58#include "llvm/IR/IntrinsicsAArch64.h"
59#include "llvm/IR/IntrinsicsAMDGPU.h"
60#include "llvm/IR/IntrinsicsRISCV.h"
61#include "llvm/IR/IntrinsicsX86.h"
96 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
99 return DL.getPointerTypeSizeInBits(Ty);
119 const APInt &DemandedElts,
123 DemandedLHS = DemandedRHS = DemandedElts;
130 DemandedElts, DemandedLHS, DemandedRHS);
151 bool UseInstrInfo,
unsigned Depth) {
226 R->uge(
LHS->getType()->getScalarSizeInBits()))
239 assert(LHS->getType() == RHS->getType() &&
240 "LHS and RHS should have the same type");
241 assert(LHS->getType()->isIntOrIntVectorTy() &&
242 "LHS and RHS should be integers");
253 return !
I->user_empty() &&
258 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
260 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
269 return ::isKnownToBeAPowerOfTwo(
285 return CI->getValue().isStrictlyPositive();
311 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
318 return Mask.isSubsetOf(Known.
Zero);
325 unsigned Depth = 0) {
336 return ::ComputeNumSignBits(
346 return V->getType()->getScalarSizeInBits() - SignBits + 1;
351 const APInt &DemandedElts,
358 if (KnownOut.
isUnknown() && !NSW && !NUW)
371 bool NUW,
const APInt &DemandedElts,
388 bool isKnownNegativeOp0 = Known2.
isNegative();
391 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
403 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
405 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
409 bool SelfMultiply = Op0 == Op1;
418 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
420 if (OutValidBits < TyBits) {
421 APInt KnownZeroMask =
423 Known.
Zero |= KnownZeroMask;
441 unsigned NumRanges = Ranges.getNumOperands() / 2;
446 for (
unsigned i = 0; i < NumRanges; ++i) {
455 "Known bit width must match range bit width!");
458 unsigned CommonPrefixBits =
459 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
462 Known.
One &= UnsignedMax & Mask;
463 Known.
Zero &= ~UnsignedMax & Mask;
478 while (!WorkSet.
empty()) {
480 if (!Visited.
insert(V).second)
485 return EphValues.count(cast<Instruction>(U));
490 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
494 for (
const Use &U : U->operands()) {
509 return CI->isAssumeLikeIntrinsic();
517 bool AllowEphemerals) {
535 if (!AllowEphemerals && Inv == CxtI)
590 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
593 Pred, VC->getElementAsAPInt(ElemIdx));
602 const PHINode **PhiOut =
nullptr) {
606 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
622 IncPhi && IncPhi->getNumIncomingValues() == 2) {
623 for (
int Idx = 0; Idx < 2; ++Idx) {
624 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
625 ValOut = IncPhi->getIncomingValue(1 - Idx);
628 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
647 "Got assumption for the wrong function!");
650 if (!V->getType()->isPointerTy())
653 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
655 (RK.AttrKind == Attribute::NonNull ||
656 (RK.AttrKind == Attribute::Dereferenceable &&
685 if (
RHS->getType()->isPointerTy()) {
727 Known.
Zero |= ~*
C & *Mask;
733 Known.
One |= *
C & ~*Mask;
792 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
798 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
812 bool Invert,
unsigned Depth) {
894 "Got assumption for the wrong function!");
897 if (!V->getType()->isPointerTy())
900 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
904 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
916 Value *Arg =
I->getArgOperand(0);
932 if (Trunc && Trunc->getOperand(0) == V &&
934 if (Trunc->hasNoUnsignedWrap()) {
982 Known = KF(Known2, Known, ShAmtNonZero);
993 Value *
X =
nullptr, *
Y =
nullptr;
995 switch (
I->getOpcode()) {
996 case Instruction::And:
997 KnownOut = KnownLHS & KnownRHS;
1007 KnownOut = KnownLHS.
blsi();
1009 KnownOut = KnownRHS.
blsi();
1012 case Instruction::Or:
1013 KnownOut = KnownLHS | KnownRHS;
1015 case Instruction::Xor:
1016 KnownOut = KnownLHS ^ KnownRHS;
1026 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1027 KnownOut = XBits.
blsmsk();
1040 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1061 APInt DemandedEltsLHS, DemandedEltsRHS;
1063 DemandedElts, DemandedEltsLHS,
1066 const auto ComputeForSingleOpFunc =
1068 return KnownBitsFunc(
1073 if (DemandedEltsRHS.
isZero())
1074 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1075 if (DemandedEltsLHS.
isZero())
1076 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1078 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1079 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1089 APInt DemandedElts =
1097 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1105 return ConstantRange::getEmpty(
BitWidth);
1116 Value *Arm,
bool Invert,
1155 "Input should be a Select!");
1165 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1177 return CLow->
sle(*CHigh);
1182 const APInt *&CHigh) {
1183 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1184 II->getIntrinsicID() == Intrinsic::smax) &&
1185 "Must be smin/smax");
1189 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1194 if (
II->getIntrinsicID() == Intrinsic::smin)
1196 return CLow->
sle(*CHigh);
1201 const APInt *CLow, *CHigh;
1208 const APInt &DemandedElts,
1215 switch (
I->getOpcode()) {
1217 case Instruction::Load:
1222 case Instruction::And:
1228 case Instruction::Or:
1234 case Instruction::Xor:
1240 case Instruction::Mul: {
1244 DemandedElts, Known, Known2, Q,
Depth);
1247 case Instruction::UDiv: {
1254 case Instruction::SDiv: {
1261 case Instruction::Select: {
1262 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1270 ComputeForArm(
I->getOperand(1),
false)
1274 case Instruction::FPTrunc:
1275 case Instruction::FPExt:
1276 case Instruction::FPToUI:
1277 case Instruction::FPToSI:
1278 case Instruction::SIToFP:
1279 case Instruction::UIToFP:
1281 case Instruction::PtrToInt:
1282 case Instruction::IntToPtr:
1285 case Instruction::ZExt:
1286 case Instruction::Trunc: {
1287 Type *SrcTy =
I->getOperand(0)->getType();
1289 unsigned SrcBitWidth;
1297 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1301 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1306 case Instruction::BitCast: {
1307 Type *SrcTy =
I->getOperand(0)->getType();
1308 if (SrcTy->isIntOrPtrTy() &&
1311 !
I->getType()->isVectorTy()) {
1319 V->getType()->isFPOrFPVectorTy()) {
1320 Type *FPType = V->getType()->getScalarType();
1332 if (FPClasses &
fcInf)
1344 if (Result.SignBit) {
1345 if (*Result.SignBit)
1356 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1357 !
I->getType()->isIntOrIntVectorTy() ||
1365 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1381 unsigned SubScale =
BitWidth / SubBitWidth;
1383 for (
unsigned i = 0; i != NumElts; ++i) {
1384 if (DemandedElts[i])
1385 SubDemandedElts.
setBit(i * SubScale);
1389 for (
unsigned i = 0; i != SubScale; ++i) {
1392 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1393 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1399 unsigned SubScale = SubBitWidth /
BitWidth;
1401 APInt SubDemandedElts =
1407 for (
unsigned i = 0; i != NumElts; ++i) {
1408 if (DemandedElts[i]) {
1409 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1419 case Instruction::SExt: {
1421 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1423 Known = Known.
trunc(SrcBitWidth);
1430 case Instruction::Shl: {
1434 bool ShAmtNonZero) {
1435 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1445 case Instruction::LShr: {
1448 bool ShAmtNonZero) {
1459 case Instruction::AShr: {
1462 bool ShAmtNonZero) {
1469 case Instruction::Sub: {
1473 DemandedElts, Known, Known2, Q,
Depth);
1476 case Instruction::Add: {
1480 DemandedElts, Known, Known2, Q,
Depth);
1483 case Instruction::SRem:
1489 case Instruction::URem:
1494 case Instruction::Alloca:
1497 case Instruction::GetElementPtr: {
1504 APInt AccConstIndices(IndexWidth, 0);
1506 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1515 "Index width can't be larger than pointer width");
1521 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1526 Value *Index =
I->getOperand(i);
1537 "Access to structure field must be known at compile time");
1545 AccConstIndices +=
Offset;
1562 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1586 case Instruction::PHI: {
1589 Value *R =
nullptr, *L =
nullptr;
1602 case Instruction::LShr:
1603 case Instruction::AShr:
1604 case Instruction::Shl:
1605 case Instruction::UDiv:
1612 case Instruction::URem: {
1625 case Instruction::Shl:
1629 case Instruction::LShr:
1630 case Instruction::UDiv:
1631 case Instruction::URem:
1636 case Instruction::AShr:
1648 case Instruction::Add:
1649 case Instruction::Sub:
1650 case Instruction::And:
1651 case Instruction::Or:
1652 case Instruction::Mul: {
1659 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1660 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1661 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1690 case Instruction::Add: {
1700 case Instruction::Sub: {
1711 case Instruction::Mul:
1728 if (
P->getNumIncomingValues() == 0)
1739 for (
const Use &U :
P->operands()) {
1774 if ((TrueSucc == CxtPhi->
getParent()) !=
1791 Known2 = KnownUnion;
1805 case Instruction::Call:
1806 case Instruction::Invoke: {
1816 if (std::optional<ConstantRange>
Range = CB->getRange())
1819 if (
const Value *RV = CB->getReturnedArgOperand()) {
1820 if (RV->getType() ==
I->getType()) {
1832 switch (
II->getIntrinsicID()) {
1835 case Intrinsic::abs: {
1837 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
1841 case Intrinsic::bitreverse:
1845 case Intrinsic::bswap:
1849 case Intrinsic::ctlz: {
1855 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
1860 case Intrinsic::cttz: {
1866 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
1871 case Intrinsic::ctpop: {
1882 case Intrinsic::fshr:
1883 case Intrinsic::fshl: {
1890 if (
II->getIntrinsicID() == Intrinsic::fshr)
1897 Known2 <<= ShiftAmt;
1902 case Intrinsic::uadd_sat:
1907 case Intrinsic::usub_sat:
1912 case Intrinsic::sadd_sat:
1917 case Intrinsic::ssub_sat:
1923 case Intrinsic::vector_reverse:
1929 case Intrinsic::vector_reduce_and:
1930 case Intrinsic::vector_reduce_or:
1931 case Intrinsic::vector_reduce_umax:
1932 case Intrinsic::vector_reduce_umin:
1933 case Intrinsic::vector_reduce_smax:
1934 case Intrinsic::vector_reduce_smin:
1937 case Intrinsic::vector_reduce_xor: {
1944 bool EvenCnt = VecTy->getElementCount().isKnownEven();
1948 if (VecTy->isScalableTy() || EvenCnt)
1952 case Intrinsic::umin:
1957 case Intrinsic::umax:
1962 case Intrinsic::smin:
1968 case Intrinsic::smax:
1974 case Intrinsic::ptrmask: {
1977 const Value *Mask =
I->getOperand(1);
1978 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
1984 case Intrinsic::x86_sse2_pmulh_w:
1985 case Intrinsic::x86_avx2_pmulh_w:
1986 case Intrinsic::x86_avx512_pmulh_w_512:
1991 case Intrinsic::x86_sse2_pmulhu_w:
1992 case Intrinsic::x86_avx2_pmulhu_w:
1993 case Intrinsic::x86_avx512_pmulhu_w_512:
1998 case Intrinsic::x86_sse42_crc32_64_64:
2001 case Intrinsic::x86_ssse3_phadd_d_128:
2002 case Intrinsic::x86_ssse3_phadd_w_128:
2003 case Intrinsic::x86_avx2_phadd_d:
2004 case Intrinsic::x86_avx2_phadd_w: {
2006 I, DemandedElts, Q,
Depth,
2012 case Intrinsic::x86_ssse3_phadd_sw_128:
2013 case Intrinsic::x86_avx2_phadd_sw: {
2018 case Intrinsic::x86_ssse3_phsub_d_128:
2019 case Intrinsic::x86_ssse3_phsub_w_128:
2020 case Intrinsic::x86_avx2_phsub_d:
2021 case Intrinsic::x86_avx2_phsub_w: {
2023 I, DemandedElts, Q,
Depth,
2029 case Intrinsic::x86_ssse3_phsub_sw_128:
2030 case Intrinsic::x86_avx2_phsub_sw: {
2035 case Intrinsic::riscv_vsetvli:
2036 case Intrinsic::riscv_vsetvlimax: {
2037 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2050 MaxVL = std::min(MaxVL, CI->getZExtValue());
2052 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2057 case Intrinsic::vscale: {
2058 if (!
II->getParent() || !
II->getFunction())
2068 case Instruction::ShuffleVector: {
2077 APInt DemandedLHS, DemandedRHS;
2083 if (!!DemandedLHS) {
2084 const Value *
LHS = Shuf->getOperand(0);
2090 if (!!DemandedRHS) {
2091 const Value *
RHS = Shuf->getOperand(1);
2097 case Instruction::InsertElement: {
2102 const Value *Vec =
I->getOperand(0);
2103 const Value *Elt =
I->getOperand(1);
2106 APInt DemandedVecElts = DemandedElts;
2107 bool NeedsElt =
true;
2109 if (CIdx && CIdx->getValue().ult(NumElts)) {
2110 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2111 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2122 if (!DemandedVecElts.
isZero()) {
2128 case Instruction::ExtractElement: {
2131 const Value *Vec =
I->getOperand(0);
2132 const Value *Idx =
I->getOperand(1);
2141 if (CIdx && CIdx->getValue().ult(NumElts))
2146 case Instruction::ExtractValue:
2151 switch (
II->getIntrinsicID()) {
2153 case Intrinsic::uadd_with_overflow:
2154 case Intrinsic::sadd_with_overflow:
2156 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2157 false, DemandedElts, Known, Known2, Q,
Depth);
2159 case Intrinsic::usub_with_overflow:
2160 case Intrinsic::ssub_with_overflow:
2162 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2163 false, DemandedElts, Known, Known2, Q,
Depth);
2165 case Intrinsic::umul_with_overflow:
2166 case Intrinsic::smul_with_overflow:
2168 false, DemandedElts, Known, Known2, Q,
Depth);
2174 case Instruction::Freeze:
2218 if (!DemandedElts) {
2224 assert(V &&
"No Value?");
2228 Type *Ty = V->getType();
2231 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2232 "Not integer or pointer type!");
2236 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2237 "DemandedElt width should equal the fixed vector number of elements");
2240 "DemandedElt width should be 1 for scalars or scalable vectors");
2246 "V and Known should have same BitWidth");
2249 "V and Known should have same BitWidth");
2271 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2272 if (!DemandedElts[i])
2274 APInt Elt = CDV->getElementAsAPInt(i);
2288 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2289 if (!DemandedElts[i])
2299 const APInt &Elt = ElementCI->getValue();
2320 if (std::optional<ConstantRange>
Range =
A->getRange())
2321 Known =
Range->toKnownBits();
2330 if (!GA->isInterposable())
2338 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2339 Known = CR->toKnownBits();
2344 Align Alignment = V->getPointerAlignment(Q.
DL);
2360 Value *Start =
nullptr, *Step =
nullptr;
2366 if (U.get() == Start) {
2382 case Instruction::Mul:
2387 case Instruction::SDiv:
2393 case Instruction::UDiv:
2399 case Instruction::Shl:
2401 case Instruction::AShr:
2405 case Instruction::LShr:
2443 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2485 return F->hasFnAttribute(Attribute::VScaleRange);
2502 switch (
I->getOpcode()) {
2503 case Instruction::ZExt:
2505 case Instruction::Trunc:
2507 case Instruction::Shl:
2511 case Instruction::LShr:
2515 case Instruction::UDiv:
2519 case Instruction::Mul:
2523 case Instruction::And:
2534 case Instruction::Add: {
2540 if (
match(
I->getOperand(0),
2544 if (
match(
I->getOperand(1),
2549 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2558 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2571 case Instruction::Select:
2574 case Instruction::PHI: {
2595 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2596 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2599 case Instruction::Invoke:
2600 case Instruction::Call: {
2602 switch (
II->getIntrinsicID()) {
2603 case Intrinsic::umax:
2604 case Intrinsic::smax:
2605 case Intrinsic::umin:
2606 case Intrinsic::smin:
2611 case Intrinsic::bitreverse:
2612 case Intrinsic::bswap:
2614 case Intrinsic::fshr:
2615 case Intrinsic::fshl:
2617 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2641 F =
I->getFunction();
2645 if (!
GEP->hasNoUnsignedWrap() &&
2646 !(
GEP->isInBounds() &&
2651 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2662 GTI != GTE; ++GTI) {
2664 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2669 if (ElementOffset > 0)
2675 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2709 unsigned NumUsesExplored = 0;
2710 for (
auto &U : V->uses()) {
2719 if (V->getType()->isPointerTy()) {
2721 if (CB->isArgOperand(&U) &&
2722 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2750 NonNullIfTrue =
true;
2752 NonNullIfTrue =
false;
2758 for (
const auto *CmpU : UI->
users()) {
2760 if (Visited.
insert(CmpU).second)
2763 while (!WorkList.
empty()) {
2772 for (
const auto *CurrU : Curr->users())
2773 if (Visited.
insert(CurrU).second)
2779 assert(BI->isConditional() &&
"uses a comparison!");
2782 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2786 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2801 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2803 for (
unsigned i = 0; i < NumRanges; ++i) {
2819 Value *Start =
nullptr, *Step =
nullptr;
2820 const APInt *StartC, *StepC;
2826 case Instruction::Add:
2832 case Instruction::Mul:
2835 case Instruction::Shl:
2837 case Instruction::AShr:
2838 case Instruction::LShr:
2854 bool NUW,
unsigned Depth) {
2911 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
2916 bool NUW,
unsigned Depth) {
2945 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2946 switch (
I->getOpcode()) {
2947 case Instruction::Shl:
2948 return Lhs.
shl(Rhs);
2949 case Instruction::LShr:
2950 return Lhs.
lshr(Rhs);
2951 case Instruction::AShr:
2952 return Lhs.
ashr(Rhs);
2958 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2959 switch (
I->getOpcode()) {
2960 case Instruction::Shl:
2961 return Lhs.
lshr(Rhs);
2962 case Instruction::LShr:
2963 case Instruction::AShr:
2964 return Lhs.
shl(Rhs);
2977 if (MaxShift.
uge(NumBits))
2980 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
2985 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
2994 const APInt &DemandedElts,
2997 switch (
I->getOpcode()) {
2998 case Instruction::Alloca:
3000 return I->getType()->getPointerAddressSpace() == 0;
3001 case Instruction::GetElementPtr:
3002 if (
I->getType()->isPointerTy())
3005 case Instruction::BitCast: {
3033 Type *FromTy =
I->getOperand(0)->getType();
3038 case Instruction::IntToPtr:
3047 case Instruction::PtrToInt:
3055 case Instruction::Trunc:
3058 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3064 case Instruction::Xor:
3065 case Instruction::Sub:
3067 I->getOperand(1),
Depth);
3068 case Instruction::Or:
3079 case Instruction::SExt:
3080 case Instruction::ZExt:
3084 case Instruction::Shl: {
3099 case Instruction::LShr:
3100 case Instruction::AShr: {
3115 case Instruction::UDiv:
3116 case Instruction::SDiv: {
3131 if (
I->getOpcode() == Instruction::SDiv) {
3133 XKnown = XKnown.
abs(
false);
3134 YKnown = YKnown.
abs(
false);
3140 return XUgeY && *XUgeY;
3142 case Instruction::Add: {
3152 case Instruction::Mul: {
3158 case Instruction::Select: {
3165 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3167 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3185 if (SelectArmIsNonZero(
true) &&
3186 SelectArmIsNonZero(
false))
3190 case Instruction::PHI: {
3201 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3205 BasicBlock *TrueSucc, *FalseSucc;
3206 if (match(RecQ.CxtI,
3207 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3208 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3210 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3212 if (FalseSucc == PN->getParent())
3213 Pred = CmpInst::getInversePredicate(Pred);
3214 if (cmpExcludesZero(Pred, X))
3222 case Instruction::InsertElement: {
3226 const Value *Vec =
I->getOperand(0);
3227 const Value *Elt =
I->getOperand(1);
3231 APInt DemandedVecElts = DemandedElts;
3232 bool SkipElt =
false;
3234 if (CIdx && CIdx->getValue().ult(NumElts)) {
3235 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3236 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3242 (DemandedVecElts.
isZero() ||
3245 case Instruction::ExtractElement:
3247 const Value *Vec = EEI->getVectorOperand();
3248 const Value *Idx = EEI->getIndexOperand();
3251 unsigned NumElts = VecTy->getNumElements();
3253 if (CIdx && CIdx->getValue().ult(NumElts))
3259 case Instruction::ShuffleVector: {
3263 APInt DemandedLHS, DemandedRHS;
3269 return (DemandedRHS.
isZero() ||
3274 case Instruction::Freeze:
3278 case Instruction::Load: {
3295 case Instruction::ExtractValue: {
3301 case Instruction::Add:
3306 case Instruction::Sub:
3309 case Instruction::Mul:
3312 false,
false,
Depth);
3318 case Instruction::Call:
3319 case Instruction::Invoke: {
3321 if (
I->getType()->isPointerTy()) {
3322 if (
Call->isReturnNonNull())
3329 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3330 const APInt ZeroValue(
Range->getBitWidth(), 0);
3331 if (!
Range->contains(ZeroValue))
3334 if (
const Value *RV =
Call->getReturnedArgOperand())
3340 switch (
II->getIntrinsicID()) {
3341 case Intrinsic::sshl_sat:
3342 case Intrinsic::ushl_sat:
3343 case Intrinsic::abs:
3344 case Intrinsic::bitreverse:
3345 case Intrinsic::bswap:
3346 case Intrinsic::ctpop:
3350 case Intrinsic::ssub_sat:
3353 case Intrinsic::sadd_sat:
3355 II->getArgOperand(1),
3356 true,
false,
Depth);
3358 case Intrinsic::vector_reverse:
3362 case Intrinsic::vector_reduce_or:
3363 case Intrinsic::vector_reduce_umax:
3364 case Intrinsic::vector_reduce_umin:
3365 case Intrinsic::vector_reduce_smax:
3366 case Intrinsic::vector_reduce_smin:
3368 case Intrinsic::umax:
3369 case Intrinsic::uadd_sat:
3377 case Intrinsic::smax: {
3380 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3382 if (!OpNonZero.has_value())
3383 OpNonZero = OpKnown.isNonZero() ||
3388 std::optional<bool> Op0NonZero, Op1NonZero;
3392 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3397 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3399 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3400 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3402 case Intrinsic::smin: {
3418 case Intrinsic::umin:
3421 case Intrinsic::cttz:
3424 case Intrinsic::ctlz:
3427 case Intrinsic::fshr:
3428 case Intrinsic::fshl:
3430 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3433 case Intrinsic::vscale:
3435 case Intrinsic::experimental_get_vector_length:
3449 return Known.
One != 0;
3460 Type *Ty = V->getType();
3467 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3468 "DemandedElt width should equal the fixed vector number of elements");
3471 "DemandedElt width should be 1 for scalars");
3476 if (
C->isNullValue())
3485 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3486 if (!DemandedElts[i])
3488 Constant *Elt =
C->getAggregateElement(i);
3505 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3506 GV->getType()->getAddressSpace() == 0)
3516 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3517 const APInt ZeroValue(
Range->getBitWidth(), 0);
3518 if (!
Range->contains(ZeroValue))
3535 if (((
A->hasPassPointeeByValueCopyAttr() &&
3537 A->hasNonNullAttr()))
3559 APInt DemandedElts =
3561 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3570static std::optional<std::pair<Value*, Value*>>
3574 return std::nullopt;
3583 case Instruction::Or:
3588 case Instruction::Xor:
3589 case Instruction::Add: {
3597 case Instruction::Sub:
3603 case Instruction::Mul: {
3609 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3610 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3620 case Instruction::Shl: {
3625 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3626 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3633 case Instruction::AShr:
3634 case Instruction::LShr: {
3637 if (!PEO1->isExact() || !PEO2->isExact())
3644 case Instruction::SExt:
3645 case Instruction::ZExt:
3649 case Instruction::PHI: {
3657 Value *Start1 =
nullptr, *Step1 =
nullptr;
3659 Value *Start2 =
nullptr, *Step2 =
nullptr;
3675 if (Values->first != PN1 || Values->second != PN2)
3678 return std::make_pair(Start1, Start2);
3681 return std::nullopt;
3688 const APInt &DemandedElts,
3696 case Instruction::Or:
3700 case Instruction::Xor:
3701 case Instruction::Add:
3722 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3723 !
C->isZero() && !
C->isOne() &&
3737 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3751 bool UsedFullRecursion =
false;
3753 if (!VisitedBBs.
insert(IncomBB).second)
3757 const APInt *C1, *C2;
3762 if (UsedFullRecursion)
3766 RecQ.
CxtI = IncomBB->getTerminator();
3769 UsedFullRecursion =
true;
3783 const Value *Cond2 = SI2->getCondition();
3786 DemandedElts, Q,
Depth + 1) &&
3788 DemandedElts, Q,
Depth + 1);
3801 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3805 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
3810 if (!PN || PN->getNumIncomingValues() != 2)
3815 Value *Start =
nullptr;
3817 if (PN->getIncomingValue(0) == Step)
3818 Start = PN->getIncomingValue(1);
3819 else if (PN->getIncomingValue(1) == Step)
3820 Start = PN->getIncomingValue(0);
3831 APInt StartOffset(IndexWidth, 0);
3832 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
3833 APInt StepOffset(IndexWidth, 0);
3839 APInt OffsetB(IndexWidth, 0);
3840 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
3841 return Start ==
B &&
3853 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
3874 if (IsKnownNonEqualFromDominatingCondition(V1) ||
3875 IsKnownNonEqualFromDominatingCondition(V2))
3889 "Got assumption for the wrong function!");
3890 assert(
I->getIntrinsicID() == Intrinsic::assume &&
3891 "must be an assume intrinsic");
3921 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3923 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
3985 const APInt &DemandedElts,
3991 unsigned MinSignBits = TyBits;
3993 for (
unsigned i = 0; i != NumElts; ++i) {
3994 if (!DemandedElts[i])
4001 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4008 const APInt &DemandedElts,
4014 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4026 const APInt &DemandedElts,
4028 Type *Ty = V->getType();
4034 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4035 "DemandedElt width should equal the fixed vector number of elements");
4038 "DemandedElt width should be 1 for scalars");
4052 unsigned FirstAnswer = 1;
4063 case Instruction::BitCast: {
4064 Value *Src = U->getOperand(0);
4065 Type *SrcTy = Src->getType();
4069 if (!SrcTy->isIntOrIntVectorTy())
4075 if ((SrcBits % TyBits) != 0)
4088 case Instruction::SExt:
4089 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4093 case Instruction::SDiv: {
4094 const APInt *Denominator;
4107 return std::min(TyBits, NumBits + Denominator->
logBase2());
4112 case Instruction::SRem: {
4115 const APInt *Denominator;
4136 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4137 Tmp = std::max(Tmp, ResBits);
4143 case Instruction::AShr: {
4148 if (ShAmt->
uge(TyBits))
4151 Tmp += ShAmtLimited;
4152 if (Tmp > TyBits) Tmp = TyBits;
4156 case Instruction::Shl: {
4161 if (ShAmt->
uge(TyBits))
4166 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4168 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4172 if (ShAmt->
uge(Tmp))
4179 case Instruction::And:
4180 case Instruction::Or:
4181 case Instruction::Xor:
4186 FirstAnswer = std::min(Tmp, Tmp2);
4193 case Instruction::Select: {
4197 const APInt *CLow, *CHigh;
4205 return std::min(Tmp, Tmp2);
4208 case Instruction::Add:
4212 if (Tmp == 1)
break;
4216 if (CRHS->isAllOnesValue()) {
4222 if ((Known.
Zero | 1).isAllOnes())
4234 return std::min(Tmp, Tmp2) - 1;
4236 case Instruction::Sub:
4243 if (CLHS->isNullValue()) {
4248 if ((Known.
Zero | 1).isAllOnes())
4265 return std::min(Tmp, Tmp2) - 1;
4267 case Instruction::Mul: {
4270 unsigned SignBitsOp0 =
4272 if (SignBitsOp0 == 1)
4274 unsigned SignBitsOp1 =
4276 if (SignBitsOp1 == 1)
4278 unsigned OutValidBits =
4279 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4280 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4283 case Instruction::PHI: {
4287 if (NumIncomingValues > 4)
break;
4289 if (NumIncomingValues == 0)
break;
4295 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4296 if (Tmp == 1)
return Tmp;
4299 DemandedElts, RecQ,
Depth + 1));
4304 case Instruction::Trunc: {
4309 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4310 if (Tmp > (OperandTyBits - TyBits))
4311 return Tmp - (OperandTyBits - TyBits);
4316 case Instruction::ExtractElement:
4323 case Instruction::ShuffleVector: {
4331 APInt DemandedLHS, DemandedRHS;
4336 Tmp = std::numeric_limits<unsigned>::max();
4337 if (!!DemandedLHS) {
4338 const Value *
LHS = Shuf->getOperand(0);
4345 if (!!DemandedRHS) {
4346 const Value *
RHS = Shuf->getOperand(1);
4348 Tmp = std::min(Tmp, Tmp2);
4354 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4357 case Instruction::Call: {
4359 switch (
II->getIntrinsicID()) {
4362 case Intrinsic::abs:
4370 case Intrinsic::smin:
4371 case Intrinsic::smax: {
4372 const APInt *CLow, *CHigh;
4387 if (
unsigned VecSignBits =
4405 if (
F->isIntrinsic())
4406 return F->getIntrinsicID();
4412 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4422 return Intrinsic::sin;
4426 return Intrinsic::cos;
4430 return Intrinsic::tan;
4434 return Intrinsic::asin;
4438 return Intrinsic::acos;
4442 return Intrinsic::atan;
4444 case LibFunc_atan2f:
4445 case LibFunc_atan2l:
4446 return Intrinsic::atan2;
4450 return Intrinsic::sinh;
4454 return Intrinsic::cosh;
4458 return Intrinsic::tanh;
4462 return Intrinsic::exp;
4466 return Intrinsic::exp2;
4468 case LibFunc_exp10f:
4469 case LibFunc_exp10l:
4470 return Intrinsic::exp10;
4474 return Intrinsic::log;
4476 case LibFunc_log10f:
4477 case LibFunc_log10l:
4478 return Intrinsic::log10;
4482 return Intrinsic::log2;
4486 return Intrinsic::fabs;
4490 return Intrinsic::minnum;
4494 return Intrinsic::maxnum;
4495 case LibFunc_copysign:
4496 case LibFunc_copysignf:
4497 case LibFunc_copysignl:
4498 return Intrinsic::copysign;
4500 case LibFunc_floorf:
4501 case LibFunc_floorl:
4502 return Intrinsic::floor;
4506 return Intrinsic::ceil;
4508 case LibFunc_truncf:
4509 case LibFunc_truncl:
4510 return Intrinsic::trunc;
4514 return Intrinsic::rint;
4515 case LibFunc_nearbyint:
4516 case LibFunc_nearbyintf:
4517 case LibFunc_nearbyintl:
4518 return Intrinsic::nearbyint;
4520 case LibFunc_roundf:
4521 case LibFunc_roundl:
4522 return Intrinsic::round;
4523 case LibFunc_roundeven:
4524 case LibFunc_roundevenf:
4525 case LibFunc_roundevenl:
4526 return Intrinsic::roundeven;
4530 return Intrinsic::pow;
4534 return Intrinsic::sqrt;
4541 Ty = Ty->getScalarType();
4550 bool &TrueIfSigned) {
4553 TrueIfSigned =
true;
4554 return RHS.isZero();
4556 TrueIfSigned =
true;
4557 return RHS.isAllOnes();
4559 TrueIfSigned =
false;
4560 return RHS.isAllOnes();
4562 TrueIfSigned =
false;
4563 return RHS.isZero();
4566 TrueIfSigned =
true;
4567 return RHS.isMaxSignedValue();
4570 TrueIfSigned =
true;
4571 return RHS.isMinSignedValue();
4574 TrueIfSigned =
false;
4575 return RHS.isMinSignedValue();
4578 TrueIfSigned =
false;
4579 return RHS.isMaxSignedValue();
4589 unsigned Depth = 0) {
4614 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4618 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4624 if (TrueIfSigned == CondIsTrue)
4640 return KnownFromContext;
4660 return KnownFromContext;
4670 "Got assumption for the wrong function!");
4671 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4672 "must be an assume intrinsic");
4678 true, Q.
CxtI, KnownFromContext);
4681 return KnownFromContext;
4692 APInt DemandedElts =
4698 const APInt &DemandedElts,
4703 if ((InterestedClasses &
4709 KnownSrc, Q,
Depth + 1);
4724 assert(Known.
isUnknown() &&
"should not be called with known information");
4726 if (!DemandedElts) {
4736 Known.
SignBit = CFP->isNegative();
4757 bool SignBitAllZero =
true;
4758 bool SignBitAllOne =
true;
4761 unsigned NumElts = VFVTy->getNumElements();
4762 for (
unsigned i = 0; i != NumElts; ++i) {
4763 if (!DemandedElts[i])
4779 const APFloat &
C = CElt->getValueAPF();
4782 SignBitAllZero =
false;
4784 SignBitAllOne =
false;
4786 if (SignBitAllOne != SignBitAllZero)
4787 Known.
SignBit = SignBitAllOne;
4793 KnownNotFromFlags |= CB->getRetNoFPClass();
4795 KnownNotFromFlags |= Arg->getNoFPClass();
4799 if (FPOp->hasNoNaNs())
4800 KnownNotFromFlags |=
fcNan;
4801 if (FPOp->hasNoInfs())
4802 KnownNotFromFlags |=
fcInf;
4806 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4810 InterestedClasses &= ~KnownNotFromFlags;
4829 const unsigned Opc =
Op->getOpcode();
4831 case Instruction::FNeg: {
4833 Known, Q,
Depth + 1);
4837 case Instruction::Select: {
4845 Value *TestedValue =
nullptr;
4851 Value *CmpLHS, *CmpRHS;
4858 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
4859 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
4865 MaskIfTrue = TestedMask;
4866 MaskIfFalse = ~TestedMask;
4869 if (TestedValue ==
LHS) {
4871 FilterLHS = MaskIfTrue;
4872 }
else if (TestedValue ==
RHS) {
4874 FilterRHS = MaskIfFalse;
4883 Known2, Q,
Depth + 1);
4889 case Instruction::Call: {
4893 case Intrinsic::fabs: {
4898 InterestedClasses, Known, Q,
Depth + 1);
4904 case Intrinsic::copysign: {
4908 Known, Q,
Depth + 1);
4910 KnownSign, Q,
Depth + 1);
4914 case Intrinsic::fma:
4915 case Intrinsic::fmuladd: {
4919 if (
II->getArgOperand(0) !=
II->getArgOperand(1))
4928 KnownAddend, Q,
Depth + 1);
4934 case Intrinsic::sqrt:
4935 case Intrinsic::experimental_constrained_sqrt: {
4938 if (InterestedClasses &
fcNan)
4942 KnownSrc, Q,
Depth + 1);
4960 II->getType()->getScalarType()->getFltSemantics();
4969 case Intrinsic::sin:
4970 case Intrinsic::cos: {
4974 KnownSrc, Q,
Depth + 1);
4980 case Intrinsic::maxnum:
4981 case Intrinsic::minnum:
4982 case Intrinsic::minimum:
4983 case Intrinsic::maximum:
4984 case Intrinsic::minimumnum:
4985 case Intrinsic::maximumnum: {
4988 KnownLHS, Q,
Depth + 1);
4990 KnownRHS, Q,
Depth + 1);
4993 Known = KnownLHS | KnownRHS;
4997 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
4998 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5001 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5009 }
else if (IID == Intrinsic::maximum) {
5015 }
else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5023 }
else if (IID == Intrinsic::minimum) {
5046 II->getType()->getScalarType()->getFltSemantics());
5058 }
else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5059 IID == Intrinsic::maximumnum ||
5060 IID == Intrinsic::minimumnum) ||
5068 KnownLHS.
SignBit = std::nullopt;
5070 KnownRHS.
SignBit = std::nullopt;
5071 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5072 IID == Intrinsic::maxnum) &&
5075 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5076 IID == Intrinsic::minnum) &&
5083 case Intrinsic::canonicalize: {
5086 KnownSrc, Q,
Depth + 1);
5110 II->getType()->getScalarType()->getFltSemantics();
5130 case Intrinsic::vector_reduce_fmax:
5131 case Intrinsic::vector_reduce_fmin:
5132 case Intrinsic::vector_reduce_fmaximum:
5133 case Intrinsic::vector_reduce_fminimum: {
5137 InterestedClasses, Q,
Depth + 1);
5144 case Intrinsic::vector_reverse:
5147 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5149 case Intrinsic::trunc:
5150 case Intrinsic::floor:
5151 case Intrinsic::ceil:
5152 case Intrinsic::rint:
5153 case Intrinsic::nearbyint:
5154 case Intrinsic::round:
5155 case Intrinsic::roundeven: {
5163 KnownSrc, Q,
Depth + 1);
5172 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5187 case Intrinsic::exp:
5188 case Intrinsic::exp2:
5189 case Intrinsic::exp10: {
5196 KnownSrc, Q,
Depth + 1);
5204 case Intrinsic::fptrunc_round: {
5209 case Intrinsic::log:
5210 case Intrinsic::log10:
5211 case Intrinsic::log2:
5212 case Intrinsic::experimental_constrained_log:
5213 case Intrinsic::experimental_constrained_log10:
5214 case Intrinsic::experimental_constrained_log2: {
5230 KnownSrc, Q,
Depth + 1);
5244 II->getType()->getScalarType()->getFltSemantics();
5252 case Intrinsic::powi: {
5256 const Value *Exp =
II->getArgOperand(1);
5257 Type *ExpTy = Exp->getType();
5261 ExponentKnownBits, Q,
Depth + 1);
5263 if (ExponentKnownBits.
Zero[0]) {
5278 KnownSrc, Q,
Depth + 1);
5283 case Intrinsic::ldexp: {
5286 KnownSrc, Q,
Depth + 1);
5302 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5308 II->getType()->getScalarType()->getFltSemantics();
5310 const Value *ExpArg =
II->getArgOperand(1);
5314 const int MantissaBits = Precision - 1;
5321 II->getType()->getScalarType()->getFltSemantics();
5322 if (ConstVal && ConstVal->
isZero()) {
5347 case Intrinsic::arithmetic_fence: {
5349 Known, Q,
Depth + 1);
5352 case Intrinsic::experimental_constrained_sitofp:
5353 case Intrinsic::experimental_constrained_uitofp:
5363 if (IID == Intrinsic::experimental_constrained_uitofp)
5374 case Instruction::FAdd:
5375 case Instruction::FSub: {
5378 Op->getOpcode() == Instruction::FAdd &&
5380 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5383 if (!WantNaN && !WantNegative && !WantNegZero)
5389 if (InterestedClasses &
fcNan)
5390 InterestedSrcs |=
fcInf;
5392 KnownRHS, Q,
Depth + 1);
5396 WantNegZero ||
Opc == Instruction::FSub) {
5401 KnownLHS, Q,
Depth + 1);
5411 if (
Op->getOpcode() == Instruction::FAdd) {
5419 Op->getType()->getScalarType()->getFltSemantics();
5433 Op->getType()->getScalarType()->getFltSemantics();
5447 case Instruction::FMul: {
5449 if (
Op->getOperand(0) ==
Op->getOperand(1))
5486 Type *OpTy =
Op->getType()->getScalarType();
5498 case Instruction::FDiv:
5499 case Instruction::FRem: {
5500 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5502 if (
Op->getOpcode() == Instruction::FDiv) {
5513 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5515 const bool WantPositive =
5517 if (!WantNan && !WantNegative && !WantPositive)
5526 bool KnowSomethingUseful =
5529 if (KnowSomethingUseful || WantPositive) {
5535 InterestedClasses & InterestedLHS, KnownLHS, Q,
5541 Op->getType()->getScalarType()->getFltSemantics();
5543 if (
Op->getOpcode() == Instruction::FDiv) {
5582 case Instruction::FPExt: {
5585 Known, Q,
Depth + 1);
5588 Op->getType()->getScalarType()->getFltSemantics();
5590 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5606 case Instruction::FPTrunc: {
5611 case Instruction::SIToFP:
5612 case Instruction::UIToFP: {
5621 if (
Op->getOpcode() == Instruction::UIToFP)
5624 if (InterestedClasses &
fcInf) {
5628 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5629 if (
Op->getOpcode() == Instruction::SIToFP)
5634 Type *FPTy =
Op->getType()->getScalarType();
5641 case Instruction::ExtractElement: {
5644 const Value *Vec =
Op->getOperand(0);
5646 APInt DemandedVecElts;
5648 unsigned NumElts = VecTy->getNumElements();
5651 if (CIdx && CIdx->getValue().ult(NumElts))
5654 DemandedVecElts =
APInt(1, 1);
5660 case Instruction::InsertElement: {
5664 const Value *Vec =
Op->getOperand(0);
5665 const Value *Elt =
Op->getOperand(1);
5668 APInt DemandedVecElts = DemandedElts;
5669 bool NeedsElt =
true;
5671 if (CIdx && CIdx->getValue().ult(NumElts)) {
5672 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5673 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5687 if (!DemandedVecElts.
isZero()) {
5696 case Instruction::ShuffleVector: {
5699 APInt DemandedLHS, DemandedRHS;
5704 if (!!DemandedLHS) {
5705 const Value *
LHS = Shuf->getOperand(0);
5716 if (!!DemandedRHS) {
5718 const Value *
RHS = Shuf->getOperand(1);
5726 case Instruction::ExtractValue: {
5733 switch (
II->getIntrinsicID()) {
5734 case Intrinsic::frexp: {
5739 InterestedClasses, KnownSrc, Q,
Depth + 1);
5743 Op->getType()->getScalarType()->getFltSemantics();
5778 case Instruction::PHI: {
5781 if (
P->getNumIncomingValues() == 0)
5788 if (
Depth < PhiRecursionLimit) {
5795 for (
const Use &U :
P->operands()) {
5825 case Instruction::BitCast: {
5828 !Src->getType()->isIntOrIntVectorTy())
5831 const Type *Ty =
Op->getType()->getScalarType();
5832 KnownBits Bits(Ty->getScalarSizeInBits());
5836 if (Bits.isNonNegative())
5838 else if (Bits.isNegative())
5841 if (Ty->isIEEELikeFPTy()) {
5851 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
5858 InfKB.Zero.clearSignBit();
5860 assert(!InfResult.value());
5862 }
else if (Bits == InfKB) {
5870 ZeroKB.Zero.clearSignBit();
5872 assert(!ZeroResult.value());
5874 }
else if (Bits == ZeroKB) {
5887 const APInt &DemandedElts,
5894 return KnownClasses;
5920 InterestedClasses &=
~fcNan;
5922 InterestedClasses &=
~fcInf;
5928 Result.KnownFPClasses &=
~fcNan;
5930 Result.KnownFPClasses &=
~fcInf;
5939 APInt DemandedElts =
5993 if (FPOp->hasNoSignedZeros())
5997 switch (
User->getOpcode()) {
5998 case Instruction::FPToSI:
5999 case Instruction::FPToUI:
6001 case Instruction::FCmp:
6004 case Instruction::Call:
6006 switch (
II->getIntrinsicID()) {
6007 case Intrinsic::fabs:
6009 case Intrinsic::copysign:
6010 return U.getOperandNo() == 0;
6011 case Intrinsic::is_fpclass:
6012 case Intrinsic::vp_is_fpclass: {
6032 if (FPOp->hasNoNaNs())
6036 switch (
User->getOpcode()) {
6037 case Instruction::FPToSI:
6038 case Instruction::FPToUI:
6041 case Instruction::FAdd:
6042 case Instruction::FSub:
6043 case Instruction::FMul:
6044 case Instruction::FDiv:
6045 case Instruction::FRem:
6046 case Instruction::FPTrunc:
6047 case Instruction::FPExt:
6048 case Instruction::FCmp:
6051 case Instruction::FNeg:
6052 case Instruction::Select:
6053 case Instruction::PHI:
6055 case Instruction::Ret:
6056 return User->getFunction()->getAttributes().getRetNoFPClass() &
6058 case Instruction::Call:
6059 case Instruction::Invoke: {
6061 switch (
II->getIntrinsicID()) {
6062 case Intrinsic::fabs:
6064 case Intrinsic::copysign:
6065 return U.getOperandNo() == 0;
6067 case Intrinsic::maxnum:
6068 case Intrinsic::minnum:
6069 case Intrinsic::maximum:
6070 case Intrinsic::minimum:
6071 case Intrinsic::maximumnum:
6072 case Intrinsic::minimumnum:
6073 case Intrinsic::canonicalize:
6074 case Intrinsic::fma:
6075 case Intrinsic::fmuladd:
6076 case Intrinsic::sqrt:
6077 case Intrinsic::pow:
6078 case Intrinsic::powi:
6079 case Intrinsic::fptoui_sat:
6080 case Intrinsic::fptosi_sat:
6081 case Intrinsic::is_fpclass:
6082 case Intrinsic::vp_is_fpclass:
6101 if (V->getType()->isIntegerTy(8))
6112 if (
DL.getTypeStoreSize(V->getType()).isZero())
6127 if (
C->isNullValue())
6134 if (CFP->getType()->isHalfTy())
6136 else if (CFP->getType()->isFloatTy())
6138 else if (CFP->getType()->isDoubleTy())
6147 if (CI->getBitWidth() % 8 == 0) {
6148 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6149 if (!CI->getValue().isSplat(8))
6151 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6156 if (CE->getOpcode() == Instruction::IntToPtr) {
6158 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6171 if (LHS == UndefInt8)
6173 if (RHS == UndefInt8)
6179 Value *Val = UndefInt8;
6180 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6187 Value *Val = UndefInt8;
6222 while (PrevTo != OrigTo) {
6269 unsigned IdxSkip = Idxs.
size();
6282 std::optional<BasicBlock::iterator> InsertBefore) {
6285 if (idx_range.
empty())
6288 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6289 "Not looking at a struct or array?");
6291 "Invalid indices for type?");
6294 C =
C->getAggregateElement(idx_range[0]);
6295 if (!
C)
return nullptr;
6302 const unsigned *req_idx = idx_range.
begin();
6303 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6304 i != e; ++i, ++req_idx) {
6305 if (req_idx == idx_range.
end()) {
6335 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6344 unsigned size =
I->getNumIndices() + idx_range.
size();
6349 Idxs.
append(
I->idx_begin(),
I->idx_end());
6355 &&
"Number of indices added not correct?");
6372 assert(V &&
"V should not be null.");
6373 assert((ElementSize % 8) == 0 &&
6374 "ElementSize expected to be a multiple of the size of a byte.");
6375 unsigned ElementSizeInBytes = ElementSize / 8;
6387 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6394 uint64_t StartIdx = Off.getLimitedValue();
6401 if ((StartIdx % ElementSizeInBytes) != 0)
6404 Offset += StartIdx / ElementSizeInBytes;
6410 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6413 Slice.Array =
nullptr;
6425 Type *InitElTy = ArrayInit->getElementType();
6430 ArrayTy = ArrayInit->getType();
6435 if (ElementSize != 8)
6454 Slice.Array = Array;
6456 Slice.Length = NumElts -
Offset;
6470 if (Slice.Array ==
nullptr) {
6481 if (Slice.Length == 1) {
6493 Str = Str.
substr(Slice.Offset);
6499 Str = Str.substr(0, Str.find(
'\0'));
6512 unsigned CharSize) {
6514 V = V->stripPointerCasts();
6519 if (!PHIs.
insert(PN).second)
6524 for (
Value *IncValue : PN->incoming_values()) {
6526 if (Len == 0)
return 0;
6528 if (Len == ~0ULL)
continue;
6530 if (Len != LenSoFar && LenSoFar != ~0ULL)
6542 if (Len1 == 0)
return 0;
6544 if (Len2 == 0)
return 0;
6545 if (Len1 == ~0ULL)
return Len2;
6546 if (Len2 == ~0ULL)
return Len1;
6547 if (Len1 != Len2)
return 0;
6556 if (Slice.Array ==
nullptr)
6564 unsigned NullIndex = 0;
6565 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6566 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6570 return NullIndex + 1;
6576 if (!V->getType()->isPointerTy())
6583 return Len == ~0ULL ? 1 : Len;
6588 bool MustPreserveNullness) {
6590 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6591 if (
const Value *RV =
Call->getReturnedArgOperand())
6595 Call, MustPreserveNullness))
6596 return Call->getArgOperand(0);
6602 switch (
Call->getIntrinsicID()) {
6603 case Intrinsic::launder_invariant_group:
6604 case Intrinsic::strip_invariant_group:
6605 case Intrinsic::aarch64_irg:
6606 case Intrinsic::aarch64_tagp:
6616 case Intrinsic::amdgcn_make_buffer_rsrc:
6618 case Intrinsic::ptrmask:
6619 return !MustPreserveNullness;
6620 case Intrinsic::threadlocal_address:
6623 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6640 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6642 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6651 if (!L->isLoopInvariant(Load->getPointerOperand()))
6657 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6659 const Value *PtrOp =
GEP->getPointerOperand();
6670 if (GA->isInterposable())
6672 V = GA->getAliasee();
6676 if (
PHI->getNumIncomingValues() == 1) {
6677 V =
PHI->getIncomingValue(0);
6698 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6705 const LoopInfo *LI,
unsigned MaxLookup) {
6713 if (!Visited.
insert(
P).second)
6742 }
while (!Worklist.
empty());
6746 const unsigned MaxVisited = 8;
6751 const Value *Object =
nullptr;
6761 if (!Visited.
insert(
P).second)
6764 if (Visited.
size() == MaxVisited)
6780 else if (Object !=
P)
6782 }
while (!Worklist.
empty());
6784 return Object ? Object : FirstObject;
6794 if (U->getOpcode() == Instruction::PtrToInt)
6795 return U->getOperand(0);
6802 if (U->getOpcode() != Instruction::Add ||
6807 V = U->getOperand(0);
6811 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
6828 for (
const Value *V : Objs) {
6829 if (!Visited.
insert(V).second)
6834 if (O->getType()->isPointerTy()) {
6847 }
while (!Working.
empty());
6856 auto AddWork = [&](
Value *V) {
6857 if (Visited.
insert(V).second)
6867 if (Result && Result != AI)
6871 AddWork(CI->getOperand(0));
6873 for (
Value *IncValue : PN->incoming_values())
6876 AddWork(
SI->getTrueValue());
6877 AddWork(
SI->getFalseValue());
6879 if (OffsetZero && !
GEP->hasAllZeroIndices())
6881 AddWork(
GEP->getPointerOperand());
6883 Value *Returned = CB->getReturnedArgOperand();
6891 }
while (!Worklist.
empty());
6897 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
6903 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
6906 if (AllowDroppable &&
II->isDroppable())
6927 return (!Shuffle || Shuffle->isSelect()) &&
6934 bool IgnoreUBImplyingAttrs) {
6936 AC, DT, TLI, UseVariableInfo,
6937 IgnoreUBImplyingAttrs);
6943 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
6947 auto hasEqualReturnAndLeadingOperandTypes =
6948 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
6952 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6958 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6960 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6967 case Instruction::UDiv:
6968 case Instruction::URem: {
6975 case Instruction::SDiv:
6976 case Instruction::SRem: {
6978 const APInt *Numerator, *Denominator;
6982 if (*Denominator == 0)
6994 case Instruction::Load: {
6995 if (!UseVariableInfo)
7008 case Instruction::Call: {
7012 const Function *Callee = CI->getCalledFunction();
7016 if (!Callee || !Callee->isSpeculatable())
7020 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7022 case Instruction::VAArg:
7023 case Instruction::Alloca:
7024 case Instruction::Invoke:
7025 case Instruction::CallBr:
7026 case Instruction::PHI:
7027 case Instruction::Store:
7028 case Instruction::Ret:
7029 case Instruction::Br:
7030 case Instruction::IndirectBr:
7031 case Instruction::Switch:
7032 case Instruction::Unreachable:
7033 case Instruction::Fence:
7034 case Instruction::AtomicRMW:
7035 case Instruction::AtomicCmpXchg:
7036 case Instruction::LandingPad:
7037 case Instruction::Resume:
7038 case Instruction::CatchSwitch:
7039 case Instruction::CatchPad:
7040 case Instruction::CatchRet:
7041 case Instruction::CleanupPad:
7042 case Instruction::CleanupRet:
7048 if (
I.mayReadOrWriteMemory())
7116 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7161 if (
Add &&
Add->hasNoSignedWrap()) {
7200 bool LHSOrRHSKnownNonNegative =
7202 bool LHSOrRHSKnownNegative =
7204 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7207 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7208 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7283 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7285 if (EVI->getIndices()[0] == 0)
7288 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7290 for (
const auto *U : EVI->users())
7292 assert(
B->isConditional() &&
"How else is it using an i1?");
7303 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7309 for (
const auto *Result :
Results) {
7312 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7315 for (
const auto &RU : Result->uses())
7323 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7335 unsigned NumElts = FVTy->getNumElements();
7336 for (
unsigned i = 0; i < NumElts; ++i)
7337 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7345 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7366 bool ConsiderFlagsAndMetadata) {
7369 Op->hasPoisonGeneratingAnnotations())
7372 unsigned Opcode =
Op->getOpcode();
7376 case Instruction::Shl:
7377 case Instruction::AShr:
7378 case Instruction::LShr:
7380 case Instruction::FPToSI:
7381 case Instruction::FPToUI:
7385 case Instruction::Call:
7387 switch (
II->getIntrinsicID()) {
7389 case Intrinsic::ctlz:
7390 case Intrinsic::cttz:
7391 case Intrinsic::abs:
7395 case Intrinsic::ctpop:
7396 case Intrinsic::bswap:
7397 case Intrinsic::bitreverse:
7398 case Intrinsic::fshl:
7399 case Intrinsic::fshr:
7400 case Intrinsic::smax:
7401 case Intrinsic::smin:
7402 case Intrinsic::scmp:
7403 case Intrinsic::umax:
7404 case Intrinsic::umin:
7405 case Intrinsic::ucmp:
7406 case Intrinsic::ptrmask:
7407 case Intrinsic::fptoui_sat:
7408 case Intrinsic::fptosi_sat:
7409 case Intrinsic::sadd_with_overflow:
7410 case Intrinsic::ssub_with_overflow:
7411 case Intrinsic::smul_with_overflow:
7412 case Intrinsic::uadd_with_overflow:
7413 case Intrinsic::usub_with_overflow:
7414 case Intrinsic::umul_with_overflow:
7415 case Intrinsic::sadd_sat:
7416 case Intrinsic::uadd_sat:
7417 case Intrinsic::ssub_sat:
7418 case Intrinsic::usub_sat:
7420 case Intrinsic::sshl_sat:
7421 case Intrinsic::ushl_sat:
7424 case Intrinsic::fma:
7425 case Intrinsic::fmuladd:
7426 case Intrinsic::sqrt:
7427 case Intrinsic::powi:
7428 case Intrinsic::sin:
7429 case Intrinsic::cos:
7430 case Intrinsic::pow:
7431 case Intrinsic::log:
7432 case Intrinsic::log10:
7433 case Intrinsic::log2:
7434 case Intrinsic::exp:
7435 case Intrinsic::exp2:
7436 case Intrinsic::exp10:
7437 case Intrinsic::fabs:
7438 case Intrinsic::copysign:
7439 case Intrinsic::floor:
7440 case Intrinsic::ceil:
7441 case Intrinsic::trunc:
7442 case Intrinsic::rint:
7443 case Intrinsic::nearbyint:
7444 case Intrinsic::round:
7445 case Intrinsic::roundeven:
7446 case Intrinsic::fptrunc_round:
7447 case Intrinsic::canonicalize:
7448 case Intrinsic::arithmetic_fence:
7449 case Intrinsic::minnum:
7450 case Intrinsic::maxnum:
7451 case Intrinsic::minimum:
7452 case Intrinsic::maximum:
7453 case Intrinsic::minimumnum:
7454 case Intrinsic::maximumnum:
7455 case Intrinsic::is_fpclass:
7456 case Intrinsic::ldexp:
7457 case Intrinsic::frexp:
7459 case Intrinsic::lround:
7460 case Intrinsic::llround:
7461 case Intrinsic::lrint:
7462 case Intrinsic::llrint:
7469 case Instruction::CallBr:
7470 case Instruction::Invoke: {
7472 return !CB->hasRetAttr(Attribute::NoUndef);
7474 case Instruction::InsertElement:
7475 case Instruction::ExtractElement: {
7478 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7482 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7485 case Instruction::ShuffleVector: {
7491 case Instruction::FNeg:
7492 case Instruction::PHI:
7493 case Instruction::Select:
7494 case Instruction::ExtractValue:
7495 case Instruction::InsertValue:
7496 case Instruction::Freeze:
7497 case Instruction::ICmp:
7498 case Instruction::FCmp:
7499 case Instruction::GetElementPtr:
7501 case Instruction::AddrSpaceCast:
7516 bool ConsiderFlagsAndMetadata) {
7518 ConsiderFlagsAndMetadata);
7523 ConsiderFlagsAndMetadata);
7528 if (ValAssumedPoison == V)
7531 const unsigned MaxDepth = 2;
7532 if (
Depth >= MaxDepth)
7537 return propagatesPoison(Op) &&
7538 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7562 const unsigned MaxDepth = 2;
7563 if (
Depth >= MaxDepth)
7569 return impliesPoison(Op, V, Depth + 1);
7576 return ::impliesPoison(ValAssumedPoison, V, 0);
7591 if (
A->hasAttribute(Attribute::NoUndef) ||
7592 A->hasAttribute(Attribute::Dereferenceable) ||
7593 A->hasAttribute(Attribute::DereferenceableOrNull))
7608 if (
C->getType()->isVectorTy()) {
7611 if (
Constant *SplatC =
C->getSplatValue())
7619 return !
C->containsConstantExpression();
7632 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7637 auto OpCheck = [&](
const Value *V) {
7648 if (CB->hasRetAttr(Attribute::NoUndef) ||
7649 CB->hasRetAttr(Attribute::Dereferenceable) ||
7650 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7655 unsigned Num = PN->getNumIncomingValues();
7656 bool IsWellDefined =
true;
7657 for (
unsigned i = 0; i < Num; ++i) {
7658 if (PN == PN->getIncomingValue(i))
7660 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7662 DT,
Depth + 1, Kind)) {
7663 IsWellDefined =
false;
7671 all_of(Opr->operands(), OpCheck))
7676 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7677 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7678 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7698 auto *Dominator = DNode->
getIDom();
7703 auto *TI = Dominator->getBlock()->getTerminator();
7707 if (BI->isConditional())
7708 Cond = BI->getCondition();
7710 Cond =
SI->getCondition();
7719 if (
any_of(Opr->operands(), [V](
const Use &U) {
7720 return V == U && propagatesPoison(U);
7726 Dominator = Dominator->getIDom();
7739 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7746 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7753 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7777 while (!Worklist.
empty()) {
7786 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7787 return KnownPoison.contains(U) && propagatesPoison(U);
7791 if (KnownPoison.
insert(
I).second)
7803 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7811 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7843 return !
I->mayThrow() &&
I->willReturn();
7857 unsigned ScanLimit) {
7864 assert(ScanLimit &&
"scan limit must be non-zero");
7866 if (--ScanLimit == 0)
7880 if (
I->getParent() != L->getHeader())
return false;
7883 if (&LI ==
I)
return true;
7886 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
7892 case Intrinsic::sadd_with_overflow:
7893 case Intrinsic::ssub_with_overflow:
7894 case Intrinsic::smul_with_overflow:
7895 case Intrinsic::uadd_with_overflow:
7896 case Intrinsic::usub_with_overflow:
7897 case Intrinsic::umul_with_overflow:
7902 case Intrinsic::ctpop:
7903 case Intrinsic::ctlz:
7904 case Intrinsic::cttz:
7905 case Intrinsic::abs:
7906 case Intrinsic::smax:
7907 case Intrinsic::smin:
7908 case Intrinsic::umax:
7909 case Intrinsic::umin:
7910 case Intrinsic::scmp:
7911 case Intrinsic::is_fpclass:
7912 case Intrinsic::ptrmask:
7913 case Intrinsic::ucmp:
7914 case Intrinsic::bitreverse:
7915 case Intrinsic::bswap:
7916 case Intrinsic::sadd_sat:
7917 case Intrinsic::ssub_sat:
7918 case Intrinsic::sshl_sat:
7919 case Intrinsic::uadd_sat:
7920 case Intrinsic::usub_sat:
7921 case Intrinsic::ushl_sat:
7922 case Intrinsic::smul_fix:
7923 case Intrinsic::smul_fix_sat:
7924 case Intrinsic::umul_fix:
7925 case Intrinsic::umul_fix_sat:
7926 case Intrinsic::pow:
7927 case Intrinsic::powi:
7928 case Intrinsic::sin:
7929 case Intrinsic::sinh:
7930 case Intrinsic::cos:
7931 case Intrinsic::cosh:
7932 case Intrinsic::sincos:
7933 case Intrinsic::sincospi:
7934 case Intrinsic::tan:
7935 case Intrinsic::tanh:
7936 case Intrinsic::asin:
7937 case Intrinsic::acos:
7938 case Intrinsic::atan:
7939 case Intrinsic::atan2:
7940 case Intrinsic::canonicalize:
7941 case Intrinsic::sqrt:
7942 case Intrinsic::exp:
7943 case Intrinsic::exp2:
7944 case Intrinsic::exp10:
7945 case Intrinsic::log:
7946 case Intrinsic::log2:
7947 case Intrinsic::log10:
7948 case Intrinsic::modf:
7949 case Intrinsic::floor:
7950 case Intrinsic::ceil:
7951 case Intrinsic::trunc:
7952 case Intrinsic::rint:
7953 case Intrinsic::nearbyint:
7954 case Intrinsic::round:
7955 case Intrinsic::roundeven:
7956 case Intrinsic::lrint:
7957 case Intrinsic::llrint:
7966 switch (
I->getOpcode()) {
7967 case Instruction::Freeze:
7968 case Instruction::PHI:
7969 case Instruction::Invoke:
7971 case Instruction::Select:
7973 case Instruction::Call:
7977 case Instruction::ICmp:
7978 case Instruction::FCmp:
7979 case Instruction::GetElementPtr:
7993template <
typename CallableT>
7995 const CallableT &Handle) {
7996 switch (
I->getOpcode()) {
7997 case Instruction::Store:
8002 case Instruction::Load:
8009 case Instruction::AtomicCmpXchg:
8014 case Instruction::AtomicRMW:
8019 case Instruction::Call:
8020 case Instruction::Invoke: {
8024 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8027 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8032 case Instruction::Ret:
8033 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8034 Handle(
I->getOperand(0)))
8037 case Instruction::Switch:
8041 case Instruction::Br: {
8043 if (BR->isConditional() && Handle(BR->getCondition()))
8055template <
typename CallableT>
8057 const CallableT &Handle) {
8060 switch (
I->getOpcode()) {
8062 case Instruction::UDiv:
8063 case Instruction::SDiv:
8064 case Instruction::URem:
8065 case Instruction::SRem:
8066 return Handle(
I->getOperand(1));
8075 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8094 if (Arg->getParent()->isDeclaration())
8097 Begin = BB->
begin();
8104 unsigned ScanLimit = 32;
8113 if (--ScanLimit == 0)
8117 return WellDefinedOp == V;
8137 if (--ScanLimit == 0)
8145 for (
const Use &
Op :
I.operands()) {
8155 if (
I.getOpcode() == Instruction::Select &&
8156 YieldsPoison.
count(
I.getOperand(1)) &&
8157 YieldsPoison.
count(
I.getOperand(2))) {
8163 if (!BB || !Visited.
insert(BB).second)
8173 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8177 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8188 if (!
C->getElementType()->isFloatingPointTy())
8190 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8191 if (
C->getElementAsAPFloat(
I).isNaN())
8205 return !
C->isZero();
8208 if (!
C->getElementType()->isFloatingPointTy())
8210 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8211 if (
C->getElementAsAPFloat(
I).isZero())
8234 if (CmpRHS == FalseVal) {
8278 if (CmpRHS != TrueVal) {
8317 Value *
A =
nullptr, *
B =
nullptr;
8322 Value *
C =
nullptr, *
D =
nullptr;
8324 if (L.Flavor != R.Flavor)
8376 return {L.Flavor,
SPNB_NA,
false};
8383 return {L.Flavor,
SPNB_NA,
false};
8390 return {L.Flavor,
SPNB_NA,
false};
8397 return {L.Flavor,
SPNB_NA,
false};
8413 return ConstantInt::get(V->getType(), ~(*
C));
8470 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8490 assert(
X &&
Y &&
"Invalid operand");
8492 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8497 if (NeedNSW && !BO->hasNoSignedWrap())
8501 if (!AllowPoison && !Zero->isNullValue())
8508 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8535 const APInt *RHSC1, *RHSC2;
8546 return CR1.inverse() == CR2;
8580std::optional<std::pair<CmpPredicate, Constant *>>
8583 "Only for relational integer predicates.");
8585 return std::nullopt;
8591 bool WillIncrement =
8596 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8597 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8600 Constant *SafeReplacementConstant =
nullptr;
8603 if (!ConstantIsOk(CI))
8604 return std::nullopt;
8606 unsigned NumElts = FVTy->getNumElements();
8607 for (
unsigned i = 0; i != NumElts; ++i) {
8608 Constant *Elt =
C->getAggregateElement(i);
8610 return std::nullopt;
8618 if (!CI || !ConstantIsOk(CI))
8619 return std::nullopt;
8621 if (!SafeReplacementConstant)
8622 SafeReplacementConstant = CI;
8626 Value *SplatC =
C->getSplatValue();
8629 if (!CI || !ConstantIsOk(CI))
8630 return std::nullopt;
8633 return std::nullopt;
8640 if (
C->containsUndefOrPoisonElement()) {
8641 assert(SafeReplacementConstant &&
"Replacement constant not set");
8648 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8651 return std::make_pair(NewPred, NewC);
8660 bool HasMismatchedZeros =
false;
8666 Value *OutputZeroVal =
nullptr;
8669 OutputZeroVal = TrueVal;
8672 OutputZeroVal = FalseVal;
8674 if (OutputZeroVal) {
8676 HasMismatchedZeros =
true;
8677 CmpLHS = OutputZeroVal;
8680 HasMismatchedZeros =
true;
8681 CmpRHS = OutputZeroVal;
8698 if (!HasMismatchedZeros)
8709 bool Ordered =
false;
8720 if (LHSSafe && RHSSafe) {
8751 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8762 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8768 auto MaybeSExtCmpLHS =
8772 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8794 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8834 case Instruction::ZExt:
8838 case Instruction::SExt:
8842 case Instruction::Trunc:
8845 CmpConst->
getType() == SrcTy) {
8867 CastedTo = CmpConst;
8869 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8873 case Instruction::FPTrunc:
8876 case Instruction::FPExt:
8879 case Instruction::FPToUI:
8882 case Instruction::FPToSI:
8885 case Instruction::UIToFP:
8888 case Instruction::SIToFP:
8901 if (CastedBack && CastedBack !=
C)
8929 *CastOp = Cast1->getOpcode();
8930 Type *SrcTy = Cast1->getSrcTy();
8933 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
8934 return Cast2->getOperand(0);
8942 Value *CastedTo =
nullptr;
8943 if (*CastOp == Instruction::Trunc) {
8957 "V2 and Cast1 should be the same type.");
8976 Value *TrueVal =
SI->getTrueValue();
8977 Value *FalseVal =
SI->getFalseValue();
8980 CmpI, TrueVal, FalseVal, LHS, RHS,
8999 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9003 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9005 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9012 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9014 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9019 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9038 return Intrinsic::umin;
9040 return Intrinsic::umax;
9042 return Intrinsic::smin;
9044 return Intrinsic::smax;
9060 case Intrinsic::smax:
return Intrinsic::smin;
9061 case Intrinsic::smin:
return Intrinsic::smax;
9062 case Intrinsic::umax:
return Intrinsic::umin;
9063 case Intrinsic::umin:
return Intrinsic::umax;
9066 case Intrinsic::maximum:
return Intrinsic::minimum;
9067 case Intrinsic::minimum:
return Intrinsic::maximum;
9068 case Intrinsic::maxnum:
return Intrinsic::minnum;
9069 case Intrinsic::minnum:
return Intrinsic::maxnum;
9084std::pair<Intrinsic::ID, bool>
9089 bool AllCmpSingleUse =
true;
9092 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9098 SelectPattern.
Flavor != CurrentPattern.Flavor)
9100 SelectPattern = CurrentPattern;
9105 switch (SelectPattern.
Flavor) {
9107 return {Intrinsic::smin, AllCmpSingleUse};
9109 return {Intrinsic::umin, AllCmpSingleUse};
9111 return {Intrinsic::smax, AllCmpSingleUse};
9113 return {Intrinsic::umax, AllCmpSingleUse};
9115 return {Intrinsic::maxnum, AllCmpSingleUse};
9117 return {Intrinsic::minnum, AllCmpSingleUse};
9125template <
typename InstTy>
9135 for (
unsigned I = 0;
I != 2; ++
I) {
9140 if (
LHS != PN &&
RHS != PN)
9176 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9177 I->getType() !=
I->getArgOperand(1)->getType())
9205 return !
C->isNegative();
9217 const APInt *CLHS, *CRHS;
9220 return CLHS->
sle(*CRHS);
9258 const APInt *CLHS, *CRHS;
9261 return CLHS->
ule(*CRHS);
9270static std::optional<bool>
9275 return std::nullopt;
9282 return std::nullopt;
9289 return std::nullopt;
9296 return std::nullopt;
9303 return std::nullopt;
9310static std::optional<bool>
9316 if (CR.
icmp(Pred, RCR))
9323 return std::nullopt;
9336 return std::nullopt;
9342static std::optional<bool>
9373 const APInt *Unused;
9392 return std::nullopt;
9396 if (L0 == R0 && L1 == R1)
9432 return std::nullopt;
9439static std::optional<bool>
9444 assert((
LHS->getOpcode() == Instruction::And ||
9445 LHS->getOpcode() == Instruction::Or ||
9446 LHS->getOpcode() == Instruction::Select) &&
9447 "Expected LHS to be 'and', 'or', or 'select'.");
9454 const Value *ALHS, *ARHS;
9459 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9462 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9464 return std::nullopt;
9466 return std::nullopt;
9475 return std::nullopt;
9480 return std::nullopt;
9482 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9483 "Expected integer type only!");
9487 LHSIsTrue = !LHSIsTrue;
9492 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9497 ConstantInt::get(V->getType(), 0), RHSPred,
9498 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9504 if ((LHSI->getOpcode() == Instruction::And ||
9505 LHSI->getOpcode() == Instruction::Or ||
9506 LHSI->getOpcode() == Instruction::Select))
9510 return std::nullopt;
9515 bool LHSIsTrue,
unsigned Depth) {
9521 bool InvertRHS =
false;
9530 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9531 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9532 return InvertRHS ? !*Implied : *Implied;
9533 return std::nullopt;
9539 ConstantInt::get(V->getType(), 0),
DL,
9541 return InvertRHS ? !*Implied : *Implied;
9542 return std::nullopt;
9546 return std::nullopt;
9550 const Value *RHS1, *RHS2;
9552 if (std::optional<bool> Imp =
9556 if (std::optional<bool> Imp =
9562 if (std::optional<bool> Imp =
9566 if (std::optional<bool> Imp =
9572 return std::nullopt;
9577static std::pair<Value *, bool>
9579 if (!ContextI || !ContextI->
getParent())
9580 return {
nullptr,
false};
9587 return {
nullptr,
false};
9593 return {
nullptr,
false};
9596 if (TrueBB == FalseBB)
9597 return {
nullptr,
false};
9599 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9600 "Predecessor block does not point to successor?");
9603 return {PredCond, TrueBB == ContextBB};
9609 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9613 return std::nullopt;
9625 return std::nullopt;
9630 bool PreferSignedRange) {
9631 unsigned Width =
Lower.getBitWidth();
9634 case Instruction::Sub:
9644 if (PreferSignedRange && HasNSW && HasNUW)
9650 }
else if (HasNSW) {
9651 if (
C->isNegative()) {
9664 case Instruction::Add:
9673 if (PreferSignedRange && HasNSW && HasNUW)
9679 }
else if (HasNSW) {
9680 if (
C->isNegative()) {
9693 case Instruction::And:
9704 case Instruction::Or:
9710 case Instruction::AShr:
9716 unsigned ShiftAmount = Width - 1;
9717 if (!
C->isZero() && IIQ.
isExact(&BO))
9718 ShiftAmount =
C->countr_zero();
9719 if (
C->isNegative()) {
9722 Upper =
C->ashr(ShiftAmount) + 1;
9725 Lower =
C->ashr(ShiftAmount);
9731 case Instruction::LShr:
9737 unsigned ShiftAmount = Width - 1;
9738 if (!
C->isZero() && IIQ.
isExact(&BO))
9739 ShiftAmount =
C->countr_zero();
9740 Lower =
C->lshr(ShiftAmount);
9745 case Instruction::Shl:
9752 if (
C->isNegative()) {
9754 unsigned ShiftAmount =
C->countl_one() - 1;
9755 Lower =
C->shl(ShiftAmount);
9759 unsigned ShiftAmount =
C->countl_zero() - 1;
9761 Upper =
C->shl(ShiftAmount) + 1;
9780 case Instruction::SDiv:
9784 if (
C->isAllOnes()) {
9789 }
else if (
C->countl_zero() < Width - 1) {
9800 if (
C->isMinSignedValue()) {
9812 case Instruction::UDiv:
9822 case Instruction::SRem:
9828 if (
C->isNegative()) {
9839 case Instruction::URem:
9854 bool UseInstrInfo) {
9855 unsigned Width =
II.getType()->getScalarSizeInBits();
9857 switch (
II.getIntrinsicID()) {
9858 case Intrinsic::ctlz:
9859 case Intrinsic::cttz: {
9861 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
9866 case Intrinsic::ctpop:
9869 APInt(Width, Width) + 1);
9870 case Intrinsic::uadd_sat:
9876 case Intrinsic::sadd_sat:
9879 if (
C->isNegative())
9890 case Intrinsic::usub_sat:
9900 case Intrinsic::ssub_sat:
9902 if (
C->isNegative())
9912 if (
C->isNegative())
9923 case Intrinsic::umin:
9924 case Intrinsic::umax:
9925 case Intrinsic::smin:
9926 case Intrinsic::smax:
9931 switch (
II.getIntrinsicID()) {
9932 case Intrinsic::umin:
9934 case Intrinsic::umax:
9936 case Intrinsic::smin:
9939 case Intrinsic::smax:
9946 case Intrinsic::abs:
9955 case Intrinsic::vscale:
9956 if (!
II.getParent() || !
II.getFunction())
9963 return ConstantRange::getFull(Width);
9968 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
9972 return ConstantRange::getFull(
BitWidth);
9995 return ConstantRange::getFull(
BitWidth);
10009 return ConstantRange::getFull(
BitWidth);
10016 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10017 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10035 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10038 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10041 return C->toConstantRange();
10043 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10056 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10058 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10068 if (std::optional<ConstantRange>
Range =
A->getRange())
10076 if (std::optional<ConstantRange>
Range = CB->getRange())
10087 "Got assumption for the wrong function!");
10088 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10089 "must be an assume intrinsic");
10093 Value *Arg =
I->getArgOperand(0);
10096 if (!Cmp || Cmp->getOperand(0) != V)
10101 UseInstrInfo, AC,
I, DT,
Depth + 1);
10123 InsertAffected(
Op);
10130 auto AddAffected = [&InsertAffected](
Value *V) {
10134 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10145 while (!Worklist.
empty()) {
10147 if (!Visited.
insert(V).second)
10188 AddCmpOperands(
A,
B);
10225 AddCmpOperands(
A,
B);
10253 if (BO->getOpcode() == Instruction::Add ||
10254 BO->getOpcode() == Instruction::Or) {
10256 const APInt *C1, *C2;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC