31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::BitCast)
341 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
350 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
360 Type *SrcTy =
C->getType();
364 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
365 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
377 if (SrcSize == DestSize &&
378 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
384 Cast = Instruction::IntToPtr;
385 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
386 Cast = Instruction::PtrToInt;
394 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
401 if (SrcTy->isStructTy()) {
407 ElemC =
C->getAggregateElement(Elem++);
408 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
414 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
417 C =
C->getAggregateElement(0u);
432 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
433 "Out of range access");
436 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
445 if ((CI->getBitWidth() & 7) != 0)
447 const APInt &Val = CI->getValue();
448 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
450 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
451 unsigned n = ByteOffset;
452 if (!
DL.isLittleEndian())
453 n = IntBytes - n - 1;
461 if (CFP->getType()->isDoubleTy()) {
463 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
465 if (CFP->getType()->isFloatTy()){
467 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
469 if (CFP->getType()->isHalfTy()){
471 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
480 ByteOffset -= CurEltOffset;
485 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487 if (ByteOffset < EltSize &&
488 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
495 if (Index == CS->getType()->getNumElements())
501 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
505 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
506 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 CurEltOffset = NextEltOffset;
518 NumElts = AT->getNumElements();
519 EltTy = AT->getElementType();
520 EltSize =
DL.getTypeAllocSize(EltTy);
526 if (!
DL.typeSizeEqualsStoreSize(EltTy))
529 EltSize =
DL.getTypeStoreSize(EltTy);
531 uint64_t Index = ByteOffset / EltSize;
534 for (; Index != NumElts; ++Index) {
535 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
540 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
541 if (BytesWritten >= BytesLeft)
545 BytesLeft -= BytesWritten;
546 CurPtr += BytesWritten;
552 if (
CE->getOpcode() == Instruction::IntToPtr &&
553 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
554 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
582 DL.getTypeSizeInBits(LoadTy).getFixedValue());
603 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
604 if (BytesLoaded > 32 || BytesLoaded == 0)
608 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
612 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
620 unsigned char RawBytes[32] = {0};
621 unsigned char *CurPtr = RawBytes;
622 unsigned BytesLeft = BytesLoaded;
631 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
634 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
635 if (
DL.isLittleEndian()) {
636 ResultVal = RawBytes[BytesLoaded - 1];
637 for (
unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal |= RawBytes[BytesLoaded - 1 - i];
642 ResultVal = RawBytes[0];
643 for (
unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal |= RawBytes[i];
649 return ConstantInt::get(IntType->getContext(), ResultVal);
669 if (NBytes > UINT16_MAX)
677 unsigned char *CurPtr = RawBytes.
data();
679 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
697 if (!
Offset.isZero() || !Indices[0].isZero())
702 if (Index.isNegative() || Index.getActiveBits() >= 32)
705 C =
C->getAggregateElement(Index.getZExtValue());
731 if (
Offset.getSignificantBits() <= 64)
733 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
780 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
782 if (
C->isNullValue() && !Ty->isX86_AMXTy())
784 if (
C->isAllOnesValue() &&
785 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
804 if (
Opc == Instruction::And) {
807 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
811 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
823 if (
Opc == Instruction::Sub) {
829 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
846 std::optional<ConstantRange>
InRange,
848 Type *IntIdxTy =
DL.getIndexType(ResultTy);
853 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
856 SrcElemTy,
Ops.slice(1, i - 1)))) &&
857 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
860 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
884 Type *SrcElemTy =
GEP->getSourceElementType();
889 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
890 GEP->getInRange(),
DL, TLI))
894 if (!
Ptr->getType()->isPointerTy())
897 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
899 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
903 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
906 DL.getIndexedOffsetInType(
910 std::optional<ConstantRange>
InRange =
GEP->getInRange();
916 bool Overflow =
false;
918 NW &=
GEP->getNoWrapFlags();
923 bool AllConstantInt =
true;
924 for (
Value *NestedOp : NestedOps)
926 AllConstantInt =
false;
933 if (
auto GEPRange =
GEP->getInRange()) {
934 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
936 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
940 SrcElemTy =
GEP->getSourceElementType();
956 if (
CE->getOpcode() == Instruction::IntToPtr) {
963 if ((
Ptr->isNullValue() || BasePtr != 0) &&
964 !
DL.isNonIntegralPointerType(PTy)) {
968 Constant *
C = ConstantInt::get(
Ptr->getContext(), BasePtr);
974 bool CanBeNull, CanBeFreed;
976 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
977 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
988 ConstantInt::get(Ctx,
Offset), NW,
997Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1001 bool AllowNonDeterministic) {
1011 case Instruction::FAdd:
1012 case Instruction::FSub:
1013 case Instruction::FMul:
1014 case Instruction::FDiv:
1015 case Instruction::FRem:
1021 AllowNonDeterministic);
1031 Type *SrcElemTy =
GEP->getSourceElementType();
1039 GEP->getNoWrapFlags(),
1044 return CE->getWithOperands(
Ops);
1047 default:
return nullptr;
1048 case Instruction::ICmp:
1049 case Instruction::FCmp: {
1054 case Instruction::Freeze:
1056 case Instruction::Call:
1061 AllowNonDeterministic);
1064 case Instruction::Select:
1066 case Instruction::ExtractElement:
1068 case Instruction::ExtractValue:
1071 case Instruction::InsertElement:
1073 case Instruction::InsertValue:
1076 case Instruction::ShuffleVector:
1079 case Instruction::Load: {
1081 if (LI->isVolatile())
1104 for (
const Use &OldU :
C->operands()) {
1110 auto It = FoldedOps.
find(OldC);
1111 if (It == FoldedOps.
end()) {
1112 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1113 FoldedOps.
insert({OldC, NewC});
1118 Ops.push_back(NewC);
1122 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1123 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1154 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1157 if (CommonValue &&
C != CommonValue)
1168 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1173 for (
const Use &OpU :
I->operands()) {
1176 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1186 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1193 bool AllowNonDeterministic) {
1194 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1195 AllowNonDeterministic);
1214 if (CE0->getOpcode() == Instruction::IntToPtr) {
1215 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1227 if (CE0->getOpcode() == Instruction::PtrToInt) {
1228 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1229 if (CE0->getType() == IntPtrTy) {
1238 if (CE0->getOpcode() == CE1->getOpcode()) {
1239 if (CE0->getOpcode() == Instruction::IntToPtr) {
1240 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1254 if (CE0->getOpcode() == Instruction::PtrToInt) {
1255 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1256 if (CE0->getType() == IntPtrTy &&
1257 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1259 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1271 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1272 APInt Offset0(IndexWidth, 0);
1275 DL, Offset0, IsEqPred,
1278 APInt Offset1(IndexWidth, 0);
1280 DL, Offset1, IsEqPred,
1283 if (Stripped0 == Stripped1)
1322 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1336 return ConstantFP::get(Ty->getContext(), APF);
1338 return ConstantFP::get(
1342 return ConstantFP::get(Ty->getContext(),
1368 IsOutput ?
Mode.Output :
Mode.Input);
1397 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1419 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1420 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1422 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1442 bool AllowNonDeterministic) {
1455 if (!AllowNonDeterministic)
1457 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1458 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1472 if (!AllowNonDeterministic &&
C->isNaN())
1488 case Instruction::PtrToAddr:
1491 case Instruction::PtrToInt:
1496 if (CE->getOpcode() == Instruction::IntToPtr) {
1499 DL.getIntPtrType(CE->getType()),
1505 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1508 DL, BaseOffset,
true));
1509 if (
Base->isNullValue()) {
1510 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1513 if (
GEP->getNumIndices() == 1 &&
1514 GEP->getSourceElementType()->isIntegerTy(8)) {
1517 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1518 if (
Sub &&
Sub->getType() == IntIdxTy &&
1519 Sub->getOpcode() == Instruction::Sub &&
1520 Sub->getOperand(0)->isNullValue())
1533 case Instruction::IntToPtr:
1539 if (CE->getOpcode() == Instruction::PtrToInt) {
1540 Constant *SrcPtr = CE->getOperand(0);
1541 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1542 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1544 if (MidIntSize >= SrcPtrSize) {
1552 case Instruction::Trunc:
1553 case Instruction::ZExt:
1554 case Instruction::SExt:
1555 case Instruction::FPTrunc:
1556 case Instruction::FPExt:
1557 case Instruction::UIToFP:
1558 case Instruction::SIToFP:
1559 case Instruction::FPToUI:
1560 case Instruction::FPToSI:
1561 case Instruction::AddrSpaceCast:
1563 case Instruction::BitCast:
1574 Type *SrcTy =
C->getType();
1575 if (SrcTy == DestTy)
1589 if (
Call->isNoBuiltin())
1591 if (
Call->getFunctionType() !=
F->getFunctionType())
1600 return Arg.getType()->isFloatingPointTy();
1604 switch (
F->getIntrinsicID()) {
1607 case Intrinsic::bswap:
1608 case Intrinsic::ctpop:
1609 case Intrinsic::ctlz:
1610 case Intrinsic::cttz:
1611 case Intrinsic::fshl:
1612 case Intrinsic::fshr:
1613 case Intrinsic::launder_invariant_group:
1614 case Intrinsic::strip_invariant_group:
1615 case Intrinsic::masked_load:
1616 case Intrinsic::get_active_lane_mask:
1617 case Intrinsic::abs:
1618 case Intrinsic::smax:
1619 case Intrinsic::smin:
1620 case Intrinsic::umax:
1621 case Intrinsic::umin:
1622 case Intrinsic::scmp:
1623 case Intrinsic::ucmp:
1624 case Intrinsic::sadd_with_overflow:
1625 case Intrinsic::uadd_with_overflow:
1626 case Intrinsic::ssub_with_overflow:
1627 case Intrinsic::usub_with_overflow:
1628 case Intrinsic::smul_with_overflow:
1629 case Intrinsic::umul_with_overflow:
1630 case Intrinsic::sadd_sat:
1631 case Intrinsic::uadd_sat:
1632 case Intrinsic::ssub_sat:
1633 case Intrinsic::usub_sat:
1634 case Intrinsic::smul_fix:
1635 case Intrinsic::smul_fix_sat:
1636 case Intrinsic::bitreverse:
1637 case Intrinsic::is_constant:
1638 case Intrinsic::vector_reduce_add:
1639 case Intrinsic::vector_reduce_mul:
1640 case Intrinsic::vector_reduce_and:
1641 case Intrinsic::vector_reduce_or:
1642 case Intrinsic::vector_reduce_xor:
1643 case Intrinsic::vector_reduce_smin:
1644 case Intrinsic::vector_reduce_smax:
1645 case Intrinsic::vector_reduce_umin:
1646 case Intrinsic::vector_reduce_umax:
1647 case Intrinsic::vector_extract:
1648 case Intrinsic::vector_insert:
1649 case Intrinsic::vector_interleave2:
1650 case Intrinsic::vector_deinterleave2:
1652 case Intrinsic::amdgcn_perm:
1653 case Intrinsic::amdgcn_wave_reduce_umin:
1654 case Intrinsic::amdgcn_wave_reduce_umax:
1655 case Intrinsic::amdgcn_wave_reduce_max:
1656 case Intrinsic::amdgcn_wave_reduce_min:
1657 case Intrinsic::amdgcn_wave_reduce_add:
1658 case Intrinsic::amdgcn_wave_reduce_sub:
1659 case Intrinsic::amdgcn_wave_reduce_and:
1660 case Intrinsic::amdgcn_wave_reduce_or:
1661 case Intrinsic::amdgcn_wave_reduce_xor:
1662 case Intrinsic::amdgcn_s_wqm:
1663 case Intrinsic::amdgcn_s_quadmask:
1664 case Intrinsic::amdgcn_s_bitreplicate:
1665 case Intrinsic::arm_mve_vctp8:
1666 case Intrinsic::arm_mve_vctp16:
1667 case Intrinsic::arm_mve_vctp32:
1668 case Intrinsic::arm_mve_vctp64:
1669 case Intrinsic::aarch64_sve_convert_from_svbool:
1670 case Intrinsic::wasm_alltrue:
1671 case Intrinsic::wasm_anytrue:
1672 case Intrinsic::wasm_dot:
1674 case Intrinsic::wasm_trunc_signed:
1675 case Intrinsic::wasm_trunc_unsigned:
1680 case Intrinsic::minnum:
1681 case Intrinsic::maxnum:
1682 case Intrinsic::minimum:
1683 case Intrinsic::maximum:
1684 case Intrinsic::minimumnum:
1685 case Intrinsic::maximumnum:
1686 case Intrinsic::log:
1687 case Intrinsic::log2:
1688 case Intrinsic::log10:
1689 case Intrinsic::exp:
1690 case Intrinsic::exp2:
1691 case Intrinsic::exp10:
1692 case Intrinsic::sqrt:
1693 case Intrinsic::sin:
1694 case Intrinsic::cos:
1695 case Intrinsic::sincos:
1696 case Intrinsic::sinh:
1697 case Intrinsic::cosh:
1698 case Intrinsic::atan:
1699 case Intrinsic::pow:
1700 case Intrinsic::powi:
1701 case Intrinsic::ldexp:
1702 case Intrinsic::fma:
1703 case Intrinsic::fmuladd:
1704 case Intrinsic::frexp:
1705 case Intrinsic::fptoui_sat:
1706 case Intrinsic::fptosi_sat:
1707 case Intrinsic::convert_from_fp16:
1708 case Intrinsic::convert_to_fp16:
1709 case Intrinsic::amdgcn_cos:
1710 case Intrinsic::amdgcn_cubeid:
1711 case Intrinsic::amdgcn_cubema:
1712 case Intrinsic::amdgcn_cubesc:
1713 case Intrinsic::amdgcn_cubetc:
1714 case Intrinsic::amdgcn_fmul_legacy:
1715 case Intrinsic::amdgcn_fma_legacy:
1716 case Intrinsic::amdgcn_fract:
1717 case Intrinsic::amdgcn_sin:
1719 case Intrinsic::x86_sse_cvtss2si:
1720 case Intrinsic::x86_sse_cvtss2si64:
1721 case Intrinsic::x86_sse_cvttss2si:
1722 case Intrinsic::x86_sse_cvttss2si64:
1723 case Intrinsic::x86_sse2_cvtsd2si:
1724 case Intrinsic::x86_sse2_cvtsd2si64:
1725 case Intrinsic::x86_sse2_cvttsd2si:
1726 case Intrinsic::x86_sse2_cvttsd2si64:
1727 case Intrinsic::x86_avx512_vcvtss2si32:
1728 case Intrinsic::x86_avx512_vcvtss2si64:
1729 case Intrinsic::x86_avx512_cvttss2si:
1730 case Intrinsic::x86_avx512_cvttss2si64:
1731 case Intrinsic::x86_avx512_vcvtsd2si32:
1732 case Intrinsic::x86_avx512_vcvtsd2si64:
1733 case Intrinsic::x86_avx512_cvttsd2si:
1734 case Intrinsic::x86_avx512_cvttsd2si64:
1735 case Intrinsic::x86_avx512_vcvtss2usi32:
1736 case Intrinsic::x86_avx512_vcvtss2usi64:
1737 case Intrinsic::x86_avx512_cvttss2usi:
1738 case Intrinsic::x86_avx512_cvttss2usi64:
1739 case Intrinsic::x86_avx512_vcvtsd2usi32:
1740 case Intrinsic::x86_avx512_vcvtsd2usi64:
1741 case Intrinsic::x86_avx512_cvttsd2usi:
1742 case Intrinsic::x86_avx512_cvttsd2usi64:
1745 case Intrinsic::nvvm_fmax_d:
1746 case Intrinsic::nvvm_fmax_f:
1747 case Intrinsic::nvvm_fmax_ftz_f:
1748 case Intrinsic::nvvm_fmax_ftz_nan_f:
1749 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1750 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1751 case Intrinsic::nvvm_fmax_nan_f:
1752 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1753 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1756 case Intrinsic::nvvm_fmin_d:
1757 case Intrinsic::nvvm_fmin_f:
1758 case Intrinsic::nvvm_fmin_ftz_f:
1759 case Intrinsic::nvvm_fmin_ftz_nan_f:
1760 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1761 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmin_nan_f:
1763 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1764 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1767 case Intrinsic::nvvm_f2i_rm:
1768 case Intrinsic::nvvm_f2i_rn:
1769 case Intrinsic::nvvm_f2i_rp:
1770 case Intrinsic::nvvm_f2i_rz:
1771 case Intrinsic::nvvm_f2i_rm_ftz:
1772 case Intrinsic::nvvm_f2i_rn_ftz:
1773 case Intrinsic::nvvm_f2i_rp_ftz:
1774 case Intrinsic::nvvm_f2i_rz_ftz:
1775 case Intrinsic::nvvm_f2ui_rm:
1776 case Intrinsic::nvvm_f2ui_rn:
1777 case Intrinsic::nvvm_f2ui_rp:
1778 case Intrinsic::nvvm_f2ui_rz:
1779 case Intrinsic::nvvm_f2ui_rm_ftz:
1780 case Intrinsic::nvvm_f2ui_rn_ftz:
1781 case Intrinsic::nvvm_f2ui_rp_ftz:
1782 case Intrinsic::nvvm_f2ui_rz_ftz:
1783 case Intrinsic::nvvm_d2i_rm:
1784 case Intrinsic::nvvm_d2i_rn:
1785 case Intrinsic::nvvm_d2i_rp:
1786 case Intrinsic::nvvm_d2i_rz:
1787 case Intrinsic::nvvm_d2ui_rm:
1788 case Intrinsic::nvvm_d2ui_rn:
1789 case Intrinsic::nvvm_d2ui_rp:
1790 case Intrinsic::nvvm_d2ui_rz:
1793 case Intrinsic::nvvm_f2ll_rm:
1794 case Intrinsic::nvvm_f2ll_rn:
1795 case Intrinsic::nvvm_f2ll_rp:
1796 case Intrinsic::nvvm_f2ll_rz:
1797 case Intrinsic::nvvm_f2ll_rm_ftz:
1798 case Intrinsic::nvvm_f2ll_rn_ftz:
1799 case Intrinsic::nvvm_f2ll_rp_ftz:
1800 case Intrinsic::nvvm_f2ll_rz_ftz:
1801 case Intrinsic::nvvm_f2ull_rm:
1802 case Intrinsic::nvvm_f2ull_rn:
1803 case Intrinsic::nvvm_f2ull_rp:
1804 case Intrinsic::nvvm_f2ull_rz:
1805 case Intrinsic::nvvm_f2ull_rm_ftz:
1806 case Intrinsic::nvvm_f2ull_rn_ftz:
1807 case Intrinsic::nvvm_f2ull_rp_ftz:
1808 case Intrinsic::nvvm_f2ull_rz_ftz:
1809 case Intrinsic::nvvm_d2ll_rm:
1810 case Intrinsic::nvvm_d2ll_rn:
1811 case Intrinsic::nvvm_d2ll_rp:
1812 case Intrinsic::nvvm_d2ll_rz:
1813 case Intrinsic::nvvm_d2ull_rm:
1814 case Intrinsic::nvvm_d2ull_rn:
1815 case Intrinsic::nvvm_d2ull_rp:
1816 case Intrinsic::nvvm_d2ull_rz:
1819 case Intrinsic::nvvm_ceil_d:
1820 case Intrinsic::nvvm_ceil_f:
1821 case Intrinsic::nvvm_ceil_ftz_f:
1823 case Intrinsic::nvvm_fabs:
1824 case Intrinsic::nvvm_fabs_ftz:
1826 case Intrinsic::nvvm_floor_d:
1827 case Intrinsic::nvvm_floor_f:
1828 case Intrinsic::nvvm_floor_ftz_f:
1830 case Intrinsic::nvvm_rcp_rm_d:
1831 case Intrinsic::nvvm_rcp_rm_f:
1832 case Intrinsic::nvvm_rcp_rm_ftz_f:
1833 case Intrinsic::nvvm_rcp_rn_d:
1834 case Intrinsic::nvvm_rcp_rn_f:
1835 case Intrinsic::nvvm_rcp_rn_ftz_f:
1836 case Intrinsic::nvvm_rcp_rp_d:
1837 case Intrinsic::nvvm_rcp_rp_f:
1838 case Intrinsic::nvvm_rcp_rp_ftz_f:
1839 case Intrinsic::nvvm_rcp_rz_d:
1840 case Intrinsic::nvvm_rcp_rz_f:
1841 case Intrinsic::nvvm_rcp_rz_ftz_f:
1843 case Intrinsic::nvvm_round_d:
1844 case Intrinsic::nvvm_round_f:
1845 case Intrinsic::nvvm_round_ftz_f:
1847 case Intrinsic::nvvm_saturate_d:
1848 case Intrinsic::nvvm_saturate_f:
1849 case Intrinsic::nvvm_saturate_ftz_f:
1851 case Intrinsic::nvvm_sqrt_f:
1852 case Intrinsic::nvvm_sqrt_rn_d:
1853 case Intrinsic::nvvm_sqrt_rn_f:
1854 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1855 return !
Call->isStrictFP();
1858 case Intrinsic::nvvm_add_rm_d:
1859 case Intrinsic::nvvm_add_rn_d:
1860 case Intrinsic::nvvm_add_rp_d:
1861 case Intrinsic::nvvm_add_rz_d:
1862 case Intrinsic::nvvm_add_rm_f:
1863 case Intrinsic::nvvm_add_rn_f:
1864 case Intrinsic::nvvm_add_rp_f:
1865 case Intrinsic::nvvm_add_rz_f:
1866 case Intrinsic::nvvm_add_rm_ftz_f:
1867 case Intrinsic::nvvm_add_rn_ftz_f:
1868 case Intrinsic::nvvm_add_rp_ftz_f:
1869 case Intrinsic::nvvm_add_rz_ftz_f:
1872 case Intrinsic::nvvm_div_rm_d:
1873 case Intrinsic::nvvm_div_rn_d:
1874 case Intrinsic::nvvm_div_rp_d:
1875 case Intrinsic::nvvm_div_rz_d:
1876 case Intrinsic::nvvm_div_rm_f:
1877 case Intrinsic::nvvm_div_rn_f:
1878 case Intrinsic::nvvm_div_rp_f:
1879 case Intrinsic::nvvm_div_rz_f:
1880 case Intrinsic::nvvm_div_rm_ftz_f:
1881 case Intrinsic::nvvm_div_rn_ftz_f:
1882 case Intrinsic::nvvm_div_rp_ftz_f:
1883 case Intrinsic::nvvm_div_rz_ftz_f:
1886 case Intrinsic::nvvm_mul_rm_d:
1887 case Intrinsic::nvvm_mul_rn_d:
1888 case Intrinsic::nvvm_mul_rp_d:
1889 case Intrinsic::nvvm_mul_rz_d:
1890 case Intrinsic::nvvm_mul_rm_f:
1891 case Intrinsic::nvvm_mul_rn_f:
1892 case Intrinsic::nvvm_mul_rp_f:
1893 case Intrinsic::nvvm_mul_rz_f:
1894 case Intrinsic::nvvm_mul_rm_ftz_f:
1895 case Intrinsic::nvvm_mul_rn_ftz_f:
1896 case Intrinsic::nvvm_mul_rp_ftz_f:
1897 case Intrinsic::nvvm_mul_rz_ftz_f:
1900 case Intrinsic::nvvm_fma_rm_d:
1901 case Intrinsic::nvvm_fma_rn_d:
1902 case Intrinsic::nvvm_fma_rp_d:
1903 case Intrinsic::nvvm_fma_rz_d:
1904 case Intrinsic::nvvm_fma_rm_f:
1905 case Intrinsic::nvvm_fma_rn_f:
1906 case Intrinsic::nvvm_fma_rp_f:
1907 case Intrinsic::nvvm_fma_rz_f:
1908 case Intrinsic::nvvm_fma_rm_ftz_f:
1909 case Intrinsic::nvvm_fma_rn_ftz_f:
1910 case Intrinsic::nvvm_fma_rp_ftz_f:
1911 case Intrinsic::nvvm_fma_rz_ftz_f:
1915 case Intrinsic::fabs:
1916 case Intrinsic::copysign:
1917 case Intrinsic::is_fpclass:
1920 case Intrinsic::ceil:
1921 case Intrinsic::floor:
1922 case Intrinsic::round:
1923 case Intrinsic::roundeven:
1924 case Intrinsic::trunc:
1925 case Intrinsic::nearbyint:
1926 case Intrinsic::rint:
1927 case Intrinsic::canonicalize:
1931 case Intrinsic::experimental_constrained_fma:
1932 case Intrinsic::experimental_constrained_fmuladd:
1933 case Intrinsic::experimental_constrained_fadd:
1934 case Intrinsic::experimental_constrained_fsub:
1935 case Intrinsic::experimental_constrained_fmul:
1936 case Intrinsic::experimental_constrained_fdiv:
1937 case Intrinsic::experimental_constrained_frem:
1938 case Intrinsic::experimental_constrained_ceil:
1939 case Intrinsic::experimental_constrained_floor:
1940 case Intrinsic::experimental_constrained_round:
1941 case Intrinsic::experimental_constrained_roundeven:
1942 case Intrinsic::experimental_constrained_trunc:
1943 case Intrinsic::experimental_constrained_nearbyint:
1944 case Intrinsic::experimental_constrained_rint:
1945 case Intrinsic::experimental_constrained_fcmp:
1946 case Intrinsic::experimental_constrained_fcmps:
1953 if (!
F->hasName() ||
Call->isStrictFP())
1964 return Name ==
"acos" || Name ==
"acosf" ||
1965 Name ==
"asin" || Name ==
"asinf" ||
1966 Name ==
"atan" || Name ==
"atanf" ||
1967 Name ==
"atan2" || Name ==
"atan2f";
1969 return Name ==
"ceil" || Name ==
"ceilf" ||
1970 Name ==
"cos" || Name ==
"cosf" ||
1971 Name ==
"cosh" || Name ==
"coshf";
1973 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1974 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1976 return Name ==
"fabs" || Name ==
"fabsf" ||
1977 Name ==
"floor" || Name ==
"floorf" ||
1978 Name ==
"fmod" || Name ==
"fmodf";
1980 return Name ==
"ilogb" || Name ==
"ilogbf";
1982 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
1983 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
1984 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
1985 Name ==
"log1p" || Name ==
"log1pf";
1987 return Name ==
"nearbyint" || Name ==
"nearbyintf";
1989 return Name ==
"pow" || Name ==
"powf";
1991 return Name ==
"remainder" || Name ==
"remainderf" ||
1992 Name ==
"rint" || Name ==
"rintf" ||
1993 Name ==
"round" || Name ==
"roundf";
1995 return Name ==
"sin" || Name ==
"sinf" ||
1996 Name ==
"sinh" || Name ==
"sinhf" ||
1997 Name ==
"sqrt" || Name ==
"sqrtf";
1999 return Name ==
"tan" || Name ==
"tanf" ||
2000 Name ==
"tanh" || Name ==
"tanhf" ||
2001 Name ==
"trunc" || Name ==
"truncf";
2009 if (Name.size() < 12 || Name[1] !=
'_')
2015 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2016 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2017 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2019 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2021 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2022 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2024 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2025 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2027 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2029 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2037 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2041 return ConstantFP::get(Ty->getContext(), APF);
2043 if (Ty->isDoubleTy())
2044 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2048#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2049Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2050 if (Ty->isFP128Ty())
2051 return ConstantFP::get(Ty, V);
2057inline void llvm_fenv_clearexcept() {
2058#if HAVE_DECL_FE_ALL_EXCEPT
2059 feclearexcept(FE_ALL_EXCEPT);
2065inline bool llvm_fenv_testexcept() {
2066 int errno_val = errno;
2067 if (errno_val == ERANGE || errno_val == EDOM)
2069#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2070 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2092 switch (DenormKind) {
2096 return FTZPreserveSign(V);
2098 return FlushToPositiveZero(V);
2106 if (!DenormMode.isValid() ||
2111 llvm_fenv_clearexcept();
2112 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2113 double Result = NativeFP(
Input.convertToDouble());
2114 if (llvm_fenv_testexcept()) {
2115 llvm_fenv_clearexcept();
2119 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2122 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2123 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2124 return ConstantFP::get(Ty->getContext(), Res);
2127#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2128Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2130 llvm_fenv_clearexcept();
2131 float128
Result = NativeFP(V.convertToQuad());
2132 if (llvm_fenv_testexcept()) {
2133 llvm_fenv_clearexcept();
2137 return GetConstantFoldFPValue128(Result, Ty);
2141Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2143 llvm_fenv_clearexcept();
2144 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2145 if (llvm_fenv_testexcept()) {
2146 llvm_fenv_clearexcept();
2150 return GetConstantFoldFPValue(Result, Ty);
2175 APInt Acc = EltC->getValue();
2179 const APInt &
X = EltC->getValue();
2181 case Intrinsic::vector_reduce_add:
2184 case Intrinsic::vector_reduce_mul:
2187 case Intrinsic::vector_reduce_and:
2190 case Intrinsic::vector_reduce_or:
2193 case Intrinsic::vector_reduce_xor:
2196 case Intrinsic::vector_reduce_smin:
2199 case Intrinsic::vector_reduce_smax:
2202 case Intrinsic::vector_reduce_umin:
2205 case Intrinsic::vector_reduce_umax:
2211 return ConstantInt::get(
Op->getContext(), Acc);
2221Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2222 Type *Ty,
bool IsSigned) {
2224 unsigned ResultWidth = Ty->getIntegerBitWidth();
2225 assert(ResultWidth <= 64 &&
2226 "Can only constant fold conversions to 64 and 32 bit ints");
2229 bool isExact =
false;
2234 IsSigned,
mode, &isExact);
2238 return ConstantInt::get(Ty, UIntVal, IsSigned);
2242 Type *Ty =
Op->getType();
2244 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2245 return Op->getValueAPF().convertToDouble();
2255 C = &CI->getValue();
2314 return ConstantFP::get(
2319 if (!Ty->isIEEELikeFPTy())
2326 if (Src.isNormal() || Src.isInfinity())
2327 return ConstantFP::get(CI->
getContext(), Src);
2334 return ConstantFP::get(CI->
getContext(), Src);
2366 if (IntrinsicID == Intrinsic::is_constant) {
2370 if (
Operands[0]->isManifestConstant())
2379 if (IntrinsicID == Intrinsic::cos ||
2380 IntrinsicID == Intrinsic::ctpop ||
2381 IntrinsicID == Intrinsic::fptoui_sat ||
2382 IntrinsicID == Intrinsic::fptosi_sat ||
2383 IntrinsicID == Intrinsic::canonicalize)
2385 if (IntrinsicID == Intrinsic::bswap ||
2386 IntrinsicID == Intrinsic::bitreverse ||
2387 IntrinsicID == Intrinsic::launder_invariant_group ||
2388 IntrinsicID == Intrinsic::strip_invariant_group)
2394 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2395 IntrinsicID == Intrinsic::strip_invariant_group) {
2400 Call->getParent() ?
Call->getCaller() :
nullptr;
2411 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2422 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2423 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2424 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2429 unsigned Width = Ty->getIntegerBitWidth();
2431 bool IsExact =
false;
2436 return ConstantInt::get(Ty,
Int);
2441 if (IntrinsicID == Intrinsic::fptoui_sat ||
2442 IntrinsicID == Intrinsic::fptosi_sat) {
2445 IntrinsicID == Intrinsic::fptoui_sat);
2448 return ConstantInt::get(Ty,
Int);
2451 if (IntrinsicID == Intrinsic::canonicalize)
2452 return constantFoldCanonicalize(Ty,
Call, U);
2454#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2455 if (Ty->isFP128Ty()) {
2456 if (IntrinsicID == Intrinsic::log) {
2457 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2458 return GetConstantFoldFPValue128(Result, Ty);
2462 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2463 Fp128Func == LibFunc_logl)
2464 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2468 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2474 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2476 return ConstantFP::get(Ty->getContext(), U);
2479 if (IntrinsicID == Intrinsic::round) {
2481 return ConstantFP::get(Ty->getContext(), U);
2484 if (IntrinsicID == Intrinsic::roundeven) {
2486 return ConstantFP::get(Ty->getContext(), U);
2489 if (IntrinsicID == Intrinsic::ceil) {
2491 return ConstantFP::get(Ty->getContext(), U);
2494 if (IntrinsicID == Intrinsic::floor) {
2496 return ConstantFP::get(Ty->getContext(), U);
2499 if (IntrinsicID == Intrinsic::trunc) {
2501 return ConstantFP::get(Ty->getContext(), U);
2504 if (IntrinsicID == Intrinsic::fabs) {
2506 return ConstantFP::get(Ty->getContext(), U);
2509 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2517 APFloat AlmostOne(U.getSemantics(), 1);
2518 AlmostOne.next(
true);
2519 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2525 std::optional<APFloat::roundingMode>
RM;
2526 switch (IntrinsicID) {
2529 case Intrinsic::experimental_constrained_nearbyint:
2530 case Intrinsic::experimental_constrained_rint: {
2532 RM = CI->getRoundingMode();
2537 case Intrinsic::experimental_constrained_round:
2540 case Intrinsic::experimental_constrained_ceil:
2543 case Intrinsic::experimental_constrained_floor:
2546 case Intrinsic::experimental_constrained_trunc:
2554 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2556 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2560 }
else if (U.isSignaling()) {
2561 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2566 return ConstantFP::get(Ty->getContext(), U);
2570 switch (IntrinsicID) {
2572 case Intrinsic::nvvm_f2i_rm:
2573 case Intrinsic::nvvm_f2i_rn:
2574 case Intrinsic::nvvm_f2i_rp:
2575 case Intrinsic::nvvm_f2i_rz:
2576 case Intrinsic::nvvm_f2i_rm_ftz:
2577 case Intrinsic::nvvm_f2i_rn_ftz:
2578 case Intrinsic::nvvm_f2i_rp_ftz:
2579 case Intrinsic::nvvm_f2i_rz_ftz:
2581 case Intrinsic::nvvm_f2ui_rm:
2582 case Intrinsic::nvvm_f2ui_rn:
2583 case Intrinsic::nvvm_f2ui_rp:
2584 case Intrinsic::nvvm_f2ui_rz:
2585 case Intrinsic::nvvm_f2ui_rm_ftz:
2586 case Intrinsic::nvvm_f2ui_rn_ftz:
2587 case Intrinsic::nvvm_f2ui_rp_ftz:
2588 case Intrinsic::nvvm_f2ui_rz_ftz:
2590 case Intrinsic::nvvm_d2i_rm:
2591 case Intrinsic::nvvm_d2i_rn:
2592 case Intrinsic::nvvm_d2i_rp:
2593 case Intrinsic::nvvm_d2i_rz:
2595 case Intrinsic::nvvm_d2ui_rm:
2596 case Intrinsic::nvvm_d2ui_rn:
2597 case Intrinsic::nvvm_d2ui_rp:
2598 case Intrinsic::nvvm_d2ui_rz:
2600 case Intrinsic::nvvm_f2ll_rm:
2601 case Intrinsic::nvvm_f2ll_rn:
2602 case Intrinsic::nvvm_f2ll_rp:
2603 case Intrinsic::nvvm_f2ll_rz:
2604 case Intrinsic::nvvm_f2ll_rm_ftz:
2605 case Intrinsic::nvvm_f2ll_rn_ftz:
2606 case Intrinsic::nvvm_f2ll_rp_ftz:
2607 case Intrinsic::nvvm_f2ll_rz_ftz:
2609 case Intrinsic::nvvm_f2ull_rm:
2610 case Intrinsic::nvvm_f2ull_rn:
2611 case Intrinsic::nvvm_f2ull_rp:
2612 case Intrinsic::nvvm_f2ull_rz:
2613 case Intrinsic::nvvm_f2ull_rm_ftz:
2614 case Intrinsic::nvvm_f2ull_rn_ftz:
2615 case Intrinsic::nvvm_f2ull_rp_ftz:
2616 case Intrinsic::nvvm_f2ull_rz_ftz:
2618 case Intrinsic::nvvm_d2ll_rm:
2619 case Intrinsic::nvvm_d2ll_rn:
2620 case Intrinsic::nvvm_d2ll_rp:
2621 case Intrinsic::nvvm_d2ll_rz:
2623 case Intrinsic::nvvm_d2ull_rm:
2624 case Intrinsic::nvvm_d2ull_rn:
2625 case Intrinsic::nvvm_d2ull_rp:
2626 case Intrinsic::nvvm_d2ull_rz: {
2629 return ConstantInt::get(Ty, 0);
2636 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2637 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2639 bool IsExact =
false;
2641 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2644 return ConstantInt::get(Ty, ResInt);
2661 switch (IntrinsicID) {
2663 case Intrinsic::log:
2664 return ConstantFoldFP(log, APF, Ty);
2665 case Intrinsic::log2:
2667 return ConstantFoldFP(
log2, APF, Ty);
2668 case Intrinsic::log10:
2670 return ConstantFoldFP(log10, APF, Ty);
2671 case Intrinsic::exp:
2672 return ConstantFoldFP(exp, APF, Ty);
2673 case Intrinsic::exp2:
2675 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2676 case Intrinsic::exp10:
2678 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2679 case Intrinsic::sin:
2680 return ConstantFoldFP(sin, APF, Ty);
2681 case Intrinsic::cos:
2682 return ConstantFoldFP(cos, APF, Ty);
2683 case Intrinsic::sinh:
2684 return ConstantFoldFP(sinh, APF, Ty);
2685 case Intrinsic::cosh:
2686 return ConstantFoldFP(cosh, APF, Ty);
2687 case Intrinsic::atan:
2690 return ConstantFP::get(Ty->getContext(), U);
2691 return ConstantFoldFP(atan, APF, Ty);
2692 case Intrinsic::sqrt:
2693 return ConstantFoldFP(sqrt, APF, Ty);
2696 case Intrinsic::nvvm_ceil_ftz_f:
2697 case Intrinsic::nvvm_ceil_f:
2698 case Intrinsic::nvvm_ceil_d:
2699 return ConstantFoldFP(
2704 case Intrinsic::nvvm_fabs_ftz:
2705 case Intrinsic::nvvm_fabs:
2706 return ConstantFoldFP(
2711 case Intrinsic::nvvm_floor_ftz_f:
2712 case Intrinsic::nvvm_floor_f:
2713 case Intrinsic::nvvm_floor_d:
2714 return ConstantFoldFP(
2719 case Intrinsic::nvvm_rcp_rm_ftz_f:
2720 case Intrinsic::nvvm_rcp_rn_ftz_f:
2721 case Intrinsic::nvvm_rcp_rp_ftz_f:
2722 case Intrinsic::nvvm_rcp_rz_ftz_f:
2723 case Intrinsic::nvvm_rcp_rm_d:
2724 case Intrinsic::nvvm_rcp_rm_f:
2725 case Intrinsic::nvvm_rcp_rn_d:
2726 case Intrinsic::nvvm_rcp_rn_f:
2727 case Intrinsic::nvvm_rcp_rp_d:
2728 case Intrinsic::nvvm_rcp_rp_f:
2729 case Intrinsic::nvvm_rcp_rz_d:
2730 case Intrinsic::nvvm_rcp_rz_f: {
2734 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2740 Res = FTZPreserveSign(Res);
2741 return ConstantFP::get(Ty->getContext(), Res);
2746 case Intrinsic::nvvm_round_ftz_f:
2747 case Intrinsic::nvvm_round_f:
2748 case Intrinsic::nvvm_round_d: {
2753 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2755 return ConstantFP::get(Ty->getContext(), V);
2758 case Intrinsic::nvvm_saturate_ftz_f:
2759 case Intrinsic::nvvm_saturate_d:
2760 case Intrinsic::nvvm_saturate_f: {
2762 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2763 if (V.isNegative() || V.isZero() || V.isNaN())
2767 return ConstantFP::get(Ty->getContext(), One);
2768 return ConstantFP::get(Ty->getContext(), APF);
2771 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2772 case Intrinsic::nvvm_sqrt_f:
2773 case Intrinsic::nvvm_sqrt_rn_d:
2774 case Intrinsic::nvvm_sqrt_rn_f:
2777 return ConstantFoldFP(
2783 case Intrinsic::amdgcn_cos:
2784 case Intrinsic::amdgcn_sin: {
2785 double V = getValueAsDouble(
Op);
2786 if (V < -256.0 || V > 256.0)
2791 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2792 double V4 = V * 4.0;
2793 if (V4 == floor(V4)) {
2795 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2796 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2803 return GetConstantFoldFPValue(V, Ty);
2819 case LibFunc_acos_finite:
2820 case LibFunc_acosf_finite:
2822 return ConstantFoldFP(acos, APF, Ty);
2826 case LibFunc_asin_finite:
2827 case LibFunc_asinf_finite:
2829 return ConstantFoldFP(asin, APF, Ty);
2835 return ConstantFP::get(Ty->getContext(), U);
2837 return ConstantFoldFP(atan, APF, Ty);
2841 if (TLI->
has(Func)) {
2843 return ConstantFP::get(Ty->getContext(), U);
2849 return ConstantFoldFP(cos, APF, Ty);
2853 case LibFunc_cosh_finite:
2854 case LibFunc_coshf_finite:
2856 return ConstantFoldFP(cosh, APF, Ty);
2860 case LibFunc_exp_finite:
2861 case LibFunc_expf_finite:
2863 return ConstantFoldFP(exp, APF, Ty);
2867 case LibFunc_exp2_finite:
2868 case LibFunc_exp2f_finite:
2871 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2875 if (TLI->
has(Func)) {
2877 return ConstantFP::get(Ty->getContext(), U);
2881 case LibFunc_floorf:
2882 if (TLI->
has(Func)) {
2884 return ConstantFP::get(Ty->getContext(), U);
2889 case LibFunc_log_finite:
2890 case LibFunc_logf_finite:
2892 return ConstantFoldFP(log, APF, Ty);
2896 case LibFunc_log2_finite:
2897 case LibFunc_log2f_finite:
2900 return ConstantFoldFP(
log2, APF, Ty);
2903 case LibFunc_log10f:
2904 case LibFunc_log10_finite:
2905 case LibFunc_log10f_finite:
2908 return ConstantFoldFP(log10, APF, Ty);
2911 case LibFunc_ilogbf:
2913 return ConstantInt::get(Ty,
ilogb(APF),
true);
2918 return ConstantFoldFP(logb, APF, Ty);
2921 case LibFunc_log1pf:
2924 return ConstantFP::get(Ty->getContext(), U);
2926 return ConstantFoldFP(log1p, APF, Ty);
2933 return ConstantFoldFP(erf, APF, Ty);
2935 case LibFunc_nearbyint:
2936 case LibFunc_nearbyintf:
2939 if (TLI->
has(Func)) {
2941 return ConstantFP::get(Ty->getContext(), U);
2945 case LibFunc_roundf:
2946 if (TLI->
has(Func)) {
2948 return ConstantFP::get(Ty->getContext(), U);
2954 return ConstantFoldFP(sin, APF, Ty);
2958 case LibFunc_sinh_finite:
2959 case LibFunc_sinhf_finite:
2961 return ConstantFoldFP(sinh, APF, Ty);
2966 return ConstantFoldFP(sqrt, APF, Ty);
2971 return ConstantFoldFP(tan, APF, Ty);
2976 return ConstantFoldFP(tanh, APF, Ty);
2979 case LibFunc_truncf:
2980 if (TLI->
has(Func)) {
2982 return ConstantFP::get(Ty->getContext(), U);
2990 switch (IntrinsicID) {
2991 case Intrinsic::bswap:
2992 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
2993 case Intrinsic::ctpop:
2994 return ConstantInt::get(Ty,
Op->getValue().popcount());
2995 case Intrinsic::bitreverse:
2996 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
2997 case Intrinsic::convert_from_fp16: {
3007 "Precision lost during fp16 constfolding");
3009 return ConstantFP::get(Ty->getContext(), Val);
3012 case Intrinsic::amdgcn_s_wqm: {
3014 Val |= (Val & 0x5555555555555555ULL) << 1 |
3015 ((Val >> 1) & 0x5555555555555555ULL);
3016 Val |= (Val & 0x3333333333333333ULL) << 2 |
3017 ((Val >> 2) & 0x3333333333333333ULL);
3018 return ConstantInt::get(Ty, Val);
3021 case Intrinsic::amdgcn_s_quadmask: {
3024 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3028 QuadMask |= (1ULL <<
I);
3030 return ConstantInt::get(Ty, QuadMask);
3033 case Intrinsic::amdgcn_s_bitreplicate: {
3035 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3036 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3037 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3038 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3039 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3040 Val = Val | Val << 1;
3041 return ConstantInt::get(Ty, Val);
3049 switch (IntrinsicID) {
3051 case Intrinsic::vector_reduce_add:
3052 case Intrinsic::vector_reduce_mul:
3053 case Intrinsic::vector_reduce_and:
3054 case Intrinsic::vector_reduce_or:
3055 case Intrinsic::vector_reduce_xor:
3056 case Intrinsic::vector_reduce_smin:
3057 case Intrinsic::vector_reduce_smax:
3058 case Intrinsic::vector_reduce_umin:
3059 case Intrinsic::vector_reduce_umax:
3070 switch (IntrinsicID) {
3072 case Intrinsic::x86_sse_cvtss2si:
3073 case Intrinsic::x86_sse_cvtss2si64:
3074 case Intrinsic::x86_sse2_cvtsd2si:
3075 case Intrinsic::x86_sse2_cvtsd2si64:
3078 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3082 case Intrinsic::x86_sse_cvttss2si:
3083 case Intrinsic::x86_sse_cvttss2si64:
3084 case Intrinsic::x86_sse2_cvttsd2si:
3085 case Intrinsic::x86_sse2_cvttsd2si64:
3088 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3093 case Intrinsic::wasm_anytrue:
3094 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3097 case Intrinsic::wasm_alltrue:
3100 for (
unsigned I = 0;
I !=
E; ++
I)
3102 if (Elt->isZeroValue())
3103 return ConstantInt::get(Ty, 0);
3105 return ConstantInt::get(Ty, 1);
3117 if (FCmp->isSignaling()) {
3126 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3148 const APFloat &Op1V = Op1->getValueAPF();
3149 const APFloat &Op2V = Op2->getValueAPF();
3156 case LibFunc_pow_finite:
3157 case LibFunc_powf_finite:
3159 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3163 if (TLI->
has(Func)) {
3164 APFloat V = Op1->getValueAPF();
3166 return ConstantFP::get(Ty->getContext(), V);
3169 case LibFunc_remainder:
3170 case LibFunc_remainderf:
3171 if (TLI->
has(Func)) {
3172 APFloat V = Op1->getValueAPF();
3174 return ConstantFP::get(Ty->getContext(), V);
3178 case LibFunc_atan2f:
3184 case LibFunc_atan2_finite:
3185 case LibFunc_atan2f_finite:
3187 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3199 if (Ty->isFloatingPointTy()) {
3204 switch (IntrinsicID) {
3205 case Intrinsic::maxnum:
3206 case Intrinsic::minnum:
3207 case Intrinsic::maximum:
3208 case Intrinsic::minimum:
3209 case Intrinsic::maximumnum:
3210 case Intrinsic::minimumnum:
3211 case Intrinsic::nvvm_fmax_d:
3212 case Intrinsic::nvvm_fmin_d:
3220 case Intrinsic::nvvm_fmax_f:
3221 case Intrinsic::nvvm_fmax_ftz_f:
3222 case Intrinsic::nvvm_fmax_ftz_nan_f:
3223 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3224 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3225 case Intrinsic::nvvm_fmax_nan_f:
3226 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3227 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3229 case Intrinsic::nvvm_fmin_f:
3230 case Intrinsic::nvvm_fmin_ftz_f:
3231 case Intrinsic::nvvm_fmin_ftz_nan_f:
3232 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3233 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3234 case Intrinsic::nvvm_fmin_nan_f:
3235 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3236 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3240 if (!IsOp0Undef && !IsOp1Undef)
3244 APInt NVCanonicalNaN(32, 0x7fffffff);
3245 return ConstantFP::get(
3246 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3249 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3258 const APFloat &Op1V = Op1->getValueAPF();
3261 if (Op2->getType() != Op1->getType())
3263 const APFloat &Op2V = Op2->getValueAPF();
3265 if (
const auto *ConstrIntr =
3270 switch (IntrinsicID) {
3273 case Intrinsic::experimental_constrained_fadd:
3274 St = Res.
add(Op2V, RM);
3276 case Intrinsic::experimental_constrained_fsub:
3279 case Intrinsic::experimental_constrained_fmul:
3282 case Intrinsic::experimental_constrained_fdiv:
3283 St = Res.
divide(Op2V, RM);
3285 case Intrinsic::experimental_constrained_frem:
3288 case Intrinsic::experimental_constrained_fcmp:
3289 case Intrinsic::experimental_constrained_fcmps:
3290 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3294 return ConstantFP::get(Ty->getContext(), Res);
3298 switch (IntrinsicID) {
3301 case Intrinsic::copysign:
3303 case Intrinsic::minnum:
3304 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3305 case Intrinsic::maxnum:
3306 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3307 case Intrinsic::minimum:
3308 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3309 case Intrinsic::maximum:
3310 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3311 case Intrinsic::minimumnum:
3312 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3313 case Intrinsic::maximumnum:
3314 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3316 case Intrinsic::nvvm_fmax_d:
3317 case Intrinsic::nvvm_fmax_f:
3318 case Intrinsic::nvvm_fmax_ftz_f:
3319 case Intrinsic::nvvm_fmax_ftz_nan_f:
3320 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3321 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3322 case Intrinsic::nvvm_fmax_nan_f:
3323 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3324 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3326 case Intrinsic::nvvm_fmin_d:
3327 case Intrinsic::nvvm_fmin_f:
3328 case Intrinsic::nvvm_fmin_ftz_f:
3329 case Intrinsic::nvvm_fmin_ftz_nan_f:
3330 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3331 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3332 case Intrinsic::nvvm_fmin_nan_f:
3333 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3334 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3336 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3337 IntrinsicID == Intrinsic::nvvm_fmin_d);
3342 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3343 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3345 bool XorSign =
false;
3347 XorSign =
A.isNegative() ^
B.isNegative();
3352 bool IsFMax =
false;
3353 switch (IntrinsicID) {
3354 case Intrinsic::nvvm_fmax_d:
3355 case Intrinsic::nvvm_fmax_f:
3356 case Intrinsic::nvvm_fmax_ftz_f:
3357 case Intrinsic::nvvm_fmax_ftz_nan_f:
3358 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3359 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3360 case Intrinsic::nvvm_fmax_nan_f:
3361 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3362 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3368 if (ShouldCanonicalizeNaNs) {
3370 if (
A.isNaN() &&
B.isNaN())
3371 return ConstantFP::get(Ty, NVCanonicalNaN);
3372 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3373 return ConstantFP::get(Ty, NVCanonicalNaN);
3376 if (
A.isNaN() &&
B.isNaN())
3386 return ConstantFP::get(Ty->getContext(), Res);
3389 case Intrinsic::nvvm_add_rm_f:
3390 case Intrinsic::nvvm_add_rn_f:
3391 case Intrinsic::nvvm_add_rp_f:
3392 case Intrinsic::nvvm_add_rz_f:
3393 case Intrinsic::nvvm_add_rm_d:
3394 case Intrinsic::nvvm_add_rn_d:
3395 case Intrinsic::nvvm_add_rp_d:
3396 case Intrinsic::nvvm_add_rz_d:
3397 case Intrinsic::nvvm_add_rm_ftz_f:
3398 case Intrinsic::nvvm_add_rn_ftz_f:
3399 case Intrinsic::nvvm_add_rp_ftz_f:
3400 case Intrinsic::nvvm_add_rz_ftz_f: {
3403 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3404 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3414 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3415 return ConstantFP::get(Ty->getContext(), Res);
3420 case Intrinsic::nvvm_mul_rm_f:
3421 case Intrinsic::nvvm_mul_rn_f:
3422 case Intrinsic::nvvm_mul_rp_f:
3423 case Intrinsic::nvvm_mul_rz_f:
3424 case Intrinsic::nvvm_mul_rm_d:
3425 case Intrinsic::nvvm_mul_rn_d:
3426 case Intrinsic::nvvm_mul_rp_d:
3427 case Intrinsic::nvvm_mul_rz_d:
3428 case Intrinsic::nvvm_mul_rm_ftz_f:
3429 case Intrinsic::nvvm_mul_rn_ftz_f:
3430 case Intrinsic::nvvm_mul_rp_ftz_f:
3431 case Intrinsic::nvvm_mul_rz_ftz_f: {
3434 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3435 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3445 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3446 return ConstantFP::get(Ty->getContext(), Res);
3451 case Intrinsic::nvvm_div_rm_f:
3452 case Intrinsic::nvvm_div_rn_f:
3453 case Intrinsic::nvvm_div_rp_f:
3454 case Intrinsic::nvvm_div_rz_f:
3455 case Intrinsic::nvvm_div_rm_d:
3456 case Intrinsic::nvvm_div_rn_d:
3457 case Intrinsic::nvvm_div_rp_d:
3458 case Intrinsic::nvvm_div_rz_d:
3459 case Intrinsic::nvvm_div_rm_ftz_f:
3460 case Intrinsic::nvvm_div_rn_ftz_f:
3461 case Intrinsic::nvvm_div_rp_ftz_f:
3462 case Intrinsic::nvvm_div_rz_ftz_f: {
3464 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3465 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3473 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3474 return ConstantFP::get(Ty->getContext(), Res);
3480 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3483 switch (IntrinsicID) {
3486 case Intrinsic::pow:
3487 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3488 case Intrinsic::amdgcn_fmul_legacy:
3493 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3497 switch (IntrinsicID) {
3498 case Intrinsic::ldexp: {
3499 return ConstantFP::get(
3503 case Intrinsic::is_fpclass: {
3516 return ConstantInt::get(Ty, Result);
3518 case Intrinsic::powi: {
3519 int Exp =
static_cast<int>(Op2C->getSExtValue());
3520 switch (Ty->getTypeID()) {
3524 if (Ty->isHalfTy()) {
3529 return ConstantFP::get(Ty->getContext(), Res);
3546 const APInt *C0, *C1;
3547 if (!getConstIntOrUndef(
Operands[0], C0) ||
3548 !getConstIntOrUndef(
Operands[1], C1))
3551 switch (IntrinsicID) {
3553 case Intrinsic::smax:
3554 case Intrinsic::smin:
3555 case Intrinsic::umax:
3556 case Intrinsic::umin:
3561 return ConstantInt::get(
3567 case Intrinsic::scmp:
3568 case Intrinsic::ucmp:
3570 return ConstantInt::get(Ty, 0);
3573 if (IntrinsicID == Intrinsic::scmp)
3574 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3576 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3577 return ConstantInt::get(Ty, Res,
true);
3579 case Intrinsic::usub_with_overflow:
3580 case Intrinsic::ssub_with_overflow:
3586 case Intrinsic::uadd_with_overflow:
3587 case Intrinsic::sadd_with_overflow:
3597 case Intrinsic::smul_with_overflow:
3598 case Intrinsic::umul_with_overflow: {
3606 switch (IntrinsicID) {
3608 case Intrinsic::sadd_with_overflow:
3609 Res = C0->
sadd_ov(*C1, Overflow);
3611 case Intrinsic::uadd_with_overflow:
3612 Res = C0->
uadd_ov(*C1, Overflow);
3614 case Intrinsic::ssub_with_overflow:
3615 Res = C0->
ssub_ov(*C1, Overflow);
3617 case Intrinsic::usub_with_overflow:
3618 Res = C0->
usub_ov(*C1, Overflow);
3620 case Intrinsic::smul_with_overflow:
3621 Res = C0->
smul_ov(*C1, Overflow);
3623 case Intrinsic::umul_with_overflow:
3624 Res = C0->
umul_ov(*C1, Overflow);
3628 ConstantInt::get(Ty->getContext(), Res),
3633 case Intrinsic::uadd_sat:
3634 case Intrinsic::sadd_sat:
3639 if (IntrinsicID == Intrinsic::uadd_sat)
3640 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3642 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3643 case Intrinsic::usub_sat:
3644 case Intrinsic::ssub_sat:
3649 if (IntrinsicID == Intrinsic::usub_sat)
3650 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3652 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3653 case Intrinsic::cttz:
3654 case Intrinsic::ctlz:
3655 assert(C1 &&
"Must be constant int");
3662 if (IntrinsicID == Intrinsic::cttz)
3667 case Intrinsic::abs:
3668 assert(C1 &&
"Must be constant int");
3679 return ConstantInt::get(Ty, C0->
abs());
3680 case Intrinsic::amdgcn_wave_reduce_umin:
3681 case Intrinsic::amdgcn_wave_reduce_umax:
3682 case Intrinsic::amdgcn_wave_reduce_max:
3683 case Intrinsic::amdgcn_wave_reduce_min:
3684 case Intrinsic::amdgcn_wave_reduce_add:
3685 case Intrinsic::amdgcn_wave_reduce_sub:
3686 case Intrinsic::amdgcn_wave_reduce_and:
3687 case Intrinsic::amdgcn_wave_reduce_or:
3688 case Intrinsic::amdgcn_wave_reduce_xor:
3703 switch (IntrinsicID) {
3705 case Intrinsic::x86_avx512_vcvtss2si32:
3706 case Intrinsic::x86_avx512_vcvtss2si64:
3707 case Intrinsic::x86_avx512_vcvtsd2si32:
3708 case Intrinsic::x86_avx512_vcvtsd2si64:
3711 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3715 case Intrinsic::x86_avx512_vcvtss2usi32:
3716 case Intrinsic::x86_avx512_vcvtss2usi64:
3717 case Intrinsic::x86_avx512_vcvtsd2usi32:
3718 case Intrinsic::x86_avx512_vcvtsd2usi64:
3721 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3725 case Intrinsic::x86_avx512_cvttss2si:
3726 case Intrinsic::x86_avx512_cvttss2si64:
3727 case Intrinsic::x86_avx512_cvttsd2si:
3728 case Intrinsic::x86_avx512_cvttsd2si64:
3731 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3735 case Intrinsic::x86_avx512_cvttss2usi:
3736 case Intrinsic::x86_avx512_cvttss2usi64:
3737 case Intrinsic::x86_avx512_cvttsd2usi:
3738 case Intrinsic::x86_avx512_cvttsd2usi64:
3741 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3756 APFloat MA(Sem), SC(Sem), TC(Sem);
3769 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3791 switch (IntrinsicID) {
3794 case Intrinsic::amdgcn_cubeid:
3796 case Intrinsic::amdgcn_cubema:
3798 case Intrinsic::amdgcn_cubesc:
3800 case Intrinsic::amdgcn_cubetc:
3807 const APInt *C0, *C1, *C2;
3808 if (!getConstIntOrUndef(
Operands[0], C0) ||
3809 !getConstIntOrUndef(
Operands[1], C1) ||
3810 !getConstIntOrUndef(
Operands[2], C2))
3817 unsigned NumUndefBytes = 0;
3818 for (
unsigned I = 0;
I < 32;
I += 8) {
3827 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3831 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3833 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3836 Val.insertBits(
B,
I, 8);
3839 if (NumUndefBytes == 4)
3842 return ConstantInt::get(Ty, Val);
3856 const APFloat &C1 = Op1->getValueAPF();
3857 const APFloat &C2 = Op2->getValueAPF();
3858 const APFloat &C3 = Op3->getValueAPF();
3864 switch (IntrinsicID) {
3867 case Intrinsic::experimental_constrained_fma:
3868 case Intrinsic::experimental_constrained_fmuladd:
3872 if (mayFoldConstrained(
3874 return ConstantFP::get(Ty->getContext(), Res);
3878 switch (IntrinsicID) {
3880 case Intrinsic::amdgcn_fma_legacy: {
3886 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3890 case Intrinsic::fma:
3891 case Intrinsic::fmuladd: {
3894 return ConstantFP::get(Ty->getContext(), V);
3897 case Intrinsic::nvvm_fma_rm_f:
3898 case Intrinsic::nvvm_fma_rn_f:
3899 case Intrinsic::nvvm_fma_rp_f:
3900 case Intrinsic::nvvm_fma_rz_f:
3901 case Intrinsic::nvvm_fma_rm_d:
3902 case Intrinsic::nvvm_fma_rn_d:
3903 case Intrinsic::nvvm_fma_rp_d:
3904 case Intrinsic::nvvm_fma_rz_d:
3905 case Intrinsic::nvvm_fma_rm_ftz_f:
3906 case Intrinsic::nvvm_fma_rn_ftz_f:
3907 case Intrinsic::nvvm_fma_rp_ftz_f:
3908 case Intrinsic::nvvm_fma_rz_ftz_f: {
3910 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3911 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3912 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3922 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3923 return ConstantFP::get(Ty->getContext(), Res);
3928 case Intrinsic::amdgcn_cubeid:
3929 case Intrinsic::amdgcn_cubema:
3930 case Intrinsic::amdgcn_cubesc:
3931 case Intrinsic::amdgcn_cubetc: {
3932 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3933 return ConstantFP::get(Ty->getContext(), V);
3940 if (IntrinsicID == Intrinsic::smul_fix ||
3941 IntrinsicID == Intrinsic::smul_fix_sat) {
3942 const APInt *C0, *C1;
3943 if (!getConstIntOrUndef(
Operands[0], C0) ||
3944 !getConstIntOrUndef(
Operands[1], C1))
3960 assert(Scale < Width &&
"Illegal scale.");
3961 unsigned ExtendedWidth = Width * 2;
3963 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
3964 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3970 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
3973 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3974 const APInt *C0, *C1, *C2;
3975 if (!getConstIntOrUndef(
Operands[0], C0) ||
3976 !getConstIntOrUndef(
Operands[1], C1) ||
3977 !getConstIntOrUndef(
Operands[2], C2))
3980 bool IsRight = IntrinsicID == Intrinsic::fshr;
3994 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
3995 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
3997 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
3999 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4000 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4003 if (IntrinsicID == Intrinsic::amdgcn_perm)
4004 return ConstantFoldAMDGCNPermIntrinsic(
Operands, Ty);
4021 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4025 ConstantFoldLibCall2(Name, Ty,
Operands, TLI)) {
4026 return FoldedLibCall;
4028 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty,
Operands,
Call);
4032 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty,
Operands, TLI,
Call);
4037static Constant *ConstantFoldFixedVectorCall(
4045 switch (IntrinsicID) {
4046 case Intrinsic::masked_load: {
4055 auto *MaskElt =
Mask->getAggregateElement(
I);
4058 auto *PassthruElt = Passthru->getAggregateElement(
I);
4068 if (MaskElt->isNullValue()) {
4072 }
else if (MaskElt->isOneValue()) {
4084 case Intrinsic::arm_mve_vctp8:
4085 case Intrinsic::arm_mve_vctp16:
4086 case Intrinsic::arm_mve_vctp32:
4087 case Intrinsic::arm_mve_vctp64: {
4093 for (
unsigned i = 0; i < Lanes; i++) {
4103 case Intrinsic::get_active_lane_mask: {
4109 uint64_t Limit = Op1->getZExtValue();
4112 for (
unsigned i = 0; i < Lanes; i++) {
4113 if (
Base + i < Limit)
4122 case Intrinsic::vector_extract: {
4129 unsigned VecNumElements =
4131 unsigned StartingIndex = Idx->getZExtValue();
4134 if (NumElements == VecNumElements && StartingIndex == 0)
4137 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4142 Result[
I - StartingIndex] = Elt;
4147 case Intrinsic::vector_insert: {
4154 unsigned SubVecNumElements =
4156 unsigned VecNumElements =
4158 unsigned IdxN = Idx->getZExtValue();
4160 if (SubVecNumElements == VecNumElements && IdxN == 0)
4163 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4165 if (
I < IdxN + SubVecNumElements)
4175 case Intrinsic::vector_interleave2: {
4176 unsigned NumElements =
4178 for (
unsigned I = 0;
I < NumElements; ++
I) {
4188 case Intrinsic::wasm_dot: {
4189 unsigned NumElements =
4193 "wasm dot takes i16x8 and produces i32x4");
4194 assert(Ty->isIntegerTy());
4195 int32_t MulVector[8];
4197 for (
unsigned I = 0;
I < NumElements; ++
I) {
4205 for (
unsigned I = 0;
I <
Result.size();
I++) {
4206 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4207 Result[
I] = ConstantInt::get(Ty, IAdd);
4218 for (
unsigned J = 0, JE =
Operands.size(); J != JE; ++J) {
4234 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4243static Constant *ConstantFoldScalableVectorCall(
4247 switch (IntrinsicID) {
4248 case Intrinsic::aarch64_sve_convert_from_svbool: {
4250 if (!Src || !Src->isNullValue())
4277 Constant *Folded = ConstantFoldScalarCall(
4284static std::pair<Constant *, Constant *>
4293 const APFloat &U = ConstFP->getValueAPF();
4296 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4303 return {Result0, Result1};
4313 switch (IntrinsicID) {
4314 case Intrinsic::frexp: {
4322 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4324 std::tie(Results0[
I], Results1[
I]) =
4325 ConstantFoldScalarFrexpCall(Lane, Ty1);
4334 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(
Operands[0], Ty1);
4339 case Intrinsic::sincos: {
4343 auto ConstantFoldScalarSincosCall =
4344 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4346 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4348 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4349 return std::make_pair(SinResult, CosResult);
4358 std::tie(SinResults[
I], CosResults[
I]) =
4359 ConstantFoldScalarSincosCall(Lane);
4360 if (!SinResults[
I] || !CosResults[
I])
4368 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(
Operands[0]);
4369 if (!SinResult || !CosResult)
4373 case Intrinsic::vector_deinterleave2: {
4386 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4388 for (
unsigned I = 0;
I < NumElements; ++
I) {
4402 return ConstantFoldScalarCall(Name, IntrinsicID, StTy,
Operands, TLI,
Call);
4418 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4424 bool AllowNonDeterministic) {
4425 if (
Call->isNoBuiltin())
4442 Type *Ty =
F->getReturnType();
4443 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4448 return ConstantFoldFixedVectorCall(
4452 return ConstantFoldScalableVectorCall(
4456 return ConstantFoldStructCall(Name, IID, StTy,
Operands,
4457 F->getDataLayout(), TLI,
Call);
4462 return ConstantFoldScalarCall(Name, IID, Ty,
Operands, TLI,
Call);
4469 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4479 if (
Call->arg_size() == 1) {
4489 case LibFunc_log10l:
4491 case LibFunc_log10f:
4492 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4495 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4501 if (OpC->getType()->isDoubleTy())
4503 if (OpC->getType()->isFloatTy())
4511 if (OpC->getType()->isDoubleTy())
4513 if (OpC->getType()->isFloatTy())
4523 return !
Op.isInfinity();
4527 case LibFunc_tanf: {
4530 Type *Ty = OpC->getType();
4531 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4532 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4558 if (OpC->getType()->isDoubleTy())
4560 if (OpC->getType()->isFloatTy())
4567 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4577 if (
Call->arg_size() == 2) {
4587 case LibFunc_powf: {
4591 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4593 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4601 case LibFunc_remainderl:
4602 case LibFunc_remainder:
4603 case LibFunc_remainderf:
4608 case LibFunc_atan2f:
4609 case LibFunc_atan2l:
4629 case Instruction::BitCast:
4632 case Instruction::Trunc: {
4640 Flags->NSW = ZExtC == SExtC;
4644 case Instruction::SExt:
4645 case Instruction::ZExt: {
4649 if (!CastInvC || CastInvC !=
C)
4651 if (Flags && CastOp == Instruction::ZExt) {
4655 Flags->NNeg = CastInvC == SExtInvC;
4676void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
mir Rename Register Operands
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
static constexpr roundingMode rmNearestTiesToAway
static constexpr roundingMode rmTowardNegative
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
opStatus
IEEE-754R 7: Default exception handling.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.