41class X86AlignBranchKind {
43 uint8_t AlignBranchKind = 0;
46 void operator=(
const std::string &Val) {
50 StringRef(Val).split(BranchTypes,
'+', -1,
false);
51 for (
auto BranchType : BranchTypes) {
52 if (BranchType ==
"fused")
54 else if (BranchType ==
"jcc")
56 else if (BranchType ==
"jmp")
58 else if (BranchType ==
"call")
60 else if (BranchType ==
"ret")
62 else if (BranchType ==
"indirect")
66 <<
" to -x86-align-branch=; each element must be one of: fused, "
67 "jcc, jmp, call, ret, indirect.(plus separated)\n";
72 operator uint8_t()
const {
return AlignBranchKind; }
76X86AlignBranchKind X86AlignBranchKindLoc;
79 "x86-align-branch-boundary",
cl::init(0),
81 "Control how the assembler should align branches with NOP. If the "
82 "boundary's size is not 0, it should be a power of 2 and no less "
83 "than 32. Branches will be aligned to prevent from being across or "
84 "against the boundary of specified size. The default value 0 does not "
90 "Specify types of branches to align (plus separated list of types):"
91 "\njcc indicates conditional jumps"
92 "\nfused indicates fused conditional jumps"
93 "\njmp indicates direct unconditional jumps"
94 "\ncall indicates direct and indirect calls"
95 "\nret indicates rets"
96 "\nindirect indicates indirect unconditional jumps"),
100 "x86-branches-within-32B-boundaries",
cl::init(
false),
102 "Align selected instructions to mitigate negative performance impact "
103 "of Intel's micro code update for errata skx102. May break "
104 "assumptions about labels corresponding to particular instructions, "
105 "and should be used with caution."));
108 "x86-pad-max-prefix-size",
cl::init(0),
109 cl::desc(
"Maximum number of prefixes to use for padding"));
113 cl::desc(
"Pad previous instructions to implement align directives"));
117 cl::desc(
"Pad previous instructions to implement branch alignment"));
120 const MCSubtargetInfo &STI;
121 std::unique_ptr<const MCInstrInfo> MCII;
122 X86AlignBranchKind AlignBranchType;
124 unsigned TargetPrefixMax = 0;
127 unsigned PrevInstOpcode = 0;
128 MCBoundaryAlignFragment *PendingBA =
nullptr;
129 std::pair<MCFragment *, size_t> PrevInstPosition;
131 uint8_t determinePaddingPrefix(
const MCInst &Inst)
const;
132 bool isMacroFused(
const MCInst &Cmp,
const MCInst &Jcc)
const;
133 bool needAlign(
const MCInst &Inst)
const;
134 bool canPadBranches(MCObjectStreamer &OS)
const;
135 bool canPadInst(
const MCInst &Inst, MCObjectStreamer &OS)
const;
138 X86AsmBackend(
const Target &
T,
const MCSubtargetInfo &STI)
141 if (X86AlignBranchWithin32BBoundaries) {
152 if (X86AlignBranchBoundary.getNumOccurrences())
154 if (X86AlignBranch.getNumOccurrences())
155 AlignBranchType = X86AlignBranchKindLoc;
156 if (X86PadMaxPrefixSize.getNumOccurrences())
157 TargetPrefixMax = X86PadMaxPrefixSize;
161 AllowEnhancedRelaxation =
162 AllowAutoPadding && TargetPrefixMax != 0 && X86PadForBranchAlign;
165 void emitInstructionBegin(MCObjectStreamer &OS,
const MCInst &Inst,
166 const MCSubtargetInfo &STI);
167 void emitInstructionEnd(MCObjectStreamer &OS,
const MCInst &Inst);
170 std::optional<MCFixupKind>
getFixupKind(StringRef Name)
const override;
172 MCFixupKindInfo getFixupKindInfo(
MCFixupKind Kind)
const override;
174 std::optional<bool> evaluateFixup(
const MCFragment &, MCFixup &, MCValue &,
175 uint64_t &)
override;
176 void applyFixup(
const MCFragment &,
const MCFixup &,
const MCValue &Target,
177 uint8_t *
Data, uint64_t
Value,
bool IsResolved)
override;
180 const MCSubtargetInfo &STI)
const override;
182 bool fixupNeedsRelaxationAdvanced(
const MCFragment &,
const MCFixup &,
183 const MCValue &, uint64_t,
184 bool)
const override;
186 void relaxInstruction(MCInst &Inst,
187 const MCSubtargetInfo &STI)
const override;
189 bool padInstructionViaRelaxation(MCFragment &RF, MCCodeEmitter &
Emitter,
190 unsigned &RemainingSize)
const;
192 bool padInstructionViaPrefix(MCFragment &RF, MCCodeEmitter &
Emitter,
193 unsigned &RemainingSize)
const;
195 bool padInstructionEncoding(MCFragment &RF, MCCodeEmitter &
Emitter,
196 unsigned &RemainingSize)
const;
198 bool finishLayout(
const MCAssembler &Asm)
const override;
200 unsigned getMaximumNopSize(
const MCSubtargetInfo &STI)
const override;
202 bool writeNopData(raw_ostream &OS, uint64_t
Count,
203 const MCSubtargetInfo *STI)
const override;
208 return Opcode == X86::JCC_1 || Opcode == X86::JMP_1;
212 bool Is16BitMode =
false) {
217 return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4;
219 return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4;
224 unsigned Opcode =
MI.getOpcode();
231 unsigned Opcode =
MI.getOpcode();
238 MI.getOperand(
Desc.getNumOperands() - 1).getImm());
246 return classifySecondCondCodeInMacroFusion(CC);
251 unsigned Opcode =
MI.getOpcode();
256 if (MemoryOperand < 0)
259 MCRegister BaseReg =
MI.getOperand(BaseRegNum).getReg();
260 return (BaseReg == X86::RIP);
288uint8_t X86AsmBackend::determinePaddingPrefix(
const MCInst &Inst)
const {
290 "Prefixes can be added only in 32-bit or 64-bit mode.");
292 uint64_t TSFlags =
Desc.TSFlags;
296 if (MemoryOperand != -1)
299 MCRegister SegmentReg;
300 if (MemoryOperand >= 0) {
333 if (MemoryOperand >= 0) {
336 if (BaseReg == X86::ESP || BaseReg == X86::EBP)
343bool X86AsmBackend::isMacroFused(
const MCInst &Cmp,
const MCInst &Jcc)
const {
344 const MCInstrDesc &InstDesc = MCII->get(Jcc.
getOpcode());
358 for (
auto &Operand :
MI) {
359 if (!Operand.isExpr())
361 const MCExpr &Expr = *Operand.getExpr();
373 switch (InstOpcode) {
392bool X86AsmBackend::canPadInst(
const MCInst &Inst, MCObjectStreamer &OS)
const {
403 if (
isPrefix(PrevInstOpcode, *MCII))
417 Offset != PrevInstPosition.second))
423bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS)
const {
426 assert(allowAutoPadding() &&
"incorrect initialization!");
440bool X86AsmBackend::needAlign(
const MCInst &Inst)
const {
442 return (
Desc.isConditionalBranch() &&
444 (
Desc.isUnconditionalBranch() &&
448 (
Desc.isIndirectBranch() &&
455 if (
LLVM_LIKELY(!AutoPadding && !X86PadForAlign)) {
456 S.MCObjectStreamer::emitInstruction(Inst, STI);
460 auto &Backend =
static_cast<X86AsmBackend &
>(S.
getAssembler().getBackend());
461 Backend.emitInstructionBegin(S, Inst, STI);
462 S.MCObjectStreamer::emitInstruction(Inst, STI);
463 Backend.emitInstructionEnd(S, Inst);
469 bool CanPadInst = canPadInst(Inst, OS);
473 if (!canPadBranches(OS))
477 if (!isMacroFused(PrevInst, Inst))
489 auto *NextFragment = PendingBA->
getNext();
490 assert(NextFragment &&
"NextFragment should not be null");
529void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS,
530 const MCInst &Inst) {
536 if (!canPadBranches(OS))
542 if (!needAlign(Inst) || !PendingBA)
559std::optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name)
const {
563 Type = llvm::StringSwitch<unsigned>(Name)
564#define ELF_RELOC(X, Y) .Case(#X, Y)
565#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
567 .Case(
"BFD_RELOC_NONE", ELF::R_X86_64_NONE)
568 .Case(
"BFD_RELOC_8", ELF::R_X86_64_8)
569 .Case(
"BFD_RELOC_16", ELF::R_X86_64_16)
570 .Case(
"BFD_RELOC_32", ELF::R_X86_64_32)
571 .Case(
"BFD_RELOC_64", ELF::R_X86_64_64)
574 Type = llvm::StringSwitch<unsigned>(Name)
575#define ELF_RELOC(X, Y) .Case(#X, Y)
576#include "llvm/BinaryFormat/ELFRelocs/i386.def"
578 .Case(
"BFD_RELOC_NONE", ELF::R_386_NONE)
579 .Case(
"BFD_RELOC_8", ELF::R_386_8)
580 .Case(
"BFD_RELOC_16", ELF::R_386_16)
581 .Case(
"BFD_RELOC_32", ELF::R_386_32)
591MCFixupKindInfo X86AsmBackend::getFixupKindInfo(
MCFixupKind Kind)
const {
594 {
"reloc_riprel_4byte", 0, 32, 0},
595 {
"reloc_riprel_4byte_movq_load", 0, 32, 0},
596 {
"reloc_riprel_4byte_movq_load_rex2", 0, 32, 0},
597 {
"reloc_riprel_4byte_relax", 0, 32, 0},
598 {
"reloc_riprel_4byte_relax_rex", 0, 32, 0},
599 {
"reloc_riprel_4byte_relax_rex2", 0, 32, 0},
600 {
"reloc_riprel_4byte_relax_evex", 0, 32, 0},
601 {
"reloc_signed_4byte", 0, 32, 0},
602 {
"reloc_signed_4byte_relax", 0, 32, 0},
603 {
"reloc_global_offset_table", 0, 32, 0},
604 {
"reloc_branch_4byte_pcrel", 0, 32, 0},
658std::optional<bool> X86AsmBackend::evaluateFixup(
const MCFragment &,
661 if (
Fixup.isPCRel()) {
662 switch (
Fixup.getKind()) {
685void X86AsmBackend::applyFixup(
const MCFragment &
F,
const MCFixup &
Fixup,
686 const MCValue &Target, uint8_t *
Data,
687 uint64_t
Value,
bool IsResolved) {
690 if (
Target.getSpecifier())
692 maybeAddReloc(
F,
Fixup, Target,
Value, IsResolved);
701 int64_t SignedValue =
static_cast<int64_t
>(
Value);
702 if (IsResolved &&
Fixup.isPCRel()) {
706 "value of " + Twine(SignedValue) +
707 " is too large for field of " + Twine(
Size) +
708 ((
Size == 1) ?
" byte." :
" bytes."));
715 "Value does not fit in the Fixup field");
718 for (
unsigned i = 0; i !=
Size; ++i)
722bool X86AsmBackend::mayNeedRelaxation(
unsigned Opcode,
724 const MCSubtargetInfo &STI)
const {
725 unsigned SkipOperands = X86::isCCMPCC(Opcode) ? 2 : 0;
731bool X86AsmBackend::fixupNeedsRelaxationAdvanced(
const MCFragment &,
732 const MCFixup &
Fixup,
733 const MCValue &Target,
735 bool Resolved)
const {
752void X86AsmBackend::relaxInstruction(MCInst &Inst,
753 const MCSubtargetInfo &STI)
const {
755 bool Is16BitMode = STI.
hasFeature(X86::Is16Bit);
761bool X86AsmBackend::padInstructionViaPrefix(MCFragment &RF,
763 unsigned &RemainingSize)
const {
778 const unsigned MaxPossiblePad = std::min(15 - OldSize, RemainingSize);
779 const unsigned RemainingPrefixSize = [&]() ->
unsigned {
780 SmallString<15>
Code;
782 assert(
Code.size() < 15 &&
"The number of prefixes must be less than 15.");
789 unsigned ExistingPrefixSize =
Code.size();
790 if (TargetPrefixMax <= ExistingPrefixSize)
792 return TargetPrefixMax - ExistingPrefixSize;
794 const unsigned PrefixBytesToAdd =
795 std::min(MaxPossiblePad, RemainingPrefixSize);
796 if (PrefixBytesToAdd == 0)
801 SmallString<256>
Code;
802 Code.append(PrefixBytesToAdd, Prefix);
808 F.setOffset(PrefixBytesToAdd +
F.getOffset());
810 RemainingSize -= PrefixBytesToAdd;
814bool X86AsmBackend::padInstructionViaRelaxation(MCFragment &RF,
816 unsigned &RemainingSize)
const {
827 SmallString<15>
Code;
830 const unsigned NewSize =
Code.size();
831 assert(NewSize >= OldSize &&
"size decrease during relaxation?");
832 unsigned Delta = NewSize - OldSize;
833 if (Delta > RemainingSize)
838 RemainingSize -= Delta;
842bool X86AsmBackend::padInstructionEncoding(MCFragment &RF,
844 unsigned &RemainingSize)
const {
846 if (RemainingSize != 0)
847 Changed |= padInstructionViaRelaxation(RF,
Emitter, RemainingSize);
848 if (RemainingSize != 0)
853bool X86AsmBackend::finishLayout(
const MCAssembler &Asm)
const {
860 if (!X86PadForAlign && !X86PadForBranchAlign)
866 DenseSet<MCFragment *> LabeledFragments;
867 for (
const MCSymbol &S :
Asm.symbols())
868 LabeledFragments.
insert(S.getFragment());
871 for (MCSection &Sec : Asm) {
876 for (MCSection::iterator
I = Sec.begin(), IE = Sec.end();
I != IE; ++
I) {
879 if (LabeledFragments.
count(&
F))
891 auto canHandle = [](MCFragment &
F) ->
bool {
892 switch (
F.getKind()) {
896 return X86PadForAlign;
898 return X86PadForBranchAlign;
911 unsigned RemainingSize =
Asm.computeFragmentSize(
F) -
F.getFixedSize();
912 while (!Relaxable.
empty() && RemainingSize != 0) {
917 Changed |= padInstructionEncoding(RF,
Asm.getEmitter(), RemainingSize);
937 const MCFragment *LastFragment = BF->getLastFragment();
940 while (&*
I != LastFragment)
949unsigned X86AsmBackend::getMaximumNopSize(
const MCSubtargetInfo &STI)
const {
969bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t
Count,
970 const MCSubtargetInfo *STI)
const {
971 static const char Nops32Bit[10][11] = {
981 "\x0f\x1f\x44\x00\x00",
983 "\x66\x0f\x1f\x44\x00\x00",
985 "\x0f\x1f\x80\x00\x00\x00\x00",
987 "\x0f\x1f\x84\x00\x00\x00\x00\x00",
989 "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
991 "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
995 static const char Nops16Bit[4][11] = {
1006 const char(*Nops)[11] =
1007 STI->
hasFeature(X86::Is16Bit) ? Nops16Bit : Nops32Bit;
1009 uint64_t MaxNopLength = (uint64_t)getMaximumNopSize(*STI);
1014 const uint8_t ThisNopLength = (uint8_t) std::min(
Count, MaxNopLength);
1015 const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
1016 for (uint8_t i = 0; i < Prefixes; i++)
1018 const uint8_t Rest = ThisNopLength - Prefixes;
1020 OS.
write(Nops[Rest - 1], Rest);
1021 Count -= ThisNopLength;
1022 }
while (
Count != 0);
1031class ELFX86AsmBackend :
public X86AsmBackend {
1034 ELFX86AsmBackend(
const Target &
T, uint8_t OSABI,
const MCSubtargetInfo &STI)
1035 : X86AsmBackend(
T, STI), OSABI(OSABI) {}
1038class ELFX86_32AsmBackend :
public ELFX86AsmBackend {
1040 ELFX86_32AsmBackend(
const Target &
T, uint8_t OSABI,
1041 const MCSubtargetInfo &STI)
1042 : ELFX86AsmBackend(
T, OSABI, STI) {}
1044 std::unique_ptr<MCObjectTargetWriter>
1045 createObjectTargetWriter()
const override {
1050class ELFX86_X32AsmBackend :
public ELFX86AsmBackend {
1052 ELFX86_X32AsmBackend(
const Target &
T, uint8_t OSABI,
1053 const MCSubtargetInfo &STI)
1054 : ELFX86AsmBackend(
T, OSABI, STI) {}
1056 std::unique_ptr<MCObjectTargetWriter>
1057 createObjectTargetWriter()
const override {
1063class ELFX86_IAMCUAsmBackend :
public ELFX86AsmBackend {
1065 ELFX86_IAMCUAsmBackend(
const Target &
T, uint8_t OSABI,
1066 const MCSubtargetInfo &STI)
1067 : ELFX86AsmBackend(
T, OSABI, STI) {}
1069 std::unique_ptr<MCObjectTargetWriter>
1070 createObjectTargetWriter()
const override {
1076class ELFX86_64AsmBackend :
public ELFX86AsmBackend {
1078 ELFX86_64AsmBackend(
const Target &
T, uint8_t OSABI,
1079 const MCSubtargetInfo &STI)
1080 : ELFX86AsmBackend(
T, OSABI, STI) {}
1082 std::unique_ptr<MCObjectTargetWriter>
1083 createObjectTargetWriter()
const override {
1088class WindowsX86AsmBackend :
public X86AsmBackend {
1092 WindowsX86AsmBackend(
const Target &
T,
bool is64Bit,
1093 const MCSubtargetInfo &STI)
1094 : X86AsmBackend(
T, STI)
1098 std::optional<MCFixupKind>
getFixupKind(StringRef Name)
const override {
1099 return StringSwitch<std::optional<MCFixupKind>>(
Name)
1106 std::unique_ptr<MCObjectTargetWriter>
1107 createObjectTargetWriter()
const override {
1115 enum CompactUnwindEncodings {
1118 UNWIND_MODE_BP_FRAME = 0x01000000,
1121 UNWIND_MODE_STACK_IMMD = 0x02000000,
1124 UNWIND_MODE_STACK_IND = 0x03000000,
1127 UNWIND_MODE_DWARF = 0x04000000,
1130 UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
1133 UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
1138class DarwinX86AsmBackend :
public X86AsmBackend {
1139 const MCRegisterInfo &
MRI;
1142 enum { CU_NUM_SAVED_REGS = 6 };
1144 mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
1148 unsigned OffsetSize;
1149 unsigned MoveInstrSize;
1150 unsigned StackDivide;
1153 unsigned PushInstrSize(MCRegister
Reg)
const {
1176 int getCompactUnwindRegNum(
unsigned Reg)
const {
1177 static const MCPhysReg CU32BitRegs[7] = {
1178 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
1180 static const MCPhysReg CU64BitRegs[] = {
1181 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1183 const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
1184 for (
int Idx = 1; *CURegs; ++CURegs, ++Idx)
1193 uint32_t encodeCompactUnwindRegistersWithFrame()
const {
1197 uint32_t RegEnc = 0;
1198 for (
int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
1199 unsigned Reg = SavedRegs[i];
1200 if (
Reg == 0)
break;
1202 int CURegNum = getCompactUnwindRegNum(
Reg);
1203 if (CURegNum == -1)
return ~0
U;
1207 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
1210 assert((RegEnc & 0x3FFFF) == RegEnc &&
1211 "Invalid compact register encoding!");
1218 uint32_t encodeCompactUnwindRegistersWithoutFrame(
unsigned RegCount)
const {
1232 for (
unsigned i = 0; i < RegCount; ++i) {
1233 int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
1234 if (CUReg == -1)
return ~0
U;
1235 SavedRegs[i] = CUReg;
1239 std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
1241 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
1242 for (
unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
1243 unsigned Countless = 0;
1244 for (
unsigned j = CU_NUM_SAVED_REGS - RegCount;
j < i; ++
j)
1245 if (SavedRegs[j] < SavedRegs[i])
1248 RenumRegs[i] = SavedRegs[i] - Countless - 1;
1252 uint32_t permutationEncoding = 0;
1255 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
1256 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
1260 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
1261 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
1265 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
1266 + 3 * RenumRegs[4] + RenumRegs[5];
1269 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
1273 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
1276 permutationEncoding |= RenumRegs[5];
1280 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
1281 "Invalid compact register encoding!");
1282 return permutationEncoding;
1286 DarwinX86AsmBackend(
const Target &
T,
const MCRegisterInfo &
MRI,
1287 const MCSubtargetInfo &STI)
1288 : X86AsmBackend(
T, STI),
MRI(
MRI),
TT(STI.getTargetTriple()),
1289 Is64Bit(
TT.isArch64Bit()) {
1290 memset(SavedRegs, 0,
sizeof(SavedRegs));
1291 OffsetSize = Is64Bit ? 8 : 4;
1292 MoveInstrSize = Is64Bit ? 3 : 2;
1293 StackDivide = Is64Bit ? 8 : 4;
1296 std::unique_ptr<MCObjectTargetWriter>
1297 createObjectTargetWriter()
const override {
1305 uint64_t generateCompactUnwindEncoding(
const MCDwarfFrameInfo *FI,
1306 const MCContext *Ctxt)
const override {
1308 if (Instrs.
empty())
return 0;
1309 if (!isDarwinCanonicalPersonality(FI->
Personality) &&
1311 return CU::UNWIND_MODE_DWARF;
1314 unsigned SavedRegIdx = 0;
1315 memset(SavedRegs, 0,
sizeof(SavedRegs));
1320 uint64_t CompactUnwindEncoding = 0;
1322 unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
1323 unsigned InstrOffset = 0;
1324 unsigned StackAdjust = 0;
1325 uint64_t StackSize = 0;
1326 int64_t MinAbsOffset = std::numeric_limits<int64_t>::max();
1328 for (
const MCCFIInstruction &Inst : Instrs) {
1329 switch (Inst.getOperation()) {
1333 return CU::UNWIND_MODE_DWARF;
1345 if (*
MRI.getLLVMRegNum(Inst.getRegister(),
true) !=
1346 (Is64Bit ? X86::RBP : X86::EBP))
1347 return CU::UNWIND_MODE_DWARF;
1350 memset(SavedRegs, 0,
sizeof(SavedRegs));
1353 MinAbsOffset = std::numeric_limits<int64_t>::max();
1354 InstrOffset += MoveInstrSize;
1372 StackSize = Inst.getOffset() / StackDivide;
1388 if (SavedRegIdx == CU_NUM_SAVED_REGS)
1391 return CU::UNWIND_MODE_DWARF;
1393 MCRegister
Reg = *
MRI.getLLVMRegNum(Inst.getRegister(),
true);
1394 SavedRegs[SavedRegIdx++] =
Reg;
1395 StackAdjust += OffsetSize;
1396 MinAbsOffset = std::min(MinAbsOffset, std::abs(Inst.getOffset()));
1397 InstrOffset += PushInstrSize(
Reg);
1403 StackAdjust /= StackDivide;
1406 if ((StackAdjust & 0xFF) != StackAdjust)
1408 return CU::UNWIND_MODE_DWARF;
1412 if (SavedRegIdx != 0 && MinAbsOffset != 3 * (
int)OffsetSize)
1413 return CU::UNWIND_MODE_DWARF;
1416 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
1417 if (RegEnc == ~0U)
return CU::UNWIND_MODE_DWARF;
1419 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
1420 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
1421 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
1423 SubtractInstrIdx += InstrOffset;
1426 if ((StackSize & 0xFF) == StackSize) {
1428 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
1431 CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
1433 if ((StackAdjust & 0x7) != StackAdjust)
1435 return CU::UNWIND_MODE_DWARF;
1438 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
1442 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
1445 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
1449 std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
1450 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
1454 uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
1455 if (RegEnc == ~0U)
return CU::UNWIND_MODE_DWARF;
1458 CompactUnwindEncoding |=
1459 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
1462 return CompactUnwindEncoding;
1474 return new DarwinX86AsmBackend(
T,
MRI, STI);
1477 return new WindowsX86AsmBackend(
T,
false, STI);
1482 return new ELFX86_IAMCUAsmBackend(
T, OSABI, STI);
1484 return new ELFX86_32AsmBackend(
T, OSABI, STI);
1493 return new DarwinX86AsmBackend(
T,
MRI, STI);
1496 return new WindowsX86AsmBackend(
T,
true, STI);
1498 if (TheTriple.
isUEFI()) {
1500 "Only COFF format is supported in UEFI environment.");
1501 return new WindowsX86AsmBackend(
T,
true, STI);
1506 if (TheTriple.
isX32())
1507 return new ELFX86_X32AsmBackend(
T, OSABI, STI);
1508 return new ELFX86_64AsmBackend(
T, OSABI, STI);
1514 X86ELFStreamer(
MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
1515 std::unique_ptr<MCObjectWriter> OW,
1516 std::unique_ptr<MCCodeEmitter>
Emitter)
1520 void emitInstruction(
const MCInst &Inst,
const MCSubtargetInfo &STI)
override;
1524void X86ELFStreamer::emitInstruction(
const MCInst &Inst,
1525 const MCSubtargetInfo &STI) {
1530 std::unique_ptr<MCAsmBackend> &&MAB,
1531 std::unique_ptr<MCObjectWriter> &&MOW,
1532 std::unique_ptr<MCCodeEmitter> &&MCE) {
1533 return new X86ELFStreamer(Context, std::move(MAB), std::move(MOW),
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define LLVM_LIKELY(EXPR)
dxil DXContainer Global Emitter
static unsigned getRelaxedOpcode(unsigned Opcode)
mir Rename Register Operands
PowerPC TLS Dynamic Call Fixup
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
static MCInstrInfo * createMCInstrInfo()
static unsigned getRelaxedOpcodeBranch(unsigned Opcode, bool Is16BitMode=false)
static X86::SecondMacroFusionInstKind classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII)
static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII)
Check if the instruction uses RIP relative addressing.
static bool mayHaveInterruptDelaySlot(unsigned InstOpcode)
X86 has certain instructions which enable interrupts exactly one instruction after the instruction wh...
static bool isFirstMacroFusibleInst(const MCInst &Inst, const MCInstrInfo &MCII)
Check if the instruction is valid as the first instruction in macro fusion.
constexpr char GotSymName[]
static X86::CondCode getCondFromBranch(const MCInst &MI, const MCInstrInfo &MCII)
static unsigned getRelaxedOpcode(const MCInst &MI, bool Is16BitMode)
static unsigned getFixupKindSize(unsigned Kind)
static bool isRelaxableBranch(unsigned Opcode)
static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII)
Check if the instruction is a prefix.
static bool hasVariantSymbol(const MCInst &MI)
Check if the instruction has a variant symbol operand.
static bool is64Bit(const char *name)
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
Generic interface to target specific assembler backends.
virtual MCFixupKindInfo getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
virtual std::optional< MCFixupKind > getFixupKind(StringRef Name) const
Map a relocation name used in .reloc to a fixup kind.
Represents required padding such that a particular other set of fragments does not cross a particular...
void setLastFragment(const MCFragment *F)
Context object for machine code objects.
LLVM_ABI bool emitCompactUnwindNonCanonical() const
Base class for the full range of assembler expressions which are needed for parsing.
@ SymbolRef
References to labels and assigned expressions.
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
static MCFixup create(uint32_t Offset, const MCExpr *Value, MCFixupKind Kind, bool PCRel=false)
Consider bit fields if we need more flags.
bool getAllowAutoPadding() const
void setAllowAutoPadding(bool V)
unsigned getOpcode() const
MCSection * getParent() const
LLVM_ABI void setVarFixups(ArrayRef< MCFixup > Fixups)
MCFragment * getNext() const
ArrayRef< MCOperand > getOperands() const
size_t getVarSize() const
LLVM_ABI void setVarContents(ArrayRef< char > Contents)
MutableArrayRef< char > getVarContents()
const MCSubtargetInfo * getSubtargetInfo() const
Retrieve the MCSubTargetInfo in effect when the instruction was encoded.
MutableArrayRef< MCFixup > getVarFixups()
void setInst(const MCInst &Inst)
Instances of this class represent a single low-level machine instruction.
unsigned getOpcode() const
void setOpcode(unsigned Op)
const MCOperand & getOperand(unsigned i) const
Describe properties that are true of each instruction in the target description file.
bool isConditionalBranch() const
Return true if this is a branch which may fall through to the next instruction or may transfer contro...
Interface to description of machine instruction set.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Streaming object file generation interface.
FT * newSpecialFragment(Args &&...args)
MCAssembler & getAssembler()
MCRegister getReg() const
Returns the register number.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
void ensureMinAlignment(Align MinAlignment)
Makes sure that Alignment is at least MinAlignment.
Streaming machine code generation interface.
MCFragment * getCurrentFragment() const
size_t getCurFragSize() const
bool getAllowAutoPadding() const
MCSection * getCurrentSectionOnly() const
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
constexpr unsigned id() const
void push_back(const T &Elt)
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
bool isX32() const
Tests whether the target is X32.
bool isOSBinFormatMachO() const
Tests whether the environment is MachO.
OSType getOS() const
Get the parsed operating system type of this triple.
ArchType getArch() const
Get the parsed architecture type of this triple.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
bool isUEFI() const
Tests whether the OS is UEFI.
bool isOSWindows() const
Tests whether the OS is Windows.
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
std::pair< iterator, bool > insert(const ValueT &V)
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
raw_ostream & write(unsigned char C)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
LLVM_ABI Expected< uint32_t > getCPUSubType(const Triple &T)
LLVM_ABI Expected< uint32_t > getCPUType(const Triple &T)
VE::Fixups getFixupKind(uint8_t S)
bool isPrefix(uint64_t TSFlags)
@ RawFrmDstSrc
RawFrmDstSrc - This form is for instructions that use the source index register SI/ESI/RSI with a pos...
@ RawFrmSrc
RawFrmSrc - This form is for instructions that use the source index register SI/ESI/RSI with a possib...
@ RawFrmMemOffs
RawFrmMemOffs - This form is for instructions that store an absolute memory offset as an immediate wi...
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
void emitPrefix(MCCodeEmitter &MCE, const MCInst &MI, SmallVectorImpl< char > &CB, const MCSubtargetInfo &STI)
void emitInstruction(MCObjectStreamer &, const MCInst &Inst, const MCSubtargetInfo &STI)
FirstMacroFusionInstKind classifyFirstOpcodeInMacroFusion(unsigned Opcode)
AlignBranchBoundaryKind
Defines the possible values of the branch boundary alignment mask.
SecondMacroFusionInstKind
EncodingOfSegmentOverridePrefix getSegmentOverridePrefixForReg(MCRegister Reg)
Given a segment register, return the encoding of the segment override prefix for it.
unsigned getOpcodeForLongImmediateForm(unsigned Opcode)
bool isMacroFused(FirstMacroFusionInstKind FirstKind, SecondMacroFusionInstKind SecondKind)
@ reloc_riprel_4byte_movq_load_rex2
@ reloc_signed_4byte_relax
@ reloc_branch_4byte_pcrel
@ reloc_riprel_4byte_relax
@ reloc_riprel_4byte_relax_evex
@ reloc_riprel_4byte_relax_rex
@ reloc_global_offset_table
@ reloc_riprel_4byte_movq_load
@ reloc_riprel_4byte_relax_rex2
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
Error applyFixup(LinkGraph &G, Block &B, const Edge &E, const ArmConfig &ArmCfg)
Apply fixup expression for edge to block content.
bool isRelocation(MCFixupKind FixupKind)
NodeAddr< CodeNode * > Code
Context & getContext() const
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
MCAsmBackend * createX86_64AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
std::unique_ptr< MCObjectTargetWriter > createX86WinCOFFObjectWriter(bool Is64Bit)
Construct an X86 Win COFF object writer.
uint16_t MCFixupKind
Extensible enumeration to represent the type of a fixup.
MCStreamer * createX86ELFStreamer(const Triple &T, MCContext &Context, std::unique_ptr< MCAsmBackend > &&MAB, std::unique_ptr< MCObjectWriter > &&MOW, std::unique_ptr< MCCodeEmitter > &&MCE)
FunctionAddr VTableAddr Count
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ FK_SecRel_2
A two-byte section relative fixup.
@ FirstLiteralRelocationKind
@ FK_Data_8
A eight-byte fixup.
@ FK_Data_1
A one-byte fixup.
@ FK_Data_4
A four-byte fixup.
@ FK_SecRel_8
A eight-byte section relative fixup.
@ FK_SecRel_4
A four-byte section relative fixup.
@ FK_SecRel_1
A one-byte section relative fixup.
@ FK_Data_2
A two-byte fixup.
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
std::unique_ptr< MCObjectTargetWriter > createX86MachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype)
Construct an X86 Mach-O object writer.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
std::unique_ptr< MCObjectTargetWriter > createX86ELFObjectWriter(bool IsELF64, uint8_t OSABI, uint16_t EMachine)
Construct an X86 ELF object writer.
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
MCAsmBackend * createX86_32AsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Implement std::hash so that hash_code can be used in STL containers.
const MCSymbol * Personality
std::vector< MCCFIInstruction > Instructions