LLVM 22.0.0git
WinEHPrepare.cpp
Go to the documentation of this file.
1//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers LLVM IR exception handling into something closer to what the
10// backend wants for functions using a personality function from a runtime
11// provided by MSVC. Functions with other personality functions are left alone
12// and may be prepared by other passes. In particular, all supported MSVC
13// personality functions require cleanup code to be outlined, and the C++
14// personality requires catch handler code to be outlined.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/Passes.h"
25#include "llvm/IR/Constants.h"
28#include "llvm/IR/Module.h"
29#include "llvm/IR/Verifier.h"
31#include "llvm/Pass.h"
33#include "llvm/Support/Debug.h"
40
41using namespace llvm;
42
43#define DEBUG_TYPE "win-eh-prepare"
44
46 "disable-demotion", cl::Hidden,
48 "Clone multicolor basic blocks but do not demote cross scopes"),
49 cl::init(false));
50
52 "disable-cleanups", cl::Hidden,
53 cl::desc("Do not remove implausible terminators or other similar cleanups"),
54 cl::init(false));
55
56// TODO: Remove this option when we fully migrate to new pass manager
58 "demote-catchswitch-only", cl::Hidden,
59 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
60
61namespace {
62
63class WinEHPrepareImpl {
64public:
65 WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly)
66 : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
67
68 bool runOnFunction(Function &Fn);
69
70private:
71 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
72 void
73 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
74 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
75 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
76 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
78 bool prepareExplicitEH(Function &F);
79 void colorFunclets(Function &F);
80
81 bool demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
82 bool cloneCommonBlocks(Function &F);
83 bool removeImplausibleInstructions(Function &F);
84 bool cleanupPreparedFunclets(Function &F);
85 void verifyPreparedFunclets(Function &F);
86
87 bool DemoteCatchSwitchPHIOnly;
88
89 // All fields are reset by runOnFunction.
90 EHPersonality Personality = EHPersonality::Unknown;
91
92 const DataLayout *DL = nullptr;
95};
96
97class WinEHPrepare : public FunctionPass {
98 bool DemoteCatchSwitchPHIOnly;
99
100public:
101 static char ID; // Pass identification, replacement for typeid.
102
103 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
104 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
105
106 StringRef getPassName() const override {
107 return "Windows exception handling preparation";
108 }
109
110 bool runOnFunction(Function &Fn) override {
111 return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn);
112 }
113};
114
115} // end anonymous namespace
116
119 bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(F);
120 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
121}
122
123char WinEHPrepare::ID = 0;
124INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", false,
125 false)
126
127FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
128 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
129}
130
131bool WinEHPrepareImpl::runOnFunction(Function &Fn) {
132 if (!Fn.hasPersonalityFn())
133 return false;
134
135 // Classify the personality to see what kind of preparation we need.
136 Personality = classifyEHPersonality(Fn.getPersonalityFn());
137
138 // Do nothing if this is not a scope-based personality.
139 if (!isScopedEHPersonality(Personality))
140 return false;
141
142 DL = &Fn.getDataLayout();
143 return prepareExplicitEH(Fn);
144}
145
146static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
147 const BasicBlock *BB) {
149 UME.ToState = ToState;
150 UME.Cleanup = BB;
151 FuncInfo.CxxUnwindMap.push_back(UME);
152 return FuncInfo.getLastStateNumber();
153}
154
155static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
156 int TryHigh, int CatchHigh,
159 TBME.TryLow = TryLow;
160 TBME.TryHigh = TryHigh;
161 TBME.CatchHigh = CatchHigh;
162 assert(TBME.TryLow <= TBME.TryHigh);
163 for (const CatchPadInst *CPI : Handlers) {
165 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
166 if (TypeInfo->isNullValue())
167 HT.TypeDescriptor = nullptr;
168 else
169 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
170 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
171 HT.Handler = CPI->getParent();
172 if (auto *AI =
173 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
174 HT.CatchObj.Alloca = AI;
175 else
176 HT.CatchObj.Alloca = nullptr;
177 TBME.HandlerArray.push_back(HT);
178 }
179 FuncInfo.TryBlockMap.push_back(TBME);
180}
181
183 for (const User *U : CleanupPad->users())
184 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
185 return CRI->getUnwindDest();
186 return nullptr;
187}
188
190 WinEHFuncInfo &FuncInfo) {
191 auto *F = const_cast<Function *>(Fn);
193 for (BasicBlock &BB : *F) {
194 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
195 if (!II)
196 continue;
197
198 auto &BBColors = BlockColors[&BB];
199 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
200 BasicBlock *FuncletEntryBB = BBColors.front();
201
202 BasicBlock *FuncletUnwindDest;
203 auto *FuncletPad =
204 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHIIt());
205 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
206 if (!FuncletPad)
207 FuncletUnwindDest = nullptr;
208 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
209 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
210 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
211 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
212 else
213 llvm_unreachable("unexpected funclet pad!");
214
215 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
216 int BaseState = -1;
217 if (FuncletUnwindDest == InvokeUnwindDest) {
218 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
219 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
220 BaseState = BaseStateI->second;
221 }
222
223 if (BaseState != -1) {
224 FuncInfo.InvokeStateMap[II] = BaseState;
225 } else {
226 Instruction *PadInst = &*InvokeUnwindDest->getFirstNonPHIIt();
227 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
228 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
229 }
230 }
231}
232
233// See comments below for calculateSEHStateForAsynchEH().
234// State - incoming State of normal paths
235struct WorkItem {
237 int State;
238 WorkItem(const BasicBlock *BB, int St) {
239 Block = BB;
240 State = St;
241 }
242};
244 WinEHFuncInfo &EHInfo) {
246 struct WorkItem *WI = new WorkItem(BB, State);
247 WorkList.push_back(WI);
248
249 while (!WorkList.empty()) {
250 WI = WorkList.pop_back_val();
251 const BasicBlock *BB = WI->Block;
252 int State = WI->State;
253 delete WI;
254 auto [StateIt, Inserted] = EHInfo.BlockToStateMap.try_emplace(BB);
255 if (!Inserted && StateIt->second <= State)
256 continue; // skip blocks already visited by lower State
257
259 const llvm::Instruction *TI = BB->getTerminator();
260 if (It->isEHPad())
261 State = EHInfo.EHPadStateMap[&*It];
262 StateIt->second = State; // Record state, also flag visiting
263
264 if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) && State > 0) {
265 // Retrive the new State
266 State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State
267 } else if (isa<InvokeInst>(TI)) {
268 auto *Call = cast<CallBase>(TI);
269 const Function *Fn = Call->getCalledFunction();
270 if (Fn && Fn->isIntrinsic() &&
271 (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin ||
272 Fn->getIntrinsicID() == Intrinsic::seh_try_begin))
273 // Retrive the new State from seh_scope_begin
274 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
275 else if (Fn && Fn->isIntrinsic() &&
276 (Fn->getIntrinsicID() == Intrinsic::seh_scope_end ||
277 Fn->getIntrinsicID() == Intrinsic::seh_try_end)) {
278 // In case of conditional ctor, let's retrieve State from Invoke
279 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
280 // end of current state, retrive new state from UnwindMap
281 State = EHInfo.CxxUnwindMap[State].ToState;
282 }
283 }
284 // Continue push successors into worklist
285 for (auto *SuccBB : successors(BB)) {
286 WI = new WorkItem(SuccBB, State);
287 WorkList.push_back(WI);
288 }
289 }
290}
291
292// The central theory of this routine is based on the following:
293// A _try scope is always a SEME (Single Entry Multiple Exits) region
294// as jumping into a _try is not allowed
295// The single entry must start with a seh_try_begin() invoke with a
296// correct State number that is the initial state of the SEME.
297// Through control-flow, state number is propagated into all blocks.
298// Side exits marked by seh_try_end() will unwind to parent state via
299// existing SEHUnwindMap[].
300// Side exits can ONLY jump into parent scopes (lower state number).
301// Thus, when a block succeeds various states from its predecessors,
302// the lowest State trumphs others.
303// If some exits flow to unreachable, propagation on those paths terminate,
304// not affecting remaining blocks.
306 WinEHFuncInfo &EHInfo) {
308 struct WorkItem *WI = new WorkItem(BB, State);
309 WorkList.push_back(WI);
310
311 while (!WorkList.empty()) {
312 WI = WorkList.pop_back_val();
313 const BasicBlock *BB = WI->Block;
314 int State = WI->State;
315 delete WI;
316 if (auto It = EHInfo.BlockToStateMap.find(BB);
317 It != EHInfo.BlockToStateMap.end() && It->second <= State)
318 continue; // skip blocks already visited by lower State
319
321 const llvm::Instruction *TI = BB->getTerminator();
322 if (It->isEHPad())
323 State = EHInfo.EHPadStateMap[&*It];
324 EHInfo.BlockToStateMap[BB] = State; // Record state
325
326 if (isa<CatchPadInst>(It) && isa<CatchReturnInst>(TI)) {
327 const Constant *FilterOrNull = cast<Constant>(
328 cast<CatchPadInst>(It)->getArgOperand(0)->stripPointerCasts());
329 const Function *Filter = dyn_cast<Function>(FilterOrNull);
330 if (!Filter || !Filter->getName().starts_with("__IsLocalUnwind"))
331 State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
332 } else if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) &&
333 State > 0) {
334 // Retrive the new State.
335 State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
336 } else if (isa<InvokeInst>(TI)) {
337 auto *Call = cast<CallBase>(TI);
338 const Function *Fn = Call->getCalledFunction();
339 if (Fn && Fn->isIntrinsic() &&
340 Fn->getIntrinsicID() == Intrinsic::seh_try_begin)
341 // Retrive the new State from seh_try_begin
342 State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
343 else if (Fn && Fn->isIntrinsic() &&
344 Fn->getIntrinsicID() == Intrinsic::seh_try_end)
345 // end of current state, retrive new state from UnwindMap
346 State = EHInfo.SEHUnwindMap[State].ToState;
347 }
348 // Continue push successors into worklist
349 for (auto *SuccBB : successors(BB)) {
350 WI = new WorkItem(SuccBB, State);
351 WorkList.push_back(WI);
352 }
353 }
354}
355
356// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
357// to. If the unwind edge came from an invoke, return null.
359 Value *ParentPad) {
360 const Instruction *TI = BB->getTerminator();
361 if (isa<InvokeInst>(TI))
362 return nullptr;
363 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
364 if (CatchSwitch->getParentPad() != ParentPad)
365 return nullptr;
366 return BB;
367 }
368 assert(!TI->isEHPad() && "unexpected EHPad!");
369 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
370 if (CleanupPad->getParentPad() != ParentPad)
371 return nullptr;
372 return CleanupPad->getParent();
373}
374
375// Starting from a EHPad, Backward walk through control-flow graph
376// to produce two primary outputs:
377// FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
379 const Instruction *FirstNonPHI,
380 int ParentState) {
381 const BasicBlock *BB = FirstNonPHI->getParent();
382 assert(BB->isEHPad() && "not a funclet!");
383
384 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
385 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
386 "shouldn't revist catch funclets!");
387
389 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
390 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHIIt());
391 Handlers.push_back(CatchPad);
392 }
393 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
394 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
395 for (const BasicBlock *PredBlock : predecessors(BB))
396 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
397 CatchSwitch->getParentPad())))
398 calculateCXXStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
399 TryLow);
400 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
401
402 // catchpads are separate funclets in C++ EH due to the way rethrow works.
403 int TryHigh = CatchLow - 1;
404
405 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
406 // stored in pre-order (outer first, inner next), not post-order
407 // Add to map here. Fix the CatchHigh after children are processed
408 const Module *Mod = BB->getParent()->getParent();
409 bool IsPreOrder = Mod->getTargetTriple().isArch64Bit();
410 if (IsPreOrder)
411 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
412 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
413
414 for (const auto *CatchPad : Handlers) {
415 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
416 FuncInfo.EHPadStateMap[CatchPad] = CatchLow;
417 for (const User *U : CatchPad->users()) {
418 const auto *UserI = cast<Instruction>(U);
419 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
420 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
421 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
422 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
423 }
424 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
425 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
426 // If a nested cleanup pad reports a null unwind destination and the
427 // enclosing catch pad doesn't it must be post-dominated by an
428 // unreachable instruction.
429 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
430 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
431 }
432 }
433 }
434 int CatchHigh = FuncInfo.getLastStateNumber();
435 // Now child Catches are processed, update CatchHigh
436 if (IsPreOrder)
437 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
438 else // PostOrder
439 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
440
441 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
442 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
443 << '\n');
444 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
445 << '\n');
446 } else {
447 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
448
449 // It's possible for a cleanup to be visited twice: it might have multiple
450 // cleanupret instructions.
451 auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(CleanupPad);
452 if (!Inserted)
453 return;
454
455 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
456 It->second = CleanupState;
457 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
458 << BB->getName() << '\n');
459 for (const BasicBlock *PredBlock : predecessors(BB)) {
460 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
461 CleanupPad->getParentPad()))) {
462 calculateCXXStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
463 CleanupState);
464 }
465 }
466 for (const User *U : CleanupPad->users()) {
467 const auto *UserI = cast<Instruction>(U);
468 if (UserI->isEHPad())
469 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
470 "contain exceptional actions");
471 }
472 }
473}
474
475static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
476 const Function *Filter, const BasicBlock *Handler) {
477 SEHUnwindMapEntry Entry;
478 Entry.ToState = ParentState;
479 Entry.IsFinally = false;
480 Entry.Filter = Filter;
481 Entry.Handler = Handler;
482 FuncInfo.SEHUnwindMap.push_back(Entry);
483 return FuncInfo.SEHUnwindMap.size() - 1;
484}
485
486static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
487 const BasicBlock *Handler) {
488 SEHUnwindMapEntry Entry;
489 Entry.ToState = ParentState;
490 Entry.IsFinally = true;
491 Entry.Filter = nullptr;
492 Entry.Handler = Handler;
493 FuncInfo.SEHUnwindMap.push_back(Entry);
494 return FuncInfo.SEHUnwindMap.size() - 1;
495}
496
497// Starting from a EHPad, Backward walk through control-flow graph
498// to produce two primary outputs:
499// FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
501 const Instruction *FirstNonPHI,
502 int ParentState) {
503 const BasicBlock *BB = FirstNonPHI->getParent();
504 assert(BB->isEHPad() && "no a funclet!");
505
506 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
507 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
508 "shouldn't revist catch funclets!");
509
510 // Extract the filter function and the __except basic block and create a
511 // state for them.
512 assert(CatchSwitch->getNumHandlers() == 1 &&
513 "SEH doesn't have multiple handlers per __try");
514 const auto *CatchPad =
515 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHIIt());
516 const BasicBlock *CatchPadBB = CatchPad->getParent();
517 const Constant *FilterOrNull =
518 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
519 const Function *Filter = dyn_cast<Function>(FilterOrNull);
520 assert((Filter || FilterOrNull->isNullValue()) &&
521 "unexpected filter value");
522 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
523
524 // Everything in the __try block uses TryState as its parent state.
525 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
526 FuncInfo.EHPadStateMap[CatchPad] = TryState;
527 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
528 << CatchPadBB->getName() << '\n');
529 for (const BasicBlock *PredBlock : predecessors(BB))
530 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
531 CatchSwitch->getParentPad())))
532 calculateSEHStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
533 TryState);
534
535 // Everything in the __except block unwinds to ParentState, just like code
536 // outside the __try.
537 for (const User *U : CatchPad->users()) {
538 const auto *UserI = cast<Instruction>(U);
539 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
540 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
541 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
542 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
543 }
544 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
545 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
546 // If a nested cleanup pad reports a null unwind destination and the
547 // enclosing catch pad doesn't it must be post-dominated by an
548 // unreachable instruction.
549 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
550 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
551 }
552 }
553 } else {
554 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
555
556 // It's possible for a cleanup to be visited twice: it might have multiple
557 // cleanupret instructions.
558 auto [It, Inserted] = FuncInfo.EHPadStateMap.try_emplace(CleanupPad);
559 if (!Inserted)
560 return;
561
562 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
563 It->second = CleanupState;
564 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
565 << BB->getName() << '\n');
566 for (const BasicBlock *PredBlock : predecessors(BB))
567 if ((PredBlock =
568 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
569 calculateSEHStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
570 CleanupState);
571 for (const User *U : CleanupPad->users()) {
572 const auto *UserI = cast<Instruction>(U);
573 if (UserI->isEHPad())
574 report_fatal_error("Cleanup funclets for the SEH personality cannot "
575 "contain exceptional actions");
576 }
577 }
578}
579
580static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
581 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
582 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
583 CatchSwitch->unwindsToCaller();
584 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
585 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
586 getCleanupRetUnwindDest(CleanupPad) == nullptr;
587 if (isa<CatchPadInst>(EHPad))
588 return false;
589 llvm_unreachable("unexpected EHPad!");
590}
591
593 WinEHFuncInfo &FuncInfo) {
594 // Don't compute state numbers twice.
595 if (!FuncInfo.SEHUnwindMap.empty())
596 return;
597
598 for (const BasicBlock &BB : *Fn) {
599 if (!BB.isEHPad())
600 continue;
601 const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
602 if (!isTopLevelPadForMSVC(FirstNonPHI))
603 continue;
604 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
605 }
606
608
609 bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
610 if (IsEHa) {
611 const BasicBlock *EntryBB = &(Fn->getEntryBlock());
612 calculateSEHStateForAsynchEH(EntryBB, -1, FuncInfo);
613 }
614}
615
617 WinEHFuncInfo &FuncInfo) {
618 // Return if it's already been done.
619 if (!FuncInfo.EHPadStateMap.empty())
620 return;
621
622 for (const BasicBlock &BB : *Fn) {
623 if (!BB.isEHPad())
624 continue;
625 const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
626 if (!isTopLevelPadForMSVC(FirstNonPHI))
627 continue;
628 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
629 }
630
632
633 bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
634 if (IsEHa) {
635 const BasicBlock *EntryBB = &(Fn->getEntryBlock());
636 calculateCXXStateForAsynchEH(EntryBB, -1, FuncInfo);
637 }
638}
639
640static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
641 int TryParentState, ClrHandlerType HandlerType,
642 uint32_t TypeToken, const BasicBlock *Handler) {
644 Entry.HandlerParentState = HandlerParentState;
645 Entry.TryParentState = TryParentState;
646 Entry.Handler = Handler;
647 Entry.HandlerType = HandlerType;
648 Entry.TypeToken = TypeToken;
649 FuncInfo.ClrEHUnwindMap.push_back(Entry);
650 return FuncInfo.ClrEHUnwindMap.size() - 1;
651}
652
654 WinEHFuncInfo &FuncInfo) {
655 // Return if it's already been done.
656 if (!FuncInfo.EHPadStateMap.empty())
657 return;
658
659 // This numbering assigns one state number to each catchpad and cleanuppad.
660 // It also computes two tree-like relations over states:
661 // 1) Each state has a "HandlerParentState", which is the state of the next
662 // outer handler enclosing this state's handler (same as nearest ancestor
663 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
664 // 2) Each state has a "TryParentState", which:
665 // a) for a catchpad that's not the last handler on its catchswitch, is
666 // the state of the next catchpad on that catchswitch
667 // b) for all other pads, is the state of the pad whose try region is the
668 // next outer try region enclosing this state's try region. The "try
669 // regions are not present as such in the IR, but will be inferred
670 // based on the placement of invokes and pads which reach each other
671 // by exceptional exits
672 // Catchswitches do not get their own states, but each gets mapped to the
673 // state of its first catchpad.
674
675 // Step one: walk down from outermost to innermost funclets, assigning each
676 // catchpad and cleanuppad a state number. Add an entry to the
677 // ClrEHUnwindMap for each state, recording its HandlerParentState and
678 // handler attributes. Record the TryParentState as well for each catchpad
679 // that's not the last on its catchswitch, but initialize all other entries'
680 // TryParentStates to a sentinel -1 value that the next pass will update.
681
682 // Seed a worklist with pads that have no parent.
684 for (const BasicBlock &BB : *Fn) {
685 const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
686 const Value *ParentPad;
687 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
688 ParentPad = CPI->getParentPad();
689 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
690 ParentPad = CSI->getParentPad();
691 else
692 continue;
693 if (isa<ConstantTokenNone>(ParentPad))
694 Worklist.emplace_back(FirstNonPHI, -1);
695 }
696
697 // Use the worklist to visit all pads, from outer to inner. Record
698 // HandlerParentState for all pads. Record TryParentState only for catchpads
699 // that aren't the last on their catchswitch (setting all other entries'
700 // TryParentStates to an initial value of -1). This loop is also responsible
701 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
702 // catchswitches.
703 while (!Worklist.empty()) {
704 const Instruction *Pad;
705 int HandlerParentState;
706 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
707
708 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
709 // Create the entry for this cleanup with the appropriate handler
710 // properties. Finally and fault handlers are distinguished by arity.
711 ClrHandlerType HandlerType =
712 (Cleanup->arg_size() ? ClrHandlerType::Fault
714 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
715 HandlerType, 0, Pad->getParent());
716 // Queue any child EH pads on the worklist.
717 for (const User *U : Cleanup->users())
718 if (const auto *I = dyn_cast<Instruction>(U))
719 if (I->isEHPad())
720 Worklist.emplace_back(I, CleanupState);
721 // Remember this pad's state.
722 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
723 } else {
724 // Walk the handlers of this catchswitch in reverse order since all but
725 // the last need to set the following one as its TryParentState.
726 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
727 int CatchState = -1, FollowerState = -1;
728 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
729 for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
730 // Create the entry for this catch with the appropriate handler
731 // properties.
732 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHIIt());
733 uint32_t TypeToken = static_cast<uint32_t>(
734 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
735 CatchState =
736 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
737 ClrHandlerType::Catch, TypeToken, CatchBlock);
738 // Queue any child EH pads on the worklist.
739 for (const User *U : Catch->users())
740 if (const auto *I = dyn_cast<Instruction>(U))
741 if (I->isEHPad())
742 Worklist.emplace_back(I, CatchState);
743 // Remember this catch's state.
744 FuncInfo.EHPadStateMap[Catch] = CatchState;
745 FollowerState = CatchState;
746 }
747 // Associate the catchswitch with the state of its first catch.
748 assert(CatchSwitch->getNumHandlers());
749 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
750 }
751 }
752
753 // Step two: record the TryParentState of each state. For cleanuppads that
754 // don't have cleanuprets, we may need to infer this from their child pads,
755 // so visit pads in descendant-most to ancestor-most order.
756 for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
757 const Instruction *Pad =
758 &*cast<const BasicBlock *>(Entry.Handler)->getFirstNonPHIIt();
759 // For most pads, the TryParentState is the state associated with the
760 // unwind dest of exceptional exits from it.
761 const BasicBlock *UnwindDest;
762 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
763 // If a catch is not the last in its catchswitch, its TryParentState is
764 // the state associated with the next catch in the switch, even though
765 // that's not the unwind dest of exceptions escaping the catch. Those
766 // cases were already assigned a TryParentState in the first pass, so
767 // skip them.
768 if (Entry.TryParentState != -1)
769 continue;
770 // Otherwise, get the unwind dest from the catchswitch.
771 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
772 } else {
773 const auto *Cleanup = cast<CleanupPadInst>(Pad);
774 UnwindDest = nullptr;
775 for (const User *U : Cleanup->users()) {
776 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
777 // Common and unambiguous case -- cleanupret indicates cleanup's
778 // unwind dest.
779 UnwindDest = CleanupRet->getUnwindDest();
780 break;
781 }
782
783 // Get an unwind dest for the user
784 const BasicBlock *UserUnwindDest = nullptr;
785 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
786 UserUnwindDest = Invoke->getUnwindDest();
787 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
788 UserUnwindDest = CatchSwitch->getUnwindDest();
789 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
790 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
791 int UserUnwindState =
792 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
793 if (UserUnwindState != -1)
794 UserUnwindDest = cast<const BasicBlock *>(
795 FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler);
796 }
797
798 // Not having an unwind dest for this user might indicate that it
799 // doesn't unwind, so can't be taken as proof that the cleanup itself
800 // may unwind to caller (see e.g. SimplifyUnreachable and
801 // RemoveUnwindEdge).
802 if (!UserUnwindDest)
803 continue;
804
805 // Now we have an unwind dest for the user, but we need to see if it
806 // unwinds all the way out of the cleanup or if it stays within it.
807 const Instruction *UserUnwindPad = &*UserUnwindDest->getFirstNonPHIIt();
808 const Value *UserUnwindParent;
809 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
810 UserUnwindParent = CSI->getParentPad();
811 else
812 UserUnwindParent =
813 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
814
815 // The unwind stays within the cleanup iff it targets a child of the
816 // cleanup.
817 if (UserUnwindParent == Cleanup)
818 continue;
819
820 // This unwind exits the cleanup, so its dest is the cleanup's dest.
821 UnwindDest = UserUnwindDest;
822 break;
823 }
824 }
825
826 // Record the state of the unwind dest as the TryParentState.
827 int UnwindDestState;
828
829 // If UnwindDest is null at this point, either the pad in question can
830 // be exited by unwind to caller, or it cannot be exited by unwind. In
831 // either case, reporting such cases as unwinding to caller is correct.
832 // This can lead to EH tables that "look strange" -- if this pad's is in
833 // a parent funclet which has other children that do unwind to an enclosing
834 // pad, the try region for this pad will be missing the "duplicate" EH
835 // clause entries that you'd expect to see covering the whole parent. That
836 // should be benign, since the unwind never actually happens. If it were
837 // an issue, we could add a subsequent pass that pushes unwind dests down
838 // from parents that have them to children that appear to unwind to caller.
839 if (!UnwindDest) {
840 UnwindDestState = -1;
841 } else {
842 UnwindDestState =
843 FuncInfo.EHPadStateMap[&*UnwindDest->getFirstNonPHIIt()];
844 }
845
846 Entry.TryParentState = UnwindDestState;
847 }
848
849 // Step three: transfer information from pads to invokes.
851}
852
853void WinEHPrepareImpl::colorFunclets(Function &F) {
854 BlockColors = colorEHFunclets(F);
855
856 // Invert the map from BB to colors to color to BBs.
857 for (BasicBlock &BB : F) {
858 ColorVector &Colors = BlockColors[&BB];
859 for (BasicBlock *Color : Colors)
860 FuncletBlocks[Color].push_back(&BB);
861 }
862}
863
864bool WinEHPrepareImpl::demotePHIsOnFunclets(Function &F,
865 bool DemoteCatchSwitchPHIOnly) {
866 bool Changed = false;
867
868 // Strip PHI nodes off of EH pads.
870 for (BasicBlock &BB : make_early_inc_range(F)) {
871 if (!BB.isEHPad())
872 continue;
873
874 for (Instruction &I : make_early_inc_range(BB)) {
875 auto *PN = dyn_cast<PHINode>(&I);
876 // Stop at the first non-PHI.
877 if (!PN)
878 break;
879
880 // If DemoteCatchSwitchPHIOnly is true, we only demote a PHI when
881 // 1. The PHI is within a catchswitch BB
882 // 2. The PHI has a catchswitch BB has one of its incoming blocks
883 if (DemoteCatchSwitchPHIOnly) {
884 bool IsCatchSwitchBB = isa<CatchSwitchInst>(BB.getFirstNonPHIIt());
885 bool HasIncomingCatchSwitchBB = false;
886 for (unsigned I = 0, E = PN->getNumIncomingValues(); I < E; ++I) {
887 if (isa<CatchSwitchInst>(
888 PN->getIncomingBlock(I)->getFirstNonPHIIt())) {
889 HasIncomingCatchSwitchBB = true;
890 break;
891 }
892 }
893 if (!IsCatchSwitchBB && !HasIncomingCatchSwitchBB)
894 break;
895 }
896
897 Changed = true;
898
899 AllocaInst *SpillSlot = insertPHILoads(PN, F);
900 if (SpillSlot)
901 insertPHIStores(PN, SpillSlot);
902
903 PHINodes.push_back(PN);
904 }
905 }
906
907 for (auto *PN : PHINodes) {
908 // There may be lingering uses on other EH PHIs being removed
909 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
910 PN->eraseFromParent();
911 }
912
913 return Changed;
914}
915
916bool WinEHPrepareImpl::cloneCommonBlocks(Function &F) {
917 bool Changed = false;
918
919 // We need to clone all blocks which belong to multiple funclets. Values are
920 // remapped throughout the funclet to propagate both the new instructions
921 // *and* the new basic blocks themselves.
922 for (auto &Funclets : FuncletBlocks) {
923 BasicBlock *FuncletPadBB = Funclets.first;
924 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
925 Value *FuncletToken;
926 if (FuncletPadBB == &F.getEntryBlock())
927 FuncletToken = ConstantTokenNone::get(F.getContext());
928 else
929 FuncletToken = &*FuncletPadBB->getFirstNonPHIIt();
930
931 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
933 for (BasicBlock *BB : BlocksInFunclet) {
934 ColorVector &ColorsForBB = BlockColors[BB];
935 // We don't need to do anything if the block is monochromatic.
936 size_t NumColorsForBB = ColorsForBB.size();
937 if (NumColorsForBB == 1)
938 continue;
939
940 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
941 dbgs() << " Cloning block \'" << BB->getName()
942 << "\' for funclet \'" << FuncletPadBB->getName()
943 << "\'.\n");
944
945 // Create a new basic block and copy instructions into it!
946 BasicBlock *CBB =
947 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
948 // Insert the clone immediately after the original to ensure determinism
949 // and to keep the same relative ordering of any funclet's blocks.
950 CBB->insertInto(&F, BB->getNextNode());
951
952 // Add basic block mapping.
953 VMap[BB] = CBB;
954
955 // Record delta operations that we need to perform to our color mappings.
956 Orig2Clone.emplace_back(BB, CBB);
957 }
958
959 // If nothing was cloned, we're done cloning in this funclet.
960 if (Orig2Clone.empty())
961 continue;
962
963 Changed = true;
964
965 // Update our color mappings to reflect that one block has lost a color and
966 // another has gained a color.
967 for (auto &BBMapping : Orig2Clone) {
968 BasicBlock *OldBlock = BBMapping.first;
969 BasicBlock *NewBlock = BBMapping.second;
970
971 BlocksInFunclet.push_back(NewBlock);
972 ColorVector &NewColors = BlockColors[NewBlock];
973 assert(NewColors.empty() && "A new block should only have one color!");
974 NewColors.push_back(FuncletPadBB);
975
976 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
977 dbgs() << " Assigned color \'" << FuncletPadBB->getName()
978 << "\' to block \'" << NewBlock->getName()
979 << "\'.\n");
980
981 llvm::erase(BlocksInFunclet, OldBlock);
982 ColorVector &OldColors = BlockColors[OldBlock];
983 llvm::erase(OldColors, FuncletPadBB);
984
985 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
986 dbgs() << " Removed color \'" << FuncletPadBB->getName()
987 << "\' from block \'" << OldBlock->getName()
988 << "\'.\n");
989 }
990
991 // Loop over all of the instructions in this funclet, fixing up operand
992 // references as we go. This uses VMap to do all the hard work.
993 for (BasicBlock *BB : BlocksInFunclet)
994 // Loop over all instructions, fixing each one as we find it...
995 for (Instruction &I : *BB)
996 RemapInstruction(&I, VMap,
998
999 // Catchrets targeting cloned blocks need to be updated separately from
1000 // the loop above because they are not in the current funclet.
1001 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
1002 for (auto &BBMapping : Orig2Clone) {
1003 BasicBlock *OldBlock = BBMapping.first;
1004 BasicBlock *NewBlock = BBMapping.second;
1005
1006 FixupCatchrets.clear();
1007 for (BasicBlock *Pred : predecessors(OldBlock))
1008 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
1009 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
1010 FixupCatchrets.push_back(CatchRet);
1011
1012 for (CatchReturnInst *CatchRet : FixupCatchrets)
1013 CatchRet->setSuccessor(NewBlock);
1014 }
1015
1016 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
1017 unsigned NumPreds = PN->getNumIncomingValues();
1018 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
1019 ++PredIdx) {
1020 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
1021 bool EdgeTargetsFunclet;
1022 if (auto *CRI =
1023 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1024 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
1025 } else {
1026 ColorVector &IncomingColors = BlockColors[IncomingBlock];
1027 assert(!IncomingColors.empty() && "Block not colored!");
1028 assert((IncomingColors.size() == 1 ||
1029 !llvm::is_contained(IncomingColors, FuncletPadBB)) &&
1030 "Cloning should leave this funclet's blocks monochromatic");
1031 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
1032 }
1033 if (IsForOldBlock != EdgeTargetsFunclet)
1034 continue;
1035 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
1036 // Revisit the next entry.
1037 --PredIdx;
1038 --PredEnd;
1039 }
1040 };
1041
1042 for (auto &BBMapping : Orig2Clone) {
1043 BasicBlock *OldBlock = BBMapping.first;
1044 BasicBlock *NewBlock = BBMapping.second;
1045 for (PHINode &OldPN : OldBlock->phis()) {
1046 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
1047 }
1048 for (PHINode &NewPN : NewBlock->phis()) {
1049 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
1050 }
1051 }
1052
1053 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1054 // the PHI nodes for NewBB now.
1055 for (auto &BBMapping : Orig2Clone) {
1056 BasicBlock *OldBlock = BBMapping.first;
1057 BasicBlock *NewBlock = BBMapping.second;
1058 for (BasicBlock *SuccBB : successors(NewBlock)) {
1059 for (PHINode &SuccPN : SuccBB->phis()) {
1060 // Ok, we have a PHI node. Figure out what the incoming value was for
1061 // the OldBlock.
1062 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
1063 if (OldBlockIdx == -1)
1064 break;
1065 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
1066
1067 // Remap the value if necessary.
1068 if (auto *Inst = dyn_cast<Instruction>(IV)) {
1069 ValueToValueMapTy::iterator I = VMap.find(Inst);
1070 if (I != VMap.end())
1071 IV = I->second;
1072 }
1073
1074 SuccPN.addIncoming(IV, NewBlock);
1075 }
1076 }
1077 }
1078
1079 for (ValueToValueMapTy::value_type VT : VMap) {
1080 // If there were values defined in BB that are used outside the funclet,
1081 // then we now have to update all uses of the value to use either the
1082 // original value, the cloned value, or some PHI derived value. This can
1083 // require arbitrary PHI insertion, of which we are prepared to do, clean
1084 // these up now.
1085 SmallVector<Use *, 16> UsesToRename;
1086
1087 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
1088 if (!OldI)
1089 continue;
1090 auto *NewI = cast<Instruction>(VT.second);
1091 // Scan all uses of this instruction to see if it is used outside of its
1092 // funclet, and if so, record them in UsesToRename.
1093 for (Use &U : OldI->uses()) {
1094 Instruction *UserI = cast<Instruction>(U.getUser());
1095 BasicBlock *UserBB = UserI->getParent();
1096 ColorVector &ColorsForUserBB = BlockColors[UserBB];
1097 assert(!ColorsForUserBB.empty());
1098 if (ColorsForUserBB.size() > 1 ||
1099 *ColorsForUserBB.begin() != FuncletPadBB)
1100 UsesToRename.push_back(&U);
1101 }
1102
1103 // If there are no uses outside the block, we're done with this
1104 // instruction.
1105 if (UsesToRename.empty())
1106 continue;
1107
1108 // We found a use of OldI outside of the funclet. Rename all uses of OldI
1109 // that are outside its funclet to be uses of the appropriate PHI node
1110 // etc.
1111 SSAUpdater SSAUpdate;
1112 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
1113 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
1114 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
1115
1116 while (!UsesToRename.empty())
1117 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
1118 }
1119 }
1120
1121 return Changed;
1122}
1123
1124bool WinEHPrepareImpl::removeImplausibleInstructions(Function &F) {
1125 bool Changed = false;
1126
1127 // Remove implausible terminators and replace them with UnreachableInst.
1128 for (auto &Funclet : FuncletBlocks) {
1129 BasicBlock *FuncletPadBB = Funclet.first;
1130 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
1131 Instruction *FirstNonPHI = &*FuncletPadBB->getFirstNonPHIIt();
1132 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
1133 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
1134 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
1135
1136 for (BasicBlock *BB : BlocksInFunclet) {
1137 for (Instruction &I : *BB) {
1138 auto *CB = dyn_cast<CallBase>(&I);
1139 if (!CB)
1140 continue;
1141
1142 Value *FuncletBundleOperand = nullptr;
1143 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
1144 FuncletBundleOperand = BU->Inputs.front();
1145
1146 if (FuncletBundleOperand == FuncletPad)
1147 continue;
1148
1149 // Skip call sites which are nounwind intrinsics or inline asm.
1150 auto *CalledFn =
1151 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
1152 if (CB->isInlineAsm() ||
1153 (CalledFn && CalledFn->isIntrinsic() && CB->doesNotThrow()))
1154 continue;
1155
1156 Changed = true;
1157
1158 // This call site was not part of this funclet, remove it.
1159 if (isa<InvokeInst>(CB)) {
1160 // Remove the unwind edge if it was an invoke.
1161 removeUnwindEdge(BB);
1162 // Get a pointer to the new call.
1163 BasicBlock::iterator CallI =
1164 std::prev(BB->getTerminator()->getIterator());
1165 auto *CI = cast<CallInst>(&*CallI);
1167 } else {
1169 }
1170
1171 // There are no more instructions in the block (except for unreachable),
1172 // we are done.
1173 break;
1174 }
1175
1176 Instruction *TI = BB->getTerminator();
1177 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1178 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1179 // The token consumed by a CatchReturnInst must match the funclet token.
1180 bool IsUnreachableCatchret = false;
1181 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1182 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1183 // The token consumed by a CleanupReturnInst must match the funclet token.
1184 bool IsUnreachableCleanupret = false;
1185 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1186 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1187 if (IsUnreachableRet || IsUnreachableCatchret ||
1188 IsUnreachableCleanupret) {
1189 Changed = true;
1191 } else if (isa<InvokeInst>(TI)) {
1192 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1193 Changed = true;
1194 // Invokes within a cleanuppad for the MSVC++ personality never
1195 // transfer control to their unwind edge: the personality will
1196 // terminate the program.
1197 removeUnwindEdge(BB);
1198 }
1199 }
1200 }
1201 }
1202
1203 return Changed;
1204}
1205
1206bool WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) {
1207 bool Changed = false;
1208
1209 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1210 // branches, etc.
1212 Changed |= SimplifyInstructionsInBlock(&BB);
1213 Changed |= ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1214 Changed |= MergeBlockIntoPredecessor(&BB);
1215 }
1216
1217 // We might have some unreachable blocks after cleaning up some impossible
1218 // control flow.
1219 Changed |= removeUnreachableBlocks(F);
1220
1221 return Changed;
1222}
1223
1224#ifndef NDEBUG
1225void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) {
1226 for (BasicBlock &BB : F) {
1227 size_t NumColors = BlockColors[&BB].size();
1228 assert(NumColors == 1 && "Expected monochromatic BB!");
1229 if (NumColors == 0)
1230 report_fatal_error("Uncolored BB!");
1231 if (NumColors > 1)
1232 report_fatal_error("Multicolor BB!");
1233 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1234 "EH Pad still has a PHI!");
1235 }
1236}
1237#endif
1238
1239bool WinEHPrepareImpl::prepareExplicitEH(Function &F) {
1240 // Remove unreachable blocks. It is not valuable to assign them a color and
1241 // their existence can trick us into thinking values are alive when they are
1242 // not.
1243 bool Changed = removeUnreachableBlocks(F);
1244
1245 // Determine which blocks are reachable from which funclet entries.
1246 colorFunclets(F);
1247
1248 Changed |= cloneCommonBlocks(F);
1249
1250 if (!DisableDemotion)
1251 Changed |= demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1253
1254 if (!DisableCleanups) {
1255 assert(!verifyFunction(F, &dbgs()));
1256 Changed |= removeImplausibleInstructions(F);
1257
1258 assert(!verifyFunction(F, &dbgs()));
1259 Changed |= cleanupPreparedFunclets(F);
1260 }
1261
1262 LLVM_DEBUG(verifyPreparedFunclets(F));
1263 // Recolor the CFG to verify that all is well.
1264 LLVM_DEBUG(colorFunclets(F));
1265 LLVM_DEBUG(verifyPreparedFunclets(F));
1266
1267 return Changed;
1268}
1269
1270// TODO: Share loads when one use dominates another, or when a catchpad exit
1271// dominates uses (needs dominators).
1272AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) {
1273 BasicBlock *PHIBlock = PN->getParent();
1274 AllocaInst *SpillSlot = nullptr;
1275 Instruction *EHPad = &*PHIBlock->getFirstNonPHIIt();
1276
1277 if (!EHPad->isTerminator()) {
1278 // If the EHPad isn't a terminator, then we can insert a load in this block
1279 // that will dominate all uses.
1280 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1281 Twine(PN->getName(), ".wineh.spillslot"),
1282 F.getEntryBlock().begin());
1283 Value *V = new LoadInst(PN->getType(), SpillSlot,
1284 Twine(PN->getName(), ".wineh.reload"),
1285 PHIBlock->getFirstInsertionPt());
1286 PN->replaceAllUsesWith(V);
1287 return SpillSlot;
1288 }
1289
1290 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1291 // loads of the slot before every use.
1293 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1294 auto *UsingInst = cast<Instruction>(U.getUser());
1295 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1296 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1297 // stores for it separately.
1298 continue;
1299 }
1300 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1301 }
1302 return SpillSlot;
1303}
1304
1305// TODO: improve store placement. Inserting at def is probably good, but need
1306// to be careful not to introduce interfering stores (needs liveness analysis).
1307// TODO: identify related phi nodes that can share spill slots, and share them
1308// (also needs liveness).
1309void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI,
1310 AllocaInst *SpillSlot) {
1311 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1312 // stored to the spill slot by the end of the given Block.
1314
1315 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1316
1317 while (!Worklist.empty()) {
1318 BasicBlock *EHBlock;
1319 Value *InVal;
1320 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1321
1322 PHINode *PN = dyn_cast<PHINode>(InVal);
1323 if (PN && PN->getParent() == EHBlock) {
1324 // The value is defined by another PHI we need to remove, with no room to
1325 // insert a store after the PHI, so each predecessor needs to store its
1326 // incoming value.
1327 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1328 Value *PredVal = PN->getIncomingValue(i);
1329
1330 // Undef can safely be skipped.
1331 if (isa<UndefValue>(PredVal))
1332 continue;
1333
1334 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1335 }
1336 } else {
1337 // We need to store InVal, which dominates EHBlock, but can't put a store
1338 // in EHBlock, so need to put stores in each predecessor.
1339 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1340 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1341 }
1342 }
1343 }
1344}
1345
1346void WinEHPrepareImpl::insertPHIStore(
1347 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1348 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1349
1350 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHIIt()->isTerminator()) {
1351 // Pred is unsplittable, so we need to queue it on the worklist.
1352 Worklist.push_back({PredBlock, PredVal});
1353 return;
1354 }
1355
1356 // Otherwise, insert the store at the end of the basic block.
1357 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()->getIterator());
1358}
1359
1360void WinEHPrepareImpl::replaceUseWithLoad(
1361 Value *V, Use &U, AllocaInst *&SpillSlot,
1363 // Lazilly create the spill slot.
1364 if (!SpillSlot)
1365 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1366 Twine(V->getName(), ".wineh.spillslot"),
1367 F.getEntryBlock().begin());
1368
1369 auto *UsingInst = cast<Instruction>(U.getUser());
1370 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1371 // If this is a PHI node, we can't insert a load of the value before
1372 // the use. Instead insert the load in the predecessor block
1373 // corresponding to the incoming value.
1374 //
1375 // Note that if there are multiple edges from a basic block to this
1376 // PHI node that we cannot have multiple loads. The problem is that
1377 // the resulting PHI node will have multiple values (from each load)
1378 // coming in from the same block, which is illegal SSA form.
1379 // For this reason, we keep track of and reuse loads we insert.
1380 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1381 if (auto *CatchRet =
1382 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1383 // Putting a load above a catchret and use on the phi would still leave
1384 // a cross-funclet def/use. We need to split the edge, change the
1385 // catchret to target the new block, and put the load there.
1386 BasicBlock *PHIBlock = UsingInst->getParent();
1387 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1388 // SplitEdge gives us:
1389 // IncomingBlock:
1390 // ...
1391 // br label %NewBlock
1392 // NewBlock:
1393 // catchret label %PHIBlock
1394 // But we need:
1395 // IncomingBlock:
1396 // ...
1397 // catchret label %NewBlock
1398 // NewBlock:
1399 // br label %PHIBlock
1400 // So move the terminators to each others' blocks and swap their
1401 // successors.
1402 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1403 Goto->removeFromParent();
1404 CatchRet->removeFromParent();
1405 CatchRet->insertInto(IncomingBlock, IncomingBlock->end());
1406 Goto->insertInto(NewBlock, NewBlock->end());
1407 Goto->setSuccessor(0, PHIBlock);
1408 CatchRet->setSuccessor(NewBlock);
1409 // Update the color mapping for the newly split edge.
1410 // Grab a reference to the ColorVector to be inserted before getting the
1411 // reference to the vector we are copying because inserting the new
1412 // element in BlockColors might cause the map to be reallocated.
1413 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1414 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1415 ColorsForNewBlock = ColorsForPHIBlock;
1416 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1417 FuncletBlocks[FuncletPad].push_back(NewBlock);
1418 // Treat the new block as incoming for load insertion.
1419 IncomingBlock = NewBlock;
1420 }
1421 Value *&Load = Loads[IncomingBlock];
1422 // Insert the load into the predecessor block
1423 if (!Load)
1424 Load = new LoadInst(
1425 V->getType(), SpillSlot, Twine(V->getName(), ".wineh.reload"),
1426 /*isVolatile=*/false, IncomingBlock->getTerminator()->getIterator());
1427
1428 U.set(Load);
1429 } else {
1430 // Reload right before the old use.
1431 auto *Load = new LoadInst(V->getType(), SpillSlot,
1432 Twine(V->getName(), ".wineh.reload"),
1433 /*isVolatile=*/false, UsingInst->getIterator());
1434 U.set(Load);
1435 }
1436}
1437
1439 MCSymbol *InvokeBegin,
1440 MCSymbol *InvokeEnd) {
1441 assert(InvokeStateMap.count(II) &&
1442 "should get invoke with precomputed state");
1443 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1444}
1445
1446void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin,
1447 MCSymbol* InvokeEnd) {
1448 LabelToStateMap[InvokeBegin] = std::make_pair(State, InvokeEnd);
1449}
1450
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
#define DEBUG_TYPE
static const HTTPClientCleanup Cleanup
Definition: HTTPClient.cpp:42
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file implements a map that provides insertion order iteration.
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
This file contains some templates that are useful if you are working with the STL at all.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:77
static cl::opt< bool > DisableDemotion("disable-demotion", cl::Hidden, cl::desc("Clone multicolor basic blocks but do not demote cross scopes"), cl::init(false))
static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, const BasicBlock *BB)
static void calculateStateNumbersForInvokes(const Function *Fn, WinEHFuncInfo &FuncInfo)
static BasicBlock * getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad)
static cl::opt< bool > DisableCleanups("disable-cleanups", cl::Hidden, cl::desc("Do not remove implausible terminators or other similar cleanups"), cl::init(false))
static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, const BasicBlock *Handler)
static const BasicBlock * getEHPadFromPredecessor(const BasicBlock *BB, Value *ParentPad)
static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, int TryParentState, ClrHandlerType HandlerType, uint32_t TypeToken, const BasicBlock *Handler)
static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, const Instruction *FirstNonPHI, int ParentState)
static cl::opt< bool > DemoteCatchSwitchPHIOnlyOpt("demote-catchswitch-only", cl::Hidden, cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false))
static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, int TryHigh, int CatchHigh, ArrayRef< const CatchPadInst * > Handlers)
static bool isTopLevelPadForMSVC(const Instruction *EHPad)
static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, const Function *Filter, const BasicBlock *Handler)
static const uint32_t IV[8]
Definition: blake3_impl.h:83
an instruction to allocate memory on the stack
Definition: Instructions.h:64
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator end()
Definition: BasicBlock.h:472
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:393
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:337
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:171
const Instruction & front() const
Definition: BasicBlock.h:482
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
LLVM_ABI void insertInto(Function *Parent, BasicBlock *InsertBefore=nullptr)
Insert unlinked basic block into a function.
Definition: BasicBlock.cpp:158
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition: BasicBlock.h:707
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
Definition: Constants.cpp:1526
This is an important base class in LLVM.
Definition: Constant.h:43
const Constant * stripPointerCasts() const
Definition: Constant.h:219
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:90
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:245
iterator end()
Definition: DenseMap.h:87
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
const BasicBlock & getEntryBlock() const
Definition: Function.h:807
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:363
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:244
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:903
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1036
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition: Function.h:249
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:663
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
Definition: Instruction.cpp:90
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:879
bool isTerminator() const
Definition: Instruction.h:315
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
Invoke instruction.
An instruction for reading from memory.
Definition: Instructions.h:180
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
Metadata * getModuleFlag(StringRef Key) const
Return the corresponding value if Key appears in module flags, otherwise return null.
Definition: Module.cpp:352
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:39
void RewriteUseAfterInsertions(Use &U)
Rewrite a use like RewriteUse but handling in-block definitions.
Definition: SSAUpdater.cpp:225
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:52
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
Definition: SSAUpdater.cpp:69
bool empty() const
Definition: SmallVector.h:82
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
An instruction for storing to memory.
Definition: Instructions.h:296
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:29
void push_back(EltTy NewVal)
EltTy front() const
bool empty() const
unsigned size() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
std::pair< const Value *, WeakTrackingVH > value_type
Definition: ValueMap.h:101
iterator find(const KeyT &Val)
Definition: ValueMap.h:160
iterator end()
Definition: ValueMap.h:139
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
iterator_range< user_iterator > users()
Definition: Value.h:426
iterator_range< use_iterator > uses()
Definition: Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM)
const ParentTy * getParent() const
Definition: ilist_node.h:34
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ABI bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:134
LLVM_ABI BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, bool MapAtoms=true)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:7502
auto successors(const MachineBasicBlock *BB)
LLVM_ABI DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
LLVM_ABI bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr)
Scan the specified basic block and try to simplify any instructions in it and recursively delete dead...
Definition: Local.cpp:721
void calculateWinCXXEHStateNumbers(const Function *ParentFn, WinEHFuncInfo &FuncInfo)
Analyze the IR in ParentFn and it's handlers to build WinEHFuncInfo, which describes the state number...
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition: STLExtras.h:2147
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:98
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:80
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition: Error.cpp:167
LLVM_ABI Instruction * removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
Replace 'BB's terminator with one that does not have an unwind successor block.
Definition: Local.cpp:2845
void calculateSEHStateForAsynchEH(const BasicBlock *BB, int State, WinEHFuncInfo &FuncInfo)
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition: Local.cpp:2513
void calculateCXXStateForAsynchEH(const BasicBlock *BB, int State, WinEHFuncInfo &FuncInfo)
@ Mod
The access may modify the value stored in memory.
void calculateSEHStateNumbers(const Function *ParentFn, WinEHFuncInfo &FuncInfo)
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
ClrHandlerType
Definition: WinEHFuncInfo.h:79
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
Definition: ValueMapper.h:289
LLVM_ABI FunctionPass * createWinEHPass(bool DemoteCatchSwitchPHIOnly=false)
createWinEHPass - Prepares personality functions used by MSVC on Windows, in addition to the Itanium ...
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Remove all blocks that can not be reached from the function's entry.
Definition: Local.cpp:2883
void calculateClrEHStateNumbers(const Function *Fn, WinEHFuncInfo &FuncInfo)
const BasicBlock * Block
WorkItem(const BasicBlock *BB, int St)
MBBOrBasicBlock Cleanup
Definition: WinEHFuncInfo.h:42
Similar to CxxUnwindMapEntry, but supports SEH filters.
Definition: WinEHFuncInfo.h:46
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)
SmallVector< SEHUnwindMapEntry, 4 > SEHUnwindMap
Definition: WinEHFuncInfo.h:98
SmallVector< ClrEHUnwindMapEntry, 4 > ClrEHUnwindMap
Definition: WinEHFuncInfo.h:99
DenseMap< const FuncletPadInst *, int > FuncletBaseStateMap
Definition: WinEHFuncInfo.h:92
DenseMap< const BasicBlock *, int > BlockToStateMap
Definition: WinEHFuncInfo.h:95
DenseMap< const InvokeInst *, int > InvokeStateMap
Definition: WinEHFuncInfo.h:93
SmallVector< WinEHTryBlockMapEntry, 4 > TryBlockMap
Definition: WinEHFuncInfo.h:97
DenseMap< const Instruction *, int > EHPadStateMap
Definition: WinEHFuncInfo.h:91
DenseMap< MCSymbol *, std::pair< int, MCSymbol * > > LabelToStateMap
Definition: WinEHFuncInfo.h:94
SmallVector< CxxUnwindMapEntry, 4 > CxxUnwindMap
Definition: WinEHFuncInfo.h:96
int getLastStateNumber() const
union llvm::WinEHHandlerType::@254 CatchObj
The CatchObj starts out life as an LLVM alloca and is eventually turned frame index.
GlobalVariable * TypeDescriptor
Definition: WinEHFuncInfo.h:68
const AllocaInst * Alloca
Definition: WinEHFuncInfo.h:65
MBBOrBasicBlock Handler
Definition: WinEHFuncInfo.h:69
SmallVector< WinEHHandlerType, 1 > HandlerArray
Definition: WinEHFuncInfo.h:76