LLVM 22.0.0git
AMDGPUBaseInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "AMDGPUBaseInfo.h"
10#include "AMDGPU.h"
11#include "AMDGPUAsmUtils.h"
12#include "AMDKernelCodeT.h"
17#include "llvm/IR/Attributes.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/GlobalValue.h"
21#include "llvm/IR/IntrinsicsAMDGPU.h"
22#include "llvm/IR/IntrinsicsR600.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Metadata.h"
25#include "llvm/MC/MCInstrInfo.h"
30#include <optional>
31
32#define GET_INSTRINFO_NAMED_OPS
33#define GET_INSTRMAP_INFO
34#include "AMDGPUGenInstrInfo.inc"
35
37 "amdhsa-code-object-version", llvm::cl::Hidden,
39 llvm::cl::desc("Set default AMDHSA Code Object Version (module flag "
40 "or asm directive still take priority if present)"));
41
42namespace {
43
44/// \returns Bit mask for given bit \p Shift and bit \p Width.
45unsigned getBitMask(unsigned Shift, unsigned Width) {
46 return ((1 << Width) - 1) << Shift;
47}
48
49/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
50///
51/// \returns Packed \p Dst.
52unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
53 unsigned Mask = getBitMask(Shift, Width);
54 return ((Src << Shift) & Mask) | (Dst & ~Mask);
55}
56
57/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
58///
59/// \returns Unpacked bits.
60unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
61 return (Src & getBitMask(Shift, Width)) >> Shift;
62}
63
64/// \returns Vmcnt bit shift (lower bits).
65unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
66 return VersionMajor >= 11 ? 10 : 0;
67}
68
69/// \returns Vmcnt bit width (lower bits).
70unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
71 return VersionMajor >= 11 ? 6 : 4;
72}
73
74/// \returns Expcnt bit shift.
75unsigned getExpcntBitShift(unsigned VersionMajor) {
76 return VersionMajor >= 11 ? 0 : 4;
77}
78
79/// \returns Expcnt bit width.
80unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }
81
82/// \returns Lgkmcnt bit shift.
83unsigned getLgkmcntBitShift(unsigned VersionMajor) {
84 return VersionMajor >= 11 ? 4 : 8;
85}
86
87/// \returns Lgkmcnt bit width.
88unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89 return VersionMajor >= 10 ? 6 : 4;
90}
91
92/// \returns Vmcnt bit shift (higher bits).
93unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }
94
95/// \returns Vmcnt bit width (higher bits).
96unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
97 return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
98}
99
100/// \returns Loadcnt bit width
101unsigned getLoadcntBitWidth(unsigned VersionMajor) {
102 return VersionMajor >= 12 ? 6 : 0;
103}
104
105/// \returns Samplecnt bit width.
106unsigned getSamplecntBitWidth(unsigned VersionMajor) {
107 return VersionMajor >= 12 ? 6 : 0;
108}
109
110/// \returns Bvhcnt bit width.
111unsigned getBvhcntBitWidth(unsigned VersionMajor) {
112 return VersionMajor >= 12 ? 3 : 0;
113}
114
115/// \returns Dscnt bit width.
116unsigned getDscntBitWidth(unsigned VersionMajor) {
117 return VersionMajor >= 12 ? 6 : 0;
118}
119
120/// \returns Dscnt bit shift in combined S_WAIT instructions.
121unsigned getDscntBitShift(unsigned VersionMajor) { return 0; }
122
123/// \returns Storecnt or Vscnt bit width, depending on VersionMajor.
124unsigned getStorecntBitWidth(unsigned VersionMajor) {
125 return VersionMajor >= 10 ? 6 : 0;
126}
127
128/// \returns Kmcnt bit width.
129unsigned getKmcntBitWidth(unsigned VersionMajor) {
130 return VersionMajor >= 12 ? 5 : 0;
131}
132
133/// \returns Xcnt bit width.
134unsigned getXcntBitWidth(unsigned VersionMajor, unsigned VersionMinor) {
135 return VersionMajor == 12 && VersionMinor == 5 ? 6 : 0;
136}
137
138/// \returns shift for Loadcnt/Storecnt in combined S_WAIT instructions.
139unsigned getLoadcntStorecntBitShift(unsigned VersionMajor) {
140 return VersionMajor >= 12 ? 8 : 0;
141}
142
143/// \returns VaSdst bit width
144inline unsigned getVaSdstBitWidth() { return 3; }
145
146/// \returns VaSdst bit shift
147inline unsigned getVaSdstBitShift() { return 9; }
148
149/// \returns VmVsrc bit width
150inline unsigned getVmVsrcBitWidth() { return 3; }
151
152/// \returns VmVsrc bit shift
153inline unsigned getVmVsrcBitShift() { return 2; }
154
155/// \returns VaVdst bit width
156inline unsigned getVaVdstBitWidth() { return 4; }
157
158/// \returns VaVdst bit shift
159inline unsigned getVaVdstBitShift() { return 12; }
160
161/// \returns VaVcc bit width
162inline unsigned getVaVccBitWidth() { return 1; }
163
164/// \returns VaVcc bit shift
165inline unsigned getVaVccBitShift() { return 1; }
166
167/// \returns SaSdst bit width
168inline unsigned getSaSdstBitWidth() { return 1; }
169
170/// \returns SaSdst bit shift
171inline unsigned getSaSdstBitShift() { return 0; }
172
173/// \returns VaSsrc width
174inline unsigned getVaSsrcBitWidth() { return 1; }
175
176/// \returns VaSsrc bit shift
177inline unsigned getVaSsrcBitShift() { return 8; }
178
179/// \returns HoldCnt bit shift
180inline unsigned getHoldCntWidth() { return 1; }
181
182/// \returns HoldCnt bit shift
183inline unsigned getHoldCntBitShift() { return 7; }
184
185} // end anonymous namespace
186
187namespace llvm {
188
189namespace AMDGPU {
190
191/// \returns true if the target supports signed immediate offset for SMRD
192/// instructions.
194 return isGFX9Plus(ST);
195}
196
197/// \returns True if \p STI is AMDHSA.
198bool isHsaAbi(const MCSubtargetInfo &STI) {
199 return STI.getTargetTriple().getOS() == Triple::AMDHSA;
200}
201
204 M.getModuleFlag("amdhsa_code_object_version"))) {
205 return (unsigned)Ver->getZExtValue() / 100;
206 }
207
209}
210
214
215unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion) {
216 switch (ABIVersion) {
218 return 4;
220 return 5;
222 return 6;
223 default:
225 }
226}
227
228uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion) {
229 if (T.getOS() != Triple::AMDHSA)
230 return 0;
231
232 switch (CodeObjectVersion) {
233 case 4:
235 case 5:
237 case 6:
239 default:
240 report_fatal_error("Unsupported AMDHSA Code Object Version " +
241 Twine(CodeObjectVersion));
242 }
243}
244
245unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
246 switch (CodeObjectVersion) {
247 case AMDHSA_COV4:
248 return 48;
249 case AMDHSA_COV5:
250 case AMDHSA_COV6:
251 default:
253 }
254}
255
256// FIXME: All such magic numbers about the ABI should be in a
257// central TD file.
258unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
259 switch (CodeObjectVersion) {
260 case AMDHSA_COV4:
261 return 24;
262 case AMDHSA_COV5:
263 case AMDHSA_COV6:
264 default:
266 }
267}
268
269unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
270 switch (CodeObjectVersion) {
271 case AMDHSA_COV4:
272 return 32;
273 case AMDHSA_COV5:
274 case AMDHSA_COV6:
275 default:
277 }
278}
279
280unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
281 switch (CodeObjectVersion) {
282 case AMDHSA_COV4:
283 return 40;
284 case AMDHSA_COV5:
285 case AMDHSA_COV6:
286 default:
288 }
289}
290
291#define GET_MIMGBaseOpcodesTable_IMPL
292#define GET_MIMGDimInfoTable_IMPL
293#define GET_MIMGInfoTable_IMPL
294#define GET_MIMGLZMappingTable_IMPL
295#define GET_MIMGMIPMappingTable_IMPL
296#define GET_MIMGBiasMappingTable_IMPL
297#define GET_MIMGOffsetMappingTable_IMPL
298#define GET_MIMGG16MappingTable_IMPL
299#define GET_MAIInstInfoTable_IMPL
300#define GET_WMMAInstInfoTable_IMPL
301#include "AMDGPUGenSearchableTables.inc"
302
303int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
304 unsigned VDataDwords, unsigned VAddrDwords) {
305 const MIMGInfo *Info =
306 getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, VDataDwords, VAddrDwords);
307 return Info ? Info->Opcode : -1;
308}
309
311 const MIMGInfo *Info = getMIMGInfo(Opc);
312 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
313}
314
315int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
316 const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
317 const MIMGInfo *NewInfo =
318 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
319 NewChannels, OrigInfo->VAddrDwords);
320 return NewInfo ? NewInfo->Opcode : -1;
321}
322
323unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
324 const MIMGDimInfo *Dim, bool IsA16,
325 bool IsG16Supported) {
326 unsigned AddrWords = BaseOpcode->NumExtraArgs;
327 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
328 (BaseOpcode->LodOrClampOrMip ? 1 : 0);
329 if (IsA16)
330 AddrWords += divideCeil(AddrComponents, 2);
331 else
332 AddrWords += AddrComponents;
333
334 // Note: For subtargets that support A16 but not G16, enabling A16 also
335 // enables 16 bit gradients.
336 // For subtargets that support A16 (operand) and G16 (done with a different
337 // instruction encoding), they are independent.
338
339 if (BaseOpcode->Gradients) {
340 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
341 // There are two gradients per coordinate, we pack them separately.
342 // For the 3d case,
343 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
344 AddrWords += alignTo<2>(Dim->NumGradients / 2);
345 else
346 AddrWords += Dim->NumGradients;
347 }
348 return AddrWords;
349}
350
361
370
375
380
384
388
392
399
407
412
413#define GET_FP4FP8DstByteSelTable_DECL
414#define GET_FP4FP8DstByteSelTable_IMPL
415
420
426
427#define GET_MTBUFInfoTable_DECL
428#define GET_MTBUFInfoTable_IMPL
429#define GET_MUBUFInfoTable_DECL
430#define GET_MUBUFInfoTable_IMPL
431#define GET_SMInfoTable_DECL
432#define GET_SMInfoTable_IMPL
433#define GET_VOP1InfoTable_DECL
434#define GET_VOP1InfoTable_IMPL
435#define GET_VOP2InfoTable_DECL
436#define GET_VOP2InfoTable_IMPL
437#define GET_VOP3InfoTable_DECL
438#define GET_VOP3InfoTable_IMPL
439#define GET_VOPC64DPPTable_DECL
440#define GET_VOPC64DPPTable_IMPL
441#define GET_VOPC64DPP8Table_DECL
442#define GET_VOPC64DPP8Table_IMPL
443#define GET_VOPCAsmOnlyInfoTable_DECL
444#define GET_VOPCAsmOnlyInfoTable_IMPL
445#define GET_VOP3CAsmOnlyInfoTable_DECL
446#define GET_VOP3CAsmOnlyInfoTable_IMPL
447#define GET_VOPDComponentTable_DECL
448#define GET_VOPDComponentTable_IMPL
449#define GET_VOPDPairs_DECL
450#define GET_VOPDPairs_IMPL
451#define GET_VOPTrue16Table_DECL
452#define GET_VOPTrue16Table_IMPL
453#define GET_True16D16Table_IMPL
454#define GET_WMMAOpcode2AddrMappingTable_DECL
455#define GET_WMMAOpcode2AddrMappingTable_IMPL
456#define GET_WMMAOpcode3AddrMappingTable_DECL
457#define GET_WMMAOpcode3AddrMappingTable_IMPL
458#define GET_getMFMA_F8F6F4_WithSize_DECL
459#define GET_getMFMA_F8F6F4_WithSize_IMPL
460#define GET_isMFMA_F8F6F4Table_IMPL
461#define GET_isCvtScaleF32_F32F16ToF8F4Table_IMPL
462
463#include "AMDGPUGenSearchableTables.inc"
464
465int getMTBUFBaseOpcode(unsigned Opc) {
466 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
467 return Info ? Info->BaseOpcode : -1;
468}
469
470int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
471 const MTBUFInfo *Info =
472 getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
473 return Info ? Info->Opcode : -1;
474}
475
476int getMTBUFElements(unsigned Opc) {
477 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
478 return Info ? Info->elements : 0;
479}
480
481bool getMTBUFHasVAddr(unsigned Opc) {
482 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
483 return Info && Info->has_vaddr;
484}
485
486bool getMTBUFHasSrsrc(unsigned Opc) {
487 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
488 return Info && Info->has_srsrc;
489}
490
491bool getMTBUFHasSoffset(unsigned Opc) {
492 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
493 return Info && Info->has_soffset;
494}
495
496int getMUBUFBaseOpcode(unsigned Opc) {
497 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
498 return Info ? Info->BaseOpcode : -1;
499}
500
501int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
502 const MUBUFInfo *Info =
503 getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
504 return Info ? Info->Opcode : -1;
505}
506
507int getMUBUFElements(unsigned Opc) {
508 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
509 return Info ? Info->elements : 0;
510}
511
512bool getMUBUFHasVAddr(unsigned Opc) {
513 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
514 return Info && Info->has_vaddr;
515}
516
517bool getMUBUFHasSrsrc(unsigned Opc) {
518 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
519 return Info && Info->has_srsrc;
520}
521
522bool getMUBUFHasSoffset(unsigned Opc) {
523 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
524 return Info && Info->has_soffset;
525}
526
527bool getMUBUFIsBufferInv(unsigned Opc) {
528 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
529 return Info && Info->IsBufferInv;
530}
531
532bool getMUBUFTfe(unsigned Opc) {
533 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
534 return Info && Info->tfe;
535}
536
537bool getSMEMIsBuffer(unsigned Opc) {
538 const SMInfo *Info = getSMEMOpcodeHelper(Opc);
539 return Info && Info->IsBuffer;
540}
541
542bool getVOP1IsSingle(unsigned Opc) {
543 const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
544 return !Info || Info->IsSingle;
545}
546
547bool getVOP2IsSingle(unsigned Opc) {
548 const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
549 return !Info || Info->IsSingle;
550}
551
552bool getVOP3IsSingle(unsigned Opc) {
553 const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
554 return !Info || Info->IsSingle;
555}
556
557bool isVOPC64DPP(unsigned Opc) {
558 return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
559}
560
561bool isVOPCAsmOnly(unsigned Opc) { return isVOPCAsmOnlyOpcodeHelper(Opc); }
562
563bool getMAIIsDGEMM(unsigned Opc) {
564 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
565 return Info && Info->is_dgemm;
566}
567
568bool getMAIIsGFX940XDL(unsigned Opc) {
569 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
570 return Info && Info->is_gfx940_xdl;
571}
572
573bool getWMMAIsXDL(unsigned Opc) {
574 const WMMAInstInfo *Info = getWMMAInstInfoHelper(Opc);
575 return Info ? Info->is_wmma_xdl : false;
576}
577
579 switch (EncodingVal) {
582 return 6;
584 return 4;
587 default:
588 return 8;
589 }
590
591 llvm_unreachable("covered switch over mfma scale formats");
592}
593
595 unsigned BLGP,
596 unsigned F8F8Opcode) {
597 uint8_t SrcANumRegs = mfmaScaleF8F6F4FormatToNumRegs(CBSZ);
598 uint8_t SrcBNumRegs = mfmaScaleF8F6F4FormatToNumRegs(BLGP);
599 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
600}
601
603 switch (Fmt) {
606 return 16;
609 return 12;
611 return 8;
612 }
613
614 llvm_unreachable("covered switch over wmma scale formats");
615}
616
618 unsigned FmtB,
619 unsigned F8F8Opcode) {
620 uint8_t SrcANumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtA);
621 uint8_t SrcBNumRegs = wmmaScaleF8F6F4FormatToNumRegs(FmtB);
622 return getMFMA_F8F6F4_InstWithNumRegs(SrcANumRegs, SrcBNumRegs, F8F8Opcode);
623}
624
626 if (ST.hasFeature(AMDGPU::FeatureGFX1250Insts))
628 if (ST.hasFeature(AMDGPU::FeatureGFX12Insts))
630 if (ST.hasFeature(AMDGPU::FeatureGFX11Insts))
632 llvm_unreachable("Subtarget generation does not support VOPD!");
633}
634
635CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3) {
636 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
637 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
638 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
639 if (Info) {
640 // Check that Opc can be used as VOPDY for this encoding. V_MOV_B32 as a
641 // VOPDX is just a placeholder here, it is supported on all encodings.
642 // TODO: This can be optimized by creating tables of supported VOPDY
643 // opcodes per encoding.
644 unsigned VOPDMov = AMDGPU::getVOPDOpcode(AMDGPU::V_MOV_B32_e32, VOPD3);
645 bool CanBeVOPDY = getVOPDFull(VOPDMov, AMDGPU::getVOPDOpcode(Opc, VOPD3),
646 EncodingFamily, VOPD3) != -1;
647 return {VOPD3 ? Info->CanBeVOPD3X : Info->CanBeVOPDX, CanBeVOPDY};
648 }
649
650 return {false, false};
651}
652
653unsigned getVOPDOpcode(unsigned Opc, bool VOPD3) {
654 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(Opc) : 0;
655 Opc = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : Opc;
656 const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
657 return Info ? Info->VOPDOp : ~0u;
658}
659
660bool isVOPD(unsigned Opc) {
661 return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
662}
663
664bool isMAC(unsigned Opc) {
665 return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
666 Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
667 Opc == AMDGPU::V_MAC_F32_e64_vi ||
668 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
669 Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
670 Opc == AMDGPU::V_MAC_F16_e64_vi ||
671 Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
672 Opc == AMDGPU::V_FMAC_F64_e64_gfx12 ||
673 Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
674 Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
675 Opc == AMDGPU::V_FMAC_F32_e64_gfx12 ||
676 Opc == AMDGPU::V_FMAC_F32_e64_vi ||
677 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
678 Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
679 Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
680 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
681 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx11 ||
682 Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx12 ||
683 Opc == AMDGPU::V_FMAC_F16_fake16_e64_gfx12 ||
684 Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
685 Opc == AMDGPU::V_DOT2C_F32_BF16_e64_vi ||
686 Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
687 Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
688 Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
689}
690
691bool isPermlane16(unsigned Opc) {
692 return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
693 Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
694 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
695 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11 ||
696 Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx12 ||
697 Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx12 ||
698 Opc == AMDGPU::V_PERMLANE16_VAR_B32_e64_gfx12 ||
699 Opc == AMDGPU::V_PERMLANEX16_VAR_B32_e64_gfx12;
700}
701
703 return Opc == AMDGPU::V_CVT_F32_BF8_e64_gfx12 ||
704 Opc == AMDGPU::V_CVT_F32_FP8_e64_gfx12 ||
705 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp_gfx12 ||
706 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp_gfx12 ||
707 Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp8_gfx12 ||
708 Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp8_gfx12 ||
709 Opc == AMDGPU::V_CVT_PK_F32_BF8_fake16_e64_gfx12 ||
710 Opc == AMDGPU::V_CVT_PK_F32_FP8_fake16_e64_gfx12 ||
711 Opc == AMDGPU::V_CVT_PK_F32_BF8_t16_e64_gfx12 ||
712 Opc == AMDGPU::V_CVT_PK_F32_FP8_t16_e64_gfx12;
713}
714
715bool isGenericAtomic(unsigned Opc) {
716 return Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP ||
717 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD ||
718 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB ||
719 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN ||
720 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN ||
721 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX ||
722 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX ||
723 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND ||
724 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR ||
725 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR ||
726 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC ||
727 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC ||
728 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD ||
729 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN ||
730 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX ||
731 Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP ||
732 Opc == AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG;
733}
734
735bool isAsyncStore(unsigned Opc) {
736 return Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_gfx1250 ||
737 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_gfx1250 ||
738 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_gfx1250 ||
739 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_gfx1250 ||
740 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B8_SADDR_gfx1250 ||
741 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B32_SADDR_gfx1250 ||
742 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B64_SADDR_gfx1250 ||
743 Opc == GLOBAL_STORE_ASYNC_FROM_LDS_B128_SADDR_gfx1250;
744}
745
746bool isTensorStore(unsigned Opc) {
747 return Opc == TENSOR_STORE_FROM_LDS_gfx1250 ||
748 Opc == TENSOR_STORE_FROM_LDS_D2_gfx1250;
749}
750
751unsigned getTemporalHintType(const MCInstrDesc TID) {
754 unsigned Opc = TID.getOpcode();
755 // Async and Tensor store should have the temporal hint type of TH_TYPE_STORE
756 if (TID.mayStore() &&
757 (isAsyncStore(Opc) || isTensorStore(Opc) || !TID.mayLoad()))
758 return CPol::TH_TYPE_STORE;
759
760 // This will default to returning TH_TYPE_LOAD when neither MayStore nor
761 // MayLoad flag is present which is the case with instructions like
762 // image_get_resinfo.
763 return CPol::TH_TYPE_LOAD;
764}
765
766bool isTrue16Inst(unsigned Opc) {
767 const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
768 return Info && Info->IsTrue16;
769}
770
772 const FP4FP8DstByteSelInfo *Info = getFP4FP8DstByteSelHelper(Opc);
773 if (!Info)
774 return FPType::None;
775 if (Info->HasFP8DstByteSel)
776 return FPType::FP8;
777 if (Info->HasFP4DstByteSel)
778 return FPType::FP4;
779
780 return FPType::None;
781}
782
783unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
784 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
785 return Info ? Info->Opcode3Addr : ~0u;
786}
787
788unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
789 const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
790 return Info ? Info->Opcode2Addr : ~0u;
791}
792
793// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
794// header files, so we need to wrap it in a function that takes unsigned
795// instead.
796int getMCOpcode(uint16_t Opcode, unsigned Gen) {
797 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
798}
799
800unsigned getBitOp2(unsigned Opc) {
801 switch (Opc) {
802 default:
803 return 0;
804 case AMDGPU::V_AND_B32_e32:
805 return 0x40;
806 case AMDGPU::V_OR_B32_e32:
807 return 0x54;
808 case AMDGPU::V_XOR_B32_e32:
809 return 0x14;
810 case AMDGPU::V_XNOR_B32_e32:
811 return 0x41;
812 }
813}
814
815int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily,
816 bool VOPD3) {
817 bool IsConvertibleToBitOp = VOPD3 ? getBitOp2(OpY) : 0;
818 OpY = IsConvertibleToBitOp ? (unsigned)AMDGPU::V_BITOP3_B32_e64 : OpY;
819 const VOPDInfo *Info =
820 getVOPDInfoFromComponentOpcodes(OpX, OpY, EncodingFamily, VOPD3);
821 return Info ? Info->Opcode : -1;
822}
823
824std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
825 const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
826 assert(Info);
827 const auto *OpX = getVOPDBaseFromComponent(Info->OpX);
828 const auto *OpY = getVOPDBaseFromComponent(Info->OpY);
829 assert(OpX && OpY);
830 return {OpX->BaseVOP, OpY->BaseVOP};
831}
832
833namespace VOPD {
834
835ComponentProps::ComponentProps(const MCInstrDesc &OpDesc, bool VOP3Layout) {
837
840 auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
841 assert(TiedIdx == -1 || TiedIdx == Component::DST);
842 HasSrc2Acc = TiedIdx != -1;
843 Opcode = OpDesc.getOpcode();
844
845 IsVOP3 = VOP3Layout || (OpDesc.TSFlags & SIInstrFlags::VOP3);
846 SrcOperandsNum = AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2) ? 3
847 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::imm) ? 3
848 : AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src1) ? 2
849 : 1;
850 assert(SrcOperandsNum <= Component::MAX_SRC_NUM);
851
852 if (Opcode == AMDGPU::V_CNDMASK_B32_e32 ||
853 Opcode == AMDGPU::V_CNDMASK_B32_e64) {
854 // CNDMASK is an awkward exception, it has FP modifiers, but not FP
855 // operands.
856 NumVOPD3Mods = 2;
857 if (IsVOP3)
858 SrcOperandsNum = 3;
859 } else if (isSISrcFPOperand(OpDesc,
860 getNamedOperandIdx(Opcode, OpName::src0))) {
861 // All FP VOPD instructions have Neg modifiers for all operands except
862 // for tied src2.
863 NumVOPD3Mods = SrcOperandsNum;
864 if (HasSrc2Acc)
865 --NumVOPD3Mods;
866 }
867
868 if (OpDesc.TSFlags & SIInstrFlags::VOP3)
869 return;
870
871 auto OperandsNum = OpDesc.getNumOperands();
872 unsigned CompOprIdx;
873 for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
874 if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
875 MandatoryLiteralIdx = CompOprIdx;
876 break;
877 }
878 }
879}
880
882 return getNamedOperandIdx(Opcode, OpName::bitop3);
883}
884
885unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
886 assert(CompOprIdx < Component::MAX_OPR_NUM);
887
888 if (CompOprIdx == Component::DST)
890
891 auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
892 if (CompSrcIdx < getCompParsedSrcOperandsNum())
893 return getIndexOfSrcInParsedOperands(CompSrcIdx);
894
895 // The specified operand does not exist.
896 return 0;
897}
898
900 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
901 const MCRegisterInfo &MRI, bool SkipSrc, bool AllowSameVGPR,
902 bool VOPD3) const {
903
904 auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx,
905 CompInfo[ComponentIndex::X].isVOP3());
906 auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx,
907 CompInfo[ComponentIndex::Y].isVOP3());
908
909 const auto banksOverlap = [&MRI](MCRegister X, MCRegister Y,
910 unsigned BanksMask) -> bool {
911 MCRegister BaseX = MRI.getSubReg(X, AMDGPU::sub0);
912 MCRegister BaseY = MRI.getSubReg(Y, AMDGPU::sub0);
913 if (!BaseX)
914 BaseX = X;
915 if (!BaseY)
916 BaseY = Y;
917 if ((BaseX & BanksMask) == (BaseY & BanksMask))
918 return true;
919 if (BaseX != X /* This is 64-bit register */ &&
920 ((BaseX + 1) & BanksMask) == (BaseY & BanksMask))
921 return true;
922 if (BaseY != Y && (BaseX & BanksMask) == ((BaseY + 1) & BanksMask))
923 return true;
924
925 // If both are 64-bit bank conflict will be detected yet while checking
926 // the first subreg.
927 return false;
928 };
929
930 unsigned CompOprIdx;
931 for (CompOprIdx = 0; CompOprIdx < Component::MAX_OPR_NUM; ++CompOprIdx) {
932 unsigned BanksMasks = VOPD3 ? VOPD3_VGPR_BANK_MASKS[CompOprIdx]
933 : VOPD_VGPR_BANK_MASKS[CompOprIdx];
934 if (!OpXRegs[CompOprIdx] || !OpYRegs[CompOprIdx])
935 continue;
936
937 if (getVGPREncodingMSBs(OpXRegs[CompOprIdx], MRI) !=
938 getVGPREncodingMSBs(OpYRegs[CompOprIdx], MRI))
939 return CompOprIdx;
940
941 if (SkipSrc && CompOprIdx >= Component::DST_NUM)
942 continue;
943
944 if (CompOprIdx < Component::DST_NUM) {
945 // Even if we do not check vdst parity, vdst operands still shall not
946 // overlap.
947 if (MRI.regsOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx]))
948 return CompOprIdx;
949 if (VOPD3) // No need to check dst parity.
950 continue;
951 }
952
953 if (banksOverlap(OpXRegs[CompOprIdx], OpYRegs[CompOprIdx], BanksMasks) &&
954 (!AllowSameVGPR || CompOprIdx < Component::DST_NUM ||
955 OpXRegs[CompOprIdx] != OpYRegs[CompOprIdx]))
956 return CompOprIdx;
957 }
958
959 return {};
960}
961
962// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
963// by the specified component. If an operand is unused
964// or is not a VGPR, the corresponding value is 0.
965//
966// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
967// for the specified component and MC operand. The callback must return 0
968// if the operand is not a register or not a VGPR.
970InstInfo::getRegIndices(unsigned CompIdx,
971 std::function<unsigned(unsigned, unsigned)> GetRegIdx,
972 bool VOPD3) const {
973 assert(CompIdx < COMPONENTS_NUM);
974
975 const auto &Comp = CompInfo[CompIdx];
977
978 RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());
979
980 for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
981 unsigned CompSrcIdx = CompOprIdx - DST_NUM;
982 RegIndices[CompOprIdx] =
983 Comp.hasRegSrcOperand(CompSrcIdx)
984 ? GetRegIdx(CompIdx,
985 Comp.getIndexOfSrcInMCOperands(CompSrcIdx, VOPD3))
986 : 0;
987 }
988 return RegIndices;
989}
990
991} // namespace VOPD
992
994 return VOPD::InstInfo(OpX, OpY);
995}
996
997VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode,
998 const MCInstrInfo *InstrInfo) {
999 auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
1000 const auto &OpXDesc = InstrInfo->get(OpX);
1001 const auto &OpYDesc = InstrInfo->get(OpY);
1002 bool VOPD3 = InstrInfo->get(VOPDOpcode).TSFlags & SIInstrFlags::VOPD3;
1004 VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo, VOPD3);
1005 return VOPD::InstInfo(OpXInfo, OpYInfo);
1006}
1007
1008namespace IsaInfo {
1009
1011 : STI(STI), XnackSetting(TargetIDSetting::Any),
1012 SramEccSetting(TargetIDSetting::Any) {
1013 if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
1014 XnackSetting = TargetIDSetting::Unsupported;
1015 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
1016 SramEccSetting = TargetIDSetting::Unsupported;
1017}
1018
1020 // Check if xnack or sramecc is explicitly enabled or disabled. In the
1021 // absence of the target features we assume we must generate code that can run
1022 // in any environment.
1023 SubtargetFeatures Features(FS);
1024 std::optional<bool> XnackRequested;
1025 std::optional<bool> SramEccRequested;
1026
1027 for (const std::string &Feature : Features.getFeatures()) {
1028 if (Feature == "+xnack")
1029 XnackRequested = true;
1030 else if (Feature == "-xnack")
1031 XnackRequested = false;
1032 else if (Feature == "+sramecc")
1033 SramEccRequested = true;
1034 else if (Feature == "-sramecc")
1035 SramEccRequested = false;
1036 }
1037
1038 bool XnackSupported = isXnackSupported();
1039 bool SramEccSupported = isSramEccSupported();
1040
1041 if (XnackRequested) {
1042 if (XnackSupported) {
1043 XnackSetting =
1044 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1045 } else {
1046 // If a specific xnack setting was requested and this GPU does not support
1047 // xnack emit a warning. Setting will remain set to "Unsupported".
1048 if (*XnackRequested) {
1049 errs() << "warning: xnack 'On' was requested for a processor that does "
1050 "not support it!\n";
1051 } else {
1052 errs() << "warning: xnack 'Off' was requested for a processor that "
1053 "does not support it!\n";
1054 }
1055 }
1056 }
1057
1058 if (SramEccRequested) {
1059 if (SramEccSupported) {
1060 SramEccSetting =
1061 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
1062 } else {
1063 // If a specific sramecc setting was requested and this GPU does not
1064 // support sramecc emit a warning. Setting will remain set to
1065 // "Unsupported".
1066 if (*SramEccRequested) {
1067 errs() << "warning: sramecc 'On' was requested for a processor that "
1068 "does not support it!\n";
1069 } else {
1070 errs() << "warning: sramecc 'Off' was requested for a processor that "
1071 "does not support it!\n";
1072 }
1073 }
1074 }
1075}
1076
1077static TargetIDSetting
1079 if (FeatureString.ends_with("-"))
1080 return TargetIDSetting::Off;
1081 if (FeatureString.ends_with("+"))
1082 return TargetIDSetting::On;
1083
1084 llvm_unreachable("Malformed feature string");
1085}
1086
1088 SmallVector<StringRef, 3> TargetIDSplit;
1089 TargetID.split(TargetIDSplit, ':');
1090
1091 for (const auto &FeatureString : TargetIDSplit) {
1092 if (FeatureString.starts_with("xnack"))
1093 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
1094 if (FeatureString.starts_with("sramecc"))
1095 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
1096 }
1097}
1098
1099std::string AMDGPUTargetID::toString() const {
1100 std::string StringRep;
1101 raw_string_ostream StreamRep(StringRep);
1102
1103 auto TargetTriple = STI.getTargetTriple();
1104 auto Version = getIsaVersion(STI.getCPU());
1105
1106 StreamRep << TargetTriple.getArchName() << '-' << TargetTriple.getVendorName()
1107 << '-' << TargetTriple.getOSName() << '-'
1108 << TargetTriple.getEnvironmentName() << '-';
1109
1110 std::string Processor;
1111 // TODO: Following else statement is present here because we used various
1112 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
1113 // Remove once all aliases are removed from GCNProcessors.td.
1114 if (Version.Major >= 9)
1115 Processor = STI.getCPU().str();
1116 else
1117 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
1118 Twine(Version.Stepping))
1119 .str();
1120
1121 std::string Features;
1122 if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
1123 // sramecc.
1125 Features += ":sramecc-";
1127 Features += ":sramecc+";
1128 // xnack.
1130 Features += ":xnack-";
1132 Features += ":xnack+";
1133 }
1134
1135 StreamRep << Processor << Features;
1136
1137 return StringRep;
1138}
1139
1140unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
1141 if (STI->getFeatureBits().test(FeatureWavefrontSize16))
1142 return 16;
1143 if (STI->getFeatureBits().test(FeatureWavefrontSize32))
1144 return 32;
1145
1146 return 64;
1147}
1148
1150 unsigned BytesPerCU = getAddressableLocalMemorySize(STI);
1151
1152 // "Per CU" really means "per whatever functional block the waves of a
1153 // workgroup must share". So the effective local memory size is doubled in
1154 // WGP mode on gfx10.
1155 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1156 BytesPerCU *= 2;
1157
1158 return BytesPerCU;
1159}
1160
1162 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize32768))
1163 return 32768;
1164 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize65536))
1165 return 65536;
1166 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize163840))
1167 return 163840;
1168 if (STI->getFeatureBits().test(FeatureAddressableLocalMemorySize327680))
1169 return 327680;
1170 return 32768;
1171}
1172
1173unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
1174 // "Per CU" really means "per whatever functional block the waves of a
1175 // workgroup must share".
1176
1177 // GFX12.5 only supports CU mode, which contains four SIMDs.
1178 if (isGFX1250(*STI)) {
1179 assert(STI->getFeatureBits().test(FeatureCuMode));
1180 return 4;
1181 }
1182
1183 // For gfx10 in CU mode the functional block is the CU, which contains
1184 // two SIMDs.
1185 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
1186 return 2;
1187
1188 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP
1189 // contains two CUs, so a total of four SIMDs.
1190 return 4;
1191}
1192
1194 unsigned FlatWorkGroupSize) {
1195 assert(FlatWorkGroupSize != 0);
1196 if (!STI->getTargetTriple().isAMDGCN())
1197 return 8;
1198 unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
1199 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
1200 if (N == 1) {
1201 // Single-wave workgroups don't consume barrier resources.
1202 return MaxWaves;
1203 }
1204
1205 unsigned MaxBarriers = 16;
1206 if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
1207 MaxBarriers = 32;
1208
1209 return std::min(MaxWaves / N, MaxBarriers);
1210}
1211
1212unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { return 1; }
1213
1214unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
1215 // FIXME: Need to take scratch memory into account.
1216 if (isGFX90A(*STI))
1217 return 8;
1218 if (!isGFX10Plus(*STI))
1219 return 10;
1220 return hasGFX10_3Insts(*STI) ? 16 : 20;
1221}
1222
1224 unsigned FlatWorkGroupSize) {
1225 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
1226 getEUsPerCU(STI));
1227}
1228
1229unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { return 1; }
1230
1232 // Some subtargets allow encoding 2048, but this isn't tested or supported.
1233 return 1024;
1234}
1235
1237 unsigned FlatWorkGroupSize) {
1238 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
1239}
1240
1243 if (Version.Major >= 10)
1244 return getAddressableNumSGPRs(STI);
1245 if (Version.Major >= 8)
1246 return 16;
1247 return 8;
1248}
1249
1250unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { return 8; }
1251
1252unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
1254 if (Version.Major >= 8)
1255 return 800;
1256 return 512;
1257}
1258
1260 if (STI->getFeatureBits().test(FeatureSGPRInitBug))
1262
1264 if (Version.Major >= 10)
1265 return 106;
1266 if (Version.Major >= 8)
1267 return 102;
1268 return 104;
1269}
1270
1271unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
1272 assert(WavesPerEU != 0);
1273
1275 if (Version.Major >= 10)
1276 return 0;
1277
1278 if (WavesPerEU >= getMaxWavesPerEU(STI))
1279 return 0;
1280
1281 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
1282 if (STI->getFeatureBits().test(FeatureTrapHandler))
1283 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1284 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
1285 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
1286}
1287
1288unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1289 bool Addressable) {
1290 assert(WavesPerEU != 0);
1291
1292 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
1294 if (Version.Major >= 10)
1295 return Addressable ? AddressableNumSGPRs : 108;
1296 if (Version.Major >= 8 && !Addressable)
1297 AddressableNumSGPRs = 112;
1298 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
1299 if (STI->getFeatureBits().test(FeatureTrapHandler))
1300 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
1301 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
1302 return std::min(MaxNumSGPRs, AddressableNumSGPRs);
1303}
1304
1305unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1306 bool FlatScrUsed, bool XNACKUsed) {
1307 unsigned ExtraSGPRs = 0;
1308 if (VCCUsed)
1309 ExtraSGPRs = 2;
1310
1312 if (Version.Major >= 10)
1313 return ExtraSGPRs;
1314
1315 if (Version.Major < 8) {
1316 if (FlatScrUsed)
1317 ExtraSGPRs = 4;
1318 } else {
1319 if (XNACKUsed)
1320 ExtraSGPRs = 4;
1321
1322 if (FlatScrUsed ||
1323 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
1324 ExtraSGPRs = 6;
1325 }
1326
1327 return ExtraSGPRs;
1328}
1329
1330unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
1331 bool FlatScrUsed) {
1332 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
1333 STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
1334}
1335
1336static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs,
1337 unsigned Granule) {
1338 return divideCeil(std::max(1u, NumRegs), Granule);
1339}
1340
1341unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
1342 // SGPRBlocks is actual number of SGPR blocks minus 1.
1344 1;
1345}
1346
1348 unsigned DynamicVGPRBlockSize,
1349 std::optional<bool> EnableWavefrontSize32) {
1350 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1351 return 8;
1352
1353 if (DynamicVGPRBlockSize != 0)
1354 return DynamicVGPRBlockSize;
1355
1356 // Temporarily check the subtarget feature, until we fully switch to using
1357 // attributes.
1358 if (STI->getFeatureBits().test(FeatureDynamicVGPR))
1359 return STI->getFeatureBits().test(FeatureDynamicVGPRBlockSize32) ? 32 : 16;
1360
1361 bool IsWave32 = EnableWavefrontSize32
1362 ? *EnableWavefrontSize32
1363 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1364
1365 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1366 return IsWave32 ? 24 : 12;
1367
1368 if (hasGFX10_3Insts(*STI))
1369 return IsWave32 ? 16 : 8;
1370
1371 return IsWave32 ? 8 : 4;
1372}
1373
1375 std::optional<bool> EnableWavefrontSize32) {
1376 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1377 return 8;
1378
1379 bool IsWave32 = EnableWavefrontSize32
1380 ? *EnableWavefrontSize32
1381 : STI->getFeatureBits().test(FeatureWavefrontSize32);
1382
1383 if (STI->getFeatureBits().test(Feature1024AddressableVGPRs))
1384 return IsWave32 ? 16 : 8;
1385
1386 return IsWave32 ? 8 : 4;
1387}
1388
1389unsigned getArchVGPRAllocGranule() { return 4; }
1390
1391unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
1392 if (STI->getFeatureBits().test(FeatureGFX90AInsts))
1393 return 512;
1394 if (!isGFX10Plus(*STI))
1395 return 256;
1396 bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
1397 if (STI->getFeatureBits().test(Feature1_5xVGPRs))
1398 return IsWave32 ? 1536 : 768;
1399 return IsWave32 ? 1024 : 512;
1400}
1401
1403 const auto &Features = STI->getFeatureBits();
1404 if (Features.test(Feature1024AddressableVGPRs))
1405 return Features.test(FeatureWavefrontSize32) ? 1024 : 512;
1406 return 256;
1407}
1408
1410 unsigned DynamicVGPRBlockSize) {
1411 const auto &Features = STI->getFeatureBits();
1412 if (Features.test(FeatureGFX90AInsts))
1413 return 512;
1414
1415 // Temporarily check the subtarget feature, until we fully switch to using
1416 // attributes.
1417 if (DynamicVGPRBlockSize != 0 ||
1418 STI->getFeatureBits().test(FeatureDynamicVGPR))
1419 // On GFX12 we can allocate at most 8 blocks of VGPRs.
1420 return 8 * getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1421 return getAddressableNumArchVGPRs(STI);
1422}
1423
1425 unsigned NumVGPRs,
1426 unsigned DynamicVGPRBlockSize) {
1428 NumVGPRs, getVGPRAllocGranule(STI, DynamicVGPRBlockSize),
1430}
1431
1432unsigned getNumWavesPerEUWithNumVGPRs(unsigned NumVGPRs, unsigned Granule,
1433 unsigned MaxWaves,
1434 unsigned TotalNumVGPRs) {
1435 if (NumVGPRs < Granule)
1436 return MaxWaves;
1437 unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
1438 return std::min(std::max(TotalNumVGPRs / RoundedRegs, 1u), MaxWaves);
1439}
1440
1441unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves,
1443 if (Gen >= AMDGPUSubtarget::GFX10)
1444 return MaxWaves;
1445
1447 if (SGPRs <= 80)
1448 return 10;
1449 if (SGPRs <= 88)
1450 return 9;
1451 if (SGPRs <= 100)
1452 return 8;
1453 return 7;
1454 }
1455 if (SGPRs <= 48)
1456 return 10;
1457 if (SGPRs <= 56)
1458 return 9;
1459 if (SGPRs <= 64)
1460 return 8;
1461 if (SGPRs <= 72)
1462 return 7;
1463 if (SGPRs <= 80)
1464 return 6;
1465 return 5;
1466}
1467
1468unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1469 unsigned DynamicVGPRBlockSize) {
1470 assert(WavesPerEU != 0);
1471
1472 unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
1473 if (WavesPerEU >= MaxWavesPerEU)
1474 return 0;
1475
1476 unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
1477 unsigned AddrsableNumVGPRs =
1478 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1479 unsigned Granule = getVGPRAllocGranule(STI, DynamicVGPRBlockSize);
1480 unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);
1481
1482 if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
1483 return 0;
1484
1485 unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs,
1486 DynamicVGPRBlockSize);
1487 if (WavesPerEU < MinWavesPerEU)
1488 return getMinNumVGPRs(STI, MinWavesPerEU, DynamicVGPRBlockSize);
1489
1490 unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
1491 unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
1492 return std::min(MinNumVGPRs, AddrsableNumVGPRs);
1493}
1494
1495unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
1496 unsigned DynamicVGPRBlockSize) {
1497 assert(WavesPerEU != 0);
1498
1499 unsigned MaxNumVGPRs =
1500 alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
1501 getVGPRAllocGranule(STI, DynamicVGPRBlockSize));
1502 unsigned AddressableNumVGPRs =
1503 getAddressableNumVGPRs(STI, DynamicVGPRBlockSize);
1504 return std::min(MaxNumVGPRs, AddressableNumVGPRs);
1505}
1506
1507unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
1508 std::optional<bool> EnableWavefrontSize32) {
1510 NumVGPRs, getVGPREncodingGranule(STI, EnableWavefrontSize32)) -
1511 1;
1512}
1513
1515 unsigned NumVGPRs,
1516 unsigned DynamicVGPRBlockSize,
1517 std::optional<bool> EnableWavefrontSize32) {
1519 NumVGPRs,
1520 getVGPRAllocGranule(STI, DynamicVGPRBlockSize, EnableWavefrontSize32));
1521}
1522} // end namespace IsaInfo
1523
1525 const MCSubtargetInfo *STI) {
1527 KernelCode.amd_kernel_code_version_major = 1;
1528 KernelCode.amd_kernel_code_version_minor = 2;
1529 KernelCode.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
1530 KernelCode.amd_machine_version_major = Version.Major;
1531 KernelCode.amd_machine_version_minor = Version.Minor;
1532 KernelCode.amd_machine_version_stepping = Version.Stepping;
1534 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
1535 KernelCode.wavefront_size = 5;
1537 } else {
1538 KernelCode.wavefront_size = 6;
1539 }
1540
1541 // If the code object does not support indirect functions, then the value must
1542 // be 0xffffffff.
1543 KernelCode.call_convention = -1;
1544
1545 // These alignment values are specified in powers of two, so alignment =
1546 // 2^n. The minimum alignment is 2^4 = 16.
1547 KernelCode.kernarg_segment_alignment = 4;
1548 KernelCode.group_segment_alignment = 4;
1549 KernelCode.private_segment_alignment = 4;
1550
1551 if (Version.Major >= 10) {
1552 KernelCode.compute_pgm_resource_registers |=
1553 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
1555 }
1556}
1557
1560}
1561
1564}
1565
1567 unsigned AS = GV->getAddressSpace();
1568 return AS == AMDGPUAS::CONSTANT_ADDRESS ||
1570}
1571
1573 return TT.getArch() == Triple::r600;
1574}
1575
1576static bool isValidRegPrefix(char C) {
1577 return C == 'v' || C == 's' || C == 'a';
1578}
1579
1580std::tuple<char, unsigned, unsigned>
1582 StringRef RegName = Constraint;
1583 if (!RegName.consume_front("{") || !RegName.consume_back("}"))
1584 return {};
1585
1586 char Kind = RegName.front();
1587 if (!isValidRegPrefix(Kind))
1588 return {};
1589
1590 RegName = RegName.drop_front();
1591 if (RegName.consume_front("[")) {
1592 unsigned Idx, End;
1593 bool Failed = RegName.consumeInteger(10, Idx);
1594 Failed |= !RegName.consume_front(":");
1595 Failed |= RegName.consumeInteger(10, End);
1596 Failed |= !RegName.consume_back("]");
1597 if (!Failed) {
1598 unsigned NumRegs = End - Idx + 1;
1599 if (NumRegs > 1)
1600 return {Kind, Idx, NumRegs};
1601 }
1602 } else {
1603 unsigned Idx;
1604 bool Failed = RegName.getAsInteger(10, Idx);
1605 if (!Failed)
1606 return {Kind, Idx, 1};
1607 }
1608
1609 return {};
1610}
1611
1612std::pair<unsigned, unsigned>
1614 std::pair<unsigned, unsigned> Default,
1615 bool OnlyFirstRequired) {
1616 if (auto Attr = getIntegerPairAttribute(F, Name, OnlyFirstRequired))
1617 return {Attr->first, Attr->second.value_or(Default.second)};
1618 return Default;
1619}
1620
1621std::optional<std::pair<unsigned, std::optional<unsigned>>>
1623 bool OnlyFirstRequired) {
1624 Attribute A = F.getFnAttribute(Name);
1625 if (!A.isStringAttribute())
1626 return std::nullopt;
1627
1628 LLVMContext &Ctx = F.getContext();
1629 std::pair<unsigned, std::optional<unsigned>> Ints;
1630 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
1631 if (Strs.first.trim().getAsInteger(0, Ints.first)) {
1632 Ctx.emitError("can't parse first integer attribute " + Name);
1633 return std::nullopt;
1634 }
1635 unsigned Second = 0;
1636 if (Strs.second.trim().getAsInteger(0, Second)) {
1637 if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
1638 Ctx.emitError("can't parse second integer attribute " + Name);
1639 return std::nullopt;
1640 }
1641 } else {
1642 Ints.second = Second;
1643 }
1644
1645 return Ints;
1646}
1647
1649 unsigned Size,
1650 unsigned DefaultVal) {
1651 std::optional<SmallVector<unsigned>> R =
1653 return R.has_value() ? *R : SmallVector<unsigned>(Size, DefaultVal);
1654}
1655
1656std::optional<SmallVector<unsigned>>
1658 assert(Size > 2);
1659 LLVMContext &Ctx = F.getContext();
1660
1661 Attribute A = F.getFnAttribute(Name);
1662 if (!A.isValid())
1663 return std::nullopt;
1664 if (!A.isStringAttribute()) {
1665 Ctx.emitError(Name + " is not a string attribute");
1666 return std::nullopt;
1667 }
1668
1670
1671 StringRef S = A.getValueAsString();
1672 unsigned i = 0;
1673 for (; !S.empty() && i < Size; i++) {
1674 std::pair<StringRef, StringRef> Strs = S.split(',');
1675 unsigned IntVal;
1676 if (Strs.first.trim().getAsInteger(0, IntVal)) {
1677 Ctx.emitError("can't parse integer attribute " + Strs.first + " in " +
1678 Name);
1679 return std::nullopt;
1680 }
1681 Vals[i] = IntVal;
1682 S = Strs.second;
1683 }
1684
1685 if (!S.empty() || i < Size) {
1686 Ctx.emitError("attribute " + Name +
1687 " has incorrect number of integers; expected " +
1689 return std::nullopt;
1690 }
1691 return Vals;
1692}
1693
1694bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val) {
1695 assert((MD.getNumOperands() % 2 == 0) && "invalid number of operands!");
1696 for (unsigned I = 0, E = MD.getNumOperands() / 2; I != E; ++I) {
1697 auto Low =
1698 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 0))->getValue();
1699 auto High =
1700 mdconst::extract<ConstantInt>(MD.getOperand(2 * I + 1))->getValue();
1701 // There are two types of [A; B) ranges:
1702 // A < B, e.g. [4; 5) which is a range that only includes 4.
1703 // A > B, e.g. [5; 4) which is a range that wraps around and includes
1704 // everything except 4.
1705 if (Low.ult(High)) {
1706 if (Low.ule(Val) && High.ugt(Val))
1707 return true;
1708 } else {
1709 if (Low.uge(Val) && High.ult(Val))
1710 return true;
1711 }
1712 }
1713
1714 return false;
1715}
1716
1718 return (1 << (getVmcntBitWidthLo(Version.Major) +
1719 getVmcntBitWidthHi(Version.Major))) -
1720 1;
1721}
1722
1724 return (1 << getLoadcntBitWidth(Version.Major)) - 1;
1725}
1726
1728 return (1 << getSamplecntBitWidth(Version.Major)) - 1;
1729}
1730
1732 return (1 << getBvhcntBitWidth(Version.Major)) - 1;
1733}
1734
1736 return (1 << getExpcntBitWidth(Version.Major)) - 1;
1737}
1738
1740 return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
1741}
1742
1744 return (1 << getDscntBitWidth(Version.Major)) - 1;
1745}
1746
1748 return (1 << getKmcntBitWidth(Version.Major)) - 1;
1749}
1750
1752 return (1 << getXcntBitWidth(Version.Major, Version.Minor)) - 1;
1753}
1754
1756 return (1 << getStorecntBitWidth(Version.Major)) - 1;
1757}
1758
1760 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
1761 getVmcntBitWidthLo(Version.Major));
1762 unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
1763 getExpcntBitWidth(Version.Major));
1764 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
1765 getLgkmcntBitWidth(Version.Major));
1766 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
1767 getVmcntBitWidthHi(Version.Major));
1768 return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
1769}
1770
1771unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1772 unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
1773 getVmcntBitWidthLo(Version.Major));
1774 unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
1775 getVmcntBitWidthHi(Version.Major));
1776 return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
1777}
1778
1779unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
1780 return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
1781 getExpcntBitWidth(Version.Major));
1782}
1783
1784unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
1785 return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
1786 getLgkmcntBitWidth(Version.Major));
1787}
1788
1789void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt,
1790 unsigned &Expcnt, unsigned &Lgkmcnt) {
1791 Vmcnt = decodeVmcnt(Version, Waitcnt);
1792 Expcnt = decodeExpcnt(Version, Waitcnt);
1793 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
1794}
1795
1796Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
1797 Waitcnt Decoded;
1798 Decoded.LoadCnt = decodeVmcnt(Version, Encoded);
1799 Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1800 Decoded.DsCnt = decodeLgkmcnt(Version, Encoded);
1801 return Decoded;
1802}
1803
1804unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1805 unsigned Vmcnt) {
1806 Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
1807 getVmcntBitWidthLo(Version.Major));
1808 return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
1809 getVmcntBitShiftHi(Version.Major),
1810 getVmcntBitWidthHi(Version.Major));
1811}
1812
1813unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1814 unsigned Expcnt) {
1815 return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
1816 getExpcntBitWidth(Version.Major));
1817}
1818
1819unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1820 unsigned Lgkmcnt) {
1821 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
1822 getLgkmcntBitWidth(Version.Major));
1823}
1824
1825unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt,
1826 unsigned Expcnt, unsigned Lgkmcnt) {
1827 unsigned Waitcnt = getWaitcntBitMask(Version);
1829 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1830 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1831 return Waitcnt;
1832}
1833
1834unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1835 return encodeWaitcnt(Version, Decoded.LoadCnt, Decoded.ExpCnt, Decoded.DsCnt);
1836}
1837
1839 bool IsStore) {
1840 unsigned Dscnt = getBitMask(getDscntBitShift(Version.Major),
1841 getDscntBitWidth(Version.Major));
1842 if (IsStore) {
1843 unsigned Storecnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1844 getStorecntBitWidth(Version.Major));
1845 return Dscnt | Storecnt;
1846 }
1847 unsigned Loadcnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
1848 getLoadcntBitWidth(Version.Major));
1849 return Dscnt | Loadcnt;
1850}
1851
1852Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt) {
1853 Waitcnt Decoded;
1854 Decoded.LoadCnt =
1855 unpackBits(LoadcntDscnt, getLoadcntStorecntBitShift(Version.Major),
1856 getLoadcntBitWidth(Version.Major));
1857 Decoded.DsCnt = unpackBits(LoadcntDscnt, getDscntBitShift(Version.Major),
1858 getDscntBitWidth(Version.Major));
1859 return Decoded;
1860}
1861
1862Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt) {
1863 Waitcnt Decoded;
1864 Decoded.StoreCnt =
1865 unpackBits(StorecntDscnt, getLoadcntStorecntBitShift(Version.Major),
1866 getStorecntBitWidth(Version.Major));
1867 Decoded.DsCnt = unpackBits(StorecntDscnt, getDscntBitShift(Version.Major),
1868 getDscntBitWidth(Version.Major));
1869 return Decoded;
1870}
1871
1872static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt,
1873 unsigned Loadcnt) {
1874 return packBits(Loadcnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1875 getLoadcntBitWidth(Version.Major));
1876}
1877
1878static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt,
1879 unsigned Storecnt) {
1880 return packBits(Storecnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
1881 getStorecntBitWidth(Version.Major));
1882}
1883
1884static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt,
1885 unsigned Dscnt) {
1886 return packBits(Dscnt, Waitcnt, getDscntBitShift(Version.Major),
1887 getDscntBitWidth(Version.Major));
1888}
1889
1890static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt,
1891 unsigned Dscnt) {
1892 unsigned Waitcnt = getCombinedCountBitMask(Version, false);
1893 Waitcnt = encodeLoadcnt(Version, Waitcnt, Loadcnt);
1895 return Waitcnt;
1896}
1897
1898unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1899 return encodeLoadcntDscnt(Version, Decoded.LoadCnt, Decoded.DsCnt);
1900}
1901
1903 unsigned Storecnt, unsigned Dscnt) {
1904 unsigned Waitcnt = getCombinedCountBitMask(Version, true);
1905 Waitcnt = encodeStorecnt(Version, Waitcnt, Storecnt);
1907 return Waitcnt;
1908}
1909
1911 const Waitcnt &Decoded) {
1912 return encodeStorecntDscnt(Version, Decoded.StoreCnt, Decoded.DsCnt);
1913}
1914
1915//===----------------------------------------------------------------------===//
1916// Custom Operand Values
1917//===----------------------------------------------------------------------===//
1918
1920 int Size,
1921 const MCSubtargetInfo &STI) {
1922 unsigned Enc = 0;
1923 for (int Idx = 0; Idx < Size; ++Idx) {
1924 const auto &Op = Opr[Idx];
1925 if (Op.isSupported(STI))
1926 Enc |= Op.encode(Op.Default);
1927 }
1928 return Enc;
1929}
1930
1932 int Size, unsigned Code,
1933 bool &HasNonDefaultVal,
1934 const MCSubtargetInfo &STI) {
1935 unsigned UsedOprMask = 0;
1936 HasNonDefaultVal = false;
1937 for (int Idx = 0; Idx < Size; ++Idx) {
1938 const auto &Op = Opr[Idx];
1939 if (!Op.isSupported(STI))
1940 continue;
1941 UsedOprMask |= Op.getMask();
1942 unsigned Val = Op.decode(Code);
1943 if (!Op.isValid(Val))
1944 return false;
1945 HasNonDefaultVal |= (Val != Op.Default);
1946 }
1947 return (Code & ~UsedOprMask) == 0;
1948}
1949
1950static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
1951 unsigned Code, int &Idx, StringRef &Name,
1952 unsigned &Val, bool &IsDefault,
1953 const MCSubtargetInfo &STI) {
1954 while (Idx < Size) {
1955 const auto &Op = Opr[Idx++];
1956 if (Op.isSupported(STI)) {
1957 Name = Op.Name;
1958 Val = Op.decode(Code);
1959 IsDefault = (Val == Op.Default);
1960 return true;
1961 }
1962 }
1963
1964 return false;
1965}
1966
1968 int64_t InputVal) {
1969 if (InputVal < 0 || InputVal > Op.Max)
1970 return OPR_VAL_INVALID;
1971 return Op.encode(InputVal);
1972}
1973
1974static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
1975 const StringRef Name, int64_t InputVal,
1976 unsigned &UsedOprMask,
1977 const MCSubtargetInfo &STI) {
1978 int InvalidId = OPR_ID_UNKNOWN;
1979 for (int Idx = 0; Idx < Size; ++Idx) {
1980 const auto &Op = Opr[Idx];
1981 if (Op.Name == Name) {
1982 if (!Op.isSupported(STI)) {
1983 InvalidId = OPR_ID_UNSUPPORTED;
1984 continue;
1985 }
1986 auto OprMask = Op.getMask();
1987 if (OprMask & UsedOprMask)
1988 return OPR_ID_DUPLICATE;
1989 UsedOprMask |= OprMask;
1990 return encodeCustomOperandVal(Op, InputVal);
1991 }
1992 }
1993 return InvalidId;
1994}
1995
1996//===----------------------------------------------------------------------===//
1997// DepCtr
1998//===----------------------------------------------------------------------===//
1999
2000namespace DepCtr {
2001
2003 static int Default = -1;
2004 if (Default == -1)
2006 return Default;
2007}
2008
2009bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
2010 const MCSubtargetInfo &STI) {
2012 HasNonDefaultVal, STI);
2013}
2014
2015bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
2016 bool &IsDefault, const MCSubtargetInfo &STI) {
2017 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
2018 IsDefault, STI);
2019}
2020
2021int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
2022 const MCSubtargetInfo &STI) {
2023 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
2024 STI);
2025}
2026
2027unsigned decodeFieldVmVsrc(unsigned Encoded) {
2028 return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2029}
2030
2031unsigned decodeFieldVaVdst(unsigned Encoded) {
2032 return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2033}
2034
2035unsigned decodeFieldSaSdst(unsigned Encoded) {
2036 return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2037}
2038
2039unsigned decodeFieldVaSdst(unsigned Encoded) {
2040 return unpackBits(Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2041}
2042
2043unsigned decodeFieldVaVcc(unsigned Encoded) {
2044 return unpackBits(Encoded, getVaVccBitShift(), getVaVccBitWidth());
2045}
2046
2047unsigned decodeFieldVaSsrc(unsigned Encoded) {
2048 return unpackBits(Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2049}
2050
2051unsigned decodeFieldHoldCnt(unsigned Encoded) {
2052 return unpackBits(Encoded, getHoldCntBitShift(), getHoldCntWidth());
2053}
2054
2055unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
2056 return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
2057}
2058
2059unsigned encodeFieldVmVsrc(unsigned VmVsrc) {
2060 return encodeFieldVmVsrc(0xffff, VmVsrc);
2061}
2062
2063unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
2064 return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
2065}
2066
2067unsigned encodeFieldVaVdst(unsigned VaVdst) {
2068 return encodeFieldVaVdst(0xffff, VaVdst);
2069}
2070
2071unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
2072 return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
2073}
2074
2075unsigned encodeFieldSaSdst(unsigned SaSdst) {
2076 return encodeFieldSaSdst(0xffff, SaSdst);
2077}
2078
2079unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst) {
2080 return packBits(VaSdst, Encoded, getVaSdstBitShift(), getVaSdstBitWidth());
2081}
2082
2083unsigned encodeFieldVaSdst(unsigned VaSdst) {
2084 return encodeFieldVaSdst(0xffff, VaSdst);
2085}
2086
2087unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc) {
2088 return packBits(VaVcc, Encoded, getVaVccBitShift(), getVaVccBitWidth());
2089}
2090
2091unsigned encodeFieldVaVcc(unsigned VaVcc) {
2092 return encodeFieldVaVcc(0xffff, VaVcc);
2093}
2094
2095unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc) {
2096 return packBits(VaSsrc, Encoded, getVaSsrcBitShift(), getVaSsrcBitWidth());
2097}
2098
2099unsigned encodeFieldVaSsrc(unsigned VaSsrc) {
2100 return encodeFieldVaSsrc(0xffff, VaSsrc);
2101}
2102
2103unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt) {
2104 return packBits(HoldCnt, Encoded, getHoldCntBitShift(), getHoldCntWidth());
2105}
2106
2107unsigned encodeFieldHoldCnt(unsigned HoldCnt) {
2108 return encodeFieldHoldCnt(0xffff, HoldCnt);
2109}
2110
2111} // namespace DepCtr
2112
2113//===----------------------------------------------------------------------===//
2114// exp tgt
2115//===----------------------------------------------------------------------===//
2116
2117namespace Exp {
2118
2119struct ExpTgt {
2121 unsigned Tgt;
2122 unsigned MaxIndex;
2123};
2124
2125// clang-format off
2126static constexpr ExpTgt ExpTgtInfo[] = {
2127 {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
2128 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
2129 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
2130 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
2131 {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
2132 {{"dual_src_blend"},ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
2133 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
2134};
2135// clang-format on
2136
2137bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
2138 for (const ExpTgt &Val : ExpTgtInfo) {
2139 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
2140 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
2141 Name = Val.Name;
2142 return true;
2143 }
2144 }
2145 return false;
2146}
2147
2148unsigned getTgtId(const StringRef Name) {
2149
2150 for (const ExpTgt &Val : ExpTgtInfo) {
2151 if (Val.MaxIndex == 0 && Name == Val.Name)
2152 return Val.Tgt;
2153
2154 if (Val.MaxIndex > 0 && Name.starts_with(Val.Name)) {
2155 StringRef Suffix = Name.drop_front(Val.Name.size());
2156
2157 unsigned Id;
2158 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
2159 return ET_INVALID;
2160
2161 // Disable leading zeroes
2162 if (Suffix.size() > 1 && Suffix[0] == '0')
2163 return ET_INVALID;
2164
2165 return Val.Tgt + Id;
2166 }
2167 }
2168 return ET_INVALID;
2169}
2170
2171bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
2172 switch (Id) {
2173 case ET_NULL:
2174 return !isGFX11Plus(STI);
2175 case ET_POS4:
2176 case ET_PRIM:
2177 return isGFX10Plus(STI);
2178 case ET_DUAL_SRC_BLEND0:
2179 case ET_DUAL_SRC_BLEND1:
2180 return isGFX11Plus(STI);
2181 default:
2182 if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
2183 return !isGFX11Plus(STI);
2184 return true;
2185 }
2186}
2187
2188} // namespace Exp
2189
2190//===----------------------------------------------------------------------===//
2191// MTBUF Format
2192//===----------------------------------------------------------------------===//
2193
2194namespace MTBUFFormat {
2195
2196int64_t getDfmt(const StringRef Name) {
2197 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
2198 if (Name == DfmtSymbolic[Id])
2199 return Id;
2200 }
2201 return DFMT_UNDEF;
2202}
2203
2205 assert(Id <= DFMT_MAX);
2206 return DfmtSymbolic[Id];
2207}
2208
2210 if (isSI(STI) || isCI(STI))
2211 return NfmtSymbolicSICI;
2212 if (isVI(STI) || isGFX9(STI))
2213 return NfmtSymbolicVI;
2214 return NfmtSymbolicGFX10;
2215}
2216
2217int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
2218 const auto *lookupTable = getNfmtLookupTable(STI);
2219 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
2220 if (Name == lookupTable[Id])
2221 return Id;
2222 }
2223 return NFMT_UNDEF;
2224}
2225
2226StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
2227 assert(Id <= NFMT_MAX);
2228 return getNfmtLookupTable(STI)[Id];
2229}
2230
2231bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2232 unsigned Dfmt;
2233 unsigned Nfmt;
2234 decodeDfmtNfmt(Id, Dfmt, Nfmt);
2235 return isValidNfmt(Nfmt, STI);
2236}
2237
2238bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
2239 return !getNfmtName(Id, STI).empty();
2240}
2241
2242int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
2243 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
2244}
2245
2246void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
2247 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
2248 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
2249}
2250
2251int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
2252 if (isGFX11Plus(STI)) {
2253 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2254 if (Name == UfmtSymbolicGFX11[Id])
2255 return Id;
2256 }
2257 } else {
2258 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2259 if (Name == UfmtSymbolicGFX10[Id])
2260 return Id;
2261 }
2262 }
2263 return UFMT_UNDEF;
2264}
2265
2267 if (isValidUnifiedFormat(Id, STI))
2268 return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
2269 return "";
2270}
2271
2272bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
2273 return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
2274}
2275
2276int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
2277 const MCSubtargetInfo &STI) {
2278 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
2279 if (isGFX11Plus(STI)) {
2280 for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
2281 if (Fmt == DfmtNfmt2UFmtGFX11[Id])
2282 return Id;
2283 }
2284 } else {
2285 for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
2286 if (Fmt == DfmtNfmt2UFmtGFX10[Id])
2287 return Id;
2288 }
2289 }
2290 return UFMT_UNDEF;
2291}
2292
2293bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
2294 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
2295}
2296
2298 if (isGFX10Plus(STI))
2299 return UFMT_DEFAULT;
2300 return DFMT_NFMT_DEFAULT;
2301}
2302
2303} // namespace MTBUFFormat
2304
2305//===----------------------------------------------------------------------===//
2306// SendMsg
2307//===----------------------------------------------------------------------===//
2308
2309namespace SendMsg {
2310
2314
2315bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
2316 return (MsgId & ~(getMsgIdMask(STI))) == 0;
2317}
2318
2319bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
2320 bool Strict) {
2321 assert(isValidMsgId(MsgId, STI));
2322
2323 if (!Strict)
2324 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
2325
2326 if (msgRequiresOp(MsgId, STI)) {
2327 if (MsgId == ID_GS_PreGFX11 && OpId == OP_GS_NOP)
2328 return false;
2329
2330 return !getMsgOpName(MsgId, OpId, STI).empty();
2331 }
2332
2333 return OpId == OP_NONE_;
2334}
2335
2336bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
2337 const MCSubtargetInfo &STI, bool Strict) {
2338 assert(isValidMsgOp(MsgId, OpId, STI, Strict));
2339
2340 if (!Strict)
2342
2343 if (!isGFX11Plus(STI)) {
2344 switch (MsgId) {
2345 case ID_GS_PreGFX11:
2348 return (OpId == OP_GS_NOP)
2351 }
2352 }
2353 return StreamId == STREAM_ID_NONE_;
2354}
2355
2356bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
2357 return MsgId == ID_SYSMSG ||
2358 (!isGFX11Plus(STI) &&
2359 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
2360}
2361
2362bool msgSupportsStream(int64_t MsgId, int64_t OpId,
2363 const MCSubtargetInfo &STI) {
2364 return !isGFX11Plus(STI) &&
2365 (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
2366 OpId != OP_GS_NOP;
2367}
2368
2369void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
2370 uint16_t &StreamId, const MCSubtargetInfo &STI) {
2371 MsgId = Val & getMsgIdMask(STI);
2372 if (isGFX11Plus(STI)) {
2373 OpId = 0;
2374 StreamId = 0;
2375 } else {
2376 OpId = (Val & OP_MASK_) >> OP_SHIFT_;
2378 }
2379}
2380
2382 return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
2383}
2384
2385} // namespace SendMsg
2386
2387//===----------------------------------------------------------------------===//
2388//
2389//===----------------------------------------------------------------------===//
2390
2392 return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
2393}
2394
2396 // As a safe default always respond as if PS has color exports.
2397 return F.getFnAttributeAsParsedInteger(
2398 "amdgpu-color-export",
2399 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
2400}
2401
2403 return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
2404}
2405
2407 unsigned BlockSize =
2408 F.getFnAttributeAsParsedInteger("amdgpu-dynamic-vgpr-block-size", 0);
2409
2410 if (BlockSize == 16 || BlockSize == 32)
2411 return BlockSize;
2412
2413 return 0;
2414}
2415
2416bool hasXNACK(const MCSubtargetInfo &STI) {
2417 return STI.hasFeature(AMDGPU::FeatureXNACK);
2418}
2419
2420bool hasSRAMECC(const MCSubtargetInfo &STI) {
2421 return STI.hasFeature(AMDGPU::FeatureSRAMECC);
2422}
2423
2425 return STI.hasFeature(AMDGPU::FeatureMIMG_R128) &&
2426 !STI.hasFeature(AMDGPU::FeatureR128A16);
2427}
2428
2429bool hasA16(const MCSubtargetInfo &STI) {
2430 return STI.hasFeature(AMDGPU::FeatureA16);
2431}
2432
2433bool hasG16(const MCSubtargetInfo &STI) {
2434 return STI.hasFeature(AMDGPU::FeatureG16);
2435}
2436
2438 return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
2439 !isSI(STI);
2440}
2441
2442bool hasGDS(const MCSubtargetInfo &STI) {
2443 return STI.hasFeature(AMDGPU::FeatureGDS);
2444}
2445
2446unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler) {
2447 auto Version = getIsaVersion(STI.getCPU());
2448 if (Version.Major == 10)
2449 return Version.Minor >= 3 ? 13 : 5;
2450 if (Version.Major == 11)
2451 return 5;
2452 if (Version.Major >= 12)
2453 return HasSampler ? 4 : 5;
2454 return 0;
2455}
2456
2458 if (isGFX1250(STI))
2459 return 32;
2460 return 16;
2461}
2462
2463bool isSI(const MCSubtargetInfo &STI) {
2464 return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
2465}
2466
2467bool isCI(const MCSubtargetInfo &STI) {
2468 return STI.hasFeature(AMDGPU::FeatureSeaIslands);
2469}
2470
2471bool isVI(const MCSubtargetInfo &STI) {
2472 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
2473}
2474
2475bool isGFX9(const MCSubtargetInfo &STI) {
2476 return STI.hasFeature(AMDGPU::FeatureGFX9);
2477}
2478
2480 return isGFX9(STI) || isGFX10(STI);
2481}
2482
2484 return isGFX9(STI) || isGFX10(STI) || isGFX11(STI);
2485}
2486
2488 return isVI(STI) || isGFX9(STI) || isGFX10(STI);
2489}
2490
2491bool isGFX8Plus(const MCSubtargetInfo &STI) {
2492 return isVI(STI) || isGFX9Plus(STI);
2493}
2494
2495bool isGFX9Plus(const MCSubtargetInfo &STI) {
2496 return isGFX9(STI) || isGFX10Plus(STI);
2497}
2498
2499bool isNotGFX9Plus(const MCSubtargetInfo &STI) { return !isGFX9Plus(STI); }
2500
2501bool isGFX10(const MCSubtargetInfo &STI) {
2502 return STI.hasFeature(AMDGPU::FeatureGFX10);
2503}
2504
2506 return isGFX10(STI) || isGFX11(STI);
2507}
2508
2510 return isGFX10(STI) || isGFX11Plus(STI);
2511}
2512
2513bool isGFX11(const MCSubtargetInfo &STI) {
2514 return STI.hasFeature(AMDGPU::FeatureGFX11);
2515}
2516
2518 return isGFX11(STI) || isGFX12Plus(STI);
2519}
2520
2521bool isGFX12(const MCSubtargetInfo &STI) {
2522 return STI.getFeatureBits()[AMDGPU::FeatureGFX12];
2523}
2524
2525bool isGFX12Plus(const MCSubtargetInfo &STI) { return isGFX12(STI); }
2526
2527bool isNotGFX12Plus(const MCSubtargetInfo &STI) { return !isGFX12Plus(STI); }
2528
2529bool isGFX1250(const MCSubtargetInfo &STI) {
2530 return STI.getFeatureBits()[AMDGPU::FeatureGFX1250Insts];
2531}
2532
2534 if (isGFX1250(STI))
2535 return false;
2536 return isGFX10Plus(STI);
2537}
2538
2539bool isNotGFX11Plus(const MCSubtargetInfo &STI) { return !isGFX11Plus(STI); }
2540
2542 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
2543}
2544
2546 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
2547}
2548
2550 return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
2551}
2552
2554 return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
2555}
2556
2558 return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
2559}
2560
2562 return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
2563}
2564
2566 return isGFX10_BEncoding(STI) && !isGFX12Plus(STI);
2567}
2568
2569bool isGFX90A(const MCSubtargetInfo &STI) {
2570 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
2571}
2572
2573bool isGFX940(const MCSubtargetInfo &STI) {
2574 return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
2575}
2576
2578 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
2579}
2580
2582 return STI.hasFeature(AMDGPU::FeatureMAIInsts);
2583}
2584
2585bool hasVOPD(const MCSubtargetInfo &STI) {
2586 return STI.hasFeature(AMDGPU::FeatureVOPD);
2587}
2588
2590 return STI.hasFeature(AMDGPU::FeatureDPPSrc1SGPR);
2591}
2592
2594 return STI.hasFeature(AMDGPU::FeatureKernargPreload);
2595}
2596
2597int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
2598 int32_t ArgNumVGPR) {
2599 if (has90AInsts && ArgNumAGPR)
2600 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
2601 return std::max(ArgNumVGPR, ArgNumAGPR);
2602}
2603
2605 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
2606 const MCRegister FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
2607 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
2608 Reg == AMDGPU::SCC;
2609}
2610
2612 return MRI.getEncodingValue(Reg) & AMDGPU::HWEncoding::IS_HI16;
2613}
2614
2615#define MAP_REG2REG \
2616 using namespace AMDGPU; \
2617 switch (Reg.id()) { \
2618 default: \
2619 return Reg; \
2620 CASE_CI_VI(FLAT_SCR) \
2621 CASE_CI_VI(FLAT_SCR_LO) \
2622 CASE_CI_VI(FLAT_SCR_HI) \
2623 CASE_VI_GFX9PLUS(TTMP0) \
2624 CASE_VI_GFX9PLUS(TTMP1) \
2625 CASE_VI_GFX9PLUS(TTMP2) \
2626 CASE_VI_GFX9PLUS(TTMP3) \
2627 CASE_VI_GFX9PLUS(TTMP4) \
2628 CASE_VI_GFX9PLUS(TTMP5) \
2629 CASE_VI_GFX9PLUS(TTMP6) \
2630 CASE_VI_GFX9PLUS(TTMP7) \
2631 CASE_VI_GFX9PLUS(TTMP8) \
2632 CASE_VI_GFX9PLUS(TTMP9) \
2633 CASE_VI_GFX9PLUS(TTMP10) \
2634 CASE_VI_GFX9PLUS(TTMP11) \
2635 CASE_VI_GFX9PLUS(TTMP12) \
2636 CASE_VI_GFX9PLUS(TTMP13) \
2637 CASE_VI_GFX9PLUS(TTMP14) \
2638 CASE_VI_GFX9PLUS(TTMP15) \
2639 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
2640 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
2641 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
2642 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
2643 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
2644 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
2645 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
2646 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
2647 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
2648 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
2649 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
2650 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
2651 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
2652 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
2653 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2654 CASE_VI_GFX9PLUS( \
2655 TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
2656 CASE_GFXPRE11_GFX11PLUS(M0) \
2657 CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
2658 CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
2659 }
2660
2661#define CASE_CI_VI(node) \
2662 assert(!isSI(STI)); \
2663 case node: \
2664 return isCI(STI) ? node##_ci : node##_vi;
2665
2666#define CASE_VI_GFX9PLUS(node) \
2667 case node: \
2668 return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
2669
2670#define CASE_GFXPRE11_GFX11PLUS(node) \
2671 case node: \
2672 return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;
2673
2674#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
2675 case node: \
2676 return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;
2677
2679 if (STI.getTargetTriple().getArch() == Triple::r600)
2680 return Reg;
2682}
2683
2684#undef CASE_CI_VI
2685#undef CASE_VI_GFX9PLUS
2686#undef CASE_GFXPRE11_GFX11PLUS
2687#undef CASE_GFXPRE11_GFX11PLUS_TO
2688
2689#define CASE_CI_VI(node) \
2690 case node##_ci: \
2691 case node##_vi: \
2692 return node;
2693#define CASE_VI_GFX9PLUS(node) \
2694 case node##_vi: \
2695 case node##_gfx9plus: \
2696 return node;
2697#define CASE_GFXPRE11_GFX11PLUS(node) \
2698 case node##_gfx11plus: \
2699 case node##_gfxpre11: \
2700 return node;
2701#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)
2702
2704
2705bool isInlineValue(unsigned Reg) {
2706 switch (Reg) {
2707 case AMDGPU::SRC_SHARED_BASE_LO:
2708 case AMDGPU::SRC_SHARED_BASE:
2709 case AMDGPU::SRC_SHARED_LIMIT_LO:
2710 case AMDGPU::SRC_SHARED_LIMIT:
2711 case AMDGPU::SRC_PRIVATE_BASE_LO:
2712 case AMDGPU::SRC_PRIVATE_BASE:
2713 case AMDGPU::SRC_PRIVATE_LIMIT_LO:
2714 case AMDGPU::SRC_PRIVATE_LIMIT:
2715 case AMDGPU::SRC_FLAT_SCRATCH_BASE_LO:
2716 case AMDGPU::SRC_FLAT_SCRATCH_BASE_HI:
2717 case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
2718 return true;
2719 case AMDGPU::SRC_VCCZ:
2720 case AMDGPU::SRC_EXECZ:
2721 case AMDGPU::SRC_SCC:
2722 return true;
2723 case AMDGPU::SGPR_NULL:
2724 return true;
2725 default:
2726 return false;
2727 }
2728}
2729
2730#undef CASE_CI_VI
2731#undef CASE_VI_GFX9PLUS
2732#undef CASE_GFXPRE11_GFX11PLUS
2733#undef CASE_GFXPRE11_GFX11PLUS_TO
2734#undef MAP_REG2REG
2735
2736bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2737 assert(OpNo < Desc.NumOperands);
2738 unsigned OpType = Desc.operands()[OpNo].OperandType;
2739 return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
2740 OpType <= AMDGPU::OPERAND_KIMM_LAST;
2741}
2742
2743bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2744 assert(OpNo < Desc.NumOperands);
2745 unsigned OpType = Desc.operands()[OpNo].OperandType;
2746 switch (OpType) {
2759 return true;
2760 default:
2761 return false;
2762 }
2763}
2764
2765bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
2766 assert(OpNo < Desc.NumOperands);
2767 unsigned OpType = Desc.operands()[OpNo].OperandType;
2768 return (OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
2772}
2773
2774// Avoid using MCRegisterClass::getSize, since that function will go away
2775// (move from MC* level to Target* level). Return size in bits.
2776unsigned getRegBitWidth(unsigned RCID) {
2777 switch (RCID) {
2778 case AMDGPU::VGPR_16RegClassID:
2779 case AMDGPU::VGPR_16_Lo128RegClassID:
2780 case AMDGPU::SGPR_LO16RegClassID:
2781 case AMDGPU::AGPR_LO16RegClassID:
2782 return 16;
2783 case AMDGPU::SGPR_32RegClassID:
2784 case AMDGPU::VGPR_32RegClassID:
2785 case AMDGPU::VGPR_32_Lo256RegClassID:
2786 case AMDGPU::VRegOrLds_32RegClassID:
2787 case AMDGPU::AGPR_32RegClassID:
2788 case AMDGPU::VS_32RegClassID:
2789 case AMDGPU::AV_32RegClassID:
2790 case AMDGPU::SReg_32RegClassID:
2791 case AMDGPU::SReg_32_XM0RegClassID:
2792 case AMDGPU::SRegOrLds_32RegClassID:
2793 return 32;
2794 case AMDGPU::SGPR_64RegClassID:
2795 case AMDGPU::VS_64RegClassID:
2796 case AMDGPU::SReg_64RegClassID:
2797 case AMDGPU::VReg_64RegClassID:
2798 case AMDGPU::AReg_64RegClassID:
2799 case AMDGPU::SReg_64_XEXECRegClassID:
2800 case AMDGPU::VReg_64_Align2RegClassID:
2801 case AMDGPU::AReg_64_Align2RegClassID:
2802 case AMDGPU::AV_64RegClassID:
2803 case AMDGPU::AV_64_Align2RegClassID:
2804 case AMDGPU::VReg_64_Lo256_Align2RegClassID:
2805 case AMDGPU::VS_64_Lo256RegClassID:
2806 return 64;
2807 case AMDGPU::SGPR_96RegClassID:
2808 case AMDGPU::SReg_96RegClassID:
2809 case AMDGPU::VReg_96RegClassID:
2810 case AMDGPU::AReg_96RegClassID:
2811 case AMDGPU::VReg_96_Align2RegClassID:
2812 case AMDGPU::AReg_96_Align2RegClassID:
2813 case AMDGPU::AV_96RegClassID:
2814 case AMDGPU::AV_96_Align2RegClassID:
2815 case AMDGPU::VReg_96_Lo256_Align2RegClassID:
2816 return 96;
2817 case AMDGPU::SGPR_128RegClassID:
2818 case AMDGPU::SReg_128RegClassID:
2819 case AMDGPU::VReg_128RegClassID:
2820 case AMDGPU::AReg_128RegClassID:
2821 case AMDGPU::VReg_128_Align2RegClassID:
2822 case AMDGPU::AReg_128_Align2RegClassID:
2823 case AMDGPU::AV_128RegClassID:
2824 case AMDGPU::AV_128_Align2RegClassID:
2825 case AMDGPU::SReg_128_XNULLRegClassID:
2826 case AMDGPU::VReg_128_Lo256_Align2RegClassID:
2827 return 128;
2828 case AMDGPU::SGPR_160RegClassID:
2829 case AMDGPU::SReg_160RegClassID:
2830 case AMDGPU::VReg_160RegClassID:
2831 case AMDGPU::AReg_160RegClassID:
2832 case AMDGPU::VReg_160_Align2RegClassID:
2833 case AMDGPU::AReg_160_Align2RegClassID:
2834 case AMDGPU::AV_160RegClassID:
2835 case AMDGPU::AV_160_Align2RegClassID:
2836 case AMDGPU::VReg_160_Lo256_Align2RegClassID:
2837 return 160;
2838 case AMDGPU::SGPR_192RegClassID:
2839 case AMDGPU::SReg_192RegClassID:
2840 case AMDGPU::VReg_192RegClassID:
2841 case AMDGPU::AReg_192RegClassID:
2842 case AMDGPU::VReg_192_Align2RegClassID:
2843 case AMDGPU::AReg_192_Align2RegClassID:
2844 case AMDGPU::AV_192RegClassID:
2845 case AMDGPU::AV_192_Align2RegClassID:
2846 case AMDGPU::VReg_192_Lo256_Align2RegClassID:
2847 return 192;
2848 case AMDGPU::SGPR_224RegClassID:
2849 case AMDGPU::SReg_224RegClassID:
2850 case AMDGPU::VReg_224RegClassID:
2851 case AMDGPU::AReg_224RegClassID:
2852 case AMDGPU::VReg_224_Align2RegClassID:
2853 case AMDGPU::AReg_224_Align2RegClassID:
2854 case AMDGPU::AV_224RegClassID:
2855 case AMDGPU::AV_224_Align2RegClassID:
2856 case AMDGPU::VReg_224_Lo256_Align2RegClassID:
2857 return 224;
2858 case AMDGPU::SGPR_256RegClassID:
2859 case AMDGPU::SReg_256RegClassID:
2860 case AMDGPU::VReg_256RegClassID:
2861 case AMDGPU::AReg_256RegClassID:
2862 case AMDGPU::VReg_256_Align2RegClassID:
2863 case AMDGPU::AReg_256_Align2RegClassID:
2864 case AMDGPU::AV_256RegClassID:
2865 case AMDGPU::AV_256_Align2RegClassID:
2866 case AMDGPU::SReg_256_XNULLRegClassID:
2867 case AMDGPU::VReg_256_Lo256_Align2RegClassID:
2868 return 256;
2869 case AMDGPU::SGPR_288RegClassID:
2870 case AMDGPU::SReg_288RegClassID:
2871 case AMDGPU::VReg_288RegClassID:
2872 case AMDGPU::AReg_288RegClassID:
2873 case AMDGPU::VReg_288_Align2RegClassID:
2874 case AMDGPU::AReg_288_Align2RegClassID:
2875 case AMDGPU::AV_288RegClassID:
2876 case AMDGPU::AV_288_Align2RegClassID:
2877 case AMDGPU::VReg_288_Lo256_Align2RegClassID:
2878 return 288;
2879 case AMDGPU::SGPR_320RegClassID:
2880 case AMDGPU::SReg_320RegClassID:
2881 case AMDGPU::VReg_320RegClassID:
2882 case AMDGPU::AReg_320RegClassID:
2883 case AMDGPU::VReg_320_Align2RegClassID:
2884 case AMDGPU::AReg_320_Align2RegClassID:
2885 case AMDGPU::AV_320RegClassID:
2886 case AMDGPU::AV_320_Align2RegClassID:
2887 case AMDGPU::VReg_320_Lo256_Align2RegClassID:
2888 return 320;
2889 case AMDGPU::SGPR_352RegClassID:
2890 case AMDGPU::SReg_352RegClassID:
2891 case AMDGPU::VReg_352RegClassID:
2892 case AMDGPU::AReg_352RegClassID:
2893 case AMDGPU::VReg_352_Align2RegClassID:
2894 case AMDGPU::AReg_352_Align2RegClassID:
2895 case AMDGPU::AV_352RegClassID:
2896 case AMDGPU::AV_352_Align2RegClassID:
2897 case AMDGPU::VReg_352_Lo256_Align2RegClassID:
2898 return 352;
2899 case AMDGPU::SGPR_384RegClassID:
2900 case AMDGPU::SReg_384RegClassID:
2901 case AMDGPU::VReg_384RegClassID:
2902 case AMDGPU::AReg_384RegClassID:
2903 case AMDGPU::VReg_384_Align2RegClassID:
2904 case AMDGPU::AReg_384_Align2RegClassID:
2905 case AMDGPU::AV_384RegClassID:
2906 case AMDGPU::AV_384_Align2RegClassID:
2907 case AMDGPU::VReg_384_Lo256_Align2RegClassID:
2908 return 384;
2909 case AMDGPU::SGPR_512RegClassID:
2910 case AMDGPU::SReg_512RegClassID:
2911 case AMDGPU::VReg_512RegClassID:
2912 case AMDGPU::AReg_512RegClassID:
2913 case AMDGPU::VReg_512_Align2RegClassID:
2914 case AMDGPU::AReg_512_Align2RegClassID:
2915 case AMDGPU::AV_512RegClassID:
2916 case AMDGPU::AV_512_Align2RegClassID:
2917 case AMDGPU::VReg_512_Lo256_Align2RegClassID:
2918 return 512;
2919 case AMDGPU::SGPR_1024RegClassID:
2920 case AMDGPU::SReg_1024RegClassID:
2921 case AMDGPU::VReg_1024RegClassID:
2922 case AMDGPU::AReg_1024RegClassID:
2923 case AMDGPU::VReg_1024_Align2RegClassID:
2924 case AMDGPU::AReg_1024_Align2RegClassID:
2925 case AMDGPU::AV_1024RegClassID:
2926 case AMDGPU::AV_1024_Align2RegClassID:
2927 case AMDGPU::VReg_1024_Lo256_Align2RegClassID:
2928 return 1024;
2929 default:
2930 llvm_unreachable("Unexpected register class");
2931 }
2932}
2933
2934unsigned getRegBitWidth(const MCRegisterClass &RC) {
2935 return getRegBitWidth(RC.getID());
2936}
2937
2939 unsigned OpNo) {
2940 assert(OpNo < Desc.NumOperands);
2941 unsigned RCID = Desc.operands()[OpNo].RegClass;
2942 return getRegBitWidth(RCID) / 8;
2943}
2944
2945bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
2947 return true;
2948
2949 uint64_t Val = static_cast<uint64_t>(Literal);
2950 return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
2951 (Val == llvm::bit_cast<uint64_t>(1.0)) ||
2952 (Val == llvm::bit_cast<uint64_t>(-1.0)) ||
2953 (Val == llvm::bit_cast<uint64_t>(0.5)) ||
2954 (Val == llvm::bit_cast<uint64_t>(-0.5)) ||
2955 (Val == llvm::bit_cast<uint64_t>(2.0)) ||
2956 (Val == llvm::bit_cast<uint64_t>(-2.0)) ||
2957 (Val == llvm::bit_cast<uint64_t>(4.0)) ||
2958 (Val == llvm::bit_cast<uint64_t>(-4.0)) ||
2959 (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
2960}
2961
2962bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
2964 return true;
2965
2966 // The actual type of the operand does not seem to matter as long
2967 // as the bits match one of the inline immediate values. For example:
2968 //
2969 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
2970 // so it is a legal inline immediate.
2971 //
2972 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
2973 // floating-point, so it is a legal inline immediate.
2974
2975 uint32_t Val = static_cast<uint32_t>(Literal);
2976 return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
2977 (Val == llvm::bit_cast<uint32_t>(1.0f)) ||
2978 (Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
2979 (Val == llvm::bit_cast<uint32_t>(0.5f)) ||
2980 (Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
2981 (Val == llvm::bit_cast<uint32_t>(2.0f)) ||
2982 (Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
2983 (Val == llvm::bit_cast<uint32_t>(4.0f)) ||
2984 (Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
2985 (Val == 0x3e22f983 && HasInv2Pi);
2986}
2987
2988bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi) {
2989 if (!HasInv2Pi)
2990 return false;
2992 return true;
2993 uint16_t Val = static_cast<uint16_t>(Literal);
2994 return Val == 0x3F00 || // 0.5
2995 Val == 0xBF00 || // -0.5
2996 Val == 0x3F80 || // 1.0
2997 Val == 0xBF80 || // -1.0
2998 Val == 0x4000 || // 2.0
2999 Val == 0xC000 || // -2.0
3000 Val == 0x4080 || // 4.0
3001 Val == 0xC080 || // -4.0
3002 Val == 0x3E22; // 1.0 / (2.0 * pi)
3003}
3004
3005bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi) {
3006 return isInlinableLiteral32(Literal, HasInv2Pi);
3007}
3008
3009bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi) {
3010 if (!HasInv2Pi)
3011 return false;
3013 return true;
3014 uint16_t Val = static_cast<uint16_t>(Literal);
3015 return Val == 0x3C00 || // 1.0
3016 Val == 0xBC00 || // -1.0
3017 Val == 0x3800 || // 0.5
3018 Val == 0xB800 || // -0.5
3019 Val == 0x4000 || // 2.0
3020 Val == 0xC000 || // -2.0
3021 Val == 0x4400 || // 4.0
3022 Val == 0xC400 || // -4.0
3023 Val == 0x3118; // 1/2pi
3024}
3025
3026std::optional<unsigned> getInlineEncodingV216(bool IsFloat, uint32_t Literal) {
3027 // Unfortunately, the Instruction Set Architecture Reference Guide is
3028 // misleading about how the inline operands work for (packed) 16-bit
3029 // instructions. In a nutshell, the actual HW behavior is:
3030 //
3031 // - integer encodings (-16 .. 64) are always produced as sign-extended
3032 // 32-bit values
3033 // - float encodings are produced as:
3034 // - for F16 instructions: corresponding half-precision float values in
3035 // the LSBs, 0 in the MSBs
3036 // - for UI16 instructions: corresponding single-precision float value
3037 int32_t Signed = static_cast<int32_t>(Literal);
3038 if (Signed >= 0 && Signed <= 64)
3039 return 128 + Signed;
3040
3041 if (Signed >= -16 && Signed <= -1)
3042 return 192 + std::abs(Signed);
3043
3044 if (IsFloat) {
3045 // clang-format off
3046 switch (Literal) {
3047 case 0x3800: return 240; // 0.5
3048 case 0xB800: return 241; // -0.5
3049 case 0x3C00: return 242; // 1.0
3050 case 0xBC00: return 243; // -1.0
3051 case 0x4000: return 244; // 2.0
3052 case 0xC000: return 245; // -2.0
3053 case 0x4400: return 246; // 4.0
3054 case 0xC400: return 247; // -4.0
3055 case 0x3118: return 248; // 1.0 / (2.0 * pi)
3056 default: break;
3057 }
3058 // clang-format on
3059 } else {
3060 // clang-format off
3061 switch (Literal) {
3062 case 0x3F000000: return 240; // 0.5
3063 case 0xBF000000: return 241; // -0.5
3064 case 0x3F800000: return 242; // 1.0
3065 case 0xBF800000: return 243; // -1.0
3066 case 0x40000000: return 244; // 2.0
3067 case 0xC0000000: return 245; // -2.0
3068 case 0x40800000: return 246; // 4.0
3069 case 0xC0800000: return 247; // -4.0
3070 case 0x3E22F983: return 248; // 1.0 / (2.0 * pi)
3071 default: break;
3072 }
3073 // clang-format on
3074 }
3075
3076 return {};
3077}
3078
3079// Encoding of the literal as an inline constant for a V_PK_*_IU16 instruction
3080// or nullopt.
3081std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal) {
3082 return getInlineEncodingV216(false, Literal);
3083}
3084
3085// Encoding of the literal as an inline constant for a V_PK_*_BF16 instruction
3086// or nullopt.
3087std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal) {
3088 int32_t Signed = static_cast<int32_t>(Literal);
3089 if (Signed >= 0 && Signed <= 64)
3090 return 128 + Signed;
3091
3092 if (Signed >= -16 && Signed <= -1)
3093 return 192 + std::abs(Signed);
3094
3095 // clang-format off
3096 switch (Literal) {
3097 case 0x3F00: return 240; // 0.5
3098 case 0xBF00: return 241; // -0.5
3099 case 0x3F80: return 242; // 1.0
3100 case 0xBF80: return 243; // -1.0
3101 case 0x4000: return 244; // 2.0
3102 case 0xC000: return 245; // -2.0
3103 case 0x4080: return 246; // 4.0
3104 case 0xC080: return 247; // -4.0
3105 case 0x3E22: return 248; // 1.0 / (2.0 * pi)
3106 default: break;
3107 }
3108 // clang-format on
3109
3110 return std::nullopt;
3111}
3112
3113// Encoding of the literal as an inline constant for a V_PK_*_F16 instruction
3114// or nullopt.
3115std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal) {
3116 return getInlineEncodingV216(true, Literal);
3117}
3118
3119// Whether the given literal can be inlined for a V_PK_* instruction.
3121 switch (OpType) {
3124 return getInlineEncodingV216(false, Literal).has_value();
3127 return getInlineEncodingV216(true, Literal).has_value();
3132 return false;
3133 default:
3134 llvm_unreachable("bad packed operand type");
3135 }
3136}
3137
3138// Whether the given literal can be inlined for a V_PK_*_IU16 instruction.
3142
3143// Whether the given literal can be inlined for a V_PK_*_BF16 instruction.
3147
3148// Whether the given literal can be inlined for a V_PK_*_F16 instruction.
3152
3153bool isValid32BitLiteral(uint64_t Val, bool IsFP64) {
3154 if (IsFP64)
3155 return !Lo_32(Val);
3156
3157 return isUInt<32>(Val) || isInt<32>(Val);
3158}
3159
3161 const Function *F = A->getParent();
3162
3163 // Arguments to compute shaders are never a source of divergence.
3164 CallingConv::ID CC = F->getCallingConv();
3165 switch (CC) {
3168 return true;
3179 // For non-compute shaders, SGPR inputs are marked with either inreg or
3180 // byval. Everything else is in VGPRs.
3181 return A->hasAttribute(Attribute::InReg) ||
3182 A->hasAttribute(Attribute::ByVal);
3183 default:
3184 // TODO: treat i1 as divergent?
3185 return A->hasAttribute(Attribute::InReg);
3186 }
3187}
3188
3189bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
3190 // Arguments to compute shaders are never a source of divergence.
3192 switch (CC) {
3195 return true;
3206 // For non-compute shaders, SGPR inputs are marked with either inreg or
3207 // byval. Everything else is in VGPRs.
3208 return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
3209 CB->paramHasAttr(ArgNo, Attribute::ByVal);
3210 default:
3211 return CB->paramHasAttr(ArgNo, Attribute::InReg);
3212 }
3213}
3214
3215static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
3216 return isGCN3Encoding(ST) || isGFX10Plus(ST);
3217}
3218
3220 int64_t EncodedOffset) {
3221 if (isGFX12Plus(ST))
3222 return isUInt<23>(EncodedOffset);
3223
3224 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
3225 : isUInt<8>(EncodedOffset);
3226}
3227
3229 int64_t EncodedOffset, bool IsBuffer) {
3230 if (isGFX12Plus(ST)) {
3231 if (IsBuffer && EncodedOffset < 0)
3232 return false;
3233 return isInt<24>(EncodedOffset);
3234 }
3235
3236 return !IsBuffer && hasSMRDSignedImmOffset(ST) && isInt<21>(EncodedOffset);
3237}
3238
3239static bool isDwordAligned(uint64_t ByteOffset) {
3240 return (ByteOffset & 3) == 0;
3241}
3242
3244 uint64_t ByteOffset) {
3245 if (hasSMEMByteOffset(ST))
3246 return ByteOffset;
3247
3248 assert(isDwordAligned(ByteOffset));
3249 return ByteOffset >> 2;
3250}
3251
3252std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
3253 int64_t ByteOffset, bool IsBuffer,
3254 bool HasSOffset) {
3255 // For unbuffered smem loads, it is illegal for the Immediate Offset to be
3256 // negative if the resulting (Offset + (M0 or SOffset or zero) is negative.
3257 // Handle case where SOffset is not present.
3258 if (!IsBuffer && !HasSOffset && ByteOffset < 0 && hasSMRDSignedImmOffset(ST))
3259 return std::nullopt;
3260
3261 if (isGFX12Plus(ST)) // 24 bit signed offsets
3262 return isInt<24>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3263 : std::nullopt;
3264
3265 // The signed version is always a byte offset.
3266 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
3268 return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
3269 : std::nullopt;
3270 }
3271
3272 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
3273 return std::nullopt;
3274
3275 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3276 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
3277 ? std::optional<int64_t>(EncodedOffset)
3278 : std::nullopt;
3279}
3280
3281std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
3282 int64_t ByteOffset) {
3283 if (!isCI(ST) || !isDwordAligned(ByteOffset))
3284 return std::nullopt;
3285
3286 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
3287 return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
3288 : std::nullopt;
3289}
3290
3292 if (AMDGPU::isGFX10(ST))
3293 return 12;
3294
3295 if (AMDGPU::isGFX12(ST))
3296 return 24;
3297 return 13;
3298}
3299
3300namespace {
3301
3302struct SourceOfDivergence {
3303 unsigned Intr;
3304};
3305const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
3306
3307struct AlwaysUniform {
3308 unsigned Intr;
3309};
3310const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);
3311
3312#define GET_SourcesOfDivergence_IMPL
3313#define GET_UniformIntrinsics_IMPL
3314#define GET_Gfx9BufferFormat_IMPL
3315#define GET_Gfx10BufferFormat_IMPL
3316#define GET_Gfx11PlusBufferFormat_IMPL
3317
3318#include "AMDGPUGenSearchableTables.inc"
3319
3320} // end anonymous namespace
3321
3322bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
3323 return lookupSourceOfDivergence(IntrID);
3324}
3325
3326bool isIntrinsicAlwaysUniform(unsigned IntrID) {
3327 return lookupAlwaysUniform(IntrID);
3328}
3329
3331 uint8_t NumComponents,
3332 uint8_t NumFormat,
3333 const MCSubtargetInfo &STI) {
3334 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(
3335 BitsPerComp, NumComponents, NumFormat)
3336 : isGFX10(STI)
3337 ? getGfx10BufferFormatInfo(BitsPerComp, NumComponents, NumFormat)
3338 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
3339}
3340
3342 const MCSubtargetInfo &STI) {
3343 return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
3344 : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
3345 : getGfx9BufferFormatInfo(Format);
3346}
3347
3349 const MCRegisterInfo &MRI) {
3350 const unsigned VGPRClasses[] = {
3351 AMDGPU::VGPR_16RegClassID, AMDGPU::VGPR_32RegClassID,
3352 AMDGPU::VReg_64RegClassID, AMDGPU::VReg_96RegClassID,
3353 AMDGPU::VReg_128RegClassID, AMDGPU::VReg_160RegClassID,
3354 AMDGPU::VReg_192RegClassID, AMDGPU::VReg_224RegClassID,
3355 AMDGPU::VReg_256RegClassID, AMDGPU::VReg_288RegClassID,
3356 AMDGPU::VReg_320RegClassID, AMDGPU::VReg_352RegClassID,
3357 AMDGPU::VReg_384RegClassID, AMDGPU::VReg_512RegClassID,
3358 AMDGPU::VReg_1024RegClassID};
3359
3360 for (unsigned RCID : VGPRClasses) {
3361 const MCRegisterClass &RC = MRI.getRegClass(RCID);
3362 if (RC.contains(Reg))
3363 return &RC;
3364 }
3365
3366 return nullptr;
3367}
3368
3370 unsigned Enc = MRI.getEncodingValue(Reg);
3371 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3372 return Idx >> 8;
3373}
3374
3376 const MCRegisterInfo &MRI) {
3377 unsigned Enc = MRI.getEncodingValue(Reg);
3378 unsigned Idx = Enc & AMDGPU::HWEncoding::REG_IDX_MASK;
3379 if (Idx >= 0x100)
3380 return AMDGPU::NoRegister;
3381
3383 if (!RC)
3384 return AMDGPU::NoRegister;
3385 return RC->getRegister(Idx | (MSBs << 8));
3386}
3387
3388std::pair<const AMDGPU::OpName *, const AMDGPU::OpName *>
3390 static const AMDGPU::OpName VOPOps[4] = {
3391 AMDGPU::OpName::src0, AMDGPU::OpName::src1, AMDGPU::OpName::src2,
3392 AMDGPU::OpName::vdst};
3393 static const AMDGPU::OpName VDSOps[4] = {
3394 AMDGPU::OpName::addr, AMDGPU::OpName::data0, AMDGPU::OpName::data1,
3395 AMDGPU::OpName::vdst};
3396 static const AMDGPU::OpName FLATOps[4] = {
3397 AMDGPU::OpName::vaddr, AMDGPU::OpName::vdata,
3398 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdst};
3399 static const AMDGPU::OpName BUFOps[4] = {
3400 AMDGPU::OpName::vaddr, AMDGPU::OpName::NUM_OPERAND_NAMES,
3401 AMDGPU::OpName::NUM_OPERAND_NAMES, AMDGPU::OpName::vdata};
3402 static const AMDGPU::OpName VIMGOps[4] = {
3403 AMDGPU::OpName::vaddr0, AMDGPU::OpName::vaddr1, AMDGPU::OpName::vaddr2,
3404 AMDGPU::OpName::vdata};
3405
3406 // For VOPD instructions MSB of a corresponding Y component operand VGPR
3407 // address is supposed to match X operand, otherwise VOPD shall not be
3408 // combined.
3409 static const AMDGPU::OpName VOPDOpsX[4] = {
3410 AMDGPU::OpName::src0X, AMDGPU::OpName::vsrc1X, AMDGPU::OpName::vsrc2X,
3411 AMDGPU::OpName::vdstX};
3412 static const AMDGPU::OpName VOPDOpsY[4] = {
3413 AMDGPU::OpName::src0Y, AMDGPU::OpName::vsrc1Y, AMDGPU::OpName::vsrc2Y,
3414 AMDGPU::OpName::vdstY};
3415
3416 unsigned TSFlags = Desc.TSFlags;
3417
3418 if (TSFlags &
3421 // LD_SCALE operands ignore MSB.
3422 if (Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32 ||
3423 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE_PAIRED_B32_gfx1250 ||
3424 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64 ||
3425 Desc.getOpcode() == AMDGPU::V_WMMA_LD_SCALE16_PAIRED_B64_gfx1250)
3426 return {};
3427 return {VOPOps, nullptr};
3428 }
3429
3430 if (TSFlags & SIInstrFlags::DS)
3431 return {VDSOps, nullptr};
3432
3433 if (TSFlags & SIInstrFlags::FLAT)
3434 return {FLATOps, nullptr};
3435
3436 if (TSFlags & (SIInstrFlags::MUBUF | SIInstrFlags::MTBUF))
3437 return {BUFOps, nullptr};
3438
3439 if (TSFlags & SIInstrFlags::VIMAGE)
3440 return {VIMGOps, nullptr};
3441
3442 if (AMDGPU::isVOPD(Desc.getOpcode()))
3443 return {VOPDOpsX, VOPDOpsY};
3444
3445 assert(!(TSFlags & SIInstrFlags::MIMG));
3446
3447 if (TSFlags & (SIInstrFlags::VSAMPLE | SIInstrFlags::EXP))
3448 llvm_unreachable("Sample and export VGPR lowering is not implemented and"
3449 " these instructions are not expected on gfx1250");
3450
3451 return {};
3452}
3453
3454bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode) {
3455 uint64_t TSFlags = MII.get(Opcode).TSFlags;
3456
3457 if (TSFlags & SIInstrFlags::SMRD)
3458 return !getSMEMIsBuffer(Opcode);
3459 if (!(TSFlags & SIInstrFlags::FLAT))
3460 return false;
3461
3462 // Only SV and SVS modes are supported.
3463 if (TSFlags & SIInstrFlags::FlatScratch)
3464 return hasNamedOperand(Opcode, OpName::vaddr);
3465
3466 // Only GVS mode is supported.
3467 return hasNamedOperand(Opcode, OpName::vaddr) &&
3468 hasNamedOperand(Opcode, OpName::saddr);
3469
3470 return false;
3471}
3472
3474 for (auto OpName : {OpName::vdst, OpName::src0, OpName::src1, OpName::src2}) {
3475 int Idx = getNamedOperandIdx(OpDesc.getOpcode(), OpName);
3476 if (Idx == -1)
3477 continue;
3478
3479 if (OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64RegClassID ||
3480 OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64_Align2RegClassID)
3481 return true;
3482 }
3483
3484 return false;
3485}
3486
3487bool isDPALU_DPP32BitOpc(unsigned Opc) {
3488 switch (Opc) {
3489 case AMDGPU::V_MUL_LO_U32_e64:
3490 case AMDGPU::V_MUL_LO_U32_e64_dpp:
3491 case AMDGPU::V_MUL_LO_U32_e64_dpp_gfx1250:
3492 case AMDGPU::V_MUL_HI_U32_e64:
3493 case AMDGPU::V_MUL_HI_U32_e64_dpp:
3494 case AMDGPU::V_MUL_HI_U32_e64_dpp_gfx1250:
3495 case AMDGPU::V_MUL_HI_I32_e64:
3496 case AMDGPU::V_MUL_HI_I32_e64_dpp:
3497 case AMDGPU::V_MUL_HI_I32_e64_dpp_gfx1250:
3498 case AMDGPU::V_MAD_U32_e64:
3499 case AMDGPU::V_MAD_U32_e64_dpp:
3500 case AMDGPU::V_MAD_U32_e64_dpp_gfx1250:
3501 return true;
3502 default:
3503 return false;
3504 }
3505}
3506
3507bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST) {
3508 if (!ST.hasFeature(AMDGPU::FeatureDPALU_DPP))
3509 return false;
3510
3511 if (isDPALU_DPP32BitOpc(OpDesc.getOpcode()))
3512 return ST.hasFeature(AMDGPU::FeatureGFX1250Insts);
3513
3514 return hasAny64BitVGPROperands(OpDesc);
3515}
3516
3518 return ST.hasFeature(AMDGPU::FeatureAddressableLocalMemorySize327680) ? 256
3519 : 128;
3520}
3521
3522bool isPackedFP32Inst(unsigned Opc) {
3523 switch (Opc) {
3524 case AMDGPU::V_PK_ADD_F32:
3525 case AMDGPU::V_PK_ADD_F32_gfx12:
3526 case AMDGPU::V_PK_MUL_F32:
3527 case AMDGPU::V_PK_MUL_F32_gfx12:
3528 case AMDGPU::V_PK_FMA_F32:
3529 case AMDGPU::V_PK_FMA_F32_gfx12:
3530 return true;
3531 default:
3532 return false;
3533 }
3534}
3535
3536const std::array<unsigned, 3> &ClusterDimsAttr::getDims() const {
3537 assert(isFixedDims() && "expect kind to be FixedDims");
3538 return Dims;
3539}
3540
3541std::string ClusterDimsAttr::to_string() const {
3542 SmallString<10> Buffer;
3543 raw_svector_ostream OS(Buffer);
3544
3545 switch (getKind()) {
3546 case Kind::Unknown:
3547 return "";
3548 case Kind::NoCluster: {
3549 OS << EncoNoCluster << ',' << EncoNoCluster << ',' << EncoNoCluster;
3550 return Buffer.c_str();
3551 }
3552 case Kind::VariableDims: {
3553 OS << EncoVariableDims << ',' << EncoVariableDims << ','
3554 << EncoVariableDims;
3555 return Buffer.c_str();
3556 }
3557 case Kind::FixedDims: {
3558 OS << Dims[0] << ',' << Dims[1] << ',' << Dims[2];
3559 return Buffer.c_str();
3560 }
3561 }
3562 llvm_unreachable("Unknown ClusterDimsAttr kind");
3563}
3564
3566 std::optional<SmallVector<unsigned>> Attr =
3567 getIntegerVecAttribute(F, "amdgpu-cluster-dims", /*Size=*/3);
3569
3570 if (!Attr.has_value())
3571 AttrKind = Kind::Unknown;
3572 else if (all_of(*Attr, [](unsigned V) { return V == EncoNoCluster; }))
3573 AttrKind = Kind::NoCluster;
3574 else if (all_of(*Attr, [](unsigned V) { return V == EncoVariableDims; }))
3575 AttrKind = Kind::VariableDims;
3576
3577 ClusterDimsAttr A(AttrKind);
3578 if (AttrKind == Kind::FixedDims)
3579 A.Dims = {(*Attr)[0], (*Attr)[1], (*Attr)[2]};
3580
3581 return A;
3582}
3583
3584} // namespace AMDGPU
3585
3588 switch (S) {
3590 OS << "Unsupported";
3591 break;
3593 OS << "Any";
3594 break;
3596 OS << "Off";
3597 break;
3599 OS << "On";
3600 break;
3601 }
3602 return OS;
3603}
3604
3605} // namespace llvm
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static llvm::cl::opt< unsigned > DefaultAMDHSACodeObjectVersion("amdhsa-code-object-version", llvm::cl::Hidden, llvm::cl::init(llvm::AMDGPU::AMDHSA_COV6), llvm::cl::desc("Set default AMDHSA Code Object Version (module flag " "or asm directive still take priority if present)"))
#define MAP_REG2REG
Provides AMDGPU specific target descriptions.
MC layer struct for AMDGPUMCKernelCodeT, provides MCExpr functionality where required.
@ AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define RegName(no)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
This file contains the declarations for metadata subclasses.
#define T
uint64_t High
if(PassOpts->AAPipeline)
#define S_00B848_MEM_ORDERED(x)
Definition SIDefines.h:1226
#define S_00B848_WGP_MODE(x)
Definition SIDefines.h:1223
#define S_00B848_FWD_PROGRESS(x)
Definition SIDefines.h:1229
unsigned unsigned DefaultVal
This file contains some functions that are useful when dealing with strings.
static const int BlockSize
Definition TarWriter.cpp:33
static ClusterDimsAttr get(const Function &F)
const std::array< unsigned, 3 > & getDims() const
TargetIDSetting getXnackSetting() const
AMDGPUTargetID(const MCSubtargetInfo &STI)
void setTargetIDFromTargetIDStream(StringRef TargetID)
TargetIDSetting getSramEccSetting() const
unsigned getIndexInParsedOperands(unsigned CompOprIdx) const
unsigned getIndexOfSrcInParsedOperands(unsigned CompSrcIdx) const
std::optional< unsigned > getInvalidCompOperandIndex(std::function< unsigned(unsigned, unsigned)> GetRegIdx, const MCRegisterInfo &MRI, bool SkipSrc=false, bool AllowSameVGPR=false, bool VOPD3=false) const
std::array< unsigned, Component::MAX_OPR_NUM > RegIndices
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
constexpr bool test(unsigned I) const
unsigned getAddressSpace() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
bool mayStore() const
Return true if this instruction could possibly modify memory.
bool mayLoad() const
Return true if this instruction could possibly read memory.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specified operand constraint if it is present.
unsigned getOpcode() const
Return the opcode number for this descriptor.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:64
MCRegisterClass - Base class of TargetRegisterClass.
unsigned getID() const
getID() - Return the register class ID number.
MCRegister getRegister(unsigned i) const
getRegister - Return the specified register in the class.
bool contains(MCRegister Reg) const
contains - Return true if the specified register is included in this register class.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
const FeatureBitset & getFeatureBits() const
StringRef getCPU() const
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1451
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
const char * c_str()
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
Definition StringRef.h:862
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:710
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:480
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:151
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:154
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:281
Manages the enabling and disabling of subtarget specific features.
const std::vector< std::string > & getFeatures() const
Returns the vector of individual subtarget features.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
OSType getOS() const
Get the parsed operating system type of this triple.
Definition Triple.h:420
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:411
bool isAMDGCN() const
Tests whether the target is AMDGCN.
Definition Triple.h:904
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
A raw_ostream that writes to an SmallVector or SmallString.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
unsigned decodeFieldVaVcc(unsigned Encoded)
unsigned encodeFieldVaVcc(unsigned Encoded, unsigned VaVcc)
unsigned encodeFieldHoldCnt(unsigned Encoded, unsigned HoldCnt)
bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
unsigned encodeFieldVaSsrc(unsigned Encoded, unsigned VaSsrc)
unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst)
unsigned decodeFieldSaSdst(unsigned Encoded)
unsigned decodeFieldVaSdst(unsigned Encoded)
unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc)
unsigned decodeFieldVaSsrc(unsigned Encoded)
int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst)
const CustomOperandVal DepCtrInfo[]
bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
unsigned decodeFieldVaVdst(unsigned Encoded)
unsigned decodeFieldHoldCnt(unsigned Encoded)
int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI)
unsigned decodeFieldVmVsrc(unsigned Encoded)
unsigned encodeFieldVaSdst(unsigned Encoded, unsigned VaSdst)
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI)
static constexpr ExpTgt ExpTgtInfo[]
bool getTgtName(unsigned Id, StringRef &Name, int &Index)
unsigned getTgtId(const StringRef Name)
constexpr uint32_t VersionMinor
HSA metadata minor version.
constexpr uint32_t VersionMajor
HSA metadata major version.
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, std::optional< bool > EnableWavefrontSize32)
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI)
unsigned getArchVGPRAllocGranule()
For subtargets with a unified VGPR file and mixed ArchVGPR/AGPR usage, returns the allocation granule...
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getWavefrontSize(const MCSubtargetInfo *STI)
unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize)
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI)
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize)
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed)
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI)
unsigned getLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI)
unsigned getEUsPerCU(const MCSubtargetInfo *STI)
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI)
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU)
static TargetIDSetting getTargetIDSettingFromFeatureString(StringRef FeatureString)
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI)
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable)
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs)
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI)
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI)
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, unsigned DynamicVGPRBlockSize)
unsigned getAllocatedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, unsigned DynamicVGPRBlockSize, std::optional< bool > EnableWavefrontSize32)
unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, std::optional< bool > EnableWavefrontSize32)
unsigned getOccupancyWithNumSGPRs(unsigned SGPRs, unsigned MaxWaves, AMDGPUSubtarget::Generation Gen)
static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs, unsigned Granule)
unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI)
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI)
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI, unsigned DynamicVGPRBlockSize)
StringLiteral const UfmtSymbolicGFX11[]
bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI)
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI)
StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX10[]
StringLiteral const DfmtSymbolic[]
static StringLiteral const * getNfmtLookupTable(const MCSubtargetInfo &STI)
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI)
StringLiteral const NfmtSymbolicGFX10[]
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI)
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt, const MCSubtargetInfo &STI)
StringRef getDfmtName(unsigned Id)
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt)
int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI)
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI)
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI)
unsigned const DfmtNfmt2UFmtGFX11[]
StringLiteral const NfmtSymbolicVI[]
StringLiteral const NfmtSymbolicSICI[]
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI)
int64_t getDfmt(const StringRef Name)
StringLiteral const UfmtSymbolicGFX10[]
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt)
uint64_t encodeMsg(uint64_t MsgId, uint64_t OpId, uint64_t StreamId)
bool msgSupportsStream(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI)
void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId, uint16_t &StreamId, const MCSubtargetInfo &STI)
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, const MCSubtargetInfo &STI, bool Strict)
StringRef getMsgOpName(int64_t MsgId, uint64_t Encoding, const MCSubtargetInfo &STI)
Map from an encoding to the symbolic name for a sendmsg operation.
static uint64_t getMsgIdMask(const MCSubtargetInfo &STI)
bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI)
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, bool Strict)
constexpr unsigned VOPD_VGPR_BANK_MASKS[]
constexpr unsigned COMPONENTS_NUM
constexpr unsigned VOPD3_VGPR_BANK_MASKS[]
bool isPackedFP32Inst(unsigned Opc)
bool isGCN3Encoding(const MCSubtargetInfo &STI)
bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi)
bool isGFX10_BEncoding(const MCSubtargetInfo &STI)
bool isGFX10_GFX11(const MCSubtargetInfo &STI)
bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType)
LLVM_READONLY const MIMGInfo * getMIMGInfo(unsigned Opc)
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo)
Get size of register operand.
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt)
Decodes Vmcnt, Expcnt and Lgkmcnt from given Waitcnt for given isa Version, and writes decoded values...
bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi)
bool isSGPR(MCRegister Reg, const MCRegisterInfo *TRI)
Is Reg - scalar register.
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, uint64_t ByteOffset)
Convert ByteOffset to dwords if the subtarget uses dword SMRD immediate offsets.
static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Storecnt)
MCRegister getMCReg(MCRegister Reg, const MCSubtargetInfo &STI)
If Reg is a pseudo reg, return the correct hardware register given STI otherwise return Reg.
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST)
bool isVOPCAsmOnly(unsigned Opc)
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool getMTBUFHasSrsrc(unsigned Opc)
std::optional< int64_t > getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, int64_t ByteOffset)
bool getWMMAIsXDL(unsigned Opc)
uint8_t wmmaScaleF8F6F4FormatToNumRegs(unsigned Fmt)
static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr, int Size, unsigned Code, bool &HasNonDefaultVal, const MCSubtargetInfo &STI)
bool isGFX10Before1030(const MCSubtargetInfo &STI)
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo)
Does this operand support only inlinable literals?
unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc)
const int OPR_ID_UNSUPPORTED
bool shouldEmitConstantsToTextSection(const Triple &TT)
bool isInlinableLiteralV2I16(uint32_t Literal)
int getMTBUFElements(unsigned Opc)
bool isHi16Reg(MCRegister Reg, const MCRegisterInfo &MRI)
static int encodeCustomOperandVal(const CustomOperandVal &Op, int64_t InputVal)
unsigned getTemporalHintType(const MCInstrDesc TID)
int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, int32_t ArgNumVGPR)
bool isGFX10(const MCSubtargetInfo &STI)
const MCRegisterClass * getVGPRPhysRegClass(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool isInlinableLiteralV2BF16(uint32_t Literal)
unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV216(bool IsFloat, uint32_t Literal)
FPType getFPDstSelType(unsigned Opc)
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST)
For pre-GFX12 FLAT instructions the offset must be positive; MSB is ignored and forced to zero.
bool hasA16(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset, bool IsBuffer)
bool isGFX12Plus(const MCSubtargetInfo &STI)
unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler)
bool hasPackedD16(const MCSubtargetInfo &STI)
unsigned getStorecntBitMask(const IsaVersion &Version)
unsigned getLdsDwGranularity(const MCSubtargetInfo &ST)
bool isGFX940(const MCSubtargetInfo &STI)
bool isInlinableLiteralV2F16(uint32_t Literal)
bool isHsaAbi(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
const int OPR_VAL_INVALID
unsigned getVGPREncodingMSBs(MCPhysReg Reg, const MCRegisterInfo &MRI)
bool getSMEMIsBuffer(unsigned Opc)
bool isGFX10_3_GFX11(const MCSubtargetInfo &STI)
bool hasValueInRangeLikeMetadata(const MDNode &MD, int64_t Val)
Checks if Val is inside MD, a !range-like metadata.
uint8_t mfmaScaleF8F6F4FormatToNumRegs(unsigned EncodingVal)
unsigned getVOPDOpcode(unsigned Opc, bool VOPD3)
bool isGroupSegment(const GlobalValue *GV)
LLVM_ABI IsaVersion getIsaVersion(StringRef GPU)
bool getMTBUFHasSoffset(unsigned Opc)
bool hasXNACK(const MCSubtargetInfo &STI)
bool isValid32BitLiteral(uint64_t Val, bool IsFP64)
static unsigned getCombinedCountBitMask(const IsaVersion &Version, bool IsStore)
CanBeVOPD getCanBeVOPD(unsigned Opc, unsigned EncodingFamily, bool VOPD3)
unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt)
Encodes Vmcnt, Expcnt and Lgkmcnt into Waitcnt for given isa Version.
bool isVOPC64DPP(unsigned Opc)
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements)
bool getMAIIsGFX940XDL(unsigned Opc)
bool isSI(const MCSubtargetInfo &STI)
unsigned getDefaultAMDHSACodeObjectVersion()
bool isReadOnlySegment(const GlobalValue *GV)
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
int getMUBUFBaseOpcode(unsigned Opc)
unsigned getAMDHSACodeObjectVersion(const Module &M)
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt)
unsigned getWaitcntBitMask(const IsaVersion &Version)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, OpName NamedIdx)
bool getVOP3IsSingle(unsigned Opc)
bool isGFX9(const MCSubtargetInfo &STI)
bool isDPALU_DPP32BitOpc(unsigned Opc)
bool getVOP1IsSingle(unsigned Opc)
static bool isDwordAligned(uint64_t ByteOffset)
unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST)
bool isGFX10_AEncoding(const MCSubtargetInfo &STI)
bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this a KImm operand?
bool getHasColorExport(const Function &F)
int getMTBUFBaseOpcode(unsigned Opc)
bool isGFX90A(const MCSubtargetInfo &STI)
unsigned getSamplecntBitMask(const IsaVersion &Version)
unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion)
bool hasSRAMECC(const MCSubtargetInfo &STI)
bool getHasDepthExport(const Function &F)
bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI)
bool getMUBUFHasVAddr(unsigned Opc)
bool isTrue16Inst(unsigned Opc)
bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc)
std::pair< unsigned, unsigned > getVOPDComponents(unsigned VOPDOpcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
bool isGFX12(const MCSubtargetInfo &STI)
unsigned getInitialPSInputAddr(const Function &F)
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt)
bool isAsyncStore(unsigned Opc)
unsigned getDynamicVGPRBlockSize(const Function &F)
unsigned getKmcntBitMask(const IsaVersion &Version)
unsigned getVmcntBitMask(const IsaVersion &Version)
bool isNotGFX10Plus(const MCSubtargetInfo &STI)
bool hasMAIInsts(const MCSubtargetInfo &STI)
unsigned getBitOp2(unsigned Opc)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
unsigned getXcntBitMask(const IsaVersion &Version)
bool isGenericAtomic(unsigned Opc)
const MFMA_F8F6F4_Info * getWMMA_F8F6F4_WithFormatArgs(unsigned FmtA, unsigned FmtB, unsigned F8F8Opcode)
Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt)
bool isGFX8Plus(const MCSubtargetInfo &STI)
LLVM_READNONE bool isInlinableIntLiteral(int64_t Literal)
Is this literal inlinable, and not one of the values intended for floating point values.
unsigned getLgkmcntBitMask(const IsaVersion &Version)
bool getMUBUFTfe(unsigned Opc)
unsigned getBvhcntBitMask(const IsaVersion &Version)
bool isDPALU_DPP(const MCInstrDesc &OpDesc, const MCSubtargetInfo &ST)
bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST)
bool hasMIMG_R128(const MCSubtargetInfo &STI)
bool hasGFX10_3Insts(const MCSubtargetInfo &STI)
std::pair< const AMDGPU::OpName *, const AMDGPU::OpName * > getVGPRLoweringOperandTables(const MCInstrDesc &Desc)
bool hasG16(const MCSubtargetInfo &STI)
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, const MIMGDimInfo *Dim, bool IsA16, bool IsG16Supported)
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements)
unsigned getExpcntBitMask(const IsaVersion &Version)
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI)
bool getMUBUFHasSoffset(unsigned Opc)
bool isNotGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX11Plus(const MCSubtargetInfo &STI)
std::optional< unsigned > getInlineEncodingV2F16(uint32_t Literal)
bool isInlineValue(unsigned Reg)
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo)
Is this floating-point operand?
std::tuple< char, unsigned, unsigned > parseAsmConstraintPhysReg(StringRef Constraint)
Returns a valid charcode or 0 in the first entry if this is a valid physical register constraint.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion)
static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr, int Size, const MCSubtargetInfo &STI)
static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Loadcnt)
bool isGFX10Plus(const MCSubtargetInfo &STI)
static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size, unsigned Code, int &Idx, StringRef &Name, unsigned &Val, bool &IsDefault, const MCSubtargetInfo &STI)
static bool isValidRegPrefix(char C)
std::optional< int64_t > getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset, bool IsBuffer, bool HasSOffset)
bool isGlobalSegment(const GlobalValue *GV)
@ OPERAND_KIMM32
Operand with 32-bit immediate that uses the constant bus.
Definition SIDefines.h:231
@ OPERAND_REG_INLINE_C_LAST
Definition SIDefines.h:254
@ OPERAND_REG_IMM_V2FP16
Definition SIDefines.h:209
@ OPERAND_REG_INLINE_C_FP64
Definition SIDefines.h:222
@ OPERAND_REG_INLINE_C_V2BF16
Definition SIDefines.h:224
@ OPERAND_REG_IMM_V2INT16
Definition SIDefines.h:210
@ OPERAND_REG_IMM_V2BF16
Definition SIDefines.h:208
@ OPERAND_REG_INLINE_AC_FIRST
Definition SIDefines.h:256
@ OPERAND_REG_IMM_FP16
Definition SIDefines.h:207
@ OPERAND_REG_IMM_NOINLINE_V2FP16
Definition SIDefines.h:211
@ OPERAND_REG_IMM_FP64
Definition SIDefines.h:205
@ OPERAND_REG_INLINE_C_V2FP16
Definition SIDefines.h:225
@ OPERAND_REG_INLINE_AC_FP32
Definition SIDefines.h:237
@ OPERAND_REG_IMM_FP32
Definition SIDefines.h:204
@ OPERAND_REG_INLINE_C_FIRST
Definition SIDefines.h:253
@ OPERAND_REG_INLINE_C_FP32
Definition SIDefines.h:221
@ OPERAND_REG_INLINE_AC_LAST
Definition SIDefines.h:257
@ OPERAND_REG_INLINE_C_V2INT16
Definition SIDefines.h:223
@ OPERAND_REG_IMM_V2FP32
Definition SIDefines.h:213
@ OPERAND_REG_INLINE_AC_FP64
Definition SIDefines.h:238
@ OPERAND_REG_INLINE_C_FP16
Definition SIDefines.h:220
void initDefaultAMDKernelCodeT(AMDGPUMCKernelCodeT &KernelCode, const MCSubtargetInfo *STI)
bool isNotGFX9Plus(const MCSubtargetInfo &STI)
bool hasGDS(const MCSubtargetInfo &STI)
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, int64_t EncodedOffset)
bool isGFX9Plus(const MCSubtargetInfo &STI)
bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI)
MCPhysReg getVGPRWithMSBs(MCPhysReg Reg, unsigned MSBs, const MCRegisterInfo &MRI)
If Reg is a low VGPR return a corresponding high VGPR with MSBs set.
const int OPR_ID_DUPLICATE
bool isVOPD(unsigned Opc)
VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY)
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt)
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt)
bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc)
Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt)
std::optional< unsigned > getInlineEncodingV2I16(uint32_t Literal)
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
static unsigned encodeStorecntDscnt(const IsaVersion &Version, unsigned Storecnt, unsigned Dscnt)
bool isGFX1250(const MCSubtargetInfo &STI)
int getMCOpcode(uint16_t Opcode, unsigned Gen)
const MIMGBaseOpcodeInfo * getMIMGBaseOpcode(unsigned Opc)
bool isVI(const MCSubtargetInfo &STI)
bool isTensorStore(unsigned Opc)
bool getMUBUFIsBufferInv(unsigned Opc)
bool supportsScaleOffset(const MCInstrInfo &MII, unsigned Opcode)
MCRegister mc2PseudoReg(MCRegister Reg)
Convert hardware register Reg to a pseudo register.
std::optional< unsigned > getInlineEncodingV2BF16(uint32_t Literal)
static int encodeCustomOperand(const CustomOperandVal *Opr, int Size, const StringRef Name, int64_t InputVal, unsigned &UsedOprMask, const MCSubtargetInfo &STI)
unsigned hasKernargPreload(const MCSubtargetInfo &STI)
bool supportsWGP(const MCSubtargetInfo &STI)
bool isMAC(unsigned Opc)
bool isCI(const MCSubtargetInfo &STI)
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt)
bool getVOP2IsSingle(unsigned Opc)
bool getMAIIsDGEMM(unsigned Opc)
Returns true if MAI operation is a double precision GEMM.
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
const int OPR_ID_UNKNOWN
unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion)
SmallVector< unsigned > getIntegerVecAttribute(const Function &F, StringRef Name, unsigned Size, unsigned DefaultVal)
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels)
bool isNotGFX12Plus(const MCSubtargetInfo &STI)
bool getMTBUFHasVAddr(unsigned Opc)
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt)
uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion)
std::pair< unsigned, unsigned > getIntegerPairAttribute(const Function &F, StringRef Name, std::pair< unsigned, unsigned > Default, bool OnlyFirstRequired)
unsigned getLoadcntBitMask(const IsaVersion &Version)
bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi)
bool hasVOPD(const MCSubtargetInfo &STI)
int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily, bool VOPD3)
static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Dscnt)
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi)
Is this literal inlinable.
const MFMA_F8F6F4_Info * getMFMA_F8F6F4_WithFormatArgs(unsigned CBSZ, unsigned BLGP, unsigned F8F8Opcode)
unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion)
bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI)
bool isGFX9_GFX10(const MCSubtargetInfo &STI)
int getMUBUFElements(unsigned Opc)
static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt, unsigned Dscnt)
const GcnBufferFormatInfo * getGcnBufferFormatInfo(uint8_t BitsPerComp, uint8_t NumComponents, uint8_t NumFormat, const MCSubtargetInfo &STI)
unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc)
bool isPermlane16(unsigned Opc)
bool getMUBUFHasSrsrc(unsigned Opc)
unsigned getDscntBitMask(const IsaVersion &Version)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ ELFABIVERSION_AMDGPU_HSA_V4
Definition ELF.h:384
@ ELFABIVERSION_AMDGPU_HSA_V5
Definition ELF.h:385
@ ELFABIVERSION_AMDGPU_HSA_V6
Definition ELF.h:386
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:681
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition Error.h:198
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:557
std::string utostr(uint64_t X, bool isNeg=false)
Op::Description Desc
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:198
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:164
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
To bit_cast(const From &from) noexcept
Definition bit.h:90
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
@ AlwaysUniform
The result values are always uniform.
Definition Uniformity.h:23
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
#define N
AMD Kernel Code Object (amd_kernel_code_t).
Instruction set architecture version.
Represents the counter values to wait for in an s_waitcnt instruction.