LLVM 22.0.0git
AMDGPUBaseInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "AMDGPUBaseInfo.h"
10#include "AMDGPU.h"
11#include "AMDGPUAsmUtils.h"
12#include "AMDKernelCodeT.h"
17#include "llvm/IR/Attributes.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/IR/IntrinsicsAMDGPU.h"
22#include "llvm/IR/IntrinsicsR600.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Metadata.h"
25#include "llvm/MC/MCInstrInfo.h"
30#include <optional>
31
32#define GET_INSTRINFO_NAMED_OPS
33#define GET_INSTRMAP_INFO
34#include "AMDGPUGenInstrInfo.inc"
35
37 "amdhsa-code-object-version", llvm::cl::Hidden,
39 llvm::cl::desc("Set default AMDHSA Code Object Version (module flag "
40 "or asm directive still take priority if present)"));
41
42namespace {
43
44/// \returns Bit mask for given bit \p Shift and bit \p Width.
45unsigned getBitMask(unsigned Shift, unsigned Width) {
46 return ((1 << Width) - 1) << Shift;
47}
48
49/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
50///
51/// \returns Packed \p Dst.
52unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
53 unsigned Mask = getBitMask(Shift, Width);
54 return ((Src << Shift) & Mask) | (Dst & ~Mask);
55}
56
57/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
58///
59/// \returns Unpacked bits.
60unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
61 return (Src & getBitMask(Shift, Width)) >> Shift;
62}
63
64/// \returns Vmcnt bit shift (lower bits).
65unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
66 return VersionMajor >= 11 ? 10 : 0;
67}
68
69/// \returns Vmcnt bit width (lower bits).
70unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
71 return VersionMajor >= 11 ? 6 : 4;
72}
73
74/// \returns Expcnt bit shift.
75unsigned getExpcntBitShift(unsigned VersionMajor) {
76 return VersionMajor >= 11 ? 0 : 4;
77}
78
79/// \returns Expcnt bit width.
80unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
81
82/// \returns Lgkmcnt bit shift.
83unsigned getLgkmcntBitShift(unsigned VersionMajor) {
84 return VersionMajor >= 11 ? 4 : 8;
85}
86
87/// \returns Lgkmcnt bit width.
88unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89 return VersionMajor >= 10 ? 6 : 4;
90}
91
92/// \returns Vmcnt bit shift (higher bits).
93unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
94
95/// \returns Vmcnt bit width (higher bits).
96unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
97 return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
98}
99
100/// \returns Loadcnt bit width
101unsigned getLoadcntBitWidth(unsigned VersionMajor) {
102 return VersionMajor >= 12 ? 6 : 0;
103}
104
105/// \returns Samplecnt bit width.
106unsigned getSamplecntBitWidth(unsigned VersionMajor) {
107 return VersionMajor >= 12 ? 6 : 0;
108}
109
110/// \returns Bvhcnt bit width.
111unsigned getBvhcntBitWidth(unsigned VersionMajor) {
112 return VersionMajor >= 12 ? 3 : 0;
113}
114
115/// \returns Dscnt bit width.
116unsigned getDscntBitWidth(unsigned VersionMajor) {
117 return VersionMajor >= 12 ? 6 : 0;
118}
119
120/// \returns Dscnt bit shift in combined S_WAIT instructions.
121unsigned getDscntBitShift(unsigned VersionMajor) { return 0; }
122
123/// \returns Storecnt or Vscnt bit width, depending on VersionMajor.
124unsigned getStorecntBitWidth(unsigned VersionMajor) {
125 return VersionMajor >= 10 ? 6 : 0;
126}
127
128/// \returns Kmcnt bit width.
129unsigned getKmcntBitWidth(unsigned VersionMajor) {
130 return VersionMajor >= 12 ? 5 : 0;
131}
132
133/// \returns Xcnt bit width.
134unsigned getXcntBitWidth(unsigned VersionMajor, unsigned VersionMinor) {
135 return VersionMajor == 12 && VersionMinor == 5 ? 6 : 0;
136}
137
138/// \returns shift for Loadcnt/Storecnt in combined S_WAIT instructions.
139unsigned getLoadcntStorecntBitShift(unsigned VersionMajor) {
140 return VersionMajor >= 12 ? 8 : 0;
141}
142
143/// \returns VaSdst bit width
144inline unsigned getVaSdstBitWidth() { return 3; }
145
146/// \returns VaSdst bit shift
147inline unsigned getVaSdstBitShift() { return 9; }
148
149/// \returns VmVsrc bit width
150inline unsigned getVmVsrcBitWidth() { return 3; }
151
152/// \returns VmVsrc bit shift
153inline unsigned getVmVsrcBitShift() { return 2; }
154
155/// \returns VaVdst bit width
156inline unsigned getVaVdstBitWidth() { return 4; }
157
158/// \returns VaVdst bit shift
159inline unsigned getVaVdstBitShift() { return 12; }
160
161/// \returns VaVcc bit width
162inline unsigned getVaVccBitWidth() { return 1; }
163
164/// \returns VaVcc bit shift
165inline unsigned getVaVccBitShift() { return 1; }
166
167/// \returns SaSdst bit width
168inline unsigned getSaSdstBitWidth() { return 1; }
169
170/// \returns SaSdst bit shift
171inline unsigned getSaSdstBitShift() { return 0; }
172
173/// \returns VaSsrc width
174inline unsigned getVaSsrcBitWidth() { return 1; }
175
176/// \returns VaSsrc bit shift
177inline unsigned getVaSsrcBitShift() { return 8; }
178
179/// \returns HoldCnt bit shift
180inline unsigned getHoldCntWidth() { return 1; }
181
182/// \returns HoldCnt bit shift
183inline unsigned getHoldCntBitShift() { return 7; }
184
185} // end anonymous namespace
186
187namespace llvm {
188
189namespace AMDGPU {
190
191/// \returns true if the target supports signed immediate offset for SMRD
192/// instructions.
194 return isGFX9Plus(ST);
195}
196
197/// \returns True if \p STI is AMDHSA.
198bool isHsaAbi(const MCSubtargetInfo &STI) {
199 return STI.getTargetTriple().getOS() == Triple::AMDHSA;
200}
201
204 M.getModuleFlag("amdhsa_code_object_version"))) {
205 return (unsigned)Ver->getZExtValue() / 100;
206 }
207
209}
210
214
215unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion) {
216 switch (ABIVersion) {
218 return 4;
220 return 5;
222 return 6;
223 default:
225 }
226}
227
228uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion) {
229 if (T.getOS() != Triple::AMDHSA)
230 return 0;
231
232 switch (CodeObjectVersion) {
233 case 4:
235 case 5:
237 case 6:
239 default:
240 report_fatal_error("Unsupported AMDHSA Code Object Version " +
241 Twine(CodeObjectVersion));
242 }
243}
244
245unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
246 switch (CodeObjectVersion) {
247 case AMDHSA_COV4:
248 return 48;
249 case AMDHSA_COV5:
250 case AMDHSA_COV6:
251 default:
253 }
254}
255
256// FIXME: All such magic numbers about the ABI should be in a
257// central TD file.
258unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
259 switch (CodeObjectVersion) {
260 case AMDHSA_COV4:
261 return 24;
262 case AMDHSA_COV5:
263 case AMDHSA_COV6:
264 default:
266 }
267}
268
269unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
270 switch (CodeObjectVersion) {
271 case AMDHSA_COV4:
272 return 32;
273 case AMDHSA_COV5:
274 case AMDHSA_COV6:
275 default:
277 }
278}
279
280unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
281 switch (CodeObjectVersion) {
282 case AMDHSA_COV4:
283 return 40;
284 case AMDHSA_COV5:
285 case AMDHSA_COV6:
286 default:
288 }
289}
290
291#define GET_MIMGBaseOpcodesTable_IMPL
292#define GET_MIMGDimInfoTable_IMPL
293#define GET_MIMGInfoTable_IMPL
294#define GET_MIMGLZMappingTable_IMPL
295#define GET_MIMGMIPMappingTable_IMPL
296#define GET_MIMGBiasMappingTable_IMPL
297#define GET_MIMGOffsetMappingTable_IMPL
298#define GET_MIMGG16MappingTable_IMPL
299#define GET_MAIInstInfoTable_IMPL
300#define GET_WMMAInstInfoTable_IMPL
301#include "AMDGPUGenSearchableTables.inc"
302
303int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
304 unsigned VDataDwords, unsigned VAddrDwords) {
305 const MIMGInfo *Info =
306 getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, VDataDwords, VAddrDwords);
307 return Info ? Info->Opcode : -1;
308}
309
311 const MIMGInfo *Info = getMIMGInfo(Opc);
312 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
313}
314
315int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
316 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
317 const MIMGInfo *NewInfo =
318 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
319 NewChannels, OrigInfo->VAddrDwords);
320 return NewInfo ? NewInfo->Opcode : -1;
321}
322
323unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
324 const MIMGDimInfo *Dim, bool IsA16,
325 bool IsG16Supported) {
326 unsigned AddrWords = BaseOpcode->NumExtraArgs;
327 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
328 (BaseOpcode->LodOrClampOrMip ? 1 : 0);
329 if (IsA16)
330 AddrWords += divideCeil(AddrComponents, 2);
331 else
332 AddrWords += AddrComponents;
333
334 // Note: For subtargets that support A16 but not G16, enabling A16 also
335 // enables 16 bit gradients.
336 // For subtargets that support A16 (operand) and G16 (done with a different
337 // instruction encoding), they are independent.
338
339 if (BaseOpcode->Gradients) {
340 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
341 // There are two gradients per coordinate, we pack them separately.
342 // For the 3d case,
343 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
344 AddrWords += alignTo<2>(Dim->NumGradients / 2);
345 else
346 AddrWords += Dim->NumGradients;
347 }
348 return AddrWords;
349}
350
361
370
375
380
384
388
392
399
407
412
413#define GET_FP4FP8DstByteSelTable_DECL
414#define GET_FP4FP8DstByteSelTable_IMPL
415
420
426
427#define GET_MTBUFInfoTable_DECL
428#define GET_MTBUFInfoTable_IMPL
429#define GET_MUBUFInfoTable_DECL
430#define GET_MUBUFInfoTable_IMPL
431#define GET_SMInfoTable_DECL
432#define GET_SMInfoTable_IMPL
433#define GET_VOP1InfoTable_DECL
434#define GET_VOP1InfoTable_IMPL
435#define GET_VOP2InfoTable_DECL
436#define GET_VOP2InfoTable_IMPL
437#define GET_VOP3InfoTable_DECL
438#define GET_VOP3InfoTable_IMPL
439#define GET_VOPC64DPPTable_DECL
440#define GET_VOPC64DPPTable_IMPL
441#define GET_VOPC64DPP8Table_DECL
442#define GET_VOPC64DPP8Table_IMPL
443#define GET_VOPCAsmOnlyInfoTable_DECL
444#define GET_VOPCAsmOnlyInfoTable_IMPL
445#define GET_VOP3CAsmOnlyInfoTable_DECL
446#define GET_VOP3CAsmOnlyInfoTable_IMPL
447#define GET_VOPDComponentTable_DECL
448#define GET_VOPDComponentTable_IMPL
449#define GET_VOPDPairs_DECL
450#define GET_VOPDPairs_IMPL
451#define GET_VOPTrue16Table_DECL
452#define GET_VOPTrue16Table_IMPL
453#define GET_True16D16Table_IMPL
454#define GET_WMMAOpcode2AddrMappingTable_DECL
455#define GET_WMMAOpcode2AddrMappingTable_IMPL
456#define GET_WMMAOpcode3AddrMappingTable_DECL
457#define GET_WMMAOpcode3AddrMappingTable_IMPL
458#define GET_getMFMA_F8F6F4_WithSize_DECL
459#define GET_getMFMA_F8F6F4_WithSize_IMPL
460#define GET_isMFMA_F8F6F4Table_IMPL
461#define GET_isCvtScaleF32_F32F16ToF8F4Table_IMPL
462
463#include "AMDGPUGenSearchableTables.inc"
464
465int getMTBUFBaseOpcode(unsigned Opc) {
466 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
467 return Info ? Info->BaseOpcode : -1;
468}
469
470int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
471 const MTBUFInfo *Info =
472 getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
473 return Info ? Info->Opcode : -1;
474}
475
476int getMTBUFElements(unsigned Opc) {
477 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
478 return Info ? Info->elements : 0;
479}
480
481bool getMTBUFHasVAddr(unsigned Opc) {
482 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
483 return Info && Info->has_vaddr;
484}
485
486bool getMTBUFHasSrsrc(unsigned Opc) {
487 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
488 return Info && Info->has_srsrc;
489}
490
491bool getMTBUFHasSoffset(unsigned Opc) {
492 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
493 return Info && Info->has_soffset;
494}
495
496int getMUBUFBaseOpcode(unsigned Opc) {
497 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
498 return Info ? Info->BaseOpcode : -1;
499}
500
501int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
502 const MUBUFInfo *Info =
503 getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
504 return Info ? Info->Opcode : -1;
505}
506
507int getMUBUFElements(unsigned Opc) {
508 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
509 return Info ? Info->elements : 0;
510}
511
512bool getMUBUFHasVAddr(unsigned Opc) {
513 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
514 return Info && Info->has_vaddr;
515}
516
517bool getMUBUFHasSrsrc(unsigned Opc) {
518 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
519 return Info && Info->has_srsrc;
520}
521
522bool getMUBUFHasSoffset(unsigned Opc) {
523 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
524 return Info && Info->has_soffset;
525}
526
527bool getMUBUFIsBufferInv(unsigned Opc) {
528 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
529 return Info && Info->IsBufferInv;
530}
531
532bool getMUBUFTfe(unsigned Opc) {
533 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
534 return Info && Info->tfe;
535}
536
537bool getSMEMIsBuffer(unsigned Opc) {
538 const SMInfo *Info = getSMEMOpcodeHelper(Opc);
539 return Info && Info->IsBuffer;
540}
541
542bool getVOP1IsSingle(unsigned Opc) {
543 const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
544 return !Info || Info->IsSingle;
545}
546
547bool getVOP2IsSingle(unsigned Opc) {
548 const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
549 return !Info || Info->IsSingle;
550}
551
552bool getVOP3IsSingle(unsigned Opc) {
553 const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
554 return !Info || Info->IsSingle;
555}
556
557bool isVOPC64DPP(unsigned Opc) {
558 return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
559}
560
561bool isVOPCAsmOnly(unsigned Opc) { return isVOPCAsmOnlyOpcodeHelper(Opc); }
562
563bool getMAIIsDGEMM(unsigned Opc) {
564 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
565 return Info && Info->is_dgemm;
566}
567
568bool getMAIIsGFX940XDL(unsigned Opc) {
569 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
570 return Info && Info->is_gfx940_xdl;
571}
572
573bool getWMMAIsXDL(unsigned Opc) {
574 const WMMAInstInfo *Info = getWMMAInstInfoHelper(Opc);
575 return Info ? Info->is_wmma_xdl : false;
576}
577
579 switch (EncodingVal) {
582 return 6;
584 return 4;
587 default:
588 return 8;
589 }
590
591 llvm_unreachable("covered switch over mfma scale formats");
592}
593
595 unsigned BLGP,
596 unsigned F8F8Opcode) {
597 uint8_t SrcANumRegs = mfmaScaleF8F6F4FormatToNumRegs(CBSZ);
598 uint8_t SrcBNumRegs = mfmaScaleF8F6F4FormatToNumRegs(BLGP);
599 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
600}
601
603 switch (Fmt) {
606 return 16;
609 return 12;
611 return 8;
612 }
613
614 llvm_unreachable("covered switch over wmma scale formats");
615}
616
618 unsigned FmtB,
619 unsigned F8F8Opcode) {
620 uint8_t SrcANumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtA);
621 uint8_t SrcBNumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtB);
622 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
623}
624
626 if (ST.hasFeature(AMDGPU::FeatureGFX1250Insts))
628 if (ST.hasFeature(AMDGPU::FeatureGFX12Insts))
630 if (ST.hasFeature(AMDGPU::FeatureGFX11Insts))
632 llvm_unreachable("Subtarget generation does not support VOPD!");
633}
634
635CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3) {
636 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
637 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
638 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
639 if (Info) {
640 // Check that Opc can be used as VOPDY for this encoding. V_MOV_B32 as a
641 // VOPDX is just a placeholder here, it is supported on all encodings.
642 // TODO: This can be optimized by creating tables of supported VOPDY
643 // opcodes per encoding.
644 unsigned VOPDMov = AMDGPU::getVOPDOpcode(AMDGPU::V_MOV_B32_e32, VOPD3);
645 bool CanBeVOPDY = getVOPDFull(VOPDMov, AMDGPU::getVOPDOpcode(Opc, VOPD3),
646 EncodingFamily, VOPD3) != -1;
647 return {VOPD3 ? Info->CanBeVOPD3X : Info->CanBeVOPDX, CanBeVOPDY};
648 }
649
650 return {false, false};
651}
652
653unsigned getVOPDOpcode(unsigned Opc, bool VOPD3) {
654 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
655 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
656 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
657 return Info ? Info->VOPDOp : ~0u;
658}
659
660bool isVOPD(unsigned Opc) {
661 return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
662}
663
664bool isMAC(unsigned Opc) {
665 return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
666 Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
667 Opc == AMDGPU::V_MAC_F32_e64_vi ||
668 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
669 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
670 Opc == AMDGPU::V_MAC_F16_e64_vi ||
671 Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
672 Opc == AMDGPU::V_FMAC_F64_e64_gfx12 ||
673 Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
674 Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
675 Opc == AMDGPU::V_FMAC_F32_e64_gfx12 ||
676 Opc == AMDGPU::V_FMAC_F32_e64_vi ||
677 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
678 Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
679 Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
680 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
681 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx11 ||
682 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx12 ||
683 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx12 ||
684 Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
685 Opc == AMDGPU::V_DOT2C_F32_BF16_e64_vi ||
686 Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
687 Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
688 Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
689}
690
691bool isPermlane16(unsigned Opc) {
692 return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
693 Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
694 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
695 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11 ||
696 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx12 ||
697 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx12 ||
698 Opc == AMDGPU::V_PERMLANE16_VAR_B32_e64_gfx12 ||
699 Opc == AMDGPU::V_PERMLANEX16_VAR_B32_e64_gfx12;
700}
701
703 return Opc == AMDGPU::V_CVT_F32_BF8_e64_gfx12 ||
704 Opc == AMDGPU::V_CVT_F32_FP8_e64_gfx12 ||
705 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp_gfx12 ||
706 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp_gfx12 ||
707 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp8_gfx12 ||
708 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp8_gfx12 ||
709 Opc == AMDGPU::V_CVT_PK_F32_BF8_fake16_e64_gfx12 ||
710 Opc == AMDGPU::V_CVT_PK_F32_FP8_fake16_e64_gfx12 ||
711 Opc == AMDGPU::V_CVT_PK_F32_BF8_t16_e64_gfx12 ||
712 Opc == AMDGPU::V_CVT_PK_F32_FP8_t16_e64_gfx12;
713}
714
715bool isGenericAtomic(unsigned Opc) {
716 return Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP ||
717 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD ||
718 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB ||
719 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN ||
720 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN ||
721 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX ||
722 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX ||
723 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND ||
724 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR ||
725 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR ||
726 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC ||
727 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC ||
728 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD ||
729 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN ||
730 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX ||
731 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP ||
732 Opc == AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG;
733}
734
735bool isAsyncStore(unsigned Opc) {
736 return Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_gfx1250 ||
737 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_gfx1250 ||
738 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_gfx1250 ||
739 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_gfx1250 ||
740 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_SADDR_gfx1250 ||
741 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_SADDR_gfx1250 ||
742 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_SADDR_gfx1250 ||
743 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_SADDR_gfx1250;
744}
745
746bool isTensorStore(unsigned Opc) {
747 return Opc == TENSOR_STORE_FROM_LDS_gfx1250 ||
748 Opc == TENSOR_STORE_FROM_LDS_D2_gfx1250;
749}
750
751unsigned getTemporalHintType(const MCInstrDesc TID) {
754 unsigned Opc = TID.getOpcode();
755 // Async and Tensor store should have the temporal hint type of TH_TYPE_STORE
756 if (TID.mayStore() &&
757 (isAsyncStore(Opc) || isTensorStore(Opc) || !TID.mayLoad()))
758 return CPol::TH_TYPE_STORE;
759
760 // This will default to returning TH_TYPE_LOAD when neither MayStore nor
761 // MayLoad flag is present which is the case with instructions like
762 // image_get_resinfo.
763 return CPol::TH_TYPE_LOAD;
764}
765
766bool isTrue16Inst(unsigned Opc) {
767 const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
768 return Info && Info->IsTrue16;
769}
770
772 const FP4FP8DstByteSelInfo *Info = getFP4FP8DstByteSelHelper(Opc);
773 if (!Info)
774 return FPType::None;
775 if (Info->HasFP8DstByteSel)
776 return FPType::FP8;
777 if (Info->HasFP4DstByteSel)
778 return FPType::FP4;
779
780 return FPType::None;
781}
782
783unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
784 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
785 return Info ? Info->Opcode3Addr : ~0u;
786}
787
788unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
789 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
790 return Info ? Info->Opcode2Addr : ~0u;
791}
792
793// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
794// header files, so we need to wrap it in a function that takes unsigned
795// instead.
796int getMCOpcode(uint16_t Opcode, unsigned Gen) {
797 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
798}
799
800unsigned getBitOp2(unsigned Opc) {
801 switch (Opc) {
802 default:
803 return 0;
804 case AMDGPU::V_AND_B32_e32:
805 return 0x40;
806 case AMDGPU::V_OR_B32_e32:
807 return 0x54;
808 case AMDGPU::V_XOR_B32_e32:
809 return 0x14;
810 case AMDGPU::V_XNOR_B32_e32:
811 return 0x41;
812 }
813}
814
815int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily,
816 bool VOPD3) {
817 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(OpY) : 0;
818 OpY = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : OpY;
819 const VOPDInfo *Info =
820 getVOPDInfoFromComponentOpcodes(OpX, OpY, EncodingFamily, VOPD3);
821 return Info ? Info->Opcode : -1;
822}
823
824std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
825 const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
826 assert(Info);
827 const auto *OpX = getVOPDBaseFromComponent(Info->OpX);
828 const auto *OpY = getVOPDBaseFromComponent(Info->OpY);
829 assert(OpX && OpY);
830 return {OpX->BaseVOP, OpY->BaseVOP};
831}
832
833namespace VOPD {
834
835ComponentProps::ComponentProps(const MCInstrDesc &OpDesc, bool VOP3Layout) {
837
840 auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
841 assert(TiedIdx == -1 || TiedIdx == Component::DST);
842 HasSrc2Acc = TiedIdx != -1;
843 Opcode = OpDesc.getOpcode();
844
845 IsVOP3 = VOP3Layout || (OpDesc.TSFlags & SIInstrFlags::VOP3);
846 SrcOperandsNum = AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2) ? 3
847 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::imm) ? 3
848 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src1) ? 2
849 : 1;
850 assert(SrcOperandsNum <= Component::MAX_SRC_NUM);
851
852 if (Opcode == AMDGPU::V_CNDMASK_B32_e32 ||
853 Opcode == AMDGPU::V_CNDMASK_B32_e64) {
854 // CNDMASK is an awkward exception, it has FP modifiers, but not FP
855 // operands.
856 NumVOPD3Mods = 2;
857 if (IsVOP3)
858 SrcOperandsNum = 3;
859 } else if (isSISrcFPOperand(OpDesc,
860 getNamedOperandIdx(Opcode, OpName::src0))) {
861 // All FP VOPD instructions have Neg modifiers for all operands except
862 // for tied src2.
863 NumVOPD3Mods = SrcOperandsNum;
864 if (HasSrc2Acc)
865 --NumVOPD3Mods;
866 }
867
868 if (OpDesc.TSFlags & SIInstrFlags::VOP3)
869 return;
870
871 auto OperandsNum = OpDesc.getNumOperands();
872 unsigned CompOprIdx;
873 for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
874 if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
875 MandatoryLiteralIdx = CompOprIdx;
876 break;
877 }
878 }
879}
880
882 return getNamedOperandIdx(Opcode, OpName::bitop3);
883}
884
885unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
886 assert(CompOprIdx < Component::MAX_OPR_NUM);
887
888 if (CompOprIdx == Component::DST)
890
891 auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
892 if (CompSrcIdx < getCompParsedSrcOperandsNum())
893 return getIndexOfSrcInParsedOperands(CompSrcIdx);
894
895 // The specified operand does not exist.
896 return 0;
897}
898
900 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
901 const MCRegisterInfo &MRI, bool SkipSrc, bool AllowSameVGPR,
902 bool VOPD3) const {
903
904 auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx,
905 CompInfo[ComponentIndex::X].isVOP3());
906 auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx,
907 CompInfo[ComponentIndex::Y].isVOP3());
908
909 const auto banksOverlap = [&MRI](MCRegister X, MCRegister Y,
910 unsigned BanksMask) -> bool {
911 MCRegister BaseX = MRI.getSubReg(X, AMDGPU::sub0);
912 MCRegister BaseY = MRI.getSubReg(Y, AMDGPU::sub0);
913 if (!BaseX)
914 BaseX = X;
915 if (!BaseY)
916 BaseY = Y;
917 if ((BaseX & BanksMask) == (BaseY & BanksMask))
918 return true;
919 if (BaseX != X /* This is 64-bit register */ &&
920 ((BaseX + 1) & BanksMask) == (BaseY & BanksMask))
921 return true;
922 if (BaseY != Y && (BaseX & BanksMask) == ((BaseY + 1) & BanksMask))
923 return true;
924
925 // If both are 64-bit bank conflict will be detected yet while checking
926 // the first subreg.
927 return false;
928 };
929
930 unsigned CompOprIdx;
931 for (CompOprIdx = 0; CompOprIdx < Component::MAX_OPR_NUM; ++CompOprIdx) {
932 unsigned BanksMasks = VOPD3 ? VOPD3_VGPR_BANK_MASKS[CompOprIdx]
933 : VOPD_VGPR_BANK_MASKS[CompOprIdx];
934 if (!OpXRegs[CompOprIdx] || !OpYRegs[CompOprIdx])
935 continue;
936
937 if (getVGPREncodingMSBs(OpXRegs[CompOprIdx], MRI) !=
938 getVGPREncodingMSBs(OpYRegs[CompOprIdx], MRI))
939 return CompOprIdx;
940
941 if (SkipSrc && CompOprIdx >= Component::DST_NUM)
942 continue;
943
944 if (CompOprIdx < Component::DST_NUM) {
945 // Even if we do not check vdst parity, vdst operands still shall not
946 // overlap.
947 if (MRI.regsOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx]))
948 return CompOprIdx;
949 if (VOPD3) // No need to check dst parity.
950 continue;
951 }
952
953 if (banksOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx], BanksMasks) &&
954 (!AllowSameVGPR || CompOprIdx < Component::DST_NUM ||
955 OpXRegs[CompOprIdx] != OpYRegs[CompOprIdx]))
956 return CompOprIdx;
957 }
958
959 return {};
960}
961
962// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
963// by the specified component. If an operand is unused
964// or is not a VGPR, the corresponding value is 0.
965//
966// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
967// for the specified component and MC operand. The callback must return 0
968// if the operand is not a register or not a VGPR.
970InstInfo::getRegIndices(unsigned CompIdx,
971 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
972 bool VOPD3) const {
973 assert(CompIdx < COMPONENTS_NUM);
974
975 const auto &Comp = CompInfo[CompIdx];
977
978 RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());
979
980 for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
981 unsigned CompSrcIdx = CompOprIdx - DST_NUM;
982 RegIndices[CompOprIdx] =
983 Comp.hasRegSrcOperand(CompSrcIdx)
984 ? GetRegIdx(CompIdx,
985 Comp.getIndexOfSrcInMCOperands(CompSrcIdx, VOPD3))
986 : 0;
987 }
988 return RegIndices;
989}
990
991} // namespace VOPD
992
994 return VOPD::InstInfo(OpX, OpY);
995}
996
997VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode,
998 const MCInstrInfo *InstrInfo) {
999 auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
1000 const auto &OpXDesc = InstrInfo->get(OpX);
1001 const auto &OpYDesc = InstrInfo->get(OpY);
1002 bool VOPD3 = InstrInfo->get(VOPDOpcode).TSFlags & SIInstrFlags::VOPD3;
1004 VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo, VOPD3);
1005 return VOPD::InstInfo(OpXInfo, OpYInfo);
1006}
1007
1008namespace IsaInfo {
1009
1011 : STI(STI), XnackSetting(TargetIDSetting::Any),
1012 SramEccSetting(TargetIDSetting::Any) {
1013 if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
1014 XnackSetting = TargetIDSetting::Unsupported;
1015 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
1016 SramEccSetting = TargetIDSetting::Unsupported;
1017}
1018
1020 // Check if xnack or sramecc is explicitly enabled or disabled. In the
1021 // absence of the target features we assume we must generate code that can run
1022 // in any environment.
1023 SubtargetFeatures Features(FS);
1024 std::optional<bool> XnackRequested;
1025 std::optional<bool> SramEccRequested;
1026
1027 for (const std::string &Feature : Features.getFeatures()) {
1028 if (Feature == "+xnack")
1029 XnackRequested = true;
1030 else if (Feature == "-xnack")
1031 XnackRequested = false;
1032 else if (Feature == "+sramecc")
1033 SramEccRequested = true;
1034 else if (Feature == "-sramecc")
1035 SramEccRequested = false;
1036 }
1037
1038 bool XnackSupported = isXnackSupported();
1039 bool SramEccSupported = isSramEccSupported();
1040
1041 if (XnackRequested) {
1042 if (XnackSupported) {
1043 XnackSetting =
1044 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1045 } else {
1046 // If a specific xnack setting was requested and this GPU does not support
1047 // xnack emit a warning. Setting will remain set to "Unsupported".
1048 if (*XnackRequested) {
1049 errs() << "warning: xnack 'On' was requested for a processor that does "
1050 "not support it!\n";
1051 } else {
1052 errs() << "warning: xnack 'Off' was requested for a processor that "
1053 "does not support it!\n";
1054 }
1055 }
1056 }
1057
1058 if (SramEccRequested) {
1059 if (SramEccSupported) {
1060 SramEccSetting =
1061 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1062 } else {
1063 // If a specific sramecc setting was requested and this GPU does not
1064 // support sramecc emit a warning. Setting will remain set to
1065 // "Unsupported".
1066 if (*SramEccRequested) {
1067 errs() << "warning: sramecc 'On' was requested for a processor that "
1068 "does not support it!\n";
1069 } else {
1070 errs() << "warning: sramecc 'Off' was requested for a processor that "
1071 "does not support it!\n";
1072 }
1073 }
1074 }
1075}
1076
1077static TargetIDSetting
1079 if (FeatureString.ends_with("-"))
1080 return TargetIDSetting::Off;
1081 if (FeatureString.ends_with("+"))
1082 return TargetIDSetting::On;
1083
1084 llvm_unreachable("Malformed feature string");
1085}
1086
1088 SmallVector<StringRef, 3> TargetIDSplit;
1089 TargetID.split(TargetIDSplit, ':');
1090
1091 for (const auto &FeatureString : TargetIDSplit) {
1092 if (FeatureString.starts_with("xnack"))
1093 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
1094 if (FeatureString.starts_with("sramecc"))
1095 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
1096 }
1097}
1098
1099std::string AMDGPUTargetID::toString() const {
1100 std::string StringRep;
1101 raw_string_ostream StreamRep(StringRep);
1102
1103 auto TargetTriple = STI.getTargetTriple();
1104 auto Version = getIsaVersion(STI.getCPU());
1105
1106 StreamRep << TargetTriple.getArchName() << '-' << TargetTriple.getVendorName()
1107 << '-' << TargetTriple.getOSName() << '-'
1108 << TargetTriple.getEnvironmentName() << '-';
1109
1110 std::string Processor;
1111 // TODO: Following else statement is present here because we used various
1112 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
1113 // Remove once all aliases are removed from GCNProcessors.td.
1114 if (Version.Major >= 9)
1115 Processor = STI.getCPU().str();
1116 else
1117 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
1118 Twine(Version.Stepping))
1119 .str();
1120
1121 std::string Features;
1122 if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
1123 // sramecc.
1125 Features += ":sramecc-";
1127 Features += ":sramecc+";
1128 // xnack.
1130 Features += ":xnack-";
1132 Features += ":xnack+";
1133 }
1134
1135 StreamRep << Processor << Features;
1136
1137 return StringRep;
1138}
1139
1140unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
1141 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
1142 return 16;
1143 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
1144 return 32;
1145
1146 return 64;
1147}
1148
1150 unsigned BytesPerCU = getAddressableLocalMemorySize(STI);
1151
1152 // "Per CU" really means "per whatever functional block the waves of a
1153 // workgroup must share". So the effective local memory size is doubled in
1154 // WGP mode on gfx10.
1155 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1156 BytesPerCU *= 2;
1157
1158 return BytesPerCU;
1159}
1160
1162 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize32768))
1163 return 32768;
1164 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize65536))
1165 return 65536;
1166 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize163840))
1167 return 163840;
1168 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize327680))
1169 return 327680;
1170 return 32768;
1171}
1172
1173unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
1174 // "Per CU" really means "per whatever functional block the waves of a
1175 // workgroup must share".
1176
1177 // GFX12.5 only supports CU mode, which contains four SIMDs.
1178 if (isGFX1250(*STI)) {
1179 assert(STI->getFeatureBits().test(FeatureCuMode));
1180 return 4;
1181 }
1182
1183 // For gfx10 in CU mode the functional block is the CU, which contains
1184 // two SIMDs.
1185 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
1186 return 2;
1187
1188 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP
1189 // contains two CUs, so a total of four SIMDs.
1190 return 4;
1191}
1192
1194 unsigned FlatWorkGroupSize) {
1195 assert(FlatWorkGroupSize != 0);
1196 if (!STI->getTargetTriple().isAMDGCN())
1197 return 8;
1198 unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
1199 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
1200 if (N == 1) {
1201 // Single-wave workgroups don't consume barrier resources.
1202 return MaxWaves;
1203 }
1204
1205 unsigned MaxBarriers = 16;
1206 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1207 MaxBarriers = 32;
1208
1209 return std::min(MaxWaves / N, MaxBarriers);
1210}
1211
1212unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { return 1; }
1213
1214unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
1215 // FIXME: Need to take scratch memory into account.
1216 if (isGFX90A(*STI))
1217 return 8;
1218 if (!isGFX10Plus(*STI))
1219 return 10;
1220 return hasGFX10_3Insts(*STI) ? 16 : 20;
1221}
1222
1224 unsigned FlatWorkGroupSize) {
1225 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
1226 getEUsPerCU(STI));
1227}
1228
1229unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { return 1; }
1230
1232 // Some subtargets allow encoding 2048, but this isn't tested or supported.
1233 return 1024;
1234}
1235
1237 unsigned FlatWorkGroupSize) {
1238 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
1239}
1240
1243 if (Version.Major >= 10)
1244 return getAddressableNumSGPRs(STI);
1245 if (Version.Major >= 8)
1246 return 16;
1247 return 8;
1248}
1249
1250unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { return 8; }
1251
1252unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
1254 if (Version.Major >= 8)
1255 return 800;
1256 return 512;
1257}
1258
1260 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
1262
1264 if (Version.Major >= 10)
1265 return 106;
1266 if (Version.Major >= 8)
1267 return 102;
1268 return 104;
1269}
1270
1271unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
1272 assert(WavesPerEU != 0);
1273
1275 if (Version.Major >= 10)
1276 return 0;
1277
1278 if (WavesPerEU >= getMaxWavesPerEU(STI))
1279 return 0;
1280
1281 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
1282 if (STI->getFeatureBits().test(FeatureTrapHandler))
1283 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1284 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
1285 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
1286}
1287
1288unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1289 bool Addressable) {
1290 assert(WavesPerEU != 0);
1291
1292 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
1294 if (Version.Major >= 10)
1295 return Addressable ? AddressableNumSGPRs : 108;
1296 if (Version.Major >= 8 && !Addressable)
1297 AddressableNumSGPRs = 112;
1298 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
1299 if (STI->getFeatureBits().test(FeatureTrapHandler))
1300 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1301 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
1302 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
1303}
1304
1305unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1306 bool FlatScrUsed, bool XNACKUsed) {
1307 unsigned ExtraSGPRs = 0;
1308 if (VCCUsed)
1309 ExtraSGPRs = 2;
1310
1312 if (Version.Major >= 10)
1313 return ExtraSGPRs;
1314
1315 if (Version.Major < 8) {
1316 if (FlatScrUsed)
1317 ExtraSGPRs = 4;
1318 } else {
1319 if (XNACKUsed)
1320 ExtraSGPRs = 4;
1321
1322 if (FlatScrUsed ||
1323 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
1324 ExtraSGPRs = 6;
1325 }
1326
1327 return ExtraSGPRs;
1328}
1329
1330unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1331 bool FlatScrUsed) {
1332 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
1333 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
1334}
1335
1336static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs,
1337 unsigned Granule) {
1338 return divideCeil(std::max(1u, NumRegs), Granule);
1339}
1340
1341unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
1342 // SGPRBlocks is actual number of SGPR blocks minus 1.
1344 1;
1345}
1346
1348 unsigned DynamicVGPRBlockSize,
1349 std::optional<bool> EnableWavefrontSize32) {
1350 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1351 return 8;
1352
1353 if (DynamicVGPRBlockSize != 0)
1354 return DynamicVGPRBlockSize;
1355
1356 bool IsWave32 = EnableWavefrontSize32
1357 ? *EnableWavefrontSize32
1358 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1359
1360 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1361 return IsWave32 ? 24 : 12;
1362
1363 if (hasGFX10_3Insts(*STI))
1364 return IsWave32 ? 16 : 8;
1365
1366 return IsWave32 ? 8 : 4;
1367}
1368
1370 std::optional<bool> EnableWavefrontSize32) {
1371 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1372 return 8;
1373
1374 bool IsWave32 = EnableWavefrontSize32
1375 ? *EnableWavefrontSize32
1376 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1377
1378 if (STI->getFeatureBits().test(Feature1024AddressableVGPRs))
1379 return IsWave32 ? 16 : 8;
1380
1381 return IsWave32 ? 8 : 4;
1382}
1383
1384unsigned getArchVGPRAllocGranule() { return 4; }
1385
1386unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
1387 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1388 return 512;
1389 if (!isGFX10Plus(*STI))
1390 return 256;
1391 bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
1392 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1393 return IsWave32 ? 1536 : 768;
1394 return IsWave32 ? 1024 : 512;
1395}
1396
1398 const auto &Features = STI->getFeatureBits();
1399 if (Features.test(Feature1024AddressableVGPRs))
1400 return Features.test(FeatureWavefrontSize32) ? 1024 : 512;
1401 return 256;
1402}
1403
1405 unsigned DynamicVGPRBlockSize) {
1406 const auto &Features = STI->getFeatureBits();
1407 if (Features.test(FeatureGFX90AInsts))
1408 return 512;
1409
1410 if (DynamicVGPRBlockSize != 0)
1411 // On GFX12 we can allocate at most 8 blocks of VGPRs.
1412 return 8 * getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1413 return getAddressableNumArchVGPRs(STI);
1414}
1415
1417 unsigned NumVGPRs,
1418 unsigned DynamicVGPRBlockSize) {
1420 NumVGPRs, getVGPRAllocGranule(STI, DynamicVGPRBlockSize),
1422}
1423
1424unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule,
1425 unsigned MaxWaves,
1426 unsigned TotalNumVGPRs) {
1427 if (NumVGPRs < Granule)
1428 return MaxWaves;
1429 unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
1430 return std::min(std::max(TotalNumVGPRs / RoundedRegs, 1u), MaxWaves);
1431}
1432
1433unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves,
1435 if (Gen >= AMDGPUSubtarget::GFX10)
1436 return MaxWaves;
1437
1439 if (SGPRs <= 80)
1440 return 10;
1441 if (SGPRs <= 88)
1442 return 9;
1443 if (SGPRs <= 100)
1444 return 8;
1445 return 7;
1446 }
1447 if (SGPRs <= 48)
1448 return 10;
1449 if (SGPRs <= 56)
1450 return 9;
1451 if (SGPRs <= 64)
1452 return 8;
1453 if (SGPRs <= 72)
1454 return 7;
1455 if (SGPRs <= 80)
1456 return 6;
1457 return 5;
1458}
1459
1460unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1461 unsigned DynamicVGPRBlockSize) {
1462 assert(WavesPerEU != 0);
1463
1464 unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
1465 if (WavesPerEU >= MaxWavesPerEU)
1466 return 0;
1467
1468 unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
1469 unsigned AddrsableNumVGPRs =
1470 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1471 unsigned Granule = getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1472 unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);
1473
1474 if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
1475 return 0;
1476
1477 unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs,
1478 DynamicVGPRBlockSize);
1479 if (WavesPerEU < MinWavesPerEU)
1480 return getMinNumVGPRs(STI, MinWavesPerEU, DynamicVGPRBlockSize);
1481
1482 unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
1483 unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
1484 return std::min(MinNumVGPRs, AddrsableNumVGPRs);
1485}
1486
1487unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1488 unsigned DynamicVGPRBlockSize) {
1489 assert(WavesPerEU != 0);
1490
1491 unsigned MaxNumVGPRs =
1492 alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
1493 getVGPRAllocGranule(STI, DynamicVGPRBlockSize));
1494 unsigned AddressableNumVGPRs =
1495 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1496 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
1497}
1498
1499unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
1500 std::optional<bool> EnableWavefrontSize32) {
1502 NumVGPRs, getVGPREncodingGranule(STI, EnableWavefrontSize32)) -
1503 1;
1504}
1505
1507 unsigned NumVGPRs,
1508 unsigned DynamicVGPRBlockSize,
1509 std::optional<bool> EnableWavefrontSize32) {
1511 NumVGPRs,
1512 getVGPRAllocGranule(STI, DynamicVGPRBlockSize, EnableWavefrontSize32));
1513}
1514} // end namespace IsaInfo
1515
1517 const MCSubtargetInfo *STI) {
1519 KernelCode.amd_kernel_code_version_major = 1;
1520 KernelCode.amd_kernel_code_version_minor = 2;
1521 KernelCode.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
1522 KernelCode.amd_machine_version_major = Version.Major;
1523 KernelCode.amd_machine_version_minor = Version.Minor;
1524 KernelCode.amd_machine_version_stepping = Version.Stepping;
1526 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
1527 KernelCode.wavefront_size = 5;
1529 } else {
1530 KernelCode.wavefront_size = 6;
1531 }
1532
1533 // If the code object does not support indirect functions, then the value must
1534 // be 0xffffffff.
1535 KernelCode.call_convention = -1;
1536
1537 // These alignment values are specified in powers of two, so alignment =
1538 // 2^n. The minimum alignment is 2^4 = 16.
1539 KernelCode.kernarg_segment_alignment = 4;
1540 KernelCode.group_segment_alignment = 4;
1541 KernelCode.private_segment_alignment = 4;
1542
1543 if (Version.Major >= 10) {
1544 KernelCode.compute_pgm_resource_registers |=
1545 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
1547 }
1548}
1549
1552}
1553
1556}
1557
1559 unsigned AS = GV->getAddressSpace();
1560 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
1562}
1563
1565 return TT.getArch() == Triple::r600;
1566}
1567
1568static bool isValidRegPrefix(char C) {
1569 return C == 'v' || C == 's' || C == 'a';
1570}
1571
1572std::tuple<char, unsigned, unsigned>
1574 StringRef RegName = Constraint;
1575 if (!RegName.consume_front("{") || !RegName.consume_back("}"))
1576 return {};
1577
1578 char Kind = RegName.front();
1579 if (!isValidRegPrefix(Kind))
1580 return {};
1581
1582 RegName = RegName.drop_front();
1583 if (RegName.consume_front("[")) {
1584 unsigned Idx, End;
1585 bool Failed = RegName.consumeInteger(10, Idx);
1586 Failed |= !RegName.consume_front(":");
1587 Failed |= RegName.consumeInteger(10, End);
1588 Failed |= !RegName.consume_back("]");
1589 if (!Failed) {
1590 unsigned NumRegs = End - Idx + 1;
1591 if (NumRegs > 1)
1592 return {Kind, Idx, NumRegs};
1593 }
1594 } else {
1595 unsigned Idx;
1596 bool Failed = RegName.getAsInteger(10, Idx);
1597 if (!Failed)
1598 return {Kind, Idx, 1};
1599 }
1600
1601 return {};
1602}
1603
1604std::pair<unsigned, unsigned>
1606 std::pair<unsigned, unsigned> Default,
1607 bool OnlyFirstRequired) {
1608 if (auto Attr = getIntegerPairAttribute(F, Name, OnlyFirstRequired))
1609 return {Attr->first, Attr->second.value_or(Default.second)};
1610 return Default;
1611}
1612
1613std::optional<std::pair<unsigned, std::optional<unsigned>>>
1615 bool OnlyFirstRequired) {
1616 Attribute A = F.getFnAttribute(Name);
1617 if (!A.isStringAttribute())
1618 return std::nullopt;
1619
1620 LLVMContext &Ctx = F.getContext();
1621 std::pair<unsigned, std::optional<unsigned>> Ints;
1622 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1623 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1624 Ctx.emitError("can't parse first integer attribute " + Name);
1625 return std::nullopt;
1626 }
1627 unsigned Second = 0;
1628 if (Strs.second.trim().getAsInteger(0, Second)) {
1629 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1630 Ctx.emitError("can't parse second integer attribute " + Name);
1631 return std::nullopt;
1632 }
1633 } else {
1634 Ints.second = Second;
1635 }
1636
1637 return Ints;
1638}
1639
1641 unsigned Size,
1642 unsigned DefaultVal) {
1643 std::optional<SmallVector<unsigned>> R =
1645 return R.has_value() ? *R : SmallVector<unsigned>(Size, DefaultVal);
1646}
1647
1648std::optional<SmallVector<unsigned>>
1650 assert(Size > 2);
1651 LLVMContext &Ctx = F.getContext();
1652
1653 Attribute A = F.getFnAttribute(Name);
1654 if (!A.isValid())
1655 return std::nullopt;
1656 if (!A.isStringAttribute()) {
1657 Ctx.emitError(Name + " is not a string attribute");
1658 return std::nullopt;
1659 }
1660
1662
1663 StringRef S = A.getValueAsString();
1664 unsigned i = 0;
1665 for (; !S.empty() && i < Size; i++) {
1666 std::pair<StringRef, StringRef> Strs = S.split(',');
1667 unsigned IntVal;
1668 if (Strs.first.trim().getAsInteger(0, IntVal)) {
1669 Ctx.emitError("can't parse integer attribute " + Strs.first + " in " +
1670 Name);
1671 return std::nullopt;
1672 }
1673 Vals[i] = IntVal;
1674 S = Strs.second;
1675 }
1676
1677 if (!S.empty() || i < Size) {
1678 Ctx.emitError("attribute " + Name +
1679 " has incorrect number of integers; expected " +
1681 return std::nullopt;
1682 }
1683 return Vals;
1684}
1685
1686bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val) {
1687 assert((MD.getNumOperands() % 2 == 0) && "invalid number of operands!");
1688 for (unsigned I = 0, E = MD.getNumOperands() / 2; I != E; ++I) {
1689 auto Low =
1690 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 0))->getValue();
1691 auto High =
1692 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 1))->getValue();
1693 // There are two types of [A; B) ranges:
1694 // A < B, e.g. [4; 5) which is a range that only includes 4.
1695 // A > B, e.g. [5; 4) which is a range that wraps around and includes
1696 // everything except 4.
1697 if (Low.ult(High)) {
1698 if (Low.ule(Val) && High.ugt(Val))
1699 return true;
1700 } else {
1701 if (Low.uge(Val) && High.ult(Val))
1702 return true;
1703 }
1704 }
1705
1706 return false;
1707}
1708
1710 return (1 << (getVmcntBitWidthLo(Version.Major) +
1711 getVmcntBitWidthHi(Version.Major))) -
1712 1;
1713}
1714
1716 return (1 << getLoadcntBitWidth(Version.Major)) - 1;
1717}
1718
1720 return (1 << getSamplecntBitWidth(Version.Major)) - 1;
1721}
1722
1724 return (1 << getBvhcntBitWidth(Version.Major)) - 1;
1725}
1726
1728 return (1 << getExpcntBitWidth(Version.Major)) - 1;
1729}
1730
1732 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1733}
1734
1736 return (1 << getDscntBitWidth(Version.Major)) - 1;
1737}
1738
1740 return (1 << getKmcntBitWidth(Version.Major)) - 1;
1741}
1742
1744 return (1 << getXcntBitWidth(Version.Major, Version.Minor)) - 1;
1745}
1746
1748 return (1 << getStorecntBitWidth(Version.Major)) - 1;
1749}
1750
1752 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1753 getVmcntBitWidthLo(Version.Major));
1754 unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1755 getExpcntBitWidth(Version.Major));
1756 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1757 getLgkmcntBitWidth(Version.Major));
1758 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1759 getVmcntBitWidthHi(Version.Major));
1760 return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1761}
1762
1763unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1764 unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1765 getVmcntBitWidthLo(Version.Major));
1766 unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1767 getVmcntBitWidthHi(Version.Major));
1768 return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1769}
1770
1771unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1772 return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1773 getExpcntBitWidth(Version.Major));
1774}
1775
1776unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1777 return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1778 getLgkmcntBitWidth(Version.Major));
1779}
1780
1781void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt,
1782 unsigned &Expcnt, unsigned &Lgkmcnt) {
1783 Vmcnt = decodeVmcnt(Version, Waitcnt);
1784 Expcnt = decodeExpcnt(Version, Waitcnt);
1785 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1786}
1787
1788Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1789 Waitcnt Decoded;
1790 Decoded.LoadCnt = decodeVmcnt(Version, Encoded);
1791 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1792 Decoded.DsCnt = decodeLgkmcnt(Version, Encoded);
1793 return Decoded;
1794}
1795
1796unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1797 unsigned Vmcnt) {
1798 Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1799 getVmcntBitWidthLo(Version.Major));
1800 return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1801 getVmcntBitShiftHi(Version.Major),
1802 getVmcntBitWidthHi(Version.Major));
1803}
1804
1805unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1806 unsigned Expcnt) {
1807 return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1808 getExpcntBitWidth(Version.Major));
1809}
1810
1811unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1812 unsigned Lgkmcnt) {
1813 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1814 getLgkmcntBitWidth(Version.Major));
1815}
1816
1817unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt,
1818 unsigned Expcnt, unsigned Lgkmcnt) {
1819 unsigned Waitcnt = getWaitcntBitMask(Version);
1821 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1822 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1823 return Waitcnt;
1824}
1825
1826unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1827 return encodeWaitcnt(Version, Decoded.LoadCnt, Decoded.ExpCnt, Decoded.DsCnt);
1828}
1829
1831 bool IsStore) {
1832 unsigned Dscnt = getBitMask(getDscntBitShift(Version.Major),
1833 getDscntBitWidth(Version.Major));
1834 if (IsStore) {
1835 unsigned Storecnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1836 getStorecntBitWidth(Version.Major));
1837 return Dscnt | Storecnt;
1838 }
1839 unsigned Loadcnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1840 getLoadcntBitWidth(Version.Major));
1841 return Dscnt | Loadcnt;
1842}
1843
1844Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt) {
1845 Waitcnt Decoded;
1846 Decoded.LoadCnt =
1847 unpackBits(LoadcntDscnt, getLoadcntStorecntBitShift(Version.Major),
1848 getLoadcntBitWidth(Version.Major));
1849 Decoded.DsCnt = unpackBits(LoadcntDscnt, getDscntBitShift(Version.Major),
1850 getDscntBitWidth(Version.Major));
1851 return Decoded;
1852}
1853
1854Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt) {
1855 Waitcnt Decoded;
1856 Decoded.StoreCnt =
1857 unpackBits(StorecntDscnt, getLoadcntStorecntBitShift(Version.Major),
1858 getStorecntBitWidth(Version.Major));
1859 Decoded.DsCnt = unpackBits(StorecntDscnt, getDscntBitShift(Version.Major),
1860 getDscntBitWidth(Version.Major));
1861 return Decoded;
1862}
1863
1864static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt,
1865 unsigned Loadcnt) {
1866 return packBits(Loadcnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1867 getLoadcntBitWidth(Version.Major));
1868}
1869
1870static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt,
1871 unsigned Storecnt) {
1872 return packBits(Storecnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1873 getStorecntBitWidth(Version.Major));
1874}
1875
1876static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt,
1877 unsigned Dscnt) {
1878 return packBits(Dscnt, Waitcnt, getDscntBitShift(Version.Major),
1879 getDscntBitWidth(Version.Major));
1880}
1881
1882static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt,
1883 unsigned Dscnt) {
1884 unsigned Waitcnt = getCombinedCountBitMask(Version, false);
1885 Waitcnt = encodeLoadcnt(Version, Waitcnt, Loadcnt);
1887 return Waitcnt;
1888}
1889
1890unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1891 return encodeLoadcntDscnt(Version, Decoded.LoadCnt, Decoded.DsCnt);
1892}
1893
1895 unsigned Storecnt, unsigned Dscnt) {
1896 unsigned Waitcnt = getCombinedCountBitMask(Version, true);
1897 Waitcnt = encodeStorecnt(Version, Waitcnt, Storecnt);
1899 return Waitcnt;
1900}
1901
1903 const Waitcnt &Decoded) {
1904 return encodeStorecntDscnt(Version, Decoded.StoreCnt, Decoded.DsCnt);
1905}
1906
1907//===----------------------------------------------------------------------===//
1908// Custom Operand Values
1909//===----------------------------------------------------------------------===//
1910
1912 int Size,
1913 const MCSubtargetInfo &STI) {
1914 unsigned Enc = 0;
1915 for (int Idx = 0; Idx < Size; ++Idx) {
1916 const auto &Op = Opr[Idx];
1917 if (Op.isSupported(STI))
1918 Enc |= Op.encode(Op.Default);
1919 }
1920 return Enc;
1921}
1922
1924 int Size, unsigned Code,
1925 bool &HasNonDefaultVal,
1926 const MCSubtargetInfo &STI) {
1927 unsigned UsedOprMask = 0;
1928 HasNonDefaultVal = false;
1929 for (int Idx = 0; Idx < Size; ++Idx) {
1930 const auto &Op = Opr[Idx];
1931 if (!Op.isSupported(STI))
1932 continue;
1933 UsedOprMask |= Op.getMask();
1934 unsigned Val = Op.decode(Code);
1935 if (!Op.isValid(Val))
1936 return false;
1937 HasNonDefaultVal |= (Val != Op.Default);
1938 }
1939 return (Code & ~UsedOprMask) == 0;
1940}
1941
1942static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1943 unsigned Code, int &Idx, StringRef &Name,
1944 unsigned &Val, bool &IsDefault,
1945 const MCSubtargetInfo &STI) {
1946 while (Idx < Size) {
1947 const auto &Op = Opr[Idx++];
1948 if (Op.isSupported(STI)) {
1949 Name = Op.Name;
1950 Val = Op.decode(Code);
1951 IsDefault = (Val == Op.Default);
1952 return true;
1953 }
1954 }
1955
1956 return false;
1957}
1958
1960 int64_t InputVal) {
1961 if (InputVal < 0 || InputVal > Op.Max)
1962 return OPR_VAL_INVALID;
1963 return Op.encode(InputVal);
1964}
1965
1966static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
1967 const StringRef Name, int64_t InputVal,
1968 unsigned &UsedOprMask,
1969 const MCSubtargetInfo &STI) {
1970 int InvalidId = OPR_ID_UNKNOWN;
1971 for (int Idx = 0; Idx < Size; ++Idx) {
1972 const auto &Op = Opr[Idx];
1973 if (Op.Name == Name) {
1974 if (!Op.isSupported(STI)) {
1975 InvalidId = OPR_ID_UNSUPPORTED;
1976 continue;
1977 }
1978 auto OprMask = Op.getMask();
1979 if (OprMask & UsedOprMask)
1980 return OPR_ID_DUPLICATE;
1981 UsedOprMask |= OprMask;
1982 return encodeCustomOperandVal(Op, InputVal);
1983 }
1984 }
1985 return InvalidId;
1986}
1987
1988//===----------------------------------------------------------------------===//
1989// DepCtr
1990//===----------------------------------------------------------------------===//
1991
1992namespace DepCtr {
1993
1995 static int Default = -1;
1996 if (Default == -1)
1998 return Default;
1999}
2000
2001bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
2002 const MCSubtargetInfo &STI) {
2004 HasNonDefaultVal, STI);
2005}
2006
2007bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
2008 bool &IsDefault, const MCSubtargetInfo &STI) {
2009 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
2010 IsDefault, STI);
2011}
2012
2013int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
2014 const MCSubtargetInfo &STI) {
2015 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
2016 STI);
2017}
2018
2019unsigned decodeFieldVmVsrc(unsigned Encoded) {
2020 return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2021}
2022
2023unsigned decodeFieldVaVdst(unsigned Encoded) {
2024 return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2025}
2026
2027unsigned decodeFieldSaSdst(unsigned Encoded) {
2028 return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2029}
2030
2031unsigned decodeFieldVaSdst(unsigned Encoded) {
2032 return unpackBits(Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2033}
2034
2035unsigned decodeFieldVaVcc(unsigned Encoded) {
2036 return unpackBits(Encoded, getVaVccBitShift(), getVaVccBitWidth());
2037}
2038
2039unsigned decodeFieldVaSsrc(unsigned Encoded) {
2040 return unpackBits(Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2041}
2042
2043unsigned decodeFieldHoldCnt(unsigned Encoded) {
2044 return unpackBits(Encoded, getHoldCntBitShift(), getHoldCntWidth());
2045}
2046
2047unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
2048 return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2049}
2050
2051unsigned encodeFieldVmVsrc(unsigned VmVsrc) {
2052 return encodeFieldVmVsrc(0xffff, VmVsrc);
2053}
2054
2055unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
2056 return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2057}
2058
2059unsigned encodeFieldVaVdst(unsigned VaVdst) {
2060 return encodeFieldVaVdst(0xffff, VaVdst);
2061}
2062
2063unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
2064 return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2065}
2066
2067unsigned encodeFieldSaSdst(unsigned SaSdst) {
2068 return encodeFieldSaSdst(0xffff, SaSdst);
2069}
2070
2071unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst) {
2072 return packBits(VaSdst, Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2073}
2074
2075unsigned encodeFieldVaSdst(unsigned VaSdst) {
2076 return encodeFieldVaSdst(0xffff, VaSdst);
2077}
2078
2079unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc) {
2080 return packBits(VaVcc, Encoded, getVaVccBitShift(), getVaVccBitWidth());
2081}
2082
2083unsigned encodeFieldVaVcc(unsigned VaVcc) {
2084 return encodeFieldVaVcc(0xffff, VaVcc);
2085}
2086
2087unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc) {
2088 return packBits(VaSsrc, Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2089}
2090
2091unsigned encodeFieldVaSsrc(unsigned VaSsrc) {
2092 return encodeFieldVaSsrc(0xffff, VaSsrc);
2093}
2094
2095unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt) {
2096 return packBits(HoldCnt, Encoded, getHoldCntBitShift(), getHoldCntWidth());
2097}
2098
2099unsigned encodeFieldHoldCnt(unsigned HoldCnt) {
2100 return encodeFieldHoldCnt(0xffff, HoldCnt);
2101}
2102
2103} // namespace DepCtr
2104
2105//===----------------------------------------------------------------------===//
2106// exp tgt
2107//===----------------------------------------------------------------------===//
2108
2109namespace Exp {
2110
2111struct ExpTgt {
2113 unsigned Tgt;
2114 unsigned MaxIndex;
2115};
2116
2117// clang-format off
2118static constexpr ExpTgt ExpTgtInfo[] = {
2119 {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
2120 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
2121 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
2122 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
2123 {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
2124 {{"dual_src_blend"},ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
2125 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
2126};
2127// clang-format on
2128
2129bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
2130 for (const ExpTgt &Val : ExpTgtInfo) {
2131 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
2132 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
2133 Name = Val.Name;
2134 return true;
2135 }
2136 }
2137 return false;
2138}
2139
2140unsigned getTgtId(const StringRef Name) {
2141
2142 for (const ExpTgt &Val : ExpTgtInfo) {
2143 if (Val.MaxIndex == 0 && Name == Val.Name)
2144 return Val.Tgt;
2145
2146 if (Val.MaxIndex > 0 && Name.starts_with(Val.Name)) {
2147 StringRef Suffix = Name.drop_front(Val.Name.size());
2148
2149 unsigned Id;
2150 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
2151 return ET_INVALID;
2152
2153 // Disable leading zeroes
2154 if (Suffix.size() > 1 && Suffix[0] == '0')
2155 return ET_INVALID;
2156
2157 return Val.Tgt + Id;
2158 }
2159 }
2160 return ET_INVALID;
2161}
2162
2163bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
2164 switch (Id) {
2165 case ET_NULL:
2166 return !isGFX11Plus(STI);
2167 case ET_POS4:
2168 case ET_PRIM:
2169 return isGFX10Plus(STI);
2170 case ET_DUAL_SRC_BLEND0:
2171 case ET_DUAL_SRC_BLEND1:
2172 return isGFX11Plus(STI);
2173 default:
2174 if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
2175 return !isGFX11Plus(STI);
2176 return true;
2177 }
2178}
2179
2180} // namespace Exp
2181
2182//===----------------------------------------------------------------------===//
2183// MTBUF Format
2184//===----------------------------------------------------------------------===//
2185
2186namespace MTBUFFormat {
2187
2188int64_t getDfmt(const StringRef Name) {
2189 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
2190 if (Name == DfmtSymbolic[Id])
2191 return Id;
2192 }
2193 return DFMT_UNDEF;
2194}
2195
2197 assert(Id <= DFMT_MAX);
2198 return DfmtSymbolic[Id];
2199}
2200
2202 if (isSI(STI) || isCI(STI))
2203 return NfmtSymbolicSICI;
2204 if (isVI(STI) || isGFX9(STI))
2205 return NfmtSymbolicVI;
2206 return NfmtSymbolicGFX10;
2207}
2208
2209int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
2210 const auto *lookupTable = getNfmtLookupTable(STI);
2211 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
2212 if (Name == lookupTable[Id])
2213 return Id;
2214 }
2215 return NFMT_UNDEF;
2216}
2217
2218StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
2219 assert(Id <= NFMT_MAX);
2220 return getNfmtLookupTable(STI)[Id];
2221}
2222
2223bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2224 unsigned Dfmt;
2225 unsigned Nfmt;
2226 decodeDfmtNfmt(Id, Dfmt, Nfmt);
2227 return isValidNfmt(Nfmt, STI);
2228}
2229
2230bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2231 return !getNfmtName(Id, STI).empty();
2232}
2233
2234int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
2235 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
2236}
2237
2238void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
2239 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
2240 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
2241}
2242
2243int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
2244 if (isGFX11Plus(STI)) {
2245 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2246 if (Name == UfmtSymbolicGFX11[Id])
2247 return Id;
2248 }
2249 } else {
2250 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2251 if (Name == UfmtSymbolicGFX10[Id])
2252 return Id;
2253 }
2254 }
2255 return UFMT_UNDEF;
2256}
2257
2259 if (isValidUnifiedFormat(Id, STI))
2260 return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
2261 return "";
2262}
2263
2264bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
2265 return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
2266}
2267
2268int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
2269 const MCSubtargetInfo &STI) {
2270 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
2271 if (isGFX11Plus(STI)) {
2272 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2273 if (Fmt == DfmtNfmt2UFmtGFX11[Id])
2274 return Id;
2275 }
2276 } else {
2277 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2278 if (Fmt == DfmtNfmt2UFmtGFX10[Id])
2279 return Id;
2280 }
2281 }
2282 return UFMT_UNDEF;
2283}
2284
2285bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
2286 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
2287}
2288
2290 if (isGFX10Plus(STI))
2291 return UFMT_DEFAULT;
2292 return DFMT_NFMT_DEFAULT;
2293}
2294
2295} // namespace MTBUFFormat
2296
2297//===----------------------------------------------------------------------===//
2298// SendMsg
2299//===----------------------------------------------------------------------===//
2300
2301namespace SendMsg {
2302
2306
2307bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
2308 return (MsgId & ~(getMsgIdMask(STI))) == 0;
2309}
2310
2311bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
2312 bool Strict) {
2313 assert(isValidMsgId(MsgId, STI));
2314
2315 if (!Strict)
2316 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
2317
2318 if (msgRequiresOp(MsgId, STI)) {
2319 if (MsgId == ID_GS_PreGFX11 && OpId == OP_GS_NOP)
2320 return false;
2321
2322 return !getMsgOpName(MsgId, OpId, STI).empty();
2323 }
2324
2325 return OpId == OP_NONE_;
2326}
2327
2328bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
2329 const MCSubtargetInfo &STI, bool Strict) {
2330 assert(isValidMsgOp(MsgId, OpId, STI, Strict));
2331
2332 if (!Strict)
2334
2335 if (!isGFX11Plus(STI)) {
2336 switch (MsgId) {
2337 case ID_GS_PreGFX11:
2340 return (OpId == OP_GS_NOP)
2343 }
2344 }
2345 return StreamId == STREAM_ID_NONE_;
2346}
2347
2348bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
2349 return MsgId == ID_SYSMSG ||
2350 (!isGFX11Plus(STI) &&
2351 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
2352}
2353
2354bool msgSupportsStream(int64_t MsgId, int64_t OpId,
2355 const MCSubtargetInfo &STI) {
2356 return !isGFX11Plus(STI) &&
2357 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
2358 OpId != OP_GS_NOP;
2359}
2360
2361void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
2362 uint16_t &StreamId, const MCSubtargetInfo &STI) {
2363 MsgId = Val & getMsgIdMask(STI);
2364 if (isGFX11Plus(STI)) {
2365 OpId = 0;
2366 StreamId = 0;
2367 } else {
2368 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
2370 }
2371}
2372
2374 return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
2375}
2376
2377} // namespace SendMsg
2378
2379//===----------------------------------------------------------------------===//
2380//
2381//===----------------------------------------------------------------------===//
2382
2384 return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
2385}
2386
2388 // As a safe default always respond as if PS has color exports.
2389 return F.getFnAttributeAsParsedInteger(
2390 "amdgpu-color-export",
2391 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
2392}
2393
2395 return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
2396}
2397
2399 unsigned BlockSize =
2400 F.getFnAttributeAsParsedInteger("amdgpu-dynamic-vgpr-block-size", 0);
2401
2402 if (BlockSize == 16 || BlockSize == 32)
2403 return BlockSize;
2404
2405 return 0;
2406}
2407
2408bool hasXNACK(const MCSubtargetInfo &STI) {
2409 return STI.hasFeature(AMDGPU::FeatureXNACK);
2410}
2411
2412bool hasSRAMECC(const MCSubtargetInfo &STI) {
2413 return STI.hasFeature(AMDGPU::FeatureSRAMECC);
2414}
2415
2417 return STI.hasFeature(AMDGPU::FeatureMIMG_R128) &&
2418 !STI.hasFeature(AMDGPU::FeatureR128A16);
2419}
2420
2421bool hasA16(const MCSubtargetInfo &STI) {
2422 return STI.hasFeature(AMDGPU::FeatureA16);
2423}
2424
2425bool hasG16(const MCSubtargetInfo &STI) {
2426 return STI.hasFeature(AMDGPU::FeatureG16);
2427}
2428
2430 return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
2431 !isSI(STI);
2432}
2433
2434bool hasGDS(const MCSubtargetInfo &STI) {
2435 return STI.hasFeature(AMDGPU::FeatureGDS);
2436}
2437
2438unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler) {
2439 auto Version = getIsaVersion(STI.getCPU());
2440 if (Version.Major == 10)
2441 return Version.Minor >= 3 ? 13 : 5;
2442 if (Version.Major == 11)
2443 return 5;
2444 if (Version.Major >= 12)
2445 return HasSampler ? 4 : 5;
2446 return 0;
2447}
2448
2450 if (isGFX1250(STI))
2451 return 32;
2452 return 16;
2453}
2454
2455bool isSI(const MCSubtargetInfo &STI) {
2456 return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
2457}
2458
2459bool isCI(const MCSubtargetInfo &STI) {
2460 return STI.hasFeature(AMDGPU::FeatureSeaIslands);
2461}
2462
2463bool isVI(const MCSubtargetInfo &STI) {
2464 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
2465}
2466
2467bool isGFX9(const MCSubtargetInfo &STI) {
2468 return STI.hasFeature(AMDGPU::FeatureGFX9);
2469}
2470
2472 return isGFX9(STI) || isGFX10(STI);
2473}
2474
2476 return isGFX9(STI) || isGFX10(STI) || isGFX11(STI);
2477}
2478
2480 return isVI(STI) || isGFX9(STI) || isGFX10(STI);
2481}
2482
2483bool isGFX8Plus(const MCSubtargetInfo &STI) {
2484 return isVI(STI) || isGFX9Plus(STI);
2485}
2486
2487bool isGFX9Plus(const MCSubtargetInfo &STI) {
2488 return isGFX9(STI) || isGFX10Plus(STI);
2489}
2490
2491bool isNotGFX9Plus(const MCSubtargetInfo &STI) { return !isGFX9Plus(STI); }
2492
2493bool isGFX10(const MCSubtargetInfo &STI) {
2494 return STI.hasFeature(AMDGPU::FeatureGFX10);
2495}
2496
2498 return isGFX10(STI) || isGFX11(STI);
2499}
2500
2502 return isGFX10(STI) || isGFX11Plus(STI);
2503}
2504
2505bool isGFX11(const MCSubtargetInfo &STI) {
2506 return STI.hasFeature(AMDGPU::FeatureGFX11);
2507}
2508
2510 return isGFX11(STI) || isGFX12Plus(STI);
2511}
2512
2513bool isGFX12(const MCSubtargetInfo &STI) {
2514 return STI.getFeatureBits()[AMDGPU::FeatureGFX12];
2515}
2516
2517bool isGFX12Plus(const MCSubtargetInfo &STI) { return isGFX12(STI); }
2518
2519bool isNotGFX12Plus(const MCSubtargetInfo &STI) { return !isGFX12Plus(STI); }
2520
2521bool isGFX1250(const MCSubtargetInfo &STI) {
2522 return STI.getFeatureBits()[AMDGPU::FeatureGFX1250Insts];
2523}
2524
2526 if (isGFX1250(STI))
2527 return false;
2528 return isGFX10Plus(STI);
2529}
2530
2531bool isNotGFX11Plus(const MCSubtargetInfo &STI) { return !isGFX11Plus(STI); }
2532
2534 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
2535}
2536
2538 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
2539}
2540
2542 return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
2543}
2544
2546 return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
2547}
2548
2550 return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
2551}
2552
2554 return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
2555}
2556
2558 return isGFX10_BEncoding(STI) && !isGFX12Plus(STI);
2559}
2560
2561bool isGFX90A(const MCSubtargetInfo &STI) {
2562 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
2563}
2564
2565bool isGFX940(const MCSubtargetInfo &STI) {
2566 return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
2567}
2568
2570 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
2571}
2572
2574 return STI.hasFeature(AMDGPU::FeatureMAIInsts);
2575}
2576
2577bool hasVOPD(const MCSubtargetInfo &STI) {
2578 return STI.hasFeature(AMDGPU::FeatureVOPD);
2579}
2580
2582 return STI.hasFeature(AMDGPU::FeatureDPPSrc1SGPR);
2583}
2584
2586 return STI.hasFeature(AMDGPU::FeatureKernargPreload);
2587}
2588
2589int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
2590 int32_t ArgNumVGPR) {
2591 if (has90AInsts && ArgNumAGPR)
2592 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
2593 return std::max(ArgNumVGPR, ArgNumAGPR);
2594}
2595
2597 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
2598 const MCRegister FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
2599 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
2600 Reg == AMDGPU::SCC;
2601}
2602
2604 return MRI.getEncodingValue(Reg) & AMDGPU::HWEncoding::IS_HI16;
2605}
2606
2607#define MAP_REG2REG \
2608 using namespace AMDGPU; \
2609 switch (Reg.id()) { \
2610 default: \
2611 return Reg; \
2612 CASE_CI_VI(FLAT_SCR) \
2613 CASE_CI_VI(FLAT_SCR_LO) \
2614 CASE_CI_VI(FLAT_SCR_HI) \
2615 CASE_VI_GFX9PLUS(TTMP0) \
2616 CASE_VI_GFX9PLUS(TTMP1) \
2617 CASE_VI_GFX9PLUS(TTMP2) \
2618 CASE_VI_GFX9PLUS(TTMP3) \
2619 CASE_VI_GFX9PLUS(TTMP4) \
2620 CASE_VI_GFX9PLUS(TTMP5) \
2621 CASE_VI_GFX9PLUS(TTMP6) \
2622 CASE_VI_GFX9PLUS(TTMP7) \
2623 CASE_VI_GFX9PLUS(TTMP8) \
2624 CASE_VI_GFX9PLUS(TTMP9) \
2625 CASE_VI_GFX9PLUS(TTMP10) \
2626 CASE_VI_GFX9PLUS(TTMP11) \
2627 CASE_VI_GFX9PLUS(TTMP12) \
2628 CASE_VI_GFX9PLUS(TTMP13) \
2629 CASE_VI_GFX9PLUS(TTMP14) \
2630 CASE_VI_GFX9PLUS(TTMP15) \
2631 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
2632 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
2633 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
2634 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
2635 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
2636 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
2637 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
2638 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
2639 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
2640 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
2641 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
2642 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
2643 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
2644 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
2645 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2646 CASE_VI_GFX9PLUS( \
2647 TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2648 CASE_GFXPRE11_GFX11PLUS(M0) \
2649 CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
2650 CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
2651 }
2652
2653#define CASE_CI_VI(node) \
2654 assert(!isSI(STI)); \
2655 case node: \
2656 return isCI(STI) ? node##_ci : node##_vi;
2657
2658#define CASE_VI_GFX9PLUS(node) \
2659 case node: \
2660 return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
2661
2662#define CASE_GFXPRE11_GFX11PLUS(node) \
2663 case node: \
2664 return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
2665
2666#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
2667 case node: \
2668 return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
2669
2671 if (STI.getTargetTriple().getArch() == Triple::r600)
2672 return Reg;
2674}
2675
2676#undef CASE_CI_VI
2677#undef CASE_VI_GFX9PLUS
2678#undef CASE_GFXPRE11_GFX11PLUS
2679#undef CASE_GFXPRE11_GFX11PLUS_TO
2680
2681#define CASE_CI_VI(node) \
2682 case node##_ci: \
2683 case node##_vi: \
2684 return node;
2685#define CASE_VI_GFX9PLUS(node) \
2686 case node##_vi: \
2687 case node##_gfx9plus: \
2688 return node;
2689#define CASE_GFXPRE11_GFX11PLUS(node) \
2690 case node##_gfx11plus: \
2691 case node##_gfxpre11: \
2692 return node;
2693#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
2694
2696
2697bool isInlineValue(unsigned Reg) {
2698 switch (Reg) {
2699 case AMDGPU::SRC_SHARED_BASE_LO:
2700 case AMDGPU::SRC_SHARED_BASE:
2701 case AMDGPU::SRC_SHARED_LIMIT_LO:
2702 case AMDGPU::SRC_SHARED_LIMIT:
2703 case AMDGPU::SRC_PRIVATE_BASE_LO:
2704 case AMDGPU::SRC_PRIVATE_BASE:
2705 case AMDGPU::SRC_PRIVATE_LIMIT_LO:
2706 case AMDGPU::SRC_PRIVATE_LIMIT:
2707 case AMDGPU::SRC_FLAT_SCRATCH_BASE_LO:
2708 case AMDGPU::SRC_FLAT_SCRATCH_BASE_HI:
2709 case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
2710 return true;
2711 case AMDGPU::SRC_VCCZ:
2712 case AMDGPU::SRC_EXECZ:
2713 case AMDGPU::SRC_SCC:
2714 return true;
2715 case AMDGPU::SGPR_NULL:
2716 return true;
2717 default:
2718 return false;
2719 }
2720}
2721
2722#undef CASE_CI_VI
2723#undef CASE_VI_GFX9PLUS
2724#undef CASE_GFXPRE11_GFX11PLUS
2725#undef CASE_GFXPRE11_GFX11PLUS_TO
2726#undef MAP_REG2REG
2727
2728bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2729 assert(OpNo < Desc.NumOperands);
2730 unsigned OpType = Desc.operands()[OpNo].OperandType;
2731 return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
2732 OpType <= AMDGPU::OPERAND_KIMM_LAST;
2733}
2734
2735bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2736 assert(OpNo < Desc.NumOperands);
2737 unsigned OpType = Desc.operands()[OpNo].OperandType;
2738 switch (OpType) {
2751 return true;
2752 default:
2753 return false;
2754 }
2755}
2756
2757bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2758 assert(OpNo < Desc.NumOperands);
2759 unsigned OpType = Desc.operands()[OpNo].OperandType;
2760 return (OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
2764}
2765
2766// Avoid using MCRegisterClass::getSize, since that function will go away
2767// (move from MC* level to Target* level). Return size in bits.
2768unsigned getRegBitWidth(unsigned RCID) {
2769 switch (RCID) {
2770 case AMDGPU::VGPR_16RegClassID:
2771 case AMDGPU::VGPR_16_Lo128RegClassID:
2772 case AMDGPU::SGPR_LO16RegClassID:
2773 case AMDGPU::AGPR_LO16RegClassID:
2774 return 16;
2775 case AMDGPU::SGPR_32RegClassID:
2776 case AMDGPU::VGPR_32RegClassID:
2777 case AMDGPU::VGPR_32_Lo256RegClassID:
2778 case AMDGPU::VRegOrLds_32RegClassID:
2779 case AMDGPU::AGPR_32RegClassID:
2780 case AMDGPU::VS_32RegClassID:
2781 case AMDGPU::AV_32RegClassID:
2782 case AMDGPU::SReg_32RegClassID:
2783 case AMDGPU::SReg_32_XM0RegClassID:
2784 case AMDGPU::SRegOrLds_32RegClassID:
2785 return 32;
2786 case AMDGPU::SGPR_64RegClassID:
2787 case AMDGPU::VS_64RegClassID:
2788 case AMDGPU::SReg_64RegClassID:
2789 case AMDGPU::VReg_64RegClassID:
2790 case AMDGPU::AReg_64RegClassID:
2791 case AMDGPU::SReg_64_XEXECRegClassID:
2792 case AMDGPU::VReg_64_Align2RegClassID:
2793 case AMDGPU::AReg_64_Align2RegClassID:
2794 case AMDGPU::AV_64RegClassID:
2795 case AMDGPU::AV_64_Align2RegClassID:
2796 case AMDGPU::VReg_64_Lo256_Align2RegClassID:
2797 case AMDGPU::VS_64_Lo256RegClassID:
2798 return 64;
2799 case AMDGPU::SGPR_96RegClassID:
2800 case AMDGPU::SReg_96RegClassID:
2801 case AMDGPU::VReg_96RegClassID:
2802 case AMDGPU::AReg_96RegClassID:
2803 case AMDGPU::VReg_96_Align2RegClassID:
2804 case AMDGPU::AReg_96_Align2RegClassID:
2805 case AMDGPU::AV_96RegClassID:
2806 case AMDGPU::AV_96_Align2RegClassID:
2807 case AMDGPU::VReg_96_Lo256_Align2RegClassID:
2808 return 96;
2809 case AMDGPU::SGPR_128RegClassID:
2810 case AMDGPU::SReg_128RegClassID:
2811 case AMDGPU::VReg_128RegClassID:
2812 case AMDGPU::AReg_128RegClassID:
2813 case AMDGPU::VReg_128_Align2RegClassID:
2814 case AMDGPU::AReg_128_Align2RegClassID:
2815 case AMDGPU::AV_128RegClassID:
2816 case AMDGPU::AV_128_Align2RegClassID:
2817 case AMDGPU::SReg_128_XNULLRegClassID:
2818 case AMDGPU::VReg_128_Lo256_Align2RegClassID:
2819 return 128;
2820 case AMDGPU::SGPR_160RegClassID:
2821 case AMDGPU::SReg_160RegClassID:
2822 case AMDGPU::VReg_160RegClassID:
2823 case AMDGPU::AReg_160RegClassID:
2824 case AMDGPU::VReg_160_Align2RegClassID:
2825 case AMDGPU::AReg_160_Align2RegClassID:
2826 case AMDGPU::AV_160RegClassID:
2827 case AMDGPU::AV_160_Align2RegClassID:
2828 case AMDGPU::VReg_160_Lo256_Align2RegClassID:
2829 return 160;
2830 case AMDGPU::SGPR_192RegClassID:
2831 case AMDGPU::SReg_192RegClassID:
2832 case AMDGPU::VReg_192RegClassID:
2833 case AMDGPU::AReg_192RegClassID:
2834 case AMDGPU::VReg_192_Align2RegClassID:
2835 case AMDGPU::AReg_192_Align2RegClassID:
2836 case AMDGPU::AV_192RegClassID:
2837 case AMDGPU::AV_192_Align2RegClassID:
2838 case AMDGPU::VReg_192_Lo256_Align2RegClassID:
2839 return 192;
2840 case AMDGPU::SGPR_224RegClassID:
2841 case AMDGPU::SReg_224RegClassID:
2842 case AMDGPU::VReg_224RegClassID:
2843 case AMDGPU::AReg_224RegClassID:
2844 case AMDGPU::VReg_224_Align2RegClassID:
2845 case AMDGPU::AReg_224_Align2RegClassID:
2846 case AMDGPU::AV_224RegClassID:
2847 case AMDGPU::AV_224_Align2RegClassID:
2848 case AMDGPU::VReg_224_Lo256_Align2RegClassID:
2849 return 224;
2850 case AMDGPU::SGPR_256RegClassID:
2851 case AMDGPU::SReg_256RegClassID:
2852 case AMDGPU::VReg_256RegClassID:
2853 case AMDGPU::AReg_256RegClassID:
2854 case AMDGPU::VReg_256_Align2RegClassID:
2855 case AMDGPU::AReg_256_Align2RegClassID:
2856 case AMDGPU::AV_256RegClassID:
2857 case AMDGPU::AV_256_Align2RegClassID:
2858 case AMDGPU::SReg_256_XNULLRegClassID:
2859 case AMDGPU::VReg_256_Lo256_Align2RegClassID:
2860 return 256;
2861 case AMDGPU::SGPR_288RegClassID:
2862 case AMDGPU::SReg_288RegClassID:
2863 case AMDGPU::VReg_288RegClassID:
2864 case AMDGPU::AReg_288RegClassID:
2865 case AMDGPU::VReg_288_Align2RegClassID:
2866 case AMDGPU::AReg_288_Align2RegClassID:
2867 case AMDGPU::AV_288RegClassID:
2868 case AMDGPU::AV_288_Align2RegClassID:
2869 case AMDGPU::VReg_288_Lo256_Align2RegClassID:
2870 return 288;
2871 case AMDGPU::SGPR_320RegClassID:
2872 case AMDGPU::SReg_320RegClassID:
2873 case AMDGPU::VReg_320RegClassID:
2874 case AMDGPU::AReg_320RegClassID:
2875 case AMDGPU::VReg_320_Align2RegClassID:
2876 case AMDGPU::AReg_320_Align2RegClassID:
2877 case AMDGPU::AV_320RegClassID:
2878 case AMDGPU::AV_320_Align2RegClassID:
2879 case AMDGPU::VReg_320_Lo256_Align2RegClassID:
2880 return 320;
2881 case AMDGPU::SGPR_352RegClassID:
2882 case AMDGPU::SReg_352RegClassID:
2883 case AMDGPU::VReg_352RegClassID:
2884 case AMDGPU::AReg_352RegClassID:
2885 case AMDGPU::VReg_352_Align2RegClassID:
2886 case AMDGPU::AReg_352_Align2RegClassID:
2887 case AMDGPU::AV_352RegClassID:
2888 case AMDGPU::AV_352_Align2RegClassID:
2889 case AMDGPU::VReg_352_Lo256_Align2RegClassID:
2890 return 352;
2891 case AMDGPU::SGPR_384RegClassID:
2892 case AMDGPU::SReg_384RegClassID:
2893 case AMDGPU::VReg_384RegClassID:
2894 case AMDGPU::AReg_384RegClassID:
2895 case AMDGPU::VReg_384_Align2RegClassID:
2896 case AMDGPU::AReg_384_Align2RegClassID:
2897 case AMDGPU::AV_384RegClassID:
2898 case AMDGPU::AV_384_Align2RegClassID:
2899 case AMDGPU::VReg_384_Lo256_Align2RegClassID:
2900 return 384;
2901 case AMDGPU::SGPR_512RegClassID:
2902 case AMDGPU::SReg_512RegClassID:
2903 case AMDGPU::VReg_512RegClassID:
2904 case AMDGPU::AReg_512RegClassID:
2905 case AMDGPU::VReg_512_Align2RegClassID:
2906 case AMDGPU::AReg_512_Align2RegClassID:
2907 case AMDGPU::AV_512RegClassID:
2908 case AMDGPU::AV_512_Align2RegClassID:
2909 case AMDGPU::VReg_512_Lo256_Align2RegClassID:
2910 return 512;
2911 case AMDGPU::SGPR_1024RegClassID:
2912 case AMDGPU::SReg_1024RegClassID:
2913 case AMDGPU::VReg_1024RegClassID:
2914 case AMDGPU::AReg_1024RegClassID:
2915 case AMDGPU::VReg_1024_Align2RegClassID:
2916 case AMDGPU::AReg_1024_Align2RegClassID:
2917 case AMDGPU::AV_1024RegClassID:
2918 case AMDGPU::AV_1024_Align2RegClassID:
2919 case AMDGPU::VReg_1024_Lo256_Align2RegClassID:
2920 return 1024;
2921 default:
2922 llvm_unreachable("Unexpected register class");
2923 }
2924}
2925
2926unsigned getRegBitWidth(const MCRegisterClass &RC) {
2927 return getRegBitWidth(RC.getID());
2928}
2929
2931 unsigned OpNo) {
2932 assert(OpNo < Desc.NumOperands);
2933 unsigned RCID = Desc.operands()[OpNo].RegClass;
2934 return getRegBitWidth(RCID) / 8;
2935}
2936
2937bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2939 return true;
2940
2941 uint64_t Val = static_cast<uint64_t>(Literal);
2942 return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
2943 (Val == llvm::bit_cast<uint64_t>(1.0)) ||
2944 (Val == llvm::bit_cast<uint64_t>(-1.0)) ||
2945 (Val == llvm::bit_cast<uint64_t>(0.5)) ||
2946 (Val == llvm::bit_cast<uint64_t>(-0.5)) ||
2947 (Val == llvm::bit_cast<uint64_t>(2.0)) ||
2948 (Val == llvm::bit_cast<uint64_t>(-2.0)) ||
2949 (Val == llvm::bit_cast<uint64_t>(4.0)) ||
2950 (Val == llvm::bit_cast<uint64_t>(-4.0)) ||
2951 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2952}
2953
2954bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2956 return true;
2957
2958 // The actual type of the operand does not seem to matter as long
2959 // as the bits match one of the inline immediate values. For example:
2960 //
2961 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
2962 // so it is a legal inline immediate.
2963 //
2964 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
2965 // floating-point, so it is a legal inline immediate.
2966
2967 uint32_t Val = static_cast<uint32_t>(Literal);
2968 return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
2969 (Val == llvm::bit_cast<uint32_t>(1.0f)) ||
2970 (Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
2971 (Val == llvm::bit_cast<uint32_t>(0.5f)) ||
2972 (Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
2973 (Val == llvm::bit_cast<uint32_t>(2.0f)) ||
2974 (Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
2975 (Val == llvm::bit_cast<uint32_t>(4.0f)) ||
2976 (Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
2977 (Val == 0x3e22f983 && HasInv2Pi);
2978}
2979
2980bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi) {
2981 if (!HasInv2Pi)
2982 return false;
2984 return true;
2985 uint16_t Val = static_cast<uint16_t>(Literal);
2986 return Val == 0x3F00 || // 0.5
2987 Val == 0xBF00 || // -0.5
2988 Val == 0x3F80 || // 1.0
2989 Val == 0xBF80 || // -1.0
2990 Val == 0x4000 || // 2.0
2991 Val == 0xC000 || // -2.0
2992 Val == 0x4080 || // 4.0
2993 Val == 0xC080 || // -4.0
2994 Val == 0x3E22; // 1.0 / (2.0 * pi)
2995}
2996
2997bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi) {
2998 return isInlinableLiteral32(Literal, HasInv2Pi);
2999}
3000
3001bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi) {
3002 if (!HasInv2Pi)
3003 return false;
3005 return true;
3006 uint16_t Val = static_cast<uint16_t>(Literal);
3007 return Val == 0x3C00 || // 1.0
3008 Val == 0xBC00 || // -1.0
3009 Val == 0x3800 || // 0.5
3010 Val == 0xB800 || // -0.5
3011 Val == 0x4000 || // 2.0
3012 Val == 0xC000 || // -2.0
3013 Val == 0x4400 || // 4.0
3014 Val == 0xC400 || // -4.0
3015 Val == 0x3118; // 1/2pi
3016}
3017
3018std::optional<unsigned> getInlineEncodingV216(bool IsFloat, uint32_t Literal) {
3019 // Unfortunately, the Instruction Set Architecture Reference Guide is
3020 // misleading about how the inline operands work for (packed) 16-bit
3021 // instructions. In a nutshell, the actual HW behavior is:
3022 //
3023 // - integer encodings (-16 .. 64) are always produced as sign-extended
3024 // 32-bit values
3025 // - float encodings are produced as:
3026 // - for F16 instructions: corresponding half-precision float values in
3027 // the LSBs, 0 in the MSBs
3028 // - for UI16 instructions: corresponding single-precision float value
3029 int32_t Signed = static_cast<int32_t>(Literal);
3030 if (Signed >= 0 && Signed <= 64)
3031 return 128 + Signed;
3032
3033 if (Signed >= -16 && Signed <= -1)
3034 return 192 + std::abs(Signed);
3035
3036 if (IsFloat) {
3037 // clang-format off
3038 switch (Literal) {
3039 case 0x3800: return 240; // 0.5
3040 case 0xB800: return 241; // -0.5
3041 case 0x3C00: return 242; // 1.0
3042 case 0xBC00: return 243; // -1.0
3043 case 0x4000: return 244; // 2.0
3044 case 0xC000: return 245; // -2.0
3045 case 0x4400: return 246; // 4.0
3046 case 0xC400: return 247; // -4.0
3047 case 0x3118: return 248; // 1.0 / (2.0 * pi)
3048 default: break;
3049 }
3050 // clang-format on
3051 } else {
3052 // clang-format off
3053 switch (Literal) {
3054 case 0x3F000000: return 240; // 0.5
3055 case 0xBF000000: return 241; // -0.5
3056 case 0x3F800000: return 242; // 1.0
3057 case 0xBF800000: return 243; // -1.0
3058 case 0x40000000: return 244; // 2.0
3059 case 0xC0000000: return 245; // -2.0
3060 case 0x40800000: return 246; // 4.0
3061 case 0xC0800000: return 247; // -4.0
3062 case 0x3E22F983: return 248; // 1.0 / (2.0 * pi)
3063 default: break;
3064 }
3065 // clang-format on
3066 }
3067
3068 return {};
3069}
3070
3071// Encoding of the literal as an inline constant for a V_PK_*_IU16 instruction
3072// or nullopt.
3073std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal) {
3074 return getInlineEncodingV216(false, Literal);
3075}
3076
3077// Encoding of the literal as an inline constant for a V_PK_*_BF16 instruction
3078// or nullopt.
3079std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal) {
3080 int32_t Signed = static_cast<int32_t>(Literal);
3081 if (Signed >= 0 && Signed <= 64)
3082 return 128 + Signed;
3083
3084 if (Signed >= -16 && Signed <= -1)
3085 return 192 + std::abs(Signed);
3086
3087 // clang-format off
3088 switch (Literal) {
3089 case 0x3F00: return 240; // 0.5
3090 case 0xBF00: return 241; // -0.5
3091 case 0x3F80: return 242; // 1.0
3092 case 0xBF80: return 243; // -1.0
3093 case 0x4000: return 244; // 2.0
3094 case 0xC000: return 245; // -2.0
3095 case 0x4080: return 246; // 4.0
3096 case 0xC080: return 247; // -4.0
3097 case 0x3E22: return 248; // 1.0 / (2.0 * pi)
3098 default: break;
3099 }
3100 // clang-format on
3101
3102 return std::nullopt;
3103}
3104
3105// Encoding of the literal as an inline constant for a V_PK_*_F16 instruction
3106// or nullopt.
3107std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal) {
3108 return getInlineEncodingV216(true, Literal);
3109}
3110
3111// Whether the given literal can be inlined for a V_PK_* instruction.
3113 switch (OpType) {
3116 return getInlineEncodingV216(false, Literal).has_value();
3119 return getInlineEncodingV216(true, Literal).has_value();
3124 return false;
3125 default:
3126 llvm_unreachable("bad packed operand type");
3127 }
3128}
3129
3130// Whether the given literal can be inlined for a V_PK_*_IU16 instruction.
3134
3135// Whether the given literal can be inlined for a V_PK_*_BF16 instruction.
3139
3140// Whether the given literal can be inlined for a V_PK_*_F16 instruction.
3144
3145bool isValid32BitLiteral(uint64_t Val, bool IsFP64) {
3146 if (IsFP64)
3147 return !Lo_32(Val);
3148
3149 return isUInt<32>(Val) || isInt<32>(Val);
3150}
3151
3153 switch (Type) {
3154 default:
3155 break;
3160 return Imm & 0xffff;
3173 return Lo_32(Imm);
3175 return Hi_32(Imm);
3176 }
3177 return Imm;
3178}
3179
3181 const Function *F = A->getParent();
3182
3183 // Arguments to compute shaders are never a source of divergence.
3184 CallingConv::ID CC = F->getCallingConv();
3185 switch (CC) {
3188 return true;
3199 // For non-compute shaders, SGPR inputs are marked with either inreg or
3200 // byval. Everything else is in VGPRs.
3201 return A->hasAttribute(Attribute::InReg) ||
3202 A->hasAttribute(Attribute::ByVal);
3203 default:
3204 // TODO: treat i1 as divergent?
3205 return A->hasAttribute(Attribute::InReg);
3206 }
3207}
3208
3209bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
3210 // Arguments to compute shaders are never a source of divergence.
3212 switch (CC) {
3215 return true;
3226 // For non-compute shaders, SGPR inputs are marked with either inreg or
3227 // byval. Everything else is in VGPRs.
3228 return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
3229 CB->paramHasAttr(ArgNo, Attribute::ByVal);
3230 default:
3231 return CB->paramHasAttr(ArgNo, Attribute::InReg);
3232 }
3233}
3234
3235static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
3236 return isGCN3Encoding(ST) || isGFX10Plus(ST);
3237}
3238
3240 int64_t EncodedOffset) {
3241 if (isGFX12Plus(ST))
3242 return isUInt<23>(EncodedOffset);
3243
3244 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
3245 : isUInt<8>(EncodedOffset);
3246}
3247
3249 int64_t EncodedOffset, bool IsBuffer) {
3250 if (isGFX12Plus(ST)) {
3251 if (IsBuffer && EncodedOffset < 0)
3252 return false;
3253 return isInt<24>(EncodedOffset);
3254 }
3255
3256 return !IsBuffer && hasSMRDSignedImmOffset(ST) && isInt<21>(EncodedOffset);
3257}
3258
3259static bool isDwordAligned(uint64_t ByteOffset) {
3260 return (ByteOffset & 3) == 0;
3261}
3262
3264 uint64_t ByteOffset) {
3265 if (hasSMEMByteOffset(ST))
3266 return ByteOffset;
3267
3268 assert(isDwordAligned(ByteOffset));
3269 return ByteOffset >> 2;
3270}
3271
3272std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
3273 int64_t ByteOffset, bool IsBuffer,
3274 bool HasSOffset) {
3275 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
3276 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
3277 // Handle case where SOffset is not present.
3278 if (!IsBuffer && !HasSOffset && ByteOffset < 0 && hasSMRDSignedImmOffset(ST))
3279 return std::nullopt;
3280
3281 if (isGFX12Plus(ST)) // 24 bit signed offsets
3282 return isInt<24>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3283 : std::nullopt;
3284
3285 // The signed version is always a byte offset.
3286 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
3288 return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3289 : std::nullopt;
3290 }
3291
3292 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
3293 return std::nullopt;
3294
3295 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3296 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
3297 ? std::optional<int64_t>(EncodedOffset)
3298 : std::nullopt;
3299}
3300
3301std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
3302 int64_t ByteOffset) {
3303 if (!isCI(ST) || !isDwordAligned(ByteOffset))
3304 return std::nullopt;
3305
3306 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3307 return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
3308 : std::nullopt;
3309}
3310
3312 if (AMDGPU::isGFX10(ST))
3313 return 12;
3314
3315 if (AMDGPU::isGFX12(ST))
3316 return 24;
3317 return 13;
3318}
3319
3320namespace {
3321
3322struct SourceOfDivergence {
3323 unsigned Intr;
3324};
3325const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
3326
3327struct AlwaysUniform {
3328 unsigned Intr;
3329};
3330const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);
3331
3332#define GET_SourcesOfDivergence_IMPL
3333#define GET_UniformIntrinsics_IMPL
3334#define GET_Gfx9BufferFormat_IMPL
3335#define GET_Gfx10BufferFormat_IMPL
3336#define GET_Gfx11PlusBufferFormat_IMPL
3337
3338#include "AMDGPUGenSearchableTables.inc"
3339
3340} // end anonymous namespace
3341
3342bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
3343 return lookupSourceOfDivergence(IntrID);
3344}
3345
3346bool isIntrinsicAlwaysUniform(unsigned IntrID) {
3347 return lookupAlwaysUniform(IntrID);
3348}
3349
3351 uint8_t NumComponents,
3352 uint8_t NumFormat,
3353 const MCSubtargetInfo &STI) {
3354 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(
3355 BitsPerComp, NumComponents, NumFormat)
3356 : isGFX10(STI)
3357 ? getGfx10BufferFormatInfo(BitsPerComp, NumComponents, NumFormat)
3358 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
3359}
3360
3362 const MCSubtargetInfo &STI) {
3363 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
3364 : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
3365 : getGfx9BufferFormatInfo(Format);
3366}
3367
3369 const MCRegisterInfo &MRI) {
3370 const unsigned VGPRClasses[] = {
3371 AMDGPU::VGPR_16RegClassID, AMDGPU::VGPR_32RegClassID,
3372 AMDGPU::VReg_64RegClassID, AMDGPU::VReg_96RegClassID,
3373 AMDGPU::VReg_128RegClassID, AMDGPU::VReg_160RegClassID,
3374 AMDGPU::VReg_192RegClassID, AMDGPU::VReg_224RegClassID,
3375 AMDGPU::VReg_256RegClassID, AMDGPU::VReg_288RegClassID,
3376 AMDGPU::VReg_320RegClassID, AMDGPU::VReg_352RegClassID,
3377 AMDGPU::VReg_384RegClassID, AMDGPU::VReg_512RegClassID,
3378 AMDGPU::VReg_1024RegClassID};
3379
3380 for (unsigned RCID : VGPRClasses) {
3381 const MCRegisterClass &RC = MRI.getRegClass(RCID);
3382 if (RC.contains(Reg))
3383 return &RC;
3384 }
3385
3386 return nullptr;
3387}
3388
3390 unsigned Enc = MRI.getEncodingValue(Reg);
3391 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3392 return Idx >> 8;
3393}
3394
3396 const MCRegisterInfo &MRI) {
3397 unsigned Enc = MRI.getEncodingValue(Reg);
3398 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3399 if (Idx >= 0x100)
3400 return AMDGPU::NoRegister;
3401
3403 if (!RC)
3404 return AMDGPU::NoRegister;
3405
3406 Idx |= MSBs << 8;
3407 if (RC->getID() == AMDGPU::VGPR_16RegClassID) {
3408 // This class has 2048 registers with interleaved lo16 and hi16.
3409 Idx *= 2;
3411 ++Idx;
3412 }
3413
3414 return RC->getRegister(Idx);
3415}
3416
3417std::pair<const AMDGPU::OpName *, const AMDGPU::OpName *>
3419 static const AMDGPU::OpName VOPOps[4] = {
3420 AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2,
3421 AMDGPU::OpName::vdst};
3422 static const AMDGPU::OpName VDSOps[4] = {
3423 AMDGPU::OpName::addr, AMDGPU::OpName::data0, AMDGPU::OpName::data1,
3424 AMDGPU::OpName::vdst};
3425 static const AMDGPU::OpName FLATOps[4] = {
3426 AMDGPU::OpName::vaddr, AMDGPU::OpName::vdata,
3427 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdst};
3428 static const AMDGPU::OpName BUFOps[4] = {
3429 AMDGPU::OpName::vaddr, AMDGPU::OpName::NUM_OPERAND_NAMES,
3430 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdata};
3431 static const AMDGPU::OpName VIMGOps[4] = {
3432 AMDGPU::OpName::vaddr0, AMDGPU::OpName::vaddr1, AMDGPU::OpName::vaddr2,
3433 AMDGPU::OpName::vdata};
3434
3435 // For VOPD instructions MSB of a corresponding Y component operand VGPR
3436 // address is supposed to match X operand, otherwise VOPD shall not be
3437 // combined.
3438 static const AMDGPU::OpName VOPDOpsX[4] = {
3439 AMDGPU::OpName::src0X, AMDGPU::OpName::vsrc1X, AMDGPU::OpName::vsrc2X,
3440 AMDGPU::OpName::vdstX};
3441 static const AMDGPU::OpName VOPDOpsY[4] = {
3442 AMDGPU::OpName::src0Y, AMDGPU::OpName::vsrc1Y, AMDGPU::OpName::vsrc2Y,
3443 AMDGPU::OpName::vdstY};
3444
3445 unsigned TSFlags = Desc.TSFlags;
3446
3447 if (TSFlags &
3450 // LD_SCALE operands ignore MSB.
3451 if (Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32 ||
3452 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32_gfx1250 ||
3453 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64 ||
3454 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64_gfx1250)
3455 return {};
3456 return {VOPOps, nullptr};
3457 }
3458
3459 if (TSFlags & SIInstrFlags::DS)
3460 return {VDSOps, nullptr};
3461
3462 if (TSFlags & SIInstrFlags::FLAT)
3463 return {FLATOps, nullptr};
3464
3465 if (TSFlags & (SIInstrFlags::MUBUF | SIInstrFlags::MTBUF))
3466 return {BUFOps, nullptr};
3467
3468 if (TSFlags & SIInstrFlags::VIMAGE)
3469 return {VIMGOps, nullptr};
3470
3471 if (AMDGPU::isVOPD(Desc.getOpcode()))
3472 return {VOPDOpsX, VOPDOpsY};
3473
3474 assert(!(TSFlags & SIInstrFlags::MIMG));
3475
3476 if (TSFlags & (SIInstrFlags::VSAMPLE | SIInstrFlags::EXP))
3477 llvm_unreachable("Sample and export VGPR lowering is not implemented and"
3478 " these instructions are not expected on gfx1250");
3479
3480 return {};
3481}
3482
3483bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode) {
3484 uint64_t TSFlags = MII.get(Opcode).TSFlags;
3485
3486 if (TSFlags & SIInstrFlags::SMRD)
3487 return !getSMEMIsBuffer(Opcode);
3488 if (!(TSFlags & SIInstrFlags::FLAT))
3489 return false;
3490
3491 // Only SV and SVS modes are supported.
3492 if (TSFlags & SIInstrFlags::FlatScratch)
3493 return hasNamedOperand(Opcode, OpName::vaddr);
3494
3495 // Only GVS mode is supported.
3496 return hasNamedOperand(Opcode, OpName::vaddr) &&
3497 hasNamedOperand(Opcode, OpName::saddr);
3498
3499 return false;
3500}
3501
3503 for (auto OpName : {OpName::vdst, OpName::src0, OpName::src1, OpName::src2}) {
3504 int Idx = getNamedOperandIdx(OpDesc.getOpcode(), OpName);
3505 if (Idx == -1)
3506 continue;
3507
3508 if (OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64RegClassID ||
3509 OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64_Align2RegClassID)
3510 return true;
3511 }
3512
3513 return false;
3514}
3515
3516bool isDPALU_DPP32BitOpc(unsigned Opc) {
3517 switch (Opc) {
3518 case AMDGPU::V_MUL_LO_U32_e64:
3519 case AMDGPU::V_MUL_LO_U32_e64_dpp:
3520 case AMDGPU::V_MUL_LO_U32_e64_dpp_gfx1250:
3521 case AMDGPU::V_MUL_HI_U32_e64:
3522 case AMDGPU::V_MUL_HI_U32_e64_dpp:
3523 case AMDGPU::V_MUL_HI_U32_e64_dpp_gfx1250:
3524 case AMDGPU::V_MUL_HI_I32_e64:
3525 case AMDGPU::V_MUL_HI_I32_e64_dpp:
3526 case AMDGPU::V_MUL_HI_I32_e64_dpp_gfx1250:
3527 case AMDGPU::V_MAD_U32_e64:
3528 case AMDGPU::V_MAD_U32_e64_dpp:
3529 case AMDGPU::V_MAD_U32_e64_dpp_gfx1250:
3530 return true;
3531 default:
3532 return false;
3533 }
3534}
3535
3536bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST) {
3537 if (!ST.hasFeature(AMDGPU::FeatureDPALU_DPP))
3538 return false;
3539
3540 if (isDPALU_DPP32BitOpc(OpDesc.getOpcode()))
3541 return ST.hasFeature(AMDGPU::FeatureGFX1250Insts);
3542
3543 return hasAny64BitVGPROperands(OpDesc);
3544}
3545
3547 return ST.hasFeature(AMDGPU::FeatureAddressableLocalMemorySize327680) ? 256
3548 : 128;
3549}
3550
3551bool isPackedFP32Inst(unsigned Opc) {
3552 switch (Opc) {
3553 case AMDGPU::V_PK_ADD_F32:
3554 case AMDGPU::V_PK_ADD_F32_gfx12:
3555 case AMDGPU::V_PK_MUL_F32:
3556 case AMDGPU::V_PK_MUL_F32_gfx12:
3557 case AMDGPU::V_PK_FMA_F32:
3558 case AMDGPU::V_PK_FMA_F32_gfx12:
3559 return true;
3560 default:
3561 return false;
3562 }
3563}
3564
3565const std::array<unsigned, 3> &ClusterDimsAttr::getDims() const {
3566 assert(isFixedDims() && "expect kind to be FixedDims");
3567 return Dims;
3568}
3569
3570std::string ClusterDimsAttr::to_string() const {
3571 SmallString<10> Buffer;
3572 raw_svector_ostream OS(Buffer);
3573
3574 switch (getKind()) {
3575 case Kind::Unknown:
3576 return "";
3577 case Kind::NoCluster: {
3578 OS << EncoNoCluster << ',' << EncoNoCluster << ',' << EncoNoCluster;
3579 return Buffer.c_str();
3580 }
3581 case Kind::VariableDims: {
3582 OS << EncoVariableDims << ',' << EncoVariableDims << ','
3583 << EncoVariableDims;
3584 return Buffer.c_str();
3585 }
3586 case Kind::FixedDims: {
3587 OS << Dims[0] << ',' << Dims[1] << ',' << Dims[2];
3588 return Buffer.c_str();
3589 }
3590 }
3591 llvm_unreachable("Unknown ClusterDimsAttr kind");
3592}
3593
3595 std::optional<SmallVector<unsigned>> Attr =
3596 getIntegerVecAttribute(F, "amdgpu-cluster-dims", /*Size=*/3);
3598
3599 if (!Attr.has_value())
3600 AttrKind = Kind::Unknown;
3601 else if (all_of(*Attr, [](unsigned V) { return V == EncoNoCluster; }))
3602 AttrKind = Kind::NoCluster;
3603 else if (all_of(*Attr, [](unsigned V) { return V == EncoVariableDims; }))
3604 AttrKind = Kind::VariableDims;
3605
3606 ClusterDimsAttr A(AttrKind);
3607 if (AttrKind == Kind::FixedDims)
3608 A.Dims = {(*Attr)[0], (*Attr)[1], (*Attr)[2]};
3609
3610 return A;
3611}
3612
3613} // namespace AMDGPU
3614
3617 switch (S) {
3619 OS << "Unsupported";
3620 break;
3622 OS << "Any";
3623 break;
3625 OS << "Off";
3626 break;
3628 OS << "On";
3629 break;
3630 }
3631 return OS;
3632}
3633
3634} // namespace llvm
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static llvm::cl::opt< unsigned > DefaultAMDHSACodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden, llvm::cl::init(llvm::AMDGPU::AMDHSA_COV6), llvm::cl::desc("Set default AMDHSA Code Object Version (module flag " "or asm directive still take priority if present)"))
#define MAP_REG2REG
Provides AMDGPU specific target descriptions.
MC layer struct for AMDGPUMCKernelCodeT, provides MCExpr functionality where required.
@ AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define RegName(no)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
#define T
uint64_t High
if(PassOpts->AAPipeline)
#define S_00B848_MEM_ORDERED(x)
Definition SIDefines.h:1233
#define S_00B848_WGP_MODE(x)
Definition SIDefines.h:1230
#define S_00B848_FWD_PROGRESS(x)
Definition SIDefines.h:1236
unsigned unsigned DefaultVal
This file contains some functions that are useful when dealing with strings.
static const int BlockSize
Definition TarWriter.cpp:33
static ClusterDimsAttr get(const Function &F)
const std::array< unsigned, 3 > & getDims() const
TargetIDSetting getXnackSetting() const
AMDGPUTargetID(const MCSubtargetInfo &STI)
void setTargetIDFromTargetIDStream(StringRef TargetID)
TargetIDSetting getSramEccSetting() const
unsigned getIndexInParsedOperands(unsigned CompOprIdx) const
unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const
std::optional< unsigned > getInvalidCompOperandIndex(std::function< unsigned(unsigned, unsigned)> GetRegIdx, const MCRegisterInfo &MRI, bool SkipSrc=false, bool AllowSameVGPR=false, bool VOPD3=false) const
std::array< unsigned, Component::MAX_OPR_NUM > RegIndices
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
constexpr bool test(unsigned I) const
unsigned getAddressSpace() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
bool mayStore() const
Return true if this instruction could possibly modify memory.
bool mayLoad() const
Return true if this instruction could possibly read memory.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specified operand constraint if it is present.
unsigned getOpcode() const
Return the opcode number for this descriptor.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:90
MCRegisterClass - Base class of TargetRegisterClass.
unsigned getID() const
getID() - Return the register class ID number.
MCRegister getRegister(unsigned i) const
getRegister - Return the specified register in the class.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
const FeatureBitset & getFeatureBits() const
StringRef getCPU() const
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
const char * c_str()
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
Definition StringRef.h:854
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:472
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:273
Manages the enabling and disabling of subtarget specific features.
const std::vector< std::string > & getFeatures() const
Returns the vector of individual subtarget features.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:420
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:411
bool isAMDGCN() const
Tests whether the target is AMDGCN.
Definition Triple.h:904
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
A raw_ostream that writes to an SmallVector or SmallString.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
unsigned decodeFieldVaVcc(unsigned Encoded)
unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc)
unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt)
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc)
unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst)
unsigned decodeFieldSaSdst(unsigned Encoded)
unsigned decodeFieldVaSdst(unsigned Encoded)
unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc)
unsigned decodeFieldVaSsrc(unsigned Encoded)
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst)
const CustomOperandVal DepCtrInfo[]
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
unsigned decodeFieldVaVdst(unsigned Encoded)
unsigned decodeFieldHoldCnt(unsigned Encoded)
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI)
unsigned decodeFieldVmVsrc(unsigned Encoded)
unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst)
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI)
static constexpr ExpTgt ExpTgtInfo[]
bool getTgtName(unsigned Id, StringRef &Name, int &Index)
unsigned getTgtId(const StringRef Name)
constexpr uint32_t VersionMinor
HSA metadata minor version.
constexpr uint32_t VersionMajor
HSA metadata major version.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, std::optional< bool > EnableWavefrontSize32)
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI)
unsigned getArchVGPRAllocGranule()
For subtargets with a unified VGPR file and mixed ArchVGPR/AGPR usage, returns the allocation granule...
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getWavefrontSize(const MCSubtargetInfo *STI)
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize)
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI)
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed)
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI)
unsigned getLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getEUsPerCU(const MCSubtargetInfo *STI)
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI)
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU)
static TargetIDSetting getTargetIDSettingFromFeatureString(StringRef FeatureString)
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable)
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs)
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI)
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI)
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getAllocatedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, std::optional< bool > EnableWavefrontSize32)
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, AMDGPUSubtarget::Generation Gen)
static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs, unsigned Granule)
unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI)
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI)
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize)
StringLiteral const UfmtSymbolicGFX11[]
bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI)
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI)
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX10[]
StringLiteral const DfmtSymbolic[]
static StringLiteral const * getNfmtLookupTable(const MCSubtargetInfo &STI)
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI)
StringLiteral const NfmtSymbolicGFX10[]
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI)
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, const MCSubtargetInfo &STI)
StringRef getDfmtName(unsigned Id)
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt)
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI)
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI)
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX11[]
StringLiteral const NfmtSymbolicVI[]
StringLiteral const NfmtSymbolicSICI[]
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI)
int64_t getDfmt(const StringRef Name)
StringLiteral const UfmtSymbolicGFX10[]
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt)
uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId)
bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI)
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, uint16_t &StreamId, const MCSubtargetInfo &STI)
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, const MCSubtargetInfo &STI, bool Strict)
StringRef getMsgOpName(int64_t MsgId, uint64_t Encoding, const MCSubtargetInfo &STI)
Map from an encoding to the symbolic name for a sendmsg operation.
static uint64_t getMsgIdMask(const MCSubtargetInfo &STI)
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, bool Strict)
constexpr unsigned VOPD_VGPR_BANK_MASKS[]
constexpr unsigned COMPONENTS_NUM
constexpr unsigned VOPD3_VGPR_BANK_MASKS[]
bool isPackedFP32Inst(unsigned Opc)
bool isGCN3Encoding(const MCSubtargetInfo &STI)
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
bool isGFX10_BEncoding(const MCSubtargetInfo &STI)
bool isGFX10_GFX11(const MCSubtargetInfo &STI)
bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType)
LLVM_READONLY const MIMGInfo * getMIMGInfo(unsigned Opc)
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo)
Get size of register operand.
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt)
Decodes Vmcnt, Expcnt and Lgkmcnt from given Waitcnt for given isa Version, and writes decoded values...
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
bool isSGPR(MCRegister Reg, const MCRegisterInfo *TRI)
Is Reg - scalar register.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset)
Convert ByteOffset to dwords if the subtarget uses dword SMRD immediate offsets.
static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Storecnt)
MCRegister getMCReg(MCRegister Reg, const MCSubtargetInfo &STI)
If Reg is a pseudo reg, return the correct hardware register given STI otherwise return Reg.
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST)
bool isVOPCAsmOnly(unsigned Opc)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool getMTBUFHasSrsrc(unsigned Opc)
std::optional< int64_t > getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, int64_t ByteOffset)
bool getWMMAIsXDL(unsigned Opc)
uint8_t wmmaScaleF8F6F4FormatToNumRegs(unsigned Fmt)
static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr, int Size, unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
bool isGFX10Before1030(const MCSubtargetInfo &STI)
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo)
Does this operand support only inlinable literals?
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc)
const int OPR_ID_UNSUPPORTED
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isInlinableLiteralV2I16(uint32_t Literal)
int getMTBUFElements(unsigned Opc)
bool isHi16Reg(MCRegister Reg, const MCRegisterInfo &MRI)
static int encodeCustomOperandVal(const CustomOperandVal &Op, int64_t InputVal)
unsigned getTemporalHintType(const MCInstrDesc TID)
int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR)
bool isGFX10(const MCSubtargetInfo &STI)
const MCRegisterClass * getVGPRPhysRegClass(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool isInlinableLiteralV2BF16(uint32_t Literal)
unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV216(bool IsFloat, uint32_t Literal)
FPType getFPDstSelType(unsigned Opc)
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST)
For pre-GFX12 FLAT instructions the offset must be positive; MSB is ignored and forced to zero.
bool hasA16(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset, bool IsBuffer)
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool hasPackedD16(const MCSubtargetInfo &STI)
unsigned getStorecntBitMask(const IsaVersion &Version)
unsigned getLdsDwGranularity(const MCSubtargetInfo &ST)
bool isGFX940(const MCSubtargetInfo &STI)
bool isInlinableLiteralV2F16(uint32_t Literal)
bool isHsaAbi(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
const int OPR_VAL_INVALID
unsigned getVGPREncodingMSBs(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool getSMEMIsBuffer(unsigned Opc)
bool isGFX10_3_GFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
uint8_t mfmaScaleF8F6F4FormatToNumRegs(unsigned EncodingVal)
unsigned getVOPDOpcode(unsigned Opc, bool VOPD3)
bool isGroupSegment(const GlobalValue *GV)
LLVM_ABI IsaVersion getIsaVersion(StringRef GPU)
bool getMTBUFHasSoffset(unsigned Opc)
bool hasXNACK(const MCSubtargetInfo &STI)
bool isValid32BitLiteral(uint64_t Val, bool IsFP64)
static unsigned getCombinedCountBitMask(const IsaVersion &Version, bool IsStore)
CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3)
unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt)
Encodes Vmcnt, Expcnt and Lgkmcnt into Waitcnt for given isa Version.
bool isVOPC64DPP(unsigned Opc)
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements)
bool getMAIIsGFX940XDL(unsigned Opc)
bool isSI(const MCSubtargetInfo &STI)
unsigned getDefaultAMDHSACodeObjectVersion()
bool isReadOnlySegment(const GlobalValue *GV)
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
int getMUBUFBaseOpcode(unsigned Opc)
unsigned getAMDHSACodeObjectVersion(const Module &M)
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt)
unsigned getWaitcntBitMask(const IsaVersion &Version)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
bool getVOP3IsSingle(unsigned Opc)
bool isGFX9(const MCSubtargetInfo &STI)
bool isDPALU_DPP32BitOpc(unsigned Opc)
bool getVOP1IsSingle(unsigned Opc)
static bool isDwordAligned(uint64_t ByteOffset)
unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST)
bool isGFX10_AEncoding(const MCSubtargetInfo &STI)
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this a KImm operand?
bool getHasColorExport(const Function &F)
int getMTBUFBaseOpcode(unsigned Opc)
bool isGFX90A(const MCSubtargetInfo &STI)
unsigned getSamplecntBitMask(const IsaVersion &Version)
unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion)
bool hasSRAMECC(const MCSubtargetInfo &STI)
bool getHasDepthExport(const Function &F)
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI)
bool getMUBUFHasVAddr(unsigned Opc)
bool isTrue16Inst(unsigned Opc)
bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc)
std::pair< unsigned, unsigned > getVOPDComponents(unsigned VOPDOpcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
bool isGFX12(const MCSubtargetInfo &STI)
unsigned getInitialPSInputAddr(const Function &F)
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt)
bool isAsyncStore(unsigned Opc)
unsigned getDynamicVGPRBlockSize(const Function &F)
unsigned getKmcntBitMask(const IsaVersion &Version)
unsigned getVmcntBitMask(const IsaVersion &Version)
bool isNotGFX10Plus(const MCSubtargetInfo &STI)
bool hasMAIInsts(const MCSubtargetInfo &STI)
unsigned getBitOp2(unsigned Opc)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
unsigned getXcntBitMask(const IsaVersion &Version)
bool isGenericAtomic(unsigned Opc)
const MFMA_F8F6F4_Info * getWMMA_F8F6F4_WithFormatArgs(unsigned FmtA, unsigned FmtB, unsigned F8F8Opcode)
Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt)
bool isGFX8Plus(const MCSubtargetInfo &STI)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
unsigned getLgkmcntBitMask(const IsaVersion &Version)
bool getMUBUFTfe(unsigned Opc)
unsigned getBvhcntBitMask(const IsaVersion &Version)
bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST)
bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST)
bool hasMIMG_R128(const MCSubtargetInfo &STI)
bool hasGFX10_3Insts(const MCSubtargetInfo &STI)
std::pair< const AMDGPU::OpName *, const AMDGPU::OpName * > getVGPRLoweringOperandTables(const MCInstrDesc &Desc)
bool hasG16(const MCSubtargetInfo &STI)
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, const MIMGDimInfo *Dim, bool IsA16, bool IsG16Supported)
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements)
unsigned getExpcntBitMask(const IsaVersion &Version)
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI)
bool getMUBUFHasSoffset(unsigned Opc)
bool isNotGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
bool isInlineValue(unsigned Reg)
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this floating-point operand?
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion)
static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr, int Size, const MCSubtargetInfo &STI)
static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Loadcnt)
bool isGFX10Plus(const MCSubtargetInfo &STI)
static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size, unsigned Code, int &Idx, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
static bool isValidRegPrefix(char C)
std::optional< int64_t > getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset, bool IsBuffer, bool HasSOffset)
bool isGlobalSegment(const GlobalValue *GV)
@ OPERAND_KIMM32
Operand with 32-bit immediate that uses the constant bus.
Definition SIDefines.h:231
@ OPERAND_REG_INLINE_C_LAST
Definition SIDefines.h:254
@ OPERAND_REG_IMM_V2FP16
Definition SIDefines.h:209
@ OPERAND_REG_INLINE_C_FP64
Definition SIDefines.h:222
@ OPERAND_REG_INLINE_C_BF16
Definition SIDefines.h:219
@ OPERAND_REG_INLINE_C_V2BF16
Definition SIDefines.h:224
@ OPERAND_REG_IMM_V2INT16
Definition SIDefines.h:210
@ OPERAND_REG_IMM_BF16
Definition SIDefines.h:206
@ OPERAND_REG_IMM_INT32
Operands with register, 32-bit, or 64-bit immediate.
Definition SIDefines.h:201
@ OPERAND_REG_IMM_V2BF16
Definition SIDefines.h:208
@ OPERAND_REG_INLINE_AC_FIRST
Definition SIDefines.h:256
@ OPERAND_REG_IMM_FP16
Definition SIDefines.h:207
@ OPERAND_REG_IMM_NOINLINE_V2FP16
Definition SIDefines.h:211
@ OPERAND_REG_IMM_FP64
Definition SIDefines.h:205
@ OPERAND_REG_INLINE_C_V2FP16
Definition SIDefines.h:225
@ OPERAND_REG_INLINE_AC_INT32
Operands with an AccVGPR register or inline constant.
Definition SIDefines.h:236
@ OPERAND_REG_INLINE_AC_FP32
Definition SIDefines.h:237
@ OPERAND_REG_IMM_V2INT32
Definition SIDefines.h:212
@ OPERAND_REG_IMM_FP32
Definition SIDefines.h:204
@ OPERAND_REG_INLINE_C_FIRST
Definition SIDefines.h:253
@ OPERAND_REG_INLINE_C_FP32
Definition SIDefines.h:221
@ OPERAND_REG_INLINE_AC_LAST
Definition SIDefines.h:257
@ OPERAND_REG_INLINE_C_INT32
Definition SIDefines.h:217
@ OPERAND_REG_INLINE_C_V2INT16
Definition SIDefines.h:223
@ OPERAND_REG_IMM_V2FP32
Definition SIDefines.h:213
@ OPERAND_REG_INLINE_AC_FP64
Definition SIDefines.h:238
@ OPERAND_REG_INLINE_C_FP16
Definition SIDefines.h:220
@ OPERAND_INLINE_SPLIT_BARRIER_INT32
Definition SIDefines.h:228
void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &KernelCode, const MCSubtargetInfo *STI)
bool isNotGFX9Plus(const MCSubtargetInfo &STI)
bool hasGDS(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset)
bool isGFX9Plus(const MCSubtargetInfo &STI)
bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI)
MCPhysReg getVGPRWithMSBs(MCPhysReg Reg, unsigned MSBs, const MCRegisterInfo &MRI)
If Reg is a low VGPR return a corresponding high VGPR with MSBs set.
const int OPR_ID_DUPLICATE
bool isVOPD(unsigned Opc)
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY)
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt)
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt)
bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc)
Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
static unsigned encodeStorecntDscnt(const IsaVersion &Version, unsigned Storecnt, unsigned Dscnt)
bool isGFX1250(const MCSubtargetInfo &STI)
int getMCOpcode(uint16_t Opcode, unsigned Gen)
const MIMGBaseOpcodeInfo * getMIMGBaseOpcode(unsigned Opc)
bool isVI(const MCSubtargetInfo &STI)
int64_t encode32BitLiteral(int64_t Imm, OperandType Type)
bool isTensorStore(unsigned Opc)
bool getMUBUFIsBufferInv(unsigned Opc)
bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode)
MCRegister mc2PseudoReg(MCRegister Reg)
Convert hardware register Reg to a pseudo register.
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
static int encodeCustomOperand(const CustomOperandVal *Opr, int Size, const StringRef Name, int64_t InputVal, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned hasKernargPreload(const MCSubtargetInfo &STI)
bool supportsWGP(const MCSubtargetInfo &STI)
bool isMAC(unsigned Opc)
bool isCI(const MCSubtargetInfo &STI)
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt)
bool getVOP2IsSingle(unsigned Opc)
bool getMAIIsDGEMM(unsigned Opc)
Returns true if MAI operation is a double precision GEMM.
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
const int OPR_ID_UNKNOWN
unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion)
SmallVector< unsigned > getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size, unsigned DefaultVal)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
bool isNotGFX12Plus(const MCSubtargetInfo &STI)
bool getMTBUFHasVAddr(unsigned Opc)
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt)
uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion)
std::pair< unsigned, unsigned > getIntegerPairAttribute(const Function &F, StringRef Name, std::pair< unsigned, unsigned > Default, bool OnlyFirstRequired)
unsigned getLoadcntBitMask(const IsaVersion &Version)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
bool hasVOPD(const MCSubtargetInfo &STI)
int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily, bool VOPD3)
static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Dscnt)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const MFMA_F8F6F4_Info * getMFMA_F8F6F4_WithFormatArgs(unsigned CBSZ, unsigned BLGP, unsigned F8F8Opcode)
unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion)
bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI)
bool isGFX9_GFX10(const MCSubtargetInfo &STI)
int getMUBUFElements(unsigned Opc)
static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt, unsigned Dscnt)
const GcnBufferFormatInfo * getGcnBufferFormatInfo(uint8_t BitsPerComp, uint8_t NumComponents, uint8_t NumFormat, const MCSubtargetInfo &STI)
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc)
bool isPermlane16(unsigned Opc)
bool getMUBUFHasSrsrc(unsigned Opc)
unsigned getDscntBitMask(const IsaVersion &Version)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ ELFABIVERSION_AMDGPU_HSA_V4
Definition ELF.h:384
@ ELFABIVERSION_AMDGPU_HSA_V5
Definition ELF.h:385
@ ELFABIVERSION_AMDGPU_HSA_V6
Definition ELF.h:386
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition Error.h:198
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:557
std::string utostr(uint64_t X, bool isNeg=false)
Op::Description Desc
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition MathExtras.h:159
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:164
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
To bit_cast(const From &from) noexcept
Definition bit.h:90
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
@ AlwaysUniform
The result values are always uniform.
Definition Uniformity.h:23
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
AMD Kernel Code Object (amd_kernel_code_t).
Instruction set architecture version.
Represents the counter values to wait for in an s_waitcnt instruction.