-
Notifications
You must be signed in to change notification settings - Fork 426
feat: add basic explain get_metadata function for tf2. #507
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
11de187
feat: add cancel method to pipeline client
ji-yaqi 97f6559
Merge branch 'googleapis:master' into master
ji-yaqi ecd1248
fix: fix datetime since datetime.fromisoformat is only available for
ji-yaqi 25c79cf
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi 6d1676c
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi 0e84136
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi 32dc5ca
Merge branch 'googleapis:master' into master
ji-yaqi 2df78ef
feat: add basic metadata structure for XAI explain
ji-yaqi 4f02cf4
Merge branch 'googleapis:master' into master
ji-yaqi e96170b
Remove py2 future
ji-yaqi b18cf0c
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi 8a8dfb6
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi fabac47
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi ea921ee
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi a5c2ed8
Merge branch 'master' of github.com:ji-yaqi/python-aiplatform
ji-yaqi 220bb13
feat: add tf2 get_metadata function
ji-yaqi 71758b1
feat: add tf2 get_metadata function
ji-yaqi 114b16c
Add more tests for tf2_getmetadata
ji-yaqi 335de38
Address comments
ji-yaqi aa37d3b
Update to tensorflow instead of tensorflow-cpu
ji-yaqi 7ceb25d
Move one time use setup function
ji-yaqi 7b078fa
Merge branch 'master' into xaitf2
ji-yaqi File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
15 changes: 15 additions & 0 deletions
15
google/cloud/aiplatform/explain/metadata/tf/v2/__init__.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,15 @@ | ||
| # -*- coding: utf-8 -*- | ||
|
|
||
| # Copyright 2021 Google LLC | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. |
133 changes: 133 additions & 0 deletions
133
google/cloud/aiplatform/explain/metadata/tf/v2/saved_model_metadata_builder.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,133 @@ | ||
| # -*- coding: utf-8 -*- | ||
|
|
||
| # Copyright 2021 Google LLC | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from google.protobuf import json_format | ||
| from typing import Optional, List, Dict, Any, Tuple | ||
|
|
||
| from google.cloud.aiplatform.explain.metadata import metadata_builder | ||
| from google.cloud.aiplatform.compat.types import ( | ||
| explanation_metadata_v1beta1 as explanation_metadata, | ||
| ) | ||
|
|
||
|
|
||
| class SavedModelMetadataBuilder(metadata_builder.MetadataBuilder): | ||
| """Class for generating metadata for a model built with TF 2.X Keras API.""" | ||
|
|
||
| def __init__( | ||
| self, | ||
| model_path: str, | ||
| signature_name: Optional[str] = None, | ||
| outputs_to_explain: Optional[List[str]] = None, | ||
| **kwargs | ||
| ) -> None: | ||
| """Initializes a SavedModelMetadataBuilder object. | ||
|
|
||
| Args: | ||
| model_path: | ||
| Required. Path to load the saved model from. | ||
| signature_name: | ||
| Optional. Name of the signature to be explained. Inputs and | ||
| outputs of this signature will be written in the metadata. If not | ||
| provided, the default signature will be used. | ||
| outputs_to_explain: | ||
| Optional. List of output names to explain. Only single output is | ||
| supported for now. Hence, the list should contain one element. | ||
| This parameter is required if the model signature (provided via | ||
| signature_name) specifies multiple outputs. | ||
| **kwargs: | ||
| Any keyword arguments to be passed to tf.saved_model.save() function. | ||
|
|
||
| Raises: | ||
| ValueError if outputs_to_explain contains more than 1 element. | ||
| ImportError if tf is not imported. | ||
| """ | ||
| if outputs_to_explain and len(outputs_to_explain) > 1: | ||
| raise ValueError( | ||
| '"outputs_to_explain" can only contain 1 element.\n' | ||
| "Got: %s" % len(outputs_to_explain) | ||
| ) | ||
| self._explain_output = outputs_to_explain | ||
| self._saved_model_args = kwargs | ||
|
|
||
| try: | ||
| import tensorflow as tf | ||
| except ImportError: | ||
| raise ImportError( | ||
| "Tensorflow is not installed and is required to load saved model. " | ||
| 'Please install the SDK using "pip install google-cloud-aiplatform[full]"' | ||
| ) | ||
|
|
||
| if not signature_name: | ||
| signature_name = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY | ||
| self._loaded_model = tf.saved_model.load(model_path) | ||
| self._inputs, self._outputs = self._infer_metadata_entries_from_model( | ||
| signature_name | ||
| ) | ||
|
|
||
| def _infer_metadata_entries_from_model( | ||
| self, signature_name: str | ||
| ) -> Tuple[ | ||
| Dict[str, explanation_metadata.ExplanationMetadata.InputMetadata], | ||
| Dict[str, explanation_metadata.ExplanationMetadata.OutputMetadata], | ||
| ]: | ||
| """Infers metadata inputs and outputs. | ||
|
|
||
| Args: | ||
| signature_name: | ||
| Required. Name of the signature to be explained. Inputs and outputs of this signature will be written in the metadata. If not provided, the default signature will be used. | ||
|
|
||
| Returns: | ||
| Inferred input metadata and output metadata from the model. | ||
|
|
||
| Raises: | ||
| ValueError if specified name is not found in signature outputs. | ||
| """ | ||
|
|
||
| loaded_sig = self._loaded_model.signatures[signature_name] | ||
| _, input_sig = loaded_sig.structured_input_signature | ||
| output_sig = loaded_sig.structured_outputs | ||
| input_mds = {} | ||
| for name, tensor_spec in input_sig.items(): | ||
| input_mds[name] = explanation_metadata.ExplanationMetadata.InputMetadata( | ||
| input_tensor_name=name, | ||
| modality=None if tensor_spec.dtype.is_floating else "categorical", | ||
| ) | ||
|
|
||
| output_mds = {} | ||
| for name in output_sig: | ||
| if not self._explain_output or self._explain_output[0] == name: | ||
| output_mds[ | ||
| name | ||
| ] = explanation_metadata.ExplanationMetadata.OutputMetadata( | ||
| output_tensor_name=name, | ||
| ) | ||
| break | ||
| else: | ||
| raise ValueError( | ||
| "Specified output name cannot be found in given signature outputs." | ||
| ) | ||
| return input_mds, output_mds | ||
|
|
||
| def get_metadata(self) -> Dict[str, Any]: | ||
| """Returns the current metadata as a dictionary. | ||
|
|
||
| Returns: | ||
| Json format of the explanation metadata. | ||
| """ | ||
| current_md = explanation_metadata.ExplanationMetadata( | ||
| inputs=self._inputs, outputs=self._outputs, | ||
| ) | ||
| return json_format.MessageToDict(current_md._pb) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
167 changes: 167 additions & 0 deletions
167
tests/unit/aiplatform/test_explain_saved_model_metadata_builder_test.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,167 @@ | ||
| # -*- coding: utf-8 -*- | ||
|
|
||
| # Copyright 2020 Google LLC | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| # | ||
|
|
||
|
|
||
| import tensorflow as tf | ||
| import numpy as np | ||
|
|
||
| from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder | ||
|
|
||
|
|
||
| class SavedModelMetadataBuilderTest(tf.test.TestCase): | ||
| def test_get_metadata_sequential(self): | ||
| # Set up for the sequential. | ||
| self.seq_model = tf.keras.models.Sequential() | ||
| self.seq_model.add(tf.keras.layers.Dense(32, activation="relu", input_dim=10)) | ||
| self.seq_model.add(tf.keras.layers.Dense(32, activation="relu")) | ||
| self.seq_model.add(tf.keras.layers.Dense(1, activation="sigmoid")) | ||
| self.saved_model_path = self.get_temp_dir() | ||
| tf.saved_model.save(self.seq_model, self.saved_model_path) | ||
|
|
||
| builder = saved_model_metadata_builder.SavedModelMetadataBuilder( | ||
| self.saved_model_path | ||
| ) | ||
| generated_md = builder.get_metadata() | ||
| expected_md = { | ||
| "outputs": {"dense_2": {"outputTensorName": "dense_2"}}, | ||
| "inputs": {"dense_input": {"inputTensorName": "dense_input"}}, | ||
| } | ||
| assert expected_md == generated_md | ||
|
|
||
| def test_get_metadata_functional(self): | ||
| inputs1 = tf.keras.Input(shape=(10,), name="model_input1") | ||
| inputs2 = tf.keras.Input(shape=(10,), name="model_input2") | ||
| x = tf.keras.layers.Dense(32, activation="relu")(inputs1) | ||
| x = tf.keras.layers.Dense(32, activation="relu")(x) | ||
| x = tf.keras.layers.concatenate([x, inputs2]) | ||
| outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) | ||
| fun_model = tf.keras.Model( | ||
| inputs=[inputs1, inputs2], outputs=outputs, name="fun" | ||
| ) | ||
| model_dir = self.get_temp_dir() | ||
| tf.saved_model.save(fun_model, model_dir) | ||
| builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir) | ||
| generated_md = builder.get_metadata() | ||
| expected_md = { | ||
| "inputs": { | ||
| "model_input1": {"inputTensorName": "model_input1"}, | ||
| "model_input2": {"inputTensorName": "model_input2"}, | ||
| }, | ||
| "outputs": {"dense_2": {"outputTensorName": "dense_2"}}, | ||
| } | ||
| assert expected_md == generated_md | ||
|
|
||
| def test_get_metadata_subclassed_model(self): | ||
| class MyModel(tf.keras.Model): | ||
| def __init__(self, num_classes=2): | ||
| super(MyModel, self).__init__(name="my_model") | ||
| self.num_classes = num_classes | ||
| self.dense_1 = tf.keras.layers.Dense(32, activation="relu") | ||
| self.dense_2 = tf.keras.layers.Dense(num_classes, activation="sigmoid") | ||
|
|
||
| def call(self, inputs): | ||
| x = self.dense_1(inputs) | ||
| return self.dense_2(x) | ||
|
|
||
| subclassed_model = MyModel() | ||
| subclassed_model.compile(loss="categorical_crossentropy") | ||
| np.random.seed(0) | ||
| x_train = np.random.random((1, 100)) | ||
| y_train = np.random.randint(2, size=(1, 2)) | ||
| subclassed_model.fit(x_train, y_train, batch_size=1, epochs=1) | ||
| model_dir = self.get_temp_dir() | ||
| tf.saved_model.save(subclassed_model, model_dir) | ||
|
|
||
| builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir) | ||
| generated_md = builder.get_metadata() | ||
| expected_md = { | ||
| "inputs": {"input_1": {"inputTensorName": "input_1"}}, | ||
| "outputs": {"output_1": {"outputTensorName": "output_1"}}, | ||
| } | ||
| assert expected_md == generated_md | ||
|
|
||
| def test_non_keras_model(self): | ||
| class CustomModuleWithOutputName(tf.Module): | ||
| def __init__(self): | ||
| super(CustomModuleWithOutputName, self).__init__() | ||
| self.v = tf.Variable(1.0) | ||
|
|
||
| @tf.function(input_signature=[tf.TensorSpec([], tf.float32)]) | ||
| def __call__(self, x): | ||
| return {"custom_output_name": x * self.v} | ||
|
|
||
| module_output = CustomModuleWithOutputName() | ||
| call_output = module_output.__call__.get_concrete_function( | ||
| tf.TensorSpec(None, tf.float32) | ||
| ) | ||
| model_dir = self.get_temp_dir() | ||
| tf.saved_model.save( | ||
| module_output, model_dir, signatures={"serving_default": call_output} | ||
| ) | ||
|
|
||
| builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir) | ||
| generated_md = builder.get_metadata() | ||
| expected_md = { | ||
| "inputs": {"x": {"inputTensorName": "x"}}, | ||
| "outputs": { | ||
| "custom_output_name": {"outputTensorName": "custom_output_name"} | ||
| }, | ||
| } | ||
| assert expected_md == generated_md | ||
|
|
||
| def test_model_with_feature_column(self): | ||
| feature_columns = [ | ||
| tf.feature_column.embedding_column( | ||
| tf.feature_column.categorical_column_with_vocabulary_list( | ||
| "mode", ["fixed", "normal", "reversible"] | ||
| ), | ||
| dimension=8, | ||
| ), | ||
| tf.feature_column.numeric_column("age"), | ||
| ] | ||
| feature_layer = tf.keras.layers.DenseFeatures(feature_columns) | ||
|
|
||
| model = tf.keras.Sequential( | ||
| [ | ||
| feature_layer, | ||
| tf.keras.layers.Dense(128, activation="relu"), | ||
| tf.keras.layers.Dense(1), | ||
| ] | ||
| ) | ||
|
|
||
| model.compile( | ||
| optimizer="adam", | ||
| loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), | ||
| metrics=["accuracy"], | ||
| ) | ||
|
|
||
| model.fit( | ||
| {"age": np.array([20, 1]), "mode": np.array(["fixed", "normal"])}, | ||
| np.array([0, 1]), | ||
| ) | ||
| model_dir = self.get_temp_dir() | ||
| tf.saved_model.save(model, model_dir) | ||
| builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir) | ||
| generated_md = builder.get_metadata() | ||
| expected_md = { | ||
| "inputs": { | ||
| "age": {"inputTensorName": "age", "modality": "categorical"}, | ||
| "mode": {"inputTensorName": "mode", "modality": "categorical"}, | ||
| }, | ||
| "outputs": {"output_1": {"outputTensorName": "output_1"}}, | ||
| } | ||
| assert expected_md == generated_md |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.