LLVM 22.0.0git
X86FlagsCopyLowering.cpp
Go to the documentation of this file.
1//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11/// flag bits.
12///
13/// We have to do this by carefully analyzing and rewriting the usage of the
14/// copied EFLAGS register because there is no general way to rematerialize the
15/// entire EFLAGS register safely and efficiently. Using `popf` both forces
16/// dynamic stack adjustment and can create correctness issues due to IF, TF,
17/// and other non-status flags being overwritten. Using sequences involving
18/// SAHF don't work on all x86 processors and are often quite slow compared to
19/// directly testing a single status preserved in its own GPR.
20///
21//===----------------------------------------------------------------------===//
22
23#include "X86.h"
24#include "X86InstrInfo.h"
25#include "X86Subtarget.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/ScopeExit.h"
32#include "llvm/ADT/Statistic.h"
48#include "llvm/IR/DebugLoc.h"
49#include "llvm/MC/MCSchedule.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Debug.h"
53#include <algorithm>
54#include <cassert>
55#include <iterator>
56#include <utility>
57
58using namespace llvm;
59
60#define PASS_KEY "x86-flags-copy-lowering"
61#define DEBUG_TYPE PASS_KEY
62
63STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
64STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
65STATISTIC(NumTestsInserted, "Number of test instructions inserted");
66STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
67STATISTIC(NumNFsConvertedTo, "Number of NF instructions converted to");
68
70
71namespace {
72
73// Convenient array type for storing registers associated with each condition.
74using CondRegArray = std::array<Register, X86::LAST_VALID_COND + 1>;
75
76class X86FlagsCopyLoweringPass : public MachineFunctionPass {
77public:
78 X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {}
79
80 StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
81 bool runOnMachineFunction(MachineFunction &MF) override;
82 void getAnalysisUsage(AnalysisUsage &AU) const override;
83
84 /// Pass identification, replacement for typeid.
85 static char ID;
86
87private:
88 MachineRegisterInfo *MRI = nullptr;
89 const X86Subtarget *Subtarget = nullptr;
90 const X86InstrInfo *TII = nullptr;
91 const TargetRegisterInfo *TRI = nullptr;
92 const TargetRegisterClass *PromoteRC = nullptr;
93 MachineDominatorTree *MDT = nullptr;
94
95 CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
97
98 Register promoteCondToReg(MachineBasicBlock &MBB,
100 const DebugLoc &TestLoc, X86::CondCode Cond);
101 std::pair<Register, bool> getCondOrInverseInReg(
103 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
105 const DebugLoc &Loc, Register Reg);
106
107 void rewriteSetCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
108 const DebugLoc &Loc, MachineInstr &MI,
109 CondRegArray &CondRegs);
110 void rewriteArithmetic(MachineBasicBlock &MBB,
112 MachineInstr &MI, CondRegArray &CondRegs);
114 const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs);
115};
116
117} // end anonymous namespace
118
119INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
120 "X86 EFLAGS copy lowering", false, false)
121INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
122 "X86 EFLAGS copy lowering", false, false)
123
125 return new X86FlagsCopyLoweringPass();
126}
127
128char X86FlagsCopyLoweringPass::ID = 0;
129
130void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
133}
134
135static bool isArithmeticOp(unsigned Opc) {
136 return X86::isADC(Opc) || X86::isSBB(Opc) || X86::isRCL(Opc) ||
137 X86::isRCR(Opc) || (Opc == X86::SETB_C32r || Opc == X86::SETB_C64r);
138}
139
141 MachineInstr &SplitI,
142 const X86InstrInfo &TII) {
144
145 assert(SplitI.getParent() == &MBB &&
146 "Split instruction must be in the split block!");
147 assert(SplitI.isBranch() &&
148 "Only designed to split a tail of branch instructions!");
150 "Must split on an actual jCC instruction!");
151
152 // Dig out the previous instruction to the split point.
153 MachineInstr &PrevI = *std::prev(SplitI.getIterator());
154 assert(PrevI.isBranch() && "Must split after a branch!");
156 "Must split after an actual jCC instruction!");
157 assert(!std::prev(PrevI.getIterator())->isTerminator() &&
158 "Must only have this one terminator prior to the split!");
159
160 // Grab the one successor edge that will stay in `MBB`.
161 MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
162
163 // Analyze the original block to see if we are actually splitting an edge
164 // into two edges. This can happen when we have multiple conditional jumps to
165 // the same successor.
166 bool IsEdgeSplit =
167 std::any_of(SplitI.getIterator(), MBB.instr_end(),
168 [&](MachineInstr &MI) {
169 assert(MI.isTerminator() &&
170 "Should only have spliced terminators!");
171 return llvm::any_of(
172 MI.operands(), [&](MachineOperand &MOp) {
173 return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
174 });
175 }) ||
176 MBB.getFallThrough() == &UnsplitSucc;
177
178 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
179
180 // Insert the new block immediately after the current one. Any existing
181 // fallthrough will be sunk into this new block anyways.
182 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
183
184 // Splice the tail of instructions into the new block.
185 NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
186
187 // Copy the necessary succesors (and their probability info) into the new
188 // block.
189 for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
190 if (IsEdgeSplit || *SI != &UnsplitSucc)
191 NewMBB.copySuccessor(&MBB, SI);
192 // Normalize the probabilities if we didn't end up splitting the edge.
193 if (!IsEdgeSplit)
194 NewMBB.normalizeSuccProbs();
195
196 // Now replace all of the moved successors in the original block with the new
197 // block. This will merge their probabilities.
198 for (MachineBasicBlock *Succ : NewMBB.successors())
199 if (Succ != &UnsplitSucc)
200 MBB.replaceSuccessor(Succ, &NewMBB);
201
202 // We should always end up replacing at least one successor.
203 assert(MBB.isSuccessor(&NewMBB) &&
204 "Failed to make the new block a successor!");
205
206 // Now update all the PHIs.
207 for (MachineBasicBlock *Succ : NewMBB.successors()) {
208 for (MachineInstr &MI : *Succ) {
209 if (!MI.isPHI())
210 break;
211
212 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
213 OpIdx += 2) {
214 MachineOperand &OpV = MI.getOperand(OpIdx);
215 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
216 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
217 if (OpMBB.getMBB() != &MBB)
218 continue;
219
220 // Replace the operand for unsplit successors
221 if (!IsEdgeSplit || Succ != &UnsplitSucc) {
222 OpMBB.setMBB(&NewMBB);
223
224 // We have to continue scanning as there may be multiple entries in
225 // the PHI.
226 continue;
227 }
228
229 // When we have split the edge append a new successor.
230 MI.addOperand(MF, OpV);
231 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
232 break;
233 }
234 }
235 }
236
237 return NewMBB;
238}
239
241
243 const MachineOperand *FlagDef =
244 MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
245 if (!FlagDef)
246 return NoClobber;
247
248 // For the instructions are ADDrm/ADDmr with relocation, we'll skip the
249 // optimization for replacing non-NF with NF. This is to keep backward
250 // compatiblity with old version of linkers without APX relocation type
251 // support on Linux OS.
252 bool IsWithReloc =
254
255 if (FlagDef->isDead() && X86::getNFVariant(MI.getOpcode()) && !IsWithReloc)
256 return EvitableClobber;
257
258 return InevitableClobber;
259}
260
261bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
262 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
263 << " **********\n");
264
265 Subtarget = &MF.getSubtarget<X86Subtarget>();
266 MRI = &MF.getRegInfo();
267 TII = Subtarget->getInstrInfo();
268 TRI = Subtarget->getRegisterInfo();
269 PromoteRC = &X86::GR8RegClass;
270
271 if (MF.empty())
272 // Nothing to do for a degenerate empty function...
273 return false;
274
275 if (none_of(MRI->def_instructions(X86::EFLAGS), [](const MachineInstr &MI) {
276 return MI.getOpcode() == TargetOpcode::COPY;
277 }))
278 return false;
279
280 // We change the code, so we don't preserve the dominator tree anyway. If we
281 // got a valid MDT from the pass manager, use that, otherwise construct one
282 // now. This is an optimization that avoids unnecessary MDT construction for
283 // functions that have no flag copies.
284
285 auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>();
286 std::unique_ptr<MachineDominatorTree> OwnedMDT;
287 if (MDTWrapper) {
288 MDT = &MDTWrapper->getDomTree();
289 } else {
290 OwnedMDT = std::make_unique<MachineDominatorTree>(MF);
291 MDT = OwnedMDT.get();
292 }
293
294 // Collect the copies in RPO so that when there are chains where a copy is in
295 // turn copied again we visit the first one first. This ensures we can find
296 // viable locations for testing the original EFLAGS that dominate all the
297 // uses across complex CFGs.
300 for (MachineBasicBlock *MBB : RPOT)
301 for (MachineInstr &MI : *MBB)
302 if (MI.getOpcode() == TargetOpcode::COPY &&
303 MI.getOperand(0).getReg() == X86::EFLAGS)
304 Copies.insert(&MI);
305
306 // Try to elminate the copys by transform the instructions between copy and
307 // copydef to the NF (no flags update) variants, e.g.
308 //
309 // %1:gr64 = COPY $eflags
310 // OP1 implicit-def dead $eflags
311 // $eflags = COPY %1
312 // OP2 cc, implicit $eflags
313 //
314 // ->
315 //
316 // OP1_NF
317 // OP2 implicit $eflags
318 if (Subtarget->hasNF()) {
320 // CopyIIt may be invalidated by removing copies.
321 auto CopyIIt = Copies.begin(), CopyIEnd = Copies.end();
322 while (CopyIIt != CopyIEnd) {
323 auto NCopyIIt = std::next(CopyIIt);
324 SmallSetVector<MachineInstr *, 4> EvitableClobbers;
325 MachineInstr *CopyI = *CopyIIt;
326 MachineOperand &VOp = CopyI->getOperand(1);
327 MachineInstr *CopyDefI = MRI->getVRegDef(VOp.getReg());
328 MachineBasicBlock *CopyIMBB = CopyI->getParent();
329 MachineBasicBlock *CopyDefIMBB = CopyDefI->getParent();
330 // Walk all basic blocks reachable in depth-first iteration on the inverse
331 // CFG from CopyIMBB to CopyDefIMBB. These blocks are all the blocks that
332 // may be executed between the execution of CopyDefIMBB and CopyIMBB. On
333 // all execution paths, instructions from CopyDefI to CopyI (exclusive)
334 // has to be NF-convertible if it clobbers flags.
335 for (auto BI = idf_begin(CopyIMBB), BE = idf_end(CopyDefIMBB); BI != BE;
336 ++BI) {
337 MachineBasicBlock *MBB = *BI;
338 for (auto I = (MBB != CopyDefIMBB)
339 ? MBB->begin()
340 : std::next(MachineBasicBlock::iterator(CopyDefI)),
341 E = (MBB != CopyIMBB) ? MBB->end()
343 I != E; ++I) {
344 MachineInstr &MI = *I;
345 EFLAGSClobber ClobberType = getClobberType(MI);
346 if (ClobberType == NoClobber)
347 continue;
348
349 if (ClobberType == InevitableClobber)
350 goto ProcessNextCopyI;
351
352 assert(ClobberType == EvitableClobber && "unexpected workflow");
353 EvitableClobbers.insert(&MI);
354 }
355 }
356 // Covert evitable clobbers into NF variants and remove the copyies.
357 RemovedCopies.insert(CopyI);
358 CopyI->eraseFromParent();
359 if (MRI->use_nodbg_empty(CopyDefI->getOperand(0).getReg())) {
360 RemovedCopies.insert(CopyDefI);
361 CopyDefI->eraseFromParent();
362 }
363 ++NumCopiesEliminated;
364 for (auto *Clobber : EvitableClobbers) {
365 unsigned NewOpc = X86::getNFVariant(Clobber->getOpcode());
366 assert(NewOpc && "evitable clobber must have a NF variant");
367 Clobber->setDesc(TII->get(NewOpc));
368 Clobber->removeOperand(
369 Clobber->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr)
370 ->getOperandNo());
371 ++NumNFsConvertedTo;
372 }
373 // Update liveins for basic blocks in the path
374 for (auto BI = idf_begin(CopyIMBB), BE = idf_end(CopyDefIMBB); BI != BE;
375 ++BI)
376 if (*BI != CopyDefIMBB)
377 BI->addLiveIn(X86::EFLAGS);
378 ProcessNextCopyI:
379 CopyIIt = NCopyIIt;
380 }
381 Copies.set_subtract(RemovedCopies);
382 }
383
384 // For the rest of copies that cannot be eliminated by NF transform, we use
385 // setcc to preserve the flags in GPR32 before OP1, and recheck its value
386 // before using the flags, e.g.
387 //
388 // %1:gr64 = COPY $eflags
389 // OP1 implicit-def dead $eflags
390 // $eflags = COPY %1
391 // OP2 cc, implicit $eflags
392 //
393 // ->
394 //
395 // %1:gr8 = SETCCr cc, implicit $eflags
396 // OP1 implicit-def dead $eflags
397 // TEST8rr %1, %1, implicit-def $eflags
398 // OP2 ne, implicit $eflags
399 for (MachineInstr *CopyI : Copies) {
400 MachineBasicBlock &MBB = *CopyI->getParent();
401
402 MachineOperand &VOp = CopyI->getOperand(1);
403 assert(VOp.isReg() &&
404 "The input to the copy for EFLAGS should always be a register!");
405 MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
406 if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
407 // FIXME: The big likely candidate here are PHI nodes. We could in theory
408 // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
409 // enough that it is probably better to change every other part of LLVM
410 // to avoid creating them. The issue is that once we have PHIs we won't
411 // know which original EFLAGS value we need to capture with our setCCs
412 // below. The end result will be computing a complete set of setCCs that
413 // we *might* want, computing them in every place where we copy *out* of
414 // EFLAGS and then doing SSA formation on all of them to insert necessary
415 // PHI nodes and consume those here. Then hoping that somehow we DCE the
416 // unnecessary ones. This DCE seems very unlikely to be successful and so
417 // we will almost certainly end up with a glut of dead setCC
418 // instructions. Until we have a motivating test case and fail to avoid
419 // it by changing other parts of LLVM's lowering, we refuse to handle
420 // this complex case here.
422 dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
423 CopyDefI.dump());
425 "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
426 }
427
428 auto Cleanup = make_scope_exit([&] {
429 // All uses of the EFLAGS copy are now rewritten, kill the copy into
430 // eflags and if dead the copy from.
431 CopyI->eraseFromParent();
432 if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
433 CopyDefI.eraseFromParent();
434 ++NumCopiesEliminated;
435 });
436
437 MachineOperand &DOp = CopyI->getOperand(0);
438 assert(DOp.isDef() && "Expected register def!");
439 assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
440 if (DOp.isDead())
441 continue;
442
443 MachineBasicBlock *TestMBB = CopyDefI.getParent();
444 auto TestPos = CopyDefI.getIterator();
445 DebugLoc TestLoc = CopyDefI.getDebugLoc();
446
447 LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
448
449 // Walk up across live-in EFLAGS to find where they were actually def'ed.
450 //
451 // This copy's def may just be part of a region of blocks covered by
452 // a single def of EFLAGS and we want to find the top of that region where
453 // possible.
454 //
455 // This is essentially a search for a *candidate* reaching definition
456 // location. We don't need to ever find the actual reaching definition here,
457 // but we want to walk up the dominator tree to find the highest point which
458 // would be viable for such a definition.
459 auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
461 // Scan backwards as we expect these to be relatively short and often find
462 // a clobber near the end.
463 return llvm::any_of(
465 // Flag any instruction (other than the copy we are
466 // currently rewriting) that defs EFLAGS.
467 return &MI != CopyI &&
468 MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
469 });
470 };
471 auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
472 MachineBasicBlock *EndMBB) {
473 assert(MDT->dominates(BeginMBB, EndMBB) &&
474 "Only support paths down the dominator tree!");
477 // We terminate at the beginning. No need to scan it.
478 Visited.insert(BeginMBB);
479 Worklist.push_back(EndMBB);
480 do {
481 auto *MBB = Worklist.pop_back_val();
482 for (auto *PredMBB : MBB->predecessors()) {
483 if (!Visited.insert(PredMBB).second)
484 continue;
485 if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
486 return true;
487 // Enqueue this block to walk its predecessors.
488 Worklist.push_back(PredMBB);
489 }
490 } while (!Worklist.empty());
491 // No clobber found along a path from the begin to end.
492 return false;
493 };
494 while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
495 !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
496 // Find the nearest common dominator of the predecessors, as
497 // that will be the best candidate to hoist into.
498 MachineBasicBlock *HoistMBB =
499 std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
500 *TestMBB->pred_begin(),
501 [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
502 return MDT->findNearestCommonDominator(LHS, RHS);
503 });
504
505 // Now we need to scan all predecessors that may be reached along paths to
506 // the hoist block. A clobber anywhere in any of these blocks the hoist.
507 // Note that this even handles loops because we require *no* clobbers.
508 if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
509 break;
510
511 // We also need the terminators to not sneakily clobber flags.
512 if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
513 HoistMBB->instr_end()))
514 break;
515
516 // We found a viable location, hoist our test position to it.
517 TestMBB = HoistMBB;
518 TestPos = TestMBB->getFirstTerminator()->getIterator();
519 // Clear the debug location as it would just be confusing after hoisting.
520 TestLoc = DebugLoc();
521 }
522 LLVM_DEBUG({
523 auto DefIt = llvm::find_if(
524 llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
525 [&](MachineInstr &MI) {
526 return MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
527 });
528 if (DefIt.base() != TestMBB->instr_begin()) {
529 dbgs() << " Using EFLAGS defined by: ";
530 DefIt->dump();
531 } else {
532 dbgs() << " Using live-in flags for BB:\n";
533 TestMBB->dump();
534 }
535 });
536
537 // While rewriting uses, we buffer jumps and rewrite them in a second pass
538 // because doing so will perturb the CFG that we are walking to find the
539 // uses in the first place.
541
542 // Gather the condition flags that have already been preserved in
543 // registers. We do this from scratch each time as we expect there to be
544 // very few of them and we expect to not revisit the same copy definition
545 // many times. If either of those change sufficiently we could build a map
546 // of these up front instead.
547 CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
548
549 // Collect the basic blocks we need to scan. Typically this will just be
550 // a single basic block but we may have to scan multiple blocks if the
551 // EFLAGS copy lives into successors.
554 Blocks.push_back(&MBB);
555
556 do {
557 MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
558
559 // Track when if/when we find a kill of the flags in this block.
560 bool FlagsKilled = false;
561
562 // In most cases, we walk from the beginning to the end of the block. But
563 // when the block is the same block as the copy is from, we will visit it
564 // twice. The first time we start from the copy and go to the end. The
565 // second time we start from the beginning and go to the copy. This lets
566 // us handle copies inside of cycles.
567 // FIXME: This loop is *super* confusing. This is at least in part
568 // a symptom of all of this routine needing to be refactored into
569 // documentable components. Once done, there may be a better way to write
570 // this loop.
571 for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
572 ? std::next(CopyI->getIterator())
573 : UseMBB.instr_begin(),
574 MIE = UseMBB.instr_end();
575 MII != MIE;) {
576 MachineInstr &MI = *MII++;
577 // If we are in the original copy block and encounter either the copy
578 // def or the copy itself, break so that we don't re-process any part of
579 // the block or process the instructions in the range that was copied
580 // over.
581 if (&MI == CopyI || &MI == &CopyDefI) {
582 assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
583 "Should only encounter these on the second pass over the "
584 "original block.");
585 break;
586 }
587
588 MachineOperand *FlagUse =
589 MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr);
590 FlagsKilled = MI.modifiesRegister(X86::EFLAGS, TRI);
591
592 if (!FlagUse && FlagsKilled)
593 break;
594 else if (!FlagUse)
595 continue;
596
597 LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
598
599 // Check the kill flag before we rewrite as that may change it.
600 if (FlagUse->isKill())
601 FlagsKilled = true;
602
603 // Once we encounter a branch, the rest of the instructions must also be
604 // branches. We can't rewrite in place here, so we handle them below.
605 //
606 // Note that we don't have to handle tail calls here, even conditional
607 // tail calls, as those are not introduced into the X86 MI until post-RA
608 // branch folding or black placement. As a consequence, we get to deal
609 // with the simpler formulation of conditional branches followed by tail
610 // calls.
612 auto JmpIt = MI.getIterator();
613 do {
614 JmpIs.push_back(&*JmpIt);
615 ++JmpIt;
616 } while (JmpIt != UseMBB.instr_end() &&
618 break;
619 }
620
621 // Otherwise we can just rewrite in-place.
622 unsigned Opc = MI.getOpcode();
623 if (Opc == TargetOpcode::COPY) {
624 // Just replace this copy with the original copy def.
625 MRI->replaceRegWith(MI.getOperand(0).getReg(),
626 CopyDefI.getOperand(0).getReg());
627 MI.eraseFromParent();
628 } else if (X86::isSETCC(Opc) || X86::isSETZUCC(Opc)) {
629 rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, CondRegs);
630 } else if (isArithmeticOp(Opc)) {
631 rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, CondRegs);
632 } else {
633 rewriteMI(*TestMBB, TestPos, TestLoc, MI, CondRegs);
634 }
635
636 // If this was the last use of the flags, we're done.
637 if (FlagsKilled)
638 break;
639 }
640
641 // If the flags were killed, we're done with this block.
642 if (FlagsKilled)
643 continue;
644
645 // Otherwise we need to scan successors for ones where the flags live-in
646 // and queue those up for processing.
647 for (MachineBasicBlock *SuccMBB : UseMBB.successors())
648 if (SuccMBB->isLiveIn(X86::EFLAGS) &&
649 VisitedBlocks.insert(SuccMBB).second) {
650 // We currently don't do any PHI insertion and so we require that the
651 // test basic block dominates all of the use basic blocks. Further, we
652 // can't have a cycle from the test block back to itself as that would
653 // create a cycle requiring a PHI to break it.
654 //
655 // We could in theory do PHI insertion here if it becomes useful by
656 // just taking undef values in along every edge that we don't trace
657 // this EFLAGS copy along. This isn't as bad as fully general PHI
658 // insertion, but still seems like a great deal of complexity.
659 //
660 // Because it is theoretically possible that some earlier MI pass or
661 // other lowering transformation could induce this to happen, we do
662 // a hard check even in non-debug builds here.
663 if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
664 LLVM_DEBUG({
665 dbgs()
666 << "ERROR: Encountered use that is not dominated by our test "
667 "basic block! Rewriting this would require inserting PHI "
668 "nodes to track the flag state across the CFG.\n\nTest "
669 "block:\n";
670 TestMBB->dump();
671 dbgs() << "Use block:\n";
672 SuccMBB->dump();
673 });
675 "Cannot lower EFLAGS copy when original copy def "
676 "does not dominate all uses.");
677 }
678
679 Blocks.push_back(SuccMBB);
680
681 // After this, EFLAGS will be recreated before each use.
682 SuccMBB->removeLiveIn(X86::EFLAGS);
683 }
684 } while (!Blocks.empty());
685
686 // Now rewrite the jumps that use the flags. These we handle specially
687 // because if there are multiple jumps in a single basic block we'll have
688 // to do surgery on the CFG.
689 MachineBasicBlock *LastJmpMBB = nullptr;
690 for (MachineInstr *JmpI : JmpIs) {
691 // Past the first jump within a basic block we need to split the blocks
692 // apart.
693 if (JmpI->getParent() == LastJmpMBB)
694 splitBlock(*JmpI->getParent(), *JmpI, *TII);
695 else
696 LastJmpMBB = JmpI->getParent();
697
698 rewriteMI(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
699 }
700
701 // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
702 // the copy's def operand is itself a kill.
703 }
704
705#ifndef NDEBUG
706 for (MachineBasicBlock &MBB : MF)
707 for (MachineInstr &MI : MBB)
708 if (MI.getOpcode() == TargetOpcode::COPY &&
709 (MI.getOperand(0).getReg() == X86::EFLAGS ||
710 MI.getOperand(1).getReg() == X86::EFLAGS)) {
711 LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
712 MI.dump());
713 llvm_unreachable("Unlowered EFLAGS copy!");
714 }
715#endif
716
717 return true;
718}
719
720/// Collect any conditions that have already been set in registers so that we
721/// can re-use them rather than adding duplicates.
722CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
724 CondRegArray CondRegs = {};
725
726 // Scan backwards across the range of instructions with live EFLAGS.
727 for (MachineInstr &MI :
730 if (Cond != X86::COND_INVALID && !MI.mayStore() &&
731 MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
732 assert(MI.getOperand(0).isDef() &&
733 "A non-storing SETcc should always define a register!");
734 CondRegs[Cond] = MI.getOperand(0).getReg();
735 }
736
737 // Stop scanning when we see the first definition of the EFLAGS as prior to
738 // this we would potentially capture the wrong flag state.
739 if (MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr))
740 break;
741 }
742 return CondRegs;
743}
744
745Register X86FlagsCopyLoweringPass::promoteCondToReg(
747 const DebugLoc &TestLoc, X86::CondCode Cond) {
748 Register Reg = MRI->createVirtualRegister(PromoteRC);
749 auto SetI = BuildMI(TestMBB, TestPos, TestLoc, TII->get(X86::SETCCr), Reg)
750 .addImm(Cond);
751 (void)SetI;
752 LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
753 ++NumSetCCsInserted;
754 return Reg;
755}
756
757std::pair<Register, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
759 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
760 Register &CondReg = CondRegs[Cond];
761 Register &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
762 if (!CondReg && !InvCondReg)
763 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
764
765 if (CondReg)
766 return {CondReg, false};
767 else
768 return {InvCondReg, true};
769}
770
771void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
773 const DebugLoc &Loc, Register Reg) {
774 auto TestI =
775 BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
776 (void)TestI;
777 LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
778 ++NumTestsInserted;
779}
780
781void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &MBB,
783 const DebugLoc &Loc,
785 CondRegArray &CondRegs) {
787 // Note that we can't usefully rewrite this to the inverse without complex
788 // analysis of the users of the setCC. Largely we rely on duplicates which
789 // could have been avoided already being avoided here.
790 Register &CondReg = CondRegs[Cond];
791 if (!CondReg)
792 CondReg = promoteCondToReg(MBB, Pos, Loc, Cond);
793
794 if (X86::isSETZUCC(MI.getOpcode())) {
795 // SETZUCC is generated for register only for now.
796 assert(!MI.mayStore() && "Cannot handle memory variants");
797 assert(MI.getOperand(0).isReg() &&
798 "Cannot have a non-register defined operand to SETZUcc!");
799 Register OldReg = MI.getOperand(0).getReg();
800 // Drop Kill flags on the old register before replacing. CondReg may have
801 // a longer live range.
802 MRI->clearKillFlags(OldReg);
803 for (auto &Use : MRI->use_instructions(OldReg)) {
804 assert(Use.getOpcode() == X86::INSERT_SUBREG &&
805 "SETZUCC should be only used by INSERT_SUBREG");
806 Use.getOperand(2).setReg(CondReg);
807 // Recover MOV32r0 before INSERT_SUBREG, which removed by SETZUCC.
808 Register ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
809 BuildMI(*Use.getParent(), &Use, Use.getDebugLoc(), TII->get(X86::MOV32r0),
810 ZeroReg);
811 Use.getOperand(1).setReg(ZeroReg);
812 }
813 MI.eraseFromParent();
814 return;
815 }
816
817 // Rewriting a register def is trivial: we just replace the register and
818 // remove the setcc.
819 if (!MI.mayStore()) {
820 assert(MI.getOperand(0).isReg() &&
821 "Cannot have a non-register defined operand to SETcc!");
822 Register OldReg = MI.getOperand(0).getReg();
823 // Drop Kill flags on the old register before replacing. CondReg may have
824 // a longer live range.
825 MRI->clearKillFlags(OldReg);
826 MRI->replaceRegWith(OldReg, CondReg);
827 MI.eraseFromParent();
828 return;
829 }
830
831 // Otherwise, we need to emit a store.
832 auto MIB = BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
833 TII->get(X86::MOV8mr));
834 // Copy the address operands.
835 for (int i = 0; i < X86::AddrNumOperands; ++i)
836 MIB.add(MI.getOperand(i));
837
838 MIB.addReg(CondReg);
839 MIB.setMemRefs(MI.memoperands());
840 MI.eraseFromParent();
841}
842
843void X86FlagsCopyLoweringPass::rewriteArithmetic(
845 const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs) {
846 // Arithmetic is either reading CF or OF.
847 X86::CondCode Cond = X86::COND_B; // CF == 1
848 // The addend to use to reset CF or OF when added to the flag value.
849 // Set up an addend that when one is added will need a carry due to not
850 // having a higher bit available.
851 int Addend = 255;
852
853 // Now get a register that contains the value of the flag input to the
854 // arithmetic. We require exactly this flag to simplify the arithmetic
855 // required to materialize it back into the flag.
856 Register &CondReg = CondRegs[Cond];
857 if (!CondReg)
858 CondReg = promoteCondToReg(MBB, Pos, Loc, Cond);
859
860 // Insert an instruction that will set the flag back to the desired value.
861 Register TmpReg = MRI->createVirtualRegister(PromoteRC);
862 auto AddI =
863 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
864 TII->get(Subtarget->hasNDD() ? X86::ADD8ri_ND : X86::ADD8ri))
865 .addDef(TmpReg, RegState::Dead)
866 .addReg(CondReg)
867 .addImm(Addend);
868 (void)AddI;
869 LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
870 ++NumAddsInserted;
871 MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true);
872}
873
875#define FROM_TO(A, B) \
876 case X86::CMOV##A##_Fp32: \
877 case X86::CMOV##A##_Fp64: \
878 case X86::CMOV##A##_Fp80: \
879 return X86::COND_##B;
880
881 switch (Opc) {
882 default:
883 return X86::COND_INVALID;
884 FROM_TO(B, B)
885 FROM_TO(E, E)
886 FROM_TO(P, P)
887 FROM_TO(BE, BE)
888 FROM_TO(NB, AE)
889 FROM_TO(NE, NE)
890 FROM_TO(NP, NP)
891 FROM_TO(NBE, A)
892 }
893#undef FROM_TO
894}
895
896static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC) {
897 assert((CC == X86::COND_E || CC == X86::COND_NE) && "Unexpected CC");
898#define CASE(A) \
899 case X86::CMOVB_##A: \
900 case X86::CMOVE_##A: \
901 case X86::CMOVP_##A: \
902 case X86::CMOVBE_##A: \
903 case X86::CMOVNB_##A: \
904 case X86::CMOVNE_##A: \
905 case X86::CMOVNP_##A: \
906 case X86::CMOVNBE_##A: \
907 return (CC == X86::COND_E) ? X86::CMOVE_##A : X86::CMOVNE_##A;
908 switch (Opc) {
909 default:
910 llvm_unreachable("Unexpected opcode");
911 CASE(Fp32)
912 CASE(Fp64)
913 CASE(Fp80)
914 }
915#undef CASE
916}
917
918void X86FlagsCopyLoweringPass::rewriteMI(MachineBasicBlock &MBB,
920 const DebugLoc &Loc, MachineInstr &MI,
921 CondRegArray &CondRegs) {
922 // First get the register containing this specific condition.
923 bool IsImplicitCC = false;
925 if (CC == X86::COND_INVALID) {
926 CC = getImplicitCondFromMI(MI.getOpcode());
927 IsImplicitCC = true;
928 }
929 assert(CC != X86::COND_INVALID && "Unknown EFLAG user!");
930 Register CondReg;
931 bool Inverted;
932 std::tie(CondReg, Inverted) =
933 getCondOrInverseInReg(MBB, Pos, Loc, CC, CondRegs);
934
935 // Insert a direct test of the saved register.
936 insertTest(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), CondReg);
937
938 // Rewrite the instruction to use the !ZF flag from the test, and then kill
939 // its use of the flags afterward.
940 X86::CondCode NewCC = Inverted ? X86::COND_E : X86::COND_NE;
941 if (IsImplicitCC)
942 MI.setDesc(TII->get(getOpcodeWithCC(MI.getOpcode(), NewCC)));
943 else
944 MI.getOperand(MI.getDesc().getNumOperands() - 1).setImm(NewCC);
945
946 MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true);
947 LLVM_DEBUG(dbgs() << " fixed instruction: "; MI.dump());
948}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
static const HTTPClientCleanup Cleanup
Definition: HTTPClient.cpp:42
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
MachineInstr unsigned OpIdx
#define P(N)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
SI Lower i1 Copies
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static X86::CondCode getImplicitCondFromMI(unsigned Opc)
@ InevitableClobber
@ EvitableClobber
X86 EFLAGS copy false
#define FROM_TO(A, B)
static MachineBasicBlock & splitBlock(MachineBasicBlock &MBB, MachineInstr &SplitI, const X86InstrInfo &TII)
static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC)
cl::opt< bool > X86EnableAPXForRelocation
#define CASE(A)
static bool isArithmeticOp(unsigned Opc)
#define DEBUG_TYPE
static EFLAGSClobber getClobberType(const MachineInstr &MI)
X86 EFLAGS copy lowering
Represent the analysis usage information of a pass.
AnalysisUsage & addUsedIfAvailable()
Add the specified Pass class to the set of analyses used by this pass.
A debug info location.
Definition: DebugLoc.h:124
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
instr_iterator instr_begin()
LLVM_ABI void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New)
Replace successor OLD with NEW and update probability info.
LLVM_ABI MachineBasicBlock * getFallThrough(bool JumpToFallThrough=true)
Return the fallthrough block if the block can implicitly transfer control to the block after it by fa...
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void dump() const
LLVM_ABI void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I)
Copy a successor (and any probability info) from original block to this block's.
instr_iterator instr_end()
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
LLVM_ABI bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
LLVM_ABI bool isLiveIn(MCRegister Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:72
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:587
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:359
bool isBranch(QueryType Type=AnyInBundle) const
Returns true if this is a conditional, unconditional, or indirect branch.
Definition: MachineInstr.h:982
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:511
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void dump() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
void setMBB(MachineBasicBlock *MBB)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0)
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
void dump() const
Definition: Pass.cpp:146
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:168
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
bool empty() const
Definition: SmallVector.h:82
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Dead
Unused definition.
Reg
All possible values of the reg field in the ModR/M byte.
CondCode getCondFromBranch(const MachineInstr &MI)
CondCode getCondFromMI(const MachineInstr &MI)
Return the condition code of the instruction.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
CondCode getCondFromSETCC(const MachineInstr &MI)
@ AddrNumOperands
Definition: X86BaseInfo.h:36
unsigned getNFVariant(unsigned Opc)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool isAddMemInstrWithRelocation(const MachineInstr &MI)
Definition: X86InstrInfo.h:177
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FunctionPass * createX86FlagsCopyLoweringPass()
Return a pass that lowers EFLAGS copy pseudo instructions.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition: Error.cpp:167
idf_iterator< T > idf_end(const T &G)
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1854
idf_iterator< T > idf_begin(const T &G)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777