LLVM 22.0.0git
X86ISelLowering.h
Go to the documentation of this file.
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that X86 uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
16
19
20namespace llvm {
21 class X86Subtarget;
22 class X86TargetMachine;
23
24 namespace X86ISD {
25 // X86 Specific DAG Nodes
26 enum NodeType : unsigned {
27 // Start the numbering where the builtin ops leave off.
29
30 /// Bit scan forward.
32 /// Bit scan reverse.
34
35 /// X86 funnel/double shift i16 instructions. These correspond to
36 /// X86::SHLDW and X86::SHRDW instructions which have different amt
37 /// modulo rules to generic funnel shifts.
38 /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD.
41
42 /// Bitwise logical AND of floating point values. This corresponds
43 /// to X86::ANDPS or X86::ANDPD.
45
46 /// Bitwise logical OR of floating point values. This corresponds
47 /// to X86::ORPS or X86::ORPD.
49
50 /// Bitwise logical XOR of floating point values. This corresponds
51 /// to X86::XORPS or X86::XORPD.
53
54 /// Bitwise logical ANDNOT of floating point values. This
55 /// corresponds to X86::ANDNPS or X86::ANDNPD.
57
58 /// These operations represent an abstract X86 call
59 /// instruction, which includes a bunch of information. In particular the
60 /// operands of these node are:
61 ///
62 /// #0 - The incoming token chain
63 /// #1 - The callee
64 /// #2 - The number of arg bytes the caller pushes on the stack.
65 /// #3 - The number of arg bytes the callee pops off the stack.
66 /// #4 - The value to pass in AL/AX/EAX (optional)
67 /// #5 - The value to pass in DL/DX/EDX (optional)
68 ///
69 /// The result values of these nodes are:
70 ///
71 /// #0 - The outgoing token chain
72 /// #1 - The first register result value (optional)
73 /// #2 - The second register result value (optional)
74 ///
76
77 /// Same as call except it adds the NoTrack prefix.
79
80 // Pseudo for a OBJC call that gets emitted together with a special
81 // marker instruction.
83
84 /// The same as ISD::CopyFromReg except that this node makes it explicit
85 /// that it may lower to an x87 FPU stack pop. Optimizations should be more
86 /// cautious when handling this node than a normal CopyFromReg to avoid
87 /// removing a required FPU stack pop. A key requirement is optimizations
88 /// should not optimize any users of a chain that contains a
89 /// POP_FROM_X87_REG to use a chain from a point earlier than the
90 /// POP_FROM_X87_REG (which may remove a required FPU stack pop).
92
93 // Pseudo for a call to an imported function to ensure the correct machine
94 // instruction is emitted for Import Call Optimization.
96
97 /// X86 compare and logical compare instructions.
102
103 // X86 compare with Intrinsics similar to COMI.
106
107 /// X86 bit-test instructions.
109
110 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
111 /// operand, usually produced by a CMP instruction.
113
114 /// X86 Select
116
117 // Same as SETCC except it's materialized with a sbb and the value is all
118 // one's or all zero's.
119 SETCC_CARRY, // R = carry_bit ? ~0 : 0
120
121 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
122 /// Operands are two FP values to compare; result is a mask of
123 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
125
126 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
127 /// and a version with SAE.
130
131 /// X86 conditional moves. Operand 0 and operand 1 are the two values
132 /// to select from. Operand 2 is the condition code, and operand 3 is the
133 /// flag operand produced by a CMP or TEST instruction.
135
136 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
137 /// is the block to branch if condition is true, operand 2 is the
138 /// condition code, and operand 3 is the flag operand produced by a CMP
139 /// or TEST instruction.
141
142 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
143 /// operand 1 is the target address.
145
146 /// Return with a glue operand. Operand 0 is the chain operand, operand
147 /// 1 is the number of bytes of stack to pop.
149
150 /// Return from interrupt. Operand 0 is the number of bytes to pop.
152
153 /// Repeat fill, corresponds to X86::REP_STOSx.
155
156 /// Repeat move, corresponds to X86::REP_MOVSx.
158
159 /// On Darwin, this node represents the result of the popl
160 /// at function entry, used for PIC code.
162
163 /// A wrapper node for TargetConstantPool, TargetJumpTable,
164 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
165 /// MCSymbol and TargetBlockAddress.
167
168 /// Special wrapper used under X86-64 PIC mode for RIP
169 /// relative displacements.
171
172 /// Copies a 64-bit value from an MMX vector to the low word
173 /// of an XMM vector, with the high word zero filled.
175
176 /// Copies a 64-bit value from the low word of an XMM vector
177 /// to an MMX vector.
179
180 /// Copies a 32-bit value from the low word of a MMX
181 /// vector to a GPR.
183
184 /// Copies a GPR into the low 32-bit word of a MMX vector
185 /// and zero out the high word.
187
188 /// Extract an 8-bit value from a vector and zero extend it to
189 /// i32, corresponds to X86::PEXTRB.
191
192 /// Extract a 16-bit value from a vector and zero extend it to
193 /// i32, corresponds to X86::PEXTRW.
195
196 /// Insert any element of a 4 x float vector into any element
197 /// of a destination 4 x floatvector.
199
200 /// Insert the lower 8-bits of a 32-bit value to a vector,
201 /// corresponds to X86::PINSRB.
203
204 /// Insert the lower 16-bits of a 32-bit value to a vector,
205 /// corresponds to X86::PINSRW.
207
208 /// Shuffle 16 8-bit values within a vector.
210
211 /// Compute Sum of Absolute Differences.
213 /// Compute Double Block Packed Sum-Absolute-Differences
215
216 /// Bitwise Logical AND NOT of Packed FP values.
218
219 /// Blend where the selector is an immediate.
221
222 /// Dynamic (non-constant condition) vector blend where only the sign bits
223 /// of the condition elements are used. This is used to enforce that the
224 /// condition mask is not valid for generic VSELECT optimizations. This
225 /// is also used to implement the intrinsics.
226 /// Operands are in VSELECT order: MASK, TRUE, FALSE
228
229 /// Combined add and sub on an FP vector.
231
232 // FP vector ops with rounding mode.
252
253 // FP vector get exponent.
258 // Extract Normalized Mantissas.
263 // FP Scale.
268
269 /// Integer horizontal add/sub.
272
273 /// Floating point horizontal add/sub.
276
277 // Detect Conflicts Within a Vector
279
280 /// Floating point max and min.
283
284 /// Commutative FMIN and FMAX.
287
288 /// Scalar intrinsic floating point max and min.
291
292 /// Floating point reciprocal-sqrt and reciprocal approximation.
293 /// Note that these typically require refinement
294 /// in order to obtain suitable precision.
297
298 // AVX-512 reciprocal approximations with a little more precision.
303
304 // Thread Local Storage.
306
307 // Thread Local Storage. A call to get the start address
308 // of the TLS block for the current module.
310
311 // Thread Local Storage. When calling to an OS provided
312 // thunk at the address from an earlier relocation.
314
315 // Thread Local Storage. A descriptor containing pointer to
316 // code and to argument to get the TLS offset for the symbol.
318
319 // Exception Handling helpers.
321
322 // SjLj exception handling setjmp.
324
325 // SjLj exception handling longjmp.
327
328 // SjLj exception handling dispatch.
330
331 /// Tail call return. See X86TargetLowering::LowerCall for
332 /// the list of operands.
334
335 // Vector move to low scalar and zero higher vector elements.
337
338 // Vector integer truncate.
340 // Vector integer truncate with unsigned/signed saturation.
343
344 // Masked version of the above. Used when less than a 128-bit result is
345 // produced since the mask only applies to the lower elements and can't
346 // be represented by a select.
347 // SRC, PASSTHRU, MASK
351
352 // Vector FP extend.
357
358 // Vector FP round.
360 // Convert TWO packed single data to one packed data
366
367 // Masked version of above. Used for v2f64->v4f32.
368 // SRC, PASSTHRU, MASK
370
371 // 128-bit vector logical left / right shift
374
375 // Vector shift elements
379
380 // Vector variable shift
384
385 // Vector shift elements by immediate
389
390 // Shifts of mask registers.
393
394 // Bit rotate by immediate
397
398 // Vector packed double/float comparison.
400
401 // Vector integer comparisons.
404
405 // v8i16 Horizontal minimum and position.
407
409
410 /// Vector comparison generating mask bits for fp and
411 /// integer signed and unsigned data types.
413 // Vector mask comparison generating mask bits for FP values.
415 // Vector mask comparison with SAE for FP values.
417
418 // Arithmetic operations with FLAGS results.
428
429 // Bit field extract.
432
433 // Zero High Bits Starting with Specified Bit Position.
435
436 // Parallel extract and deposit.
439
440 // X86-specific multiply by immediate.
442
443 // Vector sign bit extraction.
445
446 // Vector bitwise comparisons.
448
449 // Vector packed fp sign bitwise comparisons.
451
452 // OR/AND test for masks.
455
456 // ADD for masks.
458
459 // Several flavors of instructions with vector shuffle behaviors.
460 // Saturated signed/unnsigned packing.
463 // Intra-lane alignr.
465 // AVX512 inter-lane alignr.
471 // VBMI2 Concat & Shift.
476 // Shuffle Packed Values at 128-bit granularity.
492
493 // Variable Permute (VPERM).
494 // Res = VPERMV MaskV, V0
496
497 // 3-op Variable Permute (VPERMT2).
498 // Res = VPERMV3 V0, MaskV, V1
500
501 // Bitwise ternary logic.
503 // Fix Up Special Packed Float32/64 values.
508 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
513 // Reduce - Perform Reduction Transformation on scalar\packed FP.
518 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
519 // Also used by the legacy (V)ROUND intrinsics where we mask out the
520 // scaling part of the immediate.
525 // Tests Types Of a FP Values for packed types.
527 // Tests Types Of a FP Values for scalar types.
529
530 // Broadcast (splat) scalar or element 0 of a vector. If the operand is
531 // a vector, this node may change the vector length as part of the splat.
533 // Broadcast mask to vector.
535
536 /// SSE4A Extraction and Insertion.
539
540 // XOP arithmetic/logical shifts.
543 // XOP signed/unsigned integer comparisons.
546 // XOP packed permute bytes.
548 // XOP two source permutation.
550
551 // Vector multiply packed unsigned doubleword integers.
553 // Vector multiply packed signed doubleword integers.
555 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
557
558 // Multiply and Add Packed Integers.
561
562 // AVX512IFMA multiply and add.
563 // NOTE: These are different than the instruction and perform
564 // op0 x op1 + op2.
567
568 // VNNI
573
574 // FMA nodes.
575 // We use the target independent ISD::FMA for the non-inverted case.
581
582 // FMA with rounding mode.
589
590 // AVX512-FP16 complex addition and multiplication.
595
600
605
610
617
624
629
638
640
662
663 // Compress and expand.
666
667 // Bits shuffle
669
670 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
677
678 // Vector float/double to signed/unsigned integer.
683 // Scalar float/double to signed/unsigned integer.
688
689 // Vector float/double to signed/unsigned integer with truncation.
694
695 // Saturation enabled Vector float/double to signed/unsigned
696 // integer with truncation.
701 // Masked versions of above. Used for v2f64 to v4i32.
702 // SRC, PASSTHRU, MASK
705
706 // Scalar float/double to signed/unsigned integer with truncation.
711
712 // Vector signed/unsigned integer to float/double.
715
716 // Scalar float/double to signed/unsigned integer with saturation.
721
722 // Masked versions of above. Used for v2f64->v4f32.
723 // SRC, PASSTHRU, MASK
730
731 // Custom handling for FP_TO_xINT_SAT
734
735 // Vector float to bfloat16.
736 // Convert packed single data to packed BF16 data
738 // Masked version of above.
739 // SRC, PASSTHRU, MASK
741
742 // Dot product of BF16/FP16 pairs to accumulated into
743 // packed single precision.
746
747 // A stack checking function call. On Windows it's _chkstk call.
749
750 // For allocating variable amounts of stack space when using
751 // segmented stacks. Check if the current stacklet has enough space, and
752 // falls back to heap allocation if not.
754
755 // For allocating stack space when using stack clash protector.
756 // Allocation is performed by block, and each block is probed.
758
759 // Memory barriers.
761
762 // Get a random integer and indicate whether it is valid in CF.
764
765 // Get a NIST SP800-90B & C compliant random integer and
766 // indicate whether it is valid in CF.
768
769 // Protection keys
770 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
771 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
772 // value for ECX.
775
776 // SSE42 string comparisons.
777 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
778 // will emit one or two instructions based on which results are used. If
779 // flags and index/mask this allows us to use a single instruction since
780 // we won't have to pick and opcode for flags. Instead we can rely on the
781 // DAG to CSE everything and decide at isel.
784
785 // Test if in transactional execution.
787
788 // Conversions between float and half-float.
793
794 // Masked version of above.
795 // SRC, RND, PASSTHRU, MASK
798
799 // Galois Field Arithmetic Instructions
803
804 // LWP insert record.
806
807 // User level wait
810
811 // Enqueue Stores Instructions
814
815 // For avx512-vp2intersect
817
818 // User level interrupts - testui
820
821 // Perform an FP80 add after changing precision control in FPCW.
823
824 // Conditional compare instructions
827
828 /// X86 strict FP compare instructions.
832
833 // Vector packed double/float comparison.
835
836 /// Vector comparison generating mask bits for fp and
837 /// integer signed and unsigned data types.
839
840 // Vector float/double to signed/unsigned integer with truncation.
843
844 // Vector FP extend.
846
847 // Vector FP round.
849
850 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
851 // Also used by the legacy (V)ROUND intrinsics where we mask out the
852 // scaling part of the immediate.
854
855 // Vector signed/unsigned integer to float/double.
858
859 // Strict FMA nodes.
863
864 // Conversions between float and half-float.
867
868 // Perform an FP80 add after changing precision control in FPCW.
870
871 /// Floating point max and min.
875
876 // Compare and swap.
882
883 /// LOCK-prefixed arithmetic read-modify-write instructions.
884 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
896
897 /// RAO arithmetic instructions.
898 /// OUTCHAIN = AADD(INCHAIN, PTR, RHS)
903
904 // Load, scalar_to_vector, and zero extend.
906
907 // extract_vector_elt, store.
909
910 // scalar broadcast from memory.
912
913 // subvector broadcast from memory.
915
916 // Store FP control word into i16 memory.
918
919 // Load FP control word from i16 memory.
921
922 // Store x87 FPU environment into memory.
924
925 // Load x87 FPU environment from memory.
927
928 /// This instruction implements FP_TO_SINT with the
929 /// integer destination in memory and a FP reg source. This corresponds
930 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
931 /// has two inputs (token chain and address) and two outputs (int value
932 /// and token chain). Memory VT specifies the type to store to.
934
935 /// This instruction implements SINT_TO_FP with the
936 /// integer source in memory and FP reg result. This corresponds to the
937 /// X86::FILD*m instructions. It has two inputs (token chain and address)
938 /// and two outputs (FP value and token chain). The integer source type is
939 /// specified by the memory VT.
941
942 /// This instruction implements a fp->int store from FP stack
943 /// slots. This corresponds to the fist instruction. It takes a
944 /// chain operand, value to store, address, and glue. The memory VT
945 /// specifies the type to store as.
947
948 /// This instruction implements an extending load to FP stack slots.
949 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
950 /// operand, and ptr to load from. The memory VT specifies the type to
951 /// load from.
953
954 /// This instruction implements a truncating store from FP stack
955 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
956 /// chain operand, value to store, address, and glue. The memory VT
957 /// specifies the type to store as.
959
960 /// These instructions grab the address of the next argument
961 /// from a va_list. (reads and modifies the va_list in memory)
964
965 // Vector truncating store with unsigned/signed saturation
968 // Vector truncating masked store with unsigned/signed saturation
971
972 // X86 specific gather and scatter
975
976 // Key locker nodes that produce flags.
985
986 /// Compare and Add if Condition is Met. Compare value in operand 2 with
987 /// value in memory of operand 1. If condition of operand 4 is met, add
988 /// value operand 3 to m32 and write new value in operand 1. Operand 2 is
989 /// always updated with the original value from operand 1.
991
992 // Save xmm argument registers to the stack, according to %al. An operator
993 // is needed so that this can be expanded with control flow.
995
996 // Conditional load/store instructions
1000 };
1001 } // end namespace X86ISD
1002
1003 namespace X86 {
1004 /// Current rounding mode is represented in bits 11:10 of FPSR. These
1005 /// values are same as corresponding constants for rounding mode used
1006 /// in glibc.
1008 rmToNearest = 0, // FE_TONEAREST
1009 rmDownward = 1 << 10, // FE_DOWNWARD
1010 rmUpward = 2 << 10, // FE_UPWARD
1011 rmTowardZero = 3 << 10, // FE_TOWARDZERO
1012 rmMask = 3 << 10 // Bit mask selecting rounding mode
1014 }
1015
1016 /// Define some predicates that are used for node matching.
1017 namespace X86 {
1018 /// Returns true if Elt is a constant zero or floating point constant +0.0.
1019 bool isZeroNode(SDValue Elt);
1020
1021 /// Returns true of the given offset can be
1022 /// fit into displacement field of the instruction.
1024 bool hasSymbolicDisplacement);
1025
1026 /// Determines whether the callee is required to pop its
1027 /// own arguments. Callee pop is necessary to support tail calls.
1028 bool isCalleePop(CallingConv::ID CallingConv,
1029 bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
1030
1031 /// If Op is a constant whose elements are all the same constant or
1032 /// undefined, return true and return the constant value in \p SplatVal.
1033 /// If we have undef bits that don't cover an entire element, we treat these
1034 /// as zero if AllowPartialUndefs is set, else we fail and return false.
1035 bool isConstantSplat(SDValue Op, APInt &SplatVal,
1036 bool AllowPartialUndefs = true);
1037
1038 /// Check if Op is a load operation that could be folded into some other x86
1039 /// instruction as a memory operand. Example: vpaddd (%rdi), %xmm0, %xmm0.
1040 bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget,
1041 bool AssumeSingleUse = false);
1042
1043 /// Check if Op is a load operation that could be folded into a vector splat
1044 /// instruction as a memory operand. Example: vbroadcastss 16(%rdi), %xmm2.
1045 bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT,
1046 const X86Subtarget &Subtarget,
1047 bool AssumeSingleUse = false);
1048
1049 /// Check if Op is a value that could be used to fold a store into some
1050 /// other x86 instruction as a memory operand. Ex: pextrb $0, %xmm0, (%rdi).
1051 bool mayFoldIntoStore(SDValue Op);
1052
1053 /// Check if Op is an operation that could be folded into a zero extend x86
1054 /// instruction.
1055 bool mayFoldIntoZeroExtend(SDValue Op);
1056
1057 /// True if the target supports the extended frame for async Swift
1058 /// functions.
1059 bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget,
1060 const MachineFunction &MF);
1061 } // end namespace X86
1062
1063 //===--------------------------------------------------------------------===//
1064 // X86 Implementation of the TargetLowering interface
1065 class X86TargetLowering final : public TargetLowering {
1066 public:
1067 explicit X86TargetLowering(const X86TargetMachine &TM,
1068 const X86Subtarget &STI);
1069
1070 unsigned getJumpTableEncoding() const override;
1071 bool useSoftFloat() const override;
1072
1073 void markLibCallAttributes(MachineFunction *MF, unsigned CC,
1074 ArgListTy &Args) const override;
1075
1076 MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
1077 return MVT::i8;
1078 }
1079
1080 const MCExpr *
1082 const MachineBasicBlock *MBB, unsigned uid,
1083 MCContext &Ctx) const override;
1084
1085 /// Returns relocation base for the given PIC jumptable.
1087 SelectionDAG &DAG) const override;
1088 const MCExpr *
1090 unsigned JTI, MCContext &Ctx) const override;
1091
1092 /// Return the desired alignment for ByVal aggregate
1093 /// function arguments in the caller parameter area. For X86, aggregates
1094 /// that contains are placed at 16-byte boundaries while the rest are at
1095 /// 4-byte boundaries.
1096 Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override;
1097
1098 EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op,
1099 const AttributeList &FuncAttributes) const override;
1100
1101 /// Returns true if it's safe to use load / store of the
1102 /// specified type to expand memcpy / memset inline. This is mostly true
1103 /// for all types except for some special cases. For example, on X86
1104 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
1105 /// also does type conversion. Note the specified type doesn't have to be
1106 /// legal as the hook is used before type legalization.
1107 bool isSafeMemOpType(MVT VT) const override;
1108
1109 bool isMemoryAccessFast(EVT VT, Align Alignment) const;
1110
1111 /// Returns true if the target allows unaligned memory accesses of the
1112 /// specified type. Returns whether it is "fast" in the last argument.
1113 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
1115 unsigned *Fast) const override;
1116
1117 /// This function returns true if the memory access is aligned or if the
1118 /// target allows this specific unaligned memory access. If the access is
1119 /// allowed, the optional final parameter returns a relative speed of the
1120 /// access (as defined by the target).
1121 bool allowsMemoryAccess(
1122 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1123 Align Alignment,
1125 unsigned *Fast = nullptr) const override;
1126
1128 const MachineMemOperand &MMO,
1129 unsigned *Fast) const {
1130 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1131 MMO.getAlign(), MMO.getFlags(), Fast);
1132 }
1133
1134 /// Provide custom lowering hooks for some operations.
1135 ///
1136 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
1137
1138 /// Replace the results of node with an illegal result
1139 /// type with new values built out of custom code.
1140 ///
1142 SelectionDAG &DAG) const override;
1143
1144 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
1145
1146 bool preferABDSToABSWithNSW(EVT VT) const override;
1147
1148 bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT,
1149 EVT ExtVT) const override;
1150
1152 EVT VT) const override;
1153
1154 /// Return true if the target has native support for
1155 /// the specified value type and it is 'desirable' to use the type for the
1156 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1157 /// instruction encodings are longer and some i16 instructions are slow.
1158 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
1159
1160 /// Return true if the target has native support for the
1161 /// specified value type and it is 'desirable' to use the type. e.g. On x86
1162 /// i16 is legal, but undesirable since i16 instruction encodings are longer
1163 /// and some i16 instructions are slow.
1164 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
1165
1166 /// Return prefered fold type, Abs if this is a vector, AddAnd if its an
1167 /// integer, None otherwise.
1170 const SDNode *SETCC0,
1171 const SDNode *SETCC1) const override;
1172
1173 /// Return the newly negated expression if the cost is not expensive and
1174 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
1175 /// do the negation.
1177 bool LegalOperations, bool ForCodeSize,
1179 unsigned Depth) const override;
1180
1183 MachineBasicBlock *MBB) const override;
1184
1185 /// This method returns the name of a target specific DAG node.
1186 const char *getTargetNodeName(unsigned Opcode) const override;
1187
1188 /// Do not merge vector stores after legalization because that may conflict
1189 /// with x86-specific store splitting optimizations.
1190 bool mergeStoresAfterLegalization(EVT MemVT) const override {
1191 return !MemVT.isVector();
1192 }
1193
1194 bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
1195 const MachineFunction &MF) const override;
1196
1197 bool isCheapToSpeculateCttz(Type *Ty) const override;
1198
1199 bool isCheapToSpeculateCtlz(Type *Ty) const override;
1200
1201 bool isCtlzFast() const override;
1202
1203 bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
1204 // If the pair to store is a mixture of float and int values, we will
1205 // save two bitwise instructions and one float-to-int instruction and
1206 // increase one store instruction. There is potentially a more
1207 // significant benefit because it avoids the float->int domain switch
1208 // for input value. So It is more likely a win.
1209 if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
1210 (LTy.isInteger() && HTy.isFloatingPoint()))
1211 return true;
1212 // If the pair only contains int values, we will save two bitwise
1213 // instructions and increase one store instruction (costing one more
1214 // store buffer). Since the benefit is more blurred so we leave
1215 // such pair out until we get testcase to prove it is a win.
1216 return false;
1217 }
1218
1219 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1220
1221 bool hasAndNotCompare(SDValue Y) const override;
1222
1223 bool hasAndNot(SDValue Y) const override;
1224
1225 bool hasBitTest(SDValue X, SDValue Y) const override;
1226
1229 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1230 SelectionDAG &DAG) const override;
1231
1233 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
1234 const APInt &ShiftOrRotateAmt,
1235 const std::optional<APInt> &AndMask) const override;
1236
1237 bool preferScalarizeSplat(SDNode *N) const override;
1238
1239 CondMergingParams
1241 const Value *Rhs) const override;
1242
1244 CombineLevel Level) const override;
1245
1246 bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
1247
1248 bool
1250 unsigned KeptBits) const override {
1251 // For vectors, we don't have a preference..
1252 if (XVT.isVector())
1253 return false;
1254
1255 auto VTIsOk = [](EVT VT) -> bool {
1256 return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
1257 VT == MVT::i64;
1258 };
1259
1260 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
1261 // XVT will be larger than KeptBitsVT.
1262 MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
1263 return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
1264 }
1265
1268 unsigned ExpansionFactor) const override;
1269
1270 bool shouldSplatInsEltVarIndex(EVT VT) const override;
1271
1272 bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override {
1273 // Converting to sat variants holds little benefit on X86 as we will just
1274 // need to saturate the value back using fp arithmatic.
1276 }
1277
1278 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
1279 return VT.isScalarInteger();
1280 }
1281
1282 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
1283 MVT hasFastEqualityCompare(unsigned NumBits) const override;
1284
1285 /// Return the value type to use for ISD::SETCC.
1287 EVT VT) const override;
1288
1290 const APInt &DemandedElts,
1291 TargetLoweringOpt &TLO) const override;
1292
1293 /// Determine which of the bits specified in Mask are known to be either
1294 /// zero or one and return them in the KnownZero/KnownOne bitsets.
1296 KnownBits &Known,
1297 const APInt &DemandedElts,
1298 const SelectionDAG &DAG,
1299 unsigned Depth = 0) const override;
1300
1301 /// Determine the number of bits in the operation that are sign bits.
1303 const APInt &DemandedElts,
1304 const SelectionDAG &DAG,
1305 unsigned Depth) const override;
1306
1308 const APInt &DemandedElts,
1309 APInt &KnownUndef,
1310 APInt &KnownZero,
1311 TargetLoweringOpt &TLO,
1312 unsigned Depth) const override;
1313
1315 const APInt &DemandedElts,
1316 unsigned MaskIndex,
1317 TargetLoweringOpt &TLO,
1318 unsigned Depth) const;
1319
1321 const APInt &DemandedBits,
1322 const APInt &DemandedElts,
1323 KnownBits &Known,
1324 TargetLoweringOpt &TLO,
1325 unsigned Depth) const override;
1326
1328 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1329 SelectionDAG &DAG, unsigned Depth) const override;
1330
1332 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1333 bool PoisonOnly, unsigned Depth) const override;
1334
1336 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1337 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override;
1338
1339 bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
1340 APInt &UndefElts, const SelectionDAG &DAG,
1341 unsigned Depth) const override;
1342
1344 // Peek through bitcasts/extracts/inserts to see if we have a vector
1345 // load/broadcast from memory.
1346 while (Op.getOpcode() == ISD::BITCAST ||
1347 Op.getOpcode() == ISD::EXTRACT_SUBVECTOR ||
1348 (Op.getOpcode() == ISD::INSERT_SUBVECTOR &&
1349 Op.getOperand(0).isUndef()))
1350 Op = Op.getOperand(Op.getOpcode() == ISD::INSERT_SUBVECTOR ? 1 : 0);
1351
1352 return Op.getOpcode() == X86ISD::VBROADCAST_LOAD ||
1353 Op.getOpcode() == X86ISD::SUBV_BROADCAST_LOAD ||
1354 (Op.getOpcode() == ISD::LOAD &&
1355 getTargetConstantFromLoad(cast<LoadSDNode>(Op))) ||
1357 }
1358
1359 bool isTargetCanonicalSelect(SDNode *N) const override;
1360
1361 const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
1362
1363 SDValue unwrapAddress(SDValue N) const override;
1364
1366
1367 bool ExpandInlineAsm(CallInst *CI) const override;
1368
1369 ConstraintType getConstraintType(StringRef Constraint) const override;
1370
1371 /// Examine constraint string and operand type and determine a weight value.
1372 /// The operand object must already have been set up with the operand type.
1374 getSingleConstraintMatchWeight(AsmOperandInfo &Info,
1375 const char *Constraint) const override;
1376
1377 const char *LowerXConstraint(EVT ConstraintVT) const override;
1378
1379 /// Lower the specified operand into the Ops vector. If it is invalid, don't
1380 /// add anything to Ops. If hasMemory is true it means one of the asm
1381 /// constraint of the inline asm instruction being processed is 'm'.
1383 std::vector<SDValue> &Ops,
1384 SelectionDAG &DAG) const override;
1385
1387 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
1388 if (ConstraintCode == "v")
1390 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1391 }
1392
1393 /// Handle Lowering flag assembly outputs.
1395 const SDLoc &DL,
1396 const AsmOperandInfo &Constraint,
1397 SelectionDAG &DAG) const override;
1398
1399 /// Given a physical register constraint
1400 /// (e.g. {edx}), return the register number and the register class for the
1401 /// register. This should only be used for C_Register constraints. On
1402 /// error, this returns a register number of 0.
1403 std::pair<unsigned, const TargetRegisterClass *>
1405 StringRef Constraint, MVT VT) const override;
1406
1407 /// Return true if the addressing mode represented
1408 /// by AM is legal for this target, for a load/store of the specified type.
1409 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1410 Type *Ty, unsigned AS,
1411 Instruction *I = nullptr) const override;
1412
1413 bool addressingModeSupportsTLS(const GlobalValue &GV) const override;
1414
1415 /// Return true if the specified immediate is legal
1416 /// icmp immediate, that is the target has icmp instructions which can
1417 /// compare a register against the immediate without having to materialize
1418 /// the immediate into a register.
1419 bool isLegalICmpImmediate(int64_t Imm) const override;
1420
1421 /// Return true if the specified immediate is legal
1422 /// add immediate, that is the target has add instructions which can
1423 /// add a register and the immediate without having to materialize
1424 /// the immediate into a register.
1425 bool isLegalAddImmediate(int64_t Imm) const override;
1426
1427 bool isLegalStoreImmediate(int64_t Imm) const override;
1428
1429 /// Add x86-specific opcodes to the default list.
1430 bool isBinOp(unsigned Opcode) const override;
1431
1432 /// Returns true if the opcode is a commutative binary operation.
1433 bool isCommutativeBinOp(unsigned Opcode) const override;
1434
1435 /// Return true if it's free to truncate a value of
1436 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1437 /// register EAX to i16 by referencing its sub-register AX.
1438 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1439 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1440
1441 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
1442
1443 /// Return true if any actual instruction that defines a
1444 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1445 /// register. This does not necessarily include registers defined in
1446 /// unknown ways, such as incoming arguments, or copies from unknown
1447 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1448 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1449 /// all instructions that define 32-bit values implicit zero-extend the
1450 /// result out to 64 bits.
1451 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
1452 bool isZExtFree(EVT VT1, EVT VT2) const override;
1453 bool isZExtFree(SDValue Val, EVT VT2) const override;
1454
1455 bool shouldConvertPhiType(Type *From, Type *To) const override;
1456
1457 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1458 /// extend node) is profitable.
1459 bool isVectorLoadExtDesirable(SDValue) const override;
1460
1461 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1462 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1463 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1465 EVT VT) const override;
1466
1467 /// Return true if it's profitable to narrow operations of type SrcVT to
1468 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not
1469 /// from i32 to i16.
1470 bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const override;
1471
1472 bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT,
1473 unsigned SelectOpcode, SDValue X,
1474 SDValue Y) const override;
1475
1476 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1477 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1478 /// true and stores the intrinsic information into the IntrinsicInfo that was
1479 /// passed to the function.
1480 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
1481 MachineFunction &MF,
1482 unsigned Intrinsic) const override;
1483
1484 /// Returns true if the target can instruction select the
1485 /// specified FP immediate natively. If false, the legalizer will
1486 /// materialize the FP immediate as a load from a constant pool.
1487 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1488 bool ForCodeSize) const override;
1489
1490 /// Targets can use this to indicate that they only support *some*
1491 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1492 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1493 /// be legal.
1494 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1495
1496 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1497 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1498 /// constant pool entry.
1499 bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1500
1501 /// Returns true if lowering to a jump table is allowed.
1502 bool areJTsAllowed(const Function *Fn) const override;
1503
1505 EVT ConditionVT) const override;
1506
1507 /// If true, then instruction selection should
1508 /// seek to shrink the FP constant of the specified type to a smaller type
1509 /// in order to save space and / or reduce runtime.
1510 bool ShouldShrinkFPConstant(EVT VT) const override;
1511
1512 /// Return true if we believe it is correct and profitable to reduce the
1513 /// load node to a smaller type.
1514 bool
1516 std::optional<unsigned> ByteOffset) const override;
1517
1518 /// Return true if the specified scalar FP type is computed in an SSE
1519 /// register, not on the X87 floating point stack.
1520 bool isScalarFPTypeInSSEReg(EVT VT) const;
1521
1522 /// Returns true if it is beneficial to convert a load of a constant
1523 /// to just the constant itself.
1525 Type *Ty) const override;
1526
1527 bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;
1528
1529 bool convertSelectOfConstantsToMath(EVT VT) const override;
1530
1531 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1532 SDValue C) const override;
1533
1534 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1535 /// with this index.
1536 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1537 unsigned Index) const override;
1538
1539 /// Scalar ops always have equal or better analysis/performance/power than
1540 /// the vector equivalent, so this always makes sense if the scalar op is
1541 /// supported.
1542 bool shouldScalarizeBinop(SDValue) const override;
1543
1544 /// Extract of a scalar FP value from index 0 of a vector is free.
1545 bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
1546 EVT EltVT = VT.getScalarType();
1547 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
1548 }
1549
1550 /// Overflow nodes should get combined/lowered to optimal instructions
1551 /// (they should allow eliminating explicit compares by getting flags from
1552 /// math ops).
1553 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
1554 bool MathUsed) const override;
1555
1556 bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem,
1557 unsigned AddrSpace) const override {
1558 // If we can replace more than 2 scalar stores, there will be a reduction
1559 // in instructions even after we add a vector constant load.
1560 return IsZero || NumElem > 2;
1561 }
1562
1563 bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
1564 const SelectionDAG &DAG,
1565 const MachineMemOperand &MMO) const override;
1566
1567 Register getRegisterByName(const char* RegName, LLT VT,
1568 const MachineFunction &MF) const override;
1569
1570 /// If a physical register, this returns the register that receives the
1571 /// exception address on entry to an EH pad.
1572 Register
1573 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1574
1575 /// If a physical register, this returns the register that receives the
1576 /// exception typeid on entry to a landing pad.
1577 Register
1578 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1579
1580 bool needsFixedCatchObjects() const override;
1581
1582 /// This method returns a target specific FastISel object,
1583 /// or null if the target does not support "fast" ISel.
1585 const TargetLibraryInfo *libInfo) const override;
1586
1587 /// If the target has a standard location for the stack protector cookie,
1588 /// returns the address of that location. Otherwise, returns nullptr.
1589 Value *getIRStackGuard(IRBuilderBase &IRB) const override;
1590
1591 bool useLoadStackGuardNode(const Module &M) const override;
1592 bool useStackGuardXorFP() const override;
1593 void insertSSPDeclarations(Module &M) const override;
1594 Function *getSSPStackGuardCheck(const Module &M) const override;
1596 const SDLoc &DL) const override;
1597
1598
1599 /// Return true if the target stores SafeStack pointer at a fixed offset in
1600 /// some non-standard address space, and populates the address space and
1601 /// offset as appropriate.
1602 Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;
1603
1604 std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL,
1605 SDValue Chain, SDValue Pointer,
1606 MachinePointerInfo PtrInfo,
1607 Align Alignment,
1608 SelectionDAG &DAG) const;
1609
1610 /// Customize the preferred legalization strategy for certain types.
1612
1613 bool softPromoteHalfType() const override { return true; }
1614
1616 EVT VT) const override;
1617
1619 CallingConv::ID CC,
1620 EVT VT) const override;
1621
1623 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1624 unsigned &NumIntermediates, MVT &RegisterVT) const override;
1625
1627 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1628 const DataLayout &DL) const override;
1629
1630 bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
1631
1632 bool supportSwiftError() const override;
1633
1634 bool supportKCFIBundles() const override { return true; }
1635
1638 const TargetInstrInfo *TII) const override;
1639
1640 bool hasStackProbeSymbol(const MachineFunction &MF) const override;
1641 bool hasInlineStackProbe(const MachineFunction &MF) const override;
1642 StringRef getStackProbeSymbolName(const MachineFunction &MF) const override;
1643
1644 unsigned getStackProbeSize(const MachineFunction &MF) const;
1645
1646 bool hasVectorBlend() const override { return true; }
1647
1648 unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
1649
1651 unsigned OpNo) const override;
1652
1653 SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
1654 MachineMemOperand *MMO, SDValue &NewLoad,
1655 SDValue Ptr, SDValue PassThru,
1656 SDValue Mask) const override;
1659 SDValue Mask) const override;
1660
1661 /// Lower interleaved load(s) into target specific
1662 /// instructions/intrinsics.
1663 bool lowerInterleavedLoad(Instruction *Load, Value *Mask,
1665 ArrayRef<unsigned> Indices, unsigned Factor,
1666 const APInt &GapMask) const override;
1667
1668 /// Lower interleaved store(s) into target specific
1669 /// instructions/intrinsics.
1670 bool lowerInterleavedStore(Instruction *Store, Value *Mask,
1671 ShuffleVectorInst *SVI, unsigned Factor,
1672 const APInt &GapMask) const override;
1673
1675 int JTI, SelectionDAG &DAG) const override;
1676
1677 Align getPrefLoopAlignment(MachineLoop *ML) const override;
1678
1679 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override {
1680 if (VT == MVT::f80)
1681 return EVT::getIntegerVT(Context, 96);
1683 }
1684
1685 protected:
1686 std::pair<const TargetRegisterClass *, uint8_t>
1688 MVT VT) const override;
1689
1690 private:
1691 /// Keep a reference to the X86Subtarget around so that we can
1692 /// make the right decision when generating code for different targets.
1693 const X86Subtarget &Subtarget;
1694
1695 /// A list of legal FP immediates.
1696 std::vector<APFloat> LegalFPImmediates;
1697
1698 /// Indicate that this x86 target can instruction
1699 /// select the specified FP immediate natively.
1700 void addLegalFPImmediate(const APFloat& Imm) {
1701 LegalFPImmediates.push_back(Imm);
1702 }
1703
1704 SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1705 CallingConv::ID CallConv, bool isVarArg,
1706 const SmallVectorImpl<ISD::InputArg> &Ins,
1707 const SDLoc &dl, SelectionDAG &DAG,
1708 SmallVectorImpl<SDValue> &InVals,
1709 uint32_t *RegMask) const;
1710 SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1711 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1712 const SDLoc &dl, SelectionDAG &DAG,
1713 const CCValAssign &VA, MachineFrameInfo &MFI,
1714 unsigned i) const;
1715 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1716 const SDLoc &dl, SelectionDAG &DAG,
1717 const CCValAssign &VA,
1718 ISD::ArgFlagsTy Flags, bool isByval) const;
1719
1720 // Call lowering helpers.
1721
1722 /// Check whether the call is eligible for tail call optimization. Targets
1723 /// that want to do tail call optimization should implement this function.
1724 bool IsEligibleForTailCallOptimization(
1725 TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo,
1726 SmallVectorImpl<CCValAssign> &ArgLocs, bool IsCalleePopSRet) const;
1727 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
1728 SDValue Chain, bool IsTailCall,
1729 bool Is64Bit, int FPDiff,
1730 const SDLoc &dl) const;
1731
1732 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
1733 SelectionDAG &DAG) const;
1734
1735 unsigned getAddressSpace() const;
1736
1737 SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned,
1738 SDValue &Chain) const;
1739 SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const;
1740
1741 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1742 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
1743 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1744 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1745
1746 unsigned getGlobalWrapperKind(const GlobalValue *GV,
1747 const unsigned char OpFlags) const;
1748 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1749 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1750 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1751 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1752 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
1753
1754 /// Creates target global address or external symbol nodes for calls or
1755 /// other uses.
1756 SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG, bool ForCall,
1757 bool *IsImpCall) const;
1758
1759 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1760 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1761 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1762 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
1763 SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
1764 SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const;
1765 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1766 SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
1767 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
1768 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
1769 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1770 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1771 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1772 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1773 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1774 SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1775 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1776 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1777 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
1778 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1779 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1780 SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
1781 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1782 SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1783 SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1784 SDValue LowerGET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
1785 SDValue LowerSET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
1786 SDValue LowerRESET_FPENV(SDValue Op, SelectionDAG &DAG) const;
1787 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
1788 SDValue LowerWin64_FP_TO_INT128(SDValue Op, SelectionDAG &DAG,
1789 SDValue &Chain) const;
1790 SDValue LowerWin64_INT128_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1791 SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const;
1792 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1793 SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
1794 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1795 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1796 SDValue LowerFP_TO_BF16(SDValue Op, SelectionDAG &DAG) const;
1797
1798 SDValue
1799 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1800 const SmallVectorImpl<ISD::InputArg> &Ins,
1801 const SDLoc &dl, SelectionDAG &DAG,
1802 SmallVectorImpl<SDValue> &InVals) const override;
1803 SDValue LowerCall(CallLoweringInfo &CLI,
1804 SmallVectorImpl<SDValue> &InVals) const override;
1805
1806 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1807 const SmallVectorImpl<ISD::OutputArg> &Outs,
1808 const SmallVectorImpl<SDValue> &OutVals,
1809 const SDLoc &dl, SelectionDAG &DAG) const override;
1810
1811 bool supportSplitCSR(MachineFunction *MF) const override {
1812 return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
1813 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
1814 }
1815 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
1816 void insertCopiesSplitCSR(
1817 MachineBasicBlock *Entry,
1818 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
1819
1820 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
1821
1822 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1823
1824 EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
1825 ISD::NodeType ExtendKind) const override;
1826
1827 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1828 bool isVarArg,
1829 const SmallVectorImpl<ISD::OutputArg> &Outs,
1830 LLVMContext &Context,
1831 const Type *RetTy) const override;
1832
1833 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1834 ArrayRef<MCPhysReg> getRoundingControlRegisters() const override;
1835
1837 shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
1839 shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1841 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1843 shouldExpandLogicAtomicRMWInIR(AtomicRMWInst *AI) const;
1844 void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
1845 void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
1846
1847 LoadInst *
1848 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1849
1850 bool needsCmpXchgNb(Type *MemType) const;
1851
1852 void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
1853 MachineBasicBlock *DispatchBB, int FI) const;
1854
1855 // Utility function to emit the low-level va_arg code for X86-64.
1856 MachineBasicBlock *
1857 EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
1858
1859 /// Utility function to emit the xmm reg save portion of va_start.
1860 MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
1861 MachineInstr &MI2,
1862 MachineBasicBlock *BB) const;
1863
1864 MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
1865 MachineBasicBlock *BB) const;
1866
1867 MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
1868 MachineBasicBlock *BB) const;
1869
1870 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
1871 MachineBasicBlock *BB) const;
1872
1873 MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI,
1874 MachineBasicBlock *BB) const;
1875
1876 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
1877 MachineBasicBlock *BB) const;
1878
1879 MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI,
1880 MachineBasicBlock *BB) const;
1881
1882 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
1883 MachineBasicBlock *MBB) const;
1884
1885 void emitSetJmpShadowStackFix(MachineInstr &MI,
1886 MachineBasicBlock *MBB) const;
1887
1888 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
1889 MachineBasicBlock *MBB) const;
1890
1891 MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
1892 MachineBasicBlock *MBB) const;
1893
1894 MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
1895 MachineBasicBlock *MBB) const;
1896
1897 MachineBasicBlock *emitPatchableEventCall(MachineInstr &MI,
1898 MachineBasicBlock *MBB) const;
1899
1900 /// Emit flags for the given setcc condition and operands. Also returns the
1901 /// corresponding X86 condition code constant in X86CC.
1902 SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC,
1903 const SDLoc &dl, SelectionDAG &DAG,
1904 SDValue &X86CC) const;
1905
1906 bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst,
1907 SDValue IntPow2) const override;
1908
1909 /// Check if replacement of SQRT with RSQRT should be disabled.
1910 bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override;
1911
1912 /// Use rsqrt* to speed up sqrt calculations.
1913 SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
1914 int &RefinementSteps, bool &UseOneConstNR,
1915 bool Reciprocal) const override;
1916
1917 /// Use rcp* to speed up fdiv calculations.
1918 SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
1919 int &RefinementSteps) const override;
1920
1921 /// Reassociate floating point divisions into multiply by reciprocal.
1922 unsigned combineRepeatedFPDivisors() const override;
1923
1924 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
1925 SmallVectorImpl<SDNode *> &Created) const override;
1926
1927 SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
1928 SDValue V2) const;
1929 };
1930
1931 namespace X86 {
1932 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1933 const TargetLibraryInfo *libInfo);
1934 } // end namespace X86
1935
1936 // X86 specific Gather/Scatter nodes.
1937 // The class has the same order of operands as MaskedGatherScatterSDNode for
1938 // convenience.
1940 public:
1941 // This is a intended as a utility and should never be directly created.
1944
1945 const SDValue &getBasePtr() const { return getOperand(3); }
1946 const SDValue &getIndex() const { return getOperand(4); }
1947 const SDValue &getMask() const { return getOperand(2); }
1948 const SDValue &getScale() const { return getOperand(5); }
1949
1950 static bool classof(const SDNode *N) {
1951 return N->getOpcode() == X86ISD::MGATHER ||
1952 N->getOpcode() == X86ISD::MSCATTER;
1953 }
1954 };
1955
1957 public:
1958 const SDValue &getPassThru() const { return getOperand(1); }
1959
1960 static bool classof(const SDNode *N) {
1961 return N->getOpcode() == X86ISD::MGATHER;
1962 }
1963 };
1964
1966 public:
1967 const SDValue &getValue() const { return getOperand(1); }
1968
1969 static bool classof(const SDNode *N) {
1970 return N->getOpcode() == X86ISD::MSCATTER;
1971 }
1972 };
1973
1974 /// Generate unpacklo/unpackhi shuffle mask.
1975 void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo,
1976 bool Unary);
1977
1978 /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation
1979 /// imposed by AVX and specific to the unary pattern. Example:
1980 /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3>
1981 /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7>
1982 void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo);
1983
1984} // end namespace llvm
1985
1986#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
BlockVerifier::State From
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
return RetTy
uint64_t Addr
uint32_t Index
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define RegName(no)
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
This file describes how to lower LLVM code to machine code.
static bool is64Bit(const char *name)
Class for arbitrary precision integers.
Definition: APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:43
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
This class is used to represent ISD::LOAD nodes.
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Machine Value Type.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
Definition: MachineInstr.h:72
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const SDValue & getOperand(unsigned Num) const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:229
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
NegatibleCost
Enum that specifies when a float negation is beneficial.
std::vector< ArgListEntry > ArgListTy
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:75
const SDValue & getPassThru() const
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
const SDValue & getScale() const
static bool classof(const SDNode *N)
const SDValue & getIndex() const
const SDValue & getValue() const
static bool classof(const SDNode *N)
bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override
Overflow nodes should get combined/lowered to optimal instructions (they should allow eliminating exp...
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override
Return the largest legal super-reg register class of the register class for the specified type and it...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const override
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
bool preferABDSToABSWithNSW(EVT VT) const override
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
std::pair< SDValue, SDValue > BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL, SDValue Chain, SDValue Pointer, MachinePointerInfo PtrInfo, Align Alignment, SelectionDAG &DAG) const
bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const override
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool isMemoryAccessFast(EVT VT, Align Alignment) const
SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, const SDLoc &DL, const AsmOperandInfo &Constraint, SelectionDAG &DAG) const override
Handle Lowering flag assembly outputs.
bool supportKCFIBundles() const override
Return true if the target supports kcfi operand bundles.
const char * LowerXConstraint(EVT ConstraintVT) const override
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const override
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
bool useLoadStackGuardNode(const Module &M) const override
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth) const override
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
bool convertSelectOfConstantsToMath(EVT VT) const override
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint letter, return the type of constraint for this target.
bool hasVectorBlend() const override
Return true if the target has a vector blend instruction.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool useSoftFloat() const override
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const override
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
Provide custom lowering hooks for some operations.
bool isLegalStoreImmediate(int64_t Imm) const override
Return true if the specified immediate is legal for the value input of a store instruction.
SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const override
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, NegatibleCost &Cost, unsigned Depth) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool isSafeMemOpType(MVT VT) const override
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const override
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
For some targets, an LLVM struct type must be broken down into multiple simple types,...
MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
Value * getIRStackGuard(IRBuilderBase &IRB) const override
If the target has a standard location for the stack protector cookie, returns the address of that loc...
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const override
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
Return the desired alignment for ByVal aggregate function arguments in the caller parameter area.
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool shouldSplatInsEltVarIndex(EVT VT) const override
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const override
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
MVT hasFastEqualityCompare(unsigned NumBits) const override
Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op, const APInt &DemandedElts, unsigned MaskIndex, TargetLoweringOpt &TLO, unsigned Depth) const
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
bool hasInlineStackProbe(const MachineFunction &MF) const override
Returns true if stack probing through inline assembly is requested.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const override
bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode Cond, EVT VT) const override
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
bool ExpandInlineAsm(CallInst *CI) const override
This hook allows the target to expand an inline asm call to be explicit llvm code if it wants to.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset) const override
Return true if we believe it is correct and profitable to reduce the load node to a smaller type.
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, const MachineMemOperand &MMO, unsigned *Fast) const
bool preferScalarizeSplat(SDNode *N) const override
Function * getSSPStackGuardCheck(const Module &M) const override
If the target has a standard stack protection check function that performs validation and error handl...
bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
bool lowerInterleavedStore(Instruction *Store, Value *Mask, ShuffleVectorInst *SVI, unsigned Factor, const APInt &GapMask) const override
Lower interleaved store(s) into target specific instructions/intrinsics.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
Returns true if the target allows unaligned memory accesses of the specified type.
bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const override
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const override
Return true if it is profitable to fold a pair of shifts into a mask.
MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const override
bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const override
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
unsigned getMaxSupportedInterleaveFactor() const override
Get the maximum supported factor for interleaved memory accesses.
bool lowerInterleavedLoad(Instruction *Load, Value *Mask, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor, const APInt &GapMask) const override
Lower interleaved load(s) into target specific instructions/intrinsics.
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
StringRef getStackProbeSymbolName(const MachineFunction &MF) const override
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
bool hasBitTest(SDValue X, SDValue Y) const override
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
bool isShuffleMaskLegal(ArrayRef< int > Mask, EVT VT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
bool useStackGuardXorFP() const override
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override
Determine the number of bits in the operation that are sign bits.
bool shouldScalarizeBinop(SDValue) const override
Scalar ops always have equal or better analysis/performance/power than the vector equivalent,...
void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const override
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const override
Return true if the target stores SafeStack pointer at a fixed offset in some non-standard address spa...
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool areJTsAllowed(const Function *Fn) const override
Returns true if lowering to a jump table is allowed.
bool isCommutativeBinOp(unsigned Opcode) const override
Returns true if the opcode is a commutative binary operation.
bool isScalarFPTypeInSSEReg(EVT VT) const
Return true if the specified scalar FP type is computed in an SSE register, not on the X87 floating p...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const override
Returns preferred type for switch condition.
SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const override
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for this result type with this index.
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
bool isVectorClearMaskLegal(ArrayRef< int > Mask, EVT VT) const override
Similar to isShuffleMaskLegal.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &Info, const char *Constraint) const override
Examine constraint string and operand type and determine a weight value.
bool isIntDivCheap(EVT VT, AttributeList Attr) const override
Return true if integer divide is usually cheaper than a sequence of several shifts,...
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Customize the preferred legalization strategy for certain types.
bool shouldConvertPhiType(Type *From, Type *To) const override
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
bool hasStackProbeSymbol(const MachineFunction &MF) const override
Returns true if stack probing through a function call is requested.
bool isZExtFree(Type *Ty1, Type *Ty2) const override
Return true if any actual instruction that defines a value of type Ty1 implicit zero-extends the valu...
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
This function returns true if the memory access is aligned or if the target allows this specific unal...
bool isTargetCanonicalConstantNode(SDValue Op) const override
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool softPromoteHalfType() const override
SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const override
bool mergeStoresAfterLegalization(EVT MemVT) const override
Do not merge vector stores after legalization because that may conflict with x86-specific store split...
TargetLowering::AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const override
Return prefered fold type, Abs if this is a vector, AddAnd if its an integer, None otherwise.
bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const override
Return true if pulling a binary operation into a select with an identity constant is profitable.
bool addressingModeSupportsTLS(const GlobalValue &GV) const override
Returns true if the targets addressing mode can target thread local storage (TLS).
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const override
Expands target specific indirect branch for the case of JumpTable expansion.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isBinOp(unsigned Opcode) const override
Add x86-specific opcodes to the default list.
bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const override
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue unwrapAddress(SDValue N) const override
CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs) const override
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the value type to use for ISD::SETCC.
bool isTargetCanonicalSelect(SDNode *N) const override
Return true if the given select/vselect should be considered canonical and not be transformed.
bool isVectorLoadExtDesirable(SDValue) const override
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const override
This method returns the constant pool value that will be loaded by LD.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override
For types supported by the target, this is an identity function.
bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override
Return true if Op can create undef or poison from non-undef & non-poison operands.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const override
unsigned getStackProbeSize(const MachineFunction &MF) const
bool ShouldShrinkFPConstant(EVT VT) const override
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
Replace the results of node with an illegal result type with new values built out of custom code.
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override
Return if the target supports combining a chain like:
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
bool needsFixedCatchObjects() const override
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Extract of a scalar FP value from index 0 of a vector is free.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ CXX_FAST_TLS
Used for access functions.
Definition: CallingConv.h:72
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:41
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition: ISDOpcodes.h:587
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1141
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:975
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1568
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition: ISDOpcodes.h:601
@ FP_TO_UINT_SAT
Definition: ISDOpcodes.h:928
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1685
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1665
@ X86
Windows x64, Windows Itanium (IA-64)
@ FST
This instruction implements a truncating store from FP stack slots.
@ REP_MOVS
Repeat move, corresponds to X86::REP_MOVSx.
@ CMPM
Vector comparison generating mask bits for fp and integer signed and unsigned data types.
@ FMAX
Floating point max and min.
@ BT
X86 bit-test instructions.
@ HADD
Integer horizontal add/sub.
@ MOVQ2DQ
Copies a 64-bit value from an MMX vector to the low word of an XMM vector, with the high word zero fi...
@ BLENDI
Blend where the selector is an immediate.
@ CMP
X86 compare and logical compare instructions.
@ BLENDV
Dynamic (non-constant condition) vector blend where only the sign bits of the condition elements are ...
@ ADDSUB
Combined add and sub on an FP vector.
@ RET_GLUE
Return with a glue operand.
@ STRICT_FMAX
Floating point max and min.
@ STRICT_CMPM
Vector comparison generating mask bits for fp and integer signed and unsigned data types.
@ FHADD
Floating point horizontal add/sub.
@ FMAXS
Scalar intrinsic floating point max and min.
@ BSR
Bit scan reverse.
@ IRET
Return from interrupt. Operand 0 is the number of bytes to pop.
@ SETCC
X86 SetCC.
@ NT_BRIND
BRIND node with NoTrack prefix.
@ SELECTS
X86 Select.
@ FSETCCM
X86 FP SETCC, similar to above, but with output as an i1 mask and and a version with SAE.
@ PEXTRB
Extract an 8-bit value from a vector and zero extend it to i32, corresponds to X86::PEXTRB.
@ FXOR
Bitwise logical XOR of floating point values.
@ BRCOND
X86 conditional branches.
@ FSETCC
X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
@ PINSRB
Insert the lower 8-bits of a 32-bit value to a vector, corresponds to X86::PINSRB.
@ REP_STOS
Repeat fill, corresponds to X86::REP_STOSx.
@ INSERTPS
Insert any element of a 4 x float vector into any element of a destination 4 x floatvector.
@ PSHUFB
Shuffle 16 8-bit values within a vector.
@ PEXTRW
Extract a 16-bit value from a vector and zero extend it to i32, corresponds to X86::PEXTRW.
@ CALL
These operations represent an abstract X86 call instruction, which includes a bunch of information.
@ AADD
RAO arithmetic instructions.
@ FANDN
Bitwise logical ANDNOT of floating point values.
@ GlobalBaseReg
On Darwin, this node represents the result of the popl at function entry, used for PIC code.
@ FMAXC
Commutative FMIN and FMAX.
@ EXTRQI
SSE4A Extraction and Insertion.
@ FLD
This instruction implements an extending load to FP stack slots.
@ TC_RETURN
Tail call return.
@ PSADBW
Compute Sum of Absolute Differences.
@ FOR
Bitwise logical OR of floating point values.
@ FIST
This instruction implements a fp->int store from FP stack slots.
@ FP_TO_INT_IN_MEM
This instruction implements FP_TO_SINT with the integer destination in memory and a FP reg source.
@ LADD
LOCK-prefixed arithmetic read-modify-write instructions.
@ DBPSADBW
Compute Double Block Packed Sum-Absolute-Differences.
@ MMX_MOVW2D
Copies a GPR into the low 32-bit word of a MMX vector and zero out the high word.
@ Wrapper
A wrapper node for TargetConstantPool, TargetJumpTable, TargetExternalSymbol, TargetGlobalAddress,...
@ PINSRW
Insert the lower 16-bits of a 32-bit value to a vector, corresponds to X86::PINSRW.
@ CMPCCXADD
Compare and Add if Condition is Met.
@ NT_CALL
Same as call except it adds the NoTrack prefix.
@ MMX_MOVD2W
Copies a 32-bit value from the low word of a MMX vector to a GPR.
@ FILD
This instruction implements SINT_TO_FP with the integer source in memory and FP reg result.
@ MOVDQ2Q
Copies a 64-bit value from the low word of an XMM vector to an MMX vector.
@ ANDNP
Bitwise Logical AND NOT of Packed FP values.
@ BSF
Bit scan forward.
@ POP_FROM_X87_REG
The same as ISD::CopyFromReg except that this node makes it explicit that it may lower to an x87 FPU ...
@ VAARG_64
These instructions grab the address of the next argument from a va_list.
@ FAND
Bitwise logical AND of floating point values.
@ CMOV
X86 conditional moves.
@ WrapperRIP
Special wrapper used under X86-64 PIC mode for RIP relative displacements.
@ FIRST_STRICTFP_OPCODE
X86 strict FP compare instructions.
@ FSHL
X86 funnel/double shift i16 instructions.
@ FRSQRT
Floating point reciprocal-sqrt and reciprocal approximation.
RoundingMode
Current rounding mode is represented in bits 11:10 of FPSR.
bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT, const X86Subtarget &Subtarget, bool AssumeSingleUse=false)
Check if Op is a load operation that could be folded into a vector splat instruction as a memory oper...
bool isZeroNode(SDValue Elt)
Returns true if Elt is a constant zero or floating point constant +0.0.
bool mayFoldIntoZeroExtend(SDValue Op)
Check if Op is an operation that could be folded into a zero extend x86 instruction.
bool mayFoldIntoStore(SDValue Op)
Check if Op is a value that could be used to fold a store into some other x86 instruction as a memory...
bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget, const MachineFunction &MF)
True if the target supports the extended frame for async Swift functions.
bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget, bool AssumeSingleUse=false)
Check if Op is a load operation that could be folded into some other x86 instruction as a memory oper...
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement)
Returns true of the given offset can be fit into displacement field of the instruction.
bool isConstantSplat(SDValue Op, APInt &SplatVal, bool AllowPartialUndefs)
If Op is a constant whose elements are all the same constant or undefined, return true and return the...
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:477
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition: MCRegister.h:21
void createUnpackShuffleMask(EVT VT, SmallVectorImpl< int > &Mask, bool Lo, bool Unary)
Generate unpacklo/unpackhi shuffle mask.
void createSplat2ShuffleMask(MVT VT, SmallVectorImpl< int > &Mask, bool Lo)
Similar to unpacklo/unpackhi, but without the 128-bit lane limitation imposed by AVX and specific to ...
CombineLevel
Definition: DAGCombine.h:15
DWARFExpression::Operation Op
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:147
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:65
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:318
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:157
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:152
This class contains a discriminated union of information about pointers in memory operands,...