SlideShare a Scribd company logo
ZAPR MEDIA LABS
Presented by: Chhavi Parasher and Ankit Timbadia
Agenda
● What is Apache Kafka?
● Why Apache Kafka?
● Fundamentals
○ Terminologies
○ Architecture
○ Protocol
● What does kafka offer?
● Where Kafka is used?
What is Apache Kafka?
What is kafka
“A high throughput distributed pub-sub messaging system.
What is kafka
“A pub-sub messaging system rethought as a distributed commit log
storage.”
Why Apache Kafka?
Why Kafka
Client Source
Data Pipelines Start like this.
Why Kafka
Client Source
Client
Client
Client
Then we reuse them
Why Kafka
Client Backend1
Client
Client
Client
Then we add additional endpoints to the
existing sources
Backend2
Why Kafka
Client Backend1
Client
Client
Client
Then it starts to look like this
Backend2
Backend3
Backend4
Birth of Kafka
Kafka decouples Data Pipelines
Source System Source System Source System Source System
Hadoop Security Systems
Real-time
monitoring
Data Warehouse
Kafka
Producers
Brokers
Consumers
Kafka Fundamentals
Terminologies
Terminologies
• Topic is a message stream (queue)
• Partitions - Topic is divided into partitions
• Ordered, immutable, a structured commit log
• Segments - Partition has log segments on disk
• Partitions broken down into physical files.
• Offset - Segment has messages
• Each message is assigned a sequential id
Anatomy of a topic
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
0 1 2 3 4 5 6 7 8 9
1
0
1
1
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Partition
1
Partition
2
Partition
3
Writes
Old New
Segment1 Segment2
Kafka Message (Write once read many)
Partitions and Brokers
• Each broker can be
a leader or a replica
for a partition
• All writes & reads to
a topic go through
the leader
Producer writing to partition
• Producers write to a
single leader
• Each write can be
serviced by a
separate broker
Producer writing to second partition.
Keyed Messages and Partitioning
Producer
Partitioning Distributes clients across consumers
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Producer
Producer
Producer
Producer
Producer
Architecture
What does kafka offer?
What does kafka offer?
• Fast
• Scalable
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• A single Kafka broker can handle 100Mbps of reads & writes from 1000 of clients.
• Scalable
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• Scalable
• Data streams are partitioned and spread over a cluster of machines to allow data
streams larger than the capability of any single machine
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• Scalable
• Durable
• Messages are persisted on disk and replicated within the cluster to prevent data
loss. Each broker can handle terabytes of messages without performance impact.
• Distributed by Design
What does kafka offer
• Fast
• Scalable
• Durable
• Distributed by Design
• Kafka has a modern cluster-centric design that offers strong durability and
fault-tolerance guarantees.
Efficiency - high throughput & low latency
• Disks are fast when used sequentially
• Append to end of log.
• Fetch messages from a partition beginning from a particular message id.
• Batching makes best use of network/IO
• Batched send and receive
• Batched compression (GZIP, Snappy and LZ4)
Efficiency - high throughput & low latency
• No message caching in JVM
• Zero-copy from file to socket (Java NIO)
●
●
●
●
●
●
Comparison to other messaging systems
Where is Kafka used?
Who uses Apache Kafka?
What do people use it for?
• Activity tracking
• page views or click tracking, profile updates
• Real-time event processing
• Provides low latency
• Good integration with spark, samza. storm etc.
• Collecting Operational Metrics
• Monitoring & alerting
• Commit log
• database changes can be published to Kafka
Why Replication?
• Broker can go down
• controlled: rolling restart for code/config push
• uncontrolled: isolated broker failure
• If broker is down
• some partitions are unavailable
• could be permanent data loss
• Replication ensures higher availability & durability
Caveats
• Not designed for large payloads.
• Decoding is done for a whole message (no streaming decoding).
• Rebalancing can screw things up.
• if you're doing any aggregation in the consumer by the partition key
• Number of partitions cannot be easily changed (chose wisely).
• Lots of topics can hurt I/O performance.
Guarantees
• At least once delivery
• In order delivery, per partition
• For a topic with replication factor N, Kafka can tolerate up to N-1 server
failures without “losing” any messages committed to the log
Summary
• A high throughput distributed messaging system rethought as commit log
• Originally developed by LinkedIn, Open Sourced in 2011
• Written in Scala, Clients for every popular language
• Used by LinkedIn, Twitter, Netflix and many more companies.
• When should we use Kafka ?
• When should we not use kafka?
Kafka in Production @ Zapr
Agenda
• Kafka Clusters at @Zapr
• Kafka in AWS
• Challenges Managing Kafka Brokers.
• Monitoring of Kafka Clusters.
Kafka Version: 0.8.2
Total Kafka Clusters: 5
Number of Topics: 185
Brokers: 17
Partitions: 7827
Regions: 2 (us-east-1,ap-southeast-1)
Kafka at Zapr
Kafka Clusters on Amazon Web Services.
Quorum of 3 Zookeeper Nodes for High Availability
Kafka Brokers
Resource Utilization
Family Type vCPU Memory CPU Pricing
Compute
Optimized
C4.2xlarge 8 16 ~75% 338$
General
Purpose
M4.2xlarge 8 32 ~25% 366$
After moving from C4 Class to M4 Class Machines 40% Improvement in CPU Usage
Production Kafka Broker Configurations
#Default Partitions and Replication Factor for Kafka Topics
num.partitions=10
default.replication.factor=2
#Controlled shutdown for the proper shutdown of Kafka Broker for maintenance.
num.recovery.threads.per.data.dir=4
controlled.shutdown.enable=true
controlled.shutdown.max.retries=5
controlled.shutdown.retry.backoff.ms=60000
#Creation and Deletion of Kafka Topics
delete.topic.enable=true
auto.create.topics.enable=true
Production Kafka Broker
Configurations
Challenges
Dynamic Load
• Kafka Scales Horizontally
• For a topic, Kafka has N (Replicated Partitions)
• Adding a Broker causes Partition to rebalanced
Current State 2 Brokers, 1 Topic and 6
Partitions & replication 2
Desired State after adding 3rd
Broker
Kafka approach
Introducing Kafka Manager
https://github.com/yahoo/kafka-manager
It supports the following :
● Manage multiple clusters.
● Easy inspection of cluster state (topics, consumers, offsets, brokers)
● Generate partition assignments with option to select brokers to use
● Run reassignment of partition (based on generated assignments)
● Create a topic with optional topic configs (0.8.1.1 has different configs than 0.8.2+)
● Delete topic (only supported on 0.8.2+ and remember set delete.topic.enable=true in
broker config)
● Add partitions to existing topic
● Update config for existing topic
● Optionally enable JMX polling for broker level and topic level metrics.
Clusters
Topic List
Topic View
Consumed Topic View
Broker List
Broker View
Reassign Partition
Monitoring
Kafka Graphite Metric Plugin
https://github.com/damienclaveau/kafka-graphite
#Graphite Reporter
kafka.metrics.reporters=com.criteo.kafka.KafkaGraphiteM
etricsReporter
kafka.graphite.metrics.reporter.enabled=true
kafka.metrics.polling.interval.secs = 60
kafka.graphite.metrics.host= graphite.zapr.com
kafka.graphite.metrics.port=2003
kafka.graphite.metrics.group=PROD.kafka-cluster-1.10-0-1-
90
Metrics @Graphite
Kafka Offset Monitoring
https://github.com/quantifind/KafkaOffsetMonitor
● This is an app to monitor your kafka consumers and their position (offset) in
the queue.
● You can see the current consumer groups, for each group the topics that they
are consuming
● Offset are useful to understand how quick you are consuming from a queue
and how fast the queue is growing
Kafka Offset Checker
Kafka offset monitoring @Graphite
Future plans
• Upgrading EC2 instances to next generations from M4 to M5
• Upgrading Kafka Version from 0.8.2 to latest version (1.2)
• Using ST1 (throughput optimized HDD) EBS
Thank you!

More Related Content

What's hot (20)

PPTX
kafka
Amikam Snir
 
PPTX
Kafka presentation
Mohammed Fazuluddin
 
PDF
Kafka 101 and Developer Best Practices
confluent
 
PDF
Introduction to Apache Kafka
Shiao-An Yuan
 
PPTX
Apache kafka
Viswanath J
 
PDF
When NOT to use Apache Kafka?
Kai Wähner
 
PPTX
Apache kafka
Long Nguyen
 
PDF
Producer Performance Tuning for Apache Kafka
Jiangjie Qin
 
PDF
Apache Kafka - Martin Podval
Martin Podval
 
ODP
Stream processing using Kafka
Knoldus Inc.
 
PPTX
Apache Kafka
emreakis
 
PPTX
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
PPTX
Introduction to Kafka
Akash Vacher
 
PPTX
APACHE KAFKA / Kafka Connect / Kafka Streams
Ketan Gote
 
PPTX
Introduction to Kafka Cruise Control
Jiangjie Qin
 
PDF
An Introduction to Apache Kafka
Amir Sedighi
 
PPTX
Apache Kafka
Saroj Panyasrivanit
 
PPTX
Apache Kafka - Messaging System Overview
Dmitry Tolpeko
 
PDF
How Apache Kafka® Works
confluent
 
Kafka presentation
Mohammed Fazuluddin
 
Kafka 101 and Developer Best Practices
confluent
 
Introduction to Apache Kafka
Shiao-An Yuan
 
Apache kafka
Viswanath J
 
When NOT to use Apache Kafka?
Kai Wähner
 
Apache kafka
Long Nguyen
 
Producer Performance Tuning for Apache Kafka
Jiangjie Qin
 
Apache Kafka - Martin Podval
Martin Podval
 
Stream processing using Kafka
Knoldus Inc.
 
Apache Kafka
emreakis
 
From cache to in-memory data grid. Introduction to Hazelcast.
Taras Matyashovsky
 
Introduction to Kafka
Akash Vacher
 
APACHE KAFKA / Kafka Connect / Kafka Streams
Ketan Gote
 
Introduction to Kafka Cruise Control
Jiangjie Qin
 
An Introduction to Apache Kafka
Amir Sedighi
 
Apache Kafka
Saroj Panyasrivanit
 
Apache Kafka - Messaging System Overview
Dmitry Tolpeko
 
How Apache Kafka® Works
confluent
 

Similar to Fundamentals of Apache Kafka (20)

PPTX
Fundamentals and Architecture of Apache Kafka
Angelo Cesaro
 
PDF
Apache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & Partitioning
Guido Schmutz
 
PDF
Introduction to apache kafka
Samuel Kerrien
 
PDF
Kafka syed academy_v1_introduction
Syed Hadoop
 
PDF
Kafka Deep Dive
Knoldus Inc.
 
PDF
Apache Kafka - Scalable Message-Processing and more !
Guido Schmutz
 
PDF
Kafka in action - Tech Talk - Paytm
Sumit Jain
 
PPTX
Intoduction to Apache Kafka
Veysel Gündüzalp
 
PPTX
Kafkha real time analytics platform.pptx
dummyuseage1
 
PPTX
Kafka Basic For Beginners
Riby Varghese
 
PDF
Apache Kafka - Scalable Message Processing and more!
Guido Schmutz
 
PPTX
Unleashing Real-time Power with Kafka.pptx
Knoldus Inc.
 
PPTX
Kafka RealTime Streaming
Viyaan Jhiingade
 
PPTX
Kafka overview v0.1
Mahendran Ponnusamy
 
PDF
Kafka internals
David Groozman
 
PDF
Apache Kafka - Scalable Message-Processing and more !
Guido Schmutz
 
PDF
Kafka - Messaging System
Tanuj Mehta
 
PPTX
04-Kafka.pptx
MannMehta13
 
PPTX
04-Kafka.pptx
AdityaGanguly12
 
DOCX
Fundamentals of Apache Kafka
Avanish Chauhan
 
Fundamentals and Architecture of Apache Kafka
Angelo Cesaro
 
Apache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & Partitioning
Guido Schmutz
 
Introduction to apache kafka
Samuel Kerrien
 
Kafka syed academy_v1_introduction
Syed Hadoop
 
Kafka Deep Dive
Knoldus Inc.
 
Apache Kafka - Scalable Message-Processing and more !
Guido Schmutz
 
Kafka in action - Tech Talk - Paytm
Sumit Jain
 
Intoduction to Apache Kafka
Veysel Gündüzalp
 
Kafkha real time analytics platform.pptx
dummyuseage1
 
Kafka Basic For Beginners
Riby Varghese
 
Apache Kafka - Scalable Message Processing and more!
Guido Schmutz
 
Unleashing Real-time Power with Kafka.pptx
Knoldus Inc.
 
Kafka RealTime Streaming
Viyaan Jhiingade
 
Kafka overview v0.1
Mahendran Ponnusamy
 
Kafka internals
David Groozman
 
Apache Kafka - Scalable Message-Processing and more !
Guido Schmutz
 
Kafka - Messaging System
Tanuj Mehta
 
04-Kafka.pptx
MannMehta13
 
04-Kafka.pptx
AdityaGanguly12
 
Fundamentals of Apache Kafka
Avanish Chauhan
 
Ad

Recently uploaded (20)

PDF
New Download FL Studio Crack Full Version [Latest 2025]
imang66g
 
PDF
Adobe Illustrator Crack Full Download (Latest Version 2025) Pre-Activated
imang66g
 
PPTX
ASSIGNMENT_1[1][1][1][1][1] (1) variables.pptx
kr2589474
 
PDF
Download iTop VPN Free 6.1.0.5882 Crack Full Activated Pre Latest 2025
imang66g
 
PPTX
Web Testing.pptx528278vshbuqffqhhqiwnwuq
studylike474
 
PPTX
Role Of Python In Programing Language.pptx
jaykoshti048
 
PDF
advancepresentationskillshdhdhhdhdhdhhfhf
jasmenrojas249
 
PDF
How Agentic AI Networks are Revolutionizing Collaborative AI Ecosystems in 2025
ronakdubey419
 
PPTX
Farrell__10e_ch04_PowerPoint.pptx Programming Logic and Design slides
bashnahara11
 
PDF
Salesforce Pricing Update 2025: Impact, Strategy & Smart Cost Optimization wi...
GetOnCRM Solutions
 
PDF
Enhancing Healthcare RPM Platforms with Contextual AI Integration
Cadabra Studio
 
PPTX
GALILEO CRS SYSTEM | GALILEO TRAVEL SOFTWARE
philipnathen82
 
PDF
Using licensed Data Loss Prevention (DLP) as a strategic proactive data secur...
Q-Advise
 
PPTX
TRAVEL APIs | WHITE LABEL TRAVEL API | TOP TRAVEL APIs
philipnathen82
 
PDF
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 
PDF
On Software Engineers' Productivity - Beyond Misleading Metrics
Romén Rodríguez-Gil
 
PPTX
slidesgo-unlocking-the-code-the-dynamic-dance-of-variables-and-constants-2024...
kr2589474
 
PDF
Virtual Threads in Java: A New Dimension of Scalability and Performance
Tier1 app
 
PPT
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
PDF
Supabase Meetup: Build in a weekend, scale to millions
Carlo Gilmar Padilla Santana
 
New Download FL Studio Crack Full Version [Latest 2025]
imang66g
 
Adobe Illustrator Crack Full Download (Latest Version 2025) Pre-Activated
imang66g
 
ASSIGNMENT_1[1][1][1][1][1] (1) variables.pptx
kr2589474
 
Download iTop VPN Free 6.1.0.5882 Crack Full Activated Pre Latest 2025
imang66g
 
Web Testing.pptx528278vshbuqffqhhqiwnwuq
studylike474
 
Role Of Python In Programing Language.pptx
jaykoshti048
 
advancepresentationskillshdhdhhdhdhdhhfhf
jasmenrojas249
 
How Agentic AI Networks are Revolutionizing Collaborative AI Ecosystems in 2025
ronakdubey419
 
Farrell__10e_ch04_PowerPoint.pptx Programming Logic and Design slides
bashnahara11
 
Salesforce Pricing Update 2025: Impact, Strategy & Smart Cost Optimization wi...
GetOnCRM Solutions
 
Enhancing Healthcare RPM Platforms with Contextual AI Integration
Cadabra Studio
 
GALILEO CRS SYSTEM | GALILEO TRAVEL SOFTWARE
philipnathen82
 
Using licensed Data Loss Prevention (DLP) as a strategic proactive data secur...
Q-Advise
 
TRAVEL APIs | WHITE LABEL TRAVEL API | TOP TRAVEL APIs
philipnathen82
 
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 
On Software Engineers' Productivity - Beyond Misleading Metrics
Romén Rodríguez-Gil
 
slidesgo-unlocking-the-code-the-dynamic-dance-of-variables-and-constants-2024...
kr2589474
 
Virtual Threads in Java: A New Dimension of Scalability and Performance
Tier1 app
 
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
Supabase Meetup: Build in a weekend, scale to millions
Carlo Gilmar Padilla Santana
 
Ad

Fundamentals of Apache Kafka

  • 1. ZAPR MEDIA LABS Presented by: Chhavi Parasher and Ankit Timbadia
  • 2. Agenda ● What is Apache Kafka? ● Why Apache Kafka? ● Fundamentals ○ Terminologies ○ Architecture ○ Protocol ● What does kafka offer? ● Where Kafka is used?
  • 3. What is Apache Kafka?
  • 4. What is kafka “A high throughput distributed pub-sub messaging system.
  • 5. What is kafka “A pub-sub messaging system rethought as a distributed commit log storage.”
  • 7. Why Kafka Client Source Data Pipelines Start like this.
  • 9. Why Kafka Client Backend1 Client Client Client Then we add additional endpoints to the existing sources Backend2
  • 10. Why Kafka Client Backend1 Client Client Client Then it starts to look like this Backend2 Backend3 Backend4
  • 11. Birth of Kafka Kafka decouples Data Pipelines Source System Source System Source System Source System Hadoop Security Systems Real-time monitoring Data Warehouse Kafka Producers Brokers Consumers
  • 14. Terminologies • Topic is a message stream (queue) • Partitions - Topic is divided into partitions • Ordered, immutable, a structured commit log • Segments - Partition has log segments on disk • Partitions broken down into physical files. • Offset - Segment has messages • Each message is assigned a sequential id
  • 15. Anatomy of a topic 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 0 1 2 3 4 5 6 7 8 9 1 0 1 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Partition 1 Partition 2 Partition 3 Writes Old New Segment1 Segment2
  • 16. Kafka Message (Write once read many)
  • 17. Partitions and Brokers • Each broker can be a leader or a replica for a partition • All writes & reads to a topic go through the leader
  • 18. Producer writing to partition • Producers write to a single leader • Each write can be serviced by a separate broker
  • 19. Producer writing to second partition.
  • 20. Keyed Messages and Partitioning Producer
  • 21. Partitioning Distributes clients across consumers Consumer Consumer Consumer Consumer Consumer Consumer Consumer Producer Producer Producer Producer Producer
  • 23. What does kafka offer?
  • 24. What does kafka offer? • Fast • Scalable • Durable • Distributed by Design
  • 25. What does kafka offer? • Fast • A single Kafka broker can handle 100Mbps of reads & writes from 1000 of clients. • Scalable • Durable • Distributed by Design
  • 26. What does kafka offer? • Fast • Scalable • Data streams are partitioned and spread over a cluster of machines to allow data streams larger than the capability of any single machine • Durable • Distributed by Design
  • 27. What does kafka offer? • Fast • Scalable • Durable • Messages are persisted on disk and replicated within the cluster to prevent data loss. Each broker can handle terabytes of messages without performance impact. • Distributed by Design
  • 28. What does kafka offer • Fast • Scalable • Durable • Distributed by Design • Kafka has a modern cluster-centric design that offers strong durability and fault-tolerance guarantees.
  • 29. Efficiency - high throughput & low latency • Disks are fast when used sequentially • Append to end of log. • Fetch messages from a partition beginning from a particular message id. • Batching makes best use of network/IO • Batched send and receive • Batched compression (GZIP, Snappy and LZ4)
  • 30. Efficiency - high throughput & low latency • No message caching in JVM • Zero-copy from file to socket (Java NIO)
  • 32. Where is Kafka used?
  • 33. Who uses Apache Kafka?
  • 34. What do people use it for? • Activity tracking • page views or click tracking, profile updates • Real-time event processing • Provides low latency • Good integration with spark, samza. storm etc. • Collecting Operational Metrics • Monitoring & alerting • Commit log • database changes can be published to Kafka
  • 35. Why Replication? • Broker can go down • controlled: rolling restart for code/config push • uncontrolled: isolated broker failure • If broker is down • some partitions are unavailable • could be permanent data loss • Replication ensures higher availability & durability
  • 36. Caveats • Not designed for large payloads. • Decoding is done for a whole message (no streaming decoding). • Rebalancing can screw things up. • if you're doing any aggregation in the consumer by the partition key • Number of partitions cannot be easily changed (chose wisely). • Lots of topics can hurt I/O performance.
  • 37. Guarantees • At least once delivery • In order delivery, per partition • For a topic with replication factor N, Kafka can tolerate up to N-1 server failures without “losing” any messages committed to the log
  • 38. Summary • A high throughput distributed messaging system rethought as commit log • Originally developed by LinkedIn, Open Sourced in 2011 • Written in Scala, Clients for every popular language • Used by LinkedIn, Twitter, Netflix and many more companies. • When should we use Kafka ? • When should we not use kafka?
  • 40. Agenda • Kafka Clusters at @Zapr • Kafka in AWS • Challenges Managing Kafka Brokers. • Monitoring of Kafka Clusters.
  • 41. Kafka Version: 0.8.2 Total Kafka Clusters: 5 Number of Topics: 185 Brokers: 17 Partitions: 7827 Regions: 2 (us-east-1,ap-southeast-1) Kafka at Zapr
  • 42. Kafka Clusters on Amazon Web Services. Quorum of 3 Zookeeper Nodes for High Availability Kafka Brokers
  • 43. Resource Utilization Family Type vCPU Memory CPU Pricing Compute Optimized C4.2xlarge 8 16 ~75% 338$ General Purpose M4.2xlarge 8 32 ~25% 366$ After moving from C4 Class to M4 Class Machines 40% Improvement in CPU Usage
  • 44. Production Kafka Broker Configurations
  • 45. #Default Partitions and Replication Factor for Kafka Topics num.partitions=10 default.replication.factor=2 #Controlled shutdown for the proper shutdown of Kafka Broker for maintenance. num.recovery.threads.per.data.dir=4 controlled.shutdown.enable=true controlled.shutdown.max.retries=5 controlled.shutdown.retry.backoff.ms=60000 #Creation and Deletion of Kafka Topics delete.topic.enable=true auto.create.topics.enable=true Production Kafka Broker Configurations
  • 47. Dynamic Load • Kafka Scales Horizontally • For a topic, Kafka has N (Replicated Partitions) • Adding a Broker causes Partition to rebalanced
  • 48. Current State 2 Brokers, 1 Topic and 6 Partitions & replication 2 Desired State after adding 3rd Broker
  • 50. Introducing Kafka Manager https://github.com/yahoo/kafka-manager It supports the following : ● Manage multiple clusters. ● Easy inspection of cluster state (topics, consumers, offsets, brokers) ● Generate partition assignments with option to select brokers to use ● Run reassignment of partition (based on generated assignments) ● Create a topic with optional topic configs (0.8.1.1 has different configs than 0.8.2+) ● Delete topic (only supported on 0.8.2+ and remember set delete.topic.enable=true in broker config) ● Add partitions to existing topic ● Update config for existing topic ● Optionally enable JMX polling for broker level and topic level metrics.
  • 59. Kafka Graphite Metric Plugin https://github.com/damienclaveau/kafka-graphite #Graphite Reporter kafka.metrics.reporters=com.criteo.kafka.KafkaGraphiteM etricsReporter kafka.graphite.metrics.reporter.enabled=true kafka.metrics.polling.interval.secs = 60 kafka.graphite.metrics.host= graphite.zapr.com kafka.graphite.metrics.port=2003 kafka.graphite.metrics.group=PROD.kafka-cluster-1.10-0-1- 90
  • 61. Kafka Offset Monitoring https://github.com/quantifind/KafkaOffsetMonitor ● This is an app to monitor your kafka consumers and their position (offset) in the queue. ● You can see the current consumer groups, for each group the topics that they are consuming ● Offset are useful to understand how quick you are consuming from a queue and how fast the queue is growing
  • 64. Future plans • Upgrading EC2 instances to next generations from M4 to M5 • Upgrading Kafka Version from 0.8.2 to latest version (1.2) • Using ST1 (throughput optimized HDD) EBS