LLVM 22.0.0git
X86CompressEVEX.cpp
Go to the documentation of this file.
1//===- X86CompressEVEX.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
10// when possible in order to reduce code size or facilitate HW decoding.
11//
12// Possible compression:
13// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
14// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
15// c. NDD (EVEX) -> non-NDD (legacy)
16// d. NF_ND (EVEX) -> NF (EVEX)
17// e. NonNF (EVEX) -> NF (EVEX)
18//
19// Compression a, b and c can always reduce code size, with some exceptions
20// such as promoted 16-bit CRC32 which is as long as the legacy version.
21//
22// legacy:
23// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
24// promoted:
25// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
26//
27// From performance perspective, these should be same (same uops and same EXE
28// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
29// can execute in more places (broader HW install base). So we will still do
30// the compression.
31//
32// Compression d can help hardware decode (HW may skip reading the NDD
33// register) although the instruction length remains unchanged.
34//
35// Compression e can help hardware skip updating EFLAGS although the instruction
36// length remains unchanged.
37//===----------------------------------------------------------------------===//
38
40#include "X86.h"
41#include "X86InstrInfo.h"
42#include "X86Subtarget.h"
43#include "llvm/ADT/StringRef.h"
48#include "llvm/MC/MCInstrDesc.h"
49#include "llvm/Pass.h"
50#include <atomic>
51#include <cassert>
52#include <cstdint>
53
54using namespace llvm;
55
56#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
57#define COMP_EVEX_NAME "x86-compress-evex"
58
59#define DEBUG_TYPE COMP_EVEX_NAME
60
62
63namespace {
64// Including the generated EVEX compression tables.
65#define GET_X86_COMPRESS_EVEX_TABLE
66#include "X86GenInstrMapping.inc"
67
68class CompressEVEXPass : public MachineFunctionPass {
69public:
70 static char ID;
71 CompressEVEXPass() : MachineFunctionPass(ID) {}
72 StringRef getPassName() const override { return COMP_EVEX_DESC; }
73
74 bool runOnMachineFunction(MachineFunction &MF) override;
75
76 // This pass runs after regalloc and doesn't support VReg operands.
77 MachineFunctionProperties getRequiredProperties() const override {
78 return MachineFunctionProperties().setNoVRegs();
79 }
80};
81
82} // end anonymous namespace
83
84char CompressEVEXPass::ID = 0;
85
87 auto isHiRegIdx = [](MCRegister Reg) {
88 // Check for XMM register with indexes between 16 - 31.
89 if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
90 return true;
91 // Check for YMM register with indexes between 16 - 31.
92 if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
93 return true;
94 // Check for GPR with indexes between 16 - 31.
96 return true;
97 return false;
98 };
99
100 // Check that operands are not ZMM regs or
101 // XMM/YMM regs with hi indexes between 16 - 31.
102 for (const MachineOperand &MO : MI.explicit_operands()) {
103 if (!MO.isReg())
104 continue;
105
106 MCRegister Reg = MO.getReg().asMCReg();
108 "ZMM instructions should not be in the EVEX->VEX tables");
109 if (isHiRegIdx(Reg))
110 return true;
111 }
112
113 return false;
114}
115
116// Do any custom cleanup needed to finalize the conversion.
117static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
118 (void)NewOpc;
119 unsigned Opc = MI.getOpcode();
120 switch (Opc) {
121 case X86::VALIGNDZ128rri:
122 case X86::VALIGNDZ128rmi:
123 case X86::VALIGNQZ128rri:
124 case X86::VALIGNQZ128rmi: {
125 assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
126 "Unexpected new opcode!");
127 unsigned Scale =
128 (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
129 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
130 Imm.setImm(Imm.getImm() * Scale);
131 break;
132 }
133 case X86::VSHUFF32X4Z256rmi:
134 case X86::VSHUFF32X4Z256rri:
135 case X86::VSHUFF64X2Z256rmi:
136 case X86::VSHUFF64X2Z256rri:
137 case X86::VSHUFI32X4Z256rmi:
138 case X86::VSHUFI32X4Z256rri:
139 case X86::VSHUFI64X2Z256rmi:
140 case X86::VSHUFI64X2Z256rri: {
141 assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri ||
142 NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) &&
143 "Unexpected new opcode!");
144 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
145 int64_t ImmVal = Imm.getImm();
146 // Set bit 5, move bit 1 to bit 4, copy bit 0.
147 Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
148 break;
149 }
150 case X86::VRNDSCALEPDZ128rri:
151 case X86::VRNDSCALEPDZ128rmi:
152 case X86::VRNDSCALEPSZ128rri:
153 case X86::VRNDSCALEPSZ128rmi:
154 case X86::VRNDSCALEPDZ256rri:
155 case X86::VRNDSCALEPDZ256rmi:
156 case X86::VRNDSCALEPSZ256rri:
157 case X86::VRNDSCALEPSZ256rmi:
158 case X86::VRNDSCALESDZrri:
159 case X86::VRNDSCALESDZrmi:
160 case X86::VRNDSCALESSZrri:
161 case X86::VRNDSCALESSZrmi:
162 case X86::VRNDSCALESDZrri_Int:
163 case X86::VRNDSCALESDZrmi_Int:
164 case X86::VRNDSCALESSZrri_Int:
165 case X86::VRNDSCALESSZrmi_Int:
166 const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
167 int64_t ImmVal = Imm.getImm();
168 // Ensure that only bits 3:0 of the immediate are used.
169 if ((ImmVal & 0xf) != ImmVal)
170 return false;
171 break;
172 }
173
174 return true;
175}
176
178 const X86Subtarget &ST) {
179 uint64_t TSFlags = MI.getDesc().TSFlags;
180
181 // Check for EVEX instructions only.
182 if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
183 return false;
184
185 // Instructions with mask or 512-bit vector can't be converted to VEX.
186 if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
187 return false;
188
189 auto IsRedundantNewDataDest = [&](unsigned &Opc) {
190 // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
191 // ->
192 // $rbx = ADD64rr $rbx, $rax
193 const MCInstrDesc &Desc = MI.getDesc();
194 Register Reg0 = MI.getOperand(0).getReg();
195 const MachineOperand &Op1 = MI.getOperand(1);
196 if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
197 X86::isCFCMOVCC(MI.getOpcode()))
198 return false;
199 Register Reg1 = Op1.getReg();
200 if (Reg1 == Reg0)
201 return true;
202
203 // Op1 and Op2 may be commutable for ND instructions.
204 if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
205 !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
206 return false;
207 // Opcode may change after commute, e.g. SHRD -> SHLD
208 ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
209 Opc = MI.getOpcode();
210 return true;
211 };
212
213 // EVEX_B has several meanings.
214 // AVX512:
215 // register form: rounding control or SAE
216 // memory form: broadcast
217 //
218 // APX:
219 // MAP4: NDD
220 //
221 // For AVX512 cases, EVEX prefix is needed in order to carry this information
222 // thus preventing the transformation to VEX encoding.
223 bool IsND = X86II::hasNewDataDest(TSFlags);
224 if (TSFlags & X86II::EVEX_B && !IsND)
225 return false;
226 unsigned Opc = MI.getOpcode();
227 // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
228 bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
229 bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
230
231 auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
232 ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
233 const auto I = llvm::lower_bound(Table, Opc);
234 if (I == Table.end() || I->OldOpc != Opc)
235 return 0;
236
237 if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
238 !performCustomAdjustments(MI, I->NewOpc))
239 return 0;
240 return I->NewOpc;
241 };
242
243 Register Dst = MI.getOperand(0).getReg();
244 if (IsRedundantNDD) {
245 // Redundant NDD ops cannot be safely compressed if either:
246 // - the legacy op would introduce a partial write that BreakFalseDeps
247 // identified as a potential stall, or
248 // - the op is writing to a subregister of a live register, i.e. the
249 // full (zeroed) result is used.
250 // Both cases are indicated by an implicit def of the superregister.
251 if (Dst &&
252 (X86::GR16RegClass.contains(Dst) || X86::GR8RegClass.contains(Dst))) {
253 Register Super = getX86SubSuperRegister(Dst, 64);
254 if (MI.definesRegister(Super, /*TRI=*/nullptr))
255 IsRedundantNDD = false;
256 }
257
258 // ADDrm/mr instructions with NDD + relocation had been transformed to the
259 // instructions without NDD in X86SuppressAPXForRelocation pass. That is to
260 // keep backward compatibility with linkers without APX support.
263 "Unexpected NDD instruction with relocation!");
264 } else if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND ||
265 Opc == X86::ADD32rr_ND || Opc == X86::ADD64rr_ND) {
266 // Non-redundant NDD ADD can be compressed to LEA when:
267 // - No EGPR register used and
268 // - EFLAGS is dead.
269 if (!usesExtendedRegister(MI) &&
270 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
271 Register Src1 = MI.getOperand(1).getReg();
272 const MachineOperand &Src2 = MI.getOperand(2);
273 bool Is32BitReg = Opc == X86::ADD32ri_ND || Opc == X86::ADD32rr_ND;
274 const MCInstrDesc &NewDesc =
275 ST.getInstrInfo()->get(Is32BitReg ? X86::LEA32r : X86::LEA64r);
276 if (Is32BitReg)
277 Src1 = getX86SubSuperRegister(Src1, 64);
278 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), NewDesc, Dst)
279 .addReg(Src1)
280 .addImm(1);
281 if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND)
282 MIB.addReg(0).add(Src2);
283 else if (Is32BitReg)
284 MIB.addReg(getX86SubSuperRegister(Src2.getReg(), 64)).addImm(0);
285 else
286 MIB.add(Src2).addImm(0);
287 MIB.addReg(0);
288 MI.removeFromParent();
289 return true;
290 }
291 }
292
293 // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
294 // dead.
295 unsigned NewOpc = IsRedundantNDD
297 : ((IsNDLike && ST.hasNF() &&
298 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
300 : GetCompressedOpc(Opc));
301
302 if (!NewOpc)
303 return false;
304
305 const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
306 MI.setDesc(NewDesc);
307 unsigned AsmComment;
308 switch (NewDesc.TSFlags & X86II::EncodingMask) {
309 case X86II::LEGACY:
310 AsmComment = X86::AC_EVEX_2_LEGACY;
311 break;
312 case X86II::VEX:
313 AsmComment = X86::AC_EVEX_2_VEX;
314 break;
315 case X86II::EVEX:
316 AsmComment = X86::AC_EVEX_2_EVEX;
317 assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
318 "Unknown EVEX2EVEX compression");
319 break;
320 default:
321 llvm_unreachable("Unknown EVEX compression");
322 }
323 MI.setAsmPrinterFlag(AsmComment);
324 if (IsRedundantNDD)
325 MI.tieOperands(0, 1);
326
327 return true;
328}
329
330bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
331 LLVM_DEBUG(dbgs() << "Start X86CompressEVEXPass\n";);
332#ifndef NDEBUG
333 // Make sure the tables are sorted.
334 static std::atomic<bool> TableChecked(false);
335 if (!TableChecked.load(std::memory_order_relaxed)) {
336 assert(llvm::is_sorted(X86CompressEVEXTable) &&
337 "X86CompressEVEXTable is not sorted!");
338 TableChecked.store(true, std::memory_order_relaxed);
339 }
340#endif
341 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
342 if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
343 return false;
344
345 bool Changed = false;
346
347 for (MachineBasicBlock &MBB : MF) {
348 // Traverse the basic block.
349 for (MachineInstr &MI : llvm::make_early_inc_range(MBB))
351 }
352 LLVM_DEBUG(dbgs() << "End X86CompressEVEXPass\n";);
353 return Changed;
354}
355
356INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
357
359 return new CompressEVEXPass();
360}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define COMP_EVEX_DESC
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc)
#define COMP_EVEX_NAME
cl::opt< bool > X86EnableAPXForRelocation
static bool CompressEVEXImpl(MachineInstr &MI, MachineBasicBlock &MBB, const X86Subtarget &ST)
static bool usesExtendedRegister(const MachineInstr &MI)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:136
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
Describe properties that are true of each instruction in the target description file.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Properties which a MachineFunction may have at a given point in time.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
bool isZMMReg(MCRegister Reg)
bool hasNewDataDest(uint64_t TSFlags)
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ VEX
VEX - encoding using 0xC4/0xC5.
@ LEGACY
LEGACY - encoding using REX/REX2 or w/o opcode prefix.
bool isApxExtendedReg(MCRegister Reg)
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
unsigned getNonNDVariant(unsigned Opc)
unsigned getNFVariant(unsigned Opc)
This is an optimization pass for GlobalISel generic memory operations.
static bool isAddMemInstrWithRelocation(const MachineInstr &MI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:627
Op::Description Desc
FunctionPass * createX86CompressEVEXPass()
This pass compress instructions from EVEX space to legacy/VEX/EVEX space when possible in order to re...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1909
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition STLExtras.h:1983
ArrayRef(const T &OneElt) -> ArrayRef< T >