LLVM 22.0.0git
AMDGPUBaseInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "AMDGPUBaseInfo.h"
10#include "AMDGPU.h"
11#include "AMDGPUAsmUtils.h"
12#include "AMDKernelCodeT.h"
17#include "llvm/IR/Attributes.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/IR/IntrinsicsAMDGPU.h"
22#include "llvm/IR/IntrinsicsR600.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Metadata.h"
25#include "llvm/MC/MCInstrInfo.h"
30#include <optional>
31
32#define GET_INSTRINFO_NAMED_OPS
33#define GET_INSTRMAP_INFO
34#include "AMDGPUGenInstrInfo.inc"
35
37 "amdhsa-code-object-version", llvm::cl::Hidden,
39 llvm::cl::desc("Set default AMDHSA Code Object Version (module flag "
40 "or asm directive still take priority if present)"));
41
42namespace {
43
44/// \returns Bit mask for given bit \p Shift and bit \p Width.
45unsigned getBitMask(unsigned Shift, unsigned Width) {
46 return ((1 << Width) - 1) << Shift;
47}
48
49/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
50///
51/// \returns Packed \p Dst.
52unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
53 unsigned Mask = getBitMask(Shift, Width);
54 return ((Src << Shift) & Mask) | (Dst & ~Mask);
55}
56
57/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
58///
59/// \returns Unpacked bits.
60unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
61 return (Src & getBitMask(Shift, Width)) >> Shift;
62}
63
64/// \returns Vmcnt bit shift (lower bits).
65unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
66 return VersionMajor >= 11 ? 10 : 0;
67}
68
69/// \returns Vmcnt bit width (lower bits).
70unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
71 return VersionMajor >= 11 ? 6 : 4;
72}
73
74/// \returns Expcnt bit shift.
75unsigned getExpcntBitShift(unsigned VersionMajor) {
76 return VersionMajor >= 11 ? 0 : 4;
77}
78
79/// \returns Expcnt bit width.
80unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
81
82/// \returns Lgkmcnt bit shift.
83unsigned getLgkmcntBitShift(unsigned VersionMajor) {
84 return VersionMajor >= 11 ? 4 : 8;
85}
86
87/// \returns Lgkmcnt bit width.
88unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89 return VersionMajor >= 10 ? 6 : 4;
90}
91
92/// \returns Vmcnt bit shift (higher bits).
93unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
94
95/// \returns Vmcnt bit width (higher bits).
96unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
97 return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
98}
99
100/// \returns Loadcnt bit width
101unsigned getLoadcntBitWidth(unsigned VersionMajor) {
102 return VersionMajor >= 12 ? 6 : 0;
103}
104
105/// \returns Samplecnt bit width.
106unsigned getSamplecntBitWidth(unsigned VersionMajor) {
107 return VersionMajor >= 12 ? 6 : 0;
108}
109
110/// \returns Bvhcnt bit width.
111unsigned getBvhcntBitWidth(unsigned VersionMajor) {
112 return VersionMajor >= 12 ? 3 : 0;
113}
114
115/// \returns Dscnt bit width.
116unsigned getDscntBitWidth(unsigned VersionMajor) {
117 return VersionMajor >= 12 ? 6 : 0;
118}
119
120/// \returns Dscnt bit shift in combined S_WAIT instructions.
121unsigned getDscntBitShift(unsigned VersionMajor) { return 0; }
122
123/// \returns Storecnt or Vscnt bit width, depending on VersionMajor.
124unsigned getStorecntBitWidth(unsigned VersionMajor) {
125 return VersionMajor >= 10 ? 6 : 0;
126}
127
128/// \returns Kmcnt bit width.
129unsigned getKmcntBitWidth(unsigned VersionMajor) {
130 return VersionMajor >= 12 ? 5 : 0;
131}
132
133/// \returns Xcnt bit width.
134unsigned getXcntBitWidth(unsigned VersionMajor, unsigned VersionMinor) {
135 return VersionMajor == 12 && VersionMinor == 5 ? 6 : 0;
136}
137
138/// \returns shift for Loadcnt/Storecnt in combined S_WAIT instructions.
139unsigned getLoadcntStorecntBitShift(unsigned VersionMajor) {
140 return VersionMajor >= 12 ? 8 : 0;
141}
142
143/// \returns VaSdst bit width
144inline unsigned getVaSdstBitWidth() { return 3; }
145
146/// \returns VaSdst bit shift
147inline unsigned getVaSdstBitShift() { return 9; }
148
149/// \returns VmVsrc bit width
150inline unsigned getVmVsrcBitWidth() { return 3; }
151
152/// \returns VmVsrc bit shift
153inline unsigned getVmVsrcBitShift() { return 2; }
154
155/// \returns VaVdst bit width
156inline unsigned getVaVdstBitWidth() { return 4; }
157
158/// \returns VaVdst bit shift
159inline unsigned getVaVdstBitShift() { return 12; }
160
161/// \returns VaVcc bit width
162inline unsigned getVaVccBitWidth() { return 1; }
163
164/// \returns VaVcc bit shift
165inline unsigned getVaVccBitShift() { return 1; }
166
167/// \returns SaSdst bit width
168inline unsigned getSaSdstBitWidth() { return 1; }
169
170/// \returns SaSdst bit shift
171inline unsigned getSaSdstBitShift() { return 0; }
172
173/// \returns VaSsrc width
174inline unsigned getVaSsrcBitWidth() { return 1; }
175
176/// \returns VaSsrc bit shift
177inline unsigned getVaSsrcBitShift() { return 8; }
178
179/// \returns HoldCnt bit shift
180inline unsigned getHoldCntWidth() { return 1; }
181
182/// \returns HoldCnt bit shift
183inline unsigned getHoldCntBitShift() { return 7; }
184
185} // end anonymous namespace
186
187namespace llvm {
188
189namespace AMDGPU {
190
191/// \returns true if the target supports signed immediate offset for SMRD
192/// instructions.
194 return isGFX9Plus(ST);
195}
196
197/// \returns True if \p STI is AMDHSA.
198bool isHsaAbi(const MCSubtargetInfo &STI) {
199 return STI.getTargetTriple().getOS() == Triple::AMDHSA;
200}
201
204 M.getModuleFlag("amdhsa_code_object_version"))) {
205 return (unsigned)Ver->getZExtValue() / 100;
206 }
207
209}
210
214
215unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion) {
216 switch (ABIVersion) {
218 return 4;
220 return 5;
222 return 6;
223 default:
225 }
226}
227
228uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion) {
229 if (T.getOS() != Triple::AMDHSA)
230 return 0;
231
232 switch (CodeObjectVersion) {
233 case 4:
235 case 5:
237 case 6:
239 default:
240 report_fatal_error("Unsupported AMDHSA Code Object Version " +
241 Twine(CodeObjectVersion));
242 }
243}
244
245unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
246 switch (CodeObjectVersion) {
247 case AMDHSA_COV4:
248 return 48;
249 case AMDHSA_COV5:
250 case AMDHSA_COV6:
251 default:
253 }
254}
255
256// FIXME: All such magic numbers about the ABI should be in a
257// central TD file.
258unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
259 switch (CodeObjectVersion) {
260 case AMDHSA_COV4:
261 return 24;
262 case AMDHSA_COV5:
263 case AMDHSA_COV6:
264 default:
266 }
267}
268
269unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
270 switch (CodeObjectVersion) {
271 case AMDHSA_COV4:
272 return 32;
273 case AMDHSA_COV5:
274 case AMDHSA_COV6:
275 default:
277 }
278}
279
280unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
281 switch (CodeObjectVersion) {
282 case AMDHSA_COV4:
283 return 40;
284 case AMDHSA_COV5:
285 case AMDHSA_COV6:
286 default:
288 }
289}
290
291#define GET_MIMGBaseOpcodesTable_IMPL
292#define GET_MIMGDimInfoTable_IMPL
293#define GET_MIMGInfoTable_IMPL
294#define GET_MIMGLZMappingTable_IMPL
295#define GET_MIMGMIPMappingTable_IMPL
296#define GET_MIMGBiasMappingTable_IMPL
297#define GET_MIMGOffsetMappingTable_IMPL
298#define GET_MIMGG16MappingTable_IMPL
299#define GET_MAIInstInfoTable_IMPL
300#define GET_WMMAInstInfoTable_IMPL
301#include "AMDGPUGenSearchableTables.inc"
302
303int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
304 unsigned VDataDwords, unsigned VAddrDwords) {
305 const MIMGInfo *Info =
306 getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, VDataDwords, VAddrDwords);
307 return Info ? Info->Opcode : -1;
308}
309
311 const MIMGInfo *Info = getMIMGInfo(Opc);
312 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
313}
314
315int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
316 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
317 const MIMGInfo *NewInfo =
318 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
319 NewChannels, OrigInfo->VAddrDwords);
320 return NewInfo ? NewInfo->Opcode : -1;
321}
322
323unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
324 const MIMGDimInfo *Dim, bool IsA16,
325 bool IsG16Supported) {
326 unsigned AddrWords = BaseOpcode->NumExtraArgs;
327 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
328 (BaseOpcode->LodOrClampOrMip ? 1 : 0);
329 if (IsA16)
330 AddrWords += divideCeil(AddrComponents, 2);
331 else
332 AddrWords += AddrComponents;
333
334 // Note: For subtargets that support A16 but not G16, enabling A16 also
335 // enables 16 bit gradients.
336 // For subtargets that support A16 (operand) and G16 (done with a different
337 // instruction encoding), they are independent.
338
339 if (BaseOpcode->Gradients) {
340 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
341 // There are two gradients per coordinate, we pack them separately.
342 // For the 3d case,
343 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
344 AddrWords += alignTo<2>(Dim->NumGradients / 2);
345 else
346 AddrWords += Dim->NumGradients;
347 }
348 return AddrWords;
349}
350
361
370
375
380
384
388
392
399
407
412
413#define GET_FP4FP8DstByteSelTable_DECL
414#define GET_FP4FP8DstByteSelTable_IMPL
415
420
426
427#define GET_MTBUFInfoTable_DECL
428#define GET_MTBUFInfoTable_IMPL
429#define GET_MUBUFInfoTable_DECL
430#define GET_MUBUFInfoTable_IMPL
431#define GET_SMInfoTable_DECL
432#define GET_SMInfoTable_IMPL
433#define GET_VOP1InfoTable_DECL
434#define GET_VOP1InfoTable_IMPL
435#define GET_VOP2InfoTable_DECL
436#define GET_VOP2InfoTable_IMPL
437#define GET_VOP3InfoTable_DECL
438#define GET_VOP3InfoTable_IMPL
439#define GET_VOPC64DPPTable_DECL
440#define GET_VOPC64DPPTable_IMPL
441#define GET_VOPC64DPP8Table_DECL
442#define GET_VOPC64DPP8Table_IMPL
443#define GET_VOPCAsmOnlyInfoTable_DECL
444#define GET_VOPCAsmOnlyInfoTable_IMPL
445#define GET_VOP3CAsmOnlyInfoTable_DECL
446#define GET_VOP3CAsmOnlyInfoTable_IMPL
447#define GET_VOPDComponentTable_DECL
448#define GET_VOPDComponentTable_IMPL
449#define GET_VOPDPairs_DECL
450#define GET_VOPDPairs_IMPL
451#define GET_VOPTrue16Table_DECL
452#define GET_VOPTrue16Table_IMPL
453#define GET_True16D16Table_IMPL
454#define GET_WMMAOpcode2AddrMappingTable_DECL
455#define GET_WMMAOpcode2AddrMappingTable_IMPL
456#define GET_WMMAOpcode3AddrMappingTable_DECL
457#define GET_WMMAOpcode3AddrMappingTable_IMPL
458#define GET_getMFMA_F8F6F4_WithSize_DECL
459#define GET_getMFMA_F8F6F4_WithSize_IMPL
460#define GET_isMFMA_F8F6F4Table_IMPL
461#define GET_isCvtScaleF32_F32F16ToF8F4Table_IMPL
462
463#include "AMDGPUGenSearchableTables.inc"
464
465int getMTBUFBaseOpcode(unsigned Opc) {
466 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
467 return Info ? Info->BaseOpcode : -1;
468}
469
470int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
471 const MTBUFInfo *Info =
472 getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
473 return Info ? Info->Opcode : -1;
474}
475
476int getMTBUFElements(unsigned Opc) {
477 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
478 return Info ? Info->elements : 0;
479}
480
481bool getMTBUFHasVAddr(unsigned Opc) {
482 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
483 return Info && Info->has_vaddr;
484}
485
486bool getMTBUFHasSrsrc(unsigned Opc) {
487 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
488 return Info && Info->has_srsrc;
489}
490
491bool getMTBUFHasSoffset(unsigned Opc) {
492 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
493 return Info && Info->has_soffset;
494}
495
496int getMUBUFBaseOpcode(unsigned Opc) {
497 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
498 return Info ? Info->BaseOpcode : -1;
499}
500
501int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
502 const MUBUFInfo *Info =
503 getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
504 return Info ? Info->Opcode : -1;
505}
506
507int getMUBUFElements(unsigned Opc) {
508 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
509 return Info ? Info->elements : 0;
510}
511
512bool getMUBUFHasVAddr(unsigned Opc) {
513 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
514 return Info && Info->has_vaddr;
515}
516
517bool getMUBUFHasSrsrc(unsigned Opc) {
518 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
519 return Info && Info->has_srsrc;
520}
521
522bool getMUBUFHasSoffset(unsigned Opc) {
523 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
524 return Info && Info->has_soffset;
525}
526
527bool getMUBUFIsBufferInv(unsigned Opc) {
528 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
529 return Info && Info->IsBufferInv;
530}
531
532bool getMUBUFTfe(unsigned Opc) {
533 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
534 return Info && Info->tfe;
535}
536
537bool getSMEMIsBuffer(unsigned Opc) {
538 const SMInfo *Info = getSMEMOpcodeHelper(Opc);
539 return Info && Info->IsBuffer;
540}
541
542bool getVOP1IsSingle(unsigned Opc) {
543 const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
544 return !Info || Info->IsSingle;
545}
546
547bool getVOP2IsSingle(unsigned Opc) {
548 const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
549 return !Info || Info->IsSingle;
550}
551
552bool getVOP3IsSingle(unsigned Opc) {
553 const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
554 return !Info || Info->IsSingle;
555}
556
557bool isVOPC64DPP(unsigned Opc) {
558 return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
559}
560
561bool isVOPCAsmOnly(unsigned Opc) { return isVOPCAsmOnlyOpcodeHelper(Opc); }
562
563bool getMAIIsDGEMM(unsigned Opc) {
564 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
565 return Info && Info->is_dgemm;
566}
567
568bool getMAIIsGFX940XDL(unsigned Opc) {
569 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
570 return Info && Info->is_gfx940_xdl;
571}
572
573bool getWMMAIsXDL(unsigned Opc) {
574 const WMMAInstInfo *Info = getWMMAInstInfoHelper(Opc);
575 return Info ? Info->is_wmma_xdl : false;
576}
577
579 switch (EncodingVal) {
582 return 6;
584 return 4;
587 default:
588 return 8;
589 }
590
591 llvm_unreachable("covered switch over mfma scale formats");
592}
593
595 unsigned BLGP,
596 unsigned F8F8Opcode) {
597 uint8_t SrcANumRegs = mfmaScaleF8F6F4FormatToNumRegs(CBSZ);
598 uint8_t SrcBNumRegs = mfmaScaleF8F6F4FormatToNumRegs(BLGP);
599 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
600}
601
603 switch (Fmt) {
606 return 16;
609 return 12;
611 return 8;
612 }
613
614 llvm_unreachable("covered switch over wmma scale formats");
615}
616
618 unsigned FmtB,
619 unsigned F8F8Opcode) {
620 uint8_t SrcANumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtA);
621 uint8_t SrcBNumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtB);
622 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
623}
624
626 if (ST.hasFeature(AMDGPU::FeatureGFX1250Insts))
628 if (ST.hasFeature(AMDGPU::FeatureGFX12Insts))
630 if (ST.hasFeature(AMDGPU::FeatureGFX11Insts))
632 llvm_unreachable("Subtarget generation does not support VOPD!");
633}
634
635CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3) {
636 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
637 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
638 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
639 if (Info) {
640 // Check that Opc can be used as VOPDY for this encoding. V_MOV_B32 as a
641 // VOPDX is just a placeholder here, it is supported on all encodings.
642 // TODO: This can be optimized by creating tables of supported VOPDY
643 // opcodes per encoding.
644 unsigned VOPDMov = AMDGPU::getVOPDOpcode(AMDGPU::V_MOV_B32_e32, VOPD3);
645 bool CanBeVOPDY = getVOPDFull(VOPDMov, AMDGPU::getVOPDOpcode(Opc, VOPD3),
646 EncodingFamily, VOPD3) != -1;
647 return {VOPD3 ? Info->CanBeVOPD3X : Info->CanBeVOPDX, CanBeVOPDY};
648 }
649
650 return {false, false};
651}
652
653unsigned getVOPDOpcode(unsigned Opc, bool VOPD3) {
654 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
655 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
656 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
657 return Info ? Info->VOPDOp : ~0u;
658}
659
660bool isVOPD(unsigned Opc) {
661 return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
662}
663
664bool isMAC(unsigned Opc) {
665 return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
666 Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
667 Opc == AMDGPU::V_MAC_F32_e64_vi ||
668 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
669 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
670 Opc == AMDGPU::V_MAC_F16_e64_vi ||
671 Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
672 Opc == AMDGPU::V_FMAC_F64_e64_gfx12 ||
673 Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
674 Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
675 Opc == AMDGPU::V_FMAC_F32_e64_gfx12 ||
676 Opc == AMDGPU::V_FMAC_F32_e64_vi ||
677 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
678 Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
679 Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
680 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
681 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx11 ||
682 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx12 ||
683 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx12 ||
684 Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
685 Opc == AMDGPU::V_DOT2C_F32_BF16_e64_vi ||
686 Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
687 Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
688 Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
689}
690
691bool isPermlane16(unsigned Opc) {
692 return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
693 Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
694 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
695 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11 ||
696 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx12 ||
697 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx12 ||
698 Opc == AMDGPU::V_PERMLANE16_VAR_B32_e64_gfx12 ||
699 Opc == AMDGPU::V_PERMLANEX16_VAR_B32_e64_gfx12;
700}
701
703 return Opc == AMDGPU::V_CVT_F32_BF8_e64_gfx12 ||
704 Opc == AMDGPU::V_CVT_F32_FP8_e64_gfx12 ||
705 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp_gfx12 ||
706 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp_gfx12 ||
707 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp8_gfx12 ||
708 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp8_gfx12 ||
709 Opc == AMDGPU::V_CVT_PK_F32_BF8_fake16_e64_gfx12 ||
710 Opc == AMDGPU::V_CVT_PK_F32_FP8_fake16_e64_gfx12 ||
711 Opc == AMDGPU::V_CVT_PK_F32_BF8_t16_e64_gfx12 ||
712 Opc == AMDGPU::V_CVT_PK_F32_FP8_t16_e64_gfx12;
713}
714
715bool isGenericAtomic(unsigned Opc) {
716 return Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP ||
717 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD ||
718 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB ||
719 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN ||
720 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN ||
721 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX ||
722 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX ||
723 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND ||
724 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR ||
725 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR ||
726 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC ||
727 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC ||
728 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD ||
729 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN ||
730 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX ||
731 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP ||
732 Opc == AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG;
733}
734
735bool isAsyncStore(unsigned Opc) {
736 return Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_gfx1250 ||
737 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_gfx1250 ||
738 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_gfx1250 ||
739 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_gfx1250 ||
740 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_SADDR_gfx1250 ||
741 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_SADDR_gfx1250 ||
742 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_SADDR_gfx1250 ||
743 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_SADDR_gfx1250;
744}
745
746bool isTensorStore(unsigned Opc) {
747 return Opc == TENSOR_STORE_FROM_LDS_gfx1250 ||
748 Opc == TENSOR_STORE_FROM_LDS_D2_gfx1250;
749}
750
751unsigned getTemporalHintType(const MCInstrDesc TID) {
754 unsigned Opc = TID.getOpcode();
755 // Async and Tensor store should have the temporal hint type of TH_TYPE_STORE
756 if (TID.mayStore() &&
757 (isAsyncStore(Opc) || isTensorStore(Opc) || !TID.mayLoad()))
758 return CPol::TH_TYPE_STORE;
759
760 // This will default to returning TH_TYPE_LOAD when neither MayStore nor
761 // MayLoad flag is present which is the case with instructions like
762 // image_get_resinfo.
763 return CPol::TH_TYPE_LOAD;
764}
765
766bool isTrue16Inst(unsigned Opc) {
767 const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
768 return Info && Info->IsTrue16;
769}
770
772 const FP4FP8DstByteSelInfo *Info = getFP4FP8DstByteSelHelper(Opc);
773 if (!Info)
774 return FPType::None;
775 if (Info->HasFP8DstByteSel)
776 return FPType::FP8;
777 if (Info->HasFP4DstByteSel)
778 return FPType::FP4;
779
780 return FPType::None;
781}
782
783unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
784 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
785 return Info ? Info->Opcode3Addr : ~0u;
786}
787
788unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
789 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
790 return Info ? Info->Opcode2Addr : ~0u;
791}
792
793// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
794// header files, so we need to wrap it in a function that takes unsigned
795// instead.
796int getMCOpcode(uint16_t Opcode, unsigned Gen) {
797 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
798}
799
800unsigned getBitOp2(unsigned Opc) {
801 switch (Opc) {
802 default:
803 return 0;
804 case AMDGPU::V_AND_B32_e32:
805 return 0x40;
806 case AMDGPU::V_OR_B32_e32:
807 return 0x54;
808 case AMDGPU::V_XOR_B32_e32:
809 return 0x14;
810 case AMDGPU::V_XNOR_B32_e32:
811 return 0x41;
812 }
813}
814
815int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily,
816 bool VOPD3) {
817 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(OpY) : 0;
818 OpY = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : OpY;
819 const VOPDInfo *Info =
820 getVOPDInfoFromComponentOpcodes(OpX, OpY, EncodingFamily, VOPD3);
821 return Info ? Info->Opcode : -1;
822}
823
824std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
825 const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
826 assert(Info);
827 const auto *OpX = getVOPDBaseFromComponent(Info->OpX);
828 const auto *OpY = getVOPDBaseFromComponent(Info->OpY);
829 assert(OpX && OpY);
830 return {OpX->BaseVOP, OpY->BaseVOP};
831}
832
833namespace VOPD {
834
835ComponentProps::ComponentProps(const MCInstrDesc &OpDesc, bool VOP3Layout) {
837
840 auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
841 assert(TiedIdx == -1 || TiedIdx == Component::DST);
842 HasSrc2Acc = TiedIdx != -1;
843 Opcode = OpDesc.getOpcode();
844
845 IsVOP3 = VOP3Layout || (OpDesc.TSFlags & SIInstrFlags::VOP3);
846 SrcOperandsNum = AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2) ? 3
847 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::imm) ? 3
848 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src1) ? 2
849 : 1;
850 assert(SrcOperandsNum <= Component::MAX_SRC_NUM);
851
852 if (Opcode == AMDGPU::V_CNDMASK_B32_e32 ||
853 Opcode == AMDGPU::V_CNDMASK_B32_e64) {
854 // CNDMASK is an awkward exception, it has FP modifiers, but not FP
855 // operands.
856 NumVOPD3Mods = 2;
857 if (IsVOP3)
858 SrcOperandsNum = 3;
859 } else if (isSISrcFPOperand(OpDesc,
860 getNamedOperandIdx(Opcode, OpName::src0))) {
861 // All FP VOPD instructions have Neg modifiers for all operands except
862 // for tied src2.
863 NumVOPD3Mods = SrcOperandsNum;
864 if (HasSrc2Acc)
865 --NumVOPD3Mods;
866 }
867
868 if (OpDesc.TSFlags & SIInstrFlags::VOP3)
869 return;
870
871 auto OperandsNum = OpDesc.getNumOperands();
872 unsigned CompOprIdx;
873 for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
874 if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
875 MandatoryLiteralIdx = CompOprIdx;
876 break;
877 }
878 }
879}
880
882 return getNamedOperandIdx(Opcode, OpName::bitop3);
883}
884
885unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
886 assert(CompOprIdx < Component::MAX_OPR_NUM);
887
888 if (CompOprIdx == Component::DST)
890
891 auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
892 if (CompSrcIdx < getCompParsedSrcOperandsNum())
893 return getIndexOfSrcInParsedOperands(CompSrcIdx);
894
895 // The specified operand does not exist.
896 return 0;
897}
898
900 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
901 const MCRegisterInfo &MRI, bool SkipSrc, bool AllowSameVGPR,
902 bool VOPD3) const {
903
904 auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx,
905 CompInfo[ComponentIndex::X].isVOP3());
906 auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx,
907 CompInfo[ComponentIndex::Y].isVOP3());
908
909 const auto banksOverlap = [&MRI](MCRegister X, MCRegister Y,
910 unsigned BanksMask) -> bool {
911 MCRegister BaseX = MRI.getSubReg(X, AMDGPU::sub0);
912 MCRegister BaseY = MRI.getSubReg(Y, AMDGPU::sub0);
913 if (!BaseX)
914 BaseX = X;
915 if (!BaseY)
916 BaseY = Y;
917 if ((BaseX & BanksMask) == (BaseY & BanksMask))
918 return true;
919 if (BaseX != X /* This is 64-bit register */ &&
920 ((BaseX + 1) & BanksMask) == (BaseY & BanksMask))
921 return true;
922 if (BaseY != Y && (BaseX & BanksMask) == ((BaseY + 1) & BanksMask))
923 return true;
924
925 // If both are 64-bit bank conflict will be detected yet while checking
926 // the first subreg.
927 return false;
928 };
929
930 unsigned CompOprIdx;
931 for (CompOprIdx = 0; CompOprIdx < Component::MAX_OPR_NUM; ++CompOprIdx) {
932 unsigned BanksMasks = VOPD3 ? VOPD3_VGPR_BANK_MASKS[CompOprIdx]
933 : VOPD_VGPR_BANK_MASKS[CompOprIdx];
934 if (!OpXRegs[CompOprIdx] || !OpYRegs[CompOprIdx])
935 continue;
936
937 if (getVGPREncodingMSBs(OpXRegs[CompOprIdx], MRI) !=
938 getVGPREncodingMSBs(OpYRegs[CompOprIdx], MRI))
939 return CompOprIdx;
940
941 if (SkipSrc && CompOprIdx >= Component::DST_NUM)
942 continue;
943
944 if (CompOprIdx < Component::DST_NUM) {
945 // Even if we do not check vdst parity, vdst operands still shall not
946 // overlap.
947 if (MRI.regsOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx]))
948 return CompOprIdx;
949 if (VOPD3) // No need to check dst parity.
950 continue;
951 }
952
953 if (banksOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx], BanksMasks) &&
954 (!AllowSameVGPR || CompOprIdx < Component::DST_NUM ||
955 OpXRegs[CompOprIdx] != OpYRegs[CompOprIdx]))
956 return CompOprIdx;
957 }
958
959 return {};
960}
961
962// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
963// by the specified component. If an operand is unused
964// or is not a VGPR, the corresponding value is 0.
965//
966// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
967// for the specified component and MC operand. The callback must return 0
968// if the operand is not a register or not a VGPR.
970InstInfo::getRegIndices(unsigned CompIdx,
971 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
972 bool VOPD3) const {
973 assert(CompIdx < COMPONENTS_NUM);
974
975 const auto &Comp = CompInfo[CompIdx];
977
978 RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());
979
980 for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
981 unsigned CompSrcIdx = CompOprIdx - DST_NUM;
982 RegIndices[CompOprIdx] =
983 Comp.hasRegSrcOperand(CompSrcIdx)
984 ? GetRegIdx(CompIdx,
985 Comp.getIndexOfSrcInMCOperands(CompSrcIdx, VOPD3))
986 : 0;
987 }
988 return RegIndices;
989}
990
991} // namespace VOPD
992
994 return VOPD::InstInfo(OpX, OpY);
995}
996
997VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode,
998 const MCInstrInfo *InstrInfo) {
999 auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
1000 const auto &OpXDesc = InstrInfo->get(OpX);
1001 const auto &OpYDesc = InstrInfo->get(OpY);
1002 bool VOPD3 = InstrInfo->get(VOPDOpcode).TSFlags & SIInstrFlags::VOPD3;
1004 VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo, VOPD3);
1005 return VOPD::InstInfo(OpXInfo, OpYInfo);
1006}
1007
1008namespace IsaInfo {
1009
1011 : STI(STI), XnackSetting(TargetIDSetting::Any),
1012 SramEccSetting(TargetIDSetting::Any) {
1013 if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
1014 XnackSetting = TargetIDSetting::Unsupported;
1015 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
1016 SramEccSetting = TargetIDSetting::Unsupported;
1017}
1018
1020 // Check if xnack or sramecc is explicitly enabled or disabled. In the
1021 // absence of the target features we assume we must generate code that can run
1022 // in any environment.
1023 SubtargetFeatures Features(FS);
1024 std::optional<bool> XnackRequested;
1025 std::optional<bool> SramEccRequested;
1026
1027 for (const std::string &Feature : Features.getFeatures()) {
1028 if (Feature == "+xnack")
1029 XnackRequested = true;
1030 else if (Feature == "-xnack")
1031 XnackRequested = false;
1032 else if (Feature == "+sramecc")
1033 SramEccRequested = true;
1034 else if (Feature == "-sramecc")
1035 SramEccRequested = false;
1036 }
1037
1038 bool XnackSupported = isXnackSupported();
1039 bool SramEccSupported = isSramEccSupported();
1040
1041 if (XnackRequested) {
1042 if (XnackSupported) {
1043 XnackSetting =
1044 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1045 } else {
1046 // If a specific xnack setting was requested and this GPU does not support
1047 // xnack emit a warning. Setting will remain set to "Unsupported".
1048 if (*XnackRequested) {
1049 errs() << "warning: xnack 'On' was requested for a processor that does "
1050 "not support it!\n";
1051 } else {
1052 errs() << "warning: xnack 'Off' was requested for a processor that "
1053 "does not support it!\n";
1054 }
1055 }
1056 }
1057
1058 if (SramEccRequested) {
1059 if (SramEccSupported) {
1060 SramEccSetting =
1061 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1062 } else {
1063 // If a specific sramecc setting was requested and this GPU does not
1064 // support sramecc emit a warning. Setting will remain set to
1065 // "Unsupported".
1066 if (*SramEccRequested) {
1067 errs() << "warning: sramecc 'On' was requested for a processor that "
1068 "does not support it!\n";
1069 } else {
1070 errs() << "warning: sramecc 'Off' was requested for a processor that "
1071 "does not support it!\n";
1072 }
1073 }
1074 }
1075}
1076
1077static TargetIDSetting
1079 if (FeatureString.ends_with("-"))
1080 return TargetIDSetting::Off;
1081 if (FeatureString.ends_with("+"))
1082 return TargetIDSetting::On;
1083
1084 llvm_unreachable("Malformed feature string");
1085}
1086
1088 SmallVector<StringRef, 3> TargetIDSplit;
1089 TargetID.split(TargetIDSplit, ':');
1090
1091 for (const auto &FeatureString : TargetIDSplit) {
1092 if (FeatureString.starts_with("xnack"))
1093 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
1094 if (FeatureString.starts_with("sramecc"))
1095 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
1096 }
1097}
1098
1099std::string AMDGPUTargetID::toString() const {
1100 std::string StringRep;
1101 raw_string_ostream StreamRep(StringRep);
1102
1103 auto TargetTriple = STI.getTargetTriple();
1104 auto Version = getIsaVersion(STI.getCPU());
1105
1106 StreamRep << TargetTriple.getArchName() << '-' << TargetTriple.getVendorName()
1107 << '-' << TargetTriple.getOSName() << '-'
1108 << TargetTriple.getEnvironmentName() << '-';
1109
1110 std::string Processor;
1111 // TODO: Following else statement is present here because we used various
1112 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
1113 // Remove once all aliases are removed from GCNProcessors.td.
1114 if (Version.Major >= 9)
1115 Processor = STI.getCPU().str();
1116 else
1117 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
1118 Twine(Version.Stepping))
1119 .str();
1120
1121 std::string Features;
1122 if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
1123 // sramecc.
1125 Features += ":sramecc-";
1127 Features += ":sramecc+";
1128 // xnack.
1130 Features += ":xnack-";
1132 Features += ":xnack+";
1133 }
1134
1135 StreamRep << Processor << Features;
1136
1137 return StringRep;
1138}
1139
1140unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
1141 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
1142 return 16;
1143 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
1144 return 32;
1145
1146 return 64;
1147}
1148
1150 unsigned BytesPerCU = getAddressableLocalMemorySize(STI);
1151
1152 // "Per CU" really means "per whatever functional block the waves of a
1153 // workgroup must share". So the effective local memory size is doubled in
1154 // WGP mode on gfx10.
1155 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1156 BytesPerCU *= 2;
1157
1158 return BytesPerCU;
1159}
1160
1162 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize32768))
1163 return 32768;
1164 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize65536))
1165 return 65536;
1166 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize163840))
1167 return 163840;
1168 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize327680))
1169 return 327680;
1170 return 32768;
1171}
1172
1173unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
1174 // "Per CU" really means "per whatever functional block the waves of a
1175 // workgroup must share".
1176
1177 // GFX12.5 only supports CU mode, which contains four SIMDs.
1178 if (isGFX1250(*STI)) {
1179 assert(STI->getFeatureBits().test(FeatureCuMode));
1180 return 4;
1181 }
1182
1183 // For gfx10 in CU mode the functional block is the CU, which contains
1184 // two SIMDs.
1185 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
1186 return 2;
1187
1188 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP
1189 // contains two CUs, so a total of four SIMDs.
1190 return 4;
1191}
1192
1194 unsigned FlatWorkGroupSize) {
1195 assert(FlatWorkGroupSize != 0);
1196 if (!STI->getTargetTriple().isAMDGCN())
1197 return 8;
1198 unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
1199 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
1200 if (N == 1) {
1201 // Single-wave workgroups don't consume barrier resources.
1202 return MaxWaves;
1203 }
1204
1205 unsigned MaxBarriers = 16;
1206 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1207 MaxBarriers = 32;
1208
1209 return std::min(MaxWaves / N, MaxBarriers);
1210}
1211
1212unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { return 1; }
1213
1214unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
1215 // FIXME: Need to take scratch memory into account.
1216 if (isGFX90A(*STI))
1217 return 8;
1218 if (!isGFX10Plus(*STI))
1219 return 10;
1220 return hasGFX10_3Insts(*STI) ? 16 : 20;
1221}
1222
1224 unsigned FlatWorkGroupSize) {
1225 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
1226 getEUsPerCU(STI));
1227}
1228
1229unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { return 1; }
1230
1232 // Some subtargets allow encoding 2048, but this isn't tested or supported.
1233 return 1024;
1234}
1235
1237 unsigned FlatWorkGroupSize) {
1238 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
1239}
1240
1243 if (Version.Major >= 10)
1244 return getAddressableNumSGPRs(STI);
1245 if (Version.Major >= 8)
1246 return 16;
1247 return 8;
1248}
1249
1250unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { return 8; }
1251
1252unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
1254 if (Version.Major >= 8)
1255 return 800;
1256 return 512;
1257}
1258
1260 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
1262
1264 if (Version.Major >= 10)
1265 return 106;
1266 if (Version.Major >= 8)
1267 return 102;
1268 return 104;
1269}
1270
1271unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
1272 assert(WavesPerEU != 0);
1273
1275 if (Version.Major >= 10)
1276 return 0;
1277
1278 if (WavesPerEU >= getMaxWavesPerEU(STI))
1279 return 0;
1280
1281 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
1282 if (STI->getFeatureBits().test(FeatureTrapHandler))
1283 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1284 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
1285 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
1286}
1287
1288unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1289 bool Addressable) {
1290 assert(WavesPerEU != 0);
1291
1292 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
1294 if (Version.Major >= 10)
1295 return Addressable ? AddressableNumSGPRs : 108;
1296 if (Version.Major >= 8 && !Addressable)
1297 AddressableNumSGPRs = 112;
1298 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
1299 if (STI->getFeatureBits().test(FeatureTrapHandler))
1300 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1301 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
1302 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
1303}
1304
1305unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1306 bool FlatScrUsed, bool XNACKUsed) {
1307 unsigned ExtraSGPRs = 0;
1308 if (VCCUsed)
1309 ExtraSGPRs = 2;
1310
1312 if (Version.Major >= 10)
1313 return ExtraSGPRs;
1314
1315 if (Version.Major < 8) {
1316 if (FlatScrUsed)
1317 ExtraSGPRs = 4;
1318 } else {
1319 if (XNACKUsed)
1320 ExtraSGPRs = 4;
1321
1322 if (FlatScrUsed ||
1323 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
1324 ExtraSGPRs = 6;
1325 }
1326
1327 return ExtraSGPRs;
1328}
1329
1330unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1331 bool FlatScrUsed) {
1332 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
1333 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
1334}
1335
1336static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs,
1337 unsigned Granule) {
1338 return divideCeil(std::max(1u, NumRegs), Granule);
1339}
1340
1341unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
1342 // SGPRBlocks is actual number of SGPR blocks minus 1.
1344 1;
1345}
1346
1348 unsigned DynamicVGPRBlockSize,
1349 std::optional<bool> EnableWavefrontSize32) {
1350 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1351 return 8;
1352
1353 if (DynamicVGPRBlockSize != 0)
1354 return DynamicVGPRBlockSize;
1355
1356 // Temporarily check the subtarget feature, until we fully switch to using
1357 // attributes.
1358 if (STI->getFeatureBits().test(FeatureDynamicVGPR))
1359 return STI->getFeatureBits().test(FeatureDynamicVGPRBlockSize32) ? 32 : 16;
1360
1361 bool IsWave32 = EnableWavefrontSize32
1362 ? *EnableWavefrontSize32
1363 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1364
1365 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1366 return IsWave32 ? 24 : 12;
1367
1368 if (hasGFX10_3Insts(*STI))
1369 return IsWave32 ? 16 : 8;
1370
1371 return IsWave32 ? 8 : 4;
1372}
1373
1375 std::optional<bool> EnableWavefrontSize32) {
1376 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1377 return 8;
1378
1379 bool IsWave32 = EnableWavefrontSize32
1380 ? *EnableWavefrontSize32
1381 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1382
1383 if (STI->getFeatureBits().test(Feature1024AddressableVGPRs))
1384 return IsWave32 ? 16 : 8;
1385
1386 return IsWave32 ? 8 : 4;
1387}
1388
1389unsigned getArchVGPRAllocGranule() { return 4; }
1390
1391unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
1392 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1393 return 512;
1394 if (!isGFX10Plus(*STI))
1395 return 256;
1396 bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
1397 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1398 return IsWave32 ? 1536 : 768;
1399 return IsWave32 ? 1024 : 512;
1400}
1401
1402unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI) { return 256; }
1403
1405 unsigned DynamicVGPRBlockSize) {
1406 const auto &Features = STI->getFeatureBits();
1407 if (Features.test(FeatureGFX1250Insts))
1408 return Features.test(FeatureWavefrontSize32) ? 1024 : 512;
1409 if (Features.test(FeatureGFX90AInsts))
1410 return 512;
1411
1412 // Temporarily check the subtarget feature, until we fully switch to using
1413 // attributes.
1414 if (DynamicVGPRBlockSize != 0 ||
1415 STI->getFeatureBits().test(FeatureDynamicVGPR))
1416 // On GFX12 we can allocate at most 8 blocks of VGPRs.
1417 return 8 * getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1418 return getAddressableNumArchVGPRs(STI);
1419}
1420
1422 unsigned NumVGPRs,
1423 unsigned DynamicVGPRBlockSize) {
1425 NumVGPRs, getVGPRAllocGranule(STI, DynamicVGPRBlockSize),
1427}
1428
1429unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule,
1430 unsigned MaxWaves,
1431 unsigned TotalNumVGPRs) {
1432 if (NumVGPRs < Granule)
1433 return MaxWaves;
1434 unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
1435 return std::min(std::max(TotalNumVGPRs / RoundedRegs, 1u), MaxWaves);
1436}
1437
1438unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves,
1440 if (Gen >= AMDGPUSubtarget::GFX10)
1441 return MaxWaves;
1442
1444 if (SGPRs <= 80)
1445 return 10;
1446 if (SGPRs <= 88)
1447 return 9;
1448 if (SGPRs <= 100)
1449 return 8;
1450 return 7;
1451 }
1452 if (SGPRs <= 48)
1453 return 10;
1454 if (SGPRs <= 56)
1455 return 9;
1456 if (SGPRs <= 64)
1457 return 8;
1458 if (SGPRs <= 72)
1459 return 7;
1460 if (SGPRs <= 80)
1461 return 6;
1462 return 5;
1463}
1464
1465unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1466 unsigned DynamicVGPRBlockSize) {
1467 assert(WavesPerEU != 0);
1468
1469 unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
1470 if (WavesPerEU >= MaxWavesPerEU)
1471 return 0;
1472
1473 unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
1474 unsigned AddrsableNumVGPRs =
1475 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1476 unsigned Granule = getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1477 unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);
1478
1479 if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
1480 return 0;
1481
1482 unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs,
1483 DynamicVGPRBlockSize);
1484 if (WavesPerEU < MinWavesPerEU)
1485 return getMinNumVGPRs(STI, MinWavesPerEU, DynamicVGPRBlockSize);
1486
1487 unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
1488 unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
1489 return std::min(MinNumVGPRs, AddrsableNumVGPRs);
1490}
1491
1492unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1493 unsigned DynamicVGPRBlockSize) {
1494 assert(WavesPerEU != 0);
1495
1496 unsigned MaxNumVGPRs =
1497 alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
1498 getVGPRAllocGranule(STI, DynamicVGPRBlockSize));
1499 unsigned AddressableNumVGPRs =
1500 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1501 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
1502}
1503
1504unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
1505 std::optional<bool> EnableWavefrontSize32) {
1507 NumVGPRs, getVGPREncodingGranule(STI, EnableWavefrontSize32)) -
1508 1;
1509}
1510
1512 unsigned NumVGPRs,
1513 unsigned DynamicVGPRBlockSize,
1514 std::optional<bool> EnableWavefrontSize32) {
1516 NumVGPRs,
1517 getVGPRAllocGranule(STI, DynamicVGPRBlockSize, EnableWavefrontSize32));
1518}
1519} // end namespace IsaInfo
1520
1522 const MCSubtargetInfo *STI) {
1524 KernelCode.amd_kernel_code_version_major = 1;
1525 KernelCode.amd_kernel_code_version_minor = 2;
1526 KernelCode.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
1527 KernelCode.amd_machine_version_major = Version.Major;
1528 KernelCode.amd_machine_version_minor = Version.Minor;
1529 KernelCode.amd_machine_version_stepping = Version.Stepping;
1531 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
1532 KernelCode.wavefront_size = 5;
1534 } else {
1535 KernelCode.wavefront_size = 6;
1536 }
1537
1538 // If the code object does not support indirect functions, then the value must
1539 // be 0xffffffff.
1540 KernelCode.call_convention = -1;
1541
1542 // These alignment values are specified in powers of two, so alignment =
1543 // 2^n. The minimum alignment is 2^4 = 16.
1544 KernelCode.kernarg_segment_alignment = 4;
1545 KernelCode.group_segment_alignment = 4;
1546 KernelCode.private_segment_alignment = 4;
1547
1548 if (Version.Major >= 10) {
1549 KernelCode.compute_pgm_resource_registers |=
1550 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
1552 }
1553}
1554
1557}
1558
1561}
1562
1564 unsigned AS = GV->getAddressSpace();
1565 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
1567}
1568
1570 return TT.getArch() == Triple::r600;
1571}
1572
1573static bool isValidRegPrefix(char C) {
1574 return C == 'v' || C == 's' || C == 'a';
1575}
1576
1577std::tuple<char, unsigned, unsigned>
1579 StringRef RegName = Constraint;
1580 if (!RegName.consume_front("{") || !RegName.consume_back("}"))
1581 return {};
1582
1583 char Kind = RegName.front();
1584 if (!isValidRegPrefix(Kind))
1585 return {};
1586
1587 RegName = RegName.drop_front();
1588 if (RegName.consume_front("[")) {
1589 unsigned Idx, End;
1590 bool Failed = RegName.consumeInteger(10, Idx);
1591 Failed |= !RegName.consume_front(":");
1592 Failed |= RegName.consumeInteger(10, End);
1593 Failed |= !RegName.consume_back("]");
1594 if (!Failed) {
1595 unsigned NumRegs = End - Idx + 1;
1596 if (NumRegs > 1)
1597 return {Kind, Idx, NumRegs};
1598 }
1599 } else {
1600 unsigned Idx;
1601 bool Failed = RegName.getAsInteger(10, Idx);
1602 if (!Failed)
1603 return {Kind, Idx, 1};
1604 }
1605
1606 return {};
1607}
1608
1609std::pair<unsigned, unsigned>
1611 std::pair<unsigned, unsigned> Default,
1612 bool OnlyFirstRequired) {
1613 if (auto Attr = getIntegerPairAttribute(F, Name, OnlyFirstRequired))
1614 return {Attr->first, Attr->second.value_or(Default.second)};
1615 return Default;
1616}
1617
1618std::optional<std::pair<unsigned, std::optional<unsigned>>>
1620 bool OnlyFirstRequired) {
1621 Attribute A = F.getFnAttribute(Name);
1622 if (!A.isStringAttribute())
1623 return std::nullopt;
1624
1625 LLVMContext &Ctx = F.getContext();
1626 std::pair<unsigned, std::optional<unsigned>> Ints;
1627 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1628 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1629 Ctx.emitError("can't parse first integer attribute " + Name);
1630 return std::nullopt;
1631 }
1632 unsigned Second = 0;
1633 if (Strs.second.trim().getAsInteger(0, Second)) {
1634 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1635 Ctx.emitError("can't parse second integer attribute " + Name);
1636 return std::nullopt;
1637 }
1638 } else {
1639 Ints.second = Second;
1640 }
1641
1642 return Ints;
1643}
1644
1646 unsigned Size,
1647 unsigned DefaultVal) {
1648 std::optional<SmallVector<unsigned>> R =
1650 return R.has_value() ? *R : SmallVector<unsigned>(Size, DefaultVal);
1651}
1652
1653std::optional<SmallVector<unsigned>>
1655 assert(Size > 2);
1656 LLVMContext &Ctx = F.getContext();
1657
1658 Attribute A = F.getFnAttribute(Name);
1659 if (!A.isValid())
1660 return std::nullopt;
1661 if (!A.isStringAttribute()) {
1662 Ctx.emitError(Name + " is not a string attribute");
1663 return std::nullopt;
1664 }
1665
1667
1668 StringRef S = A.getValueAsString();
1669 unsigned i = 0;
1670 for (; !S.empty() && i < Size; i++) {
1671 std::pair<StringRef, StringRef> Strs = S.split(',');
1672 unsigned IntVal;
1673 if (Strs.first.trim().getAsInteger(0, IntVal)) {
1674 Ctx.emitError("can't parse integer attribute " + Strs.first + " in " +
1675 Name);
1676 return std::nullopt;
1677 }
1678 Vals[i] = IntVal;
1679 S = Strs.second;
1680 }
1681
1682 if (!S.empty() || i < Size) {
1683 Ctx.emitError("attribute " + Name +
1684 " has incorrect number of integers; expected " +
1686 return std::nullopt;
1687 }
1688 return Vals;
1689}
1690
1691bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val) {
1692 assert((MD.getNumOperands() % 2 == 0) && "invalid number of operands!");
1693 for (unsigned I = 0, E = MD.getNumOperands() / 2; I != E; ++I) {
1694 auto Low =
1695 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 0))->getValue();
1696 auto High =
1697 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 1))->getValue();
1698 // There are two types of [A; B) ranges:
1699 // A < B, e.g. [4; 5) which is a range that only includes 4.
1700 // A > B, e.g. [5; 4) which is a range that wraps around and includes
1701 // everything except 4.
1702 if (Low.ult(High)) {
1703 if (Low.ule(Val) && High.ugt(Val))
1704 return true;
1705 } else {
1706 if (Low.uge(Val) && High.ult(Val))
1707 return true;
1708 }
1709 }
1710
1711 return false;
1712}
1713
1715 return (1 << (getVmcntBitWidthLo(Version.Major) +
1716 getVmcntBitWidthHi(Version.Major))) -
1717 1;
1718}
1719
1721 return (1 << getLoadcntBitWidth(Version.Major)) - 1;
1722}
1723
1725 return (1 << getSamplecntBitWidth(Version.Major)) - 1;
1726}
1727
1729 return (1 << getBvhcntBitWidth(Version.Major)) - 1;
1730}
1731
1733 return (1 << getExpcntBitWidth(Version.Major)) - 1;
1734}
1735
1737 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1738}
1739
1741 return (1 << getDscntBitWidth(Version.Major)) - 1;
1742}
1743
1745 return (1 << getKmcntBitWidth(Version.Major)) - 1;
1746}
1747
1749 return (1 << getXcntBitWidth(Version.Major, Version.Minor)) - 1;
1750}
1751
1753 return (1 << getStorecntBitWidth(Version.Major)) - 1;
1754}
1755
1757 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1758 getVmcntBitWidthLo(Version.Major));
1759 unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1760 getExpcntBitWidth(Version.Major));
1761 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1762 getLgkmcntBitWidth(Version.Major));
1763 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1764 getVmcntBitWidthHi(Version.Major));
1765 return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1766}
1767
1768unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1769 unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1770 getVmcntBitWidthLo(Version.Major));
1771 unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1772 getVmcntBitWidthHi(Version.Major));
1773 return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1774}
1775
1776unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1777 return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1778 getExpcntBitWidth(Version.Major));
1779}
1780
1781unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1782 return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1783 getLgkmcntBitWidth(Version.Major));
1784}
1785
1786void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt,
1787 unsigned &Expcnt, unsigned &Lgkmcnt) {
1788 Vmcnt = decodeVmcnt(Version, Waitcnt);
1789 Expcnt = decodeExpcnt(Version, Waitcnt);
1790 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1791}
1792
1793Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1794 Waitcnt Decoded;
1795 Decoded.LoadCnt = decodeVmcnt(Version, Encoded);
1796 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1797 Decoded.DsCnt = decodeLgkmcnt(Version, Encoded);
1798 return Decoded;
1799}
1800
1801unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1802 unsigned Vmcnt) {
1803 Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1804 getVmcntBitWidthLo(Version.Major));
1805 return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1806 getVmcntBitShiftHi(Version.Major),
1807 getVmcntBitWidthHi(Version.Major));
1808}
1809
1810unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1811 unsigned Expcnt) {
1812 return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1813 getExpcntBitWidth(Version.Major));
1814}
1815
1816unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1817 unsigned Lgkmcnt) {
1818 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1819 getLgkmcntBitWidth(Version.Major));
1820}
1821
1822unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt,
1823 unsigned Expcnt, unsigned Lgkmcnt) {
1824 unsigned Waitcnt = getWaitcntBitMask(Version);
1826 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1827 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1828 return Waitcnt;
1829}
1830
1831unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1832 return encodeWaitcnt(Version, Decoded.LoadCnt, Decoded.ExpCnt, Decoded.DsCnt);
1833}
1834
1836 bool IsStore) {
1837 unsigned Dscnt = getBitMask(getDscntBitShift(Version.Major),
1838 getDscntBitWidth(Version.Major));
1839 if (IsStore) {
1840 unsigned Storecnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1841 getStorecntBitWidth(Version.Major));
1842 return Dscnt | Storecnt;
1843 }
1844 unsigned Loadcnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1845 getLoadcntBitWidth(Version.Major));
1846 return Dscnt | Loadcnt;
1847}
1848
1849Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt) {
1850 Waitcnt Decoded;
1851 Decoded.LoadCnt =
1852 unpackBits(LoadcntDscnt, getLoadcntStorecntBitShift(Version.Major),
1853 getLoadcntBitWidth(Version.Major));
1854 Decoded.DsCnt = unpackBits(LoadcntDscnt, getDscntBitShift(Version.Major),
1855 getDscntBitWidth(Version.Major));
1856 return Decoded;
1857}
1858
1859Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt) {
1860 Waitcnt Decoded;
1861 Decoded.StoreCnt =
1862 unpackBits(StorecntDscnt, getLoadcntStorecntBitShift(Version.Major),
1863 getStorecntBitWidth(Version.Major));
1864 Decoded.DsCnt = unpackBits(StorecntDscnt, getDscntBitShift(Version.Major),
1865 getDscntBitWidth(Version.Major));
1866 return Decoded;
1867}
1868
1869static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt,
1870 unsigned Loadcnt) {
1871 return packBits(Loadcnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1872 getLoadcntBitWidth(Version.Major));
1873}
1874
1875static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt,
1876 unsigned Storecnt) {
1877 return packBits(Storecnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1878 getStorecntBitWidth(Version.Major));
1879}
1880
1881static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt,
1882 unsigned Dscnt) {
1883 return packBits(Dscnt, Waitcnt, getDscntBitShift(Version.Major),
1884 getDscntBitWidth(Version.Major));
1885}
1886
1887static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt,
1888 unsigned Dscnt) {
1889 unsigned Waitcnt = getCombinedCountBitMask(Version, false);
1890 Waitcnt = encodeLoadcnt(Version, Waitcnt, Loadcnt);
1892 return Waitcnt;
1893}
1894
1895unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1896 return encodeLoadcntDscnt(Version, Decoded.LoadCnt, Decoded.DsCnt);
1897}
1898
1900 unsigned Storecnt, unsigned Dscnt) {
1901 unsigned Waitcnt = getCombinedCountBitMask(Version, true);
1902 Waitcnt = encodeStorecnt(Version, Waitcnt, Storecnt);
1904 return Waitcnt;
1905}
1906
1908 const Waitcnt &Decoded) {
1909 return encodeStorecntDscnt(Version, Decoded.StoreCnt, Decoded.DsCnt);
1910}
1911
1912//===----------------------------------------------------------------------===//
1913// Custom Operand Values
1914//===----------------------------------------------------------------------===//
1915
1917 int Size,
1918 const MCSubtargetInfo &STI) {
1919 unsigned Enc = 0;
1920 for (int Idx = 0; Idx < Size; ++Idx) {
1921 const auto &Op = Opr[Idx];
1922 if (Op.isSupported(STI))
1923 Enc |= Op.encode(Op.Default);
1924 }
1925 return Enc;
1926}
1927
1929 int Size, unsigned Code,
1930 bool &HasNonDefaultVal,
1931 const MCSubtargetInfo &STI) {
1932 unsigned UsedOprMask = 0;
1933 HasNonDefaultVal = false;
1934 for (int Idx = 0; Idx < Size; ++Idx) {
1935 const auto &Op = Opr[Idx];
1936 if (!Op.isSupported(STI))
1937 continue;
1938 UsedOprMask |= Op.getMask();
1939 unsigned Val = Op.decode(Code);
1940 if (!Op.isValid(Val))
1941 return false;
1942 HasNonDefaultVal |= (Val != Op.Default);
1943 }
1944 return (Code & ~UsedOprMask) == 0;
1945}
1946
1947static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1948 unsigned Code, int &Idx, StringRef &Name,
1949 unsigned &Val, bool &IsDefault,
1950 const MCSubtargetInfo &STI) {
1951 while (Idx < Size) {
1952 const auto &Op = Opr[Idx++];
1953 if (Op.isSupported(STI)) {
1954 Name = Op.Name;
1955 Val = Op.decode(Code);
1956 IsDefault = (Val == Op.Default);
1957 return true;
1958 }
1959 }
1960
1961 return false;
1962}
1963
1965 int64_t InputVal) {
1966 if (InputVal < 0 || InputVal > Op.Max)
1967 return OPR_VAL_INVALID;
1968 return Op.encode(InputVal);
1969}
1970
1971static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
1972 const StringRef Name, int64_t InputVal,
1973 unsigned &UsedOprMask,
1974 const MCSubtargetInfo &STI) {
1975 int InvalidId = OPR_ID_UNKNOWN;
1976 for (int Idx = 0; Idx < Size; ++Idx) {
1977 const auto &Op = Opr[Idx];
1978 if (Op.Name == Name) {
1979 if (!Op.isSupported(STI)) {
1980 InvalidId = OPR_ID_UNSUPPORTED;
1981 continue;
1982 }
1983 auto OprMask = Op.getMask();
1984 if (OprMask & UsedOprMask)
1985 return OPR_ID_DUPLICATE;
1986 UsedOprMask |= OprMask;
1987 return encodeCustomOperandVal(Op, InputVal);
1988 }
1989 }
1990 return InvalidId;
1991}
1992
1993//===----------------------------------------------------------------------===//
1994// DepCtr
1995//===----------------------------------------------------------------------===//
1996
1997namespace DepCtr {
1998
2000 static int Default = -1;
2001 if (Default == -1)
2003 return Default;
2004}
2005
2006bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
2007 const MCSubtargetInfo &STI) {
2009 HasNonDefaultVal, STI);
2010}
2011
2012bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
2013 bool &IsDefault, const MCSubtargetInfo &STI) {
2014 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
2015 IsDefault, STI);
2016}
2017
2018int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
2019 const MCSubtargetInfo &STI) {
2020 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
2021 STI);
2022}
2023
2024unsigned decodeFieldVmVsrc(unsigned Encoded) {
2025 return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2026}
2027
2028unsigned decodeFieldVaVdst(unsigned Encoded) {
2029 return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2030}
2031
2032unsigned decodeFieldSaSdst(unsigned Encoded) {
2033 return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2034}
2035
2036unsigned decodeFieldVaSdst(unsigned Encoded) {
2037 return unpackBits(Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2038}
2039
2040unsigned decodeFieldVaVcc(unsigned Encoded) {
2041 return unpackBits(Encoded, getVaVccBitShift(), getVaVccBitWidth());
2042}
2043
2044unsigned decodeFieldVaSsrc(unsigned Encoded) {
2045 return unpackBits(Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2046}
2047
2048unsigned decodeFieldHoldCnt(unsigned Encoded) {
2049 return unpackBits(Encoded, getHoldCntBitShift(), getHoldCntWidth());
2050}
2051
2052unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
2053 return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2054}
2055
2056unsigned encodeFieldVmVsrc(unsigned VmVsrc) {
2057 return encodeFieldVmVsrc(0xffff, VmVsrc);
2058}
2059
2060unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
2061 return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2062}
2063
2064unsigned encodeFieldVaVdst(unsigned VaVdst) {
2065 return encodeFieldVaVdst(0xffff, VaVdst);
2066}
2067
2068unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
2069 return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2070}
2071
2072unsigned encodeFieldSaSdst(unsigned SaSdst) {
2073 return encodeFieldSaSdst(0xffff, SaSdst);
2074}
2075
2076unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst) {
2077 return packBits(VaSdst, Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2078}
2079
2080unsigned encodeFieldVaSdst(unsigned VaSdst) {
2081 return encodeFieldVaSdst(0xffff, VaSdst);
2082}
2083
2084unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc) {
2085 return packBits(VaVcc, Encoded, getVaVccBitShift(), getVaVccBitWidth());
2086}
2087
2088unsigned encodeFieldVaVcc(unsigned VaVcc) {
2089 return encodeFieldVaVcc(0xffff, VaVcc);
2090}
2091
2092unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc) {
2093 return packBits(VaSsrc, Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2094}
2095
2096unsigned encodeFieldVaSsrc(unsigned VaSsrc) {
2097 return encodeFieldVaSsrc(0xffff, VaSsrc);
2098}
2099
2100unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt) {
2101 return packBits(HoldCnt, Encoded, getHoldCntBitShift(), getHoldCntWidth());
2102}
2103
2104unsigned encodeFieldHoldCnt(unsigned HoldCnt) {
2105 return encodeFieldHoldCnt(0xffff, HoldCnt);
2106}
2107
2108} // namespace DepCtr
2109
2110//===----------------------------------------------------------------------===//
2111// exp tgt
2112//===----------------------------------------------------------------------===//
2113
2114namespace Exp {
2115
2116struct ExpTgt {
2118 unsigned Tgt;
2119 unsigned MaxIndex;
2120};
2121
2122// clang-format off
2123static constexpr ExpTgt ExpTgtInfo[] = {
2124 {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
2125 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
2126 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
2127 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
2128 {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
2129 {{"dual_src_blend"},ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
2130 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
2131};
2132// clang-format on
2133
2134bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
2135 for (const ExpTgt &Val : ExpTgtInfo) {
2136 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
2137 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
2138 Name = Val.Name;
2139 return true;
2140 }
2141 }
2142 return false;
2143}
2144
2145unsigned getTgtId(const StringRef Name) {
2146
2147 for (const ExpTgt &Val : ExpTgtInfo) {
2148 if (Val.MaxIndex == 0 && Name == Val.Name)
2149 return Val.Tgt;
2150
2151 if (Val.MaxIndex > 0 && Name.starts_with(Val.Name)) {
2152 StringRef Suffix = Name.drop_front(Val.Name.size());
2153
2154 unsigned Id;
2155 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
2156 return ET_INVALID;
2157
2158 // Disable leading zeroes
2159 if (Suffix.size() > 1 && Suffix[0] == '0')
2160 return ET_INVALID;
2161
2162 return Val.Tgt + Id;
2163 }
2164 }
2165 return ET_INVALID;
2166}
2167
2168bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
2169 switch (Id) {
2170 case ET_NULL:
2171 return !isGFX11Plus(STI);
2172 case ET_POS4:
2173 case ET_PRIM:
2174 return isGFX10Plus(STI);
2175 case ET_DUAL_SRC_BLEND0:
2176 case ET_DUAL_SRC_BLEND1:
2177 return isGFX11Plus(STI);
2178 default:
2179 if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
2180 return !isGFX11Plus(STI);
2181 return true;
2182 }
2183}
2184
2185} // namespace Exp
2186
2187//===----------------------------------------------------------------------===//
2188// MTBUF Format
2189//===----------------------------------------------------------------------===//
2190
2191namespace MTBUFFormat {
2192
2193int64_t getDfmt(const StringRef Name) {
2194 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
2195 if (Name == DfmtSymbolic[Id])
2196 return Id;
2197 }
2198 return DFMT_UNDEF;
2199}
2200
2202 assert(Id <= DFMT_MAX);
2203 return DfmtSymbolic[Id];
2204}
2205
2207 if (isSI(STI) || isCI(STI))
2208 return NfmtSymbolicSICI;
2209 if (isVI(STI) || isGFX9(STI))
2210 return NfmtSymbolicVI;
2211 return NfmtSymbolicGFX10;
2212}
2213
2214int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
2215 const auto *lookupTable = getNfmtLookupTable(STI);
2216 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
2217 if (Name == lookupTable[Id])
2218 return Id;
2219 }
2220 return NFMT_UNDEF;
2221}
2222
2223StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
2224 assert(Id <= NFMT_MAX);
2225 return getNfmtLookupTable(STI)[Id];
2226}
2227
2228bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2229 unsigned Dfmt;
2230 unsigned Nfmt;
2231 decodeDfmtNfmt(Id, Dfmt, Nfmt);
2232 return isValidNfmt(Nfmt, STI);
2233}
2234
2235bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2236 return !getNfmtName(Id, STI).empty();
2237}
2238
2239int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
2240 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
2241}
2242
2243void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
2244 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
2245 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
2246}
2247
2248int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
2249 if (isGFX11Plus(STI)) {
2250 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2251 if (Name == UfmtSymbolicGFX11[Id])
2252 return Id;
2253 }
2254 } else {
2255 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2256 if (Name == UfmtSymbolicGFX10[Id])
2257 return Id;
2258 }
2259 }
2260 return UFMT_UNDEF;
2261}
2262
2264 if (isValidUnifiedFormat(Id, STI))
2265 return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
2266 return "";
2267}
2268
2269bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
2270 return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
2271}
2272
2273int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
2274 const MCSubtargetInfo &STI) {
2275 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
2276 if (isGFX11Plus(STI)) {
2277 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2278 if (Fmt == DfmtNfmt2UFmtGFX11[Id])
2279 return Id;
2280 }
2281 } else {
2282 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2283 if (Fmt == DfmtNfmt2UFmtGFX10[Id])
2284 return Id;
2285 }
2286 }
2287 return UFMT_UNDEF;
2288}
2289
2290bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
2291 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
2292}
2293
2295 if (isGFX10Plus(STI))
2296 return UFMT_DEFAULT;
2297 return DFMT_NFMT_DEFAULT;
2298}
2299
2300} // namespace MTBUFFormat
2301
2302//===----------------------------------------------------------------------===//
2303// SendMsg
2304//===----------------------------------------------------------------------===//
2305
2306namespace SendMsg {
2307
2311
2312bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
2313 return (MsgId & ~(getMsgIdMask(STI))) == 0;
2314}
2315
2316bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
2317 bool Strict) {
2318 assert(isValidMsgId(MsgId, STI));
2319
2320 if (!Strict)
2321 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
2322
2323 if (msgRequiresOp(MsgId, STI)) {
2324 if (MsgId == ID_GS_PreGFX11 && OpId == OP_GS_NOP)
2325 return false;
2326
2327 return !getMsgOpName(MsgId, OpId, STI).empty();
2328 }
2329
2330 return OpId == OP_NONE_;
2331}
2332
2333bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
2334 const MCSubtargetInfo &STI, bool Strict) {
2335 assert(isValidMsgOp(MsgId, OpId, STI, Strict));
2336
2337 if (!Strict)
2339
2340 if (!isGFX11Plus(STI)) {
2341 switch (MsgId) {
2342 case ID_GS_PreGFX11:
2345 return (OpId == OP_GS_NOP)
2348 }
2349 }
2350 return StreamId == STREAM_ID_NONE_;
2351}
2352
2353bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
2354 return MsgId == ID_SYSMSG ||
2355 (!isGFX11Plus(STI) &&
2356 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
2357}
2358
2359bool msgSupportsStream(int64_t MsgId, int64_t OpId,
2360 const MCSubtargetInfo &STI) {
2361 return !isGFX11Plus(STI) &&
2362 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
2363 OpId != OP_GS_NOP;
2364}
2365
2366void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
2367 uint16_t &StreamId, const MCSubtargetInfo &STI) {
2368 MsgId = Val & getMsgIdMask(STI);
2369 if (isGFX11Plus(STI)) {
2370 OpId = 0;
2371 StreamId = 0;
2372 } else {
2373 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
2375 }
2376}
2377
2379 return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
2380}
2381
2382} // namespace SendMsg
2383
2384//===----------------------------------------------------------------------===//
2385//
2386//===----------------------------------------------------------------------===//
2387
2389 return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
2390}
2391
2393 // As a safe default always respond as if PS has color exports.
2394 return F.getFnAttributeAsParsedInteger(
2395 "amdgpu-color-export",
2396 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
2397}
2398
2400 return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
2401}
2402
2404 unsigned BlockSize =
2405 F.getFnAttributeAsParsedInteger("amdgpu-dynamic-vgpr-block-size", 0);
2406
2407 if (BlockSize == 16 || BlockSize == 32)
2408 return BlockSize;
2409
2410 return 0;
2411}
2412
2413bool hasXNACK(const MCSubtargetInfo &STI) {
2414 return STI.hasFeature(AMDGPU::FeatureXNACK);
2415}
2416
2417bool hasSRAMECC(const MCSubtargetInfo &STI) {
2418 return STI.hasFeature(AMDGPU::FeatureSRAMECC);
2419}
2420
2422 return STI.hasFeature(AMDGPU::FeatureMIMG_R128) &&
2423 !STI.hasFeature(AMDGPU::FeatureR128A16);
2424}
2425
2426bool hasA16(const MCSubtargetInfo &STI) {
2427 return STI.hasFeature(AMDGPU::FeatureA16);
2428}
2429
2430bool hasG16(const MCSubtargetInfo &STI) {
2431 return STI.hasFeature(AMDGPU::FeatureG16);
2432}
2433
2435 return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
2436 !isSI(STI);
2437}
2438
2439bool hasGDS(const MCSubtargetInfo &STI) {
2440 return STI.hasFeature(AMDGPU::FeatureGDS);
2441}
2442
2443unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler) {
2444 auto Version = getIsaVersion(STI.getCPU());
2445 if (Version.Major == 10)
2446 return Version.Minor >= 3 ? 13 : 5;
2447 if (Version.Major == 11)
2448 return 5;
2449 if (Version.Major >= 12)
2450 return HasSampler ? 4 : 5;
2451 return 0;
2452}
2453
2455 if (isGFX1250(STI))
2456 return 32;
2457 return 16;
2458}
2459
2460bool isSI(const MCSubtargetInfo &STI) {
2461 return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
2462}
2463
2464bool isCI(const MCSubtargetInfo &STI) {
2465 return STI.hasFeature(AMDGPU::FeatureSeaIslands);
2466}
2467
2468bool isVI(const MCSubtargetInfo &STI) {
2469 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
2470}
2471
2472bool isGFX9(const MCSubtargetInfo &STI) {
2473 return STI.hasFeature(AMDGPU::FeatureGFX9);
2474}
2475
2477 return isGFX9(STI) || isGFX10(STI);
2478}
2479
2481 return isGFX9(STI) || isGFX10(STI) || isGFX11(STI);
2482}
2483
2485 return isVI(STI) || isGFX9(STI) || isGFX10(STI);
2486}
2487
2488bool isGFX8Plus(const MCSubtargetInfo &STI) {
2489 return isVI(STI) || isGFX9Plus(STI);
2490}
2491
2492bool isGFX9Plus(const MCSubtargetInfo &STI) {
2493 return isGFX9(STI) || isGFX10Plus(STI);
2494}
2495
2496bool isNotGFX9Plus(const MCSubtargetInfo &STI) { return !isGFX9Plus(STI); }
2497
2498bool isGFX10(const MCSubtargetInfo &STI) {
2499 return STI.hasFeature(AMDGPU::FeatureGFX10);
2500}
2501
2503 return isGFX10(STI) || isGFX11(STI);
2504}
2505
2507 return isGFX10(STI) || isGFX11Plus(STI);
2508}
2509
2510bool isGFX11(const MCSubtargetInfo &STI) {
2511 return STI.hasFeature(AMDGPU::FeatureGFX11);
2512}
2513
2515 return isGFX11(STI) || isGFX12Plus(STI);
2516}
2517
2518bool isGFX12(const MCSubtargetInfo &STI) {
2519 return STI.getFeatureBits()[AMDGPU::FeatureGFX12];
2520}
2521
2522bool isGFX12Plus(const MCSubtargetInfo &STI) { return isGFX12(STI); }
2523
2524bool isNotGFX12Plus(const MCSubtargetInfo &STI) { return !isGFX12Plus(STI); }
2525
2526bool isGFX1250(const MCSubtargetInfo &STI) {
2527 return STI.getFeatureBits()[AMDGPU::FeatureGFX1250Insts];
2528}
2529
2531 if (isGFX1250(STI))
2532 return false;
2533 return isGFX10Plus(STI);
2534}
2535
2536bool isNotGFX11Plus(const MCSubtargetInfo &STI) { return !isGFX11Plus(STI); }
2537
2539 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
2540}
2541
2543 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
2544}
2545
2547 return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
2548}
2549
2551 return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
2552}
2553
2555 return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
2556}
2557
2559 return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
2560}
2561
2563 return isGFX10_BEncoding(STI) && !isGFX12Plus(STI);
2564}
2565
2566bool isGFX90A(const MCSubtargetInfo &STI) {
2567 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
2568}
2569
2570bool isGFX940(const MCSubtargetInfo &STI) {
2571 return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
2572}
2573
2575 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
2576}
2577
2579 return STI.hasFeature(AMDGPU::FeatureMAIInsts);
2580}
2581
2582bool hasVOPD(const MCSubtargetInfo &STI) {
2583 return STI.hasFeature(AMDGPU::FeatureVOPD);
2584}
2585
2587 return STI.hasFeature(AMDGPU::FeatureDPPSrc1SGPR);
2588}
2589
2591 return STI.hasFeature(AMDGPU::FeatureKernargPreload);
2592}
2593
2594int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
2595 int32_t ArgNumVGPR) {
2596 if (has90AInsts && ArgNumAGPR)
2597 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
2598 return std::max(ArgNumVGPR, ArgNumAGPR);
2599}
2600
2602 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
2603 const MCRegister FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
2604 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
2605 Reg == AMDGPU::SCC;
2606}
2607
2609 return MRI.getEncodingValue(Reg) & AMDGPU::HWEncoding::IS_HI16;
2610}
2611
2612#define MAP_REG2REG \
2613 using namespace AMDGPU; \
2614 switch (Reg.id()) { \
2615 default: \
2616 return Reg; \
2617 CASE_CI_VI(FLAT_SCR) \
2618 CASE_CI_VI(FLAT_SCR_LO) \
2619 CASE_CI_VI(FLAT_SCR_HI) \
2620 CASE_VI_GFX9PLUS(TTMP0) \
2621 CASE_VI_GFX9PLUS(TTMP1) \
2622 CASE_VI_GFX9PLUS(TTMP2) \
2623 CASE_VI_GFX9PLUS(TTMP3) \
2624 CASE_VI_GFX9PLUS(TTMP4) \
2625 CASE_VI_GFX9PLUS(TTMP5) \
2626 CASE_VI_GFX9PLUS(TTMP6) \
2627 CASE_VI_GFX9PLUS(TTMP7) \
2628 CASE_VI_GFX9PLUS(TTMP8) \
2629 CASE_VI_GFX9PLUS(TTMP9) \
2630 CASE_VI_GFX9PLUS(TTMP10) \
2631 CASE_VI_GFX9PLUS(TTMP11) \
2632 CASE_VI_GFX9PLUS(TTMP12) \
2633 CASE_VI_GFX9PLUS(TTMP13) \
2634 CASE_VI_GFX9PLUS(TTMP14) \
2635 CASE_VI_GFX9PLUS(TTMP15) \
2636 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
2637 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
2638 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
2639 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
2640 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
2641 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
2642 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
2643 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
2644 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
2645 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
2646 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
2647 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
2648 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
2649 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
2650 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2651 CASE_VI_GFX9PLUS( \
2652 TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2653 CASE_GFXPRE11_GFX11PLUS(M0) \
2654 CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
2655 CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
2656 }
2657
2658#define CASE_CI_VI(node) \
2659 assert(!isSI(STI)); \
2660 case node: \
2661 return isCI(STI) ? node##_ci : node##_vi;
2662
2663#define CASE_VI_GFX9PLUS(node) \
2664 case node: \
2665 return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
2666
2667#define CASE_GFXPRE11_GFX11PLUS(node) \
2668 case node: \
2669 return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
2670
2671#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
2672 case node: \
2673 return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
2674
2676 if (STI.getTargetTriple().getArch() == Triple::r600)
2677 return Reg;
2679}
2680
2681#undef CASE_CI_VI
2682#undef CASE_VI_GFX9PLUS
2683#undef CASE_GFXPRE11_GFX11PLUS
2684#undef CASE_GFXPRE11_GFX11PLUS_TO
2685
2686#define CASE_CI_VI(node) \
2687 case node##_ci: \
2688 case node##_vi: \
2689 return node;
2690#define CASE_VI_GFX9PLUS(node) \
2691 case node##_vi: \
2692 case node##_gfx9plus: \
2693 return node;
2694#define CASE_GFXPRE11_GFX11PLUS(node) \
2695 case node##_gfx11plus: \
2696 case node##_gfxpre11: \
2697 return node;
2698#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
2699
2701
2702bool isInlineValue(unsigned Reg) {
2703 switch (Reg) {
2704 case AMDGPU::SRC_SHARED_BASE_LO:
2705 case AMDGPU::SRC_SHARED_BASE:
2706 case AMDGPU::SRC_SHARED_LIMIT_LO:
2707 case AMDGPU::SRC_SHARED_LIMIT:
2708 case AMDGPU::SRC_PRIVATE_BASE_LO:
2709 case AMDGPU::SRC_PRIVATE_BASE:
2710 case AMDGPU::SRC_PRIVATE_LIMIT_LO:
2711 case AMDGPU::SRC_PRIVATE_LIMIT:
2712 case AMDGPU::SRC_FLAT_SCRATCH_BASE_LO:
2713 case AMDGPU::SRC_FLAT_SCRATCH_BASE_HI:
2714 case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
2715 return true;
2716 case AMDGPU::SRC_VCCZ:
2717 case AMDGPU::SRC_EXECZ:
2718 case AMDGPU::SRC_SCC:
2719 return true;
2720 case AMDGPU::SGPR_NULL:
2721 return true;
2722 default:
2723 return false;
2724 }
2725}
2726
2727#undef CASE_CI_VI
2728#undef CASE_VI_GFX9PLUS
2729#undef CASE_GFXPRE11_GFX11PLUS
2730#undef CASE_GFXPRE11_GFX11PLUS_TO
2731#undef MAP_REG2REG
2732
2733bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2734 assert(OpNo < Desc.NumOperands);
2735 unsigned OpType = Desc.operands()[OpNo].OperandType;
2736 return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
2737 OpType <= AMDGPU::OPERAND_KIMM_LAST;
2738}
2739
2740bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2741 assert(OpNo < Desc.NumOperands);
2742 unsigned OpType = Desc.operands()[OpNo].OperandType;
2743 switch (OpType) {
2756 return true;
2757 default:
2758 return false;
2759 }
2760}
2761
2762bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2763 assert(OpNo < Desc.NumOperands);
2764 unsigned OpType = Desc.operands()[OpNo].OperandType;
2765 return (OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
2769}
2770
2771// Avoid using MCRegisterClass::getSize, since that function will go away
2772// (move from MC* level to Target* level). Return size in bits.
2773unsigned getRegBitWidth(unsigned RCID) {
2774 switch (RCID) {
2775 case AMDGPU::VGPR_16RegClassID:
2776 case AMDGPU::VGPR_16_Lo128RegClassID:
2777 case AMDGPU::SGPR_LO16RegClassID:
2778 case AMDGPU::AGPR_LO16RegClassID:
2779 return 16;
2780 case AMDGPU::SGPR_32RegClassID:
2781 case AMDGPU::VGPR_32RegClassID:
2782 case AMDGPU::VGPR_32_Lo256RegClassID:
2783 case AMDGPU::VRegOrLds_32RegClassID:
2784 case AMDGPU::AGPR_32RegClassID:
2785 case AMDGPU::VS_32RegClassID:
2786 case AMDGPU::AV_32RegClassID:
2787 case AMDGPU::SReg_32RegClassID:
2788 case AMDGPU::SReg_32_XM0RegClassID:
2789 case AMDGPU::SRegOrLds_32RegClassID:
2790 return 32;
2791 case AMDGPU::SGPR_64RegClassID:
2792 case AMDGPU::VS_64RegClassID:
2793 case AMDGPU::SReg_64RegClassID:
2794 case AMDGPU::VReg_64RegClassID:
2795 case AMDGPU::AReg_64RegClassID:
2796 case AMDGPU::SReg_64_XEXECRegClassID:
2797 case AMDGPU::VReg_64_Align2RegClassID:
2798 case AMDGPU::AReg_64_Align2RegClassID:
2799 case AMDGPU::AV_64RegClassID:
2800 case AMDGPU::AV_64_Align2RegClassID:
2801 case AMDGPU::VReg_64_Lo256_Align2RegClassID:
2802 case AMDGPU::VS_64_Lo256RegClassID:
2803 return 64;
2804 case AMDGPU::SGPR_96RegClassID:
2805 case AMDGPU::SReg_96RegClassID:
2806 case AMDGPU::VReg_96RegClassID:
2807 case AMDGPU::AReg_96RegClassID:
2808 case AMDGPU::VReg_96_Align2RegClassID:
2809 case AMDGPU::AReg_96_Align2RegClassID:
2810 case AMDGPU::AV_96RegClassID:
2811 case AMDGPU::AV_96_Align2RegClassID:
2812 case AMDGPU::VReg_96_Lo256_Align2RegClassID:
2813 return 96;
2814 case AMDGPU::SGPR_128RegClassID:
2815 case AMDGPU::SReg_128RegClassID:
2816 case AMDGPU::VReg_128RegClassID:
2817 case AMDGPU::AReg_128RegClassID:
2818 case AMDGPU::VReg_128_Align2RegClassID:
2819 case AMDGPU::AReg_128_Align2RegClassID:
2820 case AMDGPU::AV_128RegClassID:
2821 case AMDGPU::AV_128_Align2RegClassID:
2822 case AMDGPU::SReg_128_XNULLRegClassID:
2823 case AMDGPU::VReg_128_Lo256_Align2RegClassID:
2824 return 128;
2825 case AMDGPU::SGPR_160RegClassID:
2826 case AMDGPU::SReg_160RegClassID:
2827 case AMDGPU::VReg_160RegClassID:
2828 case AMDGPU::AReg_160RegClassID:
2829 case AMDGPU::VReg_160_Align2RegClassID:
2830 case AMDGPU::AReg_160_Align2RegClassID:
2831 case AMDGPU::AV_160RegClassID:
2832 case AMDGPU::AV_160_Align2RegClassID:
2833 case AMDGPU::VReg_160_Lo256_Align2RegClassID:
2834 return 160;
2835 case AMDGPU::SGPR_192RegClassID:
2836 case AMDGPU::SReg_192RegClassID:
2837 case AMDGPU::VReg_192RegClassID:
2838 case AMDGPU::AReg_192RegClassID:
2839 case AMDGPU::VReg_192_Align2RegClassID:
2840 case AMDGPU::AReg_192_Align2RegClassID:
2841 case AMDGPU::AV_192RegClassID:
2842 case AMDGPU::AV_192_Align2RegClassID:
2843 case AMDGPU::VReg_192_Lo256_Align2RegClassID:
2844 return 192;
2845 case AMDGPU::SGPR_224RegClassID:
2846 case AMDGPU::SReg_224RegClassID:
2847 case AMDGPU::VReg_224RegClassID:
2848 case AMDGPU::AReg_224RegClassID:
2849 case AMDGPU::VReg_224_Align2RegClassID:
2850 case AMDGPU::AReg_224_Align2RegClassID:
2851 case AMDGPU::AV_224RegClassID:
2852 case AMDGPU::AV_224_Align2RegClassID:
2853 case AMDGPU::VReg_224_Lo256_Align2RegClassID:
2854 return 224;
2855 case AMDGPU::SGPR_256RegClassID:
2856 case AMDGPU::SReg_256RegClassID:
2857 case AMDGPU::VReg_256RegClassID:
2858 case AMDGPU::AReg_256RegClassID:
2859 case AMDGPU::VReg_256_Align2RegClassID:
2860 case AMDGPU::AReg_256_Align2RegClassID:
2861 case AMDGPU::AV_256RegClassID:
2862 case AMDGPU::AV_256_Align2RegClassID:
2863 case AMDGPU::SReg_256_XNULLRegClassID:
2864 case AMDGPU::VReg_256_Lo256_Align2RegClassID:
2865 return 256;
2866 case AMDGPU::SGPR_288RegClassID:
2867 case AMDGPU::SReg_288RegClassID:
2868 case AMDGPU::VReg_288RegClassID:
2869 case AMDGPU::AReg_288RegClassID:
2870 case AMDGPU::VReg_288_Align2RegClassID:
2871 case AMDGPU::AReg_288_Align2RegClassID:
2872 case AMDGPU::AV_288RegClassID:
2873 case AMDGPU::AV_288_Align2RegClassID:
2874 case AMDGPU::VReg_288_Lo256_Align2RegClassID:
2875 return 288;
2876 case AMDGPU::SGPR_320RegClassID:
2877 case AMDGPU::SReg_320RegClassID:
2878 case AMDGPU::VReg_320RegClassID:
2879 case AMDGPU::AReg_320RegClassID:
2880 case AMDGPU::VReg_320_Align2RegClassID:
2881 case AMDGPU::AReg_320_Align2RegClassID:
2882 case AMDGPU::AV_320RegClassID:
2883 case AMDGPU::AV_320_Align2RegClassID:
2884 case AMDGPU::VReg_320_Lo256_Align2RegClassID:
2885 return 320;
2886 case AMDGPU::SGPR_352RegClassID:
2887 case AMDGPU::SReg_352RegClassID:
2888 case AMDGPU::VReg_352RegClassID:
2889 case AMDGPU::AReg_352RegClassID:
2890 case AMDGPU::VReg_352_Align2RegClassID:
2891 case AMDGPU::AReg_352_Align2RegClassID:
2892 case AMDGPU::AV_352RegClassID:
2893 case AMDGPU::AV_352_Align2RegClassID:
2894 case AMDGPU::VReg_352_Lo256_Align2RegClassID:
2895 return 352;
2896 case AMDGPU::SGPR_384RegClassID:
2897 case AMDGPU::SReg_384RegClassID:
2898 case AMDGPU::VReg_384RegClassID:
2899 case AMDGPU::AReg_384RegClassID:
2900 case AMDGPU::VReg_384_Align2RegClassID:
2901 case AMDGPU::AReg_384_Align2RegClassID:
2902 case AMDGPU::AV_384RegClassID:
2903 case AMDGPU::AV_384_Align2RegClassID:
2904 case AMDGPU::VReg_384_Lo256_Align2RegClassID:
2905 return 384;
2906 case AMDGPU::SGPR_512RegClassID:
2907 case AMDGPU::SReg_512RegClassID:
2908 case AMDGPU::VReg_512RegClassID:
2909 case AMDGPU::AReg_512RegClassID:
2910 case AMDGPU::VReg_512_Align2RegClassID:
2911 case AMDGPU::AReg_512_Align2RegClassID:
2912 case AMDGPU::AV_512RegClassID:
2913 case AMDGPU::AV_512_Align2RegClassID:
2914 case AMDGPU::VReg_512_Lo256_Align2RegClassID:
2915 return 512;
2916 case AMDGPU::SGPR_1024RegClassID:
2917 case AMDGPU::SReg_1024RegClassID:
2918 case AMDGPU::VReg_1024RegClassID:
2919 case AMDGPU::AReg_1024RegClassID:
2920 case AMDGPU::VReg_1024_Align2RegClassID:
2921 case AMDGPU::AReg_1024_Align2RegClassID:
2922 case AMDGPU::AV_1024RegClassID:
2923 case AMDGPU::AV_1024_Align2RegClassID:
2924 case AMDGPU::VReg_1024_Lo256_Align2RegClassID:
2925 return 1024;
2926 default:
2927 llvm_unreachable("Unexpected register class");
2928 }
2929}
2930
2931unsigned getRegBitWidth(const MCRegisterClass &RC) {
2932 return getRegBitWidth(RC.getID());
2933}
2934
2936 unsigned OpNo) {
2937 assert(OpNo < Desc.NumOperands);
2938 unsigned RCID = Desc.operands()[OpNo].RegClass;
2939 return getRegBitWidth(RCID) / 8;
2940}
2941
2942bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2944 return true;
2945
2946 uint64_t Val = static_cast<uint64_t>(Literal);
2947 return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
2948 (Val == llvm::bit_cast<uint64_t>(1.0)) ||
2949 (Val == llvm::bit_cast<uint64_t>(-1.0)) ||
2950 (Val == llvm::bit_cast<uint64_t>(0.5)) ||
2951 (Val == llvm::bit_cast<uint64_t>(-0.5)) ||
2952 (Val == llvm::bit_cast<uint64_t>(2.0)) ||
2953 (Val == llvm::bit_cast<uint64_t>(-2.0)) ||
2954 (Val == llvm::bit_cast<uint64_t>(4.0)) ||
2955 (Val == llvm::bit_cast<uint64_t>(-4.0)) ||
2956 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2957}
2958
2959bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2961 return true;
2962
2963 // The actual type of the operand does not seem to matter as long
2964 // as the bits match one of the inline immediate values. For example:
2965 //
2966 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
2967 // so it is a legal inline immediate.
2968 //
2969 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
2970 // floating-point, so it is a legal inline immediate.
2971
2972 uint32_t Val = static_cast<uint32_t>(Literal);
2973 return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
2974 (Val == llvm::bit_cast<uint32_t>(1.0f)) ||
2975 (Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
2976 (Val == llvm::bit_cast<uint32_t>(0.5f)) ||
2977 (Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
2978 (Val == llvm::bit_cast<uint32_t>(2.0f)) ||
2979 (Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
2980 (Val == llvm::bit_cast<uint32_t>(4.0f)) ||
2981 (Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
2982 (Val == 0x3e22f983 && HasInv2Pi);
2983}
2984
2985bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi) {
2986 if (!HasInv2Pi)
2987 return false;
2989 return true;
2990 uint16_t Val = static_cast<uint16_t>(Literal);
2991 return Val == 0x3F00 || // 0.5
2992 Val == 0xBF00 || // -0.5
2993 Val == 0x3F80 || // 1.0
2994 Val == 0xBF80 || // -1.0
2995 Val == 0x4000 || // 2.0
2996 Val == 0xC000 || // -2.0
2997 Val == 0x4080 || // 4.0
2998 Val == 0xC080 || // -4.0
2999 Val == 0x3E22; // 1.0 / (2.0 * pi)
3000}
3001
3002bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi) {
3003 return isInlinableLiteral32(Literal, HasInv2Pi);
3004}
3005
3006bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi) {
3007 if (!HasInv2Pi)
3008 return false;
3010 return true;
3011 uint16_t Val = static_cast<uint16_t>(Literal);
3012 return Val == 0x3C00 || // 1.0
3013 Val == 0xBC00 || // -1.0
3014 Val == 0x3800 || // 0.5
3015 Val == 0xB800 || // -0.5
3016 Val == 0x4000 || // 2.0
3017 Val == 0xC000 || // -2.0
3018 Val == 0x4400 || // 4.0
3019 Val == 0xC400 || // -4.0
3020 Val == 0x3118; // 1/2pi
3021}
3022
3023std::optional<unsigned> getInlineEncodingV216(bool IsFloat, uint32_t Literal) {
3024 // Unfortunately, the Instruction Set Architecture Reference Guide is
3025 // misleading about how the inline operands work for (packed) 16-bit
3026 // instructions. In a nutshell, the actual HW behavior is:
3027 //
3028 // - integer encodings (-16 .. 64) are always produced as sign-extended
3029 // 32-bit values
3030 // - float encodings are produced as:
3031 // - for F16 instructions: corresponding half-precision float values in
3032 // the LSBs, 0 in the MSBs
3033 // - for UI16 instructions: corresponding single-precision float value
3034 int32_t Signed = static_cast<int32_t>(Literal);
3035 if (Signed >= 0 && Signed <= 64)
3036 return 128 + Signed;
3037
3038 if (Signed >= -16 && Signed <= -1)
3039 return 192 + std::abs(Signed);
3040
3041 if (IsFloat) {
3042 // clang-format off
3043 switch (Literal) {
3044 case 0x3800: return 240; // 0.5
3045 case 0xB800: return 241; // -0.5
3046 case 0x3C00: return 242; // 1.0
3047 case 0xBC00: return 243; // -1.0
3048 case 0x4000: return 244; // 2.0
3049 case 0xC000: return 245; // -2.0
3050 case 0x4400: return 246; // 4.0
3051 case 0xC400: return 247; // -4.0
3052 case 0x3118: return 248; // 1.0 / (2.0 * pi)
3053 default: break;
3054 }
3055 // clang-format on
3056 } else {
3057 // clang-format off
3058 switch (Literal) {
3059 case 0x3F000000: return 240; // 0.5
3060 case 0xBF000000: return 241; // -0.5
3061 case 0x3F800000: return 242; // 1.0
3062 case 0xBF800000: return 243; // -1.0
3063 case 0x40000000: return 244; // 2.0
3064 case 0xC0000000: return 245; // -2.0
3065 case 0x40800000: return 246; // 4.0
3066 case 0xC0800000: return 247; // -4.0
3067 case 0x3E22F983: return 248; // 1.0 / (2.0 * pi)
3068 default: break;
3069 }
3070 // clang-format on
3071 }
3072
3073 return {};
3074}
3075
3076// Encoding of the literal as an inline constant for a V_PK_*_IU16 instruction
3077// or nullopt.
3078std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal) {
3079 return getInlineEncodingV216(false, Literal);
3080}
3081
3082// Encoding of the literal as an inline constant for a V_PK_*_BF16 instruction
3083// or nullopt.
3084std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal) {
3085 int32_t Signed = static_cast<int32_t>(Literal);
3086 if (Signed >= 0 && Signed <= 64)
3087 return 128 + Signed;
3088
3089 if (Signed >= -16 && Signed <= -1)
3090 return 192 + std::abs(Signed);
3091
3092 // clang-format off
3093 switch (Literal) {
3094 case 0x3F00: return 240; // 0.5
3095 case 0xBF00: return 241; // -0.5
3096 case 0x3F80: return 242; // 1.0
3097 case 0xBF80: return 243; // -1.0
3098 case 0x4000: return 244; // 2.0
3099 case 0xC000: return 245; // -2.0
3100 case 0x4080: return 246; // 4.0
3101 case 0xC080: return 247; // -4.0
3102 case 0x3E22: return 248; // 1.0 / (2.0 * pi)
3103 default: break;
3104 }
3105 // clang-format on
3106
3107 return std::nullopt;
3108}
3109
3110// Encoding of the literal as an inline constant for a V_PK_*_F16 instruction
3111// or nullopt.
3112std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal) {
3113 return getInlineEncodingV216(true, Literal);
3114}
3115
3116// Whether the given literal can be inlined for a V_PK_* instruction.
3118 switch (OpType) {
3121 return getInlineEncodingV216(false, Literal).has_value();
3124 return getInlineEncodingV216(true, Literal).has_value();
3129 return false;
3130 default:
3131 llvm_unreachable("bad packed operand type");
3132 }
3133}
3134
3135// Whether the given literal can be inlined for a V_PK_*_IU16 instruction.
3139
3140// Whether the given literal can be inlined for a V_PK_*_BF16 instruction.
3144
3145// Whether the given literal can be inlined for a V_PK_*_F16 instruction.
3149
3150bool isValid32BitLiteral(uint64_t Val, bool IsFP64) {
3151 if (IsFP64)
3152 return !Lo_32(Val);
3153
3154 return isUInt<32>(Val) || isInt<32>(Val);
3155}
3156
3158 const Function *F = A->getParent();
3159
3160 // Arguments to compute shaders are never a source of divergence.
3161 CallingConv::ID CC = F->getCallingConv();
3162 switch (CC) {
3165 return true;
3176 // For non-compute shaders, SGPR inputs are marked with either inreg or
3177 // byval. Everything else is in VGPRs.
3178 return A->hasAttribute(Attribute::InReg) ||
3179 A->hasAttribute(Attribute::ByVal);
3180 default:
3181 // TODO: treat i1 as divergent?
3182 return A->hasAttribute(Attribute::InReg);
3183 }
3184}
3185
3186bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
3187 // Arguments to compute shaders are never a source of divergence.
3189 switch (CC) {
3192 return true;
3203 // For non-compute shaders, SGPR inputs are marked with either inreg or
3204 // byval. Everything else is in VGPRs.
3205 return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
3206 CB->paramHasAttr(ArgNo, Attribute::ByVal);
3207 default:
3208 return CB->paramHasAttr(ArgNo, Attribute::InReg);
3209 }
3210}
3211
3212static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
3213 return isGCN3Encoding(ST) || isGFX10Plus(ST);
3214}
3215
3217 int64_t EncodedOffset) {
3218 if (isGFX12Plus(ST))
3219 return isUInt<23>(EncodedOffset);
3220
3221 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
3222 : isUInt<8>(EncodedOffset);
3223}
3224
3226 int64_t EncodedOffset, bool IsBuffer) {
3227 if (isGFX12Plus(ST)) {
3228 if (IsBuffer && EncodedOffset < 0)
3229 return false;
3230 return isInt<24>(EncodedOffset);
3231 }
3232
3233 return !IsBuffer && hasSMRDSignedImmOffset(ST) && isInt<21>(EncodedOffset);
3234}
3235
3236static bool isDwordAligned(uint64_t ByteOffset) {
3237 return (ByteOffset & 3) == 0;
3238}
3239
3241 uint64_t ByteOffset) {
3242 if (hasSMEMByteOffset(ST))
3243 return ByteOffset;
3244
3245 assert(isDwordAligned(ByteOffset));
3246 return ByteOffset >> 2;
3247}
3248
3249std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
3250 int64_t ByteOffset, bool IsBuffer,
3251 bool HasSOffset) {
3252 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
3253 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
3254 // Handle case where SOffset is not present.
3255 if (!IsBuffer && !HasSOffset && ByteOffset < 0 && hasSMRDSignedImmOffset(ST))
3256 return std::nullopt;
3257
3258 if (isGFX12Plus(ST)) // 24 bit signed offsets
3259 return isInt<24>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3260 : std::nullopt;
3261
3262 // The signed version is always a byte offset.
3263 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
3265 return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3266 : std::nullopt;
3267 }
3268
3269 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
3270 return std::nullopt;
3271
3272 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3273 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
3274 ? std::optional<int64_t>(EncodedOffset)
3275 : std::nullopt;
3276}
3277
3278std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
3279 int64_t ByteOffset) {
3280 if (!isCI(ST) || !isDwordAligned(ByteOffset))
3281 return std::nullopt;
3282
3283 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3284 return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
3285 : std::nullopt;
3286}
3287
3289 if (AMDGPU::isGFX10(ST))
3290 return 12;
3291
3292 if (AMDGPU::isGFX12(ST))
3293 return 24;
3294 return 13;
3295}
3296
3297namespace {
3298
3299struct SourceOfDivergence {
3300 unsigned Intr;
3301};
3302const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
3303
3304struct AlwaysUniform {
3305 unsigned Intr;
3306};
3307const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);
3308
3309#define GET_SourcesOfDivergence_IMPL
3310#define GET_UniformIntrinsics_IMPL
3311#define GET_Gfx9BufferFormat_IMPL
3312#define GET_Gfx10BufferFormat_IMPL
3313#define GET_Gfx11PlusBufferFormat_IMPL
3314
3315#include "AMDGPUGenSearchableTables.inc"
3316
3317} // end anonymous namespace
3318
3319bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
3320 return lookupSourceOfDivergence(IntrID);
3321}
3322
3323bool isIntrinsicAlwaysUniform(unsigned IntrID) {
3324 return lookupAlwaysUniform(IntrID);
3325}
3326
3328 uint8_t NumComponents,
3329 uint8_t NumFormat,
3330 const MCSubtargetInfo &STI) {
3331 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(
3332 BitsPerComp, NumComponents, NumFormat)
3333 : isGFX10(STI)
3334 ? getGfx10BufferFormatInfo(BitsPerComp, NumComponents, NumFormat)
3335 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
3336}
3337
3339 const MCSubtargetInfo &STI) {
3340 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
3341 : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
3342 : getGfx9BufferFormatInfo(Format);
3343}
3344
3346 const MCRegisterInfo &MRI) {
3347 const unsigned VGPRClasses[] = {
3348 AMDGPU::VGPR_16RegClassID, AMDGPU::VGPR_32RegClassID,
3349 AMDGPU::VReg_64RegClassID, AMDGPU::VReg_96RegClassID,
3350 AMDGPU::VReg_128RegClassID, AMDGPU::VReg_160RegClassID,
3351 AMDGPU::VReg_192RegClassID, AMDGPU::VReg_224RegClassID,
3352 AMDGPU::VReg_256RegClassID, AMDGPU::VReg_288RegClassID,
3353 AMDGPU::VReg_320RegClassID, AMDGPU::VReg_352RegClassID,
3354 AMDGPU::VReg_384RegClassID, AMDGPU::VReg_512RegClassID,
3355 AMDGPU::VReg_1024RegClassID};
3356
3357 for (unsigned RCID : VGPRClasses) {
3358 const MCRegisterClass &RC = MRI.getRegClass(RCID);
3359 if (RC.contains(Reg))
3360 return &RC;
3361 }
3362
3363 return nullptr;
3364}
3365
3367 unsigned Enc = MRI.getEncodingValue(Reg);
3368 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3369 return Idx >> 8;
3370}
3371
3373 const MCRegisterInfo &MRI) {
3374 unsigned Enc = MRI.getEncodingValue(Reg);
3375 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3376 if (Idx >= 0x100)
3377 return AMDGPU::NoRegister;
3378
3380 if (!RC)
3381 return AMDGPU::NoRegister;
3382 return RC->getRegister(Idx | (MSBs << 8));
3383}
3384
3385std::pair<const AMDGPU::OpName *, const AMDGPU::OpName *>
3387 static const AMDGPU::OpName VOPOps[4] = {
3388 AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2,
3389 AMDGPU::OpName::vdst};
3390 static const AMDGPU::OpName VDSOps[4] = {
3391 AMDGPU::OpName::addr, AMDGPU::OpName::data0, AMDGPU::OpName::data1,
3392 AMDGPU::OpName::vdst};
3393 static const AMDGPU::OpName FLATOps[4] = {
3394 AMDGPU::OpName::vaddr, AMDGPU::OpName::vdata,
3395 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdst};
3396 static const AMDGPU::OpName BUFOps[4] = {
3397 AMDGPU::OpName::vaddr, AMDGPU::OpName::NUM_OPERAND_NAMES,
3398 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdata};
3399 static const AMDGPU::OpName VIMGOps[4] = {
3400 AMDGPU::OpName::vaddr0, AMDGPU::OpName::vaddr1, AMDGPU::OpName::vaddr2,
3401 AMDGPU::OpName::vdata};
3402
3403 // For VOPD instructions MSB of a corresponding Y component operand VGPR
3404 // address is supposed to match X operand, otherwise VOPD shall not be
3405 // combined.
3406 static const AMDGPU::OpName VOPDOpsX[4] = {
3407 AMDGPU::OpName::src0X, AMDGPU::OpName::vsrc1X, AMDGPU::OpName::vsrc2X,
3408 AMDGPU::OpName::vdstX};
3409 static const AMDGPU::OpName VOPDOpsY[4] = {
3410 AMDGPU::OpName::src0Y, AMDGPU::OpName::vsrc1Y, AMDGPU::OpName::vsrc2Y,
3411 AMDGPU::OpName::vdstY};
3412
3413 unsigned TSFlags = Desc.TSFlags;
3414
3415 if (TSFlags &
3418 // LD_SCALE operands ignore MSB.
3419 if (Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32 ||
3420 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32_gfx1250 ||
3421 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64 ||
3422 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64_gfx1250)
3423 return {};
3424 return {VOPOps, nullptr};
3425 }
3426
3427 if (TSFlags & SIInstrFlags::DS)
3428 return {VDSOps, nullptr};
3429
3430 if (TSFlags & SIInstrFlags::FLAT)
3431 return {FLATOps, nullptr};
3432
3433 if (TSFlags & (SIInstrFlags::MUBUF | SIInstrFlags::MTBUF))
3434 return {BUFOps, nullptr};
3435
3436 if (TSFlags & SIInstrFlags::VIMAGE)
3437 return {VIMGOps, nullptr};
3438
3439 if (AMDGPU::isVOPD(Desc.getOpcode()))
3440 return {VOPDOpsX, VOPDOpsY};
3441
3442 assert(!(TSFlags & SIInstrFlags::MIMG));
3443
3444 if (TSFlags & (SIInstrFlags::VSAMPLE | SIInstrFlags::EXP))
3445 llvm_unreachable("Sample and export VGPR lowering is not implemented and"
3446 " these instructions are not expected on gfx1250");
3447
3448 return {};
3449}
3450
3451bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode) {
3452 uint64_t TSFlags = MII.get(Opcode).TSFlags;
3453
3454 if (TSFlags & SIInstrFlags::SMRD)
3455 return !getSMEMIsBuffer(Opcode);
3456 if (!(TSFlags & SIInstrFlags::FLAT))
3457 return false;
3458
3459 // Only SV and SVS modes are supported.
3460 if (TSFlags & SIInstrFlags::FlatScratch)
3461 return hasNamedOperand(Opcode, OpName::vaddr);
3462
3463 // Only GVS mode is supported.
3464 return hasNamedOperand(Opcode, OpName::vaddr) &&
3465 hasNamedOperand(Opcode, OpName::saddr);
3466
3467 return false;
3468}
3469
3471 for (auto OpName : {OpName::vdst, OpName::src0, OpName::src1, OpName::src2}) {
3472 int Idx = getNamedOperandIdx(OpDesc.getOpcode(), OpName);
3473 if (Idx == -1)
3474 continue;
3475
3476 if (OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64RegClassID ||
3477 OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64_Align2RegClassID)
3478 return true;
3479 }
3480
3481 return false;
3482}
3483
3484bool isDPALU_DPP32BitOpc(unsigned Opc) {
3485 switch (Opc) {
3486 case AMDGPU::V_MUL_LO_U32_e64:
3487 case AMDGPU::V_MUL_LO_U32_e64_dpp:
3488 case AMDGPU::V_MUL_LO_U32_e64_dpp_gfx1250:
3489 case AMDGPU::V_MUL_HI_U32_e64:
3490 case AMDGPU::V_MUL_HI_U32_e64_dpp:
3491 case AMDGPU::V_MUL_HI_U32_e64_dpp_gfx1250:
3492 case AMDGPU::V_MUL_HI_I32_e64:
3493 case AMDGPU::V_MUL_HI_I32_e64_dpp:
3494 case AMDGPU::V_MUL_HI_I32_e64_dpp_gfx1250:
3495 case AMDGPU::V_MAD_U32_e64:
3496 case AMDGPU::V_MAD_U32_e64_dpp:
3497 case AMDGPU::V_MAD_U32_e64_dpp_gfx1250:
3498 return true;
3499 default:
3500 return false;
3501 }
3502}
3503
3504bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST) {
3505 if (!ST.hasFeature(AMDGPU::FeatureDPALU_DPP))
3506 return false;
3507
3508 if (isDPALU_DPP32BitOpc(OpDesc.getOpcode()))
3509 return ST.hasFeature(AMDGPU::FeatureGFX1250Insts);
3510
3511 return hasAny64BitVGPROperands(OpDesc);
3512}
3513
3515 return ST.hasFeature(AMDGPU::FeatureAddressableLocalMemorySize327680) ? 256
3516 : 128;
3517}
3518
3519bool isPackedFP32Inst(unsigned Opc) {
3520 switch (Opc) {
3521 case AMDGPU::V_PK_ADD_F32:
3522 case AMDGPU::V_PK_ADD_F32_gfx12:
3523 case AMDGPU::V_PK_MUL_F32:
3524 case AMDGPU::V_PK_MUL_F32_gfx12:
3525 case AMDGPU::V_PK_FMA_F32:
3526 case AMDGPU::V_PK_FMA_F32_gfx12:
3527 return true;
3528 default:
3529 return false;
3530 }
3531}
3532
3533} // namespace AMDGPU
3534
3537 switch (S) {
3539 OS << "Unsupported";
3540 break;
3542 OS << "Any";
3543 break;
3545 OS << "Off";
3546 break;
3548 OS << "On";
3549 break;
3550 }
3551 return OS;
3552}
3553
3554} // namespace llvm
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static llvm::cl::opt< unsigned > DefaultAMDHSACodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden, llvm::cl::init(llvm::AMDGPU::AMDHSA_COV6), llvm::cl::desc("Set default AMDHSA Code Object Version (module flag " "or asm directive still take priority if present)"))
#define MAP_REG2REG
Provides AMDGPU specific target descriptions.
MC layer struct for AMDGPUMCKernelCodeT, provides MCExpr functionality where required.
@ AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define RegName(no)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
#define T
uint64_t High
if(PassOpts->AAPipeline)
#define S_00B848_MEM_ORDERED(x)
Definition SIDefines.h:1226
#define S_00B848_WGP_MODE(x)
Definition SIDefines.h:1223
#define S_00B848_FWD_PROGRESS(x)
Definition SIDefines.h:1229
unsigned unsigned DefaultVal
This file contains some functions that are useful when dealing with strings.
static const int BlockSize
Definition TarWriter.cpp:33
TargetIDSetting getXnackSetting() const
AMDGPUTargetID(const MCSubtargetInfo &STI)
void setTargetIDFromTargetIDStream(StringRef TargetID)
TargetIDSetting getSramEccSetting() const
unsigned getIndexInParsedOperands(unsigned CompOprIdx) const
unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const
std::optional< unsigned > getInvalidCompOperandIndex(std::function< unsigned(unsigned, unsigned)> GetRegIdx, const MCRegisterInfo &MRI, bool SkipSrc=false, bool AllowSameVGPR=false, bool VOPD3=false) const
std::array< unsigned, Component::MAX_OPR_NUM > RegIndices
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
constexpr bool test(unsigned I) const
unsigned getAddressSpace() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
bool mayStore() const
Return true if this instruction could possibly modify memory.
bool mayLoad() const
Return true if this instruction could possibly read memory.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specified operand constraint if it is present.
unsigned getOpcode() const
Return the opcode number for this descriptor.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:64
MCRegisterClass - Base class of TargetRegisterClass.
unsigned getID() const
getID() - Return the register class ID number.
MCRegister getRegister(unsigned i) const
getRegister - Return the specified register in the class.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
const FeatureBitset & getFeatureBits() const
StringRef getCPU() const
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1451
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
Definition StringRef.h:862
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:710
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:480
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:151
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:154
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:281
Manages the enabling and disabling of subtarget specific features.
const std::vector< std::string > & getFeatures() const
Returns the vector of individual subtarget features.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:420
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:411
bool isAMDGCN() const
Tests whether the target is AMDGCN.
Definition Triple.h:904
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
unsigned decodeFieldVaVcc(unsigned Encoded)
unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc)
unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt)
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc)
unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst)
unsigned decodeFieldSaSdst(unsigned Encoded)
unsigned decodeFieldVaSdst(unsigned Encoded)
unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc)
unsigned decodeFieldVaSsrc(unsigned Encoded)
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst)
const CustomOperandVal DepCtrInfo[]
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
unsigned decodeFieldVaVdst(unsigned Encoded)
unsigned decodeFieldHoldCnt(unsigned Encoded)
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI)
unsigned decodeFieldVmVsrc(unsigned Encoded)
unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst)
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI)
static constexpr ExpTgt ExpTgtInfo[]
bool getTgtName(unsigned Id, StringRef &Name, int &Index)
unsigned getTgtId(const StringRef Name)
constexpr uint32_t VersionMinor
HSA metadata minor version.
constexpr uint32_t VersionMajor
HSA metadata major version.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, std::optional< bool > EnableWavefrontSize32)
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI)
unsigned getArchVGPRAllocGranule()
For subtargets with a unified VGPR file and mixed ArchVGPR/AGPR usage, returns the allocation granule...
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getWavefrontSize(const MCSubtargetInfo *STI)
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize)
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI)
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed)
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI)
unsigned getLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getEUsPerCU(const MCSubtargetInfo *STI)
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI)
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU)
static TargetIDSetting getTargetIDSettingFromFeatureString(StringRef FeatureString)
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable)
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs)
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI)
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI)
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getAllocatedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, std::optional< bool > EnableWavefrontSize32)
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, AMDGPUSubtarget::Generation Gen)
static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs, unsigned Granule)
unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI)
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI)
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize)
StringLiteral const UfmtSymbolicGFX11[]
bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI)
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI)
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX10[]
StringLiteral const DfmtSymbolic[]
static StringLiteral const * getNfmtLookupTable(const MCSubtargetInfo &STI)
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI)
StringLiteral const NfmtSymbolicGFX10[]
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI)
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, const MCSubtargetInfo &STI)
StringRef getDfmtName(unsigned Id)
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt)
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI)
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI)
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX11[]
StringLiteral const NfmtSymbolicVI[]
StringLiteral const NfmtSymbolicSICI[]
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI)
int64_t getDfmt(const StringRef Name)
StringLiteral const UfmtSymbolicGFX10[]
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt)
uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId)
bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI)
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, uint16_t &StreamId, const MCSubtargetInfo &STI)
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, const MCSubtargetInfo &STI, bool Strict)
StringRef getMsgOpName(int64_t MsgId, uint64_t Encoding, const MCSubtargetInfo &STI)
Map from an encoding to the symbolic name for a sendmsg operation.
static uint64_t getMsgIdMask(const MCSubtargetInfo &STI)
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, bool Strict)
constexpr unsigned VOPD_VGPR_BANK_MASKS[]
constexpr unsigned COMPONENTS_NUM
constexpr unsigned VOPD3_VGPR_BANK_MASKS[]
bool isPackedFP32Inst(unsigned Opc)
bool isGCN3Encoding(const MCSubtargetInfo &STI)
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
bool isGFX10_BEncoding(const MCSubtargetInfo &STI)
bool isGFX10_GFX11(const MCSubtargetInfo &STI)
bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType)
LLVM_READONLY const MIMGInfo * getMIMGInfo(unsigned Opc)
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo)
Get size of register operand.
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt)
Decodes Vmcnt, Expcnt and Lgkmcnt from given Waitcnt for given isa Version, and writes decoded values...
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
bool isSGPR(MCRegister Reg, const MCRegisterInfo *TRI)
Is Reg - scalar register.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset)
Convert ByteOffset to dwords if the subtarget uses dword SMRD immediate offsets.
static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Storecnt)
MCRegister getMCReg(MCRegister Reg, const MCSubtargetInfo &STI)
If Reg is a pseudo reg, return the correct hardware register given STI otherwise return Reg.
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST)
bool isVOPCAsmOnly(unsigned Opc)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool getMTBUFHasSrsrc(unsigned Opc)
std::optional< int64_t > getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, int64_t ByteOffset)
bool getWMMAIsXDL(unsigned Opc)
uint8_t wmmaScaleF8F6F4FormatToNumRegs(unsigned Fmt)
static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr, int Size, unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
bool isGFX10Before1030(const MCSubtargetInfo &STI)
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo)
Does this operand support only inlinable literals?
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc)
const int OPR_ID_UNSUPPORTED
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isInlinableLiteralV2I16(uint32_t Literal)
int getMTBUFElements(unsigned Opc)
bool isHi16Reg(MCRegister Reg, const MCRegisterInfo &MRI)
static int encodeCustomOperandVal(const CustomOperandVal &Op, int64_t InputVal)
unsigned getTemporalHintType(const MCInstrDesc TID)
int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR)
bool isGFX10(const MCSubtargetInfo &STI)
const MCRegisterClass * getVGPRPhysRegClass(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool isInlinableLiteralV2BF16(uint32_t Literal)
unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV216(bool IsFloat, uint32_t Literal)
FPType getFPDstSelType(unsigned Opc)
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST)
For pre-GFX12 FLAT instructions the offset must be positive; MSB is ignored and forced to zero.
bool hasA16(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset, bool IsBuffer)
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool hasPackedD16(const MCSubtargetInfo &STI)
unsigned getStorecntBitMask(const IsaVersion &Version)
unsigned getLdsDwGranularity(const MCSubtargetInfo &ST)
bool isGFX940(const MCSubtargetInfo &STI)
bool isInlinableLiteralV2F16(uint32_t Literal)
bool isHsaAbi(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
const int OPR_VAL_INVALID
unsigned getVGPREncodingMSBs(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool getSMEMIsBuffer(unsigned Opc)
bool isGFX10_3_GFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
uint8_t mfmaScaleF8F6F4FormatToNumRegs(unsigned EncodingVal)
unsigned getVOPDOpcode(unsigned Opc, bool VOPD3)
bool isGroupSegment(const GlobalValue *GV)
LLVM_ABI IsaVersion getIsaVersion(StringRef GPU)
bool getMTBUFHasSoffset(unsigned Opc)
bool hasXNACK(const MCSubtargetInfo &STI)
bool isValid32BitLiteral(uint64_t Val, bool IsFP64)
static unsigned getCombinedCountBitMask(const IsaVersion &Version, bool IsStore)
CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3)
unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt)
Encodes Vmcnt, Expcnt and Lgkmcnt into Waitcnt for given isa Version.
bool isVOPC64DPP(unsigned Opc)
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements)
bool getMAIIsGFX940XDL(unsigned Opc)
bool isSI(const MCSubtargetInfo &STI)
unsigned getDefaultAMDHSACodeObjectVersion()
bool isReadOnlySegment(const GlobalValue *GV)
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
int getMUBUFBaseOpcode(unsigned Opc)
unsigned getAMDHSACodeObjectVersion(const Module &M)
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt)
unsigned getWaitcntBitMask(const IsaVersion &Version)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
bool getVOP3IsSingle(unsigned Opc)
bool isGFX9(const MCSubtargetInfo &STI)
bool isDPALU_DPP32BitOpc(unsigned Opc)
bool getVOP1IsSingle(unsigned Opc)
static bool isDwordAligned(uint64_t ByteOffset)
unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST)
bool isGFX10_AEncoding(const MCSubtargetInfo &STI)
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this a KImm operand?
bool getHasColorExport(const Function &F)
int getMTBUFBaseOpcode(unsigned Opc)
bool isGFX90A(const MCSubtargetInfo &STI)
unsigned getSamplecntBitMask(const IsaVersion &Version)
unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion)
bool hasSRAMECC(const MCSubtargetInfo &STI)
bool getHasDepthExport(const Function &F)
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI)
bool getMUBUFHasVAddr(unsigned Opc)
bool isTrue16Inst(unsigned Opc)
bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc)
std::pair< unsigned, unsigned > getVOPDComponents(unsigned VOPDOpcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
bool isGFX12(const MCSubtargetInfo &STI)
unsigned getInitialPSInputAddr(const Function &F)
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt)
bool isAsyncStore(unsigned Opc)
unsigned getDynamicVGPRBlockSize(const Function &F)
unsigned getKmcntBitMask(const IsaVersion &Version)
unsigned getVmcntBitMask(const IsaVersion &Version)
bool isNotGFX10Plus(const MCSubtargetInfo &STI)
bool hasMAIInsts(const MCSubtargetInfo &STI)
unsigned getBitOp2(unsigned Opc)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
unsigned getXcntBitMask(const IsaVersion &Version)
bool isGenericAtomic(unsigned Opc)
const MFMA_F8F6F4_Info * getWMMA_F8F6F4_WithFormatArgs(unsigned FmtA, unsigned FmtB, unsigned F8F8Opcode)
Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt)
bool isGFX8Plus(const MCSubtargetInfo &STI)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
unsigned getLgkmcntBitMask(const IsaVersion &Version)
bool getMUBUFTfe(unsigned Opc)
unsigned getBvhcntBitMask(const IsaVersion &Version)
bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST)
bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST)
bool hasMIMG_R128(const MCSubtargetInfo &STI)
bool hasGFX10_3Insts(const MCSubtargetInfo &STI)
std::pair< const AMDGPU::OpName *, const AMDGPU::OpName * > getVGPRLoweringOperandTables(const MCInstrDesc &Desc)
bool hasG16(const MCSubtargetInfo &STI)
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, const MIMGDimInfo *Dim, bool IsA16, bool IsG16Supported)
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements)
unsigned getExpcntBitMask(const IsaVersion &Version)
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI)
bool getMUBUFHasSoffset(unsigned Opc)
bool isNotGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
bool isInlineValue(unsigned Reg)
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this floating-point operand?
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion)
static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr, int Size, const MCSubtargetInfo &STI)
static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Loadcnt)
bool isGFX10Plus(const MCSubtargetInfo &STI)
static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size, unsigned Code, int &Idx, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
static bool isValidRegPrefix(char C)
std::optional< int64_t > getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset, bool IsBuffer, bool HasSOffset)
bool isGlobalSegment(const GlobalValue *GV)
@ OPERAND_KIMM32
Operand with 32-bit immediate that uses the constant bus.
Definition SIDefines.h:231
@ OPERAND_REG_INLINE_C_LAST
Definition SIDefines.h:254
@ OPERAND_REG_IMM_V2FP16
Definition SIDefines.h:209
@ OPERAND_REG_INLINE_C_FP64
Definition SIDefines.h:222
@ OPERAND_REG_INLINE_C_V2BF16
Definition SIDefines.h:224
@ OPERAND_REG_IMM_V2INT16
Definition SIDefines.h:210
@ OPERAND_REG_IMM_V2BF16
Definition SIDefines.h:208
@ OPERAND_REG_INLINE_AC_FIRST
Definition SIDefines.h:256
@ OPERAND_REG_IMM_FP16
Definition SIDefines.h:207
@ OPERAND_REG_IMM_NOINLINE_V2FP16
Definition SIDefines.h:211
@ OPERAND_REG_IMM_FP64
Definition SIDefines.h:205
@ OPERAND_REG_INLINE_C_V2FP16
Definition SIDefines.h:225
@ OPERAND_REG_INLINE_AC_FP32
Definition SIDefines.h:237
@ OPERAND_REG_IMM_FP32
Definition SIDefines.h:204
@ OPERAND_REG_INLINE_C_FIRST
Definition SIDefines.h:253
@ OPERAND_REG_INLINE_C_FP32
Definition SIDefines.h:221
@ OPERAND_REG_INLINE_AC_LAST
Definition SIDefines.h:257
@ OPERAND_REG_INLINE_C_V2INT16
Definition SIDefines.h:223
@ OPERAND_REG_IMM_V2FP32
Definition SIDefines.h:213
@ OPERAND_REG_INLINE_AC_FP64
Definition SIDefines.h:238
@ OPERAND_REG_INLINE_C_FP16
Definition SIDefines.h:220
void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &KernelCode, const MCSubtargetInfo *STI)
bool isNotGFX9Plus(const MCSubtargetInfo &STI)
bool hasGDS(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset)
bool isGFX9Plus(const MCSubtargetInfo &STI)
bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI)
MCPhysReg getVGPRWithMSBs(MCPhysReg Reg, unsigned MSBs, const MCRegisterInfo &MRI)
If Reg is a low VGPR return a corresponding high VGPR with MSBs set.
const int OPR_ID_DUPLICATE
bool isVOPD(unsigned Opc)
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY)
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt)
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt)
bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc)
Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
static unsigned encodeStorecntDscnt(const IsaVersion &Version, unsigned Storecnt, unsigned Dscnt)
bool isGFX1250(const MCSubtargetInfo &STI)
int getMCOpcode(uint16_t Opcode, unsigned Gen)
const MIMGBaseOpcodeInfo * getMIMGBaseOpcode(unsigned Opc)
bool isVI(const MCSubtargetInfo &STI)
bool isTensorStore(unsigned Opc)
bool getMUBUFIsBufferInv(unsigned Opc)
bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode)
MCRegister mc2PseudoReg(MCRegister Reg)
Convert hardware register Reg to a pseudo register.
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
static int encodeCustomOperand(const CustomOperandVal *Opr, int Size, const StringRef Name, int64_t InputVal, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned hasKernargPreload(const MCSubtargetInfo &STI)
bool supportsWGP(const MCSubtargetInfo &STI)
bool isMAC(unsigned Opc)
bool isCI(const MCSubtargetInfo &STI)
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt)
bool getVOP2IsSingle(unsigned Opc)
bool getMAIIsDGEMM(unsigned Opc)
Returns true if MAI operation is a double precision GEMM.
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
const int OPR_ID_UNKNOWN
unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion)
SmallVector< unsigned > getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size, unsigned DefaultVal)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
bool isNotGFX12Plus(const MCSubtargetInfo &STI)
bool getMTBUFHasVAddr(unsigned Opc)
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt)
uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion)
std::pair< unsigned, unsigned > getIntegerPairAttribute(const Function &F, StringRef Name, std::pair< unsigned, unsigned > Default, bool OnlyFirstRequired)
unsigned getLoadcntBitMask(const IsaVersion &Version)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
bool hasVOPD(const MCSubtargetInfo &STI)
int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily, bool VOPD3)
static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Dscnt)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const MFMA_F8F6F4_Info * getMFMA_F8F6F4_WithFormatArgs(unsigned CBSZ, unsigned BLGP, unsigned F8F8Opcode)
unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion)
bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI)
bool isGFX9_GFX10(const MCSubtargetInfo &STI)
int getMUBUFElements(unsigned Opc)
static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt, unsigned Dscnt)
const GcnBufferFormatInfo * getGcnBufferFormatInfo(uint8_t BitsPerComp, uint8_t NumComponents, uint8_t NumFormat, const MCSubtargetInfo &STI)
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc)
bool isPermlane16(unsigned Opc)
bool getMUBUFHasSrsrc(unsigned Opc)
unsigned getDscntBitMask(const IsaVersion &Version)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ ELFABIVERSION_AMDGPU_HSA_V4
Definition ELF.h:384
@ ELFABIVERSION_AMDGPU_HSA_V5
Definition ELF.h:385
@ ELFABIVERSION_AMDGPU_HSA_V6
Definition ELF.h:386
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:681
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition Error.h:198
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:551
std::string utostr(uint64_t X, bool isNeg=false)
Op::Description Desc
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:164
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:399
To bit_cast(const From &from) noexcept
Definition bit.h:90
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
@ AlwaysUniform
The result values are always uniform.
Definition Uniformity.h:23
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
AMD Kernel Code Object (amd_kernel_code_t).
Instruction set architecture version.
Represents the counter values to wait for in an s_waitcnt instruction.