LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::BitCast)
333 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
334 DSOEquiv);
335
336 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
337 auto *GEP = dyn_cast<GEPOperator>(CE);
338 if (!GEP)
339 return false;
340
341 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
342 APInt TmpOffset(BitWidth, 0);
343
344 // If the base isn't a global+constant, we aren't either.
345 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
346 DSOEquiv))
347 return false;
348
349 // Otherwise, add any offset that our operands provide.
350 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
351 return false;
352
353 Offset = TmpOffset;
354 return true;
355}
356
358 const DataLayout &DL) {
359 do {
360 Type *SrcTy = C->getType();
361 if (SrcTy == DestTy)
362 return C;
363
364 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
365 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
366 if (!TypeSize::isKnownGE(SrcSize, DestSize))
367 return nullptr;
368
369 // Catch the obvious splat cases (since all-zeros can coerce non-integral
370 // pointers legally).
371 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
372 return Res;
373
374 // If the type sizes are the same and a cast is legal, just directly
375 // cast the constant.
376 // But be careful not to coerce non-integral pointers illegally.
377 if (SrcSize == DestSize &&
378 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
379 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
380 Instruction::CastOps Cast = Instruction::BitCast;
381 // If we are going from a pointer to int or vice versa, we spell the cast
382 // differently.
383 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
384 Cast = Instruction::IntToPtr;
385 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
386 Cast = Instruction::PtrToInt;
387
388 if (CastInst::castIsValid(Cast, C, DestTy))
389 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
390 }
391
392 // If this isn't an aggregate type, there is nothing we can do to drill down
393 // and find a bitcastable constant.
394 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
395 return nullptr;
396
397 // We're simulating a load through a pointer that was bitcast to point to
398 // a different type, so we can try to walk down through the initial
399 // elements of an aggregate to see if some part of the aggregate is
400 // castable to implement the "load" semantic model.
401 if (SrcTy->isStructTy()) {
402 // Struct types might have leading zero-length elements like [0 x i32],
403 // which are certainly not what we are looking for, so skip them.
404 unsigned Elem = 0;
405 Constant *ElemC;
406 do {
407 ElemC = C->getAggregateElement(Elem++);
408 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
409 C = ElemC;
410 } else {
411 // For non-byte-sized vector elements, the first element is not
412 // necessarily located at the vector base address.
413 if (auto *VT = dyn_cast<VectorType>(SrcTy))
414 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
415 return nullptr;
416
417 C = C->getAggregateElement(0u);
418 }
419 } while (C);
420
421 return nullptr;
422}
423
424namespace {
425
426/// Recursive helper to read bits out of global. C is the constant being copied
427/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
428/// results into and BytesLeft is the number of bytes left in
429/// the CurPtr buffer. DL is the DataLayout.
430bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
431 unsigned BytesLeft, const DataLayout &DL) {
432 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
433 "Out of range access");
434
435 // Reading type padding, return zero.
436 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
437 return true;
438
439 // If this element is zero or undefined, we can just return since *CurPtr is
440 // zero initialized.
442 return true;
443
444 if (auto *CI = dyn_cast<ConstantInt>(C)) {
445 if ((CI->getBitWidth() & 7) != 0)
446 return false;
447 const APInt &Val = CI->getValue();
448 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
449
450 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
451 unsigned n = ByteOffset;
452 if (!DL.isLittleEndian())
453 n = IntBytes - n - 1;
454 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
455 ++ByteOffset;
456 }
457 return true;
458 }
459
460 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
461 if (CFP->getType()->isDoubleTy()) {
462 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
463 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
464 }
465 if (CFP->getType()->isFloatTy()){
466 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
467 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
468 }
469 if (CFP->getType()->isHalfTy()){
470 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
471 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
472 }
473 return false;
474 }
475
476 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
477 const StructLayout *SL = DL.getStructLayout(CS->getType());
478 unsigned Index = SL->getElementContainingOffset(ByteOffset);
479 uint64_t CurEltOffset = SL->getElementOffset(Index);
480 ByteOffset -= CurEltOffset;
481
482 while (true) {
483 // If the element access is to the element itself and not to tail padding,
484 // read the bytes from the element.
485 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
486
487 if (ByteOffset < EltSize &&
488 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
489 BytesLeft, DL))
490 return false;
491
492 ++Index;
493
494 // Check to see if we read from the last struct element, if so we're done.
495 if (Index == CS->getType()->getNumElements())
496 return true;
497
498 // If we read all of the bytes we needed from this element we're done.
499 uint64_t NextEltOffset = SL->getElementOffset(Index);
500
501 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
502 return true;
503
504 // Move to the next element of the struct.
505 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
506 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
507 ByteOffset = 0;
508 CurEltOffset = NextEltOffset;
509 }
510 // not reached.
511 }
512
515 uint64_t NumElts, EltSize;
516 Type *EltTy;
517 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
518 NumElts = AT->getNumElements();
519 EltTy = AT->getElementType();
520 EltSize = DL.getTypeAllocSize(EltTy);
521 } else {
522 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
523 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
524 // TODO: For non-byte-sized vectors, current implementation assumes there is
525 // padding to the next byte boundary between elements.
526 if (!DL.typeSizeEqualsStoreSize(EltTy))
527 return false;
528
529 EltSize = DL.getTypeStoreSize(EltTy);
530 }
531 uint64_t Index = ByteOffset / EltSize;
532 uint64_t Offset = ByteOffset - Index * EltSize;
533
534 for (; Index != NumElts; ++Index) {
535 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
536 BytesLeft, DL))
537 return false;
538
539 uint64_t BytesWritten = EltSize - Offset;
540 assert(BytesWritten <= EltSize && "Not indexing into this element?");
541 if (BytesWritten >= BytesLeft)
542 return true;
543
544 Offset = 0;
545 BytesLeft -= BytesWritten;
546 CurPtr += BytesWritten;
547 }
548 return true;
549 }
550
551 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
552 if (CE->getOpcode() == Instruction::IntToPtr &&
553 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
554 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
555 BytesLeft, DL);
556 }
557 }
558
559 // Otherwise, unknown initializer type.
560 return false;
561}
562
563Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
564 int64_t Offset, const DataLayout &DL) {
565 // Bail out early. Not expect to load from scalable global variable.
566 if (isa<ScalableVectorType>(LoadTy))
567 return nullptr;
568
569 auto *IntType = dyn_cast<IntegerType>(LoadTy);
570
571 // If this isn't an integer load we can't fold it directly.
572 if (!IntType) {
573 // If this is a non-integer load, we can try folding it as an int load and
574 // then bitcast the result. This can be useful for union cases. Note
575 // that address spaces don't matter here since we're not going to result in
576 // an actual new load.
577 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
578 !LoadTy->isVectorTy())
579 return nullptr;
580
581 Type *MapTy = Type::getIntNTy(C->getContext(),
582 DL.getTypeSizeInBits(LoadTy).getFixedValue());
583 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
584 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
585 // Materializing a zero can be done trivially without a bitcast
586 return Constant::getNullValue(LoadTy);
587 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
588 Res = FoldBitCast(Res, CastTy, DL);
589 if (LoadTy->isPtrOrPtrVectorTy()) {
590 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
591 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
592 return Constant::getNullValue(LoadTy);
593 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
594 // Be careful not to replace a load of an addrspace value with an inttoptr here
595 return nullptr;
596 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
597 }
598 return Res;
599 }
600 return nullptr;
601 }
602
603 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
604 if (BytesLoaded > 32 || BytesLoaded == 0)
605 return nullptr;
606
607 // If we're not accessing anything in this constant, the result is undefined.
608 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
609 return PoisonValue::get(IntType);
610
611 // TODO: We should be able to support scalable types.
612 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
613 if (InitializerSize.isScalable())
614 return nullptr;
615
616 // If we're not accessing anything in this constant, the result is undefined.
617 if (Offset >= (int64_t)InitializerSize.getFixedValue())
618 return PoisonValue::get(IntType);
619
620 unsigned char RawBytes[32] = {0};
621 unsigned char *CurPtr = RawBytes;
622 unsigned BytesLeft = BytesLoaded;
623
624 // If we're loading off the beginning of the global, some bytes may be valid.
625 if (Offset < 0) {
626 CurPtr += -Offset;
627 BytesLeft += Offset;
628 Offset = 0;
629 }
630
631 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
632 return nullptr;
633
634 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
635 if (DL.isLittleEndian()) {
636 ResultVal = RawBytes[BytesLoaded - 1];
637 for (unsigned i = 1; i != BytesLoaded; ++i) {
638 ResultVal <<= 8;
639 ResultVal |= RawBytes[BytesLoaded - 1 - i];
640 }
641 } else {
642 ResultVal = RawBytes[0];
643 for (unsigned i = 1; i != BytesLoaded; ++i) {
644 ResultVal <<= 8;
645 ResultVal |= RawBytes[i];
646 }
647 }
648
649 return ConstantInt::get(IntType->getContext(), ResultVal);
650}
651
652} // anonymous namespace
653
654// If GV is a constant with an initializer read its representation starting
655// at Offset and return it as a constant array of unsigned char. Otherwise
656// return null.
659 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
660 return nullptr;
661
662 const DataLayout &DL = GV->getDataLayout();
663 Constant *Init = const_cast<Constant *>(GV->getInitializer());
664 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
665 if (InitSize < Offset)
666 return nullptr;
667
668 uint64_t NBytes = InitSize - Offset;
669 if (NBytes > UINT16_MAX)
670 // Bail for large initializers in excess of 64K to avoid allocating
671 // too much memory.
672 // Offset is assumed to be less than or equal than InitSize (this
673 // is enforced in ReadDataFromGlobal).
674 return nullptr;
675
676 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
677 unsigned char *CurPtr = RawBytes.data();
678
679 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
680 return nullptr;
681
682 return ConstantDataArray::get(GV->getContext(), RawBytes);
683}
684
685/// If this Offset points exactly to the start of an aggregate element, return
686/// that element, otherwise return nullptr.
688 const DataLayout &DL) {
689 if (Offset.isZero())
690 return Base;
691
693 return nullptr;
694
695 Type *ElemTy = Base->getType();
696 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
697 if (!Offset.isZero() || !Indices[0].isZero())
698 return nullptr;
699
700 Constant *C = Base;
701 for (const APInt &Index : drop_begin(Indices)) {
702 if (Index.isNegative() || Index.getActiveBits() >= 32)
703 return nullptr;
704
705 C = C->getAggregateElement(Index.getZExtValue());
706 if (!C)
707 return nullptr;
708 }
709
710 return C;
711}
712
714 const APInt &Offset,
715 const DataLayout &DL) {
716 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
717 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
718 return Result;
719
720 // Explicitly check for out-of-bounds access, so we return poison even if the
721 // constant is a uniform value.
722 TypeSize Size = DL.getTypeAllocSize(C->getType());
723 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
724 return PoisonValue::get(Ty);
725
726 // Try an offset-independent fold of a uniform value.
727 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
728 return Result;
729
730 // Try hard to fold loads from bitcasted strange and non-type-safe things.
731 if (Offset.getSignificantBits() <= 64)
732 if (Constant *Result =
733 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
734 return Result;
735
736 return nullptr;
737}
738
743
746 const DataLayout &DL) {
747 // We can only fold loads from constant globals with a definitive initializer.
748 // Check this upfront, to skip expensive offset calculations.
750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
751 return nullptr;
752
753 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
754 DL, Offset, /* AllowNonInbounds */ true));
755
756 if (C == GV)
757 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
758 Offset, DL))
759 return Result;
760
761 // If this load comes from anywhere in a uniform constant global, the value
762 // is always the same, regardless of the loaded offset.
763 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
764}
765
767 const DataLayout &DL) {
768 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
769 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
770}
771
773 const DataLayout &DL) {
774 if (isa<PoisonValue>(C))
775 return PoisonValue::get(Ty);
776 if (isa<UndefValue>(C))
777 return UndefValue::get(Ty);
778 // If padding is needed when storing C to memory, then it isn't considered as
779 // uniform.
780 if (!DL.typeSizeEqualsStoreSize(C->getType()))
781 return nullptr;
782 if (C->isNullValue() && !Ty->isX86_AMXTy())
783 return Constant::getNullValue(Ty);
784 if (C->isAllOnesValue() &&
785 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
786 return Constant::getAllOnesValue(Ty);
787 return nullptr;
788}
789
790namespace {
791
792/// One of Op0/Op1 is a constant expression.
793/// Attempt to symbolically evaluate the result of a binary operator merging
794/// these together. If target data info is available, it is provided as DL,
795/// otherwise DL is null.
796Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
797 const DataLayout &DL) {
798 // SROA
799
800 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
801 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
802 // bits.
803
804 if (Opc == Instruction::And) {
805 KnownBits Known0 = computeKnownBits(Op0, DL);
806 KnownBits Known1 = computeKnownBits(Op1, DL);
807 if ((Known1.One | Known0.Zero).isAllOnes()) {
808 // All the bits of Op0 that the 'and' could be masking are already zero.
809 return Op0;
810 }
811 if ((Known0.One | Known1.Zero).isAllOnes()) {
812 // All the bits of Op1 that the 'and' could be masking are already zero.
813 return Op1;
814 }
815
816 Known0 &= Known1;
817 if (Known0.isConstant())
818 return ConstantInt::get(Op0->getType(), Known0.getConstant());
819 }
820
821 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
822 // constant. This happens frequently when iterating over a global array.
823 if (Opc == Instruction::Sub) {
824 GlobalValue *GV1, *GV2;
825 APInt Offs1, Offs2;
826
827 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
828 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
829 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
830
831 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
832 // PtrToInt may change the bitwidth so we have convert to the right size
833 // first.
834 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
835 Offs2.zextOrTrunc(OpSize));
836 }
837 }
838
839 return nullptr;
840}
841
842/// If array indices are not pointer-sized integers, explicitly cast them so
843/// that they aren't implicitly casted by the getelementptr.
844Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
845 Type *ResultTy, GEPNoWrapFlags NW,
846 std::optional<ConstantRange> InRange,
847 const DataLayout &DL, const TargetLibraryInfo *TLI) {
848 Type *IntIdxTy = DL.getIndexType(ResultTy);
849 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
850
851 bool Any = false;
853 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
854 if ((i == 1 ||
856 SrcElemTy, Ops.slice(1, i - 1)))) &&
857 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
858 Any = true;
859 Type *NewType =
860 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
862 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
863 DL);
864 if (!NewIdx)
865 return nullptr;
866 NewIdxs.push_back(NewIdx);
867 } else
868 NewIdxs.push_back(Ops[i]);
869 }
870
871 if (!Any)
872 return nullptr;
873
874 Constant *C =
875 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
876 return ConstantFoldConstant(C, DL, TLI);
877}
878
879/// If we can symbolically evaluate the GEP constant expression, do so.
880Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
882 const DataLayout &DL,
883 const TargetLibraryInfo *TLI) {
884 Type *SrcElemTy = GEP->getSourceElementType();
885 Type *ResTy = GEP->getType();
886 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
887 return nullptr;
888
889 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
890 GEP->getInRange(), DL, TLI))
891 return C;
892
893 Constant *Ptr = Ops[0];
894 if (!Ptr->getType()->isPointerTy())
895 return nullptr;
896
897 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
898
899 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
900 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
901 return nullptr;
902
903 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
905 BitWidth,
906 DL.getIndexedOffsetInType(
907 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
908 /*isSigned=*/true, /*implicitTrunc=*/true);
909
910 std::optional<ConstantRange> InRange = GEP->getInRange();
911 if (InRange)
912 InRange = InRange->sextOrTrunc(BitWidth);
913
914 // If this is a GEP of a GEP, fold it all into a single GEP.
915 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
916 bool Overflow = false;
917 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
918 NW &= GEP->getNoWrapFlags();
919
920 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
921
922 // Do not try the incorporate the sub-GEP if some index is not a number.
923 bool AllConstantInt = true;
924 for (Value *NestedOp : NestedOps)
925 if (!isa<ConstantInt>(NestedOp)) {
926 AllConstantInt = false;
927 break;
928 }
929 if (!AllConstantInt)
930 break;
931
932 // Adjust inrange offset and intersect inrange attributes
933 if (auto GEPRange = GEP->getInRange()) {
934 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
935 InRange =
936 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
937 }
938
939 Ptr = cast<Constant>(GEP->getOperand(0));
940 SrcElemTy = GEP->getSourceElementType();
941 Offset = Offset.sadd_ov(
942 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
943 /*isSigned=*/true, /*implicitTrunc=*/true),
944 Overflow);
945 }
946
947 // Preserving nusw (without inbounds) also requires that the offset
948 // additions did not overflow.
949 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
951
952 // If the base value for this address is a literal integer value, fold the
953 // getelementptr to the resulting integer value casted to the pointer type.
954 APInt BasePtr(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
955 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
956 if (CE->getOpcode() == Instruction::IntToPtr) {
957 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
958 BasePtr = Base->getValue().zextOrTrunc(BasePtr.getBitWidth());
959 }
960 }
961
962 auto *PTy = cast<PointerType>(Ptr->getType());
963 if ((Ptr->isNullValue() || BasePtr != 0) &&
964 !DL.isNonIntegralPointerType(PTy)) {
965 // If the index size is smaller than the pointer size, add to the low
966 // bits only.
967 BasePtr.insertBits(BasePtr.trunc(BitWidth) + Offset, 0);
968 Constant *C = ConstantInt::get(Ptr->getContext(), BasePtr);
969 return ConstantExpr::getIntToPtr(C, ResTy);
970 }
971
972 // Try to infer inbounds for GEPs of globals.
973 if (!NW.isInBounds() && Offset.isNonNegative()) {
974 bool CanBeNull, CanBeFreed;
975 uint64_t DerefBytes =
976 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
977 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
979 }
980
981 // nusw + nneg -> nuw
982 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
984
985 // Otherwise canonicalize this to a single ptradd.
986 LLVMContext &Ctx = Ptr->getContext();
988 ConstantInt::get(Ctx, Offset), NW,
989 InRange);
990}
991
992/// Attempt to constant fold an instruction with the
993/// specified opcode and operands. If successful, the constant result is
994/// returned, if not, null is returned. Note that this function can fail when
995/// attempting to fold instructions like loads and stores, which have no
996/// constant expression form.
997Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
999 const DataLayout &DL,
1000 const TargetLibraryInfo *TLI,
1001 bool AllowNonDeterministic) {
1002 Type *DestTy = InstOrCE->getType();
1003
1004 if (Instruction::isUnaryOp(Opcode))
1005 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1006
1007 if (Instruction::isBinaryOp(Opcode)) {
1008 switch (Opcode) {
1009 default:
1010 break;
1011 case Instruction::FAdd:
1012 case Instruction::FSub:
1013 case Instruction::FMul:
1014 case Instruction::FDiv:
1015 case Instruction::FRem:
1016 // Handle floating point instructions separately to account for denormals
1017 // TODO: If a constant expression is being folded rather than an
1018 // instruction, denormals will not be flushed/treated as zero
1019 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1020 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1021 AllowNonDeterministic);
1022 }
1023 }
1024 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1025 }
1026
1027 if (Instruction::isCast(Opcode))
1028 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1029
1030 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1031 Type *SrcElemTy = GEP->getSourceElementType();
1033 return nullptr;
1034
1035 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1036 return C;
1037
1038 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1039 GEP->getNoWrapFlags(),
1040 GEP->getInRange());
1041 }
1042
1043 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1044 return CE->getWithOperands(Ops);
1045
1046 switch (Opcode) {
1047 default: return nullptr;
1048 case Instruction::ICmp:
1049 case Instruction::FCmp: {
1050 auto *C = cast<CmpInst>(InstOrCE);
1051 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1052 DL, TLI, C);
1053 }
1054 case Instruction::Freeze:
1055 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1056 case Instruction::Call:
1057 if (auto *F = dyn_cast<Function>(Ops.back())) {
1058 const auto *Call = cast<CallBase>(InstOrCE);
1060 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1061 AllowNonDeterministic);
1062 }
1063 return nullptr;
1064 case Instruction::Select:
1065 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1066 case Instruction::ExtractElement:
1068 case Instruction::ExtractValue:
1070 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1071 case Instruction::InsertElement:
1072 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1073 case Instruction::InsertValue:
1075 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1076 case Instruction::ShuffleVector:
1078 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1079 case Instruction::Load: {
1080 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1081 if (LI->isVolatile())
1082 return nullptr;
1083 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1084 }
1085 }
1086}
1087
1088} // end anonymous namespace
1089
1090//===----------------------------------------------------------------------===//
1091// Constant Folding public APIs
1092//===----------------------------------------------------------------------===//
1093
1094namespace {
1095
1096Constant *
1097ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1098 const TargetLibraryInfo *TLI,
1101 return const_cast<Constant *>(C);
1102
1104 for (const Use &OldU : C->operands()) {
1105 Constant *OldC = cast<Constant>(&OldU);
1106 Constant *NewC = OldC;
1107 // Recursively fold the ConstantExpr's operands. If we have already folded
1108 // a ConstantExpr, we don't have to process it again.
1109 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1110 auto It = FoldedOps.find(OldC);
1111 if (It == FoldedOps.end()) {
1112 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1113 FoldedOps.insert({OldC, NewC});
1114 } else {
1115 NewC = It->second;
1116 }
1117 }
1118 Ops.push_back(NewC);
1119 }
1120
1121 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1122 if (Constant *Res = ConstantFoldInstOperandsImpl(
1123 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1124 return Res;
1125 return const_cast<Constant *>(C);
1126 }
1127
1129 return ConstantVector::get(Ops);
1130}
1131
1132} // end anonymous namespace
1133
1135 const DataLayout &DL,
1136 const TargetLibraryInfo *TLI) {
1137 // Handle PHI nodes quickly here...
1138 if (auto *PN = dyn_cast<PHINode>(I)) {
1139 Constant *CommonValue = nullptr;
1140
1142 for (Value *Incoming : PN->incoming_values()) {
1143 // If the incoming value is undef then skip it. Note that while we could
1144 // skip the value if it is equal to the phi node itself we choose not to
1145 // because that would break the rule that constant folding only applies if
1146 // all operands are constants.
1148 continue;
1149 // If the incoming value is not a constant, then give up.
1150 auto *C = dyn_cast<Constant>(Incoming);
1151 if (!C)
1152 return nullptr;
1153 // Fold the PHI's operands.
1154 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1155 // If the incoming value is a different constant to
1156 // the one we saw previously, then give up.
1157 if (CommonValue && C != CommonValue)
1158 return nullptr;
1159 CommonValue = C;
1160 }
1161
1162 // If we reach here, all incoming values are the same constant or undef.
1163 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1164 }
1165
1166 // Scan the operand list, checking to see if they are all constants, if so,
1167 // hand off to ConstantFoldInstOperandsImpl.
1168 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1169 return nullptr;
1170
1173 for (const Use &OpU : I->operands()) {
1174 auto *Op = cast<Constant>(&OpU);
1175 // Fold the Instruction's operands.
1176 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1177 Ops.push_back(Op);
1178 }
1179
1180 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1181}
1182
1184 const TargetLibraryInfo *TLI) {
1186 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1187}
1188
1191 const DataLayout &DL,
1192 const TargetLibraryInfo *TLI,
1193 bool AllowNonDeterministic) {
1194 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1195 AllowNonDeterministic);
1196}
1197
1199 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1200 const TargetLibraryInfo *TLI, const Instruction *I) {
1201 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1202 // fold: icmp (inttoptr x), null -> icmp x, 0
1203 // fold: icmp null, (inttoptr x) -> icmp 0, x
1204 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1205 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1206 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1207 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1208 //
1209 // FIXME: The following comment is out of data and the DataLayout is here now.
1210 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1211 // around to know if bit truncation is happening.
1212 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1213 if (Ops1->isNullValue()) {
1214 if (CE0->getOpcode() == Instruction::IntToPtr) {
1215 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1216 // Convert the integer value to the right size to ensure we get the
1217 // proper extension or truncation.
1218 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1219 /*IsSigned*/ false, DL)) {
1220 Constant *Null = Constant::getNullValue(C->getType());
1221 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1222 }
1223 }
1224
1225 // Only do this transformation if the int is intptrty in size, otherwise
1226 // there is a truncation or extension that we aren't modeling.
1227 if (CE0->getOpcode() == Instruction::PtrToInt) {
1228 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1229 if (CE0->getType() == IntPtrTy) {
1230 Constant *C = CE0->getOperand(0);
1231 Constant *Null = Constant::getNullValue(C->getType());
1232 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1233 }
1234 }
1235 }
1236
1237 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1238 if (CE0->getOpcode() == CE1->getOpcode()) {
1239 if (CE0->getOpcode() == Instruction::IntToPtr) {
1240 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1241
1242 // Convert the integer value to the right size to ensure we get the
1243 // proper extension or truncation.
1244 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1245 /*IsSigned*/ false, DL);
1246 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1247 /*IsSigned*/ false, DL);
1248 if (C0 && C1)
1249 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1250 }
1251
1252 // Only do this transformation if the int is intptrty in size, otherwise
1253 // there is a truncation or extension that we aren't modeling.
1254 if (CE0->getOpcode() == Instruction::PtrToInt) {
1255 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1256 if (CE0->getType() == IntPtrTy &&
1257 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1259 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1260 }
1261 }
1262 }
1263 }
1264
1265 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1266 // offset1 pred offset2, for the case where the offset is inbounds. This
1267 // only works for equality and unsigned comparison, as inbounds permits
1268 // crossing the sign boundary. However, the offset comparison itself is
1269 // signed.
1270 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1271 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1272 APInt Offset0(IndexWidth, 0);
1273 bool IsEqPred = ICmpInst::isEquality(Predicate);
1274 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1275 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1276 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1277 /*LookThroughIntToPtr=*/IsEqPred);
1278 APInt Offset1(IndexWidth, 0);
1279 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1280 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1281 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1282 /*LookThroughIntToPtr=*/IsEqPred);
1283 if (Stripped0 == Stripped1)
1284 return ConstantInt::getBool(
1285 Ops0->getContext(),
1286 ICmpInst::compare(Offset0, Offset1,
1287 ICmpInst::getSignedPredicate(Predicate)));
1288 }
1289 } else if (isa<ConstantExpr>(Ops1)) {
1290 // If RHS is a constant expression, but the left side isn't, swap the
1291 // operands and try again.
1292 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1293 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1294 }
1295
1296 if (CmpInst::isFPPredicate(Predicate)) {
1297 // Flush any denormal constant float input according to denormal handling
1298 // mode.
1299 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1300 if (!Ops0)
1301 return nullptr;
1302 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1303 if (!Ops1)
1304 return nullptr;
1305 }
1306
1307 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1308}
1309
1311 const DataLayout &DL) {
1313
1314 return ConstantFoldUnaryInstruction(Opcode, Op);
1315}
1316
1318 Constant *RHS,
1319 const DataLayout &DL) {
1321 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1322 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1323 return C;
1324
1326 return ConstantExpr::get(Opcode, LHS, RHS);
1327 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1328}
1329
1332 switch (Mode) {
1334 return nullptr;
1335 case DenormalMode::IEEE:
1336 return ConstantFP::get(Ty->getContext(), APF);
1338 return ConstantFP::get(
1339 Ty->getContext(),
1342 return ConstantFP::get(Ty->getContext(),
1343 APFloat::getZero(APF.getSemantics(), false));
1344 default:
1345 break;
1346 }
1347
1348 llvm_unreachable("unknown denormal mode");
1349}
1350
1351/// Return the denormal mode that can be assumed when executing a floating point
1352/// operation at \p CtxI.
1354 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1355 return DenormalMode::getDynamic();
1356 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1357}
1358
1360 const Instruction *Inst,
1361 bool IsOutput) {
1362 const APFloat &APF = CFP->getValueAPF();
1363 if (!APF.isDenormal())
1364 return CFP;
1365
1367 return flushDenormalConstant(CFP->getType(), APF,
1368 IsOutput ? Mode.Output : Mode.Input);
1369}
1370
1372 bool IsOutput) {
1373 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1374 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1375
1377 return Operand;
1378
1379 Type *Ty = Operand->getType();
1380 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1381 if (VecTy) {
1382 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1383 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1384 if (!Folded)
1385 return nullptr;
1386 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1387 }
1388
1389 Ty = VecTy->getElementType();
1390 }
1391
1392 if (isa<ConstantExpr>(Operand))
1393 return Operand;
1394
1395 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1397 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1398 Constant *Element = CV->getAggregateElement(i);
1399 if (isa<UndefValue>(Element)) {
1400 NewElts.push_back(Element);
1401 continue;
1402 }
1403
1404 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1405 if (!CFP)
1406 return nullptr;
1407
1408 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1409 if (!Folded)
1410 return nullptr;
1411 NewElts.push_back(Folded);
1412 }
1413
1414 return ConstantVector::get(NewElts);
1415 }
1416
1417 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1419 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1420 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1421 if (!Elt.isDenormal()) {
1422 NewElts.push_back(ConstantFP::get(Ty, Elt));
1423 } else {
1424 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1425 ConstantFP *Folded =
1426 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1427 if (!Folded)
1428 return nullptr;
1429 NewElts.push_back(Folded);
1430 }
1431 }
1432
1433 return ConstantVector::get(NewElts);
1434 }
1435
1436 return nullptr;
1437}
1438
1440 Constant *RHS, const DataLayout &DL,
1441 const Instruction *I,
1442 bool AllowNonDeterministic) {
1443 if (Instruction::isBinaryOp(Opcode)) {
1444 // Flush denormal inputs if needed.
1445 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1446 if (!Op0)
1447 return nullptr;
1448 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1449 if (!Op1)
1450 return nullptr;
1451
1452 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1453 // may change due to future optimization. Don't constant fold them if
1454 // non-deterministic results are not allowed.
1455 if (!AllowNonDeterministic)
1457 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1458 FP->hasAllowContract() || FP->hasAllowReciprocal())
1459 return nullptr;
1460
1461 // Calculate constant result.
1462 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1463 if (!C)
1464 return nullptr;
1465
1466 // Flush denormal output if needed.
1467 C = FlushFPConstant(C, I, /* IsOutput */ true);
1468 if (!C)
1469 return nullptr;
1470
1471 // The precise NaN value is non-deterministic.
1472 if (!AllowNonDeterministic && C->isNaN())
1473 return nullptr;
1474
1475 return C;
1476 }
1477 // If instruction lacks a parent/function and the denormal mode cannot be
1478 // determined, use the default (IEEE).
1479 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1480}
1481
1483 Type *DestTy, const DataLayout &DL) {
1484 assert(Instruction::isCast(Opcode));
1485 switch (Opcode) {
1486 default:
1487 llvm_unreachable("Missing case");
1488 case Instruction::PtrToAddr:
1489 // TODO: Add some of the ptrtoint folds here as well.
1490 break;
1491 case Instruction::PtrToInt:
1492 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1493 Constant *FoldedValue = nullptr;
1494 // If the input is a inttoptr, eliminate the pair. This requires knowing
1495 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1496 if (CE->getOpcode() == Instruction::IntToPtr) {
1497 // zext/trunc the inttoptr to pointer size.
1498 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1499 DL.getIntPtrType(CE->getType()),
1500 /*IsSigned=*/false, DL);
1501 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1502 // If we have GEP, we can perform the following folds:
1503 // (ptrtoint (gep null, x)) -> x
1504 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1505 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1506 APInt BaseOffset(BitWidth, 0);
1507 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1508 DL, BaseOffset, /*AllowNonInbounds=*/true));
1509 if (Base->isNullValue()) {
1510 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1511 } else {
1512 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1513 if (GEP->getNumIndices() == 1 &&
1514 GEP->getSourceElementType()->isIntegerTy(8)) {
1515 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1516 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1517 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1518 if (Sub && Sub->getType() == IntIdxTy &&
1519 Sub->getOpcode() == Instruction::Sub &&
1520 Sub->getOperand(0)->isNullValue())
1521 FoldedValue = ConstantExpr::getSub(
1522 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1523 }
1524 }
1525 }
1526 if (FoldedValue) {
1527 // Do a zext or trunc to get to the ptrtoint dest size.
1528 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1529 DL);
1530 }
1531 }
1532 break;
1533 case Instruction::IntToPtr:
1534 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1535 // the int size is >= the ptr size and the address spaces are the same.
1536 // This requires knowing the width of a pointer, so it can't be done in
1537 // ConstantExpr::getCast.
1538 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1539 if (CE->getOpcode() == Instruction::PtrToInt) {
1540 Constant *SrcPtr = CE->getOperand(0);
1541 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1542 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1543
1544 if (MidIntSize >= SrcPtrSize) {
1545 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1546 if (SrcAS == DestTy->getPointerAddressSpace())
1547 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1548 }
1549 }
1550 }
1551 break;
1552 case Instruction::Trunc:
1553 case Instruction::ZExt:
1554 case Instruction::SExt:
1555 case Instruction::FPTrunc:
1556 case Instruction::FPExt:
1557 case Instruction::UIToFP:
1558 case Instruction::SIToFP:
1559 case Instruction::FPToUI:
1560 case Instruction::FPToSI:
1561 case Instruction::AddrSpaceCast:
1562 break;
1563 case Instruction::BitCast:
1564 return FoldBitCast(C, DestTy, DL);
1565 }
1566
1568 return ConstantExpr::getCast(Opcode, C, DestTy);
1569 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1570}
1571
1573 bool IsSigned, const DataLayout &DL) {
1574 Type *SrcTy = C->getType();
1575 if (SrcTy == DestTy)
1576 return C;
1577 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1578 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1579 if (IsSigned)
1580 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1581 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1582}
1583
1584//===----------------------------------------------------------------------===//
1585// Constant Folding for Calls
1586//
1587
1589 if (Call->isNoBuiltin())
1590 return false;
1591 if (Call->getFunctionType() != F->getFunctionType())
1592 return false;
1593
1594 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1595 // This can be useful for GPU targets or in cross-compilation scenarios
1596 // when the exact target FP behaviour is required, and the host compiler's
1597 // behaviour may be slightly different from the device's run-time behaviour.
1598 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1599 any_of(F->args(), [](const Argument &Arg) {
1600 return Arg.getType()->isFloatingPointTy();
1601 })))
1602 return false;
1603
1604 switch (F->getIntrinsicID()) {
1605 // Operations that do not operate floating-point numbers and do not depend on
1606 // FP environment can be folded even in strictfp functions.
1607 case Intrinsic::bswap:
1608 case Intrinsic::ctpop:
1609 case Intrinsic::ctlz:
1610 case Intrinsic::cttz:
1611 case Intrinsic::fshl:
1612 case Intrinsic::fshr:
1613 case Intrinsic::launder_invariant_group:
1614 case Intrinsic::strip_invariant_group:
1615 case Intrinsic::masked_load:
1616 case Intrinsic::get_active_lane_mask:
1617 case Intrinsic::abs:
1618 case Intrinsic::smax:
1619 case Intrinsic::smin:
1620 case Intrinsic::umax:
1621 case Intrinsic::umin:
1622 case Intrinsic::scmp:
1623 case Intrinsic::ucmp:
1624 case Intrinsic::sadd_with_overflow:
1625 case Intrinsic::uadd_with_overflow:
1626 case Intrinsic::ssub_with_overflow:
1627 case Intrinsic::usub_with_overflow:
1628 case Intrinsic::smul_with_overflow:
1629 case Intrinsic::umul_with_overflow:
1630 case Intrinsic::sadd_sat:
1631 case Intrinsic::uadd_sat:
1632 case Intrinsic::ssub_sat:
1633 case Intrinsic::usub_sat:
1634 case Intrinsic::smul_fix:
1635 case Intrinsic::smul_fix_sat:
1636 case Intrinsic::bitreverse:
1637 case Intrinsic::is_constant:
1638 case Intrinsic::vector_reduce_add:
1639 case Intrinsic::vector_reduce_mul:
1640 case Intrinsic::vector_reduce_and:
1641 case Intrinsic::vector_reduce_or:
1642 case Intrinsic::vector_reduce_xor:
1643 case Intrinsic::vector_reduce_smin:
1644 case Intrinsic::vector_reduce_smax:
1645 case Intrinsic::vector_reduce_umin:
1646 case Intrinsic::vector_reduce_umax:
1647 case Intrinsic::vector_extract:
1648 case Intrinsic::vector_insert:
1649 case Intrinsic::vector_interleave2:
1650 case Intrinsic::vector_deinterleave2:
1651 // Target intrinsics
1652 case Intrinsic::amdgcn_perm:
1653 case Intrinsic::amdgcn_wave_reduce_umin:
1654 case Intrinsic::amdgcn_wave_reduce_umax:
1655 case Intrinsic::amdgcn_wave_reduce_max:
1656 case Intrinsic::amdgcn_wave_reduce_min:
1657 case Intrinsic::amdgcn_wave_reduce_add:
1658 case Intrinsic::amdgcn_wave_reduce_sub:
1659 case Intrinsic::amdgcn_wave_reduce_and:
1660 case Intrinsic::amdgcn_wave_reduce_or:
1661 case Intrinsic::amdgcn_wave_reduce_xor:
1662 case Intrinsic::amdgcn_s_wqm:
1663 case Intrinsic::amdgcn_s_quadmask:
1664 case Intrinsic::amdgcn_s_bitreplicate:
1665 case Intrinsic::arm_mve_vctp8:
1666 case Intrinsic::arm_mve_vctp16:
1667 case Intrinsic::arm_mve_vctp32:
1668 case Intrinsic::arm_mve_vctp64:
1669 case Intrinsic::aarch64_sve_convert_from_svbool:
1670 case Intrinsic::wasm_alltrue:
1671 case Intrinsic::wasm_anytrue:
1672 case Intrinsic::wasm_dot:
1673 // WebAssembly float semantics are always known
1674 case Intrinsic::wasm_trunc_signed:
1675 case Intrinsic::wasm_trunc_unsigned:
1676 return true;
1677
1678 // Floating point operations cannot be folded in strictfp functions in
1679 // general case. They can be folded if FP environment is known to compiler.
1680 case Intrinsic::minnum:
1681 case Intrinsic::maxnum:
1682 case Intrinsic::minimum:
1683 case Intrinsic::maximum:
1684 case Intrinsic::minimumnum:
1685 case Intrinsic::maximumnum:
1686 case Intrinsic::log:
1687 case Intrinsic::log2:
1688 case Intrinsic::log10:
1689 case Intrinsic::exp:
1690 case Intrinsic::exp2:
1691 case Intrinsic::exp10:
1692 case Intrinsic::sqrt:
1693 case Intrinsic::sin:
1694 case Intrinsic::cos:
1695 case Intrinsic::sincos:
1696 case Intrinsic::sinh:
1697 case Intrinsic::cosh:
1698 case Intrinsic::atan:
1699 case Intrinsic::pow:
1700 case Intrinsic::powi:
1701 case Intrinsic::ldexp:
1702 case Intrinsic::fma:
1703 case Intrinsic::fmuladd:
1704 case Intrinsic::frexp:
1705 case Intrinsic::fptoui_sat:
1706 case Intrinsic::fptosi_sat:
1707 case Intrinsic::convert_from_fp16:
1708 case Intrinsic::convert_to_fp16:
1709 case Intrinsic::amdgcn_cos:
1710 case Intrinsic::amdgcn_cubeid:
1711 case Intrinsic::amdgcn_cubema:
1712 case Intrinsic::amdgcn_cubesc:
1713 case Intrinsic::amdgcn_cubetc:
1714 case Intrinsic::amdgcn_fmul_legacy:
1715 case Intrinsic::amdgcn_fma_legacy:
1716 case Intrinsic::amdgcn_fract:
1717 case Intrinsic::amdgcn_sin:
1718 // The intrinsics below depend on rounding mode in MXCSR.
1719 case Intrinsic::x86_sse_cvtss2si:
1720 case Intrinsic::x86_sse_cvtss2si64:
1721 case Intrinsic::x86_sse_cvttss2si:
1722 case Intrinsic::x86_sse_cvttss2si64:
1723 case Intrinsic::x86_sse2_cvtsd2si:
1724 case Intrinsic::x86_sse2_cvtsd2si64:
1725 case Intrinsic::x86_sse2_cvttsd2si:
1726 case Intrinsic::x86_sse2_cvttsd2si64:
1727 case Intrinsic::x86_avx512_vcvtss2si32:
1728 case Intrinsic::x86_avx512_vcvtss2si64:
1729 case Intrinsic::x86_avx512_cvttss2si:
1730 case Intrinsic::x86_avx512_cvttss2si64:
1731 case Intrinsic::x86_avx512_vcvtsd2si32:
1732 case Intrinsic::x86_avx512_vcvtsd2si64:
1733 case Intrinsic::x86_avx512_cvttsd2si:
1734 case Intrinsic::x86_avx512_cvttsd2si64:
1735 case Intrinsic::x86_avx512_vcvtss2usi32:
1736 case Intrinsic::x86_avx512_vcvtss2usi64:
1737 case Intrinsic::x86_avx512_cvttss2usi:
1738 case Intrinsic::x86_avx512_cvttss2usi64:
1739 case Intrinsic::x86_avx512_vcvtsd2usi32:
1740 case Intrinsic::x86_avx512_vcvtsd2usi64:
1741 case Intrinsic::x86_avx512_cvttsd2usi:
1742 case Intrinsic::x86_avx512_cvttsd2usi64:
1743
1744 // NVVM FMax intrinsics
1745 case Intrinsic::nvvm_fmax_d:
1746 case Intrinsic::nvvm_fmax_f:
1747 case Intrinsic::nvvm_fmax_ftz_f:
1748 case Intrinsic::nvvm_fmax_ftz_nan_f:
1749 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1750 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1751 case Intrinsic::nvvm_fmax_nan_f:
1752 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1753 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1754
1755 // NVVM FMin intrinsics
1756 case Intrinsic::nvvm_fmin_d:
1757 case Intrinsic::nvvm_fmin_f:
1758 case Intrinsic::nvvm_fmin_ftz_f:
1759 case Intrinsic::nvvm_fmin_ftz_nan_f:
1760 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1761 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmin_nan_f:
1763 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1764 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1765
1766 // NVVM float/double to int32/uint32 conversion intrinsics
1767 case Intrinsic::nvvm_f2i_rm:
1768 case Intrinsic::nvvm_f2i_rn:
1769 case Intrinsic::nvvm_f2i_rp:
1770 case Intrinsic::nvvm_f2i_rz:
1771 case Intrinsic::nvvm_f2i_rm_ftz:
1772 case Intrinsic::nvvm_f2i_rn_ftz:
1773 case Intrinsic::nvvm_f2i_rp_ftz:
1774 case Intrinsic::nvvm_f2i_rz_ftz:
1775 case Intrinsic::nvvm_f2ui_rm:
1776 case Intrinsic::nvvm_f2ui_rn:
1777 case Intrinsic::nvvm_f2ui_rp:
1778 case Intrinsic::nvvm_f2ui_rz:
1779 case Intrinsic::nvvm_f2ui_rm_ftz:
1780 case Intrinsic::nvvm_f2ui_rn_ftz:
1781 case Intrinsic::nvvm_f2ui_rp_ftz:
1782 case Intrinsic::nvvm_f2ui_rz_ftz:
1783 case Intrinsic::nvvm_d2i_rm:
1784 case Intrinsic::nvvm_d2i_rn:
1785 case Intrinsic::nvvm_d2i_rp:
1786 case Intrinsic::nvvm_d2i_rz:
1787 case Intrinsic::nvvm_d2ui_rm:
1788 case Intrinsic::nvvm_d2ui_rn:
1789 case Intrinsic::nvvm_d2ui_rp:
1790 case Intrinsic::nvvm_d2ui_rz:
1791
1792 // NVVM float/double to int64/uint64 conversion intrinsics
1793 case Intrinsic::nvvm_f2ll_rm:
1794 case Intrinsic::nvvm_f2ll_rn:
1795 case Intrinsic::nvvm_f2ll_rp:
1796 case Intrinsic::nvvm_f2ll_rz:
1797 case Intrinsic::nvvm_f2ll_rm_ftz:
1798 case Intrinsic::nvvm_f2ll_rn_ftz:
1799 case Intrinsic::nvvm_f2ll_rp_ftz:
1800 case Intrinsic::nvvm_f2ll_rz_ftz:
1801 case Intrinsic::nvvm_f2ull_rm:
1802 case Intrinsic::nvvm_f2ull_rn:
1803 case Intrinsic::nvvm_f2ull_rp:
1804 case Intrinsic::nvvm_f2ull_rz:
1805 case Intrinsic::nvvm_f2ull_rm_ftz:
1806 case Intrinsic::nvvm_f2ull_rn_ftz:
1807 case Intrinsic::nvvm_f2ull_rp_ftz:
1808 case Intrinsic::nvvm_f2ull_rz_ftz:
1809 case Intrinsic::nvvm_d2ll_rm:
1810 case Intrinsic::nvvm_d2ll_rn:
1811 case Intrinsic::nvvm_d2ll_rp:
1812 case Intrinsic::nvvm_d2ll_rz:
1813 case Intrinsic::nvvm_d2ull_rm:
1814 case Intrinsic::nvvm_d2ull_rn:
1815 case Intrinsic::nvvm_d2ull_rp:
1816 case Intrinsic::nvvm_d2ull_rz:
1817
1818 // NVVM math intrinsics:
1819 case Intrinsic::nvvm_ceil_d:
1820 case Intrinsic::nvvm_ceil_f:
1821 case Intrinsic::nvvm_ceil_ftz_f:
1822
1823 case Intrinsic::nvvm_fabs:
1824 case Intrinsic::nvvm_fabs_ftz:
1825
1826 case Intrinsic::nvvm_floor_d:
1827 case Intrinsic::nvvm_floor_f:
1828 case Intrinsic::nvvm_floor_ftz_f:
1829
1830 case Intrinsic::nvvm_rcp_rm_d:
1831 case Intrinsic::nvvm_rcp_rm_f:
1832 case Intrinsic::nvvm_rcp_rm_ftz_f:
1833 case Intrinsic::nvvm_rcp_rn_d:
1834 case Intrinsic::nvvm_rcp_rn_f:
1835 case Intrinsic::nvvm_rcp_rn_ftz_f:
1836 case Intrinsic::nvvm_rcp_rp_d:
1837 case Intrinsic::nvvm_rcp_rp_f:
1838 case Intrinsic::nvvm_rcp_rp_ftz_f:
1839 case Intrinsic::nvvm_rcp_rz_d:
1840 case Intrinsic::nvvm_rcp_rz_f:
1841 case Intrinsic::nvvm_rcp_rz_ftz_f:
1842
1843 case Intrinsic::nvvm_round_d:
1844 case Intrinsic::nvvm_round_f:
1845 case Intrinsic::nvvm_round_ftz_f:
1846
1847 case Intrinsic::nvvm_saturate_d:
1848 case Intrinsic::nvvm_saturate_f:
1849 case Intrinsic::nvvm_saturate_ftz_f:
1850
1851 case Intrinsic::nvvm_sqrt_f:
1852 case Intrinsic::nvvm_sqrt_rn_d:
1853 case Intrinsic::nvvm_sqrt_rn_f:
1854 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1855 return !Call->isStrictFP();
1856
1857 // NVVM add intrinsics with explicit rounding modes
1858 case Intrinsic::nvvm_add_rm_d:
1859 case Intrinsic::nvvm_add_rn_d:
1860 case Intrinsic::nvvm_add_rp_d:
1861 case Intrinsic::nvvm_add_rz_d:
1862 case Intrinsic::nvvm_add_rm_f:
1863 case Intrinsic::nvvm_add_rn_f:
1864 case Intrinsic::nvvm_add_rp_f:
1865 case Intrinsic::nvvm_add_rz_f:
1866 case Intrinsic::nvvm_add_rm_ftz_f:
1867 case Intrinsic::nvvm_add_rn_ftz_f:
1868 case Intrinsic::nvvm_add_rp_ftz_f:
1869 case Intrinsic::nvvm_add_rz_ftz_f:
1870
1871 // NVVM div intrinsics with explicit rounding modes
1872 case Intrinsic::nvvm_div_rm_d:
1873 case Intrinsic::nvvm_div_rn_d:
1874 case Intrinsic::nvvm_div_rp_d:
1875 case Intrinsic::nvvm_div_rz_d:
1876 case Intrinsic::nvvm_div_rm_f:
1877 case Intrinsic::nvvm_div_rn_f:
1878 case Intrinsic::nvvm_div_rp_f:
1879 case Intrinsic::nvvm_div_rz_f:
1880 case Intrinsic::nvvm_div_rm_ftz_f:
1881 case Intrinsic::nvvm_div_rn_ftz_f:
1882 case Intrinsic::nvvm_div_rp_ftz_f:
1883 case Intrinsic::nvvm_div_rz_ftz_f:
1884
1885 // NVVM mul intrinsics with explicit rounding modes
1886 case Intrinsic::nvvm_mul_rm_d:
1887 case Intrinsic::nvvm_mul_rn_d:
1888 case Intrinsic::nvvm_mul_rp_d:
1889 case Intrinsic::nvvm_mul_rz_d:
1890 case Intrinsic::nvvm_mul_rm_f:
1891 case Intrinsic::nvvm_mul_rn_f:
1892 case Intrinsic::nvvm_mul_rp_f:
1893 case Intrinsic::nvvm_mul_rz_f:
1894 case Intrinsic::nvvm_mul_rm_ftz_f:
1895 case Intrinsic::nvvm_mul_rn_ftz_f:
1896 case Intrinsic::nvvm_mul_rp_ftz_f:
1897 case Intrinsic::nvvm_mul_rz_ftz_f:
1898
1899 // NVVM fma intrinsics with explicit rounding modes
1900 case Intrinsic::nvvm_fma_rm_d:
1901 case Intrinsic::nvvm_fma_rn_d:
1902 case Intrinsic::nvvm_fma_rp_d:
1903 case Intrinsic::nvvm_fma_rz_d:
1904 case Intrinsic::nvvm_fma_rm_f:
1905 case Intrinsic::nvvm_fma_rn_f:
1906 case Intrinsic::nvvm_fma_rp_f:
1907 case Intrinsic::nvvm_fma_rz_f:
1908 case Intrinsic::nvvm_fma_rm_ftz_f:
1909 case Intrinsic::nvvm_fma_rn_ftz_f:
1910 case Intrinsic::nvvm_fma_rp_ftz_f:
1911 case Intrinsic::nvvm_fma_rz_ftz_f:
1912
1913 // Sign operations are actually bitwise operations, they do not raise
1914 // exceptions even for SNANs.
1915 case Intrinsic::fabs:
1916 case Intrinsic::copysign:
1917 case Intrinsic::is_fpclass:
1918 // Non-constrained variants of rounding operations means default FP
1919 // environment, they can be folded in any case.
1920 case Intrinsic::ceil:
1921 case Intrinsic::floor:
1922 case Intrinsic::round:
1923 case Intrinsic::roundeven:
1924 case Intrinsic::trunc:
1925 case Intrinsic::nearbyint:
1926 case Intrinsic::rint:
1927 case Intrinsic::canonicalize:
1928
1929 // Constrained intrinsics can be folded if FP environment is known
1930 // to compiler.
1931 case Intrinsic::experimental_constrained_fma:
1932 case Intrinsic::experimental_constrained_fmuladd:
1933 case Intrinsic::experimental_constrained_fadd:
1934 case Intrinsic::experimental_constrained_fsub:
1935 case Intrinsic::experimental_constrained_fmul:
1936 case Intrinsic::experimental_constrained_fdiv:
1937 case Intrinsic::experimental_constrained_frem:
1938 case Intrinsic::experimental_constrained_ceil:
1939 case Intrinsic::experimental_constrained_floor:
1940 case Intrinsic::experimental_constrained_round:
1941 case Intrinsic::experimental_constrained_roundeven:
1942 case Intrinsic::experimental_constrained_trunc:
1943 case Intrinsic::experimental_constrained_nearbyint:
1944 case Intrinsic::experimental_constrained_rint:
1945 case Intrinsic::experimental_constrained_fcmp:
1946 case Intrinsic::experimental_constrained_fcmps:
1947 return true;
1948 default:
1949 return false;
1950 case Intrinsic::not_intrinsic: break;
1951 }
1952
1953 if (!F->hasName() || Call->isStrictFP())
1954 return false;
1955
1956 // In these cases, the check of the length is required. We don't want to
1957 // return true for a name like "cos\0blah" which strcmp would return equal to
1958 // "cos", but has length 8.
1959 StringRef Name = F->getName();
1960 switch (Name[0]) {
1961 default:
1962 return false;
1963 case 'a':
1964 return Name == "acos" || Name == "acosf" ||
1965 Name == "asin" || Name == "asinf" ||
1966 Name == "atan" || Name == "atanf" ||
1967 Name == "atan2" || Name == "atan2f";
1968 case 'c':
1969 return Name == "ceil" || Name == "ceilf" ||
1970 Name == "cos" || Name == "cosf" ||
1971 Name == "cosh" || Name == "coshf";
1972 case 'e':
1973 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1974 Name == "exp2f" || Name == "erf" || Name == "erff";
1975 case 'f':
1976 return Name == "fabs" || Name == "fabsf" ||
1977 Name == "floor" || Name == "floorf" ||
1978 Name == "fmod" || Name == "fmodf";
1979 case 'i':
1980 return Name == "ilogb" || Name == "ilogbf";
1981 case 'l':
1982 return Name == "log" || Name == "logf" || Name == "logl" ||
1983 Name == "log2" || Name == "log2f" || Name == "log10" ||
1984 Name == "log10f" || Name == "logb" || Name == "logbf" ||
1985 Name == "log1p" || Name == "log1pf";
1986 case 'n':
1987 return Name == "nearbyint" || Name == "nearbyintf";
1988 case 'p':
1989 return Name == "pow" || Name == "powf";
1990 case 'r':
1991 return Name == "remainder" || Name == "remainderf" ||
1992 Name == "rint" || Name == "rintf" ||
1993 Name == "round" || Name == "roundf";
1994 case 's':
1995 return Name == "sin" || Name == "sinf" ||
1996 Name == "sinh" || Name == "sinhf" ||
1997 Name == "sqrt" || Name == "sqrtf";
1998 case 't':
1999 return Name == "tan" || Name == "tanf" ||
2000 Name == "tanh" || Name == "tanhf" ||
2001 Name == "trunc" || Name == "truncf";
2002 case '_':
2003 // Check for various function names that get used for the math functions
2004 // when the header files are preprocessed with the macro
2005 // __FINITE_MATH_ONLY__ enabled.
2006 // The '12' here is the length of the shortest name that can match.
2007 // We need to check the size before looking at Name[1] and Name[2]
2008 // so we may as well check a limit that will eliminate mismatches.
2009 if (Name.size() < 12 || Name[1] != '_')
2010 return false;
2011 switch (Name[2]) {
2012 default:
2013 return false;
2014 case 'a':
2015 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2016 Name == "__asin_finite" || Name == "__asinf_finite" ||
2017 Name == "__atan2_finite" || Name == "__atan2f_finite";
2018 case 'c':
2019 return Name == "__cosh_finite" || Name == "__coshf_finite";
2020 case 'e':
2021 return Name == "__exp_finite" || Name == "__expf_finite" ||
2022 Name == "__exp2_finite" || Name == "__exp2f_finite";
2023 case 'l':
2024 return Name == "__log_finite" || Name == "__logf_finite" ||
2025 Name == "__log10_finite" || Name == "__log10f_finite";
2026 case 'p':
2027 return Name == "__pow_finite" || Name == "__powf_finite";
2028 case 's':
2029 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2030 }
2031 }
2032}
2033
2034namespace {
2035
2036Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2037 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2038 APFloat APF(V);
2039 bool unused;
2040 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2041 return ConstantFP::get(Ty->getContext(), APF);
2042 }
2043 if (Ty->isDoubleTy())
2044 return ConstantFP::get(Ty->getContext(), APFloat(V));
2045 llvm_unreachable("Can only constant fold half/float/double");
2046}
2047
2048#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2049Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2050 if (Ty->isFP128Ty())
2051 return ConstantFP::get(Ty, V);
2052 llvm_unreachable("Can only constant fold fp128");
2053}
2054#endif
2055
2056/// Clear the floating-point exception state.
2057inline void llvm_fenv_clearexcept() {
2058#if HAVE_DECL_FE_ALL_EXCEPT
2059 feclearexcept(FE_ALL_EXCEPT);
2060#endif
2061 errno = 0;
2062}
2063
2064/// Test if a floating-point exception was raised.
2065inline bool llvm_fenv_testexcept() {
2066 int errno_val = errno;
2067 if (errno_val == ERANGE || errno_val == EDOM)
2068 return true;
2069#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2070 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2071 return true;
2072#endif
2073 return false;
2074}
2075
2076static APFloat FTZPreserveSign(const APFloat &V) {
2077 if (V.isDenormal())
2078 return APFloat::getZero(V.getSemantics(), V.isNegative());
2079 return V;
2080}
2081
2082static APFloat FlushToPositiveZero(const APFloat &V) {
2083 if (V.isDenormal())
2084 return APFloat::getZero(V.getSemantics(), false);
2085 return V;
2086}
2087
2088static APFloat FlushWithDenormKind(const APFloat &V,
2089 DenormalMode::DenormalModeKind DenormKind) {
2092 switch (DenormKind) {
2094 return V;
2096 return FTZPreserveSign(V);
2098 return FlushToPositiveZero(V);
2099 default:
2100 llvm_unreachable("Invalid denormal mode!");
2101 }
2102}
2103
2104Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2105 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2106 if (!DenormMode.isValid() ||
2107 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2108 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2109 return nullptr;
2110
2111 llvm_fenv_clearexcept();
2112 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2113 double Result = NativeFP(Input.convertToDouble());
2114 if (llvm_fenv_testexcept()) {
2115 llvm_fenv_clearexcept();
2116 return nullptr;
2117 }
2118
2119 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2120 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2121 return Output;
2122 const auto *CFP = static_cast<ConstantFP *>(Output);
2123 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2124 return ConstantFP::get(Ty->getContext(), Res);
2125}
2126
2127#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2128Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2129 Type *Ty) {
2130 llvm_fenv_clearexcept();
2131 float128 Result = NativeFP(V.convertToQuad());
2132 if (llvm_fenv_testexcept()) {
2133 llvm_fenv_clearexcept();
2134 return nullptr;
2135 }
2136
2137 return GetConstantFoldFPValue128(Result, Ty);
2138}
2139#endif
2140
2141Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2142 const APFloat &V, const APFloat &W, Type *Ty) {
2143 llvm_fenv_clearexcept();
2144 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2145 if (llvm_fenv_testexcept()) {
2146 llvm_fenv_clearexcept();
2147 return nullptr;
2148 }
2149
2150 return GetConstantFoldFPValue(Result, Ty);
2151}
2152
2153Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2155 if (!VT)
2156 return nullptr;
2157
2158 // This isn't strictly necessary, but handle the special/common case of zero:
2159 // all integer reductions of a zero input produce zero.
2161 return ConstantInt::get(VT->getElementType(), 0);
2162
2163 // This is the same as the underlying binops - poison propagates.
2164 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
2165 return PoisonValue::get(VT->getElementType());
2166
2167 // TODO: Handle undef.
2169 return nullptr;
2170
2171 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
2172 if (!EltC)
2173 return nullptr;
2174
2175 APInt Acc = EltC->getValue();
2176 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2177 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
2178 return nullptr;
2179 const APInt &X = EltC->getValue();
2180 switch (IID) {
2181 case Intrinsic::vector_reduce_add:
2182 Acc = Acc + X;
2183 break;
2184 case Intrinsic::vector_reduce_mul:
2185 Acc = Acc * X;
2186 break;
2187 case Intrinsic::vector_reduce_and:
2188 Acc = Acc & X;
2189 break;
2190 case Intrinsic::vector_reduce_or:
2191 Acc = Acc | X;
2192 break;
2193 case Intrinsic::vector_reduce_xor:
2194 Acc = Acc ^ X;
2195 break;
2196 case Intrinsic::vector_reduce_smin:
2197 Acc = APIntOps::smin(Acc, X);
2198 break;
2199 case Intrinsic::vector_reduce_smax:
2200 Acc = APIntOps::smax(Acc, X);
2201 break;
2202 case Intrinsic::vector_reduce_umin:
2203 Acc = APIntOps::umin(Acc, X);
2204 break;
2205 case Intrinsic::vector_reduce_umax:
2206 Acc = APIntOps::umax(Acc, X);
2207 break;
2208 }
2209 }
2210
2211 return ConstantInt::get(Op->getContext(), Acc);
2212}
2213
2214/// Attempt to fold an SSE floating point to integer conversion of a constant
2215/// floating point. If roundTowardZero is false, the default IEEE rounding is
2216/// used (toward nearest, ties to even). This matches the behavior of the
2217/// non-truncating SSE instructions in the default rounding mode. The desired
2218/// integer type Ty is used to select how many bits are available for the
2219/// result. Returns null if the conversion cannot be performed, otherwise
2220/// returns the Constant value resulting from the conversion.
2221Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2222 Type *Ty, bool IsSigned) {
2223 // All of these conversion intrinsics form an integer of at most 64bits.
2224 unsigned ResultWidth = Ty->getIntegerBitWidth();
2225 assert(ResultWidth <= 64 &&
2226 "Can only constant fold conversions to 64 and 32 bit ints");
2227
2228 uint64_t UIntVal;
2229 bool isExact = false;
2233 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2234 IsSigned, mode, &isExact);
2235 if (status != APFloat::opOK &&
2236 (!roundTowardZero || status != APFloat::opInexact))
2237 return nullptr;
2238 return ConstantInt::get(Ty, UIntVal, IsSigned);
2239}
2240
2241double getValueAsDouble(ConstantFP *Op) {
2242 Type *Ty = Op->getType();
2243
2244 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2245 return Op->getValueAPF().convertToDouble();
2246
2247 bool unused;
2248 APFloat APF = Op->getValueAPF();
2250 return APF.convertToDouble();
2251}
2252
2253static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2254 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2255 C = &CI->getValue();
2256 return true;
2257 }
2258 if (isa<UndefValue>(Op)) {
2259 C = nullptr;
2260 return true;
2261 }
2262 return false;
2263}
2264
2265/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2266/// to be folded.
2267///
2268/// \param CI Constrained intrinsic call.
2269/// \param St Exception flags raised during constant evaluation.
2270static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2271 APFloat::opStatus St) {
2272 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2273 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2274
2275 // If the operation does not change exception status flags, it is safe
2276 // to fold.
2277 if (St == APFloat::opStatus::opOK)
2278 return true;
2279
2280 // If evaluation raised FP exception, the result can depend on rounding
2281 // mode. If the latter is unknown, folding is not possible.
2282 if (ORM == RoundingMode::Dynamic)
2283 return false;
2284
2285 // If FP exceptions are ignored, fold the call, even if such exception is
2286 // raised.
2287 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2288 return true;
2289
2290 // Leave the calculation for runtime so that exception flags be correctly set
2291 // in hardware.
2292 return false;
2293}
2294
2295/// Returns the rounding mode that should be used for constant evaluation.
2296static RoundingMode
2297getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2298 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2299 if (!ORM || *ORM == RoundingMode::Dynamic)
2300 // Even if the rounding mode is unknown, try evaluating the operation.
2301 // If it does not raise inexact exception, rounding was not applied,
2302 // so the result is exact and does not depend on rounding mode. Whether
2303 // other FP exceptions are raised, it does not depend on rounding mode.
2305 return *ORM;
2306}
2307
2308/// Try to constant fold llvm.canonicalize for the given caller and value.
2309static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2310 const APFloat &Src) {
2311 // Zero, positive and negative, is always OK to fold.
2312 if (Src.isZero()) {
2313 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2314 return ConstantFP::get(
2315 CI->getContext(),
2316 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2317 }
2318
2319 if (!Ty->isIEEELikeFPTy())
2320 return nullptr;
2321
2322 // Zero is always canonical and the sign must be preserved.
2323 //
2324 // Denorms and nans may have special encodings, but it should be OK to fold a
2325 // totally average number.
2326 if (Src.isNormal() || Src.isInfinity())
2327 return ConstantFP::get(CI->getContext(), Src);
2328
2329 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2330 DenormalMode DenormMode =
2331 CI->getFunction()->getDenormalMode(Src.getSemantics());
2332
2333 if (DenormMode == DenormalMode::getIEEE())
2334 return ConstantFP::get(CI->getContext(), Src);
2335
2336 if (DenormMode.Input == DenormalMode::Dynamic)
2337 return nullptr;
2338
2339 // If we know if either input or output is flushed, we can fold.
2340 if ((DenormMode.Input == DenormalMode::Dynamic &&
2341 DenormMode.Output == DenormalMode::IEEE) ||
2342 (DenormMode.Input == DenormalMode::IEEE &&
2343 DenormMode.Output == DenormalMode::Dynamic))
2344 return nullptr;
2345
2346 bool IsPositive =
2347 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2348 (DenormMode.Output == DenormalMode::PositiveZero &&
2349 DenormMode.Input == DenormalMode::IEEE));
2350
2351 return ConstantFP::get(CI->getContext(),
2352 APFloat::getZero(Src.getSemantics(), !IsPositive));
2353 }
2354
2355 return nullptr;
2356}
2357
2358static Constant *ConstantFoldScalarCall1(StringRef Name,
2359 Intrinsic::ID IntrinsicID,
2360 Type *Ty,
2362 const TargetLibraryInfo *TLI,
2363 const CallBase *Call) {
2364 assert(Operands.size() == 1 && "Wrong number of operands.");
2365
2366 if (IntrinsicID == Intrinsic::is_constant) {
2367 // We know we have a "Constant" argument. But we want to only
2368 // return true for manifest constants, not those that depend on
2369 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2370 if (Operands[0]->isManifestConstant())
2371 return ConstantInt::getTrue(Ty->getContext());
2372 return nullptr;
2373 }
2374
2375 if (isa<UndefValue>(Operands[0])) {
2376 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2377 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2378 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2379 if (IntrinsicID == Intrinsic::cos ||
2380 IntrinsicID == Intrinsic::ctpop ||
2381 IntrinsicID == Intrinsic::fptoui_sat ||
2382 IntrinsicID == Intrinsic::fptosi_sat ||
2383 IntrinsicID == Intrinsic::canonicalize)
2384 return Constant::getNullValue(Ty);
2385 if (IntrinsicID == Intrinsic::bswap ||
2386 IntrinsicID == Intrinsic::bitreverse ||
2387 IntrinsicID == Intrinsic::launder_invariant_group ||
2388 IntrinsicID == Intrinsic::strip_invariant_group)
2389 return Operands[0];
2390 }
2391
2393 // launder(null) == null == strip(null) iff in addrspace 0
2394 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2395 IntrinsicID == Intrinsic::strip_invariant_group) {
2396 // If instruction is not yet put in a basic block (e.g. when cloning
2397 // a function during inlining), Call's caller may not be available.
2398 // So check Call's BB first before querying Call->getCaller.
2399 const Function *Caller =
2400 Call->getParent() ? Call->getCaller() : nullptr;
2401 if (Caller &&
2403 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2404 return Operands[0];
2405 }
2406 return nullptr;
2407 }
2408 }
2409
2410 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2411 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2412 APFloat Val(Op->getValueAPF());
2413
2414 bool lost = false;
2416
2417 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2418 }
2419
2420 APFloat U = Op->getValueAPF();
2421
2422 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2423 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2424 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2425
2426 if (U.isNaN())
2427 return nullptr;
2428
2429 unsigned Width = Ty->getIntegerBitWidth();
2430 APSInt Int(Width, !Signed);
2431 bool IsExact = false;
2433 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2434
2436 return ConstantInt::get(Ty, Int);
2437
2438 return nullptr;
2439 }
2440
2441 if (IntrinsicID == Intrinsic::fptoui_sat ||
2442 IntrinsicID == Intrinsic::fptosi_sat) {
2443 // convertToInteger() already has the desired saturation semantics.
2444 APSInt Int(Ty->getIntegerBitWidth(),
2445 IntrinsicID == Intrinsic::fptoui_sat);
2446 bool IsExact;
2447 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2448 return ConstantInt::get(Ty, Int);
2449 }
2450
2451 if (IntrinsicID == Intrinsic::canonicalize)
2452 return constantFoldCanonicalize(Ty, Call, U);
2453
2454#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2455 if (Ty->isFP128Ty()) {
2456 if (IntrinsicID == Intrinsic::log) {
2457 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2458 return GetConstantFoldFPValue128(Result, Ty);
2459 }
2460
2461 LibFunc Fp128Func = NotLibFunc;
2462 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2463 Fp128Func == LibFunc_logl)
2464 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2465 }
2466#endif
2467
2468 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2469 !Ty->isIntegerTy())
2470 return nullptr;
2471
2472 // Use internal versions of these intrinsics.
2473
2474 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2475 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2476 return ConstantFP::get(Ty->getContext(), U);
2477 }
2478
2479 if (IntrinsicID == Intrinsic::round) {
2480 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2481 return ConstantFP::get(Ty->getContext(), U);
2482 }
2483
2484 if (IntrinsicID == Intrinsic::roundeven) {
2485 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2486 return ConstantFP::get(Ty->getContext(), U);
2487 }
2488
2489 if (IntrinsicID == Intrinsic::ceil) {
2490 U.roundToIntegral(APFloat::rmTowardPositive);
2491 return ConstantFP::get(Ty->getContext(), U);
2492 }
2493
2494 if (IntrinsicID == Intrinsic::floor) {
2495 U.roundToIntegral(APFloat::rmTowardNegative);
2496 return ConstantFP::get(Ty->getContext(), U);
2497 }
2498
2499 if (IntrinsicID == Intrinsic::trunc) {
2500 U.roundToIntegral(APFloat::rmTowardZero);
2501 return ConstantFP::get(Ty->getContext(), U);
2502 }
2503
2504 if (IntrinsicID == Intrinsic::fabs) {
2505 U.clearSign();
2506 return ConstantFP::get(Ty->getContext(), U);
2507 }
2508
2509 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2510 // The v_fract instruction behaves like the OpenCL spec, which defines
2511 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2512 // there to prevent fract(-small) from returning 1.0. It returns the
2513 // largest positive floating-point number less than 1.0."
2514 APFloat FloorU(U);
2515 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2516 APFloat FractU(U - FloorU);
2517 APFloat AlmostOne(U.getSemantics(), 1);
2518 AlmostOne.next(/*nextDown*/ true);
2519 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2520 }
2521
2522 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2523 // raise FP exceptions, unless the argument is signaling NaN.
2524
2525 std::optional<APFloat::roundingMode> RM;
2526 switch (IntrinsicID) {
2527 default:
2528 break;
2529 case Intrinsic::experimental_constrained_nearbyint:
2530 case Intrinsic::experimental_constrained_rint: {
2532 RM = CI->getRoundingMode();
2533 if (!RM || *RM == RoundingMode::Dynamic)
2534 return nullptr;
2535 break;
2536 }
2537 case Intrinsic::experimental_constrained_round:
2539 break;
2540 case Intrinsic::experimental_constrained_ceil:
2542 break;
2543 case Intrinsic::experimental_constrained_floor:
2545 break;
2546 case Intrinsic::experimental_constrained_trunc:
2548 break;
2549 }
2550 if (RM) {
2552 if (U.isFinite()) {
2553 APFloat::opStatus St = U.roundToIntegral(*RM);
2554 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2555 St == APFloat::opInexact) {
2556 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2557 if (EB == fp::ebStrict)
2558 return nullptr;
2559 }
2560 } else if (U.isSignaling()) {
2561 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2562 if (EB && *EB != fp::ebIgnore)
2563 return nullptr;
2564 U = APFloat::getQNaN(U.getSemantics());
2565 }
2566 return ConstantFP::get(Ty->getContext(), U);
2567 }
2568
2569 // NVVM float/double to signed/unsigned int32/int64 conversions:
2570 switch (IntrinsicID) {
2571 // f2i
2572 case Intrinsic::nvvm_f2i_rm:
2573 case Intrinsic::nvvm_f2i_rn:
2574 case Intrinsic::nvvm_f2i_rp:
2575 case Intrinsic::nvvm_f2i_rz:
2576 case Intrinsic::nvvm_f2i_rm_ftz:
2577 case Intrinsic::nvvm_f2i_rn_ftz:
2578 case Intrinsic::nvvm_f2i_rp_ftz:
2579 case Intrinsic::nvvm_f2i_rz_ftz:
2580 // f2ui
2581 case Intrinsic::nvvm_f2ui_rm:
2582 case Intrinsic::nvvm_f2ui_rn:
2583 case Intrinsic::nvvm_f2ui_rp:
2584 case Intrinsic::nvvm_f2ui_rz:
2585 case Intrinsic::nvvm_f2ui_rm_ftz:
2586 case Intrinsic::nvvm_f2ui_rn_ftz:
2587 case Intrinsic::nvvm_f2ui_rp_ftz:
2588 case Intrinsic::nvvm_f2ui_rz_ftz:
2589 // d2i
2590 case Intrinsic::nvvm_d2i_rm:
2591 case Intrinsic::nvvm_d2i_rn:
2592 case Intrinsic::nvvm_d2i_rp:
2593 case Intrinsic::nvvm_d2i_rz:
2594 // d2ui
2595 case Intrinsic::nvvm_d2ui_rm:
2596 case Intrinsic::nvvm_d2ui_rn:
2597 case Intrinsic::nvvm_d2ui_rp:
2598 case Intrinsic::nvvm_d2ui_rz:
2599 // f2ll
2600 case Intrinsic::nvvm_f2ll_rm:
2601 case Intrinsic::nvvm_f2ll_rn:
2602 case Intrinsic::nvvm_f2ll_rp:
2603 case Intrinsic::nvvm_f2ll_rz:
2604 case Intrinsic::nvvm_f2ll_rm_ftz:
2605 case Intrinsic::nvvm_f2ll_rn_ftz:
2606 case Intrinsic::nvvm_f2ll_rp_ftz:
2607 case Intrinsic::nvvm_f2ll_rz_ftz:
2608 // f2ull
2609 case Intrinsic::nvvm_f2ull_rm:
2610 case Intrinsic::nvvm_f2ull_rn:
2611 case Intrinsic::nvvm_f2ull_rp:
2612 case Intrinsic::nvvm_f2ull_rz:
2613 case Intrinsic::nvvm_f2ull_rm_ftz:
2614 case Intrinsic::nvvm_f2ull_rn_ftz:
2615 case Intrinsic::nvvm_f2ull_rp_ftz:
2616 case Intrinsic::nvvm_f2ull_rz_ftz:
2617 // d2ll
2618 case Intrinsic::nvvm_d2ll_rm:
2619 case Intrinsic::nvvm_d2ll_rn:
2620 case Intrinsic::nvvm_d2ll_rp:
2621 case Intrinsic::nvvm_d2ll_rz:
2622 // d2ull
2623 case Intrinsic::nvvm_d2ull_rm:
2624 case Intrinsic::nvvm_d2ull_rn:
2625 case Intrinsic::nvvm_d2ull_rp:
2626 case Intrinsic::nvvm_d2ull_rz: {
2627 // In float-to-integer conversion, NaN inputs are converted to 0.
2628 if (U.isNaN())
2629 return ConstantInt::get(Ty, 0);
2630
2631 APFloat::roundingMode RMode =
2633 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2634 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2635
2636 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2637 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2638
2639 bool IsExact = false;
2641 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2642
2644 return ConstantInt::get(Ty, ResInt);
2645 return nullptr;
2646 }
2647 }
2648
2649 /// We only fold functions with finite arguments. Folding NaN and inf is
2650 /// likely to be aborted with an exception anyway, and some host libms
2651 /// have known errors raising exceptions.
2652 if (!U.isFinite())
2653 return nullptr;
2654
2655 /// Currently APFloat versions of these functions do not exist, so we use
2656 /// the host native double versions. Float versions are not called
2657 /// directly but for all these it is true (float)(f((double)arg)) ==
2658 /// f(arg). Long double not supported yet.
2659 const APFloat &APF = Op->getValueAPF();
2660
2661 switch (IntrinsicID) {
2662 default: break;
2663 case Intrinsic::log:
2664 return ConstantFoldFP(log, APF, Ty);
2665 case Intrinsic::log2:
2666 // TODO: What about hosts that lack a C99 library?
2667 return ConstantFoldFP(log2, APF, Ty);
2668 case Intrinsic::log10:
2669 // TODO: What about hosts that lack a C99 library?
2670 return ConstantFoldFP(log10, APF, Ty);
2671 case Intrinsic::exp:
2672 return ConstantFoldFP(exp, APF, Ty);
2673 case Intrinsic::exp2:
2674 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2675 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2676 case Intrinsic::exp10:
2677 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2678 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2679 case Intrinsic::sin:
2680 return ConstantFoldFP(sin, APF, Ty);
2681 case Intrinsic::cos:
2682 return ConstantFoldFP(cos, APF, Ty);
2683 case Intrinsic::sinh:
2684 return ConstantFoldFP(sinh, APF, Ty);
2685 case Intrinsic::cosh:
2686 return ConstantFoldFP(cosh, APF, Ty);
2687 case Intrinsic::atan:
2688 // Implement optional behavior from C's Annex F for +/-0.0.
2689 if (U.isZero())
2690 return ConstantFP::get(Ty->getContext(), U);
2691 return ConstantFoldFP(atan, APF, Ty);
2692 case Intrinsic::sqrt:
2693 return ConstantFoldFP(sqrt, APF, Ty);
2694
2695 // NVVM Intrinsics:
2696 case Intrinsic::nvvm_ceil_ftz_f:
2697 case Intrinsic::nvvm_ceil_f:
2698 case Intrinsic::nvvm_ceil_d:
2699 return ConstantFoldFP(
2700 ceil, APF, Ty,
2702 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2703
2704 case Intrinsic::nvvm_fabs_ftz:
2705 case Intrinsic::nvvm_fabs:
2706 return ConstantFoldFP(
2707 fabs, APF, Ty,
2709 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2710
2711 case Intrinsic::nvvm_floor_ftz_f:
2712 case Intrinsic::nvvm_floor_f:
2713 case Intrinsic::nvvm_floor_d:
2714 return ConstantFoldFP(
2715 floor, APF, Ty,
2717 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2718
2719 case Intrinsic::nvvm_rcp_rm_ftz_f:
2720 case Intrinsic::nvvm_rcp_rn_ftz_f:
2721 case Intrinsic::nvvm_rcp_rp_ftz_f:
2722 case Intrinsic::nvvm_rcp_rz_ftz_f:
2723 case Intrinsic::nvvm_rcp_rm_d:
2724 case Intrinsic::nvvm_rcp_rm_f:
2725 case Intrinsic::nvvm_rcp_rn_d:
2726 case Intrinsic::nvvm_rcp_rn_f:
2727 case Intrinsic::nvvm_rcp_rp_d:
2728 case Intrinsic::nvvm_rcp_rp_f:
2729 case Intrinsic::nvvm_rcp_rz_d:
2730 case Intrinsic::nvvm_rcp_rz_f: {
2731 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2732 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2733
2734 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2736 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2737
2739 if (IsFTZ)
2740 Res = FTZPreserveSign(Res);
2741 return ConstantFP::get(Ty->getContext(), Res);
2742 }
2743 return nullptr;
2744 }
2745
2746 case Intrinsic::nvvm_round_ftz_f:
2747 case Intrinsic::nvvm_round_f:
2748 case Intrinsic::nvvm_round_d: {
2749 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2750 // integer, choosing even integer if source is equidistant between two
2751 // integers, so the semantics are closer to "rint" rather than "round".
2752 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2753 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2755 return ConstantFP::get(Ty->getContext(), V);
2756 }
2757
2758 case Intrinsic::nvvm_saturate_ftz_f:
2759 case Intrinsic::nvvm_saturate_d:
2760 case Intrinsic::nvvm_saturate_f: {
2761 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2762 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2763 if (V.isNegative() || V.isZero() || V.isNaN())
2764 return ConstantFP::getZero(Ty);
2766 if (V > One)
2767 return ConstantFP::get(Ty->getContext(), One);
2768 return ConstantFP::get(Ty->getContext(), APF);
2769 }
2770
2771 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2772 case Intrinsic::nvvm_sqrt_f:
2773 case Intrinsic::nvvm_sqrt_rn_d:
2774 case Intrinsic::nvvm_sqrt_rn_f:
2775 if (APF.isNegative())
2776 return nullptr;
2777 return ConstantFoldFP(
2778 sqrt, APF, Ty,
2780 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2781
2782 // AMDGCN Intrinsics:
2783 case Intrinsic::amdgcn_cos:
2784 case Intrinsic::amdgcn_sin: {
2785 double V = getValueAsDouble(Op);
2786 if (V < -256.0 || V > 256.0)
2787 // The gfx8 and gfx9 architectures handle arguments outside the range
2788 // [-256, 256] differently. This should be a rare case so bail out
2789 // rather than trying to handle the difference.
2790 return nullptr;
2791 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2792 double V4 = V * 4.0;
2793 if (V4 == floor(V4)) {
2794 // Force exact results for quarter-integer inputs.
2795 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2796 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2797 } else {
2798 if (IsCos)
2799 V = cos(V * 2.0 * numbers::pi);
2800 else
2801 V = sin(V * 2.0 * numbers::pi);
2802 }
2803 return GetConstantFoldFPValue(V, Ty);
2804 }
2805 }
2806
2807 if (!TLI)
2808 return nullptr;
2809
2811 if (!TLI->getLibFunc(Name, Func))
2812 return nullptr;
2813
2814 switch (Func) {
2815 default:
2816 break;
2817 case LibFunc_acos:
2818 case LibFunc_acosf:
2819 case LibFunc_acos_finite:
2820 case LibFunc_acosf_finite:
2821 if (TLI->has(Func))
2822 return ConstantFoldFP(acos, APF, Ty);
2823 break;
2824 case LibFunc_asin:
2825 case LibFunc_asinf:
2826 case LibFunc_asin_finite:
2827 case LibFunc_asinf_finite:
2828 if (TLI->has(Func))
2829 return ConstantFoldFP(asin, APF, Ty);
2830 break;
2831 case LibFunc_atan:
2832 case LibFunc_atanf:
2833 // Implement optional behavior from C's Annex F for +/-0.0.
2834 if (U.isZero())
2835 return ConstantFP::get(Ty->getContext(), U);
2836 if (TLI->has(Func))
2837 return ConstantFoldFP(atan, APF, Ty);
2838 break;
2839 case LibFunc_ceil:
2840 case LibFunc_ceilf:
2841 if (TLI->has(Func)) {
2842 U.roundToIntegral(APFloat::rmTowardPositive);
2843 return ConstantFP::get(Ty->getContext(), U);
2844 }
2845 break;
2846 case LibFunc_cos:
2847 case LibFunc_cosf:
2848 if (TLI->has(Func))
2849 return ConstantFoldFP(cos, APF, Ty);
2850 break;
2851 case LibFunc_cosh:
2852 case LibFunc_coshf:
2853 case LibFunc_cosh_finite:
2854 case LibFunc_coshf_finite:
2855 if (TLI->has(Func))
2856 return ConstantFoldFP(cosh, APF, Ty);
2857 break;
2858 case LibFunc_exp:
2859 case LibFunc_expf:
2860 case LibFunc_exp_finite:
2861 case LibFunc_expf_finite:
2862 if (TLI->has(Func))
2863 return ConstantFoldFP(exp, APF, Ty);
2864 break;
2865 case LibFunc_exp2:
2866 case LibFunc_exp2f:
2867 case LibFunc_exp2_finite:
2868 case LibFunc_exp2f_finite:
2869 if (TLI->has(Func))
2870 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2871 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2872 break;
2873 case LibFunc_fabs:
2874 case LibFunc_fabsf:
2875 if (TLI->has(Func)) {
2876 U.clearSign();
2877 return ConstantFP::get(Ty->getContext(), U);
2878 }
2879 break;
2880 case LibFunc_floor:
2881 case LibFunc_floorf:
2882 if (TLI->has(Func)) {
2883 U.roundToIntegral(APFloat::rmTowardNegative);
2884 return ConstantFP::get(Ty->getContext(), U);
2885 }
2886 break;
2887 case LibFunc_log:
2888 case LibFunc_logf:
2889 case LibFunc_log_finite:
2890 case LibFunc_logf_finite:
2891 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2892 return ConstantFoldFP(log, APF, Ty);
2893 break;
2894 case LibFunc_log2:
2895 case LibFunc_log2f:
2896 case LibFunc_log2_finite:
2897 case LibFunc_log2f_finite:
2898 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2899 // TODO: What about hosts that lack a C99 library?
2900 return ConstantFoldFP(log2, APF, Ty);
2901 break;
2902 case LibFunc_log10:
2903 case LibFunc_log10f:
2904 case LibFunc_log10_finite:
2905 case LibFunc_log10f_finite:
2906 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2907 // TODO: What about hosts that lack a C99 library?
2908 return ConstantFoldFP(log10, APF, Ty);
2909 break;
2910 case LibFunc_ilogb:
2911 case LibFunc_ilogbf:
2912 if (!APF.isZero() && TLI->has(Func))
2913 return ConstantInt::get(Ty, ilogb(APF), true);
2914 break;
2915 case LibFunc_logb:
2916 case LibFunc_logbf:
2917 if (!APF.isZero() && TLI->has(Func))
2918 return ConstantFoldFP(logb, APF, Ty);
2919 break;
2920 case LibFunc_log1p:
2921 case LibFunc_log1pf:
2922 // Implement optional behavior from C's Annex F for +/-0.0.
2923 if (U.isZero())
2924 return ConstantFP::get(Ty->getContext(), U);
2925 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2926 return ConstantFoldFP(log1p, APF, Ty);
2927 break;
2928 case LibFunc_logl:
2929 return nullptr;
2930 case LibFunc_erf:
2931 case LibFunc_erff:
2932 if (TLI->has(Func))
2933 return ConstantFoldFP(erf, APF, Ty);
2934 break;
2935 case LibFunc_nearbyint:
2936 case LibFunc_nearbyintf:
2937 case LibFunc_rint:
2938 case LibFunc_rintf:
2939 if (TLI->has(Func)) {
2940 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2941 return ConstantFP::get(Ty->getContext(), U);
2942 }
2943 break;
2944 case LibFunc_round:
2945 case LibFunc_roundf:
2946 if (TLI->has(Func)) {
2947 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2948 return ConstantFP::get(Ty->getContext(), U);
2949 }
2950 break;
2951 case LibFunc_sin:
2952 case LibFunc_sinf:
2953 if (TLI->has(Func))
2954 return ConstantFoldFP(sin, APF, Ty);
2955 break;
2956 case LibFunc_sinh:
2957 case LibFunc_sinhf:
2958 case LibFunc_sinh_finite:
2959 case LibFunc_sinhf_finite:
2960 if (TLI->has(Func))
2961 return ConstantFoldFP(sinh, APF, Ty);
2962 break;
2963 case LibFunc_sqrt:
2964 case LibFunc_sqrtf:
2965 if (!APF.isNegative() && TLI->has(Func))
2966 return ConstantFoldFP(sqrt, APF, Ty);
2967 break;
2968 case LibFunc_tan:
2969 case LibFunc_tanf:
2970 if (TLI->has(Func))
2971 return ConstantFoldFP(tan, APF, Ty);
2972 break;
2973 case LibFunc_tanh:
2974 case LibFunc_tanhf:
2975 if (TLI->has(Func))
2976 return ConstantFoldFP(tanh, APF, Ty);
2977 break;
2978 case LibFunc_trunc:
2979 case LibFunc_truncf:
2980 if (TLI->has(Func)) {
2981 U.roundToIntegral(APFloat::rmTowardZero);
2982 return ConstantFP::get(Ty->getContext(), U);
2983 }
2984 break;
2985 }
2986 return nullptr;
2987 }
2988
2989 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2990 switch (IntrinsicID) {
2991 case Intrinsic::bswap:
2992 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2993 case Intrinsic::ctpop:
2994 return ConstantInt::get(Ty, Op->getValue().popcount());
2995 case Intrinsic::bitreverse:
2996 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2997 case Intrinsic::convert_from_fp16: {
2998 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2999
3000 bool lost = false;
3002 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3003
3004 // Conversion is always precise.
3005 (void)status;
3006 assert(status != APFloat::opInexact && !lost &&
3007 "Precision lost during fp16 constfolding");
3008
3009 return ConstantFP::get(Ty->getContext(), Val);
3010 }
3011
3012 case Intrinsic::amdgcn_s_wqm: {
3013 uint64_t Val = Op->getZExtValue();
3014 Val |= (Val & 0x5555555555555555ULL) << 1 |
3015 ((Val >> 1) & 0x5555555555555555ULL);
3016 Val |= (Val & 0x3333333333333333ULL) << 2 |
3017 ((Val >> 2) & 0x3333333333333333ULL);
3018 return ConstantInt::get(Ty, Val);
3019 }
3020
3021 case Intrinsic::amdgcn_s_quadmask: {
3022 uint64_t Val = Op->getZExtValue();
3023 uint64_t QuadMask = 0;
3024 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3025 if (!(Val & 0xF))
3026 continue;
3027
3028 QuadMask |= (1ULL << I);
3029 }
3030 return ConstantInt::get(Ty, QuadMask);
3031 }
3032
3033 case Intrinsic::amdgcn_s_bitreplicate: {
3034 uint64_t Val = Op->getZExtValue();
3035 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3036 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3037 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3038 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3039 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3040 Val = Val | Val << 1;
3041 return ConstantInt::get(Ty, Val);
3042 }
3043
3044 default:
3045 return nullptr;
3046 }
3047 }
3048
3049 switch (IntrinsicID) {
3050 default: break;
3051 case Intrinsic::vector_reduce_add:
3052 case Intrinsic::vector_reduce_mul:
3053 case Intrinsic::vector_reduce_and:
3054 case Intrinsic::vector_reduce_or:
3055 case Intrinsic::vector_reduce_xor:
3056 case Intrinsic::vector_reduce_smin:
3057 case Intrinsic::vector_reduce_smax:
3058 case Intrinsic::vector_reduce_umin:
3059 case Intrinsic::vector_reduce_umax:
3060 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3061 return C;
3062 break;
3063 }
3064
3065 // Support ConstantVector in case we have an Undef in the top.
3066 if (isa<ConstantVector>(Operands[0]) ||
3069 auto *Op = cast<Constant>(Operands[0]);
3070 switch (IntrinsicID) {
3071 default: break;
3072 case Intrinsic::x86_sse_cvtss2si:
3073 case Intrinsic::x86_sse_cvtss2si64:
3074 case Intrinsic::x86_sse2_cvtsd2si:
3075 case Intrinsic::x86_sse2_cvtsd2si64:
3076 if (ConstantFP *FPOp =
3077 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3078 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3079 /*roundTowardZero=*/false, Ty,
3080 /*IsSigned*/true);
3081 break;
3082 case Intrinsic::x86_sse_cvttss2si:
3083 case Intrinsic::x86_sse_cvttss2si64:
3084 case Intrinsic::x86_sse2_cvttsd2si:
3085 case Intrinsic::x86_sse2_cvttsd2si64:
3086 if (ConstantFP *FPOp =
3087 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3088 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3089 /*roundTowardZero=*/true, Ty,
3090 /*IsSigned*/true);
3091 break;
3092
3093 case Intrinsic::wasm_anytrue:
3094 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3095 : ConstantInt::get(Ty, 1);
3096
3097 case Intrinsic::wasm_alltrue:
3098 // Check each element individually
3099 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3100 for (unsigned I = 0; I != E; ++I)
3101 if (Constant *Elt = Op->getAggregateElement(I))
3102 if (Elt->isZeroValue())
3103 return ConstantInt::get(Ty, 0);
3104
3105 return ConstantInt::get(Ty, 1);
3106 }
3107 }
3108
3109 return nullptr;
3110}
3111
3112static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3116 FCmpInst::Predicate Cond = FCmp->getPredicate();
3117 if (FCmp->isSignaling()) {
3118 if (Op1.isNaN() || Op2.isNaN())
3120 } else {
3121 if (Op1.isSignaling() || Op2.isSignaling())
3123 }
3124 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3125 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3126 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3127 return nullptr;
3128}
3129
3130static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3132 const TargetLibraryInfo *TLI) {
3133 if (!TLI)
3134 return nullptr;
3135
3137 if (!TLI->getLibFunc(Name, Func))
3138 return nullptr;
3139
3140 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3141 if (!Op1)
3142 return nullptr;
3143
3144 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3145 if (!Op2)
3146 return nullptr;
3147
3148 const APFloat &Op1V = Op1->getValueAPF();
3149 const APFloat &Op2V = Op2->getValueAPF();
3150
3151 switch (Func) {
3152 default:
3153 break;
3154 case LibFunc_pow:
3155 case LibFunc_powf:
3156 case LibFunc_pow_finite:
3157 case LibFunc_powf_finite:
3158 if (TLI->has(Func))
3159 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3160 break;
3161 case LibFunc_fmod:
3162 case LibFunc_fmodf:
3163 if (TLI->has(Func)) {
3164 APFloat V = Op1->getValueAPF();
3165 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3166 return ConstantFP::get(Ty->getContext(), V);
3167 }
3168 break;
3169 case LibFunc_remainder:
3170 case LibFunc_remainderf:
3171 if (TLI->has(Func)) {
3172 APFloat V = Op1->getValueAPF();
3173 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3174 return ConstantFP::get(Ty->getContext(), V);
3175 }
3176 break;
3177 case LibFunc_atan2:
3178 case LibFunc_atan2f:
3179 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3180 // (Solaris), so we do not assume a known result for that.
3181 if (Op1V.isZero() && Op2V.isZero())
3182 return nullptr;
3183 [[fallthrough]];
3184 case LibFunc_atan2_finite:
3185 case LibFunc_atan2f_finite:
3186 if (TLI->has(Func))
3187 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3188 break;
3189 }
3190
3191 return nullptr;
3192}
3193
3194static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3196 const CallBase *Call) {
3197 assert(Operands.size() == 2 && "Wrong number of operands.");
3198
3199 if (Ty->isFloatingPointTy()) {
3200 // TODO: We should have undef handling for all of the FP intrinsics that
3201 // are attempted to be folded in this function.
3202 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3203 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3204 switch (IntrinsicID) {
3205 case Intrinsic::maxnum:
3206 case Intrinsic::minnum:
3207 case Intrinsic::maximum:
3208 case Intrinsic::minimum:
3209 case Intrinsic::maximumnum:
3210 case Intrinsic::minimumnum:
3211 case Intrinsic::nvvm_fmax_d:
3212 case Intrinsic::nvvm_fmin_d:
3213 // If one argument is undef, return the other argument.
3214 if (IsOp0Undef)
3215 return Operands[1];
3216 if (IsOp1Undef)
3217 return Operands[0];
3218 break;
3219
3220 case Intrinsic::nvvm_fmax_f:
3221 case Intrinsic::nvvm_fmax_ftz_f:
3222 case Intrinsic::nvvm_fmax_ftz_nan_f:
3223 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3224 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3225 case Intrinsic::nvvm_fmax_nan_f:
3226 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3227 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3228
3229 case Intrinsic::nvvm_fmin_f:
3230 case Intrinsic::nvvm_fmin_ftz_f:
3231 case Intrinsic::nvvm_fmin_ftz_nan_f:
3232 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3233 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3234 case Intrinsic::nvvm_fmin_nan_f:
3235 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3236 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3237 // If one arg is undef, the other arg can be returned only if it is
3238 // constant, as we may need to flush it to sign-preserving zero or
3239 // canonicalize the NaN.
3240 if (!IsOp0Undef && !IsOp1Undef)
3241 break;
3242 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3243 if (Op->isNaN()) {
3244 APInt NVCanonicalNaN(32, 0x7fffffff);
3245 return ConstantFP::get(
3246 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3247 }
3248 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3249 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3250 else
3251 return Op;
3252 }
3253 break;
3254 }
3255 }
3256
3257 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3258 const APFloat &Op1V = Op1->getValueAPF();
3259
3260 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3261 if (Op2->getType() != Op1->getType())
3262 return nullptr;
3263 const APFloat &Op2V = Op2->getValueAPF();
3264
3265 if (const auto *ConstrIntr =
3267 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3268 APFloat Res = Op1V;
3270 switch (IntrinsicID) {
3271 default:
3272 return nullptr;
3273 case Intrinsic::experimental_constrained_fadd:
3274 St = Res.add(Op2V, RM);
3275 break;
3276 case Intrinsic::experimental_constrained_fsub:
3277 St = Res.subtract(Op2V, RM);
3278 break;
3279 case Intrinsic::experimental_constrained_fmul:
3280 St = Res.multiply(Op2V, RM);
3281 break;
3282 case Intrinsic::experimental_constrained_fdiv:
3283 St = Res.divide(Op2V, RM);
3284 break;
3285 case Intrinsic::experimental_constrained_frem:
3286 St = Res.mod(Op2V);
3287 break;
3288 case Intrinsic::experimental_constrained_fcmp:
3289 case Intrinsic::experimental_constrained_fcmps:
3290 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3291 }
3292 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3293 St))
3294 return ConstantFP::get(Ty->getContext(), Res);
3295 return nullptr;
3296 }
3297
3298 switch (IntrinsicID) {
3299 default:
3300 break;
3301 case Intrinsic::copysign:
3302 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3303 case Intrinsic::minnum:
3304 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3305 case Intrinsic::maxnum:
3306 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3307 case Intrinsic::minimum:
3308 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3309 case Intrinsic::maximum:
3310 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3311 case Intrinsic::minimumnum:
3312 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3313 case Intrinsic::maximumnum:
3314 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3315
3316 case Intrinsic::nvvm_fmax_d:
3317 case Intrinsic::nvvm_fmax_f:
3318 case Intrinsic::nvvm_fmax_ftz_f:
3319 case Intrinsic::nvvm_fmax_ftz_nan_f:
3320 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3321 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3322 case Intrinsic::nvvm_fmax_nan_f:
3323 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3324 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3325
3326 case Intrinsic::nvvm_fmin_d:
3327 case Intrinsic::nvvm_fmin_f:
3328 case Intrinsic::nvvm_fmin_ftz_f:
3329 case Intrinsic::nvvm_fmin_ftz_nan_f:
3330 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3331 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3332 case Intrinsic::nvvm_fmin_nan_f:
3333 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3334 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3335
3336 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3337 IntrinsicID == Intrinsic::nvvm_fmin_d);
3338 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3339 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3340 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3341
3342 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3343 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3344
3345 bool XorSign = false;
3346 if (IsXorSignAbs) {
3347 XorSign = A.isNegative() ^ B.isNegative();
3348 A = abs(A);
3349 B = abs(B);
3350 }
3351
3352 bool IsFMax = false;
3353 switch (IntrinsicID) {
3354 case Intrinsic::nvvm_fmax_d:
3355 case Intrinsic::nvvm_fmax_f:
3356 case Intrinsic::nvvm_fmax_ftz_f:
3357 case Intrinsic::nvvm_fmax_ftz_nan_f:
3358 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3359 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3360 case Intrinsic::nvvm_fmax_nan_f:
3361 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3362 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3363 IsFMax = true;
3364 break;
3365 }
3366 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3367
3368 if (ShouldCanonicalizeNaNs) {
3369 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3370 if (A.isNaN() && B.isNaN())
3371 return ConstantFP::get(Ty, NVCanonicalNaN);
3372 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3373 return ConstantFP::get(Ty, NVCanonicalNaN);
3374 }
3375
3376 if (A.isNaN() && B.isNaN())
3377 return Operands[1];
3378 else if (A.isNaN())
3379 Res = B;
3380 else if (B.isNaN())
3381 Res = A;
3382
3383 if (IsXorSignAbs && XorSign != Res.isNegative())
3384 Res.changeSign();
3385
3386 return ConstantFP::get(Ty->getContext(), Res);
3387 }
3388
3389 case Intrinsic::nvvm_add_rm_f:
3390 case Intrinsic::nvvm_add_rn_f:
3391 case Intrinsic::nvvm_add_rp_f:
3392 case Intrinsic::nvvm_add_rz_f:
3393 case Intrinsic::nvvm_add_rm_d:
3394 case Intrinsic::nvvm_add_rn_d:
3395 case Intrinsic::nvvm_add_rp_d:
3396 case Intrinsic::nvvm_add_rz_d:
3397 case Intrinsic::nvvm_add_rm_ftz_f:
3398 case Intrinsic::nvvm_add_rn_ftz_f:
3399 case Intrinsic::nvvm_add_rp_ftz_f:
3400 case Intrinsic::nvvm_add_rz_ftz_f: {
3401
3402 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3403 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3404 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3405
3406 APFloat::roundingMode RoundMode =
3407 nvvm::GetFAddRoundingMode(IntrinsicID);
3408
3409 APFloat Res = A;
3410 APFloat::opStatus Status = Res.add(B, RoundMode);
3411
3412 if (!Res.isNaN() &&
3414 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3415 return ConstantFP::get(Ty->getContext(), Res);
3416 }
3417 return nullptr;
3418 }
3419
3420 case Intrinsic::nvvm_mul_rm_f:
3421 case Intrinsic::nvvm_mul_rn_f:
3422 case Intrinsic::nvvm_mul_rp_f:
3423 case Intrinsic::nvvm_mul_rz_f:
3424 case Intrinsic::nvvm_mul_rm_d:
3425 case Intrinsic::nvvm_mul_rn_d:
3426 case Intrinsic::nvvm_mul_rp_d:
3427 case Intrinsic::nvvm_mul_rz_d:
3428 case Intrinsic::nvvm_mul_rm_ftz_f:
3429 case Intrinsic::nvvm_mul_rn_ftz_f:
3430 case Intrinsic::nvvm_mul_rp_ftz_f:
3431 case Intrinsic::nvvm_mul_rz_ftz_f: {
3432
3433 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3434 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3435 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3436
3437 APFloat::roundingMode RoundMode =
3438 nvvm::GetFMulRoundingMode(IntrinsicID);
3439
3440 APFloat Res = A;
3441 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3442
3443 if (!Res.isNaN() &&
3445 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3446 return ConstantFP::get(Ty->getContext(), Res);
3447 }
3448 return nullptr;
3449 }
3450
3451 case Intrinsic::nvvm_div_rm_f:
3452 case Intrinsic::nvvm_div_rn_f:
3453 case Intrinsic::nvvm_div_rp_f:
3454 case Intrinsic::nvvm_div_rz_f:
3455 case Intrinsic::nvvm_div_rm_d:
3456 case Intrinsic::nvvm_div_rn_d:
3457 case Intrinsic::nvvm_div_rp_d:
3458 case Intrinsic::nvvm_div_rz_d:
3459 case Intrinsic::nvvm_div_rm_ftz_f:
3460 case Intrinsic::nvvm_div_rn_ftz_f:
3461 case Intrinsic::nvvm_div_rp_ftz_f:
3462 case Intrinsic::nvvm_div_rz_ftz_f: {
3463 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3464 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3465 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3466 APFloat::roundingMode RoundMode =
3467 nvvm::GetFDivRoundingMode(IntrinsicID);
3468
3469 APFloat Res = A;
3470 APFloat::opStatus Status = Res.divide(B, RoundMode);
3471 if (!Res.isNaN() &&
3473 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3474 return ConstantFP::get(Ty->getContext(), Res);
3475 }
3476 return nullptr;
3477 }
3478 }
3479
3480 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3481 return nullptr;
3482
3483 switch (IntrinsicID) {
3484 default:
3485 break;
3486 case Intrinsic::pow:
3487 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3488 case Intrinsic::amdgcn_fmul_legacy:
3489 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3490 // NaN or infinity, gives +0.0.
3491 if (Op1V.isZero() || Op2V.isZero())
3492 return ConstantFP::getZero(Ty);
3493 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3494 }
3495
3496 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3497 switch (IntrinsicID) {
3498 case Intrinsic::ldexp: {
3499 return ConstantFP::get(
3500 Ty->getContext(),
3501 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3502 }
3503 case Intrinsic::is_fpclass: {
3504 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3505 bool Result =
3506 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3507 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3508 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3509 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3510 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3511 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3512 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3513 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3514 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3515 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3516 return ConstantInt::get(Ty, Result);
3517 }
3518 case Intrinsic::powi: {
3519 int Exp = static_cast<int>(Op2C->getSExtValue());
3520 switch (Ty->getTypeID()) {
3521 case Type::HalfTyID:
3522 case Type::FloatTyID: {
3523 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3524 if (Ty->isHalfTy()) {
3525 bool Unused;
3527 &Unused);
3528 }
3529 return ConstantFP::get(Ty->getContext(), Res);
3530 }
3531 case Type::DoubleTyID:
3532 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3533 default:
3534 return nullptr;
3535 }
3536 }
3537 default:
3538 break;
3539 }
3540 }
3541 return nullptr;
3542 }
3543
3544 if (Operands[0]->getType()->isIntegerTy() &&
3545 Operands[1]->getType()->isIntegerTy()) {
3546 const APInt *C0, *C1;
3547 if (!getConstIntOrUndef(Operands[0], C0) ||
3548 !getConstIntOrUndef(Operands[1], C1))
3549 return nullptr;
3550
3551 switch (IntrinsicID) {
3552 default: break;
3553 case Intrinsic::smax:
3554 case Intrinsic::smin:
3555 case Intrinsic::umax:
3556 case Intrinsic::umin:
3557 if (!C0 && !C1)
3558 return UndefValue::get(Ty);
3559 if (!C0 || !C1)
3560 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3561 return ConstantInt::get(
3562 Ty, ICmpInst::compare(*C0, *C1,
3563 MinMaxIntrinsic::getPredicate(IntrinsicID))
3564 ? *C0
3565 : *C1);
3566
3567 case Intrinsic::scmp:
3568 case Intrinsic::ucmp:
3569 if (!C0 || !C1)
3570 return ConstantInt::get(Ty, 0);
3571
3572 int Res;
3573 if (IntrinsicID == Intrinsic::scmp)
3574 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3575 else
3576 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3577 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3578
3579 case Intrinsic::usub_with_overflow:
3580 case Intrinsic::ssub_with_overflow:
3581 // X - undef -> { 0, false }
3582 // undef - X -> { 0, false }
3583 if (!C0 || !C1)
3584 return Constant::getNullValue(Ty);
3585 [[fallthrough]];
3586 case Intrinsic::uadd_with_overflow:
3587 case Intrinsic::sadd_with_overflow:
3588 // X + undef -> { -1, false }
3589 // undef + x -> { -1, false }
3590 if (!C0 || !C1) {
3591 return ConstantStruct::get(
3592 cast<StructType>(Ty),
3593 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3594 Constant::getNullValue(Ty->getStructElementType(1))});
3595 }
3596 [[fallthrough]];
3597 case Intrinsic::smul_with_overflow:
3598 case Intrinsic::umul_with_overflow: {
3599 // undef * X -> { 0, false }
3600 // X * undef -> { 0, false }
3601 if (!C0 || !C1)
3602 return Constant::getNullValue(Ty);
3603
3604 APInt Res;
3605 bool Overflow;
3606 switch (IntrinsicID) {
3607 default: llvm_unreachable("Invalid case");
3608 case Intrinsic::sadd_with_overflow:
3609 Res = C0->sadd_ov(*C1, Overflow);
3610 break;
3611 case Intrinsic::uadd_with_overflow:
3612 Res = C0->uadd_ov(*C1, Overflow);
3613 break;
3614 case Intrinsic::ssub_with_overflow:
3615 Res = C0->ssub_ov(*C1, Overflow);
3616 break;
3617 case Intrinsic::usub_with_overflow:
3618 Res = C0->usub_ov(*C1, Overflow);
3619 break;
3620 case Intrinsic::smul_with_overflow:
3621 Res = C0->smul_ov(*C1, Overflow);
3622 break;
3623 case Intrinsic::umul_with_overflow:
3624 Res = C0->umul_ov(*C1, Overflow);
3625 break;
3626 }
3627 Constant *Ops[] = {
3628 ConstantInt::get(Ty->getContext(), Res),
3629 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3630 };
3632 }
3633 case Intrinsic::uadd_sat:
3634 case Intrinsic::sadd_sat:
3635 if (!C0 && !C1)
3636 return UndefValue::get(Ty);
3637 if (!C0 || !C1)
3638 return Constant::getAllOnesValue(Ty);
3639 if (IntrinsicID == Intrinsic::uadd_sat)
3640 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3641 else
3642 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3643 case Intrinsic::usub_sat:
3644 case Intrinsic::ssub_sat:
3645 if (!C0 && !C1)
3646 return UndefValue::get(Ty);
3647 if (!C0 || !C1)
3648 return Constant::getNullValue(Ty);
3649 if (IntrinsicID == Intrinsic::usub_sat)
3650 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3651 else
3652 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3653 case Intrinsic::cttz:
3654 case Intrinsic::ctlz:
3655 assert(C1 && "Must be constant int");
3656
3657 // cttz(0, 1) and ctlz(0, 1) are poison.
3658 if (C1->isOne() && (!C0 || C0->isZero()))
3659 return PoisonValue::get(Ty);
3660 if (!C0)
3661 return Constant::getNullValue(Ty);
3662 if (IntrinsicID == Intrinsic::cttz)
3663 return ConstantInt::get(Ty, C0->countr_zero());
3664 else
3665 return ConstantInt::get(Ty, C0->countl_zero());
3666
3667 case Intrinsic::abs:
3668 assert(C1 && "Must be constant int");
3669 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3670
3671 // Undef or minimum val operand with poison min --> poison
3672 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3673 return PoisonValue::get(Ty);
3674
3675 // Undef operand with no poison min --> 0 (sign bit must be clear)
3676 if (!C0)
3677 return Constant::getNullValue(Ty);
3678
3679 return ConstantInt::get(Ty, C0->abs());
3680 case Intrinsic::amdgcn_wave_reduce_umin:
3681 case Intrinsic::amdgcn_wave_reduce_umax:
3682 case Intrinsic::amdgcn_wave_reduce_max:
3683 case Intrinsic::amdgcn_wave_reduce_min:
3684 case Intrinsic::amdgcn_wave_reduce_add:
3685 case Intrinsic::amdgcn_wave_reduce_sub:
3686 case Intrinsic::amdgcn_wave_reduce_and:
3687 case Intrinsic::amdgcn_wave_reduce_or:
3688 case Intrinsic::amdgcn_wave_reduce_xor:
3689 return dyn_cast<Constant>(Operands[0]);
3690 }
3691
3692 return nullptr;
3693 }
3694
3695 // Support ConstantVector in case we have an Undef in the top.
3696 if ((isa<ConstantVector>(Operands[0]) ||
3698 // Check for default rounding mode.
3699 // FIXME: Support other rounding modes?
3701 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3702 auto *Op = cast<Constant>(Operands[0]);
3703 switch (IntrinsicID) {
3704 default: break;
3705 case Intrinsic::x86_avx512_vcvtss2si32:
3706 case Intrinsic::x86_avx512_vcvtss2si64:
3707 case Intrinsic::x86_avx512_vcvtsd2si32:
3708 case Intrinsic::x86_avx512_vcvtsd2si64:
3709 if (ConstantFP *FPOp =
3710 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3711 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3712 /*roundTowardZero=*/false, Ty,
3713 /*IsSigned*/true);
3714 break;
3715 case Intrinsic::x86_avx512_vcvtss2usi32:
3716 case Intrinsic::x86_avx512_vcvtss2usi64:
3717 case Intrinsic::x86_avx512_vcvtsd2usi32:
3718 case Intrinsic::x86_avx512_vcvtsd2usi64:
3719 if (ConstantFP *FPOp =
3720 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3721 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3722 /*roundTowardZero=*/false, Ty,
3723 /*IsSigned*/false);
3724 break;
3725 case Intrinsic::x86_avx512_cvttss2si:
3726 case Intrinsic::x86_avx512_cvttss2si64:
3727 case Intrinsic::x86_avx512_cvttsd2si:
3728 case Intrinsic::x86_avx512_cvttsd2si64:
3729 if (ConstantFP *FPOp =
3730 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3731 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3732 /*roundTowardZero=*/true, Ty,
3733 /*IsSigned*/true);
3734 break;
3735 case Intrinsic::x86_avx512_cvttss2usi:
3736 case Intrinsic::x86_avx512_cvttss2usi64:
3737 case Intrinsic::x86_avx512_cvttsd2usi:
3738 case Intrinsic::x86_avx512_cvttsd2usi64:
3739 if (ConstantFP *FPOp =
3740 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3741 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3742 /*roundTowardZero=*/true, Ty,
3743 /*IsSigned*/false);
3744 break;
3745 }
3746 }
3747 return nullptr;
3748}
3749
3750static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3751 const APFloat &S0,
3752 const APFloat &S1,
3753 const APFloat &S2) {
3754 unsigned ID;
3755 const fltSemantics &Sem = S0.getSemantics();
3756 APFloat MA(Sem), SC(Sem), TC(Sem);
3757 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3758 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3759 // S2 < 0
3760 ID = 5;
3761 SC = -S0;
3762 } else {
3763 ID = 4;
3764 SC = S0;
3765 }
3766 MA = S2;
3767 TC = -S1;
3768 } else if (abs(S1) >= abs(S0)) {
3769 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3770 // S1 < 0
3771 ID = 3;
3772 TC = -S2;
3773 } else {
3774 ID = 2;
3775 TC = S2;
3776 }
3777 MA = S1;
3778 SC = S0;
3779 } else {
3780 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3781 // S0 < 0
3782 ID = 1;
3783 SC = S2;
3784 } else {
3785 ID = 0;
3786 SC = -S2;
3787 }
3788 MA = S0;
3789 TC = -S1;
3790 }
3791 switch (IntrinsicID) {
3792 default:
3793 llvm_unreachable("unhandled amdgcn cube intrinsic");
3794 case Intrinsic::amdgcn_cubeid:
3795 return APFloat(Sem, ID);
3796 case Intrinsic::amdgcn_cubema:
3797 return MA + MA;
3798 case Intrinsic::amdgcn_cubesc:
3799 return SC;
3800 case Intrinsic::amdgcn_cubetc:
3801 return TC;
3802 }
3803}
3804
3805static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3806 Type *Ty) {
3807 const APInt *C0, *C1, *C2;
3808 if (!getConstIntOrUndef(Operands[0], C0) ||
3809 !getConstIntOrUndef(Operands[1], C1) ||
3810 !getConstIntOrUndef(Operands[2], C2))
3811 return nullptr;
3812
3813 if (!C2)
3814 return UndefValue::get(Ty);
3815
3816 APInt Val(32, 0);
3817 unsigned NumUndefBytes = 0;
3818 for (unsigned I = 0; I < 32; I += 8) {
3819 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3820 unsigned B = 0;
3821
3822 if (Sel >= 13)
3823 B = 0xff;
3824 else if (Sel == 12)
3825 B = 0x00;
3826 else {
3827 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3828 if (!Src)
3829 ++NumUndefBytes;
3830 else if (Sel < 8)
3831 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3832 else
3833 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3834 }
3835
3836 Val.insertBits(B, I, 8);
3837 }
3838
3839 if (NumUndefBytes == 4)
3840 return UndefValue::get(Ty);
3841
3842 return ConstantInt::get(Ty, Val);
3843}
3844
3845static Constant *ConstantFoldScalarCall3(StringRef Name,
3846 Intrinsic::ID IntrinsicID,
3847 Type *Ty,
3849 const TargetLibraryInfo *TLI,
3850 const CallBase *Call) {
3851 assert(Operands.size() == 3 && "Wrong number of operands.");
3852
3853 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3854 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3855 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3856 const APFloat &C1 = Op1->getValueAPF();
3857 const APFloat &C2 = Op2->getValueAPF();
3858 const APFloat &C3 = Op3->getValueAPF();
3859
3860 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3861 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3862 APFloat Res = C1;
3864 switch (IntrinsicID) {
3865 default:
3866 return nullptr;
3867 case Intrinsic::experimental_constrained_fma:
3868 case Intrinsic::experimental_constrained_fmuladd:
3869 St = Res.fusedMultiplyAdd(C2, C3, RM);
3870 break;
3871 }
3872 if (mayFoldConstrained(
3873 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3874 return ConstantFP::get(Ty->getContext(), Res);
3875 return nullptr;
3876 }
3877
3878 switch (IntrinsicID) {
3879 default: break;
3880 case Intrinsic::amdgcn_fma_legacy: {
3881 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3882 // NaN or infinity, gives +0.0.
3883 if (C1.isZero() || C2.isZero()) {
3884 // It's tempting to just return C3 here, but that would give the
3885 // wrong result if C3 was -0.0.
3886 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3887 }
3888 [[fallthrough]];
3889 }
3890 case Intrinsic::fma:
3891 case Intrinsic::fmuladd: {
3892 APFloat V = C1;
3894 return ConstantFP::get(Ty->getContext(), V);
3895 }
3896
3897 case Intrinsic::nvvm_fma_rm_f:
3898 case Intrinsic::nvvm_fma_rn_f:
3899 case Intrinsic::nvvm_fma_rp_f:
3900 case Intrinsic::nvvm_fma_rz_f:
3901 case Intrinsic::nvvm_fma_rm_d:
3902 case Intrinsic::nvvm_fma_rn_d:
3903 case Intrinsic::nvvm_fma_rp_d:
3904 case Intrinsic::nvvm_fma_rz_d:
3905 case Intrinsic::nvvm_fma_rm_ftz_f:
3906 case Intrinsic::nvvm_fma_rn_ftz_f:
3907 case Intrinsic::nvvm_fma_rp_ftz_f:
3908 case Intrinsic::nvvm_fma_rz_ftz_f: {
3909 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3910 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3911 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3912 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3913
3914 APFloat::roundingMode RoundMode =
3915 nvvm::GetFMARoundingMode(IntrinsicID);
3916
3917 APFloat Res = A;
3918 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3919
3920 if (!Res.isNaN() &&
3922 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3923 return ConstantFP::get(Ty->getContext(), Res);
3924 }
3925 return nullptr;
3926 }
3927
3928 case Intrinsic::amdgcn_cubeid:
3929 case Intrinsic::amdgcn_cubema:
3930 case Intrinsic::amdgcn_cubesc:
3931 case Intrinsic::amdgcn_cubetc: {
3932 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3933 return ConstantFP::get(Ty->getContext(), V);
3934 }
3935 }
3936 }
3937 }
3938 }
3939
3940 if (IntrinsicID == Intrinsic::smul_fix ||
3941 IntrinsicID == Intrinsic::smul_fix_sat) {
3942 const APInt *C0, *C1;
3943 if (!getConstIntOrUndef(Operands[0], C0) ||
3944 !getConstIntOrUndef(Operands[1], C1))
3945 return nullptr;
3946
3947 // undef * C -> 0
3948 // C * undef -> 0
3949 if (!C0 || !C1)
3950 return Constant::getNullValue(Ty);
3951
3952 // This code performs rounding towards negative infinity in case the result
3953 // cannot be represented exactly for the given scale. Targets that do care
3954 // about rounding should use a target hook for specifying how rounding
3955 // should be done, and provide their own folding to be consistent with
3956 // rounding. This is the same approach as used by
3957 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3958 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3959 unsigned Width = C0->getBitWidth();
3960 assert(Scale < Width && "Illegal scale.");
3961 unsigned ExtendedWidth = Width * 2;
3962 APInt Product =
3963 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3964 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3965 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3966 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3967 Product = APIntOps::smin(Product, Max);
3968 Product = APIntOps::smax(Product, Min);
3969 }
3970 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3971 }
3972
3973 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3974 const APInt *C0, *C1, *C2;
3975 if (!getConstIntOrUndef(Operands[0], C0) ||
3976 !getConstIntOrUndef(Operands[1], C1) ||
3977 !getConstIntOrUndef(Operands[2], C2))
3978 return nullptr;
3979
3980 bool IsRight = IntrinsicID == Intrinsic::fshr;
3981 if (!C2)
3982 return Operands[IsRight ? 1 : 0];
3983 if (!C0 && !C1)
3984 return UndefValue::get(Ty);
3985
3986 // The shift amount is interpreted as modulo the bitwidth. If the shift
3987 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3988 unsigned BitWidth = C2->getBitWidth();
3989 unsigned ShAmt = C2->urem(BitWidth);
3990 if (!ShAmt)
3991 return Operands[IsRight ? 1 : 0];
3992
3993 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3994 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3995 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3996 if (!C0)
3997 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3998 if (!C1)
3999 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4000 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4001 }
4002
4003 if (IntrinsicID == Intrinsic::amdgcn_perm)
4004 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4005
4006 return nullptr;
4007}
4008
4009static Constant *ConstantFoldScalarCall(StringRef Name,
4010 Intrinsic::ID IntrinsicID,
4011 Type *Ty,
4013 const TargetLibraryInfo *TLI,
4014 const CallBase *Call) {
4015 if (IntrinsicID != Intrinsic::not_intrinsic &&
4017 intrinsicPropagatesPoison(IntrinsicID))
4018 return PoisonValue::get(Ty);
4019
4020 if (Operands.size() == 1)
4021 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4022
4023 if (Operands.size() == 2) {
4024 if (Constant *FoldedLibCall =
4025 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4026 return FoldedLibCall;
4027 }
4028 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4029 }
4030
4031 if (Operands.size() == 3)
4032 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4033
4034 return nullptr;
4035}
4036
4037static Constant *ConstantFoldFixedVectorCall(
4038 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4040 const TargetLibraryInfo *TLI, const CallBase *Call) {
4043 Type *Ty = FVTy->getElementType();
4044
4045 switch (IntrinsicID) {
4046 case Intrinsic::masked_load: {
4047 auto *SrcPtr = Operands[0];
4048 auto *Mask = Operands[2];
4049 auto *Passthru = Operands[3];
4050
4051 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4052
4053 SmallVector<Constant *, 32> NewElements;
4054 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4055 auto *MaskElt = Mask->getAggregateElement(I);
4056 if (!MaskElt)
4057 break;
4058 auto *PassthruElt = Passthru->getAggregateElement(I);
4059 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4060 if (isa<UndefValue>(MaskElt)) {
4061 if (PassthruElt)
4062 NewElements.push_back(PassthruElt);
4063 else if (VecElt)
4064 NewElements.push_back(VecElt);
4065 else
4066 return nullptr;
4067 }
4068 if (MaskElt->isNullValue()) {
4069 if (!PassthruElt)
4070 return nullptr;
4071 NewElements.push_back(PassthruElt);
4072 } else if (MaskElt->isOneValue()) {
4073 if (!VecElt)
4074 return nullptr;
4075 NewElements.push_back(VecElt);
4076 } else {
4077 return nullptr;
4078 }
4079 }
4080 if (NewElements.size() != FVTy->getNumElements())
4081 return nullptr;
4082 return ConstantVector::get(NewElements);
4083 }
4084 case Intrinsic::arm_mve_vctp8:
4085 case Intrinsic::arm_mve_vctp16:
4086 case Intrinsic::arm_mve_vctp32:
4087 case Intrinsic::arm_mve_vctp64: {
4088 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4089 unsigned Lanes = FVTy->getNumElements();
4090 uint64_t Limit = Op->getZExtValue();
4091
4093 for (unsigned i = 0; i < Lanes; i++) {
4094 if (i < Limit)
4096 else
4098 }
4099 return ConstantVector::get(NCs);
4100 }
4101 return nullptr;
4102 }
4103 case Intrinsic::get_active_lane_mask: {
4104 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4105 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4106 if (Op0 && Op1) {
4107 unsigned Lanes = FVTy->getNumElements();
4108 uint64_t Base = Op0->getZExtValue();
4109 uint64_t Limit = Op1->getZExtValue();
4110
4112 for (unsigned i = 0; i < Lanes; i++) {
4113 if (Base + i < Limit)
4115 else
4117 }
4118 return ConstantVector::get(NCs);
4119 }
4120 return nullptr;
4121 }
4122 case Intrinsic::vector_extract: {
4123 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4124 Constant *Vec = Operands[0];
4125 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4126 return nullptr;
4127
4128 unsigned NumElements = FVTy->getNumElements();
4129 unsigned VecNumElements =
4130 cast<FixedVectorType>(Vec->getType())->getNumElements();
4131 unsigned StartingIndex = Idx->getZExtValue();
4132
4133 // Extracting entire vector is nop
4134 if (NumElements == VecNumElements && StartingIndex == 0)
4135 return Vec;
4136
4137 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4138 ++I) {
4139 Constant *Elt = Vec->getAggregateElement(I);
4140 if (!Elt)
4141 return nullptr;
4142 Result[I - StartingIndex] = Elt;
4143 }
4144
4145 return ConstantVector::get(Result);
4146 }
4147 case Intrinsic::vector_insert: {
4148 Constant *Vec = Operands[0];
4149 Constant *SubVec = Operands[1];
4150 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4151 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4152 return nullptr;
4153
4154 unsigned SubVecNumElements =
4155 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4156 unsigned VecNumElements =
4157 cast<FixedVectorType>(Vec->getType())->getNumElements();
4158 unsigned IdxN = Idx->getZExtValue();
4159 // Replacing entire vector with a subvec is nop
4160 if (SubVecNumElements == VecNumElements && IdxN == 0)
4161 return SubVec;
4162
4163 for (unsigned I = 0; I < VecNumElements; ++I) {
4164 Constant *Elt;
4165 if (I < IdxN + SubVecNumElements)
4166 Elt = SubVec->getAggregateElement(I - IdxN);
4167 else
4168 Elt = Vec->getAggregateElement(I);
4169 if (!Elt)
4170 return nullptr;
4171 Result[I] = Elt;
4172 }
4173 return ConstantVector::get(Result);
4174 }
4175 case Intrinsic::vector_interleave2: {
4176 unsigned NumElements =
4177 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4178 for (unsigned I = 0; I < NumElements; ++I) {
4179 Constant *Elt0 = Operands[0]->getAggregateElement(I);
4180 Constant *Elt1 = Operands[1]->getAggregateElement(I);
4181 if (!Elt0 || !Elt1)
4182 return nullptr;
4183 Result[2 * I] = Elt0;
4184 Result[2 * I + 1] = Elt1;
4185 }
4186 return ConstantVector::get(Result);
4187 }
4188 case Intrinsic::wasm_dot: {
4189 unsigned NumElements =
4190 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4191
4192 assert(NumElements == 8 && Result.size() == 4 &&
4193 "wasm dot takes i16x8 and produces i32x4");
4194 assert(Ty->isIntegerTy());
4195 int32_t MulVector[8];
4196
4197 for (unsigned I = 0; I < NumElements; ++I) {
4198 ConstantInt *Elt0 =
4199 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4200 ConstantInt *Elt1 =
4201 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4202
4203 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4204 }
4205 for (unsigned I = 0; I < Result.size(); I++) {
4206 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4207 Result[I] = ConstantInt::get(Ty, IAdd);
4208 }
4209
4210 return ConstantVector::get(Result);
4211 }
4212 default:
4213 break;
4214 }
4215
4216 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4217 // Gather a column of constants.
4218 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4219 // Some intrinsics use a scalar type for certain arguments.
4220 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4221 Lane[J] = Operands[J];
4222 continue;
4223 }
4224
4225 Constant *Agg = Operands[J]->getAggregateElement(I);
4226 if (!Agg)
4227 return nullptr;
4228
4229 Lane[J] = Agg;
4230 }
4231
4232 // Use the regular scalar folding to simplify this column.
4233 Constant *Folded =
4234 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4235 if (!Folded)
4236 return nullptr;
4237 Result[I] = Folded;
4238 }
4239
4240 return ConstantVector::get(Result);
4241}
4242
4243static Constant *ConstantFoldScalableVectorCall(
4244 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4246 const TargetLibraryInfo *TLI, const CallBase *Call) {
4247 switch (IntrinsicID) {
4248 case Intrinsic::aarch64_sve_convert_from_svbool: {
4249 auto *Src = dyn_cast<Constant>(Operands[0]);
4250 if (!Src || !Src->isNullValue())
4251 break;
4252
4253 return ConstantInt::getFalse(SVTy);
4254 }
4255 default:
4256 break;
4257 }
4258
4259 // If trivially vectorizable, try folding it via the scalar call if all
4260 // operands are splats.
4261
4262 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4263 if (!isTriviallyVectorizable(IntrinsicID))
4264 return nullptr;
4265
4267 for (auto [I, Op] : enumerate(Operands)) {
4268 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4269 SplatOps.push_back(Op);
4270 continue;
4271 }
4272 Constant *Splat = Op->getSplatValue();
4273 if (!Splat)
4274 return nullptr;
4275 SplatOps.push_back(Splat);
4276 }
4277 Constant *Folded = ConstantFoldScalarCall(
4278 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4279 if (!Folded)
4280 return nullptr;
4281 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4282}
4283
4284static std::pair<Constant *, Constant *>
4285ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4286 if (isa<PoisonValue>(Op))
4287 return {Op, PoisonValue::get(IntTy)};
4288
4289 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4290 if (!ConstFP)
4291 return {};
4292
4293 const APFloat &U = ConstFP->getValueAPF();
4294 int FrexpExp;
4295 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4296 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4297
4298 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4299 // using undef.
4300 Constant *Result1 = FrexpMant.isFinite()
4301 ? ConstantInt::getSigned(IntTy, FrexpExp)
4302 : ConstantInt::getNullValue(IntTy);
4303 return {Result0, Result1};
4304}
4305
4306/// Handle intrinsics that return tuples, which may be tuples of vectors.
4307static Constant *
4308ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4310 const DataLayout &DL, const TargetLibraryInfo *TLI,
4311 const CallBase *Call) {
4312
4313 switch (IntrinsicID) {
4314 case Intrinsic::frexp: {
4315 Type *Ty0 = StTy->getContainedType(0);
4316 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4317
4318 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4319 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4320 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4321
4322 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4323 Constant *Lane = Operands[0]->getAggregateElement(I);
4324 std::tie(Results0[I], Results1[I]) =
4325 ConstantFoldScalarFrexpCall(Lane, Ty1);
4326 if (!Results0[I])
4327 return nullptr;
4328 }
4329
4330 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4331 ConstantVector::get(Results1));
4332 }
4333
4334 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4335 if (!Result0)
4336 return nullptr;
4337 return ConstantStruct::get(StTy, Result0, Result1);
4338 }
4339 case Intrinsic::sincos: {
4340 Type *Ty = StTy->getContainedType(0);
4341 Type *TyScalar = Ty->getScalarType();
4342
4343 auto ConstantFoldScalarSincosCall =
4344 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4345 Constant *SinResult =
4346 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4347 Constant *CosResult =
4348 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4349 return std::make_pair(SinResult, CosResult);
4350 };
4351
4352 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4353 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4354 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4355
4356 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4357 Constant *Lane = Operands[0]->getAggregateElement(I);
4358 std::tie(SinResults[I], CosResults[I]) =
4359 ConstantFoldScalarSincosCall(Lane);
4360 if (!SinResults[I] || !CosResults[I])
4361 return nullptr;
4362 }
4363
4364 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4365 ConstantVector::get(CosResults));
4366 }
4367
4368 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4369 if (!SinResult || !CosResult)
4370 return nullptr;
4371 return ConstantStruct::get(StTy, SinResult, CosResult);
4372 }
4373 case Intrinsic::vector_deinterleave2: {
4374 auto *Vec = Operands[0];
4375 auto *VecTy = cast<VectorType>(Vec->getType());
4376
4377 if (auto *EltC = Vec->getSplatValue()) {
4378 ElementCount HalfEC = VecTy->getElementCount().divideCoefficientBy(2);
4379 auto *HalfVec = ConstantVector::getSplat(HalfEC, EltC);
4380 return ConstantStruct::get(StTy, HalfVec, HalfVec);
4381 }
4382
4383 if (!isa<FixedVectorType>(Vec->getType()))
4384 return nullptr;
4385
4386 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4387 SmallVector<Constant *, 4> Res0(NumElements), Res1(NumElements);
4388 for (unsigned I = 0; I < NumElements; ++I) {
4389 Constant *Elt0 = Vec->getAggregateElement(2 * I);
4390 Constant *Elt1 = Vec->getAggregateElement(2 * I + 1);
4391 if (!Elt0 || !Elt1)
4392 return nullptr;
4393 Res0[I] = Elt0;
4394 Res1[I] = Elt1;
4395 }
4396 return ConstantStruct::get(StTy, ConstantVector::get(Res0),
4397 ConstantVector::get(Res1));
4398 }
4399 default:
4400 // TODO: Constant folding of vector intrinsics that fall through here does
4401 // not work (e.g. overflow intrinsics)
4402 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4403 }
4404
4405 return nullptr;
4406}
4407
4408} // end anonymous namespace
4409
4411 Constant *RHS, Type *Ty,
4414 // Ensure we check flags like StrictFP that might prevent this from getting
4415 // folded before generating a result.
4416 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4417 return nullptr;
4418 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4419}
4420
4423 const TargetLibraryInfo *TLI,
4424 bool AllowNonDeterministic) {
4425 if (Call->isNoBuiltin())
4426 return nullptr;
4427 if (!F->hasName())
4428 return nullptr;
4429
4430 // If this is not an intrinsic and not recognized as a library call, bail out.
4431 Intrinsic::ID IID = F->getIntrinsicID();
4432 if (IID == Intrinsic::not_intrinsic) {
4433 if (!TLI)
4434 return nullptr;
4435 LibFunc LibF;
4436 if (!TLI->getLibFunc(*F, LibF))
4437 return nullptr;
4438 }
4439
4440 // Conservatively assume that floating-point libcalls may be
4441 // non-deterministic.
4442 Type *Ty = F->getReturnType();
4443 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4444 return nullptr;
4445
4446 StringRef Name = F->getName();
4447 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4448 return ConstantFoldFixedVectorCall(
4449 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4450
4451 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4452 return ConstantFoldScalableVectorCall(
4453 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4454
4455 if (auto *StTy = dyn_cast<StructType>(Ty))
4456 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4457 F->getDataLayout(), TLI, Call);
4458
4459 // TODO: If this is a library function, we already discovered that above,
4460 // so we should pass the LibFunc, not the name (and it might be better
4461 // still to separate intrinsic handling from libcalls).
4462 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4463}
4464
4466 const TargetLibraryInfo *TLI) {
4467 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4468 // (and to some extent ConstantFoldScalarCall).
4469 if (Call->isNoBuiltin() || Call->isStrictFP())
4470 return false;
4471 Function *F = Call->getCalledFunction();
4472 if (!F)
4473 return false;
4474
4475 LibFunc Func;
4476 if (!TLI || !TLI->getLibFunc(*F, Func))
4477 return false;
4478
4479 if (Call->arg_size() == 1) {
4480 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4481 const APFloat &Op = OpC->getValueAPF();
4482 switch (Func) {
4483 case LibFunc_logl:
4484 case LibFunc_log:
4485 case LibFunc_logf:
4486 case LibFunc_log2l:
4487 case LibFunc_log2:
4488 case LibFunc_log2f:
4489 case LibFunc_log10l:
4490 case LibFunc_log10:
4491 case LibFunc_log10f:
4492 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4493
4494 case LibFunc_ilogb:
4495 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4496
4497 case LibFunc_expl:
4498 case LibFunc_exp:
4499 case LibFunc_expf:
4500 // FIXME: These boundaries are slightly conservative.
4501 if (OpC->getType()->isDoubleTy())
4502 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4503 if (OpC->getType()->isFloatTy())
4504 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4505 break;
4506
4507 case LibFunc_exp2l:
4508 case LibFunc_exp2:
4509 case LibFunc_exp2f:
4510 // FIXME: These boundaries are slightly conservative.
4511 if (OpC->getType()->isDoubleTy())
4512 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4513 if (OpC->getType()->isFloatTy())
4514 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4515 break;
4516
4517 case LibFunc_sinl:
4518 case LibFunc_sin:
4519 case LibFunc_sinf:
4520 case LibFunc_cosl:
4521 case LibFunc_cos:
4522 case LibFunc_cosf:
4523 return !Op.isInfinity();
4524
4525 case LibFunc_tanl:
4526 case LibFunc_tan:
4527 case LibFunc_tanf: {
4528 // FIXME: Stop using the host math library.
4529 // FIXME: The computation isn't done in the right precision.
4530 Type *Ty = OpC->getType();
4531 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4532 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4533 break;
4534 }
4535
4536 case LibFunc_atan:
4537 case LibFunc_atanf:
4538 case LibFunc_atanl:
4539 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4540 return true;
4541
4542 case LibFunc_asinl:
4543 case LibFunc_asin:
4544 case LibFunc_asinf:
4545 case LibFunc_acosl:
4546 case LibFunc_acos:
4547 case LibFunc_acosf:
4548 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4549 Op > APFloat::getOne(Op.getSemantics()));
4550
4551 case LibFunc_sinh:
4552 case LibFunc_cosh:
4553 case LibFunc_sinhf:
4554 case LibFunc_coshf:
4555 case LibFunc_sinhl:
4556 case LibFunc_coshl:
4557 // FIXME: These boundaries are slightly conservative.
4558 if (OpC->getType()->isDoubleTy())
4559 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4560 if (OpC->getType()->isFloatTy())
4561 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4562 break;
4563
4564 case LibFunc_sqrtl:
4565 case LibFunc_sqrt:
4566 case LibFunc_sqrtf:
4567 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4568
4569 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4570 // maybe others?
4571 default:
4572 break;
4573 }
4574 }
4575 }
4576
4577 if (Call->arg_size() == 2) {
4578 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4579 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4580 if (Op0C && Op1C) {
4581 const APFloat &Op0 = Op0C->getValueAPF();
4582 const APFloat &Op1 = Op1C->getValueAPF();
4583
4584 switch (Func) {
4585 case LibFunc_powl:
4586 case LibFunc_pow:
4587 case LibFunc_powf: {
4588 // FIXME: Stop using the host math library.
4589 // FIXME: The computation isn't done in the right precision.
4590 Type *Ty = Op0C->getType();
4591 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4592 if (Ty == Op1C->getType())
4593 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4594 }
4595 break;
4596 }
4597
4598 case LibFunc_fmodl:
4599 case LibFunc_fmod:
4600 case LibFunc_fmodf:
4601 case LibFunc_remainderl:
4602 case LibFunc_remainder:
4603 case LibFunc_remainderf:
4604 return Op0.isNaN() || Op1.isNaN() ||
4605 (!Op0.isInfinity() && !Op1.isZero());
4606
4607 case LibFunc_atan2:
4608 case LibFunc_atan2f:
4609 case LibFunc_atan2l:
4610 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4611 // GLIBC and MSVC do not appear to raise an error on those, we
4612 // cannot rely on that behavior. POSIX and C11 say that a domain error
4613 // may occur, so allow for that possibility.
4614 return !Op0.isZero() || !Op1.isZero();
4615
4616 default:
4617 break;
4618 }
4619 }
4620 }
4621
4622 return false;
4623}
4624
4626 unsigned CastOp, const DataLayout &DL,
4627 PreservedCastFlags *Flags) {
4628 switch (CastOp) {
4629 case Instruction::BitCast:
4630 // Bitcast is always lossless.
4631 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4632 case Instruction::Trunc: {
4633 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4634 if (Flags) {
4635 // Truncation back on ZExt value is always NUW.
4636 Flags->NUW = true;
4637 // Test positivity of C.
4638 auto *SExtC =
4639 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4640 Flags->NSW = ZExtC == SExtC;
4641 }
4642 return ZExtC;
4643 }
4644 case Instruction::SExt:
4645 case Instruction::ZExt: {
4646 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4647 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4648 // Must satisfy CastOp(InvC) == C.
4649 if (!CastInvC || CastInvC != C)
4650 return nullptr;
4651 if (Flags && CastOp == Instruction::ZExt) {
4652 auto *SExtInvC =
4653 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4654 // Test positivity of InvC.
4655 Flags->NNeg = CastInvC == SExtInvC;
4656 }
4657 return InvC;
4658 }
4659 default:
4660 return nullptr;
4661 }
4662}
4663
4665 const DataLayout &DL,
4666 PreservedCastFlags *Flags) {
4667 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4668}
4669
4671 const DataLayout &DL,
4672 PreservedCastFlags *Flags) {
4673 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4674}
4675
4676void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isNegative() const
Definition APFloat.h:1449
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6115
bool isPosInfinity() const
Definition APFloat.h:1462
bool isNormal() const
Definition APFloat.h:1453
bool isDenormal() const
Definition APFloat.h:1450
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
const fltSemantics & getSemantics() const
Definition APFloat.h:1457
bool isNonZero() const
Definition APFloat.h:1458
bool isFinite() const
Definition APFloat.h:1454
bool isNaN() const
Definition APFloat.h:1447
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
bool isSignaling() const
Definition APFloat.h:1451
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
APInt bitcastToAPInt() const
Definition APFloat.h:1353
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isNegInfinity() const
Definition APFloat.h:1463
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1248
void changeSign()
Definition APFloat.h:1297
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
bool isInfinity() const
Definition APFloat.h:1446
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1201
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1130
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
bool isSigned() const
Definition InstrTypes.h:932
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:829
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:772
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1387
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:165
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:214
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:803
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:623
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:654
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:296
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2248
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2253
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2263
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
Definition MathExtras.h:53
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:330
@ Offset
Definition DWP.cpp:477
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1727
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2474
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:294
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1563
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1534
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:682
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1734
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1543
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:309
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:302
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60