module ObjectSpace
The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace' to use this extension module.
Generally, you SHOULD NOT use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
The ObjectSpace module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.
ObjectSpace also provides support for object finalizers, procs that will be called after a specific object was destroyed by garbage collection. See the documentation for ObjectSpace.define_finalizer for important information on how to use this method correctly.
a = "A" b = "B" ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) a = nil b = nil
produces:
Finalizer two on 537763470 Finalizer one on 537763480
Public Class Methods
Source
static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->class_path) {
return rb_str_new2(info->class_path);
}
else {
return Qnil;
}
}
Returns the class for the given object.
class A def foo ObjectSpace::trace_object_allocations do obj = Object.new p "#{ObjectSpace::allocation_class_path(obj)}" end end end A.new.foo #=> "Class"
See ::trace_object_allocations for more information and examples.
Source
static VALUE
allocation_generation(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return SIZET2NUM(info->generation);
}
else {
return Qnil;
}
}
Returns garbage collector generation for the given object.
class B include ObjectSpace def foo trace_object_allocations do obj = Object.new p "Generation is #{allocation_generation(obj)}" end end end B.new.foo #=> "Generation is 3"
See ::trace_object_allocations for more information and examples.
Source
static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return info->mid;
}
else {
return Qnil;
}
}
Returns the method identifier for the given object.
class A include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}" end end end A.new.foo #=> "Class#new"
See ::trace_object_allocations for more information and examples.
Source
static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->path) {
return rb_str_new2(info->path);
}
else {
return Qnil;
}
}
Returns the source file origin from the given object.
See ::trace_object_allocations for more information and examples.
Source
static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return INT2FIX(info->line);
}
else {
return Qnil;
}
}
Returns the original line from source for from the given object.
See ::trace_object_allocations for more information and examples.
Source
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
#define INIT_IMEMO_TYPE_ID(n) (imemo_type_ids[n] = rb_intern_const(#n))
INIT_IMEMO_TYPE_ID(imemo_env);
INIT_IMEMO_TYPE_ID(imemo_cref);
INIT_IMEMO_TYPE_ID(imemo_svar);
INIT_IMEMO_TYPE_ID(imemo_throw_data);
INIT_IMEMO_TYPE_ID(imemo_ifunc);
INIT_IMEMO_TYPE_ID(imemo_memo);
INIT_IMEMO_TYPE_ID(imemo_ment);
INIT_IMEMO_TYPE_ID(imemo_iseq);
INIT_IMEMO_TYPE_ID(imemo_tmpbuf);
INIT_IMEMO_TYPE_ID(imemo_callinfo);
INIT_IMEMO_TYPE_ID(imemo_callcache);
INIT_IMEMO_TYPE_ID(imemo_constcache);
INIT_IMEMO_TYPE_ID(imemo_fields);
#undef INIT_IMEMO_TYPE_ID
}
each_object_with_flags(count_imemo_objects_i, (void *)hash);
return hash;
}
Returns a hash containing the number of objects for each T_IMEMO type. The keys are Symbol objects of the T_IMEMO type name. T_IMEMO objects are Ruby internal objects that are not visible to Ruby programs.
ObjectSpace.count_imemo_objects # => {imemo_callcache: 5482, imemo_constcache: 1258, imemo_ment: 13906, ... }
If the optional argument result_hash is given, it is overwritten and returned. This is intended to avoid the probe effect.
This method is intended for developers interested in performance and memory usage of Ruby programs. The contents of the returned hash is implementation specific and may change in the future.
This method is only expected to work with C Ruby.
Source
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
struct count_objects_data data = { 0 };
VALUE hash = Qnil;
VALUE types[T_MASK + 1];
if (rb_check_arity(argc, 0, 1) == 1) {
hash = argv[0];
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (size_t i = 0; i <= T_MASK; i++) {
// type_sym can allocate an object,
// so we need to create all key symbols in advance
// not to disturb the result
types[i] = type_sym(i);
}
// Same as type_sym, we need to create all key symbols in advance
VALUE total = ID2SYM(rb_intern("TOTAL"));
VALUE free = ID2SYM(rb_intern("FREE"));
rb_gc_impl_each_object(rb_gc_get_objspace(), count_objects_i, &data);
if (NIL_P(hash)) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
rb_hash_stlike_foreach(hash, set_zero, hash);
}
rb_hash_aset(hash, total, SIZET2NUM(data.total));
rb_hash_aset(hash, free, SIZET2NUM(data.freed));
for (size_t i = 0; i <= T_MASK; i++) {
if (data.counts[i]) {
rb_hash_aset(hash, types[i], SIZET2NUM(data.counts[i]));
}
}
return hash;
}
Counts all objects grouped by type.
It returns a hash, such as:
{
:TOTAL=>10000,
:FREE=>3011,
:T_OBJECT=>6,
:T_CLASS=>404,
# ...
}
The contents of the returned hash are implementation specific. It may be changed in future.
The keys starting with :T_ means live objects. For example, :T_ARRAY is the number of arrays. :FREE means object slots which is not used now. :TOTAL means sum of above.
If the optional argument result_hash is given, it is overwritten and returned. This is intended to avoid probe effect.
h = {} ObjectSpace.count_objects(h) puts h # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 }
This method is only expected to work on C Ruby.
Source
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
each_object_with_flags(cos_i, &counts[0]);
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
Counts objects size (in bytes) for each type.
Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.
It returns a hash as:
{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
Source
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
each_object_with_flags(cs_i, &dynamic_counts);
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
Returns a hash containing the number of objects for each Symbol type.
The types of Symbols are the following:
-
mortal_dynamic_symbol: Symbols that are garbage collectable. -
immortal_dynamic_symbol: Symbols that are objects allocated from the garbage collector, but are not garbage collectable. -
immortal_static_symbol: Symbols that are not allocated from the garbage collector, and are thus not garbage collectable. -
immortal_symbol: the sum ofimmortal_dynamic_symbolandimmortal_static_symbol.
If the optional argument result_hash is given, it is overwritten and returned. This is intended to avoid the probe effect.
This method is intended for developers interested in performance and memory usage of Ruby programs. The contents of the returned hash is implementation specific and may change in the future.
This method is only expected to work with C Ruby.
Source
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
each_object_with_flags(cto_i, (void *)hash);
return hash;
}
Returns a hash containing the number of objects for each T_DATA type. The keys are Class objects when the T_DATA object has an associated class, or Symbol objects of the name defined in the rb_data_type_struct for internal T_DATA objects.
ObjectSpace.count_tdata_objects # => {RBS::Location => 39255, marshal_compat_table: 1, Encoding => 103, mutex: 1, ... }
If the optional argument result_hash is given, it is overwritten and returned. This is intended to avoid the probe effect.
This method is intended for developers interested in performance and memory usage of Ruby programs. The contents of the returned hash is implementation specific and may change in the future.
This method is only expected to work with C Ruby.
Source
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
VALUE obj, block;
rb_scan_args(argc, argv, "11", &obj, &block);
if (argc == 1) {
block = rb_block_proc();
}
if (rb_callable_receiver(block) == obj) {
rb_warn("finalizer references object to be finalized");
}
return rb_define_finalizer(obj, block);
}
Adds a new finalizer for obj that is called when obj is destroyed by the garbage collector or when Ruby shuts down (which ever comes first).
With a block given, uses the block as the callback. Without a block given, uses a callable object finalizer as the callback. The callback is called when obj is destroyed with a single argument id which is the object ID of obj (see Object#object_id).
The return value is an array [0, callback], where callback is a Proc created from the block if one was given or finalizer otherwise.
Note that defining a finalizer in an instance method of the object may prevent the object from being garbage collected since if the block or finalizer refers to obj then obj will never be reclaimed by the garbage collector. For example, the following script demonstrates the issue:
class Foo def define_final ObjectSpace.define_finalizer(self) do |id| puts "Running finalizer for #{id}!" end end end obj = Foo.new obj.define_final
There are two patterns to solve this issue:
-
Create the finalizer in a non-instance method so it can safely capture the needed state:
class Foo def define_final ObjectSpace.define_finalizer(self, self.class.create_finalizer) end def self.create_finalizer proc do |id| puts "Running finalizer for #{id}!" end end end
-
Use a callable object:
class Foo class Finalizer def call(id) puts "Running finalizer for #{id}!" end end def define_final ObjectSpace.define_finalizer(self, Finalizer.new) end end
Note that finalization can be unpredictable and is never guaranteed to be run except on exit.
Source
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]);
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
Calls the block once for each living, nonimmediate object in this Ruby process. If module is specified, calls the block for only those classes or modules that match (or are a subclass of) module. Returns the number of objects found. Immediate objects (such as Fixnums, static Symbols true, false and nil) are never returned.
If no block is given, an enumerator is returned instead.
Job = Class.new jobs = [Job.new, Job.new] count = ObjectSpace.each_object(Job) {|x| p x } puts "Total count: #{count}"
produces:
#<Job:0x000000011d6cbbf0> #<Job:0x000000011d6cbc68> Total count: 2
Due to a current Ractor implementation issue, this method does not yield Ractor-unshareable objects when the process is in multi-Ractor mode. Multi-ractor mode is enabled when Ractor.new has been called for the first time. See bugs.ruby-lang.org/issues/19387 for more information.
a = 12345678987654321 # shareable b = [].freeze # shareable c = {} # not shareable ObjectSpace.each_object {|x| x } # yields a, b, and c Ractor.new {} # enter multi-Ractor mode ObjectSpace.each_object {|x| x } # does not yield c
Source
# File gc.rb, line 594 def garbage_collect full_mark: true, immediate_mark: true, immediate_sweep: true Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false end
Alias of GC.start
Source
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
if (RB_TYPE_P(obj, T_IMEMO)) {
return Qnil;
}
else {
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
}
- MRI specific feature
-
Return internal class of obj.
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
Source
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (OBJ_BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = rb_class_super_of(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
- MRI specific feature
-
Return internal super class of cls (Class or Module).
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
Source
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
Return consuming memory size of obj in bytes.
Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA may not be correct.
This method is only expected to work with CRuby.
From Ruby 3.2 with Variable Width Allocation, it returns the actual slot size used plus any additional memory allocated outside the slot (such as external strings, arrays, or hash tables).
Source
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
if (!NIL_P(data.klass)) rb_obj_is_kind_of(Qnil, data.klass);
}
each_object_with_flags(total_i, &data);
return SIZET2NUM(data.total);
}
Returns the total memory size of all living objects in bytes.
ObjectSpace.memsize_of_all # => 12502001
If klass is given (which must be a Class or Module), returns the total memory size of objects whose class is, or is a subclass, of klass.
class MyClass; end ObjectSpace.memsize_of_all(MyClass) # => 0 o = MyClass.new ObjectSpace.memsize_of_all(MyClass) # => 40
Note that the value returned may be an underestimate of the actual amount of memory used. Therefore, the value returned should only be used as a hint, rather than a source of truth. In particular, the size of T_DATA objects may not be correct.
This method is only expected to work with C Ruby.
Source
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (!RB_SPECIAL_CONST_P(obj)) {
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = rb_obj_hide(rb_ident_hash_new());
data.values = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
return data.values;
}
else {
return Qnil;
}
}
- MRI specific feature
-
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work with C Ruby.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c']) #=> [Array, 'a', 'b', 'c'] ObjectSpace.reachable_objects_from(['a', 'a', 'a']) #=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id ObjectSpace.reachable_objects_from([v = 'a', v, v]) #=> [Array, 'a'] ObjectSpace.reachable_objects_from(1) #=> nil # 1 is not markable (heap managed) object
Source
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
- MRI specific feature
-
Return all reachable objects from root.
Source
static VALUE
trace_object_allocations(VALUE self)
{
trace_object_allocations_start(self);
return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}
Starts tracing object allocations from the ObjectSpace extension module.
For example:
require 'objspace' class C include ObjectSpace def foo trace_object_allocations do obj = Object.new p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}" end end end C.new.foo #=> "objtrace.rb:8"
This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
Source
static VALUE
trace_object_allocations_clear(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
/* clear tables */
st_foreach(arg->object_table, free_values_i, 0);
st_clear(arg->object_table);
st_foreach(arg->str_table, free_keys_i, 0);
st_clear(arg->str_table);
/* do not touch TracePoints */
return Qnil;
}
Clear recorded tracing information.
Source
static VALUE
trace_object_allocations_debug_start(VALUE self)
{
tmp_keep_remains = 1;
if (object_allocations_reporter_registered == 0) {
object_allocations_reporter_registered = 1;
rb_bug_reporter_add(object_allocations_reporter, 0);
}
return trace_object_allocations_start(self);
}
Starts tracing object allocations for GC debugging. If you encounter the BUG “… is T_NONE” (and so on) on your application, please try this method at the beginning of your app.
Source
static VALUE
trace_object_allocations_start(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running++ > 0) {
/* do nothing */
}
else {
if (arg->newobj_trace == 0) {
arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
}
rb_tracepoint_enable(arg->newobj_trace);
rb_tracepoint_enable(arg->freeobj_trace);
}
return Qnil;
}
Starts tracing object allocations.
Source
static VALUE
trace_object_allocations_stop(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running > 0) {
arg->running--;
}
if (arg->running == 0) {
if (arg->newobj_trace != 0) {
rb_tracepoint_disable(arg->newobj_trace);
}
if (arg->freeobj_trace != 0) {
rb_tracepoint_disable(arg->freeobj_trace);
}
}
return Qnil;
}
Stop tracing object allocations.
Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.
Source
static VALUE
undefine_final(VALUE os, VALUE obj)
{
return rb_undefine_finalizer(obj);
}
Removes all finalizers for obj.
Public Instance Methods
Source
# File ext/objspace/lib/objspace.rb, line 28 def dump(obj, output: :string) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyobj .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump(obj, out) return nil if output == :stdout ret end
Dump the contents of a ruby object as JSON.
output can be one of: :stdout, :file, :string, or IO object.
-
:filemeans dumping to a tempfile and returning correspondingFileobject; -
:stdoutmeans printing the dump and returningnil; -
:stringmeans returning a string with the dump; -
if an instance of
IOobject is provided, the output goes there, and the object is returned.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
Source
# File ext/objspace/lib/objspace.rb, line 84 def dump_all(output: :file, full: false, since: nil, shapes: true) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyheap .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end shapes = 0 if shapes == true ret = _dump_all(out, full, since, shapes) return nil if output == :stdout ret end
Dump the contents of the ruby heap as JSON.
output argument is the same as for dump.
full must be a boolean. If true, all heap slots are dumped including the empty ones (T_NONE).
since must be a non-negative integer or nil.
If since is a positive integer, only objects of that generation and newer generations are dumped. The current generation can be accessed using GC::count. Objects that were allocated without object allocation tracing enabled are ignored. See ::trace_object_allocations for more information and examples.
If since is omitted or is nil, all objects are dumped.
shapes must be a boolean or a non-negative integer.
If shapes is a positive integer, only shapes newer than the provided shape id are dumped. The current shape_id can be accessed using RubyVM.stat(:next_shape_id).
If shapes is false, no shapes are dumped.
To only dump objects allocated past a certain point you can combine since and shapes:
ObjectSpace.trace_object_allocations GC.start gc_generation = GC.count shape_generation = RubyVM.stat(:next_shape_id) call_method_to_instrument ObjectSpace.dump_all(since: gc_generation, shapes: shape_generation)
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
Source
# File ext/objspace/lib/objspace.rb, line 116 def dump_shapes(output: :file, since: 0) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyshapes .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump_shapes(out, since) return nil if output == :stdout ret end
Dump the contents of the ruby shape tree as JSON.
output argument is the same as for dump.
If since is a positive integer, only shapes newer than the provided shape id are dumped. The current shape_id can be accessed using RubyVM.stat(:next_shape_id).
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
Private Instance Methods
Source
# File gc.rb, line 594 def garbage_collect full_mark: true, immediate_mark: true, immediate_sweep: true Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false end
Alias of GC.start