF.getFixedValue(); ++Lane)
364 VectorValue = packScalarIntoVectorizedValue(Def, VectorValue, Lane);
365 set(Def, VectorValue);
366 }
368 return VectorValue;
369}
370
372 const DILocation *DIL = DL;
373 // When a FSDiscriminator is enabled, we don't need to add the multiply
374 // factors to the discriminators.
375 if (DIL &&
377 ->getParent()
380 // FIXME: For scalable vectors, assume vscale=1.
381 unsigned UF = Plan->getUF();
382 auto NewDIL =
384 if (NewDIL)
386 else
387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388 << DIL->getFilename() << " Line: " << DIL->getLine());
389 } else
391}
392
394 Value *WideValue,
395 const VPLane &Lane) {
396 Value *ScalarInst = get(Def, Lane);
397 Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF);
398 if (auto *StructTy = dyn_cast<StructType>(WideValue->getType())) {
399 // We must handle each element of a vectorized struct type.
400 for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) {
401 Value *ScalarValue = Builder.CreateExtractValue(ScalarInst, I);
402 Value *VectorValue = Builder.CreateExtractValue(WideValue, I);
403 VectorValue =
404 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneExpr);
405 WideValue = Builder.CreateInsertValue(WideValue, VectorValue, I);
406 }
407 } else {
408 WideValue = Builder.CreateInsertElement(WideValue, ScalarInst, LaneExpr);
409 }
410 return WideValue;
411}
412
413BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) {
414 auto &CFG = State.CFG;
415 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
416 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
417 BasicBlock *PrevBB = CFG.PrevBB;
418 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
419 PrevBB->getParent(), CFG.ExitBB);
420 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
421
422 return NewBB;
423}
424
426 auto &CFG = State.CFG;
427 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
428
429 // Register NewBB in its loop. In innermost loops its the same for all
430 // BB's.
431 Loop *ParentLoop = State.CurrentParentLoop;
432 // If this block has a sole successor that is an exit block or is an exit
433 // block itself then it needs adding to the same parent loop as the exit
434 // block.
435 VPBlockBase *SuccOrExitVPB = getSingleSuccessor();
436 SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this;
437 if (State.Plan->isExitBlock(SuccOrExitVPB)) {
438 ParentLoop = State.LI->getLoopFor(
439 cast<VPIRBasicBlock>(SuccOrExitVPB)->getIRBasicBlock());
440 }
441
442 if (ParentLoop && !State.LI->getLoopFor(NewBB))
443 ParentLoop->addBasicBlockToLoop(NewBB, *State.LI);
444
446 if (VPBlockUtils::isHeader(this, State.VPDT)) {
447 // There's no block for the latch yet, connect to the preheader only.
448 Preds = {getPredecessors()[0]};
449 } else {
450 Preds = to_vector(getPredecessors());
451 }
452
453 // Hook up the new basic block to its predecessors.
454 for (VPBlockBase *PredVPBlock : Preds) {
455 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
456 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
457 assert(CFG.VPBB2IRBB.contains(PredVPBB) &&
458 "Predecessor basic-block not found building successor.");
459 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
460 auto *PredBBTerminator = PredBB->getTerminator();
461 LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n');
462
463 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
464 if (isa<UnreachableInst>(PredBBTerminator)) {
465 assert(PredVPSuccessors.size() == 1 &&
466 "Predecessor ending w/o branch must have single successor.");
467 DebugLoc DL = PredBBTerminator->getDebugLoc();
468 PredBBTerminator->eraseFromParent();
469 auto *Br = BranchInst::Create(NewBB, PredBB);
470 Br->setDebugLoc(DL);
471 } else if (TermBr && !TermBr->isConditional()) {
472 TermBr->setSuccessor(0, NewBB);
473 } else {
474 // Set each forward successor here when it is created, excluding
475 // backedges. A backward successor is set when the branch is created.
476 // Branches to VPIRBasicBlocks must have the same successors in VPlan as
477 // in the original IR, except when the predecessor is the entry block.
478 // This enables including SCEV and memory runtime check blocks in VPlan.
479 // TODO: Remove exception by modeling the terminator of entry block using
480 // BranchOnCond.
481 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
482 assert((TermBr && (!TermBr->getSuccessor(idx) ||
483 (isa<VPIRBasicBlock>(this) &&
484 (TermBr->getSuccessor(idx) == NewBB ||
485 PredVPBlock == getPlan()->getEntry())))) &&
486 "Trying to reset an existing successor block.");
487 TermBr->setSuccessor(idx, NewBB);
488 }
489 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
490 }
491}
492
495 "VPIRBasicBlock can have at most two successors at the moment!");
496 State->Builder.SetInsertPoint(IRBB->getTerminator());
497 State->CFG.PrevBB = IRBB;
498 State->CFG.VPBB2IRBB[this] = IRBB;
499 executeRecipes(State, IRBB);
500 // Create a branch instruction to terminate IRBB if one was not created yet
501 // and is needed.
502 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
503 auto *Br = State->Builder.CreateBr(IRBB);
504 Br->setOperand(0, nullptr);
506 } else {
507 assert(
508 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
509 "other blocks must be terminated by a branch");
510 }
511
512 connectToPredecessors(*State);
513}
514
516 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
517 for (VPRecipeBase &R : Recipes)
518 NewBlock->appendRecipe(R.clone());
519 return NewBlock;
520}
521
523 bool Replica = bool(State->Lane);
524 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
525
526 if (VPBlockUtils::isHeader(this, State->VPDT)) {
527 // Create and register the new vector loop.
528 Loop *PrevParentLoop = State->CurrentParentLoop;
529 State->CurrentParentLoop = State->LI->AllocateLoop();
530
531 // Insert the new loop into the loop nest and register the new basic blocks
532 // before calling any utilities such as SCEV that require valid LoopInfo.
533 if (PrevParentLoop)
534 PrevParentLoop->addChildLoop(State->CurrentParentLoop);
535 else
536 State->LI->addTopLevelLoop(State->CurrentParentLoop);
537 }
538
539 auto IsReplicateRegion = [](VPBlockBase *BB) {
540 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
541 assert((!R || R->isReplicator()) &&
542 "only replicate region blocks should remain");
543 return R;
544 };
545 // 1. Create an IR basic block.
546 if ((Replica && this == getParent()->getEntry()) ||
547 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
548 // Reuse the previous basic block if the current VPBB is either
549 // * the entry to a replicate region, or
550 // * the exit of a replicate region.
551 State->CFG.VPBB2IRBB[this] = NewBB;
552 } else {
553 NewBB = createEmptyBasicBlock(*State);
554
555 State->Builder.SetInsertPoint(NewBB);
556 // Temporarily terminate with unreachable until CFG is rewired.
557 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
558 State->Builder.SetInsertPoint(Terminator);
559
560 State->CFG.PrevBB = NewBB;
561 State->CFG.VPBB2IRBB[this] = NewBB;
562 connectToPredecessors(*State);
563 }
564
565 // 2. Fill the IR basic block with IR instructions.
566 executeRecipes(State, NewBB);
567
568 // If this block is a latch, update CurrentParentLoop.
569 if (VPBlockUtils::isLatch(this, State->VPDT))
571}
572
574 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
575 for (VPRecipeBase &R : *this)
576 NewBlock->appendRecipe(R.clone());
577 return NewBlock;
578}
579
581 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName()
582 << " in BB: " << BB->getName() << '\n');
583
584 State->CFG.PrevVPBB = this;
585
586 for (VPRecipeBase &Recipe : Recipes) {
587 State->setDebugLocFrom(Recipe.getDebugLoc());
588 Recipe.execute(*State);
589 }
590
591 LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB);
592}
593
595 assert((SplitAt == end() || SplitAt->getParent() == this) &&
596 "can only split at a position in the same block");
597
598 // Create new empty block after the block to split.
599 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
601
602 // Finally, move the recipes starting at SplitAt to new block.
603 for (VPRecipeBase &ToMove :
604 make_early_inc_range(make_range(SplitAt, this->end())))
605 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
606
607 return SplitBlock;
608}
609
610/// Return the enclosing loop region for region \p P. The templated version is
611/// used to support both const and non-const block arguments.
612template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
613 if (P && P->isReplicator()) {
614 P = P->getParent();
615 // Multiple loop regions can be nested, but replicate regions can only be
616 // nested inside a loop region or must be outside any other region.
617 assert((!P || !P->isReplicator()) && "unexpected nested replicate regions");
618 }
619 return P;
620}
621
624}
625
628}
629
630static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
631 if (VPBB->empty()) {
632 assert(
633 VPBB->getNumSuccessors() < 2 &&
634 "block with multiple successors doesn't have a recipe as terminator");
635 return false;
636 }
637
638 const VPRecipeBase *R = &VPBB->back();
639 bool IsSwitch = isa<VPInstruction>(R) &&
640 cast<VPInstruction>(R)->getOpcode() == Instruction::Switch;
641 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
644 (void)IsCondBranch;
645 (void)IsSwitch;
646 if (VPBB->getNumSuccessors() == 2 ||
647 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
648 assert((IsCondBranch || IsSwitch) &&
649 "block with multiple successors not terminated by "
650 "conditional branch nor switch recipe");
651
652 return true;
653 }
654
655 if (VPBB->getNumSuccessors() > 2) {
656 assert(IsSwitch && "block with more than 2 successors not terminated by "
657 "a switch recipe");
658 return true;
659 }
660
661 assert(
662 !IsCondBranch &&
663 "block with 0 or 1 successors terminated by conditional branch recipe");
664 return false;
665}
666
668 if (hasConditionalTerminator(this))
669 return &back();
670 return nullptr;
671}
672
674 if (hasConditionalTerminator(this))
675 return &back();
676 return nullptr;
677}
678
680 return getParent() && getParent()->getExitingBasicBlock() == this;
681}
682
683#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
686 print(O, "", SlotTracker);
687}
688
689void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
690 if (getSuccessors().empty()) {
691 O << Indent << "No successors\n";
692 } else {
693 O << Indent << "Successor(s): ";
694 ListSeparator LS;
695 for (auto *Succ : getSuccessors())
696 O << LS << Succ->getName();
697 O << '\n';
698 }
699}
700
701void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
702 VPSlotTracker &SlotTracker) const {
703 O << Indent << getName() << ":\n";
704
705 auto RecipeIndent = Indent + " ";
706 for (const VPRecipeBase &Recipe : *this) {
707 Recipe.print(O, RecipeIndent, SlotTracker);
708 O << '\n';
709 }
710
711 printSuccessors(O, Indent);
712}
713#endif
714
715static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
716
717// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
718// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
719// Remapping of operands must be done separately. Returns a pair with the new
720// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
721// region, return nullptr for the exiting block.
722static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
724 VPBlockBase *Exiting = nullptr;
725 bool InRegion = Entry->getParent();
726 // First, clone blocks reachable from Entry.
727 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
728 VPBlockBase *NewBB = BB->clone();
729 Old2NewVPBlocks[BB] = NewBB;
730 if (InRegion && BB->getNumSuccessors() == 0) {
731 assert(!Exiting && "Multiple exiting blocks?");
732 Exiting = BB;
733 }
734 }
735 assert((!InRegion || Exiting) && "regions must have a single exiting block");
736
737 // Second, update the predecessors & successors of the cloned blocks.
738 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
739 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
741 for (VPBlockBase *Pred : BB->getPredecessors()) {
742 NewPreds.push_back(Old2NewVPBlocks[Pred]);
743 }
744 NewBB->setPredecessors(NewPreds);
746 for (VPBlockBase *Succ : BB->successors()) {
747 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
748 }
749 NewBB->setSuccessors(NewSuccs);
750 }
751
752#if !defined(NDEBUG)
753 // Verify that the order of predecessors and successors matches in the cloned
754 // version.
755 for (const auto &[OldBB, NewBB] :
757 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
758 for (const auto &[OldPred, NewPred] :
759 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
760 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
761
762 for (const auto &[OldSucc, NewSucc] :
763 zip(OldBB->successors(), NewBB->successors()))
764 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
765 }
766#endif
767
768 return std::make_pair(Old2NewVPBlocks[Entry],
769 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
770}
771
773 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
774 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
775 getName(), isReplicator());
776 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
777 Block->setParent(NewRegion);
778 return NewRegion;
779}
780
783 "Loop regions should have been lowered to plain CFG");
784 assert(!State->Lane && "Replicating a Region with non-null instance.");
785 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
786
788 Entry);
789 State->Lane = VPLane(0);
790 for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) {
791 State->Lane = VPLane(Lane, VPLane::Kind::First);
792 // Visit the VPBlocks connected to \p this, starting from it.
793 for (VPBlockBase *Block : RPOT) {
794 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
795 Block->execute(State);
796 }
797 }
798
799 // Exit replicating mode.
800 State->Lane.reset();
801}
802
805 for (VPRecipeBase &R : Recipes)
806 Cost += R.cost(VF, Ctx);
807 return Cost;
808}
809
811 const VPBlockBase *Pred = nullptr;
812 if (getNumPredecessors() > 0) {
813 Pred = getPredecessors()[Idx];
814 } else {
815 auto *Region = getParent();
816 assert(Region && !Region->isReplicator() && Region->getEntry() == this &&
817 "must be in the entry block of a non-replicate region");
818 assert(Idx < 2 && Region->getNumPredecessors() == 1 &&
819 "loop region has a single predecessor (preheader), its entry block "
820 "has 2 incoming blocks");
821
822 // Idx == 0 selects the predecessor of the region, Idx == 1 selects the
823 // region itself whose exiting block feeds the phi across the backedge.
824 Pred = Idx == 0 ? Region->getSinglePredecessor() : Region;
825 }
826 return Pred->getExitingBasicBlock();
827}
828
830 if (!isReplicator()) {
833 Cost += Block->cost(VF, Ctx);
834 InstructionCost BackedgeCost =
835 ForceTargetInstructionCost.getNumOccurrences()
836 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
837 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
838 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
839 << ": vector loop backedge\n");
840 Cost += BackedgeCost;
841 return Cost;
842 }
843
844 // Compute the cost of a replicate region. Replicating isn't supported for
845 // scalable vectors, return an invalid cost for them.
846 // TODO: Discard scalable VPlans with replicate recipes earlier after
847 // construction.
848 if (VF.isScalable())
850
851 // First compute the cost of the conditionally executed recipes, followed by
852 // account for the branching cost, except if the mask is a header mask or
853 // uniform condition.
854 using namespace llvm::VPlanPatternMatch;
855 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
856 InstructionCost ThenCost = Then->cost(VF, Ctx);
857
858 // For the scalar case, we may not always execute the original predicated
859 // block, Thus, scale the block's cost by the probability of executing it.
860 if (VF.isScalar())
861 return ThenCost / getPredBlockCostDivisor(Ctx.CostKind);
862
863 return ThenCost;
864}
865
866#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
868 VPSlotTracker &SlotTracker) const {
869 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
870 auto NewIndent = Indent + " ";
871 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
872 O << '\n';
873 BlockBase->print(O, NewIndent, SlotTracker);
874 }
875 O << Indent << "}\n";
876
877 printSuccessors(O, Indent);
878}
879#endif
880
882 auto *Header = cast<VPBasicBlock>(getEntry());
883 if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(&Header->front())) {
884 assert(this == getPlan()->getVectorLoopRegion() &&
885 "Canonical IV must be in the entry of the top-level loop region");
886 auto *ScalarR = VPBuilder(CanIV).createScalarPhi(
887 {CanIV->getStartValue(), CanIV->getBackedgeValue()},
888 CanIV->getDebugLoc(), "index");
889 CanIV->replaceAllUsesWith(ScalarR);
890 CanIV->eraseFromParent();
891 }
892
893 VPBlockBase *Preheader = getSinglePredecessor();
894 auto *ExitingLatch = cast<VPBasicBlock>(getExiting());
896 VPBlockUtils::disconnectBlocks(Preheader, this);
897 VPBlockUtils::disconnectBlocks(this, Middle);
898
899 for (VPBlockBase *VPB : vp_depth_first_shallow(Entry))
900 VPB->setParent(getParent());
901
902 VPBlockUtils::connectBlocks(Preheader, Header);
903 VPBlockUtils::connectBlocks(ExitingLatch, Middle);
904 VPBlockUtils::connectBlocks(ExitingLatch, Header);
905}
906
907VPlan::VPlan(Loop *L) {
908 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
909 ScalarHeader = createVPIRBasicBlock(L->getHeader());
910
911 SmallVector<BasicBlock *> IRExitBlocks;
912 L->getUniqueExitBlocks(IRExitBlocks);
913 for (BasicBlock *EB : IRExitBlocks)
914 ExitBlocks.push_back(createVPIRBasicBlock(EB));
915}
916
918 VPValue DummyValue;
919
920 for (auto *VPB : CreatedBlocks) {
921 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
922 // Replace all operands of recipes and all VPValues defined in VPBB with
923 // DummyValue so the block can be deleted.
924 for (VPRecipeBase &R : *VPBB) {
925 for (auto *Def : R.definedValues())
926 Def->replaceAllUsesWith(&DummyValue);
927
928 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
929 R.setOperand(I, &DummyValue);
930 }
931 }
932 delete VPB;
933 }
934 for (VPValue *VPV : getLiveIns())
935 delete VPV;
936 if (BackedgeTakenCount)
937 delete BackedgeTakenCount;
938}
939
941 auto Iter = find_if(getExitBlocks(), [IRBB](const VPIRBasicBlock *VPIRBB) {
942 return VPIRBB->getIRBasicBlock() == IRBB;
943 });
944 assert(Iter != getExitBlocks().end() && "no exit block found");
945 return *Iter;
946}
947
949 return is_contained(ExitBlocks, VPBB);
950}
951
952/// Generate the code inside the preheader and body of the vectorized loop.
953/// Assumes a single pre-header basic-block was created for this. Introduce
954/// additional basic-blocks as needed, and fill them all.
956 // Initialize CFG state.
957 State->CFG.PrevVPBB = nullptr;
958 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
959
960 // Update VPDominatorTree since VPBasicBlock may be removed after State was
961 // constructed.
962 State->VPDT.recalculate(*this);
963
964 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
965 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
966 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
967 State->CFG.DTU.applyUpdates(
968 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
969
970 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
971 << ", UF=" << getUF() << '\n');
972 setName("Final VPlan");
973 LLVM_DEBUG(dump());
974
975 // Disconnect scalar preheader and scalar header, as the dominator tree edge
976 // will be updated as part of VPlan execution. This allows keeping the DTU
977 // logic generic during VPlan execution.
978 BasicBlock *ScalarPh = State->CFG.ExitBB;
979 State->CFG.DTU.applyUpdates(
980 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
981
983 Entry);
984 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
985 // successor blocks including the middle, exit and scalar preheader blocks.
986 for (VPBlockBase *Block : RPOT)
987 Block->execute(State);
988
989 State->CFG.DTU.flush();
990
991 VPBasicBlock *Header = vputils::getFirstLoopHeader(*this, State->VPDT);
992 if (!Header)
993 return;
994
995 auto *LatchVPBB = cast<VPBasicBlock>(Header->getPredecessors()[1]);
996 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
997
998 // Fix the latch value of canonical, reduction and first-order recurrences
999 // phis in the vector loop.
1000 for (VPRecipeBase &R : Header->phis()) {
1001 // Skip phi-like recipes that generate their backedege values themselves.
1002 if (isa<VPWidenPHIRecipe>(&R))
1003 continue;
1004
1005 auto *PhiR = cast<VPSingleDefRecipe>(&R);
1006 // VPInstructions currently model scalar Phis only.
1007 bool NeedsScalar = isa<VPInstruction>(PhiR) ||
1008 (isa<VPReductionPHIRecipe>(PhiR) &&
1009 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1010
1011 Value *Phi = State->get(PhiR, NeedsScalar);
1012 // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does
1013 // not.
1014 Value *Val = State->get(PhiR->getOperand(1), NeedsScalar);
1015 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1016 }
1017}
1018
1020 // For now only return the cost of the vector loop region, ignoring any other
1021 // blocks, like the preheader or middle blocks, expect for checking them for
1022 // recipes with invalid costs.
1024
1025 // If the cost of the loop region is invalid or any recipe in the skeleton
1026 // outside loop regions are invalid return an invalid cost.
1027 if (!Cost.isValid() || any_of(VPBlockUtils::blocksOnly<VPBasicBlock>(
1029 [&VF, &Ctx](VPBasicBlock *VPBB) {
1030 return !VPBB->cost(VF, Ctx).isValid();
1031 }))
1033
1034 return Cost;
1035}
1036
1038 // TODO: Cache if possible.
1040 if (auto *R = dyn_cast<VPRegionBlock>(B))
1041 return R->isReplicator() ? nullptr : R;
1042 return nullptr;
1043}
1044
1047 if (auto *R = dyn_cast<VPRegionBlock>(B))
1048 return R->isReplicator() ? nullptr : R;
1049 return nullptr;
1050}
1051
1052#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1055
1056 if (VF.getNumUsers() > 0) {
1057 O << "\nLive-in ";
1059 O << " = VF";
1060 }
1061
1062 if (VFxUF.getNumUsers() > 0) {
1063 O << "\nLive-in ";
1064 VFxUF.printAsOperand(O, SlotTracker);
1065 O << " = VF * UF";
1066 }
1067
1068 if (VectorTripCount.getNumUsers() > 0) {
1069 O << "\nLive-in ";
1070 VectorTripCount.printAsOperand(O, SlotTracker);
1071 O << " = vector-trip-count";
1072 }
1073
1074 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1075 O << "\nLive-in ";
1076 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1077 O << " = backedge-taken count";
1078 }
1079
1080 O << "\n";
1081 if (TripCount) {
1082 if (TripCount->isLiveIn())
1083 O << "Live-in ";
1084 TripCount->printAsOperand(O, SlotTracker);
1085 O << " = original trip-count";
1086 O << "\n";
1087 }
1088}
1089
1093
1094 O << "VPlan '" << getName() << "' {";
1095
1096 printLiveIns(O);
1097
1099 RPOT(getEntry());
1100 for (const VPBlockBase *Block : RPOT) {
1101 O << '\n';
1102 Block->print(O, "", SlotTracker);
1103 }
1104
1105 O << "}\n";
1106}
1107
1108std::string VPlan::getName() const {
1109 std::string Out;
1110 raw_string_ostream RSO(Out);
1111 RSO << Name << " for ";
1112 if (!VFs.empty()) {
1113 RSO << "VF={" << VFs[0];
1114 for (ElementCount VF : drop_begin(VFs))
1115 RSO << "," << VF;
1116 RSO << "},";
1117 }
1118
1119 if (UFs.empty()) {
1120 RSO << "UF>=1";
1121 } else {
1122 RSO << "UF={" << UFs[0];
1123 for (unsigned UF : drop_begin(UFs))
1124 RSO << "," << UF;
1125 RSO << "}";
1126 }
1127
1128 return Out;
1129}
1130
1133 VPlanPrinter Printer(O, *this);
1134 Printer.dump();
1135}
1136
1138void VPlan::dump() const { print(dbgs()); }
1139#endif
1140
1141static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1142 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1143 // Update the operands of all cloned recipes starting at NewEntry. This
1144 // traverses all reachable blocks. This is done in two steps, to handle cycles
1145 // in PHI recipes.
1147 OldDeepRPOT(Entry);
1149 NewDeepRPOT(NewEntry);
1150 // First, collect all mappings from old to new VPValues defined by cloned
1151 // recipes.
1152 for (const auto &[OldBB, NewBB] :
1153 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1154 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1155 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1156 "blocks must have the same number of recipes");
1157 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1158 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1159 "recipes must have the same number of operands");
1160 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1161 "recipes must define the same number of operands");
1162 for (const auto &[OldV, NewV] :
1163 zip(OldR.definedValues(), NewR.definedValues()))
1164 Old2NewVPValues[OldV] = NewV;
1165 }
1166 }
1167
1168 // Update all operands to use cloned VPValues.
1169 for (VPBasicBlock *NewBB :
1170 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1171 for (VPRecipeBase &NewR : *NewBB)
1172 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1173 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1174 NewR.setOperand(I, NewOp);
1175 }
1176 }
1177}
1178
1180 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1181 // Clone blocks.
1182 const auto &[NewEntry, __] = cloneFrom(Entry);
1183
1184 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1185 VPIRBasicBlock *NewScalarHeader = nullptr;
1186 if (getScalarHeader()->getNumPredecessors() == 0) {
1187 NewScalarHeader = createVPIRBasicBlock(ScalarHeaderIRBB);
1188 } else {
1189 NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1190 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1191 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1192 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1193 }));
1194 }
1195 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1196 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1197 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1198 for (VPValue *OldLiveIn : getLiveIns()) {
1199 Old2NewVPValues[OldLiveIn] =
1200 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1201 }
1202 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1203 Old2NewVPValues[&VF] = &NewPlan->VF;
1204 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1205 if (BackedgeTakenCount) {
1206 NewPlan->BackedgeTakenCount = new VPValue();
1207 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1208 }
1209 if (TripCount && TripCount->isLiveIn())
1210 Old2NewVPValues[TripCount] =
1211 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1212 // else NewTripCount will be created and inserted into Old2NewVPValues when
1213 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1214
1215 remapOperands(Entry, NewEntry, Old2NewVPValues);
1216
1217 // Initialize remaining fields of cloned VPlan.
1218 NewPlan->VFs = VFs;
1219 NewPlan->UFs = UFs;
1220 // TODO: Adjust names.
1221 NewPlan->Name = Name;
1222 if (TripCount) {
1223 assert(Old2NewVPValues.contains(TripCount) &&
1224 "TripCount must have been added to Old2NewVPValues");
1225 NewPlan->TripCount = Old2NewVPValues[TripCount];
1226 }
1227
1228 // Transfer all cloned blocks (the second half of all current blocks) from
1229 // current to new VPlan.
1230 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1231 for (unsigned I :
1232 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1233 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1234 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1235
1236 // Update ExitBlocks of the new plan.
1237 for (VPBlockBase *VPB : NewPlan->CreatedBlocks) {
1238 if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(VPB) &&
1239 VPB != NewScalarHeader)
1240 NewPlan->ExitBlocks.push_back(cast<VPIRBasicBlock>(VPB));
1241 }
1242
1243 return NewPlan;
1244}
1245
1247 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1248 CreatedBlocks.push_back(VPIRBB);
1249 return VPIRBB;
1250}
1251
1253 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1254 for (Instruction &I :
1255 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1256 VPIRBB->appendRecipe(VPIRInstruction::create(I));
1257 return VPIRBB;
1258}
1259
1260#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1261
1262Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1263 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1264 Twine(getOrCreateBID(Block));
1265}
1266
1267Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1268 const std::string &Name = Block->getName();
1269 if (!Name.empty())
1270 return Name;
1271 return "VPB" + Twine(getOrCreateBID(Block));
1272}
1273
1275 Depth = 1;
1276 bumpIndent(0);
1277 OS << "digraph VPlan {\n";
1278 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1279 if (!Plan.getName().empty())
1280 OS << "\\n" << DOT::EscapeString(Plan.getName());
1281
1282 {
1283 // Print live-ins.
1284 std::string Str;
1285 raw_string_ostream SS(Str);
1286 Plan.printLiveIns(SS);
1288 StringRef(Str).rtrim('\n').split(Lines, "\n");
1289 for (auto Line : Lines)
1290 OS << DOT::EscapeString(Line.str()) << "\\n";
1291 }
1292
1293 OS << "\"]\n";
1294 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1295 OS << "edge [fontname=Courier, fontsize=30]\n";
1296 OS << "compound=true\n";
1297
1298 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1299 dumpBlock(Block);
1300
1301 OS << "}\n";
1302}
1303
1304void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1305 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1306 dumpBasicBlock(BasicBlock);
1307 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1308 dumpRegion(Region);
1309 else
1310 llvm_unreachable("Unsupported kind of VPBlock.");
1311}
1312
1313void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1314 bool Hidden, const Twine &Label) {
1315 // Due to "dot" we print an edge between two regions as an edge between the
1316 // exiting basic block and the entry basic of the respective regions.
1317 const VPBlockBase *Tail = From->getExitingBasicBlock();
1318 const VPBlockBase *Head = To->getEntryBasicBlock();
1319 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1320 OS << " [ label=\"" << Label << '\"';
1321 if (Tail != From)
1322 OS << " ltail=" << getUID(From);
1323 if (Head != To)
1324 OS << " lhead=" << getUID(To);
1325 if (Hidden)
1326 OS << "; splines=none";
1327 OS << "]\n";
1328}
1329
1330void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1331 auto &Successors = Block->getSuccessors();
1332 if (Successors.size() == 1)
1333 drawEdge(Block, Successors.front(), false, "");
1334 else if (Successors.size() == 2) {
1335 drawEdge(Block, Successors.front(), false, "T");
1336 drawEdge(Block, Successors.back(), false, "F");
1337 } else {
1338 unsigned SuccessorNumber = 0;
1339 for (auto *Successor : Successors)
1340 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1341 }
1342}
1343
1344void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1345 // Implement dot-formatted dump by performing plain-text dump into the
1346 // temporary storage followed by some post-processing.
1347 OS << Indent << getUID(BasicBlock) << " [label =\n";
1348 bumpIndent(1);
1349 std::string Str;
1351 // Use no indentation as we need to wrap the lines into quotes ourselves.
1352 BasicBlock->print(SS, "", SlotTracker);
1353
1354 // We need to process each line of the output separately, so split
1355 // single-string plain-text dump.
1357 StringRef(Str).rtrim('\n').split(Lines, "\n");
1358
1359 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1360 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1361 };
1362
1363 // Don't need the "+" after the last line.
1364 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1365 EmitLine(Line, " +\n");
1366 EmitLine(Lines.back(), "\n");
1367
1368 bumpIndent(-1);
1369 OS << Indent << "]\n";
1370
1371 dumpEdges(BasicBlock);
1372}
1373
1374void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1375 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1376 bumpIndent(1);
1377 OS << Indent << "fontname=Courier\n"
1378 << Indent << "label=\""
1379 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1380 << DOT::EscapeString(Region->getName()) << "\"\n";
1381 // Dump the blocks of the region.
1382 assert(Region->getEntry() && "Region contains no inner blocks.");
1384 dumpBlock(Block);
1385 bumpIndent(-1);
1386 OS << Indent << "}\n";
1387 dumpEdges(Region);
1388}
1389
1390#endif
1391
1392/// Returns true if there is a vector loop region and \p VPV is defined in a
1393/// loop region.
1394static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1395 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1396 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1398}
1399
1401 return !isDefinedInsideLoopRegions(this);
1402}
1404 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1405}
1406
1408 VPValue *New,
1409 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1410 // Note that this early exit is required for correctness; the implementation
1411 // below relies on the number of users for this VPValue to decrease, which
1412 // isn't the case if this == New.
1413 if (this == New)
1414 return;
1415
1416 for (unsigned J = 0; J < getNumUsers();) {
1417 VPUser *User = Users[J];
1418 bool RemovedUser = false;
1419 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1420 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1421 continue;
1422
1423 RemovedUser = true;
1424 User->setOperand(I, New);
1425 }
1426 // If a user got removed after updating the current user, the next user to
1427 // update will be moved to the current position, so we only need to
1428 // increment the index if the number of users did not change.
1429 if (!RemovedUser)
1430 J++;
1431 }
1432}
1433
1435 for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) {
1436 if (getOperand(Idx) == From)
1437 setOperand(Idx, To);
1438 }
1439}
1440
1441#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1443 OS << Tracker.getOrCreateName(this);
1444}
1445
1448 Op->printAsOperand(O, SlotTracker);
1449 });
1450}
1451#endif
1452
1453void VPSlotTracker::assignName(const VPValue *V) {
1454 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1455 auto *UV = V->getUnderlyingValue();
1456 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1457 if (!UV && !(VPI && !VPI->getName().empty())) {
1458 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1459 NextSlot++;
1460 return;
1461 }
1462
1463 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1464 // appending ".Number" to the name if there are multiple uses.
1465 std::string Name;
1466 if (UV)
1467 Name = getName(UV);
1468 else
1469 Name = VPI->getName();
1470
1471 assert(!Name.empty() && "Name cannot be empty.");
1472 StringRef Prefix = UV ? "ir<" : "vp<%";
1473 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1474
1475 // First assign the base name for V.
1476 const auto &[A, _] = VPValue2Name.try_emplace(V, BaseName);
1477 // Integer or FP constants with different types will result in he same string
1478 // due to stripping types.
1479 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1480 return;
1481
1482 // If it is already used by C > 0 other VPValues, increase the version counter
1483 // C and use it for V.
1484 const auto &[C, UseInserted] = BaseName2Version.try_emplace(BaseName, 0);
1485 if (!UseInserted) {
1486 C->second++;
1487 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1488 }
1489}
1490
1491void VPSlotTracker::assignNames(const VPlan &Plan) {
1492 if (Plan.VF.getNumUsers() > 0)
1493 assignName(&Plan.VF);
1494 if (Plan.VFxUF.getNumUsers() > 0)
1495 assignName(&Plan.VFxUF);
1496 assignName(&Plan.VectorTripCount);
1497 if (Plan.BackedgeTakenCount)
1498 assignName(Plan.BackedgeTakenCount);
1499 for (VPValue *LI : Plan.getLiveIns())
1500 assignName(LI);
1501
1504 for (const VPBasicBlock *VPBB :
1505 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1506 assignNames(VPBB);
1507}
1508
1509void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1510 for (const VPRecipeBase &Recipe : *VPBB)
1511 for (VPValue *Def : Recipe.definedValues())
1512 assignName(Def);
1513}
1514
1515std::string VPSlotTracker::getName(const Value *V) {
1516 std::string Name;
1518 if (V->hasName() || !isa<Instruction>(V)) {
1519 V->printAsOperand(S, false);
1520 return Name;
1521 }
1522
1523 if (!MST) {
1524 // Lazily create the ModuleSlotTracker when we first hit an unnamed
1525 // instruction.
1526 auto *I = cast<Instruction>(V);
1527 // This check is required to support unit tests with incomplete IR.
1528 if (I->getParent()) {
1529 MST = std::make_unique<ModuleSlotTracker>(I->getModule());
1530 MST->incorporateFunction(*I->getFunction());
1531 } else {
1532 MST = std::make_unique<ModuleSlotTracker>(nullptr);
1533 }
1534 }
1535 V->printAsOperand(S, false, *MST);
1536 return Name;
1537}
1538
1539std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1540 std::string Name = VPValue2Name.lookup(V);
1541 if (!Name.empty())
1542 return Name;
1543
1544 // If no name was assigned, no VPlan was provided when creating the slot
1545 // tracker or it is not reachable from the provided VPlan. This can happen,
1546 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1547 // in a debugger.
1548 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1549 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1550 // here.
1551 const VPRecipeBase *DefR = V->getDefiningRecipe();
1552 (void)DefR;
1553 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1554 "VPValue defined by a recipe in a VPlan?");
1555
1556 // Use the underlying value's name, if there is one.
1557 if (auto *UV = V->getUnderlyingValue()) {
1558 std::string Name;
1560 UV->printAsOperand(S, false);
1561 return (Twine("ir<") + Name + ">").str();
1562 }
1563
1564 return "<badref>";
1565}
1566
1568 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1569 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1570 bool PredicateAtRangeStart = Predicate(Range.Start);
1571
1572 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1573 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1574 Range.End = TmpVF;
1575 break;
1576 }
1577
1578 return PredicateAtRangeStart;
1579}
1580
1581/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1582/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1583/// of VF's starting at a given VF and extending it as much as possible. Each
1584/// vectorization decision can potentially shorten this sub-range during
1585/// buildVPlan().
1587 ElementCount MaxVF) {
1588 auto MaxVFTimes2 = MaxVF * 2;
1589 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1590 VFRange SubRange = {VF, MaxVFTimes2};
1591 if (auto Plan = tryToBuildVPlan(SubRange)) {
1593 // Update the name of the latch of the top-level vector loop region region
1594 // after optimizations which includes block folding.
1595 Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1596 VPlans.push_back(std::move(Plan));
1597 }
1598 VF = SubRange.End;
1599 }
1600}
1601
1603 assert(count_if(VPlans,
1604 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1605 1 &&
1606 "Multiple VPlans for VF.");
1607
1608 for (const VPlanPtr &Plan : VPlans) {
1609 if (Plan->hasVF(VF))
1610 return *Plan.get();
1611 }
1612 llvm_unreachable("No plan found!");
1613}
1614
1615#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1617 if (VPlans.empty()) {
1618 O << "LV: No VPlans built.\n";
1619 return;
1620 }
1621 for (const auto &Plan : VPlans)
1623 Plan->printDOT(O);
1624 else
1625 Plan->print(O);
1626}
1627#endif
1628
1631 if (!V->isLiveIn())
1632 return {};
1633
1634 return TTI::getOperandInfo(V->getLiveInIRValue());
1635}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:638
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
Flatten the CFG
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:135
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:612
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition: VPlan.cpp:1394
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:630
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1141
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:722
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator end()
Definition: BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:5062
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:206
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:467
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:131
size_t size() const
Definition: BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:203
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:168
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:323
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1919
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2571
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2625
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2559
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1339
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1115
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2618
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:562
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:201
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:247
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:311
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:522
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1420
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1191
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:323
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1602
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1586
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1567
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1616
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
LLVM_ABI void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5498
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:104
void insert_range(Range &&R)
Definition: SetVector.h:193
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:99
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:168
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:757
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
std::pair< iterator, bool > try_emplace(StringRef Key, ArgsTy &&...Args)
Emplace a new element for the specified key into the map if the key isn't already in the map.
Definition: StringMap.h:372
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:710
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:812
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:237
Value * getOperand(unsigned i) const
Definition: User.h:232
unsigned getNumOperands() const
Definition: User.h:254
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3639
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3714
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3666
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:522
iterator end()
Definition: VPlan.h:3676
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3674
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:573
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:803
const VPBasicBlock * getCFGPredecessor(unsigned Idx) const
Returns the predecessor block at index Idx with the predecessors as per the corresponding plain CFG.
Definition: VPlan.cpp:810
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:236
void connectToPredecessors(VPTransformState &State)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:425
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:622
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:594
RecipeListTy Recipes
The VPRecipes held in the order of output instructions to generate.
Definition: VPlan.h:3654
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:580
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:701
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:679
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:667
const VPRecipeBase & back() const
Definition: VPlan.h:3688
bool empty() const
Definition: VPlan.h:3685
size_t size() const
Definition: VPlan.h:3684
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:81
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:297
VPRegionBlock * getParent()
Definition: VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:180
void setName(const Twine &newName)
Definition: VPlan.h:166
size_t getNumSuccessors() const
Definition: VPlan.h:219
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:201
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Print plain-text dump of this VPBlockBase to O, prefixing all lines with Indent.
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:689
size_t getNumPredecessors() const
Definition: VPlan.h:220
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:288
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:202
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:204
VPlan * getPlan()
Definition: VPlan.cpp:155
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:174
const std::string & getName() const
Definition: VPlan.h:164
VPBlockBase * getSinglePredecessor() const
Definition: VPlan.h:215
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:239
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:194
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:160
VPBlockBase * getSingleHierarchicalPredecessor()
Definition: VPlan.h:261
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:198
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:117
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlanUtils.h:119
static bool isLatch(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop latch, using isHeader().
Definition: VPlan.cpp:227
static bool isHeader(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop header, based on regions or VPDT in their absence.
Definition: VPlan.cpp:210
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:175
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:194
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:300
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:116
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
Recipe to expand a SCEV expression.
Definition: VPlan.h:3258
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3792
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:493
BasicBlock * getIRBasicBlock() const
Definition: VPlan.h:3816
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:515
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlanHelpers.h:125
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:75
static VPLane getFirstLane()
Definition: VPlanHelpers.h:150
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:391
VPBasicBlock * getParent()
Definition: VPlan.h:412
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3827
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:772
const VPBlockBase * getEntry() const
Definition: VPlan.h:3863
void dissolveToCFGLoop()
Remove the current region from its VPlan, connecting its predecessor to its entry,...
Definition: VPlan.cpp:881
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3895
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:829
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:867
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:781
const VPBlockBase * getExiting() const
Definition: VPlan.h:3875
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3529
This class can be used to assign names to VPValues.
Definition: VPlanHelpers.h:382
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1539
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:197
void replaceUsesOfWith(VPValue *From, VPValue *To)
Replaces all uses of From in the VPUser with To.
Definition: VPlan.cpp:1434
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1446
operand_range operands()
Definition: VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition: VPlanValue.h:241
unsigned getNumOperands() const
Definition: VPlanValue.h:235
VPValue * getOperand(unsigned N) const
Definition: VPlanValue.h:236
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition: VPlan.cpp:1400
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:125
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1442
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition: VPlanValue.h:174
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:108
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:88
virtual ~VPValue()
Definition: VPlan.cpp:94
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:101
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1403
unsigned getNumUsers() const
Definition: VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition: VPlanValue.h:169
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1407
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:65
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2088
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlanHelpers.h:416
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1274
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3930
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1132
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1108
VPBasicBlock * getEntry()
Definition: VPlan.h:4029
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition: VPlan.h:4270
void setName(const Twine &newName)
Definition: VPlan.h:4177
VPIRBasicBlock * getExitBlock(BasicBlock *IRBB) const
Return the VPIRBasicBlock corresponding to IRBB.
Definition: VPlan.cpp:940
LLVM_ABI_FOR_TEST ~VPlan()
Definition: VPlan.cpp:917
bool isExitBlock(VPBlockBase *VPBB)
Returns true if VPBB is an exit block.
Definition: VPlan.cpp:948
unsigned getUF() const
Definition: VPlan.h:4159
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition: VPlan.cpp:1246
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition: VPlan.h:4081
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1037
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1019
void setEntry(VPBasicBlock *VPBB)
Definition: VPlan.h:4018
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition: VPlan.h:4260
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1252
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1138
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:955
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition: VPlan.h:4211
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1091
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:4077
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1053
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1179
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:203
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:219
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:169
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:134
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:662
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
LLVM_ABI std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
@ SS
Definition: X86.h:215
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition: VPlanUtils.h:44
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
Definition: VPlanUtils.cpp:138
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:17
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:338
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:860
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2250
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:216
LLVM_ABI cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:77
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1300
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:312
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1980
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
cl::opt< bool > EnableVPlanNativePath
Definition: VPlan.cpp:55
InstructionCost Cost
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Definition: VPlanHelpers.h:64
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlanHelpers.h:71
ElementCount End
Definition: VPlanHelpers.h:76
Struct to hold various analysis needed for cost computations.
Definition: VPlanHelpers.h:344
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1630
TargetTransformInfo::TargetCostKind CostKind
Definition: VPlanHelpers.h:351
const TargetTransformInfo & TTI
Definition: VPlanHelpers.h:345
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlanHelpers.h:303
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlanHelpers.h:299
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlanHelpers.h:307
SmallDenseMap< const VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlanHelpers.h:311
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlanHelpers.h:314
DenseMap< const VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlanHelpers.h:226
DenseMap< const VPValue *, Value * > VPV2Vector
Definition: VPlanHelpers.h:224
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlanHelpers.h:205
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlanHelpers.h:321
struct llvm::VPTransformState::DataState Data
struct llvm::VPTransformState::CFGState CFG
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:283
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, IRBuilderBase &Builder, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition: VPlan.cpp:243
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlanHelpers.h:219
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlanHelpers.h:328
bool hasScalarValue(const VPValue *Def, VPLane Lane)
Definition: VPlanHelpers.h:240
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlanHelpers.h:331
void set(const VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlanHelpers.h:250
bool hasVectorValue(const VPValue *Def)
Definition: VPlanHelpers.h:236
VPDominatorTree VPDT
VPlan-based dominator tree.
Definition: VPlanHelpers.h:340
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlanHelpers.h:214
Value * packScalarIntoVectorizedValue(const VPValue *Def, Value *WideValue, const VPLane &Lane)
Insert the scalar value of Def at Lane into Lane of WideValue and return the resulting value.
Definition: VPlan.cpp:393
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:371
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
Definition: VPlanHelpers.h:334
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...