ZAPR MEDIA LABS
Presented by: Chhavi Parasher and Ankit Timbadia
Agenda
● What is Apache Kafka?
● Why Apache Kafka?
● Fundamentals
○ Terminologies
○ Architecture
○ Protocol
● What does kafka offer?
● Where Kafka is used?
What is Apache Kafka?
What is kafka
“A high throughput distributed pub-sub messaging system.
What is kafka
“A pub-sub messaging system rethought as a distributed commit log
storage.”
Why Apache Kafka?
Why Kafka
Client Source
Data Pipelines Start like this.
Why Kafka
Client Source
Client
Client
Client
Then we reuse them
Why Kafka
Client Backend1
Client
Client
Client
Then we add additional endpoints to the
existing sources
Backend2
Why Kafka
Client Backend1
Client
Client
Client
Then it starts to look like this
Backend2
Backend3
Backend4
Birth of Kafka
Kafka decouples Data Pipelines
Source System Source System Source System Source System
Hadoop Security Systems
Real-time
monitoring
Data Warehouse
Kafka
Producers
Brokers
Consumers
Kafka Fundamentals
Terminologies
Terminologies
• Topic is a message stream (queue)
• Partitions - Topic is divided into partitions
• Ordered, immutable, a structured commit log
• Segments - Partition has log segments on disk
• Partitions broken down into physical files.
• Offset - Segment has messages
• Each message is assigned a sequential id
Anatomy of a topic
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
0 1 2 3 4 5 6 7 8 9
1
0
1
1
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Partition
1
Partition
2
Partition
3
Writes
Old New
Segment1 Segment2
Kafka Message (Write once read many)
Partitions and Brokers
• Each broker can be
a leader or a replica
for a partition
• All writes & reads to
a topic go through
the leader
Producer writing to partition
• Producers write to a
single leader
• Each write can be
serviced by a
separate broker
Producer writing to second partition.
Keyed Messages and Partitioning
Producer
Partitioning Distributes clients across consumers
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Consumer
Producer
Producer
Producer
Producer
Producer
Architecture
What does kafka offer?
What does kafka offer?
• Fast
• Scalable
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• A single Kafka broker can handle 100Mbps of reads & writes from 1000 of clients.
• Scalable
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• Scalable
• Data streams are partitioned and spread over a cluster of machines to allow data
streams larger than the capability of any single machine
• Durable
• Distributed by Design
What does kafka offer?
• Fast
• Scalable
• Durable
• Messages are persisted on disk and replicated within the cluster to prevent data
loss. Each broker can handle terabytes of messages without performance impact.
• Distributed by Design
What does kafka offer
• Fast
• Scalable
• Durable
• Distributed by Design
• Kafka has a modern cluster-centric design that offers strong durability and
fault-tolerance guarantees.
Efficiency - high throughput & low latency
• Disks are fast when used sequentially
• Append to end of log.
• Fetch messages from a partition beginning from a particular message id.
• Batching makes best use of network/IO
• Batched send and receive
• Batched compression (GZIP, Snappy and LZ4)
Efficiency - high throughput & low latency
• No message caching in JVM
• Zero-copy from file to socket (Java NIO)
●
●
●
●
●
●
Comparison to other messaging systems
Where is Kafka used?
Who uses Apache Kafka?
What do people use it for?
• Activity tracking
• page views or click tracking, profile updates
• Real-time event processing
• Provides low latency
• Good integration with spark, samza. storm etc.
• Collecting Operational Metrics
• Monitoring & alerting
• Commit log
• database changes can be published to Kafka
Why Replication?
• Broker can go down
• controlled: rolling restart for code/config push
• uncontrolled: isolated broker failure
• If broker is down
• some partitions are unavailable
• could be permanent data loss
• Replication ensures higher availability & durability
Caveats
• Not designed for large payloads.
• Decoding is done for a whole message (no streaming decoding).
• Rebalancing can screw things up.
• if you're doing any aggregation in the consumer by the partition key
• Number of partitions cannot be easily changed (chose wisely).
• Lots of topics can hurt I/O performance.
Guarantees
• At least once delivery
• In order delivery, per partition
• For a topic with replication factor N, Kafka can tolerate up to N-1 server
failures without “losing” any messages committed to the log
Summary
• A high throughput distributed messaging system rethought as commit log
• Originally developed by LinkedIn, Open Sourced in 2011
• Written in Scala, Clients for every popular language
• Used by LinkedIn, Twitter, Netflix and many more companies.
• When should we use Kafka ?
• When should we not use kafka?
Kafka in Production @ Zapr
Agenda
• Kafka Clusters at @Zapr
• Kafka in AWS
• Challenges Managing Kafka Brokers.
• Monitoring of Kafka Clusters.
Kafka Version: 0.8.2
Total Kafka Clusters: 5
Number of Topics: 185
Brokers: 17
Partitions: 7827
Regions: 2 (us-east-1,ap-southeast-1)
Kafka at Zapr
Kafka Clusters on Amazon Web Services.
Quorum of 3 Zookeeper Nodes for High Availability
Kafka Brokers
Resource Utilization
Family Type vCPU Memory CPU Pricing
Compute
Optimized
C4.2xlarge 8 16 ~75% 338$
General
Purpose
M4.2xlarge 8 32 ~25% 366$
After moving from C4 Class to M4 Class Machines 40% Improvement in CPU Usage
Production Kafka Broker Configurations
#Default Partitions and Replication Factor for Kafka Topics
num.partitions=10
default.replication.factor=2
#Controlled shutdown for the proper shutdown of Kafka Broker for maintenance.
num.recovery.threads.per.data.dir=4
controlled.shutdown.enable=true
controlled.shutdown.max.retries=5
controlled.shutdown.retry.backoff.ms=60000
#Creation and Deletion of Kafka Topics
delete.topic.enable=true
auto.create.topics.enable=true
Production Kafka Broker
Configurations
Challenges
Dynamic Load
• Kafka Scales Horizontally
• For a topic, Kafka has N (Replicated Partitions)
• Adding a Broker causes Partition to rebalanced
Current State 2 Brokers, 1 Topic and 6
Partitions & replication 2
Desired State after adding 3rd
Broker
Kafka approach
Introducing Kafka Manager
https://github.com/yahoo/kafka-manager
It supports the following :
● Manage multiple clusters.
● Easy inspection of cluster state (topics, consumers, offsets, brokers)
● Generate partition assignments with option to select brokers to use
● Run reassignment of partition (based on generated assignments)
● Create a topic with optional topic configs (0.8.1.1 has different configs than 0.8.2+)
● Delete topic (only supported on 0.8.2+ and remember set delete.topic.enable=true in
broker config)
● Add partitions to existing topic
● Update config for existing topic
● Optionally enable JMX polling for broker level and topic level metrics.
Clusters
Topic List
Topic View
Consumed Topic View
Broker List
Broker View
Reassign Partition
Monitoring
Kafka Graphite Metric Plugin
https://github.com/damienclaveau/kafka-graphite
#Graphite Reporter
kafka.metrics.reporters=com.criteo.kafka.KafkaGraphiteM
etricsReporter
kafka.graphite.metrics.reporter.enabled=true
kafka.metrics.polling.interval.secs = 60
kafka.graphite.metrics.host= graphite.zapr.com
kafka.graphite.metrics.port=2003
kafka.graphite.metrics.group=PROD.kafka-cluster-1.10-0-1-
90
Metrics @Graphite
Kafka Offset Monitoring
https://github.com/quantifind/KafkaOffsetMonitor
● This is an app to monitor your kafka consumers and their position (offset) in
the queue.
● You can see the current consumer groups, for each group the topics that they
are consuming
● Offset are useful to understand how quick you are consuming from a queue
and how fast the queue is growing
Kafka Offset Checker
Kafka offset monitoring @Graphite
Future plans
• Upgrading EC2 instances to next generations from M4 to M5
• Upgrading Kafka Version from 0.8.2 to latest version (1.2)
• Using ST1 (throughput optimized HDD) EBS
Thank you!

More Related Content

PPTX
Introduction to Apache Kafka
PDF
Apache Kafka Architecture & Fundamentals Explained
PPTX
Introduction to Apache Kafka
PPTX
Apache Kafka Best Practices
PDF
Introduction to Kafka Streams
PPTX
Kafka 101
PPTX
Kafka Tutorial - Introduction to Apache Kafka (Part 1)
PDF
Introduction to Apache Kafka
Apache Kafka Architecture & Fundamentals Explained
Introduction to Apache Kafka
Apache Kafka Best Practices
Introduction to Kafka Streams
Kafka 101
Kafka Tutorial - Introduction to Apache Kafka (Part 1)

What's hot (20)

PDF
Apache Kafka - Martin Podval
PPTX
A visual introduction to Apache Kafka
PDF
Introduction to apache kafka
PPTX
APACHE KAFKA / Kafka Connect / Kafka Streams
PDF
Apache Kafka Introduction
PPTX
Apache kafka
ODP
Stream processing using Kafka
PPTX
Kafka presentation
PPTX
Apache Kafka
PPTX
Apache Kafka
PDF
Kafka 101 and Developer Best Practices
PDF
An Introduction to Apache Kafka
PPTX
Apache kafka
PPTX
Kafka 101
PPTX
PDF
Apache Kafka Fundamentals for Architects, Admins and Developers
PDF
Kafka Overview
PPTX
Apache Kafka - Overview
PDF
Introduction to Apache Kafka
Apache Kafka - Martin Podval
A visual introduction to Apache Kafka
Introduction to apache kafka
APACHE KAFKA / Kafka Connect / Kafka Streams
Apache Kafka Introduction
Apache kafka
Stream processing using Kafka
Kafka presentation
Apache Kafka
Apache Kafka
Kafka 101 and Developer Best Practices
An Introduction to Apache Kafka
Apache kafka
Kafka 101
Apache Kafka Fundamentals for Architects, Admins and Developers
Kafka Overview
Apache Kafka - Overview
Introduction to Apache Kafka
Ad

Similar to Fundamentals of Apache Kafka (20)

PPTX
Fundamentals and Architecture of Apache Kafka
PPTX
Unleashing Real-time Power with Kafka.pptx
PDF
Introduction_to_Kafka - A brief Overview.pdf
PPTX
World of Tanks Experience of Using Kafka
PPT
Kafka Explainaton
PPTX
Apache kafka
PDF
Apache Kafka - Scalable Message-Processing and more !
PDF
apachekafka-160907180205.pdf
PPTX
Columbus mule soft_meetup_aug2021_Kafka_Integration
PPTX
Building an Event Bus at Scale
PPTX
Kafka tutorial
PPTX
How is Kafka so Fast?
PPTX
Copy of Kafka-Camus
PDF
Building High-Throughput, Low-Latency Pipelines in Kafka
PDF
Python Kafka Integration: Developers Guide
PDF
14th Athens Big Data Meetup - Landoop Workshop - Apache Kafka Entering The St...
PPTX
Reducing Microservice Complexity with Kafka and Reactive Streams
PDF
Unlocking the Power of Apache Kafka: How Kafka Listeners Facilitate Real-time...
PDF
Hands-on Workshop: Apache Pulsar
PPTX
Distributed messaging through Kafka
Fundamentals and Architecture of Apache Kafka
Unleashing Real-time Power with Kafka.pptx
Introduction_to_Kafka - A brief Overview.pdf
World of Tanks Experience of Using Kafka
Kafka Explainaton
Apache kafka
Apache Kafka - Scalable Message-Processing and more !
apachekafka-160907180205.pdf
Columbus mule soft_meetup_aug2021_Kafka_Integration
Building an Event Bus at Scale
Kafka tutorial
How is Kafka so Fast?
Copy of Kafka-Camus
Building High-Throughput, Low-Latency Pipelines in Kafka
Python Kafka Integration: Developers Guide
14th Athens Big Data Meetup - Landoop Workshop - Apache Kafka Entering The St...
Reducing Microservice Complexity with Kafka and Reactive Streams
Unlocking the Power of Apache Kafka: How Kafka Listeners Facilitate Real-time...
Hands-on Workshop: Apache Pulsar
Distributed messaging through Kafka
Ad

Recently uploaded (20)

PPTX
WJQSJXNAZJVCVSAXJHBZKSJXKJKXJSBHJBJEHHJB
PPTX
ROI Analysis for Newspaper Industry with Odoo ERP
PDF
Cloud Native Aachen Meetup - Aug 21, 2025
PDF
MiniTool Power Data Recovery 12.6 Crack + Portable (Latest Version 2025)
PPTX
Bandicam Screen Recorder 8.2.1 Build 2529 Crack
PDF
Mobile App Backend Development with WordPress REST API: The Complete eBook
PPTX
DevOpsDays Halifax 2025 - Building 10x Organizations Using Modern Productivit...
PPTX
string python Python Strings: Literals, Slicing, Methods, Formatting, and Pra...
PDF
CapCut PRO for PC Crack New Download (Fully Activated 2025)
PPTX
HackYourBrain__UtrechtJUG__11092025.pptx
PDF
Workplace Software and Skills - OpenStax
PDF
Building an Inclusive Web Accessibility Made Simple with Accessibility Analyzer
PDF
IT Consulting Services to Secure Future Growth
PPT
3.Software Design for software engineering
PDF
Sun and Bloombase Spitfire StoreSafe End-to-end Storage Security Solution
PPTX
Chapter 1 - Transaction Processing and Mgt.pptx
PDF
Understanding the Need for Systemic Change in Open Source Through Intersectio...
PDF
PDF-XChange Editor Plus 10.7.0.398.0 Crack Free Download Latest 2025
PDF
infoteam HELLAS company profile 2025 presentation
PPTX
DevOpsDays Halifax 2025 - Building 10x Organizations Using Modern Productivit...
WJQSJXNAZJVCVSAXJHBZKSJXKJKXJSBHJBJEHHJB
ROI Analysis for Newspaper Industry with Odoo ERP
Cloud Native Aachen Meetup - Aug 21, 2025
MiniTool Power Data Recovery 12.6 Crack + Portable (Latest Version 2025)
Bandicam Screen Recorder 8.2.1 Build 2529 Crack
Mobile App Backend Development with WordPress REST API: The Complete eBook
DevOpsDays Halifax 2025 - Building 10x Organizations Using Modern Productivit...
string python Python Strings: Literals, Slicing, Methods, Formatting, and Pra...
CapCut PRO for PC Crack New Download (Fully Activated 2025)
HackYourBrain__UtrechtJUG__11092025.pptx
Workplace Software and Skills - OpenStax
Building an Inclusive Web Accessibility Made Simple with Accessibility Analyzer
IT Consulting Services to Secure Future Growth
3.Software Design for software engineering
Sun and Bloombase Spitfire StoreSafe End-to-end Storage Security Solution
Chapter 1 - Transaction Processing and Mgt.pptx
Understanding the Need for Systemic Change in Open Source Through Intersectio...
PDF-XChange Editor Plus 10.7.0.398.0 Crack Free Download Latest 2025
infoteam HELLAS company profile 2025 presentation
DevOpsDays Halifax 2025 - Building 10x Organizations Using Modern Productivit...

Fundamentals of Apache Kafka

  • 1. ZAPR MEDIA LABS Presented by: Chhavi Parasher and Ankit Timbadia
  • 2. Agenda ● What is Apache Kafka? ● Why Apache Kafka? ● Fundamentals ○ Terminologies ○ Architecture ○ Protocol ● What does kafka offer? ● Where Kafka is used?
  • 3. What is Apache Kafka?
  • 4. What is kafka “A high throughput distributed pub-sub messaging system.
  • 5. What is kafka “A pub-sub messaging system rethought as a distributed commit log storage.”
  • 7. Why Kafka Client Source Data Pipelines Start like this.
  • 9. Why Kafka Client Backend1 Client Client Client Then we add additional endpoints to the existing sources Backend2
  • 10. Why Kafka Client Backend1 Client Client Client Then it starts to look like this Backend2 Backend3 Backend4
  • 11. Birth of Kafka Kafka decouples Data Pipelines Source System Source System Source System Source System Hadoop Security Systems Real-time monitoring Data Warehouse Kafka Producers Brokers Consumers
  • 14. Terminologies • Topic is a message stream (queue) • Partitions - Topic is divided into partitions • Ordered, immutable, a structured commit log • Segments - Partition has log segments on disk • Partitions broken down into physical files. • Offset - Segment has messages • Each message is assigned a sequential id
  • 15. Anatomy of a topic 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 0 1 2 3 4 5 6 7 8 9 1 0 1 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Partition 1 Partition 2 Partition 3 Writes Old New Segment1 Segment2
  • 16. Kafka Message (Write once read many)
  • 17. Partitions and Brokers • Each broker can be a leader or a replica for a partition • All writes & reads to a topic go through the leader
  • 18. Producer writing to partition • Producers write to a single leader • Each write can be serviced by a separate broker
  • 19. Producer writing to second partition.
  • 20. Keyed Messages and Partitioning Producer
  • 21. Partitioning Distributes clients across consumers Consumer Consumer Consumer Consumer Consumer Consumer Consumer Producer Producer Producer Producer Producer
  • 23. What does kafka offer?
  • 24. What does kafka offer? • Fast • Scalable • Durable • Distributed by Design
  • 25. What does kafka offer? • Fast • A single Kafka broker can handle 100Mbps of reads & writes from 1000 of clients. • Scalable • Durable • Distributed by Design
  • 26. What does kafka offer? • Fast • Scalable • Data streams are partitioned and spread over a cluster of machines to allow data streams larger than the capability of any single machine • Durable • Distributed by Design
  • 27. What does kafka offer? • Fast • Scalable • Durable • Messages are persisted on disk and replicated within the cluster to prevent data loss. Each broker can handle terabytes of messages without performance impact. • Distributed by Design
  • 28. What does kafka offer • Fast • Scalable • Durable • Distributed by Design • Kafka has a modern cluster-centric design that offers strong durability and fault-tolerance guarantees.
  • 29. Efficiency - high throughput & low latency • Disks are fast when used sequentially • Append to end of log. • Fetch messages from a partition beginning from a particular message id. • Batching makes best use of network/IO • Batched send and receive • Batched compression (GZIP, Snappy and LZ4)
  • 30. Efficiency - high throughput & low latency • No message caching in JVM • Zero-copy from file to socket (Java NIO)
  • 32. Where is Kafka used?
  • 33. Who uses Apache Kafka?
  • 34. What do people use it for? • Activity tracking • page views or click tracking, profile updates • Real-time event processing • Provides low latency • Good integration with spark, samza. storm etc. • Collecting Operational Metrics • Monitoring & alerting • Commit log • database changes can be published to Kafka
  • 35. Why Replication? • Broker can go down • controlled: rolling restart for code/config push • uncontrolled: isolated broker failure • If broker is down • some partitions are unavailable • could be permanent data loss • Replication ensures higher availability & durability
  • 36. Caveats • Not designed for large payloads. • Decoding is done for a whole message (no streaming decoding). • Rebalancing can screw things up. • if you're doing any aggregation in the consumer by the partition key • Number of partitions cannot be easily changed (chose wisely). • Lots of topics can hurt I/O performance.
  • 37. Guarantees • At least once delivery • In order delivery, per partition • For a topic with replication factor N, Kafka can tolerate up to N-1 server failures without “losing” any messages committed to the log
  • 38. Summary • A high throughput distributed messaging system rethought as commit log • Originally developed by LinkedIn, Open Sourced in 2011 • Written in Scala, Clients for every popular language • Used by LinkedIn, Twitter, Netflix and many more companies. • When should we use Kafka ? • When should we not use kafka?
  • 40. Agenda • Kafka Clusters at @Zapr • Kafka in AWS • Challenges Managing Kafka Brokers. • Monitoring of Kafka Clusters.
  • 41. Kafka Version: 0.8.2 Total Kafka Clusters: 5 Number of Topics: 185 Brokers: 17 Partitions: 7827 Regions: 2 (us-east-1,ap-southeast-1) Kafka at Zapr
  • 42. Kafka Clusters on Amazon Web Services. Quorum of 3 Zookeeper Nodes for High Availability Kafka Brokers
  • 43. Resource Utilization Family Type vCPU Memory CPU Pricing Compute Optimized C4.2xlarge 8 16 ~75% 338$ General Purpose M4.2xlarge 8 32 ~25% 366$ After moving from C4 Class to M4 Class Machines 40% Improvement in CPU Usage
  • 44. Production Kafka Broker Configurations
  • 45. #Default Partitions and Replication Factor for Kafka Topics num.partitions=10 default.replication.factor=2 #Controlled shutdown for the proper shutdown of Kafka Broker for maintenance. num.recovery.threads.per.data.dir=4 controlled.shutdown.enable=true controlled.shutdown.max.retries=5 controlled.shutdown.retry.backoff.ms=60000 #Creation and Deletion of Kafka Topics delete.topic.enable=true auto.create.topics.enable=true Production Kafka Broker Configurations
  • 47. Dynamic Load • Kafka Scales Horizontally • For a topic, Kafka has N (Replicated Partitions) • Adding a Broker causes Partition to rebalanced
  • 48. Current State 2 Brokers, 1 Topic and 6 Partitions & replication 2 Desired State after adding 3rd Broker
  • 50. Introducing Kafka Manager https://github.com/yahoo/kafka-manager It supports the following : ● Manage multiple clusters. ● Easy inspection of cluster state (topics, consumers, offsets, brokers) ● Generate partition assignments with option to select brokers to use ● Run reassignment of partition (based on generated assignments) ● Create a topic with optional topic configs (0.8.1.1 has different configs than 0.8.2+) ● Delete topic (only supported on 0.8.2+ and remember set delete.topic.enable=true in broker config) ● Add partitions to existing topic ● Update config for existing topic ● Optionally enable JMX polling for broker level and topic level metrics.
  • 59. Kafka Graphite Metric Plugin https://github.com/damienclaveau/kafka-graphite #Graphite Reporter kafka.metrics.reporters=com.criteo.kafka.KafkaGraphiteM etricsReporter kafka.graphite.metrics.reporter.enabled=true kafka.metrics.polling.interval.secs = 60 kafka.graphite.metrics.host= graphite.zapr.com kafka.graphite.metrics.port=2003 kafka.graphite.metrics.group=PROD.kafka-cluster-1.10-0-1- 90
  • 61. Kafka Offset Monitoring https://github.com/quantifind/KafkaOffsetMonitor ● This is an app to monitor your kafka consumers and their position (offset) in the queue. ● You can see the current consumer groups, for each group the topics that they are consuming ● Offset are useful to understand how quick you are consuming from a queue and how fast the queue is growing
  • 64. Future plans • Upgrading EC2 instances to next generations from M4 to M5 • Upgrading Kafka Version from 0.8.2 to latest version (1.2) • Using ST1 (throughput optimized HDD) EBS