LLVM 22.0.0git
DAGCombiner.cpp
Go to the documentation of this file.
1//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10// both before and after the DAG is legalized.
11//
12// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13// primarily intended to handle simplification opportunities that are implicit
14// in the LLVM IR and exposed by the various codegen lowering phases.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
51#include "llvm/IR/Attributes.h"
52#include "llvm/IR/Constant.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/Function.h"
56#include "llvm/IR/Metadata.h"
61#include "llvm/Support/Debug.h"
69#include <algorithm>
70#include <cassert>
71#include <cstdint>
72#include <functional>
73#include <iterator>
74#include <optional>
75#include <string>
76#include <tuple>
77#include <utility>
78#include <variant>
79
80#include "MatchContext.h"
81
82using namespace llvm;
83using namespace llvm::SDPatternMatch;
84
85#define DEBUG_TYPE "dagcombine"
86
87STATISTIC(NodesCombined , "Number of dag nodes combined");
88STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
89STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
90STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
91STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
92STATISTIC(SlicedLoads, "Number of load sliced");
93STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
94
95DEBUG_COUNTER(DAGCombineCounter, "dagcombine",
96 "Controls whether a DAG combine is performed for a node");
97
98static cl::opt<bool>
99CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
100 cl::desc("Enable DAG combiner's use of IR alias analysis"));
101
102static cl::opt<bool>
103UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
104 cl::desc("Enable DAG combiner's use of TBAA"));
105
106#ifndef NDEBUG
108CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
109 cl::desc("Only use DAG-combiner alias analysis in this"
110 " function"));
111#endif
112
113/// Hidden option to stress test load slicing, i.e., when this option
114/// is enabled, load slicing bypasses most of its profitability guards.
115static cl::opt<bool>
116StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
117 cl::desc("Bypass the profitability model of load slicing"),
118 cl::init(false));
119
120static cl::opt<bool>
121 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
122 cl::desc("DAG combiner may split indexing from loads"));
123
124static cl::opt<bool>
125 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
126 cl::desc("DAG combiner enable merging multiple stores "
127 "into a wider store"));
128
130 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
131 cl::desc("Limit the number of operands to inline for Token Factors"));
132
134 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
135 cl::desc("Limit the number of times for the same StoreNode and RootNode "
136 "to bail out in store merging dependence check"));
137
139 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
140 cl::desc("DAG combiner enable reducing the width of load/op/store "
141 "sequence"));
143 "combiner-reduce-load-op-store-width-force-narrowing-profitable",
144 cl::Hidden, cl::init(false),
145 cl::desc("DAG combiner force override the narrowing profitable check when "
146 "reducing the width of load/op/store sequences"));
147
149 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
150 cl::desc("DAG combiner enable load/<replace bytes>/store with "
151 "a narrower store"));
152
153static cl::opt<bool> DisableCombines("combiner-disabled", cl::Hidden,
154 cl::init(false),
155 cl::desc("Disable the DAG combiner"));
156
157namespace {
158
159 class DAGCombiner {
160 SelectionDAG &DAG;
161 const TargetLowering &TLI;
162 const SelectionDAGTargetInfo *STI;
164 CodeGenOptLevel OptLevel;
165 bool LegalDAG = false;
166 bool LegalOperations = false;
167 bool LegalTypes = false;
168 bool ForCodeSize;
169 bool DisableGenericCombines;
170
171 /// Worklist of all of the nodes that need to be simplified.
172 ///
173 /// This must behave as a stack -- new nodes to process are pushed onto the
174 /// back and when processing we pop off of the back.
175 ///
176 /// The worklist will not contain duplicates but may contain null entries
177 /// due to nodes being deleted from the underlying DAG. For fast lookup and
178 /// deduplication, the index of the node in this vector is stored in the
179 /// node in SDNode::CombinerWorklistIndex.
181
182 /// This records all nodes attempted to be added to the worklist since we
183 /// considered a new worklist entry. As we keep do not add duplicate nodes
184 /// in the worklist, this is different from the tail of the worklist.
186
187 /// Map from candidate StoreNode to the pair of RootNode and count.
188 /// The count is used to track how many times we have seen the StoreNode
189 /// with the same RootNode bail out in dependence check. If we have seen
190 /// the bail out for the same pair many times over a limit, we won't
191 /// consider the StoreNode with the same RootNode as store merging
192 /// candidate again.
194
195 // BatchAA - Used for DAG load/store alias analysis.
196 BatchAAResults *BatchAA;
197
198 /// This caches all chains that have already been processed in
199 /// DAGCombiner::getStoreMergeCandidates() and found to have no mergeable
200 /// stores candidates.
201 SmallPtrSet<SDNode *, 4> ChainsWithoutMergeableStores;
202
203 /// When an instruction is simplified, add all users of the instruction to
204 /// the work lists because they might get more simplified now.
205 void AddUsersToWorklist(SDNode *N) {
206 for (SDNode *Node : N->users())
207 AddToWorklist(Node);
208 }
209
210 /// Convenient shorthand to add a node and all of its user to the worklist.
211 void AddToWorklistWithUsers(SDNode *N) {
212 AddUsersToWorklist(N);
213 AddToWorklist(N);
214 }
215
216 // Prune potentially dangling nodes. This is called after
217 // any visit to a node, but should also be called during a visit after any
218 // failed combine which may have created a DAG node.
219 void clearAddedDanglingWorklistEntries() {
220 // Check any nodes added to the worklist to see if they are prunable.
221 while (!PruningList.empty()) {
222 auto *N = PruningList.pop_back_val();
223 if (N->use_empty())
224 recursivelyDeleteUnusedNodes(N);
225 }
226 }
227
228 SDNode *getNextWorklistEntry() {
229 // Before we do any work, remove nodes that are not in use.
230 clearAddedDanglingWorklistEntries();
231 SDNode *N = nullptr;
232 // The Worklist holds the SDNodes in order, but it may contain null
233 // entries.
234 while (!N && !Worklist.empty()) {
235 N = Worklist.pop_back_val();
236 }
237
238 if (N) {
239 assert(N->getCombinerWorklistIndex() >= 0 &&
240 "Found a worklist entry without a corresponding map entry!");
241 // Set to -2 to indicate that we combined the node.
242 N->setCombinerWorklistIndex(-2);
243 }
244 return N;
245 }
246
247 /// Call the node-specific routine that folds each particular type of node.
248 SDValue visit(SDNode *N);
249
250 public:
251 DAGCombiner(SelectionDAG &D, BatchAAResults *BatchAA, CodeGenOptLevel OL)
252 : DAG(D), TLI(D.getTargetLoweringInfo()),
253 STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL),
254 BatchAA(BatchAA) {
255 ForCodeSize = DAG.shouldOptForSize();
256 DisableGenericCombines =
257 DisableCombines || (STI && STI->disableGenericCombines(OptLevel));
258
259 MaximumLegalStoreInBits = 0;
260 // We use the minimum store size here, since that's all we can guarantee
261 // for the scalable vector types.
262 for (MVT VT : MVT::all_valuetypes())
263 if (EVT(VT).isSimple() && VT != MVT::Other &&
264 TLI.isTypeLegal(EVT(VT)) &&
265 VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits)
266 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue();
267 }
268
269 void ConsiderForPruning(SDNode *N) {
270 // Mark this for potential pruning.
271 PruningList.insert(N);
272 }
273
274 /// Add to the worklist making sure its instance is at the back (next to be
275 /// processed.)
276 void AddToWorklist(SDNode *N, bool IsCandidateForPruning = true,
277 bool SkipIfCombinedBefore = false) {
278 assert(N->getOpcode() != ISD::DELETED_NODE &&
279 "Deleted Node added to Worklist");
280
281 // Skip handle nodes as they can't usefully be combined and confuse the
282 // zero-use deletion strategy.
283 if (N->getOpcode() == ISD::HANDLENODE)
284 return;
285
286 if (SkipIfCombinedBefore && N->getCombinerWorklistIndex() == -2)
287 return;
288
289 if (IsCandidateForPruning)
290 ConsiderForPruning(N);
291
292 if (N->getCombinerWorklistIndex() < 0) {
293 N->setCombinerWorklistIndex(Worklist.size());
294 Worklist.push_back(N);
295 }
296 }
297
298 /// Remove all instances of N from the worklist.
299 void removeFromWorklist(SDNode *N) {
300 PruningList.remove(N);
301 StoreRootCountMap.erase(N);
302
303 int WorklistIndex = N->getCombinerWorklistIndex();
304 // If not in the worklist, the index might be -1 or -2 (was combined
305 // before). As the node gets deleted anyway, there's no need to update
306 // the index.
307 if (WorklistIndex < 0)
308 return; // Not in the worklist.
309
310 // Null out the entry rather than erasing it to avoid a linear operation.
311 Worklist[WorklistIndex] = nullptr;
312 N->setCombinerWorklistIndex(-1);
313 }
314
315 void deleteAndRecombine(SDNode *N);
316 bool recursivelyDeleteUnusedNodes(SDNode *N);
317
318 /// Replaces all uses of the results of one DAG node with new values.
319 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
320 bool AddTo = true);
321
322 /// Replaces all uses of the results of one DAG node with new values.
323 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
324 return CombineTo(N, &Res, 1, AddTo);
325 }
326
327 /// Replaces all uses of the results of one DAG node with new values.
328 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
329 bool AddTo = true) {
330 SDValue To[] = { Res0, Res1 };
331 return CombineTo(N, To, 2, AddTo);
332 }
333
334 SDValue CombineTo(SDNode *N, SmallVectorImpl<SDValue> *To,
335 bool AddTo = true) {
336 return CombineTo(N, To->data(), To->size(), AddTo);
337 }
338
339 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
340
341 private:
342 unsigned MaximumLegalStoreInBits;
343
344 /// Check the specified integer node value to see if it can be simplified or
345 /// if things it uses can be simplified by bit propagation.
346 /// If so, return true.
347 bool SimplifyDemandedBits(SDValue Op) {
348 unsigned BitWidth = Op.getScalarValueSizeInBits();
349 APInt DemandedBits = APInt::getAllOnes(BitWidth);
350 return SimplifyDemandedBits(Op, DemandedBits);
351 }
352
353 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
354 EVT VT = Op.getValueType();
355 APInt DemandedElts = VT.isFixedLengthVector()
357 : APInt(1, 1);
358 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, false);
359 }
360
361 /// Check the specified vector node value to see if it can be simplified or
362 /// if things it uses can be simplified as it only uses some of the
363 /// elements. If so, return true.
364 bool SimplifyDemandedVectorElts(SDValue Op) {
365 // TODO: For now just pretend it cannot be simplified.
366 if (Op.getValueType().isScalableVector())
367 return false;
368
369 unsigned NumElts = Op.getValueType().getVectorNumElements();
370 APInt DemandedElts = APInt::getAllOnes(NumElts);
371 return SimplifyDemandedVectorElts(Op, DemandedElts);
372 }
373
374 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
375 const APInt &DemandedElts,
376 bool AssumeSingleUse = false);
377 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
378 bool AssumeSingleUse = false);
379
380 bool CombineToPreIndexedLoadStore(SDNode *N);
381 bool CombineToPostIndexedLoadStore(SDNode *N);
382 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
383 bool SliceUpLoad(SDNode *N);
384
385 // Looks up the chain to find a unique (unaliased) store feeding the passed
386 // load. If no such store is found, returns a nullptr.
387 // Note: This will look past a CALLSEQ_START if the load is chained to it so
388 // so that it can find stack stores for byval params.
389 StoreSDNode *getUniqueStoreFeeding(LoadSDNode *LD, int64_t &Offset);
390 // Scalars have size 0 to distinguish from singleton vectors.
391 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
392 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
393 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
394
395 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
396 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
397 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
398 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
399 SDValue PromoteIntBinOp(SDValue Op);
400 SDValue PromoteIntShiftOp(SDValue Op);
401 SDValue PromoteExtend(SDValue Op);
402 bool PromoteLoad(SDValue Op);
403
404 SDValue foldShiftToAvg(SDNode *N, const SDLoc &DL);
405 // Fold `a bitwiseop (~b +/- c)` -> `a bitwiseop ~(b -/+ c)`
406 SDValue foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT);
407
408 SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
409 SDValue RHS, SDValue True, SDValue False,
410 ISD::CondCode CC);
411
412 /// Call the node-specific routine that knows how to fold each
413 /// particular type of node. If that doesn't do anything, try the
414 /// target-specific DAG combines.
415 SDValue combine(SDNode *N);
416
417 // Visitation implementation - Implement dag node combining for different
418 // node types. The semantics are as follows:
419 // Return Value:
420 // SDValue.getNode() == 0 - No change was made
421 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
422 // otherwise - N should be replaced by the returned Operand.
423 //
424 SDValue visitTokenFactor(SDNode *N);
425 SDValue visitMERGE_VALUES(SDNode *N);
426 SDValue visitADD(SDNode *N);
427 SDValue visitADDLike(SDNode *N);
428 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1,
429 SDNode *LocReference);
430 SDValue visitPTRADD(SDNode *N);
431 SDValue visitSUB(SDNode *N);
432 SDValue visitADDSAT(SDNode *N);
433 SDValue visitSUBSAT(SDNode *N);
434 SDValue visitADDC(SDNode *N);
435 SDValue visitADDO(SDNode *N);
436 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
437 SDValue visitSUBC(SDNode *N);
438 SDValue visitSUBO(SDNode *N);
439 SDValue visitADDE(SDNode *N);
440 SDValue visitUADDO_CARRY(SDNode *N);
441 SDValue visitSADDO_CARRY(SDNode *N);
442 SDValue visitUADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
443 SDNode *N);
444 SDValue visitSADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
445 SDNode *N);
446 SDValue visitSUBE(SDNode *N);
447 SDValue visitUSUBO_CARRY(SDNode *N);
448 SDValue visitSSUBO_CARRY(SDNode *N);
449 template <class MatchContextClass> SDValue visitMUL(SDNode *N);
450 SDValue visitMULFIX(SDNode *N);
451 SDValue useDivRem(SDNode *N);
452 SDValue visitSDIV(SDNode *N);
453 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
454 SDValue visitUDIV(SDNode *N);
455 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
456 SDValue visitREM(SDNode *N);
457 SDValue visitMULHU(SDNode *N);
458 SDValue visitMULHS(SDNode *N);
459 SDValue visitAVG(SDNode *N);
460 SDValue visitABD(SDNode *N);
461 SDValue visitSMUL_LOHI(SDNode *N);
462 SDValue visitUMUL_LOHI(SDNode *N);
463 SDValue visitMULO(SDNode *N);
464 SDValue visitIMINMAX(SDNode *N);
465 SDValue visitAND(SDNode *N);
466 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
467 SDValue visitOR(SDNode *N);
468 SDValue visitORLike(SDValue N0, SDValue N1, const SDLoc &DL);
469 SDValue visitXOR(SDNode *N);
470 SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL);
471 SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL);
472 SDValue visitSHL(SDNode *N);
473 SDValue visitSRA(SDNode *N);
474 SDValue visitSRL(SDNode *N);
475 SDValue visitFunnelShift(SDNode *N);
476 SDValue visitSHLSAT(SDNode *N);
477 SDValue visitRotate(SDNode *N);
478 SDValue visitABS(SDNode *N);
479 SDValue visitBSWAP(SDNode *N);
480 SDValue visitBITREVERSE(SDNode *N);
481 SDValue visitCTLZ(SDNode *N);
482 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
483 SDValue visitCTTZ(SDNode *N);
484 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
485 SDValue visitCTPOP(SDNode *N);
486 SDValue visitSELECT(SDNode *N);
487 SDValue visitVSELECT(SDNode *N);
488 SDValue visitVP_SELECT(SDNode *N);
489 SDValue visitSELECT_CC(SDNode *N);
490 SDValue visitSETCC(SDNode *N);
491 SDValue visitSETCCCARRY(SDNode *N);
492 SDValue visitSIGN_EXTEND(SDNode *N);
493 SDValue visitZERO_EXTEND(SDNode *N);
494 SDValue visitANY_EXTEND(SDNode *N);
495 SDValue visitAssertExt(SDNode *N);
496 SDValue visitAssertAlign(SDNode *N);
497 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
498 SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
499 SDValue visitTRUNCATE(SDNode *N);
500 SDValue visitTRUNCATE_USAT_U(SDNode *N);
501 SDValue visitBITCAST(SDNode *N);
502 SDValue visitFREEZE(SDNode *N);
503 SDValue visitBUILD_PAIR(SDNode *N);
504 SDValue visitFADD(SDNode *N);
505 SDValue visitVP_FADD(SDNode *N);
506 SDValue visitVP_FSUB(SDNode *N);
507 SDValue visitSTRICT_FADD(SDNode *N);
508 SDValue visitFSUB(SDNode *N);
509 SDValue visitFMUL(SDNode *N);
510 template <class MatchContextClass> SDValue visitFMA(SDNode *N);
511 SDValue visitFMAD(SDNode *N);
512 SDValue visitFDIV(SDNode *N);
513 SDValue visitFREM(SDNode *N);
514 SDValue visitFSQRT(SDNode *N);
515 SDValue visitFCOPYSIGN(SDNode *N);
516 SDValue visitFPOW(SDNode *N);
517 SDValue visitFCANONICALIZE(SDNode *N);
518 SDValue visitSINT_TO_FP(SDNode *N);
519 SDValue visitUINT_TO_FP(SDNode *N);
520 SDValue visitFP_TO_SINT(SDNode *N);
521 SDValue visitFP_TO_UINT(SDNode *N);
522 SDValue visitXROUND(SDNode *N);
523 SDValue visitFP_ROUND(SDNode *N);
524 SDValue visitFP_EXTEND(SDNode *N);
525 SDValue visitFNEG(SDNode *N);
526 SDValue visitFABS(SDNode *N);
527 SDValue visitFCEIL(SDNode *N);
528 SDValue visitFTRUNC(SDNode *N);
529 SDValue visitFFREXP(SDNode *N);
530 SDValue visitFFLOOR(SDNode *N);
531 SDValue visitFMinMax(SDNode *N);
532 SDValue visitBRCOND(SDNode *N);
533 SDValue visitBR_CC(SDNode *N);
534 SDValue visitLOAD(SDNode *N);
535
536 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
537 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
538 SDValue replaceStoreOfInsertLoad(StoreSDNode *ST);
539
540 bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N);
541
542 SDValue visitSTORE(SDNode *N);
543 SDValue visitATOMIC_STORE(SDNode *N);
544 SDValue visitLIFETIME_END(SDNode *N);
545 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
546 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
547 SDValue visitBUILD_VECTOR(SDNode *N);
548 SDValue visitCONCAT_VECTORS(SDNode *N);
549 SDValue visitVECTOR_INTERLEAVE(SDNode *N);
550 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
551 SDValue visitVECTOR_SHUFFLE(SDNode *N);
552 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
553 SDValue visitINSERT_SUBVECTOR(SDNode *N);
554 SDValue visitVECTOR_COMPRESS(SDNode *N);
555 SDValue visitMLOAD(SDNode *N);
556 SDValue visitMSTORE(SDNode *N);
557 SDValue visitMGATHER(SDNode *N);
558 SDValue visitMSCATTER(SDNode *N);
559 SDValue visitMHISTOGRAM(SDNode *N);
560 SDValue visitPARTIAL_REDUCE_MLA(SDNode *N);
561 SDValue visitVPGATHER(SDNode *N);
562 SDValue visitVPSCATTER(SDNode *N);
563 SDValue visitVP_STRIDED_LOAD(SDNode *N);
564 SDValue visitVP_STRIDED_STORE(SDNode *N);
565 SDValue visitFP_TO_FP16(SDNode *N);
566 SDValue visitFP16_TO_FP(SDNode *N);
567 SDValue visitFP_TO_BF16(SDNode *N);
568 SDValue visitBF16_TO_FP(SDNode *N);
569 SDValue visitVECREDUCE(SDNode *N);
570 SDValue visitVPOp(SDNode *N);
571 SDValue visitGET_FPENV_MEM(SDNode *N);
572 SDValue visitSET_FPENV_MEM(SDNode *N);
573
574 template <class MatchContextClass>
575 SDValue visitFADDForFMACombine(SDNode *N);
576 template <class MatchContextClass>
577 SDValue visitFSUBForFMACombine(SDNode *N);
578 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
579
580 SDValue XformToShuffleWithZero(SDNode *N);
581 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
582 const SDLoc &DL,
583 SDNode *N,
584 SDValue N0,
585 SDValue N1);
586 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
587 SDValue N1, SDNodeFlags Flags);
588 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
589 SDValue N1, SDNodeFlags Flags);
590 SDValue reassociateReduction(unsigned RedOpc, unsigned Opc, const SDLoc &DL,
591 EVT VT, SDValue N0, SDValue N1,
592 SDNodeFlags Flags = SDNodeFlags());
593
594 SDValue visitShiftByConstant(SDNode *N);
595
596 SDValue foldSelectOfConstants(SDNode *N);
597 SDValue foldVSelectOfConstants(SDNode *N);
598 SDValue foldBinOpIntoSelect(SDNode *BO);
599 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
600 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
601 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
602 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
603 SDValue N2, SDValue N3, ISD::CondCode CC,
604 bool NotExtCompare = false);
605 SDValue convertSelectOfFPConstantsToLoadOffset(
606 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
607 ISD::CondCode CC);
608 SDValue foldSignChangeInBitcast(SDNode *N);
609 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
610 SDValue N2, SDValue N3, ISD::CondCode CC);
611 SDValue foldSelectOfBinops(SDNode *N);
612 SDValue foldSextSetcc(SDNode *N);
613 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
614 const SDLoc &DL);
615 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL);
616 SDValue foldABSToABD(SDNode *N, const SDLoc &DL);
617 SDValue foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
618 SDValue False, ISD::CondCode CC, const SDLoc &DL);
619 SDValue foldSelectToUMin(SDValue LHS, SDValue RHS, SDValue True,
620 SDValue False, ISD::CondCode CC, const SDLoc &DL);
621 SDValue unfoldMaskedMerge(SDNode *N);
622 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
623 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
624 const SDLoc &DL, bool foldBooleans);
625 SDValue rebuildSetCC(SDValue N);
626
627 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
628 SDValue &CC, bool MatchStrict = false) const;
629 bool isOneUseSetCC(SDValue N) const;
630
631 SDValue foldAddToAvg(SDNode *N, const SDLoc &DL);
632 SDValue foldSubToAvg(SDNode *N, const SDLoc &DL);
633
634 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
635 unsigned HiOp);
636 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
637 SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
638 const TargetLowering &TLI);
639 SDValue foldPartialReduceMLAMulOp(SDNode *N);
640 SDValue foldPartialReduceAdd(SDNode *N);
641
642 SDValue CombineExtLoad(SDNode *N);
643 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
644 SDValue combineRepeatedFPDivisors(SDNode *N);
645 SDValue combineFMulOrFDivWithIntPow2(SDNode *N);
646 SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf);
647 SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex);
648 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
649 SDValue combineInsertEltToLoad(SDNode *N, unsigned InsIndex);
650 SDValue BuildSDIV(SDNode *N);
651 SDValue BuildSDIVPow2(SDNode *N);
652 SDValue BuildUDIV(SDNode *N);
653 SDValue BuildSREMPow2(SDNode *N);
654 SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N);
655 SDValue BuildLogBase2(SDValue V, const SDLoc &DL,
656 bool KnownNeverZero = false,
657 bool InexpensiveOnly = false,
658 std::optional<EVT> OutVT = std::nullopt);
659 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
660 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
661 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
662 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
663 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
664 SDNodeFlags Flags, bool Reciprocal);
665 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
666 SDNodeFlags Flags, bool Reciprocal);
667 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
668 bool DemandHighBits = true);
669 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
670 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
671 SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
672 bool HasPos, unsigned PosOpcode,
673 unsigned NegOpcode, const SDLoc &DL);
674 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
675 SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
676 bool HasPos, unsigned PosOpcode,
677 unsigned NegOpcode, const SDLoc &DL);
678 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
679 bool FromAdd);
680 SDValue MatchLoadCombine(SDNode *N);
681 SDValue mergeTruncStores(StoreSDNode *N);
682 SDValue reduceLoadWidth(SDNode *N);
683 SDValue ReduceLoadOpStoreWidth(SDNode *N);
684 SDValue splitMergedValStore(StoreSDNode *ST);
685 SDValue TransformFPLoadStorePair(SDNode *N);
686 SDValue convertBuildVecZextToZext(SDNode *N);
687 SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N);
688 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
689 SDValue reduceBuildVecTruncToBitCast(SDNode *N);
690 SDValue reduceBuildVecToShuffle(SDNode *N);
691 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
692 ArrayRef<int> VectorMask, SDValue VecIn1,
693 SDValue VecIn2, unsigned LeftIdx,
694 bool DidSplitVec);
695 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
696
697 /// Walk up chain skipping non-aliasing memory nodes,
698 /// looking for aliasing nodes and adding them to the Aliases vector.
699 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
700 SmallVectorImpl<SDValue> &Aliases);
701
702 /// Return true if there is any possibility that the two addresses overlap.
703 bool mayAlias(SDNode *Op0, SDNode *Op1) const;
704
705 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
706 /// chain (aliasing node.)
707 SDValue FindBetterChain(SDNode *N, SDValue Chain);
708
709 /// Try to replace a store and any possibly adjacent stores on
710 /// consecutive chains with better chains. Return true only if St is
711 /// replaced.
712 ///
713 /// Notice that other chains may still be replaced even if the function
714 /// returns false.
715 bool findBetterNeighborChains(StoreSDNode *St);
716
717 // Helper for findBetterNeighborChains. Walk up store chain add additional
718 // chained stores that do not overlap and can be parallelized.
719 bool parallelizeChainedStores(StoreSDNode *St);
720
721 /// Holds a pointer to an LSBaseSDNode as well as information on where it
722 /// is located in a sequence of memory operations connected by a chain.
723 struct MemOpLink {
724 // Ptr to the mem node.
725 LSBaseSDNode *MemNode;
726
727 // Offset from the base ptr.
728 int64_t OffsetFromBase;
729
730 MemOpLink(LSBaseSDNode *N, int64_t Offset)
731 : MemNode(N), OffsetFromBase(Offset) {}
732 };
733
734 // Classify the origin of a stored value.
735 enum class StoreSource { Unknown, Constant, Extract, Load };
736 StoreSource getStoreSource(SDValue StoreVal) {
737 switch (StoreVal.getOpcode()) {
738 case ISD::Constant:
739 case ISD::ConstantFP:
740 return StoreSource::Constant;
744 return StoreSource::Constant;
745 return StoreSource::Unknown;
748 return StoreSource::Extract;
749 case ISD::LOAD:
750 return StoreSource::Load;
751 default:
752 return StoreSource::Unknown;
753 }
754 }
755
756 /// This is a helper function for visitMUL to check the profitability
757 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
758 /// MulNode is the original multiply, AddNode is (add x, c1),
759 /// and ConstNode is c2.
760 bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
761 SDValue ConstNode);
762
763 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
764 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
765 /// the type of the loaded value to be extended.
766 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
767 EVT LoadResultTy, EVT &ExtVT);
768
769 /// Helper function to calculate whether the given Load/Store can have its
770 /// width reduced to ExtVT.
771 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
772 EVT &MemVT, unsigned ShAmt = 0);
773
774 /// Used by BackwardsPropagateMask to find suitable loads.
775 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
776 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
777 ConstantSDNode *Mask, SDNode *&NodeToMask);
778 /// Attempt to propagate a given AND node back to load leaves so that they
779 /// can be combined into narrow loads.
780 bool BackwardsPropagateMask(SDNode *N);
781
782 /// Helper function for mergeConsecutiveStores which merges the component
783 /// store chains.
784 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
785 unsigned NumStores);
786
787 /// Helper function for mergeConsecutiveStores which checks if all the store
788 /// nodes have the same underlying object. We can still reuse the first
789 /// store's pointer info if all the stores are from the same object.
790 bool hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes);
791
792 /// This is a helper function for mergeConsecutiveStores. When the source
793 /// elements of the consecutive stores are all constants or all extracted
794 /// vector elements, try to merge them into one larger store introducing
795 /// bitcasts if necessary. \return True if a merged store was created.
796 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
797 EVT MemVT, unsigned NumStores,
798 bool IsConstantSrc, bool UseVector,
799 bool UseTrunc);
800
801 /// This is a helper function for mergeConsecutiveStores. Stores that
802 /// potentially may be merged with St are placed in StoreNodes. On success,
803 /// returns a chain predecessor to all store candidates.
804 SDNode *getStoreMergeCandidates(StoreSDNode *St,
805 SmallVectorImpl<MemOpLink> &StoreNodes);
806
807 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
808 /// have indirect dependency through their operands. RootNode is the
809 /// predecessor to all stores calculated by getStoreMergeCandidates and is
810 /// used to prune the dependency check. \return True if safe to merge.
811 bool checkMergeStoreCandidatesForDependencies(
812 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
813 SDNode *RootNode);
814
815 /// Helper function for tryStoreMergeOfLoads. Checks if the load/store
816 /// chain has a call in it. \return True if a call is found.
817 bool hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld);
818
819 /// This is a helper function for mergeConsecutiveStores. Given a list of
820 /// store candidates, find the first N that are consecutive in memory.
821 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
822 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
823 int64_t ElementSizeBytes) const;
824
825 /// This is a helper function for mergeConsecutiveStores. It is used for
826 /// store chains that are composed entirely of constant values.
827 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
828 unsigned NumConsecutiveStores,
829 EVT MemVT, SDNode *Root, bool AllowVectors);
830
831 /// This is a helper function for mergeConsecutiveStores. It is used for
832 /// store chains that are composed entirely of extracted vector elements.
833 /// When extracting multiple vector elements, try to store them in one
834 /// vector store rather than a sequence of scalar stores.
835 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
836 unsigned NumConsecutiveStores, EVT MemVT,
837 SDNode *Root);
838
839 /// This is a helper function for mergeConsecutiveStores. It is used for
840 /// store chains that are composed entirely of loaded values.
841 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
842 unsigned NumConsecutiveStores, EVT MemVT,
843 SDNode *Root, bool AllowVectors,
844 bool IsNonTemporalStore, bool IsNonTemporalLoad);
845
846 /// Merge consecutive store operations into a wide store.
847 /// This optimization uses wide integers or vectors when possible.
848 /// \return true if stores were merged.
849 bool mergeConsecutiveStores(StoreSDNode *St);
850
851 /// Try to transform a truncation where C is a constant:
852 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
853 ///
854 /// \p N needs to be a truncation and its first operand an AND. Other
855 /// requirements are checked by the function (e.g. that trunc is
856 /// single-use) and if missed an empty SDValue is returned.
857 SDValue distributeTruncateThroughAnd(SDNode *N);
858
859 /// Helper function to determine whether the target supports operation
860 /// given by \p Opcode for type \p VT, that is, whether the operation
861 /// is legal or custom before legalizing operations, and whether is
862 /// legal (but not custom) after legalization.
863 bool hasOperation(unsigned Opcode, EVT VT) {
864 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
865 }
866
867 bool hasUMin(EVT VT) const {
868 auto LK = TLI.getTypeConversion(*DAG.getContext(), VT);
869 return (LK.first == TargetLoweringBase::TypeLegal ||
871 TLI.isOperationLegalOrCustom(ISD::UMIN, LK.second);
872 }
873
874 public:
875 /// Runs the dag combiner on all nodes in the work list
876 void Run(CombineLevel AtLevel);
877
878 SelectionDAG &getDAG() const { return DAG; }
879
880 /// Convenience wrapper around TargetLowering::getShiftAmountTy.
881 EVT getShiftAmountTy(EVT LHSTy) {
882 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout());
883 }
884
885 /// This method returns true if we are running before type legalization or
886 /// if the specified VT is legal.
887 bool isTypeLegal(const EVT &VT) {
888 if (!LegalTypes) return true;
889 return TLI.isTypeLegal(VT);
890 }
891
892 /// Convenience wrapper around TargetLowering::getSetCCResultType
893 EVT getSetCCResultType(EVT VT) const {
894 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
895 }
896
897 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
898 SDValue OrigLoad, SDValue ExtLoad,
899 ISD::NodeType ExtType);
900 };
901
902/// This class is a DAGUpdateListener that removes any deleted
903/// nodes from the worklist.
904class WorklistRemover : public SelectionDAG::DAGUpdateListener {
905 DAGCombiner &DC;
906
907public:
908 explicit WorklistRemover(DAGCombiner &dc)
909 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
910
911 void NodeDeleted(SDNode *N, SDNode *E) override {
912 DC.removeFromWorklist(N);
913 }
914};
915
916class WorklistInserter : public SelectionDAG::DAGUpdateListener {
917 DAGCombiner &DC;
918
919public:
920 explicit WorklistInserter(DAGCombiner &dc)
921 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
922
923 // FIXME: Ideally we could add N to the worklist, but this causes exponential
924 // compile time costs in large DAGs, e.g. Halide.
925 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
926};
927
928} // end anonymous namespace
929
930//===----------------------------------------------------------------------===//
931// TargetLowering::DAGCombinerInfo implementation
932//===----------------------------------------------------------------------===//
933
935 ((DAGCombiner*)DC)->AddToWorklist(N);
936}
937
939CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
940 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
941}
942
944CombineTo(SDNode *N, SDValue Res, bool AddTo) {
945 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
946}
947
949CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
950 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
951}
952
955 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
956}
957
960 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
961}
962
963//===----------------------------------------------------------------------===//
964// Helper Functions
965//===----------------------------------------------------------------------===//
966
967void DAGCombiner::deleteAndRecombine(SDNode *N) {
968 removeFromWorklist(N);
969
970 // If the operands of this node are only used by the node, they will now be
971 // dead. Make sure to re-visit them and recursively delete dead nodes.
972 for (const SDValue &Op : N->ops())
973 // For an operand generating multiple values, one of the values may
974 // become dead allowing further simplification (e.g. split index
975 // arithmetic from an indexed load).
976 if (Op->hasOneUse() || Op->getNumValues() > 1)
977 AddToWorklist(Op.getNode());
978
979 DAG.DeleteNode(N);
980}
981
982// APInts must be the same size for most operations, this helper
983// function zero extends the shorter of the pair so that they match.
984// We provide an Offset so that we can create bitwidths that won't overflow.
985static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
986 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
987 LHS = LHS.zext(Bits);
988 RHS = RHS.zext(Bits);
989}
990
991// Return true if this node is a setcc, or is a select_cc
992// that selects between the target values used for true and false, making it
993// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
994// the appropriate nodes based on the type of node we are checking. This
995// simplifies life a bit for the callers.
996bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
997 SDValue &CC, bool MatchStrict) const {
998 if (N.getOpcode() == ISD::SETCC) {
999 LHS = N.getOperand(0);
1000 RHS = N.getOperand(1);
1001 CC = N.getOperand(2);
1002 return true;
1003 }
1004
1005 if (MatchStrict &&
1006 (N.getOpcode() == ISD::STRICT_FSETCC ||
1007 N.getOpcode() == ISD::STRICT_FSETCCS)) {
1008 LHS = N.getOperand(1);
1009 RHS = N.getOperand(2);
1010 CC = N.getOperand(3);
1011 return true;
1012 }
1013
1014 if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) ||
1015 !TLI.isConstFalseVal(N.getOperand(3)))
1016 return false;
1017
1018 if (TLI.getBooleanContents(N.getValueType()) ==
1020 return false;
1021
1022 LHS = N.getOperand(0);
1023 RHS = N.getOperand(1);
1024 CC = N.getOperand(4);
1025 return true;
1026}
1027
1028/// Return true if this is a SetCC-equivalent operation with only one use.
1029/// If this is true, it allows the users to invert the operation for free when
1030/// it is profitable to do so.
1031bool DAGCombiner::isOneUseSetCC(SDValue N) const {
1032 SDValue N0, N1, N2;
1033 if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse())
1034 return true;
1035 return false;
1036}
1037
1039 if (!ScalarTy.isSimple())
1040 return false;
1041
1042 uint64_t MaskForTy = 0ULL;
1043 switch (ScalarTy.getSimpleVT().SimpleTy) {
1044 case MVT::i8:
1045 MaskForTy = 0xFFULL;
1046 break;
1047 case MVT::i16:
1048 MaskForTy = 0xFFFFULL;
1049 break;
1050 case MVT::i32:
1051 MaskForTy = 0xFFFFFFFFULL;
1052 break;
1053 default:
1054 return false;
1055 break;
1056 }
1057
1058 APInt Val;
1059 if (ISD::isConstantSplatVector(N, Val))
1060 return Val.getLimitedValue() == MaskForTy;
1061
1062 return false;
1063}
1064
1065// Determines if it is a constant integer or a splat/build vector of constant
1066// integers (and undefs).
1067// Do not permit build vector implicit truncation.
1068static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
1070 return !(Const->isOpaque() && NoOpaques);
1071 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
1072 return false;
1073 unsigned BitWidth = N.getScalarValueSizeInBits();
1074 for (const SDValue &Op : N->op_values()) {
1075 if (Op.isUndef())
1076 continue;
1078 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
1079 (Const->isOpaque() && NoOpaques))
1080 return false;
1081 }
1082 return true;
1083}
1084
1085// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1086// undef's.
1087static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
1088 if (V.getOpcode() != ISD::BUILD_VECTOR)
1089 return false;
1090 return isConstantOrConstantVector(V, NoOpaques) ||
1092}
1093
1094// Determine if this an indexed load with an opaque target constant index.
1095static bool canSplitIdx(LoadSDNode *LD) {
1096 return MaySplitLoadIndex &&
1097 (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
1098 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
1099}
1100
1101bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1102 const SDLoc &DL,
1103 SDNode *N,
1104 SDValue N0,
1105 SDValue N1) {
1106 // Currently this only tries to ensure we don't undo the GEP splits done by
1107 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1108 // we check if the following transformation would be problematic:
1109 // (load/store (add, (add, x, offset1), offset2)) ->
1110 // (load/store (add, x, offset1+offset2)).
1111
1112 // (load/store (add, (add, x, y), offset2)) ->
1113 // (load/store (add, (add, x, offset2), y)).
1114
1115 if (!N0.isAnyAdd())
1116 return false;
1117
1118 // Check for vscale addressing modes.
1119 // (load/store (add/sub (add x, y), vscale))
1120 // (load/store (add/sub (add x, y), (lsl vscale, C)))
1121 // (load/store (add/sub (add x, y), (mul vscale, C)))
1122 if ((N1.getOpcode() == ISD::VSCALE ||
1123 ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::MUL) &&
1124 N1.getOperand(0).getOpcode() == ISD::VSCALE &&
1126 N1.getValueType().getFixedSizeInBits() <= 64) {
1127 int64_t ScalableOffset = N1.getOpcode() == ISD::VSCALE
1128 ? N1.getConstantOperandVal(0)
1129 : (N1.getOperand(0).getConstantOperandVal(0) *
1130 (N1.getOpcode() == ISD::SHL
1131 ? (1LL << N1.getConstantOperandVal(1))
1132 : N1.getConstantOperandVal(1)));
1133 if (Opc == ISD::SUB)
1134 ScalableOffset = -ScalableOffset;
1135 if (all_of(N->users(), [&](SDNode *Node) {
1136 if (auto *LoadStore = dyn_cast<MemSDNode>(Node);
1137 LoadStore && LoadStore->getBasePtr().getNode() == N) {
1138 TargetLoweringBase::AddrMode AM;
1139 AM.HasBaseReg = true;
1140 AM.ScalableOffset = ScalableOffset;
1141 EVT VT = LoadStore->getMemoryVT();
1142 unsigned AS = LoadStore->getAddressSpace();
1143 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1144 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy,
1145 AS);
1146 }
1147 return false;
1148 }))
1149 return true;
1150 }
1151
1152 if (Opc != ISD::ADD && Opc != ISD::PTRADD)
1153 return false;
1154
1155 auto *C2 = dyn_cast<ConstantSDNode>(N1);
1156 if (!C2)
1157 return false;
1158
1159 const APInt &C2APIntVal = C2->getAPIntValue();
1160 if (C2APIntVal.getSignificantBits() > 64)
1161 return false;
1162
1163 if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1164 if (N0.hasOneUse())
1165 return false;
1166
1167 const APInt &C1APIntVal = C1->getAPIntValue();
1168 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1169 if (CombinedValueIntVal.getSignificantBits() > 64)
1170 return false;
1171 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1172
1173 for (SDNode *Node : N->users()) {
1174 if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) {
1175 // Is x[offset2] already not a legal addressing mode? If so then
1176 // reassociating the constants breaks nothing (we test offset2 because
1177 // that's the one we hope to fold into the load or store).
1178 TargetLoweringBase::AddrMode AM;
1179 AM.HasBaseReg = true;
1180 AM.BaseOffs = C2APIntVal.getSExtValue();
1181 EVT VT = LoadStore->getMemoryVT();
1182 unsigned AS = LoadStore->getAddressSpace();
1183 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1184 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1185 continue;
1186
1187 // Would x[offset1+offset2] still be a legal addressing mode?
1188 AM.BaseOffs = CombinedValue;
1189 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1190 return true;
1191 }
1192 }
1193 } else {
1194 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1)))
1195 if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA))
1196 return false;
1197
1198 for (SDNode *Node : N->users()) {
1199 auto *LoadStore = dyn_cast<MemSDNode>(Node);
1200 if (!LoadStore)
1201 return false;
1202
1203 // Is x[offset2] a legal addressing mode? If so then
1204 // reassociating the constants breaks address pattern
1205 TargetLoweringBase::AddrMode AM;
1206 AM.HasBaseReg = true;
1207 AM.BaseOffs = C2APIntVal.getSExtValue();
1208 EVT VT = LoadStore->getMemoryVT();
1209 unsigned AS = LoadStore->getAddressSpace();
1210 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1211 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1212 return false;
1213 }
1214 return true;
1215 }
1216
1217 return false;
1218}
1219
1220/// Helper for DAGCombiner::reassociateOps. Try to reassociate (Opc N0, N1) if
1221/// \p N0 is the same kind of operation as \p Opc.
1222SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1223 SDValue N0, SDValue N1,
1224 SDNodeFlags Flags) {
1225 EVT VT = N0.getValueType();
1226
1227 if (N0.getOpcode() != Opc)
1228 return SDValue();
1229
1230 SDValue N00 = N0.getOperand(0);
1231 SDValue N01 = N0.getOperand(1);
1232
1234 SDNodeFlags NewFlags;
1235 if (N0.getOpcode() == ISD::ADD && N0->getFlags().hasNoUnsignedWrap() &&
1236 Flags.hasNoUnsignedWrap())
1237 NewFlags |= SDNodeFlags::NoUnsignedWrap;
1238
1240 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1241 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) {
1242 NewFlags.setDisjoint(Flags.hasDisjoint() &&
1243 N0->getFlags().hasDisjoint());
1244 return DAG.getNode(Opc, DL, VT, N00, OpNode, NewFlags);
1245 }
1246 return SDValue();
1247 }
1248 if (TLI.isReassocProfitable(DAG, N0, N1)) {
1249 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1250 // iff (op x, c1) has one use
1251 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, NewFlags);
1252 return DAG.getNode(Opc, DL, VT, OpNode, N01, NewFlags);
1253 }
1254 }
1255
1256 // Check for repeated operand logic simplifications.
1257 if (Opc == ISD::AND || Opc == ISD::OR) {
1258 // (N00 & N01) & N00 --> N00 & N01
1259 // (N00 & N01) & N01 --> N00 & N01
1260 // (N00 | N01) | N00 --> N00 | N01
1261 // (N00 | N01) | N01 --> N00 | N01
1262 if (N1 == N00 || N1 == N01)
1263 return N0;
1264 }
1265 if (Opc == ISD::XOR) {
1266 // (N00 ^ N01) ^ N00 --> N01
1267 if (N1 == N00)
1268 return N01;
1269 // (N00 ^ N01) ^ N01 --> N00
1270 if (N1 == N01)
1271 return N00;
1272 }
1273
1274 if (TLI.isReassocProfitable(DAG, N0, N1)) {
1275 if (N1 != N01) {
1276 // Reassociate if (op N00, N1) already exist
1277 if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) {
1278 // if Op (Op N00, N1), N01 already exist
1279 // we need to stop reassciate to avoid dead loop
1280 if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01}))
1281 return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01);
1282 }
1283 }
1284
1285 if (N1 != N00) {
1286 // Reassociate if (op N01, N1) already exist
1287 if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) {
1288 // if Op (Op N01, N1), N00 already exist
1289 // we need to stop reassciate to avoid dead loop
1290 if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00}))
1291 return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00);
1292 }
1293 }
1294
1295 // Reassociate the operands from (OR/AND (OR/AND(N00, N001)), N1) to (OR/AND
1296 // (OR/AND(N00, N1)), N01) when N00 and N1 are comparisons with the same
1297 // predicate or to (OR/AND (OR/AND(N1, N01)), N00) when N01 and N1 are
1298 // comparisons with the same predicate. This enables optimizations as the
1299 // following one:
1300 // CMP(A,C)||CMP(B,C) => CMP(MIN/MAX(A,B), C)
1301 // CMP(A,C)&&CMP(B,C) => CMP(MIN/MAX(A,B), C)
1302 if (Opc == ISD::AND || Opc == ISD::OR) {
1303 if (N1->getOpcode() == ISD::SETCC && N00->getOpcode() == ISD::SETCC &&
1304 N01->getOpcode() == ISD::SETCC) {
1305 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1.getOperand(2))->get();
1306 ISD::CondCode CC00 = cast<CondCodeSDNode>(N00.getOperand(2))->get();
1307 ISD::CondCode CC01 = cast<CondCodeSDNode>(N01.getOperand(2))->get();
1308 if (CC1 == CC00 && CC1 != CC01) {
1309 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, Flags);
1310 return DAG.getNode(Opc, DL, VT, OpNode, N01, Flags);
1311 }
1312 if (CC1 == CC01 && CC1 != CC00) {
1313 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N01, N1, Flags);
1314 return DAG.getNode(Opc, DL, VT, OpNode, N00, Flags);
1315 }
1316 }
1317 }
1318 }
1319
1320 return SDValue();
1321}
1322
1323/// Try to reassociate commutative (Opc N0, N1) if either \p N0 or \p N1 is the
1324/// same kind of operation as \p Opc.
1325SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1326 SDValue N1, SDNodeFlags Flags) {
1327 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
1328
1329 // Floating-point reassociation is not allowed without loose FP math.
1330 if (N0.getValueType().isFloatingPoint() ||
1332 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1333 return SDValue();
1334
1335 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1, Flags))
1336 return Combined;
1337 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0, Flags))
1338 return Combined;
1339 return SDValue();
1340}
1341
1342// Try to fold Opc(vecreduce(x), vecreduce(y)) -> vecreduce(Opc(x, y))
1343// Note that we only expect Flags to be passed from FP operations. For integer
1344// operations they need to be dropped.
1345SDValue DAGCombiner::reassociateReduction(unsigned RedOpc, unsigned Opc,
1346 const SDLoc &DL, EVT VT, SDValue N0,
1347 SDValue N1, SDNodeFlags Flags) {
1348 if (N0.getOpcode() == RedOpc && N1.getOpcode() == RedOpc &&
1349 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
1350 N0->hasOneUse() && N1->hasOneUse() &&
1352 TLI.shouldReassociateReduction(RedOpc, N0.getOperand(0).getValueType())) {
1353 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
1354 return DAG.getNode(RedOpc, DL, VT,
1355 DAG.getNode(Opc, DL, N0.getOperand(0).getValueType(),
1356 N0.getOperand(0), N1.getOperand(0)));
1357 }
1358
1359 // Reassociate op(op(vecreduce(a), b), op(vecreduce(c), d)) into
1360 // op(vecreduce(op(a, c)), op(b, d)), to combine the reductions into a
1361 // single node.
1362 SDValue A, B, C, D, RedA, RedB;
1363 if (sd_match(N0, m_OneUse(m_c_BinOp(
1364 Opc,
1365 m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(A))),
1366 m_Value(RedA)),
1367 m_Value(B)))) &&
1369 Opc,
1370 m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(C))),
1371 m_Value(RedB)),
1372 m_Value(D)))) &&
1373 !sd_match(B, m_UnaryOp(RedOpc, m_Value())) &&
1374 !sd_match(D, m_UnaryOp(RedOpc, m_Value())) &&
1375 A.getValueType() == C.getValueType() &&
1376 hasOperation(Opc, A.getValueType()) &&
1377 TLI.shouldReassociateReduction(RedOpc, VT)) {
1378 if ((Opc == ISD::FADD || Opc == ISD::FMUL) &&
1379 (!N0->getFlags().hasAllowReassociation() ||
1381 !RedA->getFlags().hasAllowReassociation() ||
1382 !RedB->getFlags().hasAllowReassociation()))
1383 return SDValue();
1384 SelectionDAG::FlagInserter FlagsInserter(
1385 DAG, Flags & N0->getFlags() & N1->getFlags() & RedA->getFlags() &
1386 RedB->getFlags());
1387 SDValue Op = DAG.getNode(Opc, DL, A.getValueType(), A, C);
1388 SDValue Red = DAG.getNode(RedOpc, DL, VT, Op);
1389 SDValue Op2 = DAG.getNode(Opc, DL, VT, B, D);
1390 return DAG.getNode(Opc, DL, VT, Red, Op2);
1391 }
1392 return SDValue();
1393}
1394
1395SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1396 bool AddTo) {
1397 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
1398 ++NodesCombined;
1399 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
1400 To[0].dump(&DAG);
1401 dbgs() << " and " << NumTo - 1 << " other values\n");
1402 for (unsigned i = 0, e = NumTo; i != e; ++i)
1403 assert((!To[i].getNode() ||
1404 N->getValueType(i) == To[i].getValueType()) &&
1405 "Cannot combine value to value of different type!");
1406
1407 WorklistRemover DeadNodes(*this);
1408 DAG.ReplaceAllUsesWith(N, To);
1409 if (AddTo) {
1410 // Push the new nodes and any users onto the worklist
1411 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1412 if (To[i].getNode())
1413 AddToWorklistWithUsers(To[i].getNode());
1414 }
1415 }
1416
1417 // Finally, if the node is now dead, remove it from the graph. The node
1418 // may not be dead if the replacement process recursively simplified to
1419 // something else needing this node.
1420 if (N->use_empty())
1421 deleteAndRecombine(N);
1422 return SDValue(N, 0);
1423}
1424
1425void DAGCombiner::
1426CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1427 // Replace the old value with the new one.
1428 ++NodesCombined;
1429 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG);
1430 dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n');
1431
1432 // Replace all uses.
1433 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1434
1435 // Push the new node and any (possibly new) users onto the worklist.
1436 AddToWorklistWithUsers(TLO.New.getNode());
1437
1438 // Finally, if the node is now dead, remove it from the graph.
1439 recursivelyDeleteUnusedNodes(TLO.Old.getNode());
1440}
1441
1442/// Check the specified integer node value to see if it can be simplified or if
1443/// things it uses can be simplified by bit propagation. If so, return true.
1444bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1445 const APInt &DemandedElts,
1446 bool AssumeSingleUse) {
1447 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1448 KnownBits Known;
1449 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
1450 AssumeSingleUse))
1451 return false;
1452
1453 // Revisit the node.
1454 AddToWorklist(Op.getNode());
1455
1456 CommitTargetLoweringOpt(TLO);
1457 return true;
1458}
1459
1460/// Check the specified vector node value to see if it can be simplified or
1461/// if things it uses can be simplified as it only uses some of the elements.
1462/// If so, return true.
1463bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1464 const APInt &DemandedElts,
1465 bool AssumeSingleUse) {
1466 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1467 APInt KnownUndef, KnownZero;
1468 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1469 TLO, 0, AssumeSingleUse))
1470 return false;
1471
1472 // Revisit the node.
1473 AddToWorklist(Op.getNode());
1474
1475 CommitTargetLoweringOpt(TLO);
1476 return true;
1477}
1478
1479void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1480 SDLoc DL(Load);
1481 EVT VT = Load->getValueType(0);
1482 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1483
1484 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1485 Trunc.dump(&DAG); dbgs() << '\n');
1486
1487 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1488 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1489
1490 AddToWorklist(Trunc.getNode());
1491 recursivelyDeleteUnusedNodes(Load);
1492}
1493
1494SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1495 Replace = false;
1496 SDLoc DL(Op);
1497 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1498 LoadSDNode *LD = cast<LoadSDNode>(Op);
1499 EVT MemVT = LD->getMemoryVT();
1501 : LD->getExtensionType();
1502 Replace = true;
1503 return DAG.getExtLoad(ExtType, DL, PVT,
1504 LD->getChain(), LD->getBasePtr(),
1505 MemVT, LD->getMemOperand());
1506 }
1507
1508 unsigned Opc = Op.getOpcode();
1509 switch (Opc) {
1510 default: break;
1511 case ISD::AssertSext:
1512 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1513 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1514 break;
1515 case ISD::AssertZext:
1516 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1517 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1518 break;
1519 case ISD::Constant: {
1520 unsigned ExtOpc =
1521 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1522 return DAG.getNode(ExtOpc, DL, PVT, Op);
1523 }
1524 }
1525
1526 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1527 return SDValue();
1528 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1529}
1530
1531SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1533 return SDValue();
1534 EVT OldVT = Op.getValueType();
1535 SDLoc DL(Op);
1536 bool Replace = false;
1537 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1538 if (!NewOp.getNode())
1539 return SDValue();
1540 AddToWorklist(NewOp.getNode());
1541
1542 if (Replace)
1543 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1544 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1545 DAG.getValueType(OldVT));
1546}
1547
1548SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1549 EVT OldVT = Op.getValueType();
1550 SDLoc DL(Op);
1551 bool Replace = false;
1552 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1553 if (!NewOp.getNode())
1554 return SDValue();
1555 AddToWorklist(NewOp.getNode());
1556
1557 if (Replace)
1558 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1559 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1560}
1561
1562/// Promote the specified integer binary operation if the target indicates it is
1563/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1564/// i32 since i16 instructions are longer.
1565SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1566 if (!LegalOperations)
1567 return SDValue();
1568
1569 EVT VT = Op.getValueType();
1570 if (VT.isVector() || !VT.isInteger())
1571 return SDValue();
1572
1573 // If operation type is 'undesirable', e.g. i16 on x86, consider
1574 // promoting it.
1575 unsigned Opc = Op.getOpcode();
1576 if (TLI.isTypeDesirableForOp(Opc, VT))
1577 return SDValue();
1578
1579 EVT PVT = VT;
1580 // Consult target whether it is a good idea to promote this operation and
1581 // what's the right type to promote it to.
1582 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1583 assert(PVT != VT && "Don't know what type to promote to!");
1584
1585 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1586
1587 bool Replace0 = false;
1588 SDValue N0 = Op.getOperand(0);
1589 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1590
1591 bool Replace1 = false;
1592 SDValue N1 = Op.getOperand(1);
1593 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1594 SDLoc DL(Op);
1595
1596 SDValue RV =
1597 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1598
1599 // We are always replacing N0/N1's use in N and only need additional
1600 // replacements if there are additional uses.
1601 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1602 // (SDValue) here because the node may reference multiple values
1603 // (for example, the chain value of a load node).
1604 Replace0 &= !N0->hasOneUse();
1605 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1606
1607 // Combine Op here so it is preserved past replacements.
1608 CombineTo(Op.getNode(), RV);
1609
1610 // If operands have a use ordering, make sure we deal with
1611 // predecessor first.
1612 if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) {
1613 std::swap(N0, N1);
1614 std::swap(NN0, NN1);
1615 }
1616
1617 if (Replace0) {
1618 AddToWorklist(NN0.getNode());
1619 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1620 }
1621 if (Replace1) {
1622 AddToWorklist(NN1.getNode());
1623 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1624 }
1625 return Op;
1626 }
1627 return SDValue();
1628}
1629
1630/// Promote the specified integer shift operation if the target indicates it is
1631/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1632/// i32 since i16 instructions are longer.
1633SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1634 if (!LegalOperations)
1635 return SDValue();
1636
1637 EVT VT = Op.getValueType();
1638 if (VT.isVector() || !VT.isInteger())
1639 return SDValue();
1640
1641 // If operation type is 'undesirable', e.g. i16 on x86, consider
1642 // promoting it.
1643 unsigned Opc = Op.getOpcode();
1644 if (TLI.isTypeDesirableForOp(Opc, VT))
1645 return SDValue();
1646
1647 EVT PVT = VT;
1648 // Consult target whether it is a good idea to promote this operation and
1649 // what's the right type to promote it to.
1650 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1651 assert(PVT != VT && "Don't know what type to promote to!");
1652
1653 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1654
1655 bool Replace = false;
1656 SDValue N0 = Op.getOperand(0);
1657 if (Opc == ISD::SRA)
1658 N0 = SExtPromoteOperand(N0, PVT);
1659 else if (Opc == ISD::SRL)
1660 N0 = ZExtPromoteOperand(N0, PVT);
1661 else
1662 N0 = PromoteOperand(N0, PVT, Replace);
1663
1664 if (!N0.getNode())
1665 return SDValue();
1666
1667 SDLoc DL(Op);
1668 SDValue N1 = Op.getOperand(1);
1669 SDValue RV =
1670 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1671
1672 if (Replace)
1673 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1674
1675 // Deal with Op being deleted.
1676 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1677 return RV;
1678 }
1679 return SDValue();
1680}
1681
1682SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1683 if (!LegalOperations)
1684 return SDValue();
1685
1686 EVT VT = Op.getValueType();
1687 if (VT.isVector() || !VT.isInteger())
1688 return SDValue();
1689
1690 // If operation type is 'undesirable', e.g. i16 on x86, consider
1691 // promoting it.
1692 unsigned Opc = Op.getOpcode();
1693 if (TLI.isTypeDesirableForOp(Opc, VT))
1694 return SDValue();
1695
1696 EVT PVT = VT;
1697 // Consult target whether it is a good idea to promote this operation and
1698 // what's the right type to promote it to.
1699 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1700 assert(PVT != VT && "Don't know what type to promote to!");
1701 // fold (aext (aext x)) -> (aext x)
1702 // fold (aext (zext x)) -> (zext x)
1703 // fold (aext (sext x)) -> (sext x)
1704 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1706 }
1707 return SDValue();
1708}
1709
1710bool DAGCombiner::PromoteLoad(SDValue Op) {
1711 if (!LegalOperations)
1712 return false;
1713
1714 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1715 return false;
1716
1717 EVT VT = Op.getValueType();
1718 if (VT.isVector() || !VT.isInteger())
1719 return false;
1720
1721 // If operation type is 'undesirable', e.g. i16 on x86, consider
1722 // promoting it.
1723 unsigned Opc = Op.getOpcode();
1724 if (TLI.isTypeDesirableForOp(Opc, VT))
1725 return false;
1726
1727 EVT PVT = VT;
1728 // Consult target whether it is a good idea to promote this operation and
1729 // what's the right type to promote it to.
1730 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1731 assert(PVT != VT && "Don't know what type to promote to!");
1732
1733 SDLoc DL(Op);
1734 SDNode *N = Op.getNode();
1735 LoadSDNode *LD = cast<LoadSDNode>(N);
1736 EVT MemVT = LD->getMemoryVT();
1738 : LD->getExtensionType();
1739 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1740 LD->getChain(), LD->getBasePtr(),
1741 MemVT, LD->getMemOperand());
1742 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1743
1744 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1745 Result.dump(&DAG); dbgs() << '\n');
1746
1747 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1748 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1749
1750 AddToWorklist(Result.getNode());
1751 recursivelyDeleteUnusedNodes(N);
1752 return true;
1753 }
1754
1755 return false;
1756}
1757
1758/// Recursively delete a node which has no uses and any operands for
1759/// which it is the only use.
1760///
1761/// Note that this both deletes the nodes and removes them from the worklist.
1762/// It also adds any nodes who have had a user deleted to the worklist as they
1763/// may now have only one use and subject to other combines.
1764bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1765 if (!N->use_empty())
1766 return false;
1767
1768 SmallSetVector<SDNode *, 16> Nodes;
1769 Nodes.insert(N);
1770 do {
1771 N = Nodes.pop_back_val();
1772 if (!N)
1773 continue;
1774
1775 if (N->use_empty()) {
1776 for (const SDValue &ChildN : N->op_values())
1777 Nodes.insert(ChildN.getNode());
1778
1779 removeFromWorklist(N);
1780 DAG.DeleteNode(N);
1781 } else {
1782 AddToWorklist(N);
1783 }
1784 } while (!Nodes.empty());
1785 return true;
1786}
1787
1788//===----------------------------------------------------------------------===//
1789// Main DAG Combiner implementation
1790//===----------------------------------------------------------------------===//
1791
1792void DAGCombiner::Run(CombineLevel AtLevel) {
1793 // set the instance variables, so that the various visit routines may use it.
1794 Level = AtLevel;
1795 LegalDAG = Level >= AfterLegalizeDAG;
1796 LegalOperations = Level >= AfterLegalizeVectorOps;
1797 LegalTypes = Level >= AfterLegalizeTypes;
1798
1799 WorklistInserter AddNodes(*this);
1800
1801 // Add all the dag nodes to the worklist.
1802 //
1803 // Note: All nodes are not added to PruningList here, this is because the only
1804 // nodes which can be deleted are those which have no uses and all other nodes
1805 // which would otherwise be added to the worklist by the first call to
1806 // getNextWorklistEntry are already present in it.
1807 for (SDNode &Node : DAG.allnodes())
1808 AddToWorklist(&Node, /* IsCandidateForPruning */ Node.use_empty());
1809
1810 // Create a dummy node (which is not added to allnodes), that adds a reference
1811 // to the root node, preventing it from being deleted, and tracking any
1812 // changes of the root.
1813 HandleSDNode Dummy(DAG.getRoot());
1814
1815 // While we have a valid worklist entry node, try to combine it.
1816 while (SDNode *N = getNextWorklistEntry()) {
1817 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1818 // N is deleted from the DAG, since they too may now be dead or may have a
1819 // reduced number of uses, allowing other xforms.
1820 if (recursivelyDeleteUnusedNodes(N))
1821 continue;
1822
1823 WorklistRemover DeadNodes(*this);
1824
1825 // If this combine is running after legalizing the DAG, re-legalize any
1826 // nodes pulled off the worklist.
1827 if (LegalDAG) {
1828 SmallSetVector<SDNode *, 16> UpdatedNodes;
1829 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1830
1831 for (SDNode *LN : UpdatedNodes)
1832 AddToWorklistWithUsers(LN);
1833
1834 if (!NIsValid)
1835 continue;
1836 }
1837
1838 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1839
1840 // Add any operands of the new node which have not yet been combined to the
1841 // worklist as well. getNextWorklistEntry flags nodes that have been
1842 // combined before. Because the worklist uniques things already, this won't
1843 // repeatedly process the same operand.
1844 for (const SDValue &ChildN : N->op_values())
1845 AddToWorklist(ChildN.getNode(), /*IsCandidateForPruning=*/true,
1846 /*SkipIfCombinedBefore=*/true);
1847
1848 SDValue RV = combine(N);
1849
1850 if (!RV.getNode())
1851 continue;
1852
1853 ++NodesCombined;
1854
1855 // Invalidate cached info.
1856 ChainsWithoutMergeableStores.clear();
1857
1858 // If we get back the same node we passed in, rather than a new node or
1859 // zero, we know that the node must have defined multiple values and
1860 // CombineTo was used. Since CombineTo takes care of the worklist
1861 // mechanics for us, we have no work to do in this case.
1862 if (RV.getNode() == N)
1863 continue;
1864
1865 assert(N->getOpcode() != ISD::DELETED_NODE &&
1866 RV.getOpcode() != ISD::DELETED_NODE &&
1867 "Node was deleted but visit returned new node!");
1868
1869 LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG));
1870
1871 if (N->getNumValues() == RV->getNumValues())
1872 DAG.ReplaceAllUsesWith(N, RV.getNode());
1873 else {
1874 assert(N->getValueType(0) == RV.getValueType() &&
1875 N->getNumValues() == 1 && "Type mismatch");
1876 DAG.ReplaceAllUsesWith(N, &RV);
1877 }
1878
1879 // Push the new node and any users onto the worklist. Omit this if the
1880 // new node is the EntryToken (e.g. if a store managed to get optimized
1881 // out), because re-visiting the EntryToken and its users will not uncover
1882 // any additional opportunities, but there may be a large number of such
1883 // users, potentially causing compile time explosion.
1884 if (RV.getOpcode() != ISD::EntryToken)
1885 AddToWorklistWithUsers(RV.getNode());
1886
1887 // Finally, if the node is now dead, remove it from the graph. The node
1888 // may not be dead if the replacement process recursively simplified to
1889 // something else needing this node. This will also take care of adding any
1890 // operands which have lost a user to the worklist.
1891 recursivelyDeleteUnusedNodes(N);
1892 }
1893
1894 // If the root changed (e.g. it was a dead load, update the root).
1895 DAG.setRoot(Dummy.getValue());
1896 DAG.RemoveDeadNodes();
1897}
1898
1899SDValue DAGCombiner::visit(SDNode *N) {
1900 // clang-format off
1901 switch (N->getOpcode()) {
1902 default: break;
1903 case ISD::TokenFactor: return visitTokenFactor(N);
1904 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1905 case ISD::ADD: return visitADD(N);
1906 case ISD::PTRADD: return visitPTRADD(N);
1907 case ISD::SUB: return visitSUB(N);
1908 case ISD::SADDSAT:
1909 case ISD::UADDSAT: return visitADDSAT(N);
1910 case ISD::SSUBSAT:
1911 case ISD::USUBSAT: return visitSUBSAT(N);
1912 case ISD::ADDC: return visitADDC(N);
1913 case ISD::SADDO:
1914 case ISD::UADDO: return visitADDO(N);
1915 case ISD::SUBC: return visitSUBC(N);
1916 case ISD::SSUBO:
1917 case ISD::USUBO: return visitSUBO(N);
1918 case ISD::ADDE: return visitADDE(N);
1919 case ISD::UADDO_CARRY: return visitUADDO_CARRY(N);
1920 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
1921 case ISD::SUBE: return visitSUBE(N);
1922 case ISD::USUBO_CARRY: return visitUSUBO_CARRY(N);
1923 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
1924 case ISD::SMULFIX:
1925 case ISD::SMULFIXSAT:
1926 case ISD::UMULFIX:
1927 case ISD::UMULFIXSAT: return visitMULFIX(N);
1928 case ISD::MUL: return visitMUL<EmptyMatchContext>(N);
1929 case ISD::SDIV: return visitSDIV(N);
1930 case ISD::UDIV: return visitUDIV(N);
1931 case ISD::SREM:
1932 case ISD::UREM: return visitREM(N);
1933 case ISD::MULHU: return visitMULHU(N);
1934 case ISD::MULHS: return visitMULHS(N);
1935 case ISD::AVGFLOORS:
1936 case ISD::AVGFLOORU:
1937 case ISD::AVGCEILS:
1938 case ISD::AVGCEILU: return visitAVG(N);
1939 case ISD::ABDS:
1940 case ISD::ABDU: return visitABD(N);
1941 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1942 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1943 case ISD::SMULO:
1944 case ISD::UMULO: return visitMULO(N);
1945 case ISD::SMIN:
1946 case ISD::SMAX:
1947 case ISD::UMIN:
1948 case ISD::UMAX: return visitIMINMAX(N);
1949 case ISD::AND: return visitAND(N);
1950 case ISD::OR: return visitOR(N);
1951 case ISD::XOR: return visitXOR(N);
1952 case ISD::SHL: return visitSHL(N);
1953 case ISD::SRA: return visitSRA(N);
1954 case ISD::SRL: return visitSRL(N);
1955 case ISD::ROTR:
1956 case ISD::ROTL: return visitRotate(N);
1957 case ISD::FSHL:
1958 case ISD::FSHR: return visitFunnelShift(N);
1959 case ISD::SSHLSAT:
1960 case ISD::USHLSAT: return visitSHLSAT(N);
1961 case ISD::ABS: return visitABS(N);
1962 case ISD::BSWAP: return visitBSWAP(N);
1963 case ISD::BITREVERSE: return visitBITREVERSE(N);
1964 case ISD::CTLZ: return visitCTLZ(N);
1965 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1966 case ISD::CTTZ: return visitCTTZ(N);
1967 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1968 case ISD::CTPOP: return visitCTPOP(N);
1969 case ISD::SELECT: return visitSELECT(N);
1970 case ISD::VSELECT: return visitVSELECT(N);
1971 case ISD::SELECT_CC: return visitSELECT_CC(N);
1972 case ISD::SETCC: return visitSETCC(N);
1973 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1974 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1975 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1976 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1977 case ISD::AssertSext:
1978 case ISD::AssertZext: return visitAssertExt(N);
1979 case ISD::AssertAlign: return visitAssertAlign(N);
1980 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1983 case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
1984 case ISD::TRUNCATE: return visitTRUNCATE(N);
1985 case ISD::TRUNCATE_USAT_U: return visitTRUNCATE_USAT_U(N);
1986 case ISD::BITCAST: return visitBITCAST(N);
1987 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1988 case ISD::FADD: return visitFADD(N);
1989 case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
1990 case ISD::FSUB: return visitFSUB(N);
1991 case ISD::FMUL: return visitFMUL(N);
1992 case ISD::FMA: return visitFMA<EmptyMatchContext>(N);
1993 case ISD::FMAD: return visitFMAD(N);
1994 case ISD::FDIV: return visitFDIV(N);
1995 case ISD::FREM: return visitFREM(N);
1996 case ISD::FSQRT: return visitFSQRT(N);
1997 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1998 case ISD::FPOW: return visitFPOW(N);
1999 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
2000 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
2001 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
2002 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
2003 case ISD::LROUND:
2004 case ISD::LLROUND:
2005 case ISD::LRINT:
2006 case ISD::LLRINT: return visitXROUND(N);
2007 case ISD::FP_ROUND: return visitFP_ROUND(N);
2008 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
2009 case ISD::FNEG: return visitFNEG(N);
2010 case ISD::FABS: return visitFABS(N);
2011 case ISD::FFLOOR: return visitFFLOOR(N);
2012 case ISD::FMINNUM:
2013 case ISD::FMAXNUM:
2014 case ISD::FMINIMUM:
2015 case ISD::FMAXIMUM:
2016 case ISD::FMINIMUMNUM:
2017 case ISD::FMAXIMUMNUM: return visitFMinMax(N);
2018 case ISD::FCEIL: return visitFCEIL(N);
2019 case ISD::FTRUNC: return visitFTRUNC(N);
2020 case ISD::FFREXP: return visitFFREXP(N);
2021 case ISD::BRCOND: return visitBRCOND(N);
2022 case ISD::BR_CC: return visitBR_CC(N);
2023 case ISD::LOAD: return visitLOAD(N);
2024 case ISD::STORE: return visitSTORE(N);
2025 case ISD::ATOMIC_STORE: return visitATOMIC_STORE(N);
2026 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
2027 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
2028 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
2029 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
2030 case ISD::VECTOR_INTERLEAVE: return visitVECTOR_INTERLEAVE(N);
2031 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
2032 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
2033 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
2034 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
2035 case ISD::MGATHER: return visitMGATHER(N);
2036 case ISD::MLOAD: return visitMLOAD(N);
2037 case ISD::MSCATTER: return visitMSCATTER(N);
2038 case ISD::MSTORE: return visitMSTORE(N);
2039 case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM: return visitMHISTOGRAM(N);
2040 case ISD::PARTIAL_REDUCE_SMLA:
2041 case ISD::PARTIAL_REDUCE_UMLA:
2042 case ISD::PARTIAL_REDUCE_SUMLA:
2043 return visitPARTIAL_REDUCE_MLA(N);
2044 case ISD::VECTOR_COMPRESS: return visitVECTOR_COMPRESS(N);
2045 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
2046 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
2047 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
2048 case ISD::FP_TO_BF16: return visitFP_TO_BF16(N);
2049 case ISD::BF16_TO_FP: return visitBF16_TO_FP(N);
2050 case ISD::FREEZE: return visitFREEZE(N);
2051 case ISD::GET_FPENV_MEM: return visitGET_FPENV_MEM(N);
2052 case ISD::SET_FPENV_MEM: return visitSET_FPENV_MEM(N);
2053 case ISD::FCANONICALIZE: return visitFCANONICALIZE(N);
2054 case ISD::VECREDUCE_FADD:
2055 case ISD::VECREDUCE_FMUL:
2056 case ISD::VECREDUCE_ADD:
2057 case ISD::VECREDUCE_MUL:
2058 case ISD::VECREDUCE_AND:
2059 case ISD::VECREDUCE_OR:
2060 case ISD::VECREDUCE_XOR:
2061 case ISD::VECREDUCE_SMAX:
2062 case ISD::VECREDUCE_SMIN:
2063 case ISD::VECREDUCE_UMAX:
2064 case ISD::VECREDUCE_UMIN:
2065 case ISD::VECREDUCE_FMAX:
2066 case ISD::VECREDUCE_FMIN:
2067 case ISD::VECREDUCE_FMAXIMUM:
2068 case ISD::VECREDUCE_FMINIMUM: return visitVECREDUCE(N);
2069#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC:
2070#include "llvm/IR/VPIntrinsics.def"
2071 return visitVPOp(N);
2072 }
2073 // clang-format on
2074 return SDValue();
2075}
2076
2077SDValue DAGCombiner::combine(SDNode *N) {
2078 if (!DebugCounter::shouldExecute(DAGCombineCounter))
2079 return SDValue();
2080
2081 SDValue RV;
2082 if (!DisableGenericCombines)
2083 RV = visit(N);
2084
2085 // If nothing happened, try a target-specific DAG combine.
2086 if (!RV.getNode()) {
2087 assert(N->getOpcode() != ISD::DELETED_NODE &&
2088 "Node was deleted but visit returned NULL!");
2089
2090 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
2091 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
2092
2093 // Expose the DAG combiner to the target combiner impls.
2094 TargetLowering::DAGCombinerInfo
2095 DagCombineInfo(DAG, Level, false, this);
2096
2097 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
2098 }
2099 }
2100
2101 // If nothing happened still, try promoting the operation.
2102 if (!RV.getNode()) {
2103 switch (N->getOpcode()) {
2104 default: break;
2105 case ISD::ADD:
2106 case ISD::SUB:
2107 case ISD::MUL:
2108 case ISD::AND:
2109 case ISD::OR:
2110 case ISD::XOR:
2111 RV = PromoteIntBinOp(SDValue(N, 0));
2112 break;
2113 case ISD::SHL:
2114 case ISD::SRA:
2115 case ISD::SRL:
2116 RV = PromoteIntShiftOp(SDValue(N, 0));
2117 break;
2118 case ISD::SIGN_EXTEND:
2119 case ISD::ZERO_EXTEND:
2120 case ISD::ANY_EXTEND:
2121 RV = PromoteExtend(SDValue(N, 0));
2122 break;
2123 case ISD::LOAD:
2124 if (PromoteLoad(SDValue(N, 0)))
2125 RV = SDValue(N, 0);
2126 break;
2127 }
2128 }
2129
2130 // If N is a commutative binary node, try to eliminate it if the commuted
2131 // version is already present in the DAG.
2132 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) {
2133 SDValue N0 = N->getOperand(0);
2134 SDValue N1 = N->getOperand(1);
2135
2136 // Constant operands are canonicalized to RHS.
2137 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
2138 SDValue Ops[] = {N1, N0};
2139 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
2140 N->getFlags());
2141 if (CSENode)
2142 return SDValue(CSENode, 0);
2143 }
2144 }
2145
2146 return RV;
2147}
2148
2149/// Given a node, return its input chain if it has one, otherwise return a null
2150/// sd operand.
2152 if (unsigned NumOps = N->getNumOperands()) {
2153 if (N->getOperand(0).getValueType() == MVT::Other)
2154 return N->getOperand(0);
2155 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
2156 return N->getOperand(NumOps-1);
2157 for (unsigned i = 1; i < NumOps-1; ++i)
2158 if (N->getOperand(i).getValueType() == MVT::Other)
2159 return N->getOperand(i);
2160 }
2161 return SDValue();
2162}
2163
2164SDValue DAGCombiner::visitFCANONICALIZE(SDNode *N) {
2165 SDValue Operand = N->getOperand(0);
2166 EVT VT = Operand.getValueType();
2167 SDLoc dl(N);
2168
2169 // Canonicalize undef to quiet NaN.
2170 if (Operand.isUndef()) {
2171 APFloat CanonicalQNaN = APFloat::getQNaN(VT.getFltSemantics());
2172 return DAG.getConstantFP(CanonicalQNaN, dl, VT);
2173 }
2174 return SDValue();
2175}
2176
2177SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
2178 // If N has two operands, where one has an input chain equal to the other,
2179 // the 'other' chain is redundant.
2180 if (N->getNumOperands() == 2) {
2181 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
2182 return N->getOperand(0);
2183 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
2184 return N->getOperand(1);
2185 }
2186
2187 // Don't simplify token factors if optnone.
2188 if (OptLevel == CodeGenOptLevel::None)
2189 return SDValue();
2190
2191 // Don't simplify the token factor if the node itself has too many operands.
2192 if (N->getNumOperands() > TokenFactorInlineLimit)
2193 return SDValue();
2194
2195 // If the sole user is a token factor, we should make sure we have a
2196 // chance to merge them together. This prevents TF chains from inhibiting
2197 // optimizations.
2198 if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::TokenFactor)
2199 AddToWorklist(*(N->user_begin()));
2200
2201 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
2202 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
2203 SmallPtrSet<SDNode*, 16> SeenOps;
2204 bool Changed = false; // If we should replace this token factor.
2205
2206 // Start out with this token factor.
2207 TFs.push_back(N);
2208
2209 // Iterate through token factors. The TFs grows when new token factors are
2210 // encountered.
2211 for (unsigned i = 0; i < TFs.size(); ++i) {
2212 // Limit number of nodes to inline, to avoid quadratic compile times.
2213 // We have to add the outstanding Token Factors to Ops, otherwise we might
2214 // drop Ops from the resulting Token Factors.
2215 if (Ops.size() > TokenFactorInlineLimit) {
2216 for (unsigned j = i; j < TFs.size(); j++)
2217 Ops.emplace_back(TFs[j], 0);
2218 // Drop unprocessed Token Factors from TFs, so we do not add them to the
2219 // combiner worklist later.
2220 TFs.resize(i);
2221 break;
2222 }
2223
2224 SDNode *TF = TFs[i];
2225 // Check each of the operands.
2226 for (const SDValue &Op : TF->op_values()) {
2227 switch (Op.getOpcode()) {
2228 case ISD::EntryToken:
2229 // Entry tokens don't need to be added to the list. They are
2230 // redundant.
2231 Changed = true;
2232 break;
2233
2234 case ISD::TokenFactor:
2235 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
2236 // Queue up for processing.
2237 TFs.push_back(Op.getNode());
2238 Changed = true;
2239 break;
2240 }
2241 [[fallthrough]];
2242
2243 default:
2244 // Only add if it isn't already in the list.
2245 if (SeenOps.insert(Op.getNode()).second)
2246 Ops.push_back(Op);
2247 else
2248 Changed = true;
2249 break;
2250 }
2251 }
2252 }
2253
2254 // Re-visit inlined Token Factors, to clean them up in case they have been
2255 // removed. Skip the first Token Factor, as this is the current node.
2256 for (unsigned i = 1, e = TFs.size(); i < e; i++)
2257 AddToWorklist(TFs[i]);
2258
2259 // Remove Nodes that are chained to another node in the list. Do so
2260 // by walking up chains breath-first stopping when we've seen
2261 // another operand. In general we must climb to the EntryNode, but we can exit
2262 // early if we find all remaining work is associated with just one operand as
2263 // no further pruning is possible.
2264
2265 // List of nodes to search through and original Ops from which they originate.
2267 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
2268 SmallPtrSet<SDNode *, 16> SeenChains;
2269 bool DidPruneOps = false;
2270
2271 unsigned NumLeftToConsider = 0;
2272 for (const SDValue &Op : Ops) {
2273 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
2274 OpWorkCount.push_back(1);
2275 }
2276
2277 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
2278 // If this is an Op, we can remove the op from the list. Remark any
2279 // search associated with it as from the current OpNumber.
2280 if (SeenOps.contains(Op)) {
2281 Changed = true;
2282 DidPruneOps = true;
2283 unsigned OrigOpNumber = 0;
2284 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
2285 OrigOpNumber++;
2286 assert((OrigOpNumber != Ops.size()) &&
2287 "expected to find TokenFactor Operand");
2288 // Re-mark worklist from OrigOpNumber to OpNumber
2289 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
2290 if (Worklist[i].second == OrigOpNumber) {
2291 Worklist[i].second = OpNumber;
2292 }
2293 }
2294 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
2295 OpWorkCount[OrigOpNumber] = 0;
2296 NumLeftToConsider--;
2297 }
2298 // Add if it's a new chain
2299 if (SeenChains.insert(Op).second) {
2300 OpWorkCount[OpNumber]++;
2301 Worklist.push_back(std::make_pair(Op, OpNumber));
2302 }
2303 };
2304
2305 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
2306 // We need at least be consider at least 2 Ops to prune.
2307 if (NumLeftToConsider <= 1)
2308 break;
2309 auto CurNode = Worklist[i].first;
2310 auto CurOpNumber = Worklist[i].second;
2311 assert((OpWorkCount[CurOpNumber] > 0) &&
2312 "Node should not appear in worklist");
2313 switch (CurNode->getOpcode()) {
2314 case ISD::EntryToken:
2315 // Hitting EntryToken is the only way for the search to terminate without
2316 // hitting
2317 // another operand's search. Prevent us from marking this operand
2318 // considered.
2319 NumLeftToConsider++;
2320 break;
2321 case ISD::TokenFactor:
2322 for (const SDValue &Op : CurNode->op_values())
2323 AddToWorklist(i, Op.getNode(), CurOpNumber);
2324 break;
2325 case ISD::LIFETIME_START:
2326 case ISD::LIFETIME_END:
2327 case ISD::CopyFromReg:
2328 case ISD::CopyToReg:
2329 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
2330 break;
2331 default:
2332 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
2333 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
2334 break;
2335 }
2336 OpWorkCount[CurOpNumber]--;
2337 if (OpWorkCount[CurOpNumber] == 0)
2338 NumLeftToConsider--;
2339 }
2340
2341 // If we've changed things around then replace token factor.
2342 if (Changed) {
2344 if (Ops.empty()) {
2345 // The entry token is the only possible outcome.
2346 Result = DAG.getEntryNode();
2347 } else {
2348 if (DidPruneOps) {
2349 SmallVector<SDValue, 8> PrunedOps;
2350 //
2351 for (const SDValue &Op : Ops) {
2352 if (SeenChains.count(Op.getNode()) == 0)
2353 PrunedOps.push_back(Op);
2354 }
2355 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2356 } else {
2357 Result = DAG.getTokenFactor(SDLoc(N), Ops);
2358 }
2359 }
2360 return Result;
2361 }
2362 return SDValue();
2363}
2364
2365/// MERGE_VALUES can always be eliminated.
2366SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2367 WorklistRemover DeadNodes(*this);
2368 // Replacing results may cause a different MERGE_VALUES to suddenly
2369 // be CSE'd with N, and carry its uses with it. Iterate until no
2370 // uses remain, to ensure that the node can be safely deleted.
2371 // First add the users of this node to the work list so that they
2372 // can be tried again once they have new operands.
2373 AddUsersToWorklist(N);
2374 do {
2375 // Do as a single replacement to avoid rewalking use lists.
2377 DAG.ReplaceAllUsesWith(N, Ops.data());
2378 } while (!N->use_empty());
2379 deleteAndRecombine(N);
2380 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2381}
2382
2383/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2384/// ConstantSDNode pointer else nullptr.
2387 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2388}
2389
2390// isTruncateOf - If N is a truncate of some other value, return true, record
2391// the value being truncated in Op and which of Op's bits are zero/one in Known.
2392// This function computes KnownBits to avoid a duplicated call to
2393// computeKnownBits in the caller.
2395 KnownBits &Known) {
2396 if (N->getOpcode() == ISD::TRUNCATE) {
2397 Op = N->getOperand(0);
2398 Known = DAG.computeKnownBits(Op);
2399 if (N->getFlags().hasNoUnsignedWrap())
2400 Known.Zero.setBitsFrom(N.getScalarValueSizeInBits());
2401 return true;
2402 }
2403
2404 if (N.getValueType().getScalarType() != MVT::i1 ||
2405 !sd_match(
2407 return false;
2408
2409 Known = DAG.computeKnownBits(Op);
2410 return (Known.Zero | 1).isAllOnes();
2411}
2412
2413/// Return true if 'Use' is a load or a store that uses N as its base pointer
2414/// and that N may be folded in the load / store addressing mode.
2416 const TargetLowering &TLI) {
2417 EVT VT;
2418 unsigned AS;
2419
2420 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
2421 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2422 return false;
2423 VT = LD->getMemoryVT();
2424 AS = LD->getAddressSpace();
2425 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
2426 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2427 return false;
2428 VT = ST->getMemoryVT();
2429 AS = ST->getAddressSpace();
2431 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2432 return false;
2433 VT = LD->getMemoryVT();
2434 AS = LD->getAddressSpace();
2436 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2437 return false;
2438 VT = ST->getMemoryVT();
2439 AS = ST->getAddressSpace();
2440 } else {
2441 return false;
2442 }
2443
2445 if (N->isAnyAdd()) {
2446 AM.HasBaseReg = true;
2448 if (Offset)
2449 // [reg +/- imm]
2450 AM.BaseOffs = Offset->getSExtValue();
2451 else
2452 // [reg +/- reg]
2453 AM.Scale = 1;
2454 } else if (N->getOpcode() == ISD::SUB) {
2455 AM.HasBaseReg = true;
2457 if (Offset)
2458 // [reg +/- imm]
2459 AM.BaseOffs = -Offset->getSExtValue();
2460 else
2461 // [reg +/- reg]
2462 AM.Scale = 1;
2463 } else {
2464 return false;
2465 }
2466
2467 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
2468 VT.getTypeForEVT(*DAG.getContext()), AS);
2469}
2470
2471/// This inverts a canonicalization in IR that replaces a variable select arm
2472/// with an identity constant. Codegen improves if we re-use the variable
2473/// operand rather than load a constant. This can also be converted into a
2474/// masked vector operation if the target supports it.
2476 bool ShouldCommuteOperands) {
2477 // Match a select as operand 1. The identity constant that we are looking for
2478 // is only valid as operand 1 of a non-commutative binop.
2479 SDValue N0 = N->getOperand(0);
2480 SDValue N1 = N->getOperand(1);
2481 if (ShouldCommuteOperands)
2482 std::swap(N0, N1);
2483
2484 unsigned SelOpcode = N1.getOpcode();
2485 if ((SelOpcode != ISD::VSELECT && SelOpcode != ISD::SELECT) ||
2486 !N1.hasOneUse())
2487 return SDValue();
2488
2489 // We can't hoist all instructions because of immediate UB (not speculatable).
2490 // For example div/rem by zero.
2492 return SDValue();
2493
2494 unsigned Opcode = N->getOpcode();
2495 EVT VT = N->getValueType(0);
2496 SDValue Cond = N1.getOperand(0);
2497 SDValue TVal = N1.getOperand(1);
2498 SDValue FVal = N1.getOperand(2);
2499 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2500
2501 // This transform increases uses of N0, so freeze it to be safe.
2502 // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal)
2503 unsigned OpNo = ShouldCommuteOperands ? 0 : 1;
2504 if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo) &&
2505 TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
2506 FVal)) {
2507 SDValue F0 = DAG.getFreeze(N0);
2508 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags());
2509 return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO);
2510 }
2511 // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0
2512 if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo) &&
2513 TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
2514 TVal)) {
2515 SDValue F0 = DAG.getFreeze(N0);
2516 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags());
2517 return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0);
2518 }
2519
2520 return SDValue();
2521}
2522
2523SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2524 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2525 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
2526 "Unexpected binary operator");
2527
2528 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false))
2529 return Sel;
2530
2531 if (TLI.isCommutativeBinOp(BO->getOpcode()))
2532 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true))
2533 return Sel;
2534
2535 // Don't do this unless the old select is going away. We want to eliminate the
2536 // binary operator, not replace a binop with a select.
2537 // TODO: Handle ISD::SELECT_CC.
2538 unsigned SelOpNo = 0;
2539 SDValue Sel = BO->getOperand(0);
2540 auto BinOpcode = BO->getOpcode();
2541 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2542 SelOpNo = 1;
2543 Sel = BO->getOperand(1);
2544
2545 // Peek through trunc to shift amount type.
2546 if ((BinOpcode == ISD::SHL || BinOpcode == ISD::SRA ||
2547 BinOpcode == ISD::SRL) && Sel.hasOneUse()) {
2548 // This is valid when the truncated bits of x are already zero.
2549 SDValue Op;
2550 KnownBits Known;
2551 if (isTruncateOf(DAG, Sel, Op, Known) &&
2553 Sel = Op;
2554 }
2555 }
2556
2557 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2558 return SDValue();
2559
2560 SDValue CT = Sel.getOperand(1);
2561 if (!isConstantOrConstantVector(CT, true) &&
2563 return SDValue();
2564
2565 SDValue CF = Sel.getOperand(2);
2566 if (!isConstantOrConstantVector(CF, true) &&
2568 return SDValue();
2569
2570 // Bail out if any constants are opaque because we can't constant fold those.
2571 // The exception is "and" and "or" with either 0 or -1 in which case we can
2572 // propagate non constant operands into select. I.e.:
2573 // and (select Cond, 0, -1), X --> select Cond, 0, X
2574 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2575 bool CanFoldNonConst =
2576 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2579
2580 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2581 if (!CanFoldNonConst &&
2582 !isConstantOrConstantVector(CBO, true) &&
2584 return SDValue();
2585
2586 SDLoc DL(Sel);
2587 SDValue NewCT, NewCF;
2588 EVT VT = BO->getValueType(0);
2589
2590 if (CanFoldNonConst) {
2591 // If CBO is an opaque constant, we can't rely on getNode to constant fold.
2592 if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) ||
2593 (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT)))
2594 NewCT = CT;
2595 else
2596 NewCT = CBO;
2597
2598 if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) ||
2599 (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF)))
2600 NewCF = CF;
2601 else
2602 NewCF = CBO;
2603 } else {
2604 // We have a select-of-constants followed by a binary operator with a
2605 // constant. Eliminate the binop by pulling the constant math into the
2606 // select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT +
2607 // CBO, CF + CBO
2608 NewCT = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CT})
2609 : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CT, CBO});
2610 if (!NewCT)
2611 return SDValue();
2612
2613 NewCF = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CF})
2614 : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CF, CBO});
2615 if (!NewCF)
2616 return SDValue();
2617 }
2618
2619 return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF, BO->getFlags());
2620}
2621
2623 SelectionDAG &DAG) {
2624 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2625 "Expecting add or sub");
2626
2627 // Match a constant operand and a zext operand for the math instruction:
2628 // add Z, C
2629 // sub C, Z
2630 bool IsAdd = N->getOpcode() == ISD::ADD;
2631 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2632 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2633 auto *CN = dyn_cast<ConstantSDNode>(C);
2634 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2635 return SDValue();
2636
2637 // Match the zext operand as a setcc of a boolean.
2638 if (Z.getOperand(0).getValueType() != MVT::i1)
2639 return SDValue();
2640
2641 // Match the compare as: setcc (X & 1), 0, eq.
2642 if (!sd_match(Z.getOperand(0), m_SetCC(m_And(m_Value(), m_One()), m_Zero(),
2644 return SDValue();
2645
2646 // We are adding/subtracting a constant and an inverted low bit. Turn that
2647 // into a subtract/add of the low bit with incremented/decremented constant:
2648 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2649 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2650 EVT VT = C.getValueType();
2651 SDValue LowBit = DAG.getZExtOrTrunc(Z.getOperand(0).getOperand(0), DL, VT);
2652 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT)
2653 : DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2654 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2655}
2656
2657// Attempt to form avgceil(A, B) from (A | B) - ((A ^ B) >> 1)
2658SDValue DAGCombiner::foldSubToAvg(SDNode *N, const SDLoc &DL) {
2659 SDValue N0 = N->getOperand(0);
2660 EVT VT = N0.getValueType();
2661 SDValue A, B;
2662
2663 if ((!LegalOperations || hasOperation(ISD::AVGCEILU, VT)) &&
2665 m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
2666 return DAG.getNode(ISD::AVGCEILU, DL, VT, A, B);
2667 }
2668 if ((!LegalOperations || hasOperation(ISD::AVGCEILS, VT)) &&
2670 m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
2671 return DAG.getNode(ISD::AVGCEILS, DL, VT, A, B);
2672 }
2673 return SDValue();
2674}
2675
2676/// Try to fold a pointer arithmetic node.
2677/// This needs to be done separately from normal addition, because pointer
2678/// addition is not commutative.
2679SDValue DAGCombiner::visitPTRADD(SDNode *N) {
2680 SDValue N0 = N->getOperand(0);
2681 SDValue N1 = N->getOperand(1);
2682 EVT PtrVT = N0.getValueType();
2683 EVT IntVT = N1.getValueType();
2684 SDLoc DL(N);
2685
2686 // This is already ensured by an assert in SelectionDAG::getNode(). Several
2687 // combines here depend on this assumption.
2688 assert(PtrVT == IntVT &&
2689 "PTRADD with different operand types is not supported");
2690
2691 // fold (ptradd x, 0) -> x
2692 if (isNullConstant(N1))
2693 return N0;
2694
2695 // fold (ptradd 0, x) -> x
2696 if (PtrVT == IntVT && isNullConstant(N0))
2697 return N1;
2698
2699 if (N0.getOpcode() == ISD::PTRADD &&
2700 !reassociationCanBreakAddressingModePattern(ISD::PTRADD, DL, N, N0, N1)) {
2701 SDValue X = N0.getOperand(0);
2702 SDValue Y = N0.getOperand(1);
2703 SDValue Z = N1;
2704 bool N0OneUse = N0.hasOneUse();
2705 bool YIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Y);
2706 bool ZIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Z);
2707
2708 // (ptradd (ptradd x, y), z) -> (ptradd x, (add y, z)) if:
2709 // * y is a constant and (ptradd x, y) has one use; or
2710 // * y and z are both constants.
2711 if ((YIsConstant && N0OneUse) || (YIsConstant && ZIsConstant)) {
2712 // If both additions in the original were NUW, the new ones are as well.
2713 SDNodeFlags Flags =
2714 (N->getFlags() & N0->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2715 SDValue Add = DAG.getNode(ISD::ADD, DL, IntVT, {Y, Z}, Flags);
2716 AddToWorklist(Add.getNode());
2717 return DAG.getMemBasePlusOffset(X, Add, DL, Flags);
2718 }
2719 }
2720
2721 // The following combines can turn in-bounds pointer arithmetic out of bounds.
2722 // That is problematic for settings like AArch64's CPA, which checks that
2723 // intermediate results of pointer arithmetic remain in bounds. The target
2724 // therefore needs to opt-in to enable them.
2726 DAG.getMachineFunction().getFunction(), PtrVT))
2727 return SDValue();
2728
2729 if (N0.getOpcode() == ISD::PTRADD && isa<ConstantSDNode>(N1)) {
2730 // Fold (ptradd (ptradd GA, v), c) -> (ptradd (ptradd GA, c) v) with
2731 // global address GA and constant c, such that c can be folded into GA.
2732 // TODO: Support constant vector splats.
2733 SDValue GAValue = N0.getOperand(0);
2734 if (const GlobalAddressSDNode *GA =
2736 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
2738 // If both additions in the original were NUW, reassociation preserves
2739 // that.
2740 SDNodeFlags Flags =
2741 (N->getFlags() & N0->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2742 SDValue Inner = DAG.getMemBasePlusOffset(GAValue, N1, DL, Flags);
2743 AddToWorklist(Inner.getNode());
2744 return DAG.getMemBasePlusOffset(Inner, N0.getOperand(1), DL, Flags);
2745 }
2746 }
2747 }
2748
2749 if (N1.getOpcode() == ISD::ADD && N1.hasOneUse()) {
2750 // (ptradd x, (add y, z)) -> (ptradd (ptradd x, y), z) if z is a constant,
2751 // y is not, and (add y, z) is used only once.
2752 // (ptradd x, (add y, z)) -> (ptradd (ptradd x, z), y) if y is a constant,
2753 // z is not, and (add y, z) is used only once.
2754 // The goal is to move constant offsets to the outermost ptradd, to create
2755 // more opportunities to fold offsets into memory instructions.
2756 // Together with the another combine above, this also implements
2757 // (ptradd (ptradd x, y), z) -> (ptradd (ptradd x, z), y)).
2758 SDValue X = N0;
2759 SDValue Y = N1.getOperand(0);
2760 SDValue Z = N1.getOperand(1);
2761 bool YIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Y);
2762 bool ZIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Z);
2763
2764 // If both additions in the original were NUW, reassociation preserves that.
2765 SDNodeFlags ReassocFlags =
2766 (N->getFlags() & N1->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2767
2768 if (ZIsConstant != YIsConstant) {
2769 if (YIsConstant)
2770 std::swap(Y, Z);
2771 SDValue Inner = DAG.getMemBasePlusOffset(X, Y, DL, ReassocFlags);
2772 AddToWorklist(Inner.getNode());
2773 return DAG.getMemBasePlusOffset(Inner, Z, DL, ReassocFlags);
2774 }
2775 }
2776
2777 // Transform (ptradd a, b) -> (or disjoint a, b) if it is equivalent and if
2778 // that transformation can't block an offset folding at any use of the ptradd.
2779 // This should be done late, after legalization, so that it doesn't block
2780 // other ptradd combines that could enable more offset folding.
2781 if (LegalOperations && DAG.haveNoCommonBitsSet(N0, N1)) {
2782 bool TransformCannotBreakAddrMode = none_of(N->users(), [&](SDNode *User) {
2783 return canFoldInAddressingMode(N, User, DAG, TLI);
2784 });
2785
2786 if (TransformCannotBreakAddrMode)
2787 return DAG.getNode(ISD::OR, DL, PtrVT, N0, N1, SDNodeFlags::Disjoint);
2788 }
2789
2790 return SDValue();
2791}
2792
2793/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2794/// a shift and add with a different constant.
2796 SelectionDAG &DAG) {
2797 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2798 "Expecting add or sub");
2799
2800 // We need a constant operand for the add/sub, and the other operand is a
2801 // logical shift right: add (srl), C or sub C, (srl).
2802 bool IsAdd = N->getOpcode() == ISD::ADD;
2803 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2804 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2805 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
2806 ShiftOp.getOpcode() != ISD::SRL)
2807 return SDValue();
2808
2809 // The shift must be of a 'not' value.
2810 SDValue Not = ShiftOp.getOperand(0);
2811 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2812 return SDValue();
2813
2814 // The shift must be moving the sign bit to the least-significant-bit.
2815 EVT VT = ShiftOp.getValueType();
2816 SDValue ShAmt = ShiftOp.getOperand(1);
2817 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2818 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2819 return SDValue();
2820
2821 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2822 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2823 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2824 if (SDValue NewC = DAG.FoldConstantArithmetic(
2825 IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
2826 {ConstantOp, DAG.getConstant(1, DL, VT)})) {
2827 SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT,
2828 Not.getOperand(0), ShAmt);
2829 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
2830 }
2831
2832 return SDValue();
2833}
2834
2835static bool
2837 return (isBitwiseNot(Op0) && Op0.getOperand(0) == Op1) ||
2838 (isBitwiseNot(Op1) && Op1.getOperand(0) == Op0);
2839}
2840
2841/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2842/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2843/// are no common bits set in the operands).
2844SDValue DAGCombiner::visitADDLike(SDNode *N) {
2845 SDValue N0 = N->getOperand(0);
2846 SDValue N1 = N->getOperand(1);
2847 EVT VT = N0.getValueType();
2848 SDLoc DL(N);
2849
2850 // fold (add x, undef) -> undef
2851 if (N0.isUndef())
2852 return N0;
2853 if (N1.isUndef())
2854 return N1;
2855
2856 // fold (add c1, c2) -> c1+c2
2857 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}))
2858 return C;
2859
2860 // canonicalize constant to RHS
2863 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2864
2865 if (areBitwiseNotOfEachother(N0, N1))
2866 return DAG.getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT);
2867
2868 // fold vector ops
2869 if (VT.isVector()) {
2870 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
2871 return FoldedVOp;
2872
2873 // fold (add x, 0) -> x, vector edition
2875 return N0;
2876 }
2877
2878 // fold (add x, 0) -> x
2879 if (isNullConstant(N1))
2880 return N0;
2881
2882 if (N0.getOpcode() == ISD::SUB) {
2883 SDValue N00 = N0.getOperand(0);
2884 SDValue N01 = N0.getOperand(1);
2885
2886 // fold ((A-c1)+c2) -> (A+(c2-c1))
2887 if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01}))
2888 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2889
2890 // fold ((c1-A)+c2) -> (c1+c2)-A
2891 if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00}))
2892 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2893 }
2894
2895 // add (sext i1 X), 1 -> zext (not i1 X)
2896 // We don't transform this pattern:
2897 // add (zext i1 X), -1 -> sext (not i1 X)
2898 // because most (?) targets generate better code for the zext form.
2899 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2900 isOneOrOneSplat(N1)) {
2901 SDValue X = N0.getOperand(0);
2902 if ((!LegalOperations ||
2903 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2905 X.getScalarValueSizeInBits() == 1) {
2906 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2907 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2908 }
2909 }
2910
2911 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1))
2912 // iff (or x, c0) is equivalent to (add x, c0).
2913 // Fold (add (xor x, c0), c1) -> (add x, (c0 + c1))
2914 // iff (xor x, c0) is equivalent to (add x, c0).
2915 if (DAG.isADDLike(N0)) {
2916 SDValue N01 = N0.getOperand(1);
2917 if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01}))
2918 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add);
2919 }
2920
2921 if (SDValue NewSel = foldBinOpIntoSelect(N))
2922 return NewSel;
2923
2924 // reassociate add
2925 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) {
2926 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2927 return RADD;
2928
2929 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2930 // equivalent to (add x, c).
2931 // Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is
2932 // equivalent to (add x, c).
2933 // Do this optimization only when adding c does not introduce instructions
2934 // for adding carries.
2935 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
2936 if (DAG.isADDLike(N0) && N0.hasOneUse() &&
2937 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2938 // If N0's type does not split or is a sign mask, it does not introduce
2939 // add carry.
2940 auto TyActn = TLI.getTypeAction(*DAG.getContext(), N0.getValueType());
2941 bool NoAddCarry = TyActn == TargetLoweringBase::TypeLegal ||
2944 if (NoAddCarry)
2945 return DAG.getNode(
2946 ISD::ADD, DL, VT,
2947 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
2948 N0.getOperand(1));
2949 }
2950 return SDValue();
2951 };
2952 if (SDValue Add = ReassociateAddOr(N0, N1))
2953 return Add;
2954 if (SDValue Add = ReassociateAddOr(N1, N0))
2955 return Add;
2956
2957 // Fold add(vecreduce(x), vecreduce(y)) -> vecreduce(add(x, y))
2958 if (SDValue SD =
2959 reassociateReduction(ISD::VECREDUCE_ADD, ISD::ADD, DL, VT, N0, N1))
2960 return SD;
2961 }
2962
2963 SDValue A, B, C, D;
2964
2965 // fold ((0-A) + B) -> B-A
2966 if (sd_match(N0, m_Neg(m_Value(A))))
2967 return DAG.getNode(ISD::SUB, DL, VT, N1, A);
2968
2969 // fold (A + (0-B)) -> A-B
2970 if (sd_match(N1, m_Neg(m_Value(B))))
2971 return DAG.getNode(ISD::SUB, DL, VT, N0, B);
2972
2973 // fold (A+(B-A)) -> B
2974 if (sd_match(N1, m_Sub(m_Value(B), m_Specific(N0))))
2975 return B;
2976
2977 // fold ((B-A)+A) -> B
2978 if (sd_match(N0, m_Sub(m_Value(B), m_Specific(N1))))
2979 return B;
2980
2981 // fold ((A-B)+(C-A)) -> (C-B)
2982 if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
2984 return DAG.getNode(ISD::SUB, DL, VT, C, B);
2985
2986 // fold ((A-B)+(B-C)) -> (A-C)
2987 if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
2989 return DAG.getNode(ISD::SUB, DL, VT, A, C);
2990
2991 // fold (A+(B-(A+C))) to (B-C)
2992 // fold (A+(B-(C+A))) to (B-C)
2993 if (sd_match(N1, m_Sub(m_Value(B), m_Add(m_Specific(N0), m_Value(C)))))
2994 return DAG.getNode(ISD::SUB, DL, VT, B, C);
2995
2996 // fold (A+((B-A)+or-C)) to (B+or-C)
2997 if (sd_match(N1,
2999 m_Sub(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C)))))
3000 return DAG.getNode(N1.getOpcode(), DL, VT, B, C);
3001
3002 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
3003 if (sd_match(N0, m_OneUse(m_Sub(m_Value(A), m_Value(B)))) &&
3004 sd_match(N1, m_OneUse(m_Sub(m_Value(C), m_Value(D)))) &&
3006 return DAG.getNode(ISD::SUB, DL, VT,
3007 DAG.getNode(ISD::ADD, SDLoc(N0), VT, A, C),
3008 DAG.getNode(ISD::ADD, SDLoc(N1), VT, B, D));
3009
3010 // fold (add (umax X, C), -C) --> (usubsat X, C)
3011 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
3012 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
3013 return (!Max && !Op) ||
3014 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
3015 };
3016 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
3017 /*AllowUndefs*/ true))
3018 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
3019 N0.getOperand(1));
3020 }
3021
3023 return SDValue(N, 0);
3024
3025 if (isOneOrOneSplat(N1)) {
3026 // fold (add (xor a, -1), 1) -> (sub 0, a)
3027 if (isBitwiseNot(N0))
3028 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
3029 N0.getOperand(0));
3030
3031 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
3032 if (N0.getOpcode() == ISD::ADD) {
3033 SDValue A, Xor;
3034
3035 if (isBitwiseNot(N0.getOperand(0))) {
3036 A = N0.getOperand(1);
3037 Xor = N0.getOperand(0);
3038 } else if (isBitwiseNot(N0.getOperand(1))) {
3039 A = N0.getOperand(0);
3040 Xor = N0.getOperand(1);
3041 }
3042
3043 if (Xor)
3044 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
3045 }
3046
3047 // Look for:
3048 // add (add x, y), 1
3049 // And if the target does not like this form then turn into:
3050 // sub y, (xor x, -1)
3051 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
3052 N0.hasOneUse() &&
3053 // Limit this to after legalization if the add has wrap flags
3054 (Level >= AfterLegalizeDAG || (!N->getFlags().hasNoUnsignedWrap() &&
3055 !N->getFlags().hasNoSignedWrap()))) {
3056 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
3057 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
3058 }
3059 }
3060
3061 // (x - y) + -1 -> add (xor y, -1), x
3062 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
3063 isAllOnesOrAllOnesSplat(N1, /*AllowUndefs=*/true)) {
3064 SDValue Not = DAG.getNOT(DL, N0.getOperand(1), VT);
3065 return DAG.getNode(ISD::ADD, DL, VT, Not, N0.getOperand(0));
3066 }
3067
3068 // Fold add(mul(add(A, CA), CM), CB) -> add(mul(A, CM), CM*CA+CB).
3069 // This can help if the inner add has multiple uses.
3070 APInt CM, CA;
3071 if (ConstantSDNode *CB = dyn_cast<ConstantSDNode>(N1)) {
3072 if (VT.getScalarSizeInBits() <= 64) {
3074 m_ConstInt(CM)))) &&
3076 (CA * CM + CB->getAPIntValue()).getSExtValue())) {
3077 SDNodeFlags Flags;
3078 // If all the inputs are nuw, the outputs can be nuw. If all the input
3079 // are _also_ nsw the outputs can be too.
3080 if (N->getFlags().hasNoUnsignedWrap() &&
3081 N0->getFlags().hasNoUnsignedWrap() &&
3084 if (N->getFlags().hasNoSignedWrap() &&
3085 N0->getFlags().hasNoSignedWrap() &&
3088 }
3089 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
3090 DAG.getConstant(CM, DL, VT), Flags);
3091 return DAG.getNode(
3092 ISD::ADD, DL, VT, Mul,
3093 DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
3094 }
3095 // Also look in case there is an intermediate add.
3096 if (sd_match(N0, m_OneUse(m_Add(
3098 m_ConstInt(CM))),
3099 m_Value(B)))) &&
3101 (CA * CM + CB->getAPIntValue()).getSExtValue())) {
3102 SDNodeFlags Flags;
3103 // If all the inputs are nuw, the outputs can be nuw. If all the input
3104 // are _also_ nsw the outputs can be too.
3105 SDValue OMul =
3106 N0.getOperand(0) == B ? N0.getOperand(1) : N0.getOperand(0);
3107 if (N->getFlags().hasNoUnsignedWrap() &&
3108 N0->getFlags().hasNoUnsignedWrap() &&
3109 OMul->getFlags().hasNoUnsignedWrap() &&
3110 OMul.getOperand(0)->getFlags().hasNoUnsignedWrap()) {
3112 if (N->getFlags().hasNoSignedWrap() &&
3113 N0->getFlags().hasNoSignedWrap() &&
3114 OMul->getFlags().hasNoSignedWrap() &&
3115 OMul.getOperand(0)->getFlags().hasNoSignedWrap())
3117 }
3118 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
3119 DAG.getConstant(CM, DL, VT), Flags);
3120 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N1), VT, Mul, B, Flags);
3121 return DAG.getNode(
3122 ISD::ADD, DL, VT, Add,
3123 DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
3124 }
3125 }
3126 }
3127
3128 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
3129 return Combined;
3130
3131 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
3132 return Combined;
3133
3134 return SDValue();
3135}
3136
3137// Attempt to form avgfloor(A, B) from (A & B) + ((A ^ B) >> 1)
3138SDValue DAGCombiner::foldAddToAvg(SDNode *N, const SDLoc &DL) {
3139 SDValue N0 = N->getOperand(0);
3140 EVT VT = N0.getValueType();
3141 SDValue A, B;
3142
3143 if ((!LegalOperations || hasOperation(ISD::AVGFLOORU, VT)) &&
3145 m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
3146 return DAG.getNode(ISD::AVGFLOORU, DL, VT, A, B);
3147 }
3148 if ((!LegalOperations || hasOperation(ISD::AVGFLOORS, VT)) &&
3150 m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
3151 return DAG.getNode(ISD::AVGFLOORS, DL, VT, A, B);
3152 }
3153
3154 return SDValue();
3155}
3156
3157SDValue DAGCombiner::visitADD(SDNode *N) {
3158 SDValue N0 = N->getOperand(0);
3159 SDValue N1 = N->getOperand(1);
3160 EVT VT = N0.getValueType();
3161 SDLoc DL(N);
3162
3163 if (SDValue Combined = visitADDLike(N))
3164 return Combined;
3165
3166 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
3167 return V;
3168
3169 if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
3170 return V;
3171
3172 if (SDValue V = MatchRotate(N0, N1, SDLoc(N), /*FromAdd=*/true))
3173 return V;
3174
3175 // Try to match AVGFLOOR fixedwidth pattern
3176 if (SDValue V = foldAddToAvg(N, DL))
3177 return V;
3178
3179 // fold (a+b) -> (a|b) iff a and b share no bits.
3180 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
3181 DAG.haveNoCommonBitsSet(N0, N1))
3182 return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
3183
3184 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
3185 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
3186 const APInt &C0 = N0->getConstantOperandAPInt(0);
3187 const APInt &C1 = N1->getConstantOperandAPInt(0);
3188 return DAG.getVScale(DL, VT, C0 + C1);
3189 }
3190
3191 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
3192 if (N0.getOpcode() == ISD::ADD &&
3193 N0.getOperand(1).getOpcode() == ISD::VSCALE &&
3194 N1.getOpcode() == ISD::VSCALE) {
3195 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
3196 const APInt &VS1 = N1->getConstantOperandAPInt(0);
3197 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
3198 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
3199 }
3200
3201 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
3202 if (N0.getOpcode() == ISD::STEP_VECTOR &&
3203 N1.getOpcode() == ISD::STEP_VECTOR) {
3204 const APInt &C0 = N0->getConstantOperandAPInt(0);
3205 const APInt &C1 = N1->getConstantOperandAPInt(0);
3206 APInt NewStep = C0 + C1;
3207 return DAG.getStepVector(DL, VT, NewStep);
3208 }
3209
3210 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
3211 if (N0.getOpcode() == ISD::ADD &&
3213 N1.getOpcode() == ISD::STEP_VECTOR) {
3214 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
3215 const APInt &SV1 = N1->getConstantOperandAPInt(0);
3216 APInt NewStep = SV0 + SV1;
3217 SDValue SV = DAG.getStepVector(DL, VT, NewStep);
3218 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
3219 }
3220
3221 return SDValue();
3222}
3223
3224SDValue DAGCombiner::visitADDSAT(SDNode *N) {
3225 unsigned Opcode = N->getOpcode();
3226 SDValue N0 = N->getOperand(0);
3227 SDValue N1 = N->getOperand(1);
3228 EVT VT = N0.getValueType();
3229 bool IsSigned = Opcode == ISD::SADDSAT;
3230 SDLoc DL(N);
3231
3232 // fold (add_sat x, undef) -> -1
3233 if (N0.isUndef() || N1.isUndef())
3234 return DAG.getAllOnesConstant(DL, VT);
3235
3236 // fold (add_sat c1, c2) -> c3
3237 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
3238 return C;
3239
3240 // canonicalize constant to RHS
3243 return DAG.getNode(Opcode, DL, VT, N1, N0);
3244
3245 // fold vector ops
3246 if (VT.isVector()) {
3247 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
3248 return FoldedVOp;
3249
3250 // fold (add_sat x, 0) -> x, vector edition
3252 return N0;
3253 }
3254
3255 // fold (add_sat x, 0) -> x
3256 if (isNullConstant(N1))
3257 return N0;
3258
3259 // If it cannot overflow, transform into an add.
3260 if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
3261 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
3262
3263 return SDValue();
3264}
3265
3267 bool ForceCarryReconstruction = false) {
3268 bool Masked = false;
3269
3270 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
3271 while (true) {
3272 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
3273 V = V.getOperand(0);
3274 continue;
3275 }
3276
3277 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
3278 if (ForceCarryReconstruction)
3279 return V;
3280
3281 Masked = true;
3282 V = V.getOperand(0);
3283 continue;
3284 }
3285
3286 if (ForceCarryReconstruction && V.getValueType() == MVT::i1)
3287 return V;
3288
3289 break;
3290 }
3291
3292 // If this is not a carry, return.
3293 if (V.getResNo() != 1)
3294 return SDValue();
3295
3296 if (V.getOpcode() != ISD::UADDO_CARRY && V.getOpcode() != ISD::USUBO_CARRY &&
3297 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
3298 return SDValue();
3299
3300 EVT VT = V->getValueType(0);
3301 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
3302 return SDValue();
3303
3304 // If the result is masked, then no matter what kind of bool it is we can
3305 // return. If it isn't, then we need to make sure the bool type is either 0 or
3306 // 1 and not other values.
3307 if (Masked ||
3308 TLI.getBooleanContents(V.getValueType()) ==
3310 return V;
3311
3312 return SDValue();
3313}
3314
3315/// Given the operands of an add/sub operation, see if the 2nd operand is a
3316/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
3317/// the opcode and bypass the mask operation.
3318static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
3319 SelectionDAG &DAG, const SDLoc &DL) {
3320 if (N1.getOpcode() == ISD::ZERO_EXTEND)
3321 N1 = N1.getOperand(0);
3322
3323 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
3324 return SDValue();
3325
3326 EVT VT = N0.getValueType();
3327 SDValue N10 = N1.getOperand(0);
3328 if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE)
3329 N10 = N10.getOperand(0);
3330
3331 if (N10.getValueType() != VT)
3332 return SDValue();
3333
3334 if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits())
3335 return SDValue();
3336
3337 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
3338 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
3339 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10);
3340}
3341
3342/// Helper for doing combines based on N0 and N1 being added to each other.
3343SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
3344 SDNode *LocReference) {
3345 EVT VT = N0.getValueType();
3346 SDLoc DL(LocReference);
3347
3348 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
3349 SDValue Y, N;
3350 if (sd_match(N1, m_Shl(m_Neg(m_Value(Y)), m_Value(N))))
3351 return DAG.getNode(ISD::SUB, DL, VT, N0,
3352 DAG.getNode(ISD::SHL, DL, VT, Y, N));
3353
3354 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
3355 return V;
3356
3357 // Look for:
3358 // add (add x, 1), y
3359 // And if the target does not like this form then turn into:
3360 // sub y, (xor x, -1)
3361 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
3362 N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1)) &&
3363 // Limit this to after legalization if the add has wrap flags
3364 (Level >= AfterLegalizeDAG || (!N0->getFlags().hasNoUnsignedWrap() &&
3365 !N0->getFlags().hasNoSignedWrap()))) {
3366 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
3367 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
3368 }
3369
3370 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) {
3371 // Hoist one-use subtraction by non-opaque constant:
3372 // (x - C) + y -> (x + y) - C
3373 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3374 if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3375 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
3376 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
3377 }
3378 // Hoist one-use subtraction from non-opaque constant:
3379 // (C - x) + y -> (y - x) + C
3380 if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3381 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
3382 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
3383 }
3384 }
3385
3386 // add (mul x, C), x -> mul x, C+1
3387 if (N0.getOpcode() == ISD::MUL && N0.getOperand(0) == N1 &&
3388 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true) &&
3389 N0.hasOneUse()) {
3390 SDValue NewC = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
3391 DAG.getConstant(1, DL, VT));
3392 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), NewC);
3393 }
3394
3395 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
3396 // rather than 'add 0/-1' (the zext should get folded).
3397 // add (sext i1 Y), X --> sub X, (zext i1 Y)
3398 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
3399 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
3401 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
3402 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
3403 }
3404
3405 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
3406 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3407 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3408 if (TN->getVT() == MVT::i1) {
3409 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3410 DAG.getConstant(1, DL, VT));
3411 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
3412 }
3413 }
3414
3415 // (add X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
3416 if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1)) &&
3417 N1.getResNo() == 0)
3418 return DAG.getNode(ISD::UADDO_CARRY, DL, N1->getVTList(),
3419 N0, N1.getOperand(0), N1.getOperand(2));
3420
3421 // (add X, Carry) -> (uaddo_carry X, 0, Carry)
3423 if (SDValue Carry = getAsCarry(TLI, N1))
3424 return DAG.getNode(ISD::UADDO_CARRY, DL,
3425 DAG.getVTList(VT, Carry.getValueType()), N0,
3426 DAG.getConstant(0, DL, VT), Carry);
3427
3428 return SDValue();
3429}
3430
3431SDValue DAGCombiner::visitADDC(SDNode *N) {
3432 SDValue N0 = N->getOperand(0);
3433 SDValue N1 = N->getOperand(1);
3434 EVT VT = N0.getValueType();
3435 SDLoc DL(N);
3436
3437 // If the flag result is dead, turn this into an ADD.
3438 if (!N->hasAnyUseOfValue(1))
3439 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3440 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3441
3442 // canonicalize constant to RHS.
3443 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3444 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3445 if (N0C && !N1C)
3446 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
3447
3448 // fold (addc x, 0) -> x + no carry out
3449 if (isNullConstant(N1))
3450 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
3451 DL, MVT::Glue));
3452
3453 // If it cannot overflow, transform into an add.
3455 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3456 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3457
3458 return SDValue();
3459}
3460
3461/**
3462 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
3463 * then the flip also occurs if computing the inverse is the same cost.
3464 * This function returns an empty SDValue in case it cannot flip the boolean
3465 * without increasing the cost of the computation. If you want to flip a boolean
3466 * no matter what, use DAG.getLogicalNOT.
3467 */
3469 const TargetLowering &TLI,
3470 bool Force) {
3471 if (Force && isa<ConstantSDNode>(V))
3472 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
3473
3474 if (V.getOpcode() != ISD::XOR)
3475 return SDValue();
3476
3477 if (DAG.isBoolConstant(V.getOperand(1)) == true)
3478 return V.getOperand(0);
3479 if (Force && isConstOrConstSplat(V.getOperand(1), false))
3480 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
3481 return SDValue();
3482}
3483
3484SDValue DAGCombiner::visitADDO(SDNode *N) {
3485 SDValue N0 = N->getOperand(0);
3486 SDValue N1 = N->getOperand(1);
3487 EVT VT = N0.getValueType();
3488 bool IsSigned = (ISD::SADDO == N->getOpcode());
3489
3490 EVT CarryVT = N->getValueType(1);
3491 SDLoc DL(N);
3492
3493 // If the flag result is dead, turn this into an ADD.
3494 if (!N->hasAnyUseOfValue(1))
3495 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3496 DAG.getUNDEF(CarryVT));
3497
3498 // canonicalize constant to RHS.
3501 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
3502
3503 // fold (addo x, 0) -> x + no carry out
3504 if (isNullOrNullSplat(N1))
3505 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3506
3507 // If it cannot overflow, transform into an add.
3508 if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
3509 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3510 DAG.getConstant(0, DL, CarryVT));
3511
3512 if (IsSigned) {
3513 // fold (saddo (xor a, -1), 1) -> (ssub 0, a).
3514 if (isBitwiseNot(N0) && isOneOrOneSplat(N1))
3515 return DAG.getNode(ISD::SSUBO, DL, N->getVTList(),
3516 DAG.getConstant(0, DL, VT), N0.getOperand(0));
3517 } else {
3518 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
3519 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
3520 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
3521 DAG.getConstant(0, DL, VT), N0.getOperand(0));
3522 return CombineTo(
3523 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3524 }
3525
3526 if (SDValue Combined = visitUADDOLike(N0, N1, N))
3527 return Combined;
3528
3529 if (SDValue Combined = visitUADDOLike(N1, N0, N))
3530 return Combined;
3531 }
3532
3533 return SDValue();
3534}
3535
3536SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
3537 EVT VT = N0.getValueType();
3538 if (VT.isVector())
3539 return SDValue();
3540
3541 // (uaddo X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
3542 // If Y + 1 cannot overflow.
3543 if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1))) {
3544 SDValue Y = N1.getOperand(0);
3545 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
3547 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0, Y,
3548 N1.getOperand(2));
3549 }
3550
3551 // (uaddo X, Carry) -> (uaddo_carry X, 0, Carry)
3553 if (SDValue Carry = getAsCarry(TLI, N1))
3554 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0,
3555 DAG.getConstant(0, SDLoc(N), VT), Carry);
3556
3557 return SDValue();
3558}
3559
3560SDValue DAGCombiner::visitADDE(SDNode *N) {
3561 SDValue N0 = N->getOperand(0);
3562 SDValue N1 = N->getOperand(1);
3563 SDValue CarryIn = N->getOperand(2);
3564
3565 // canonicalize constant to RHS
3566 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3567 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3568 if (N0C && !N1C)
3569 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
3570 N1, N0, CarryIn);
3571
3572 // fold (adde x, y, false) -> (addc x, y)
3573 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3574 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
3575
3576 return SDValue();
3577}
3578
3579SDValue DAGCombiner::visitUADDO_CARRY(SDNode *N) {
3580 SDValue N0 = N->getOperand(0);
3581 SDValue N1 = N->getOperand(1);
3582 SDValue CarryIn = N->getOperand(2);
3583 SDLoc DL(N);
3584
3585 // canonicalize constant to RHS
3586 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3587 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3588 if (N0C && !N1C)
3589 return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
3590
3591 // fold (uaddo_carry x, y, false) -> (uaddo x, y)
3592 if (isNullConstant(CarryIn)) {
3593 if (!LegalOperations ||
3594 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
3595 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
3596 }
3597
3598 // fold (uaddo_carry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
3599 if (isNullConstant(N0) && isNullConstant(N1)) {
3600 EVT VT = N0.getValueType();
3601 EVT CarryVT = CarryIn.getValueType();
3602 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
3603 AddToWorklist(CarryExt.getNode());
3604 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
3605 DAG.getConstant(1, DL, VT)),
3606 DAG.getConstant(0, DL, CarryVT));
3607 }
3608
3609 if (SDValue Combined = visitUADDO_CARRYLike(N0, N1, CarryIn, N))
3610 return Combined;
3611
3612 if (SDValue Combined = visitUADDO_CARRYLike(N1, N0, CarryIn, N))
3613 return Combined;
3614
3615 // We want to avoid useless duplication.
3616 // TODO: This is done automatically for binary operations. As UADDO_CARRY is
3617 // not a binary operation, this is not really possible to leverage this
3618 // existing mechanism for it. However, if more operations require the same
3619 // deduplication logic, then it may be worth generalize.
3620 SDValue Ops[] = {N1, N0, CarryIn};
3621 SDNode *CSENode =
3622 DAG.getNodeIfExists(ISD::UADDO_CARRY, N->getVTList(), Ops, N->getFlags());
3623 if (CSENode)
3624 return SDValue(CSENode, 0);
3625
3626 return SDValue();
3627}
3628
3629/**
3630 * If we are facing some sort of diamond carry propagation pattern try to
3631 * break it up to generate something like:
3632 * (uaddo_carry X, 0, (uaddo_carry A, B, Z):Carry)
3633 *
3634 * The end result is usually an increase in operation required, but because the
3635 * carry is now linearized, other transforms can kick in and optimize the DAG.
3636 *
3637 * Patterns typically look something like
3638 * (uaddo A, B)
3639 * / \
3640 * Carry Sum
3641 * | \
3642 * | (uaddo_carry *, 0, Z)
3643 * | /
3644 * \ Carry
3645 * | /
3646 * (uaddo_carry X, *, *)
3647 *
3648 * But numerous variation exist. Our goal is to identify A, B, X and Z and
3649 * produce a combine with a single path for carry propagation.
3650 */
3652 SelectionDAG &DAG, SDValue X,
3653 SDValue Carry0, SDValue Carry1,
3654 SDNode *N) {
3655 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
3656 return SDValue();
3657 if (Carry1.getOpcode() != ISD::UADDO)
3658 return SDValue();
3659
3660 SDValue Z;
3661
3662 /**
3663 * First look for a suitable Z. It will present itself in the form of
3664 * (uaddo_carry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
3665 */
3666 if (Carry0.getOpcode() == ISD::UADDO_CARRY &&
3667 isNullConstant(Carry0.getOperand(1))) {
3668 Z = Carry0.getOperand(2);
3669 } else if (Carry0.getOpcode() == ISD::UADDO &&
3670 isOneConstant(Carry0.getOperand(1))) {
3671 EVT VT = Carry0->getValueType(1);
3672 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
3673 } else {
3674 // We couldn't find a suitable Z.
3675 return SDValue();
3676 }
3677
3678
3679 auto cancelDiamond = [&](SDValue A,SDValue B) {
3680 SDLoc DL(N);
3681 SDValue NewY =
3682 DAG.getNode(ISD::UADDO_CARRY, DL, Carry0->getVTList(), A, B, Z);
3683 Combiner.AddToWorklist(NewY.getNode());
3684 return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), X,
3685 DAG.getConstant(0, DL, X.getValueType()),
3686 NewY.getValue(1));
3687 };
3688
3689 /**
3690 * (uaddo A, B)
3691 * |
3692 * Sum
3693 * |
3694 * (uaddo_carry *, 0, Z)
3695 */
3696 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
3697 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
3698 }
3699
3700 /**
3701 * (uaddo_carry A, 0, Z)
3702 * |
3703 * Sum
3704 * |
3705 * (uaddo *, B)
3706 */
3707 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
3708 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
3709 }
3710
3711 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
3712 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
3713 }
3714
3715 return SDValue();
3716}
3717
3718// If we are facing some sort of diamond carry/borrow in/out pattern try to
3719// match patterns like:
3720//
3721// (uaddo A, B) CarryIn
3722// | \ |
3723// | \ |
3724// PartialSum PartialCarryOutX /
3725// | | /
3726// | ____|____________/
3727// | / |
3728// (uaddo *, *) \________
3729// | \ \
3730// | \ |
3731// | PartialCarryOutY |
3732// | \ |
3733// | \ /
3734// AddCarrySum | ______/
3735// | /
3736// CarryOut = (or *, *)
3737//
3738// And generate UADDO_CARRY (or USUBO_CARRY) with two result values:
3739//
3740// {AddCarrySum, CarryOut} = (uaddo_carry A, B, CarryIn)
3741//
3742// Our goal is to identify A, B, and CarryIn and produce UADDO_CARRY/USUBO_CARRY
3743// with a single path for carry/borrow out propagation.
3745 SDValue N0, SDValue N1, SDNode *N) {
3746 SDValue Carry0 = getAsCarry(TLI, N0);
3747 if (!Carry0)
3748 return SDValue();
3749 SDValue Carry1 = getAsCarry(TLI, N1);
3750 if (!Carry1)
3751 return SDValue();
3752
3753 unsigned Opcode = Carry0.getOpcode();
3754 if (Opcode != Carry1.getOpcode())
3755 return SDValue();
3756 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
3757 return SDValue();
3758 // Guarantee identical type of CarryOut
3759 EVT CarryOutType = N->getValueType(0);
3760 if (CarryOutType != Carry0.getValue(1).getValueType() ||
3761 CarryOutType != Carry1.getValue(1).getValueType())
3762 return SDValue();
3763
3764 // Canonicalize the add/sub of A and B (the top node in the above ASCII art)
3765 // as Carry0 and the add/sub of the carry in as Carry1 (the middle node).
3766 if (Carry1.getNode()->isOperandOf(Carry0.getNode()))
3767 std::swap(Carry0, Carry1);
3768
3769 // Check if nodes are connected in expected way.
3770 if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3771 Carry1.getOperand(1) != Carry0.getValue(0))
3772 return SDValue();
3773
3774 // The carry in value must be on the righthand side for subtraction.
3775 unsigned CarryInOperandNum =
3776 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
3777 if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
3778 return SDValue();
3779 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
3780
3781 unsigned NewOp = Opcode == ISD::UADDO ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
3782 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
3783 return SDValue();
3784
3785 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3786 CarryIn = getAsCarry(TLI, CarryIn, true);
3787 if (!CarryIn)
3788 return SDValue();
3789
3790 SDLoc DL(N);
3791 CarryIn = DAG.getBoolExtOrTrunc(CarryIn, DL, Carry1->getValueType(1),
3792 Carry1->getValueType(0));
3793 SDValue Merged =
3794 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
3795 Carry0.getOperand(1), CarryIn);
3796
3797 // Please note that because we have proven that the result of the UADDO/USUBO
3798 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3799 // therefore prove that if the first UADDO/USUBO overflows, the second
3800 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3801 // maximum value.
3802 //
3803 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3804 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3805 //
3806 // This is important because it means that OR and XOR can be used to merge
3807 // carry flags; and that AND can return a constant zero.
3808 //
3809 // TODO: match other operations that can merge flags (ADD, etc)
3810 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
3811 if (N->getOpcode() == ISD::AND)
3812 return DAG.getConstant(0, DL, CarryOutType);
3813 return Merged.getValue(1);
3814}
3815
3816SDValue DAGCombiner::visitUADDO_CARRYLike(SDValue N0, SDValue N1,
3817 SDValue CarryIn, SDNode *N) {
3818 // fold (uaddo_carry (xor a, -1), b, c) -> (usubo_carry b, a, !c) and flip
3819 // carry.
3820 if (isBitwiseNot(N0))
3821 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3822 SDLoc DL(N);
3823 SDValue Sub = DAG.getNode(ISD::USUBO_CARRY, DL, N->getVTList(), N1,
3824 N0.getOperand(0), NotC);
3825 return CombineTo(
3826 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3827 }
3828
3829 // Iff the flag result is dead:
3830 // (uaddo_carry (add|uaddo X, Y), 0, Carry) -> (uaddo_carry X, Y, Carry)
3831 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3832 // or the dependency between the instructions.
3833 if ((N0.getOpcode() == ISD::ADD ||
3834 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3835 N0.getValue(1) != CarryIn)) &&
3836 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3837 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(),
3838 N0.getOperand(0), N0.getOperand(1), CarryIn);
3839
3840 /**
3841 * When one of the uaddo_carry argument is itself a carry, we may be facing
3842 * a diamond carry propagation. In which case we try to transform the DAG
3843 * to ensure linear carry propagation if that is possible.
3844 */
3845 if (auto Y = getAsCarry(TLI, N1)) {
3846 // Because both are carries, Y and Z can be swapped.
3847 if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3848 return R;
3849 if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3850 return R;
3851 }
3852
3853 return SDValue();
3854}
3855
3856SDValue DAGCombiner::visitSADDO_CARRYLike(SDValue N0, SDValue N1,
3857 SDValue CarryIn, SDNode *N) {
3858 // fold (saddo_carry (xor a, -1), b, c) -> (ssubo_carry b, a, !c)
3859 if (isBitwiseNot(N0)) {
3860 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true))
3861 return DAG.getNode(ISD::SSUBO_CARRY, SDLoc(N), N->getVTList(), N1,
3862 N0.getOperand(0), NotC);
3863 }
3864
3865 return SDValue();
3866}
3867
3868SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
3869 SDValue N0 = N->getOperand(0);
3870 SDValue N1 = N->getOperand(1);
3871 SDValue CarryIn = N->getOperand(2);
3872 SDLoc DL(N);
3873
3874 // canonicalize constant to RHS
3875 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3876 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3877 if (N0C && !N1C)
3878 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
3879
3880 // fold (saddo_carry x, y, false) -> (saddo x, y)
3881 if (isNullConstant(CarryIn)) {
3882 if (!LegalOperations ||
3883 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
3884 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
3885 }
3886
3887 if (SDValue Combined = visitSADDO_CARRYLike(N0, N1, CarryIn, N))
3888 return Combined;
3889
3890 if (SDValue Combined = visitSADDO_CARRYLike(N1, N0, CarryIn, N))
3891 return Combined;
3892
3893 return SDValue();
3894}
3895
3896// Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3897// clamp/truncation if necessary.
3899 SDValue RHS, SelectionDAG &DAG,
3900 const SDLoc &DL) {
3901 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
3902 "Illegal truncation");
3903
3904 if (DstVT == SrcVT)
3905 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3906
3907 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3908 // clamping RHS.
3910 DstVT.getScalarSizeInBits());
3911 if (!DAG.MaskedValueIsZero(LHS, UpperBits))
3912 return SDValue();
3913
3914 SDValue SatLimit =
3916 DstVT.getScalarSizeInBits()),
3917 DL, SrcVT);
3918 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
3919 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
3920 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
3921 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3922}
3923
3924// Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3925// usubsat(a,b), optionally as a truncated type.
3926SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL) {
3927 if (N->getOpcode() != ISD::SUB ||
3928 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
3929 return SDValue();
3930
3931 EVT SubVT = N->getValueType(0);
3932 SDValue Op0 = N->getOperand(0);
3933 SDValue Op1 = N->getOperand(1);
3934
3935 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3936 // they may be converted to usubsat(a,b).
3937 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
3938 SDValue MaxLHS = Op0.getOperand(0);
3939 SDValue MaxRHS = Op0.getOperand(1);
3940 if (MaxLHS == Op1)
3941 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, DL);
3942 if (MaxRHS == Op1)
3943 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, DL);
3944 }
3945
3946 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
3947 SDValue MinLHS = Op1.getOperand(0);
3948 SDValue MinRHS = Op1.getOperand(1);
3949 if (MinLHS == Op0)
3950 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, DL);
3951 if (MinRHS == Op0)
3952 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, DL);
3953 }
3954
3955 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3956 if (Op1.getOpcode() == ISD::TRUNCATE &&
3957 Op1.getOperand(0).getOpcode() == ISD::UMIN &&
3958 Op1.getOperand(0).hasOneUse()) {
3959 SDValue MinLHS = Op1.getOperand(0).getOperand(0);
3960 SDValue MinRHS = Op1.getOperand(0).getOperand(1);
3961 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
3962 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
3963 DAG, DL);
3964 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
3965 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
3966 DAG, DL);
3967 }
3968
3969 return SDValue();
3970}
3971
3972// Refinement of DAG/Type Legalisation (promotion) when CTLZ is used for
3973// counting leading ones. Broadly, it replaces the substraction with a left
3974// shift.
3975//
3976// * DAG Legalisation Pattern:
3977//
3978// (sub (ctlz (zeroextend (not Src)))
3979// BitWidthDiff)
3980//
3981// if BitWidthDiff == BitWidth(Node) - BitWidth(Src)
3982// -->
3983//
3984// (ctlz_zero_undef (not (shl (anyextend Src)
3985// BitWidthDiff)))
3986//
3987// * Type Legalisation Pattern:
3988//
3989// (sub (ctlz (and (xor Src XorMask)
3990// AndMask))
3991// BitWidthDiff)
3992//
3993// if AndMask has only trailing ones
3994// and MaskBitWidth(AndMask) == BitWidth(Node) - BitWidthDiff
3995// and XorMask has more trailing ones than AndMask
3996// -->
3997//
3998// (ctlz_zero_undef (not (shl Src BitWidthDiff)))
3999template <class MatchContextClass>
4001 const SDLoc DL(N);
4002 SDValue N0 = N->getOperand(0);
4003 EVT VT = N0.getValueType();
4004 unsigned BitWidth = VT.getScalarSizeInBits();
4005
4006 MatchContextClass Matcher(DAG, DAG.getTargetLoweringInfo(), N);
4007
4008 APInt AndMask;
4009 APInt XorMask;
4010 APInt BitWidthDiff;
4011
4012 SDValue CtlzOp;
4013 SDValue Src;
4014
4015 if (!sd_context_match(
4016 N, Matcher, m_Sub(m_Ctlz(m_Value(CtlzOp)), m_ConstInt(BitWidthDiff))))
4017 return SDValue();
4018
4019 if (sd_context_match(CtlzOp, Matcher, m_ZExt(m_Not(m_Value(Src))))) {
4020 // DAG Legalisation Pattern:
4021 // (sub (ctlz (zero_extend (not Op)) BitWidthDiff))
4022 if ((BitWidth - Src.getValueType().getScalarSizeInBits()) != BitWidthDiff)
4023 return SDValue();
4024
4025 Src = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Src);
4026 } else if (sd_context_match(CtlzOp, Matcher,
4027 m_And(m_Xor(m_Value(Src), m_ConstInt(XorMask)),
4028 m_ConstInt(AndMask)))) {
4029 // Type Legalisation Pattern:
4030 // (sub (ctlz (and (xor Op XorMask) AndMask)) BitWidthDiff)
4031 unsigned AndMaskWidth = BitWidth - BitWidthDiff.getZExtValue();
4032 if (!(AndMask.isMask(AndMaskWidth) && XorMask.countr_one() >= AndMaskWidth))
4033 return SDValue();
4034 } else
4035 return SDValue();
4036
4037 SDValue ShiftConst = DAG.getShiftAmountConstant(BitWidthDiff, VT, DL);
4038 SDValue LShift = Matcher.getNode(ISD::SHL, DL, VT, Src, ShiftConst);
4039 SDValue Not =
4040 Matcher.getNode(ISD::XOR, DL, VT, LShift, DAG.getAllOnesConstant(DL, VT));
4041
4042 return Matcher.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, Not);
4043}
4044
4045// Fold sub(x, mul(divrem(x,y)[0], y)) to divrem(x, y)[1]
4047 const SDLoc &DL) {
4048 assert(N->getOpcode() == ISD::SUB && "Node must be a SUB");
4049 SDValue Sub0 = N->getOperand(0);
4050 SDValue Sub1 = N->getOperand(1);
4051
4052 auto CheckAndFoldMulCase = [&](SDValue DivRem, SDValue MaybeY) -> SDValue {
4053 if ((DivRem.getOpcode() == ISD::SDIVREM ||
4054 DivRem.getOpcode() == ISD::UDIVREM) &&
4055 DivRem.getResNo() == 0 && DivRem.getOperand(0) == Sub0 &&
4056 DivRem.getOperand(1) == MaybeY) {
4057 return SDValue(DivRem.getNode(), 1);
4058 }
4059 return SDValue();
4060 };
4061
4062 if (Sub1.getOpcode() == ISD::MUL) {
4063 // (sub x, (mul divrem(x,y)[0], y))
4064 SDValue Mul0 = Sub1.getOperand(0);
4065 SDValue Mul1 = Sub1.getOperand(1);
4066
4067 if (SDValue Res = CheckAndFoldMulCase(Mul0, Mul1))
4068 return Res;
4069
4070 if (SDValue Res = CheckAndFoldMulCase(Mul1, Mul0))
4071 return Res;
4072
4073 } else if (Sub1.getOpcode() == ISD::SHL) {
4074 // Handle (sub x, (shl divrem(x,y)[0], C)) where y = 1 << C
4075 SDValue Shl0 = Sub1.getOperand(0);
4076 SDValue Shl1 = Sub1.getOperand(1);
4077 // Check if Shl0 is divrem(x, Y)[0]
4078 if ((Shl0.getOpcode() == ISD::SDIVREM ||
4079 Shl0.getOpcode() == ISD::UDIVREM) &&
4080 Shl0.getResNo() == 0 && Shl0.getOperand(0) == Sub0) {
4081
4082 SDValue Divisor = Shl0.getOperand(1);
4083
4084 ConstantSDNode *DivC = isConstOrConstSplat(Divisor);
4086 if (!DivC || !ShC)
4087 return SDValue();
4088
4089 if (DivC->getAPIntValue().isPowerOf2() &&
4090 DivC->getAPIntValue().logBase2() == ShC->getAPIntValue())
4091 return SDValue(Shl0.getNode(), 1);
4092 }
4093 }
4094 return SDValue();
4095}
4096
4097// Since it may not be valid to emit a fold to zero for vector initializers
4098// check if we can before folding.
4099static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
4100 SelectionDAG &DAG, bool LegalOperations) {
4101 if (!VT.isVector())
4102 return DAG.getConstant(0, DL, VT);
4103 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
4104 return DAG.getConstant(0, DL, VT);
4105 return SDValue();
4106}
4107
4108SDValue DAGCombiner::visitSUB(SDNode *N) {
4109 SDValue N0 = N->getOperand(0);
4110 SDValue N1 = N->getOperand(1);
4111 EVT VT = N0.getValueType();
4112 unsigned BitWidth = VT.getScalarSizeInBits();
4113 SDLoc DL(N);
4114
4116 return V;
4117
4118 // fold (sub x, x) -> 0
4119 if (N0 == N1)
4120 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4121
4122 // fold (sub c1, c2) -> c3
4123 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
4124 return C;
4125
4126 // fold vector ops
4127 if (VT.isVector()) {
4128 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4129 return FoldedVOp;
4130
4131 // fold (sub x, 0) -> x, vector edition
4133 return N0;
4134 }
4135
4136 // (sub x, ([v]select (ult x, y), 0, y)) -> (umin x, (sub x, y))
4137 // (sub x, ([v]select (uge x, y), y, 0)) -> (umin x, (sub x, y))
4138 if (N1.hasOneUse() && hasUMin(VT)) {
4139 SDValue Y;
4140 auto MS0 = m_Specific(N0);
4141 auto MVY = m_Value(Y);
4142 auto MZ = m_Zero();
4143 auto MCC1 = m_SpecificCondCode(ISD::SETULT);
4144 auto MCC2 = m_SpecificCondCode(ISD::SETUGE);
4145
4146 if (sd_match(N1, m_SelectCCLike(MS0, MVY, MZ, m_Deferred(Y), MCC1)) ||
4147 sd_match(N1, m_SelectCCLike(MS0, MVY, m_Deferred(Y), MZ, MCC2)) ||
4148 sd_match(N1, m_VSelect(m_SetCC(MS0, MVY, MCC1), MZ, m_Deferred(Y))) ||
4149 sd_match(N1, m_VSelect(m_SetCC(MS0, MVY, MCC2), m_Deferred(Y), MZ)))
4150
4151 return DAG.getNode(ISD::UMIN, DL, VT, N0,
4152 DAG.getNode(ISD::SUB, DL, VT, N0, Y));
4153 }
4154
4155 if (SDValue NewSel = foldBinOpIntoSelect(N))
4156 return NewSel;
4157
4158 // fold (sub x, c) -> (add x, -c)
4159 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
4160 return DAG.getNode(ISD::ADD, DL, VT, N0,
4161 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
4162
4163 if (isNullOrNullSplat(N0)) {
4164 // Right-shifting everything out but the sign bit followed by negation is
4165 // the same as flipping arithmetic/logical shift type without the negation:
4166 // -(X >>u 31) -> (X >>s 31)
4167 // -(X >>s 31) -> (X >>u 31)
4168 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
4169 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
4170 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
4171 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
4172 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
4173 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
4174 }
4175 }
4176
4177 // 0 - X --> 0 if the sub is NUW.
4178 if (N->getFlags().hasNoUnsignedWrap())
4179 return N0;
4180
4182 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
4183 // N1 must be 0 because negating the minimum signed value is undefined.
4184 if (N->getFlags().hasNoSignedWrap())
4185 return N0;
4186
4187 // 0 - X --> X if X is 0 or the minimum signed value.
4188 return N1;
4189 }
4190
4191 // Convert 0 - abs(x).
4192 if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() &&
4194 if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true))
4195 return Result;
4196
4197 // Similar to the previous rule, but this time targeting an expanded abs.
4198 // (sub 0, (max X, (sub 0, X))) --> (min X, (sub 0, X))
4199 // as well as
4200 // (sub 0, (min X, (sub 0, X))) --> (max X, (sub 0, X))
4201 // Note that these two are applicable to both signed and unsigned min/max.
4202 SDValue X;
4203 SDValue S0;
4204 auto NegPat = m_AllOf(m_Neg(m_Deferred(X)), m_Value(S0));
4205 if (sd_match(N1, m_OneUse(m_AnyOf(m_SMax(m_Value(X), NegPat),
4206 m_UMax(m_Value(X), NegPat),
4207 m_SMin(m_Value(X), NegPat),
4208 m_UMin(m_Value(X), NegPat))))) {
4209 unsigned NewOpc = ISD::getInverseMinMaxOpcode(N1->getOpcode());
4210 if (hasOperation(NewOpc, VT))
4211 return DAG.getNode(NewOpc, DL, VT, X, S0);
4212 }
4213
4214 // Fold neg(splat(neg(x)) -> splat(x)
4215 if (VT.isVector()) {
4216 SDValue N1S = DAG.getSplatValue(N1, true);
4217 if (N1S && N1S.getOpcode() == ISD::SUB &&
4218 isNullConstant(N1S.getOperand(0)))
4219 return DAG.getSplat(VT, DL, N1S.getOperand(1));
4220 }
4221
4222 // sub 0, (and x, 1) --> SIGN_EXTEND_INREG x, i1
4223 if (N1.getOpcode() == ISD::AND && N1.hasOneUse() &&
4224 isOneOrOneSplat(N1->getOperand(1))) {
4225 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), 1);
4226 if (VT.isVector())
4227 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
4231 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N1->getOperand(0),
4232 DAG.getValueType(ExtVT));
4233 }
4234 }
4235 }
4236
4237 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
4239 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
4240
4241 // fold (A - (0-B)) -> A+B
4242 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
4243 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
4244
4245 // fold A-(A-B) -> B
4246 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
4247 return N1.getOperand(1);
4248
4249 // fold (A+B)-A -> B
4250 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
4251 return N0.getOperand(1);
4252
4253 // fold (A+B)-B -> A
4254 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
4255 return N0.getOperand(0);
4256
4257 // fold (A+C1)-C2 -> A+(C1-C2)
4258 if (N0.getOpcode() == ISD::ADD) {
4259 SDValue N01 = N0.getOperand(1);
4260 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1}))
4261 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
4262 }
4263
4264 // fold C2-(A+C1) -> (C2-C1)-A
4265 if (N1.getOpcode() == ISD::ADD) {
4266 SDValue N11 = N1.getOperand(1);
4267 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}))
4268 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
4269 }
4270
4271 // fold (A-C1)-C2 -> A-(C1+C2)
4272 if (N0.getOpcode() == ISD::SUB) {
4273 SDValue N01 = N0.getOperand(1);
4274 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1}))
4275 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
4276 }
4277
4278 // fold (c1-A)-c2 -> (c1-c2)-A
4279 if (N0.getOpcode() == ISD::SUB) {
4280 SDValue N00 = N0.getOperand(0);
4281 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1}))
4282 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
4283 }
4284
4285 SDValue A, B, C;
4286
4287 // fold ((A+(B+C))-B) -> A+C
4288 if (sd_match(N0, m_Add(m_Value(A), m_Add(m_Specific(N1), m_Value(C)))))
4289 return DAG.getNode(ISD::ADD, DL, VT, A, C);
4290
4291 // fold ((A+(B-C))-B) -> A-C
4292 if (sd_match(N0, m_Add(m_Value(A), m_Sub(m_Specific(N1), m_Value(C)))))
4293 return DAG.getNode(ISD::SUB, DL, VT, A, C);
4294
4295 // fold ((A-(B-C))-C) -> A-B
4296 if (sd_match(N0, m_Sub(m_Value(A), m_Sub(m_Value(B), m_Specific(N1)))))
4297 return DAG.getNode(ISD::SUB, DL, VT, A, B);
4298
4299 // fold (A-(B-C)) -> A+(C-B)
4300 if (sd_match(N1, m_OneUse(m_Sub(m_Value(B), m_Value(C)))))
4301 return DAG.getNode(ISD::ADD, DL, VT, N0,
4302 DAG.getNode(ISD::SUB, DL, VT, C, B));
4303
4304 // A - (A & B) -> A & (~B)
4305 if (sd_match(N1, m_And(m_Specific(N0), m_Value(B))) &&
4306 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true)))
4307 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getNOT(DL, B, VT));
4308
4309 // fold (A - (-B * C)) -> (A + (B * C))
4310 if (sd_match(N1, m_OneUse(m_Mul(m_Neg(m_Value(B)), m_Value(C)))))
4311 return DAG.getNode(ISD::ADD, DL, VT, N0,
4312 DAG.getNode(ISD::MUL, DL, VT, B, C));
4313
4314 // If either operand of a sub is undef, the result is undef
4315 if (N0.isUndef())
4316 return N0;
4317 if (N1.isUndef())
4318 return N1;
4319
4320 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
4321 return V;
4322
4323 if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
4324 return V;
4325
4326 // Try to match AVGCEIL fixedwidth pattern
4327 if (SDValue V = foldSubToAvg(N, DL))
4328 return V;
4329
4330 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, DL))
4331 return V;
4332
4333 if (SDValue V = foldSubToUSubSat(VT, N, DL))
4334 return V;
4335
4336 if (SDValue V = foldRemainderIdiom(N, DAG, DL))
4337 return V;
4338
4339 // (A - B) - 1 -> add (xor B, -1), A
4341 m_One(/*AllowUndefs=*/true))))
4342 return DAG.getNode(ISD::ADD, DL, VT, A, DAG.getNOT(DL, B, VT));
4343
4344 // Look for:
4345 // sub y, (xor x, -1)
4346 // And if the target does not like this form then turn into:
4347 // add (add x, y), 1
4348 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
4349 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
4350 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
4351 }
4352
4353 // Hoist one-use addition by non-opaque constant:
4354 // (x + C) - y -> (x - y) + C
4355 if (!reassociationCanBreakAddressingModePattern(ISD::SUB, DL, N, N0, N1) &&
4356 N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
4357 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
4358 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
4359 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
4360 }
4361 // y - (x + C) -> (y - x) - C
4362 if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() &&
4363 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
4364 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
4365 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
4366 }
4367 // (x - C) - y -> (x - y) - C
4368 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
4369 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
4370 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
4371 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
4372 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
4373 }
4374 // (C - x) - y -> C - (x + y)
4375 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
4376 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
4377 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
4378 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
4379 }
4380
4381 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
4382 // rather than 'sub 0/1' (the sext should get folded).
4383 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
4384 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
4385 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
4386 TLI.getBooleanContents(VT) ==
4388 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
4389 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
4390 }
4391
4392 // fold B = sra (A, size(A)-1); sub (xor (A, B), B) -> (abs A)
4393 if ((!LegalOperations || hasOperation(ISD::ABS, VT)) &&
4395 sd_match(N0, m_Xor(m_Specific(A), m_Specific(N1))))
4396 return DAG.getNode(ISD::ABS, DL, VT, A);
4397
4398 // If the relocation model supports it, consider symbol offsets.
4399 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
4400 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
4401 // fold (sub Sym+c1, Sym+c2) -> c1-c2
4402 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
4403 if (GA->getGlobal() == GB->getGlobal())
4404 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
4405 DL, VT);
4406 }
4407
4408 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
4409 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4410 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
4411 if (TN->getVT() == MVT::i1) {
4412 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
4413 DAG.getConstant(1, DL, VT));
4414 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
4415 }
4416 }
4417
4418 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
4419 if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) {
4420 const APInt &IntVal = N1.getConstantOperandAPInt(0);
4421 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
4422 }
4423
4424 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
4425 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
4426 APInt NewStep = -N1.getConstantOperandAPInt(0);
4427 return DAG.getNode(ISD::ADD, DL, VT, N0,
4428 DAG.getStepVector(DL, VT, NewStep));
4429 }
4430
4431 // Prefer an add for more folding potential and possibly better codegen:
4432 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
4433 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
4434 SDValue ShAmt = N1.getOperand(1);
4435 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
4436 if (ShAmtC && ShAmtC->getAPIntValue() == (BitWidth - 1)) {
4437 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
4438 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
4439 }
4440 }
4441
4442 // As with the previous fold, prefer add for more folding potential.
4443 // Subtracting SMIN/0 is the same as adding SMIN/0:
4444 // N0 - (X << BW-1) --> N0 + (X << BW-1)
4445 if (N1.getOpcode() == ISD::SHL) {
4446 ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1));
4447 if (ShlC && ShlC->getAPIntValue() == (BitWidth - 1))
4448 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
4449 }
4450
4451 // (sub (usubo_carry X, 0, Carry), Y) -> (usubo_carry X, Y, Carry)
4452 if (N0.getOpcode() == ISD::USUBO_CARRY && isNullConstant(N0.getOperand(1)) &&
4453 N0.getResNo() == 0 && N0.hasOneUse())
4454 return DAG.getNode(ISD::USUBO_CARRY, DL, N0->getVTList(),
4455 N0.getOperand(0), N1, N0.getOperand(2));
4456
4458 // (sub Carry, X) -> (uaddo_carry (sub 0, X), 0, Carry)
4459 if (SDValue Carry = getAsCarry(TLI, N0)) {
4460 SDValue X = N1;
4461 SDValue Zero = DAG.getConstant(0, DL, VT);
4462 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
4463 return DAG.getNode(ISD::UADDO_CARRY, DL,
4464 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
4465 Carry);
4466 }
4467 }
4468
4469 // If there's no chance of borrowing from adjacent bits, then sub is xor:
4470 // sub C0, X --> xor X, C0
4471 if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) {
4472 if (!C0->isOpaque()) {
4473 const APInt &C0Val = C0->getAPIntValue();
4474 const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero;
4475 if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes))
4476 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
4477 }
4478 }
4479
4480 // smax(a,b) - smin(a,b) --> abds(a,b)
4481 if ((!LegalOperations || hasOperation(ISD::ABDS, VT)) &&
4482 sd_match(N0, m_SMaxLike(m_Value(A), m_Value(B))) &&
4484 return DAG.getNode(ISD::ABDS, DL, VT, A, B);
4485
4486 // smin(a,b) - smax(a,b) --> neg(abds(a,b))
4487 if (hasOperation(ISD::ABDS, VT) &&
4488 sd_match(N0, m_SMinLike(m_Value(A), m_Value(B))) &&
4490 return DAG.getNegative(DAG.getNode(ISD::ABDS, DL, VT, A, B), DL, VT);
4491
4492 // umax(a,b) - umin(a,b) --> abdu(a,b)
4493 if ((!LegalOperations || hasOperation(ISD::ABDU, VT)) &&
4494 sd_match(N0, m_UMaxLike(m_Value(A), m_Value(B))) &&
4496 return DAG.getNode(ISD::ABDU, DL, VT, A, B);
4497
4498 // umin(a,b) - umax(a,b) --> neg(abdu(a,b))
4499 if (hasOperation(ISD::ABDU, VT) &&
4500 sd_match(N0, m_UMinLike(m_Value(A), m_Value(B))) &&
4502 return DAG.getNegative(DAG.getNode(ISD::ABDU, DL, VT, A, B), DL, VT);
4503
4504 return SDValue();
4505}
4506
4507SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
4508 unsigned Opcode = N->getOpcode();
4509 SDValue N0 = N->getOperand(0);
4510 SDValue N1 = N->getOperand(1);
4511 EVT VT = N0.getValueType();
4512 bool IsSigned = Opcode == ISD::SSUBSAT;
4513 SDLoc DL(N);
4514
4515 // fold (sub_sat x, undef) -> 0
4516 if (N0.isUndef() || N1.isUndef())
4517 return DAG.getConstant(0, DL, VT);
4518
4519 // fold (sub_sat x, x) -> 0
4520 if (N0 == N1)
4521 return DAG.getConstant(0, DL, VT);
4522
4523 // fold (sub_sat c1, c2) -> c3
4524 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
4525 return C;
4526
4527 // fold vector ops
4528 if (VT.isVector()) {
4529 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4530 return FoldedVOp;
4531
4532 // fold (sub_sat x, 0) -> x, vector edition
4534 return N0;
4535 }
4536
4537 // fold (sub_sat x, 0) -> x
4538 if (isNullConstant(N1))
4539 return N0;
4540
4541 // If it cannot overflow, transform into an sub.
4542 if (DAG.willNotOverflowSub(IsSigned, N0, N1))
4543 return DAG.getNode(ISD::SUB, DL, VT, N0, N1);
4544
4545 return SDValue();
4546}
4547
4548SDValue DAGCombiner::visitSUBC(SDNode *N) {
4549 SDValue N0 = N->getOperand(0);
4550 SDValue N1 = N->getOperand(1);
4551 EVT VT = N0.getValueType();
4552 SDLoc DL(N);
4553
4554 // If the flag result is dead, turn this into an SUB.
4555 if (!N->hasAnyUseOfValue(1))
4556 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4557 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4558
4559 // fold (subc x, x) -> 0 + no borrow
4560 if (N0 == N1)
4561 return CombineTo(N, DAG.getConstant(0, DL, VT),
4562 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4563
4564 // fold (subc x, 0) -> x + no borrow
4565 if (isNullConstant(N1))
4566 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4567
4568 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
4569 if (isAllOnesConstant(N0))
4570 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
4571 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4572
4573 return SDValue();
4574}
4575
4576SDValue DAGCombiner::visitSUBO(SDNode *N) {
4577 SDValue N0 = N->getOperand(0);
4578 SDValue N1 = N->getOperand(1);
4579 EVT VT = N0.getValueType();
4580 bool IsSigned = (ISD::SSUBO == N->getOpcode());
4581
4582 EVT CarryVT = N->getValueType(1);
4583 SDLoc DL(N);
4584
4585 // If the flag result is dead, turn this into an SUB.
4586 if (!N->hasAnyUseOfValue(1))
4587 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4588 DAG.getUNDEF(CarryVT));
4589
4590 // fold (subo x, x) -> 0 + no borrow
4591 if (N0 == N1)
4592 return CombineTo(N, DAG.getConstant(0, DL, VT),
4593 DAG.getConstant(0, DL, CarryVT));
4594
4595 // fold (subox, c) -> (addo x, -c)
4596 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
4597 if (IsSigned && !N1C->isMinSignedValue())
4598 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
4599 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
4600
4601 // fold (subo x, 0) -> x + no borrow
4602 if (isNullOrNullSplat(N1))
4603 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
4604
4605 // If it cannot overflow, transform into an sub.
4606 if (DAG.willNotOverflowSub(IsSigned, N0, N1))
4607 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4608 DAG.getConstant(0, DL, CarryVT));
4609
4610 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
4611 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
4612 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
4613 DAG.getConstant(0, DL, CarryVT));
4614
4615 return SDValue();
4616}
4617
4618SDValue DAGCombiner::visitSUBE(SDNode *N) {
4619 SDValue N0 = N->getOperand(0);
4620 SDValue N1 = N->getOperand(1);
4621 SDValue CarryIn = N->getOperand(2);
4622
4623 // fold (sube x, y, false) -> (subc x, y)
4624 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
4625 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
4626
4627 return SDValue();
4628}
4629
4630SDValue DAGCombiner::visitUSUBO_CARRY(SDNode *N) {
4631 SDValue N0 = N->getOperand(0);
4632 SDValue N1 = N->getOperand(1);
4633 SDValue CarryIn = N->getOperand(2);
4634
4635 // fold (usubo_carry x, y, false) -> (usubo x, y)
4636 if (isNullConstant(CarryIn)) {
4637 if (!LegalOperations ||
4638 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
4639 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
4640 }
4641
4642 return SDValue();
4643}
4644
4645SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
4646 SDValue N0 = N->getOperand(0);
4647 SDValue N1 = N->getOperand(1);
4648 SDValue CarryIn = N->getOperand(2);
4649
4650 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
4651 if (isNullConstant(CarryIn)) {
4652 if (!LegalOperations ||
4653 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
4654 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
4655 }
4656
4657 return SDValue();
4658}
4659
4660// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
4661// UMULFIXSAT here.
4662SDValue DAGCombiner::visitMULFIX(SDNode *N) {
4663 SDValue N0 = N->getOperand(0);
4664 SDValue N1 = N->getOperand(1);
4665 SDValue Scale = N->getOperand(2);
4666 EVT VT = N0.getValueType();
4667
4668 // fold (mulfix x, undef, scale) -> 0
4669 if (N0.isUndef() || N1.isUndef())
4670 return DAG.getConstant(0, SDLoc(N), VT);
4671
4672 // Canonicalize constant to RHS (vector doesn't have to splat)
4675 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
4676
4677 // fold (mulfix x, 0, scale) -> 0
4678 if (isNullConstant(N1))
4679 return DAG.getConstant(0, SDLoc(N), VT);
4680
4681 return SDValue();
4682}
4683
4684template <class MatchContextClass> SDValue DAGCombiner::visitMUL(SDNode *N) {
4685 SDValue N0 = N->getOperand(0);
4686 SDValue N1 = N->getOperand(1);
4687 EVT VT = N0.getValueType();
4688 unsigned BitWidth = VT.getScalarSizeInBits();
4689 SDLoc DL(N);
4690 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
4691 MatchContextClass Matcher(DAG, TLI, N);
4692
4693 // fold (mul x, undef) -> 0
4694 if (N0.isUndef() || N1.isUndef())
4695 return DAG.getConstant(0, DL, VT);
4696
4697 // fold (mul c1, c2) -> c1*c2
4698 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1}))
4699 return C;
4700
4701 // canonicalize constant to RHS (vector doesn't have to splat)
4704 return Matcher.getNode(ISD::MUL, DL, VT, N1, N0);
4705
4706 bool N1IsConst = false;
4707 bool N1IsOpaqueConst = false;
4708 APInt ConstValue1;
4709
4710 // fold vector ops
4711 if (VT.isVector()) {
4712 // TODO: Change this to use SimplifyVBinOp when it supports VP op.
4713 if (!UseVP)
4714 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4715 return FoldedVOp;
4716
4717 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
4718 assert((!N1IsConst || ConstValue1.getBitWidth() == BitWidth) &&
4719 "Splat APInt should be element width");
4720 } else {
4721 N1IsConst = isa<ConstantSDNode>(N1);
4722 if (N1IsConst) {
4723 ConstValue1 = N1->getAsAPIntVal();
4724 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
4725 }
4726 }
4727
4728 // fold (mul x, 0) -> 0
4729 if (N1IsConst && ConstValue1.isZero())
4730 return N1;
4731
4732 // fold (mul x, 1) -> x
4733 if (N1IsConst && ConstValue1.isOne())
4734 return N0;
4735
4736 if (!UseVP)
4737 if (SDValue NewSel = foldBinOpIntoSelect(N))
4738 return NewSel;
4739
4740 // fold (mul x, -1) -> 0-x
4741 if (N1IsConst && ConstValue1.isAllOnes())
4742 return Matcher.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
4743
4744 // fold (mul x, (1 << c)) -> x << c
4745 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4746 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
4747 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
4748 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4749 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4750 SDNodeFlags Flags;
4751 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap());
4752 // TODO: Preserve setNoSignedWrap if LogBase2 isn't BitWidth - 1.
4753 return Matcher.getNode(ISD::SHL, DL, VT, N0, Trunc, Flags);
4754 }
4755 }
4756
4757 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
4758 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) {
4759 unsigned Log2Val = (-ConstValue1).logBase2();
4760
4761 // FIXME: If the input is something that is easily negated (e.g. a
4762 // single-use add), we should put the negate there.
4763 return Matcher.getNode(
4764 ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
4765 Matcher.getNode(ISD::SHL, DL, VT, N0,
4766 DAG.getShiftAmountConstant(Log2Val, VT, DL)));
4767 }
4768
4769 // Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the
4770 // hi result is in use in case we hit this mid-legalization.
4771 if (!UseVP) {
4772 for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
4773 if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) {
4774 SDVTList LoHiVT = DAG.getVTList(VT, VT);
4775 // TODO: Can we match commutable operands with getNodeIfExists?
4776 if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1}))
4777 if (LoHi->hasAnyUseOfValue(1))
4778 return SDValue(LoHi, 0);
4779 if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0}))
4780 if (LoHi->hasAnyUseOfValue(1))
4781 return SDValue(LoHi, 0);
4782 }
4783 }
4784 }
4785
4786 // Try to transform:
4787 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
4788 // mul x, (2^N + 1) --> add (shl x, N), x
4789 // mul x, (2^N - 1) --> sub (shl x, N), x
4790 // Examples: x * 33 --> (x << 5) + x
4791 // x * 15 --> (x << 4) - x
4792 // x * -33 --> -((x << 5) + x)
4793 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
4794 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
4795 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
4796 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
4797 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
4798 // x * 0xf800 --> (x << 16) - (x << 11)
4799 // x * -0x8800 --> -((x << 15) + (x << 11))
4800 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
4801 if (!UseVP && N1IsConst &&
4802 TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
4803 // TODO: We could handle more general decomposition of any constant by
4804 // having the target set a limit on number of ops and making a
4805 // callback to determine that sequence (similar to sqrt expansion).
4806 unsigned MathOp = ISD::DELETED_NODE;
4807 APInt MulC = ConstValue1.abs();
4808 // The constant `2` should be treated as (2^0 + 1).
4809 unsigned TZeros = MulC == 2 ? 0 : MulC.countr_zero();
4810 MulC.lshrInPlace(TZeros);
4811 if ((MulC - 1).isPowerOf2())
4812 MathOp = ISD::ADD;
4813 else if ((MulC + 1).isPowerOf2())
4814 MathOp = ISD::SUB;
4815
4816 if (MathOp != ISD::DELETED_NODE) {
4817 unsigned ShAmt =
4818 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
4819 ShAmt += TZeros;
4820 assert(ShAmt < BitWidth &&
4821 "multiply-by-constant generated out of bounds shift");
4822 SDValue Shl =
4823 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
4824 SDValue R =
4825 TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
4826 DAG.getNode(ISD::SHL, DL, VT, N0,
4827 DAG.getConstant(TZeros, DL, VT)))
4828 : DAG.getNode(MathOp, DL, VT, Shl, N0);
4829 if (ConstValue1.isNegative())
4830 R = DAG.getNegative(R, DL, VT);
4831 return R;
4832 }
4833 }
4834
4835 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
4836 if (sd_context_match(N0, Matcher, m_Opc(ISD::SHL))) {
4837 SDValue N01 = N0.getOperand(1);
4838 if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01}))
4839 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3);
4840 }
4841
4842 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
4843 // use.
4844 {
4845 SDValue Sh, Y;
4846
4847 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
4848 if (sd_context_match(N0, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
4850 Sh = N0; Y = N1;
4851 } else if (sd_context_match(N1, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
4853 Sh = N1; Y = N0;
4854 }
4855
4856 if (Sh.getNode()) {
4857 SDValue Mul = Matcher.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y);
4858 return Matcher.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1));
4859 }
4860 }
4861
4862 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
4863 if (sd_context_match(N0, Matcher, m_Opc(ISD::ADD)) &&
4867 return Matcher.getNode(
4868 ISD::ADD, DL, VT,
4869 Matcher.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1),
4870 Matcher.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1));
4871
4872 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
4873 ConstantSDNode *NC1 = isConstOrConstSplat(N1);
4874 if (!UseVP && N0.getOpcode() == ISD::VSCALE && NC1) {
4875 const APInt &C0 = N0.getConstantOperandAPInt(0);
4876 const APInt &C1 = NC1->getAPIntValue();
4877 return DAG.getVScale(DL, VT, C0 * C1);
4878 }
4879
4880 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
4881 APInt MulVal;
4882 if (!UseVP && N0.getOpcode() == ISD::STEP_VECTOR &&
4883 ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
4884 const APInt &C0 = N0.getConstantOperandAPInt(0);
4885 APInt NewStep = C0 * MulVal;
4886 return DAG.getStepVector(DL, VT, NewStep);
4887 }
4888
4889 // Fold Y = sra (X, size(X)-1); mul (or (Y, 1), X) -> (abs X)
4890 SDValue X;
4891 if (!UseVP && (!LegalOperations || hasOperation(ISD::ABS, VT)) &&
4893 N, Matcher,
4895 m_Deferred(X)))) {
4896 return Matcher.getNode(ISD::ABS, DL, VT, X);
4897 }
4898
4899 // Fold ((mul x, 0/undef) -> 0,
4900 // (mul x, 1) -> x) -> x)
4901 // -> and(x, mask)
4902 // We can replace vectors with '0' and '1' factors with a clearing mask.
4903 if (VT.isFixedLengthVector()) {
4904 unsigned NumElts = VT.getVectorNumElements();
4905 SmallBitVector ClearMask;
4906 ClearMask.reserve(NumElts);
4907 auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
4908 if (!V || V->isZero()) {
4909 ClearMask.push_back(true);
4910 return true;
4911 }
4912 ClearMask.push_back(false);
4913 return V->isOne();
4914 };
4915 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
4916 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
4917 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
4918 EVT LegalSVT = N1.getOperand(0).getValueType();
4919 SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
4920 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
4922 for (unsigned I = 0; I != NumElts; ++I)
4923 if (ClearMask[I])
4924 Mask[I] = Zero;
4925 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
4926 }
4927 }
4928
4929 // reassociate mul
4930 // TODO: Change reassociateOps to support vp ops.
4931 if (!UseVP)
4932 if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags()))
4933 return RMUL;
4934
4935 // Fold mul(vecreduce(x), vecreduce(y)) -> vecreduce(mul(x, y))
4936 // TODO: Change reassociateReduction to support vp ops.
4937 if (!UseVP)
4938 if (SDValue SD =
4939 reassociateReduction(ISD::VECREDUCE_MUL, ISD::MUL, DL, VT, N0, N1))
4940 return SD;
4941
4942 // Simplify the operands using demanded-bits information.
4944 return SDValue(N, 0);
4945
4946 return SDValue();
4947}
4948
4949/// Return true if divmod libcall is available.
4951 const TargetLowering &TLI) {
4952 RTLIB::Libcall LC;
4953 EVT NodeType = Node->getValueType(0);
4954 if (!NodeType.isSimple())
4955 return false;
4956 switch (NodeType.getSimpleVT().SimpleTy) {
4957 default: return false; // No libcall for vector types.
4958 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
4959 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
4960 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
4961 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
4962 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
4963 }
4964
4965 return TLI.getLibcallName(LC) != nullptr;
4966}
4967
4968/// Issue divrem if both quotient and remainder are needed.
4969SDValue DAGCombiner::useDivRem(SDNode *Node) {
4970 if (Node->use_empty())
4971 return SDValue(); // This is a dead node, leave it alone.
4972
4973 unsigned Opcode = Node->getOpcode();
4974 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
4975 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
4976
4977 // DivMod lib calls can still work on non-legal types if using lib-calls.
4978 EVT VT = Node->getValueType(0);
4979 if (VT.isVector() || !VT.isInteger())
4980 return SDValue();
4981
4982 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
4983 return SDValue();
4984
4985 // If DIVREM is going to get expanded into a libcall,
4986 // but there is no libcall available, then don't combine.
4987 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
4989 return SDValue();
4990
4991 // If div is legal, it's better to do the normal expansion
4992 unsigned OtherOpcode = 0;
4993 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
4994 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
4995 if (TLI.isOperationLegalOrCustom(Opcode, VT))
4996 return SDValue();
4997 } else {
4998 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4999 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
5000 return SDValue();
5001 }
5002
5003 SDValue Op0 = Node->getOperand(0);
5004 SDValue Op1 = Node->getOperand(1);
5005 SDValue combined;
5006 for (SDNode *User : Op0->users()) {
5007 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
5008 User->use_empty())
5009 continue;
5010 // Convert the other matching node(s), too;
5011 // otherwise, the DIVREM may get target-legalized into something
5012 // target-specific that we won't be able to recognize.
5013 unsigned UserOpc = User->getOpcode();
5014 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
5015 User->getOperand(0) == Op0 &&
5016 User->getOperand(1) == Op1) {
5017 if (!combined) {
5018 if (UserOpc == OtherOpcode) {
5019 SDVTList VTs = DAG.getVTList(VT, VT);
5020 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
5021 } else if (UserOpc == DivRemOpc) {
5022 combined = SDValue(User, 0);
5023 } else {
5024 assert(UserOpc == Opcode);
5025 continue;
5026 }
5027 }
5028 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
5029 CombineTo(User, combined);
5030 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
5031 CombineTo(User, combined.getValue(1));
5032 }
5033 }
5034 return combined;
5035}
5036
5038 SDValue N0 = N->getOperand(0);
5039 SDValue N1 = N->getOperand(1);
5040 EVT VT = N->getValueType(0);
5041 SDLoc DL(N);
5042
5043 unsigned Opc = N->getOpcode();
5044 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
5046
5047 // X / undef -> undef
5048 // X % undef -> undef
5049 // X / 0 -> undef
5050 // X % 0 -> undef
5051 // NOTE: This includes vectors where any divisor element is zero/undef.
5052 if (DAG.isUndef(Opc, {N0, N1}))
5053 return DAG.getUNDEF(VT);
5054
5055 // undef / X -> 0
5056 // undef % X -> 0
5057 if (N0.isUndef())
5058 return DAG.getConstant(0, DL, VT);
5059
5060 // 0 / X -> 0
5061 // 0 % X -> 0
5063 if (N0C && N0C->isZero())
5064 return N0;
5065
5066 // X / X -> 1
5067 // X % X -> 0
5068 if (N0 == N1)
5069 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
5070
5071 // X / 1 -> X
5072 // X % 1 -> 0
5073 // If this is a boolean op (single-bit element type), we can't have
5074 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
5075 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
5076 // it's a 1.
5077 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
5078 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
5079
5080 return SDValue();
5081}
5082
5083SDValue DAGCombiner::visitSDIV(SDNode *N) {
5084 SDValue N0 = N->getOperand(0);
5085 SDValue N1 = N->getOperand(1);
5086 EVT VT = N->getValueType(0);
5087 EVT CCVT = getSetCCResultType(VT);
5088 SDLoc DL(N);
5089
5090 // fold (sdiv c1, c2) -> c1/c2
5091 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
5092 return C;
5093
5094 // fold vector ops
5095 if (VT.isVector())
5096 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5097 return FoldedVOp;
5098
5099 // fold (sdiv X, -1) -> 0-X
5100 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5101 if (N1C && N1C->isAllOnes())
5102 return DAG.getNegative(N0, DL, VT);
5103
5104 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
5105 if (N1C && N1C->isMinSignedValue())
5106 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
5107 DAG.getConstant(1, DL, VT),
5108 DAG.getConstant(0, DL, VT));
5109
5110 if (SDValue V = simplifyDivRem(N, DAG))
5111 return V;
5112
5113 if (SDValue NewSel = foldBinOpIntoSelect(N))
5114 return NewSel;
5115
5116 // If we know the sign bits of both operands are zero, strength reduce to a
5117 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
5118 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
5119 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
5120
5121 if (SDValue V = visitSDIVLike(N0, N1, N)) {
5122 // If the corresponding remainder node exists, update its users with
5123 // (Dividend - (Quotient * Divisor).
5124 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
5125 { N0, N1 })) {
5126 // If the sdiv has the exact flag we shouldn't propagate it to the
5127 // remainder node.
5128 if (!N->getFlags().hasExact()) {
5129 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
5130 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5131 AddToWorklist(Mul.getNode());
5132 AddToWorklist(Sub.getNode());
5133 CombineTo(RemNode, Sub);
5134 }
5135 }
5136 return V;
5137 }
5138
5139 // sdiv, srem -> sdivrem
5140 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
5141 // true. Otherwise, we break the simplification logic in visitREM().
5142 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5143 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
5144 if (SDValue DivRem = useDivRem(N))
5145 return DivRem;
5146
5147 return SDValue();
5148}
5149
5150static bool isDivisorPowerOfTwo(SDValue Divisor) {
5151 // Helper for determining whether a value is a power-2 constant scalar or a
5152 // vector of such elements.
5153 auto IsPowerOfTwo = [](ConstantSDNode *C) {
5154 if (C->isZero() || C->isOpaque())
5155 return false;
5156 if (C->getAPIntValue().isPowerOf2())
5157 return true;
5158 if (C->getAPIntValue().isNegatedPowerOf2())
5159 return true;
5160 return false;
5161 };
5162
5163 return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo);
5164}
5165
5166SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
5167 SDLoc DL(N);
5168 EVT VT = N->getValueType(0);
5169 EVT CCVT = getSetCCResultType(VT);
5170 unsigned BitWidth = VT.getScalarSizeInBits();
5171
5172 // fold (sdiv X, pow2) -> simple ops after legalize
5173 // FIXME: We check for the exact bit here because the generic lowering gives
5174 // better results in that case. The target-specific lowering should learn how
5175 // to handle exact sdivs efficiently.
5176 if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) {
5177 // Target-specific implementation of sdiv x, pow2.
5178 if (SDValue Res = BuildSDIVPow2(N))
5179 return Res;
5180
5181 // Create constants that are functions of the shift amount value.
5182 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
5183 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
5184 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
5185 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
5186 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
5187 if (!isConstantOrConstantVector(Inexact))
5188 return SDValue();
5189
5190 // Splat the sign bit into the register
5191 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
5192 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
5193 AddToWorklist(Sign.getNode());
5194
5195 // Add (N0 < 0) ? abs2 - 1 : 0;
5196 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
5197 AddToWorklist(Srl.getNode());
5198 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
5199 AddToWorklist(Add.getNode());
5200 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
5201 AddToWorklist(Sra.getNode());
5202
5203 // Special case: (sdiv X, 1) -> X
5204 // Special Case: (sdiv X, -1) -> 0-X
5205 SDValue One = DAG.getConstant(1, DL, VT);
5207 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
5208 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
5209 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
5210 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
5211
5212 // If dividing by a positive value, we're done. Otherwise, the result must
5213 // be negated.
5214 SDValue Zero = DAG.getConstant(0, DL, VT);
5215 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
5216
5217 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
5218 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
5219 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
5220 return Res;
5221 }
5222
5223 // If integer divide is expensive and we satisfy the requirements, emit an
5224 // alternate sequence. Targets may check function attributes for size/speed
5225 // trade-offs.
5226 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5228 !TLI.isIntDivCheap(N->getValueType(0), Attr))
5229 if (SDValue Op = BuildSDIV(N))
5230 return Op;
5231
5232 return SDValue();
5233}
5234
5235SDValue DAGCombiner::visitUDIV(SDNode *N) {
5236 SDValue N0 = N->getOperand(0);
5237 SDValue N1 = N->getOperand(1);
5238 EVT VT = N->getValueType(0);
5239 EVT CCVT = getSetCCResultType(VT);
5240 SDLoc DL(N);
5241
5242 // fold (udiv c1, c2) -> c1/c2
5243 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
5244 return C;
5245
5246 // fold vector ops
5247 if (VT.isVector())
5248 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5249 return FoldedVOp;
5250
5251 // fold (udiv X, -1) -> select(X == -1, 1, 0)
5252 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5253 if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) {
5254 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
5255 DAG.getConstant(1, DL, VT),
5256 DAG.getConstant(0, DL, VT));
5257 }
5258
5259 if (SDValue V = simplifyDivRem(N, DAG))
5260 return V;
5261
5262 if (SDValue NewSel = foldBinOpIntoSelect(N))
5263 return NewSel;
5264
5265 if (SDValue V = visitUDIVLike(N0, N1, N)) {
5266 // If the corresponding remainder node exists, update its users with
5267 // (Dividend - (Quotient * Divisor).
5268 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
5269 { N0, N1 })) {
5270 // If the udiv has the exact flag we shouldn't propagate it to the
5271 // remainder node.
5272 if (!N->getFlags().hasExact()) {
5273 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
5274 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5275 AddToWorklist(Mul.getNode());
5276 AddToWorklist(Sub.getNode());
5277 CombineTo(RemNode, Sub);
5278 }
5279 }
5280 return V;
5281 }
5282
5283 // sdiv, srem -> sdivrem
5284 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
5285 // true. Otherwise, we break the simplification logic in visitREM().
5286 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5287 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
5288 if (SDValue DivRem = useDivRem(N))
5289 return DivRem;
5290
5291 // Simplify the operands using demanded-bits information.
5292 // We don't have demanded bits support for UDIV so this just enables constant
5293 // folding based on known bits.
5295 return SDValue(N, 0);
5296
5297 return SDValue();
5298}
5299
5300SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
5301 SDLoc DL(N);
5302 EVT VT = N->getValueType(0);
5303
5304 // fold (udiv x, (1 << c)) -> x >>u c
5305 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true)) {
5306 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
5307 AddToWorklist(LogBase2.getNode());
5308
5309 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
5310 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
5311 AddToWorklist(Trunc.getNode());
5312 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
5313 }
5314 }
5315
5316 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
5317 if (N1.getOpcode() == ISD::SHL) {
5318 SDValue N10 = N1.getOperand(0);
5319 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true)) {
5320 if (SDValue LogBase2 = BuildLogBase2(N10, DL)) {
5321 AddToWorklist(LogBase2.getNode());
5322
5323 EVT ADDVT = N1.getOperand(1).getValueType();
5324 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
5325 AddToWorklist(Trunc.getNode());
5326 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
5327 AddToWorklist(Add.getNode());
5328 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
5329 }
5330 }
5331 }
5332
5333 // fold (udiv x, c) -> alternate
5334 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5336 !TLI.isIntDivCheap(N->getValueType(0), Attr))
5337 if (SDValue Op = BuildUDIV(N))
5338 return Op;
5339
5340 return SDValue();
5341}
5342
5343SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) {
5344 if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) &&
5345 !DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) {
5346 // Target-specific implementation of srem x, pow2.
5347 if (SDValue Res = BuildSREMPow2(N))
5348 return Res;
5349 }
5350 return SDValue();
5351}
5352
5353// handles ISD::SREM and ISD::UREM
5354SDValue DAGCombiner::visitREM(SDNode *N) {
5355 unsigned Opcode = N->getOpcode();
5356 SDValue N0 = N->getOperand(0);
5357 SDValue N1 = N->getOperand(1);
5358 EVT VT = N->getValueType(0);
5359 EVT CCVT = getSetCCResultType(VT);
5360
5361 bool isSigned = (Opcode == ISD::SREM);
5362 SDLoc DL(N);
5363
5364 // fold (rem c1, c2) -> c1%c2
5365 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5366 return C;
5367
5368 // fold (urem X, -1) -> select(FX == -1, 0, FX)
5369 // Freeze the numerator to avoid a miscompile with an undefined value.
5370 if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) &&
5371 CCVT.isVector() == VT.isVector()) {
5372 SDValue F0 = DAG.getFreeze(N0);
5373 SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ);
5374 return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0);
5375 }
5376
5377 if (SDValue V = simplifyDivRem(N, DAG))
5378 return V;
5379
5380 if (SDValue NewSel = foldBinOpIntoSelect(N))
5381 return NewSel;
5382
5383 if (isSigned) {
5384 // If we know the sign bits of both operands are zero, strength reduce to a
5385 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
5386 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
5387 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
5388 } else {
5389 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
5390 // fold (urem x, pow2) -> (and x, pow2-1)
5391 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
5392 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
5393 AddToWorklist(Add.getNode());
5394 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
5395 }
5396 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
5397 // fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1))
5398 // TODO: We should sink the following into isKnownToBePowerOfTwo
5399 // using a OrZero parameter analogous to our handling in ValueTracking.
5400 if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) &&
5402 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
5403 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
5404 AddToWorklist(Add.getNode());
5405 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
5406 }
5407 }
5408
5409 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5410
5411 // If X/C can be simplified by the division-by-constant logic, lower
5412 // X%C to the equivalent of X-X/C*C.
5413 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
5414 // speculative DIV must not cause a DIVREM conversion. We guard against this
5415 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
5416 // combine will not return a DIVREM. Regardless, checking cheapness here
5417 // makes sense since the simplification results in fatter code.
5418 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
5419 if (isSigned) {
5420 // check if we can build faster implementation for srem
5421 if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N))
5422 return OptimizedRem;
5423 }
5424
5425 SDValue OptimizedDiv =
5426 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
5427 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) {
5428 // If the equivalent Div node also exists, update its users.
5429 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
5430 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
5431 { N0, N1 }))
5432 CombineTo(DivNode, OptimizedDiv);
5433 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
5434 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5435 AddToWorklist(OptimizedDiv.getNode());
5436 AddToWorklist(Mul.getNode());
5437 return Sub;
5438 }
5439 }
5440
5441 // sdiv, srem -> sdivrem
5442 if (SDValue DivRem = useDivRem(N))
5443 return DivRem.getValue(1);
5444
5445 // fold urem(urem(A, BCst), Op1Cst) -> urem(A, Op1Cst)
5446 // iff urem(BCst, Op1Cst) == 0
5447 SDValue A;
5448 APInt Op1Cst, BCst;
5449 if (sd_match(N, m_URem(m_URem(m_Value(A), m_ConstInt(BCst)),
5450 m_ConstInt(Op1Cst))) &&
5451 BCst.urem(Op1Cst).isZero()) {
5452 return DAG.getNode(ISD::UREM, DL, VT, A, DAG.getConstant(Op1Cst, DL, VT));
5453 }
5454
5455 // fold srem(srem(A, BCst), Op1Cst) -> srem(A, Op1Cst)
5456 // iff srem(BCst, Op1Cst) == 0 && Op1Cst != 1
5457 if (sd_match(N, m_SRem(m_SRem(m_Value(A), m_ConstInt(BCst)),
5458 m_ConstInt(Op1Cst))) &&
5459 BCst.srem(Op1Cst).isZero() && !Op1Cst.isAllOnes()) {
5460 return DAG.getNode(ISD::SREM, DL, VT, A, DAG.getConstant(Op1Cst, DL, VT));
5461 }
5462
5463 return SDValue();
5464}
5465
5466SDValue DAGCombiner::visitMULHS(SDNode *N) {
5467 SDValue N0 = N->getOperand(0);
5468 SDValue N1 = N->getOperand(1);
5469 EVT VT = N->getValueType(0);
5470 SDLoc DL(N);
5471
5472 // fold (mulhs c1, c2)
5473 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
5474 return C;
5475
5476 // canonicalize constant to RHS.
5479 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0);
5480
5481 if (VT.isVector()) {
5482 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5483 return FoldedVOp;
5484
5485 // fold (mulhs x, 0) -> 0
5486 // do not return N1, because undef node may exist.
5488 return DAG.getConstant(0, DL, VT);
5489 }
5490
5491 // fold (mulhs x, 0) -> 0
5492 if (isNullConstant(N1))
5493 return N1;
5494
5495 // fold (mulhs x, 1) -> (sra x, size(x)-1)
5496 if (isOneConstant(N1))
5497 return DAG.getNode(
5498 ISD::SRA, DL, VT, N0,
5500
5501 // fold (mulhs x, undef) -> 0
5502 if (N0.isUndef() || N1.isUndef())
5503 return DAG.getConstant(0, DL, VT);
5504
5505 // If the type twice as wide is legal, transform the mulhs to a wider multiply
5506 // plus a shift.
5507 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
5508 !VT.isVector()) {
5509 MVT Simple = VT.getSimpleVT();
5510 unsigned SimpleSize = Simple.getSizeInBits();
5511 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5512 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5513 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
5514 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
5515 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
5516 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
5517 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5518 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
5519 }
5520 }
5521
5522 return SDValue();
5523}
5524
5525SDValue DAGCombiner::visitMULHU(SDNode *N) {
5526 SDValue N0 = N->getOperand(0);
5527 SDValue N1 = N->getOperand(1);
5528 EVT VT = N->getValueType(0);
5529 SDLoc DL(N);
5530
5531 // fold (mulhu c1, c2)
5532 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
5533 return C;
5534
5535 // canonicalize constant to RHS.
5538 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0);
5539
5540 if (VT.isVector()) {
5541 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5542 return FoldedVOp;
5543
5544 // fold (mulhu x, 0) -> 0
5545 // do not return N1, because undef node may exist.
5547 return DAG.getConstant(0, DL, VT);
5548 }
5549
5550 // fold (mulhu x, 0) -> 0
5551 if (isNullConstant(N1))
5552 return N1;
5553
5554 // fold (mulhu x, 1) -> 0
5555 if (isOneConstant(N1))
5556 return DAG.getConstant(0, DL, VT);
5557
5558 // fold (mulhu x, undef) -> 0
5559 if (N0.isUndef() || N1.isUndef())
5560 return DAG.getConstant(0, DL, VT);
5561
5562 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
5563 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
5564 hasOperation(ISD::SRL, VT)) {
5565 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
5566 unsigned NumEltBits = VT.getScalarSizeInBits();
5567 SDValue SRLAmt = DAG.getNode(
5568 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
5569 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
5570 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
5571 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
5572 }
5573 }
5574
5575 // If the type twice as wide is legal, transform the mulhu to a wider multiply
5576 // plus a shift.
5577 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
5578 !VT.isVector()) {
5579 MVT Simple = VT.getSimpleVT();
5580 unsigned SimpleSize = Simple.getSizeInBits();
5581 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5582 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5583 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
5584 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
5585 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
5586 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
5587 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5588 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
5589 }
5590 }
5591
5592 // Simplify the operands using demanded-bits information.
5593 // We don't have demanded bits support for MULHU so this just enables constant
5594 // folding based on known bits.
5596 return SDValue(N, 0);
5597
5598 return SDValue();
5599}
5600
5601SDValue DAGCombiner::visitAVG(SDNode *N) {
5602 unsigned Opcode = N->getOpcode();
5603 SDValue N0 = N->getOperand(0);
5604 SDValue N1 = N->getOperand(1);
5605 EVT VT = N->getValueType(0);
5606 SDLoc DL(N);
5607 bool IsSigned = Opcode == ISD::AVGCEILS || Opcode == ISD::AVGFLOORS;
5608
5609 // fold (avg c1, c2)
5610 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5611 return C;
5612
5613 // canonicalize constant to RHS.
5616 return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
5617
5618 if (VT.isVector())
5619 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5620 return FoldedVOp;
5621
5622 // fold (avg x, undef) -> x
5623 if (N0.isUndef())
5624 return N1;
5625 if (N1.isUndef())
5626 return N0;
5627
5628 // fold (avg x, x) --> x
5629 if (N0 == N1 && Level >= AfterLegalizeTypes)
5630 return N0;
5631
5632 // fold (avgfloor x, 0) -> x >> 1
5633 SDValue X, Y;
5635 return DAG.getNode(ISD::SRA, DL, VT, X,
5636 DAG.getShiftAmountConstant(1, VT, DL));
5638 return DAG.getNode(ISD::SRL, DL, VT, X,
5639 DAG.getShiftAmountConstant(1, VT, DL));
5640
5641 // fold avgu(zext(x), zext(y)) -> zext(avgu(x, y))
5642 // fold avgs(sext(x), sext(y)) -> sext(avgs(x, y))
5643 if (!IsSigned &&
5644 sd_match(N, m_BinOp(Opcode, m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
5645 X.getValueType() == Y.getValueType() &&
5646 hasOperation(Opcode, X.getValueType())) {
5647 SDValue AvgU = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
5648 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, AvgU);
5649 }
5650 if (IsSigned &&
5651 sd_match(N, m_BinOp(Opcode, m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) &&
5652 X.getValueType() == Y.getValueType() &&
5653 hasOperation(Opcode, X.getValueType())) {
5654 SDValue AvgS = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
5655 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, AvgS);
5656 }
5657
5658 // Fold avgflooru(x,y) -> avgceilu(x,y-1) iff y != 0
5659 // Fold avgflooru(x,y) -> avgceilu(x-1,y) iff x != 0
5660 // Check if avgflooru isn't legal/custom but avgceilu is.
5661 if (Opcode == ISD::AVGFLOORU && !hasOperation(ISD::AVGFLOORU, VT) &&
5662 (!LegalOperations || hasOperation(ISD::AVGCEILU, VT))) {
5663 if (DAG.isKnownNeverZero(N1))
5664 return DAG.getNode(
5665 ISD::AVGCEILU, DL, VT, N0,
5666 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getAllOnesConstant(DL, VT)));
5667 if (DAG.isKnownNeverZero(N0))
5668 return DAG.getNode(
5669 ISD::AVGCEILU, DL, VT, N1,
5670 DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getAllOnesConstant(DL, VT)));
5671 }
5672
5673 // Fold avgfloor((add nw x,y), 1) -> avgceil(x,y)
5674 // Fold avgfloor((add nw x,1), y) -> avgceil(x,y)
5675 if ((Opcode == ISD::AVGFLOORU && hasOperation(ISD::AVGCEILU, VT)) ||
5676 (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGCEILS, VT))) {
5677 SDValue Add;
5678 if (sd_match(N,
5679 m_c_BinOp(Opcode,
5681 m_One())) ||
5682 sd_match(N, m_c_BinOp(Opcode,
5684 m_Value(Y)))) {
5685
5686 if (IsSigned && Add->getFlags().hasNoSignedWrap())
5687 return DAG.getNode(ISD::AVGCEILS, DL, VT, X, Y);
5688
5689 if (!IsSigned && Add->getFlags().hasNoUnsignedWrap())
5690 return DAG.getNode(ISD::AVGCEILU, DL, VT, X, Y);
5691 }
5692 }
5693
5694 // Fold avgfloors(x,y) -> avgflooru(x,y) if both x and y are non-negative
5695 if (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGFLOORU, VT)) {
5696 if (DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
5697 return DAG.getNode(ISD::AVGFLOORU, DL, VT, N0, N1);
5698 }
5699
5700 return SDValue();
5701}
5702
5703SDValue DAGCombiner::visitABD(SDNode *N) {
5704 unsigned Opcode = N->getOpcode();
5705 SDValue N0 = N->getOperand(0);
5706 SDValue N1 = N->getOperand(1);
5707 EVT VT = N->getValueType(0);
5708 SDLoc DL(N);
5709
5710 // fold (abd c1, c2)
5711 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5712 return C;
5713
5714 // canonicalize constant to RHS.
5717 return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
5718
5719 if (VT.isVector())
5720 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5721 return FoldedVOp;
5722
5723 // fold (abd x, undef) -> 0
5724 if (N0.isUndef() || N1.isUndef())
5725 return DAG.getConstant(0, DL, VT);
5726
5727 // fold (abd x, x) -> 0
5728 if (N0 == N1)
5729 return DAG.getConstant(0, DL, VT);
5730
5731 SDValue X;
5732
5733 // fold (abds x, 0) -> abs x
5735 (!LegalOperations || hasOperation(ISD::ABS, VT)))
5736 return DAG.getNode(ISD::ABS, DL, VT, X);
5737
5738 // fold (abdu x, 0) -> x
5740 return X;
5741
5742 // fold (abds x, y) -> (abdu x, y) iff both args are known positive
5743 if (Opcode == ISD::ABDS && hasOperation(ISD::ABDU, VT) &&
5744 DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
5745 return DAG.getNode(ISD::ABDU, DL, VT, N1, N0);
5746
5747 return SDValue();
5748}
5749
5750/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
5751/// give the opcodes for the two computations that are being performed. Return
5752/// true if a simplification was made.
5753SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
5754 unsigned HiOp) {
5755 // If the high half is not needed, just compute the low half.
5756 bool HiExists = N->hasAnyUseOfValue(1);
5757 if (!HiExists && (!LegalOperations ||
5758 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
5759 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
5760 return CombineTo(N, Res, Res);
5761 }
5762
5763 // If the low half is not needed, just compute the high half.
5764 bool LoExists = N->hasAnyUseOfValue(0);
5765 if (!LoExists && (!LegalOperations ||
5766 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
5767 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
5768 return CombineTo(N, Res, Res);
5769 }
5770
5771 // If both halves are used, return as it is.
5772 if (LoExists && HiExists)
5773 return SDValue();
5774
5775 // If the two computed results can be simplified separately, separate them.
5776 if (LoExists) {
5777 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
5778 AddToWorklist(Lo.getNode());
5779 SDValue LoOpt = combine(Lo.getNode());
5780 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
5781 (!LegalOperations ||
5782 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
5783 return CombineTo(N, LoOpt, LoOpt);
5784 }
5785
5786 if (HiExists) {
5787 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
5788 AddToWorklist(Hi.getNode());
5789 SDValue HiOpt = combine(Hi.getNode());
5790 if (HiOpt.getNode() && HiOpt != Hi &&
5791 (!LegalOperations ||
5792 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
5793 return CombineTo(N, HiOpt, HiOpt);
5794 }
5795
5796 return SDValue();
5797}
5798
5799SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
5800 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
5801 return Res;
5802
5803 SDValue N0 = N->getOperand(0);
5804 SDValue N1 = N->getOperand(1);
5805 EVT VT = N->getValueType(0);
5806 SDLoc DL(N);
5807
5808 // Constant fold.
5810 return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N0, N1);
5811
5812 // canonicalize constant to RHS (vector doesn't have to splat)
5815 return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0);
5816
5817 // If the type is twice as wide is legal, transform the mulhu to a wider
5818 // multiply plus a shift.
5819 if (VT.isSimple() && !VT.isVector()) {
5820 MVT Simple = VT.getSimpleVT();
5821 unsigned SimpleSize = Simple.getSizeInBits();
5822 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5823 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5824 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
5825 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
5826 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
5827 // Compute the high part as N1.
5828 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
5829 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5830 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
5831 // Compute the low part as N0.
5832 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
5833 return CombineTo(N, Lo, Hi);
5834 }
5835 }
5836
5837 return SDValue();
5838}
5839
5840SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
5841 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
5842 return Res;
5843
5844 SDValue N0 = N->getOperand(0);
5845 SDValue N1 = N->getOperand(1);
5846 EVT VT = N->getValueType(0);
5847 SDLoc DL(N);
5848
5849 // Constant fold.
5851 return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N0, N1);
5852
5853 // canonicalize constant to RHS (vector doesn't have to splat)
5856 return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0);
5857
5858 // (umul_lohi N0, 0) -> (0, 0)
5859 if (isNullConstant(N1)) {
5860 SDValue Zero = DAG.getConstant(0, DL, VT);
5861 return CombineTo(N, Zero, Zero);
5862 }
5863
5864 // (umul_lohi N0, 1) -> (N0, 0)
5865 if (isOneConstant(N1)) {
5866 SDValue Zero = DAG.getConstant(0, DL, VT);
5867 return CombineTo(N, N0, Zero);
5868 }
5869
5870 // If the type is twice as wide is legal, transform the mulhu to a wider
5871 // multiply plus a shift.
5872 if (VT.isSimple() && !VT.isVector()) {
5873 MVT Simple = VT.getSimpleVT();
5874 unsigned SimpleSize = Simple.getSizeInBits();
5875 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5876 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5877 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
5878 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
5879 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
5880 // Compute the high part as N1.
5881 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
5882 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5883 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
5884 // Compute the low part as N0.
5885 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
5886 return CombineTo(N, Lo, Hi);
5887 }
5888 }
5889
5890 return SDValue();
5891}
5892
5893SDValue DAGCombiner::visitMULO(SDNode *N) {
5894 SDValue N0 = N->getOperand(0);
5895 SDValue N1 = N->getOperand(1);
5896 EVT VT = N0.getValueType();
5897 bool IsSigned = (ISD::SMULO == N->getOpcode());
5898
5899 EVT CarryVT = N->getValueType(1);
5900 SDLoc DL(N);
5901
5902 ConstantSDNode *N0C = isConstOrConstSplat(N0);
5903 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5904
5905 // fold operation with constant operands.
5906 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
5907 // multiple results.
5908 if (N0C && N1C) {
5909 bool Overflow;
5910 APInt Result =
5911 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
5912 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
5913 return CombineTo(N, DAG.getConstant(Result, DL, VT),
5914 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
5915 }
5916
5917 // canonicalize constant to RHS.
5920 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
5921
5922 // fold (mulo x, 0) -> 0 + no carry out
5923 if (isNullOrNullSplat(N1))
5924 return CombineTo(N, DAG.getConstant(0, DL, VT),
5925 DAG.getConstant(0, DL, CarryVT));
5926
5927 // (mulo x, 2) -> (addo x, x)
5928 // FIXME: This needs a freeze.
5929 if (N1C && N1C->getAPIntValue() == 2 &&
5930 (!IsSigned || VT.getScalarSizeInBits() > 2))
5931 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
5932 N->getVTList(), N0, N0);
5933
5934 // A 1 bit SMULO overflows if both inputs are 1.
5935 if (IsSigned && VT.getScalarSizeInBits() == 1) {
5936 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
5937 SDValue Cmp = DAG.getSetCC(DL, CarryVT, And,
5938 DAG.getConstant(0, DL, VT), ISD::SETNE);
5939 return CombineTo(N, And, Cmp);
5940 }
5941
5942 // If it cannot overflow, transform into a mul.
5943 if (DAG.willNotOverflowMul(IsSigned, N0, N1))
5944 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
5945 DAG.getConstant(0, DL, CarryVT));
5946 return SDValue();
5947}
5948
5949// Function to calculate whether the Min/Max pair of SDNodes (potentially
5950// swapped around) make a signed saturate pattern, clamping to between a signed
5951// saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW.
5952// Returns the node being clamped and the bitwidth of the clamp in BW. Should
5953// work with both SMIN/SMAX nodes and setcc/select combo. The operands are the
5954// same as SimplifySelectCC. N0<N1 ? N2 : N3.
5956 SDValue N3, ISD::CondCode CC, unsigned &BW,
5957 bool &Unsigned, SelectionDAG &DAG) {
5958 auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3,
5959 ISD::CondCode CC) {
5960 // The compare and select operand should be the same or the select operands
5961 // should be truncated versions of the comparison.
5962 if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0)))
5963 return 0;
5964 // The constants need to be the same or a truncated version of each other.
5967 if (!N1C || !N3C)
5968 return 0;
5969 const APInt &C1 = N1C->getAPIntValue().trunc(N1.getScalarValueSizeInBits());
5970 const APInt &C2 = N3C->getAPIntValue().trunc(N3.getScalarValueSizeInBits());
5971 if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth()))
5972 return 0;
5973 return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0);
5974 };
5975
5976 // Check the initial value is a SMIN/SMAX equivalent.
5977 unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC);
5978 if (!Opcode0)
5979 return SDValue();
5980
5981 // We could only need one range check, if the fptosi could never produce
5982 // the upper value.
5983 if (N0.getOpcode() == ISD::FP_TO_SINT && Opcode0 == ISD::SMAX) {
5984 if (isNullOrNullSplat(N3)) {
5985 EVT IntVT = N0.getValueType().getScalarType();
5986 EVT FPVT = N0.getOperand(0).getValueType().getScalarType();
5987 if (FPVT.isSimple()) {
5988 Type *InputTy = FPVT.getTypeForEVT(*DAG.getContext());
5989 const fltSemantics &Semantics = InputTy->getFltSemantics();
5990 uint32_t MinBitWidth =
5991 APFloatBase::semanticsIntSizeInBits(Semantics, /*isSigned*/ true);
5992 if (IntVT.getSizeInBits() >= MinBitWidth) {
5993 Unsigned = true;
5994 BW = PowerOf2Ceil(MinBitWidth);
5995 return N0;
5996 }
5997 }
5998 }
5999 }
6000
6001 SDValue N00, N01, N02, N03;
6002 ISD::CondCode N0CC;
6003 switch (N0.getOpcode()) {
6004 case ISD::SMIN:
6005 case ISD::SMAX:
6006 N00 = N02 = N0.getOperand(0);
6007 N01 = N03 = N0.getOperand(1);
6008 N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT;
6009 break;
6010 case ISD::SELECT_CC:
6011 N00 = N0.getOperand(0);
6012 N01 = N0.getOperand(1);
6013 N02 = N0.getOperand(2);
6014 N03 = N0.getOperand(3);
6015 N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get();
6016 break;
6017 case ISD::SELECT:
6018 case ISD::VSELECT:
6019 if (N0.getOperand(0).getOpcode() != ISD::SETCC)
6020 return SDValue();
6021 N00 = N0.getOperand(0).getOperand(0);
6022 N01 = N0.getOperand(0).getOperand(1);
6023 N02 = N0.getOperand(1);
6024 N03 = N0.getOperand(2);
6025 N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get();
6026 break;
6027 default:
6028 return SDValue();
6029 }
6030
6031 unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC);
6032 if (!Opcode1 || Opcode0 == Opcode1)
6033 return SDValue();
6034
6035 ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01);
6036 ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1);
6037 if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0))
6038 return SDValue();
6039
6040 const APInt &MinC = MinCOp->getAPIntValue();
6041 const APInt &MaxC = MaxCOp->getAPIntValue();
6042 APInt MinCPlus1 = MinC + 1;
6043 if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) {
6044 BW = MinCPlus1.exactLogBase2() + 1;
6045 Unsigned = false;
6046 return N02;
6047 }
6048
6049 if (MaxC == 0 && MinCPlus1.isPowerOf2()) {
6050 BW = MinCPlus1.exactLogBase2();
6051 Unsigned = true;
6052 return N02;
6053 }
6054
6055 return SDValue();
6056}
6057
6059 SDValue N3, ISD::CondCode CC,
6060 SelectionDAG &DAG) {
6061 unsigned BW;
6062 bool Unsigned;
6063 SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned, DAG);
6064 if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT)
6065 return SDValue();
6066 EVT FPVT = Fp.getOperand(0).getValueType();
6067 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
6068 if (FPVT.isVector())
6069 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
6070 FPVT.getVectorElementCount());
6071 unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT;
6072 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT))
6073 return SDValue();
6074 SDLoc DL(Fp);
6075 SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0),
6076 DAG.getValueType(NewVT.getScalarType()));
6077 return DAG.getExtOrTrunc(!Unsigned, Sat, DL, N2->getValueType(0));
6078}
6079
6081 SDValue N3, ISD::CondCode CC,
6082 SelectionDAG &DAG) {
6083 // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a
6084 // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may
6085 // be truncated versions of the setcc (N0/N1).
6086 if ((N0 != N2 &&
6087 (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) ||
6088 N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT)
6089 return SDValue();
6092 if (!N1C || !N3C)
6093 return SDValue();
6094 const APInt &C1 = N1C->getAPIntValue();
6095 const APInt &C3 = N3C->getAPIntValue();
6096 if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() ||
6097 C1 != C3.zext(C1.getBitWidth()))
6098 return SDValue();
6099
6100 unsigned BW = (C1 + 1).exactLogBase2();
6101 EVT FPVT = N0.getOperand(0).getValueType();
6102 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
6103 if (FPVT.isVector())
6104 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
6105 FPVT.getVectorElementCount());
6107 FPVT, NewVT))
6108 return SDValue();
6109
6110 SDValue Sat =
6111 DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0),
6112 DAG.getValueType(NewVT.getScalarType()));
6113 return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType());
6114}
6115
6116SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
6117 SDValue N0 = N->getOperand(0);
6118 SDValue N1 = N->getOperand(1);
6119 EVT VT = N0.getValueType();
6120 unsigned Opcode = N->getOpcode();
6121 SDLoc DL(N);
6122
6123 // fold operation with constant operands.
6124 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
6125 return C;
6126
6127 // If the operands are the same, this is a no-op.
6128 if (N0 == N1)
6129 return N0;
6130
6131 // Fold operation with vscale operands.
6132 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
6133 uint64_t C0 = N0->getConstantOperandVal(0);
6134 uint64_t C1 = N1->getConstantOperandVal(0);
6135 if (Opcode == ISD::UMAX)
6136 return C0 > C1 ? N0 : N1;
6137 else if (Opcode == ISD::UMIN)
6138 return C0 > C1 ? N1 : N0;
6139 }
6140
6141 // canonicalize constant to RHS
6144 return DAG.getNode(Opcode, DL, VT, N1, N0);
6145
6146 // fold vector ops
6147 if (VT.isVector())
6148 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
6149 return FoldedVOp;
6150
6151 // reassociate minmax
6152 if (SDValue RMINMAX = reassociateOps(Opcode, DL, N0, N1, N->getFlags()))
6153 return RMINMAX;
6154
6155 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
6156 // Only do this if:
6157 // 1. The current op isn't legal and the flipped is.
6158 // 2. The saturation pattern is broken by canonicalization in InstCombine.
6159 bool IsOpIllegal = !TLI.isOperationLegal(Opcode, VT);
6160 bool IsSatBroken = Opcode == ISD::UMIN && N0.getOpcode() == ISD::SMAX;
6161 if ((IsSatBroken || IsOpIllegal) && (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
6162 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
6163 unsigned AltOpcode;
6164 switch (Opcode) {
6165 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
6166 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
6167 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
6168 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
6169 default: llvm_unreachable("Unknown MINMAX opcode");
6170 }
6171 if ((IsSatBroken && IsOpIllegal) || TLI.isOperationLegal(AltOpcode, VT))
6172 return DAG.getNode(AltOpcode, DL, VT, N0, N1);
6173 }
6174
6175 if (Opcode == ISD::SMIN || Opcode == ISD::SMAX)
6177 N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG))
6178 return S;
6179 if (Opcode == ISD::UMIN)
6180 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG))
6181 return S;
6182
6183 // Fold min/max(vecreduce(x), vecreduce(y)) -> vecreduce(min/max(x, y))
6184 auto ReductionOpcode = [](unsigned Opcode) {
6185 switch (Opcode) {
6186 case ISD::SMIN:
6187 return ISD::VECREDUCE_SMIN;
6188 case ISD::SMAX:
6189 return ISD::VECREDUCE_SMAX;
6190 case ISD::UMIN:
6191 return ISD::VECREDUCE_UMIN;
6192 case ISD::UMAX:
6193 return ISD::VECREDUCE_UMAX;
6194 default:
6195 llvm_unreachable("Unexpected opcode");
6196 }
6197 };
6198 if (SDValue SD = reassociateReduction(ReductionOpcode(Opcode), Opcode,
6199 SDLoc(N), VT, N0, N1))
6200 return SD;
6201
6202 // Simplify the operands using demanded-bits information.
6204 return SDValue(N, 0);
6205
6206 return SDValue();
6207}
6208
6209/// If this is a bitwise logic instruction and both operands have the same
6210/// opcode, try to sink the other opcode after the logic instruction.
6211SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
6212 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
6213 EVT VT = N0.getValueType();
6214 unsigned LogicOpcode = N->getOpcode();
6215 unsigned HandOpcode = N0.getOpcode();
6216 assert(ISD::isBitwiseLogicOp(LogicOpcode) && "Expected logic opcode");
6217 assert(HandOpcode == N1.getOpcode() && "Bad input!");
6218
6219 // Bail early if none of these transforms apply.
6220 if (N0.getNumOperands() == 0)
6221 return SDValue();
6222
6223 // FIXME: We should check number of uses of the operands to not increase
6224 // the instruction count for all transforms.
6225
6226 // Handle size-changing casts (or sign_extend_inreg).
6227 SDValue X = N0.getOperand(0);
6228 SDValue Y = N1.getOperand(0);
6229 EVT XVT = X.getValueType();
6230 SDLoc DL(N);
6231 if (ISD::isExtOpcode(HandOpcode) || ISD::isExtVecInRegOpcode(HandOpcode) ||
6232 (HandOpcode == ISD::SIGN_EXTEND_INREG &&
6233 N0.getOperand(1) == N1.getOperand(1))) {
6234 // If both operands have other uses, this transform would create extra
6235 // instructions without eliminating anything.
6236 if (!N0.hasOneUse() && !N1.hasOneUse())
6237 return SDValue();
6238 // We need matching integer source types.
6239 if (XVT != Y.getValueType())
6240 return SDValue();
6241 // Don't create an illegal op during or after legalization. Don't ever
6242 // create an unsupported vector op.
6243 if ((VT.isVector() || LegalOperations) &&
6244 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
6245 return SDValue();
6246 // Avoid infinite looping with PromoteIntBinOp.
6247 // TODO: Should we apply desirable/legal constraints to all opcodes?
6248 if ((HandOpcode == ISD::ANY_EXTEND ||
6249 HandOpcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6250 LegalTypes && !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
6251 return SDValue();
6252 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
6253 SDNodeFlags LogicFlags;
6254 LogicFlags.setDisjoint(N->getFlags().hasDisjoint() &&
6255 ISD::isExtOpcode(HandOpcode));
6256 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y, LogicFlags);
6257 if (HandOpcode == ISD::SIGN_EXTEND_INREG)
6258 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
6259 return DAG.getNode(HandOpcode, DL, VT, Logic);
6260 }
6261
6262 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
6263 if (HandOpcode == ISD::TRUNCATE) {
6264 // If both operands have other uses, this transform would create extra
6265 // instructions without eliminating anything.
6266 if (!N0.hasOneUse() && !N1.hasOneUse())
6267 return SDValue();
6268 // We need matching source types.
6269 if (XVT != Y.getValueType())
6270 return SDValue();
6271 // Don't create an illegal op during or after legalization.
6272 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
6273 return SDValue();
6274 // Be extra careful sinking truncate. If it's free, there's no benefit in
6275 // widening a binop. Also, don't create a logic op on an illegal type.
6276 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
6277 return SDValue();
6278 if (!TLI.isTypeLegal(XVT))
6279 return SDValue();
6280 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6281 return DAG.getNode(HandOpcode, DL, VT, Logic);
6282 }
6283
6284 // For binops SHL/SRL/SRA/AND:
6285 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
6286 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
6287 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
6288 N0.getOperand(1) == N1.getOperand(1)) {
6289 // If either operand has other uses, this transform is not an improvement.
6290 if (!N0.hasOneUse() || !N1.hasOneUse())
6291 return SDValue();
6292 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6293 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
6294 }
6295
6296 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
6297 if (HandOpcode == ISD::BSWAP) {
6298 // If either operand has other uses, this transform is not an improvement.
6299 if (!N0.hasOneUse() || !N1.hasOneUse())
6300 return SDValue();
6301 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6302 return DAG.getNode(HandOpcode, DL, VT, Logic);
6303 }
6304
6305 // For funnel shifts FSHL/FSHR:
6306 // logic_op (OP x, x1, s), (OP y, y1, s) -->
6307 // --> OP (logic_op x, y), (logic_op, x1, y1), s
6308 if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) &&
6309 N0.getOperand(2) == N1.getOperand(2)) {
6310 if (!N0.hasOneUse() || !N1.hasOneUse())
6311 return SDValue();
6312 SDValue X1 = N0.getOperand(1);
6313 SDValue Y1 = N1.getOperand(1);
6314 SDValue S = N0.getOperand(2);
6315 SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y);
6316 SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1);
6317 return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S);
6318 }
6319
6320 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
6321 // Only perform this optimization up until type legalization, before
6322 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
6323 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
6324 // we don't want to undo this promotion.
6325 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
6326 // on scalars.
6327 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
6328 Level <= AfterLegalizeTypes) {
6329 // Input types must be integer and the same.
6330 if (XVT.isInteger() && XVT == Y.getValueType() &&
6331 !(VT.isVector() && TLI.isTypeLegal(VT) &&
6332 !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
6333 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6334 return DAG.getNode(HandOpcode, DL, VT, Logic);
6335 }
6336 }
6337
6338 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
6339 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
6340 // If both shuffles use the same mask, and both shuffle within a single
6341 // vector, then it is worthwhile to move the swizzle after the operation.
6342 // The type-legalizer generates this pattern when loading illegal
6343 // vector types from memory. In many cases this allows additional shuffle
6344 // optimizations.
6345 // There are other cases where moving the shuffle after the xor/and/or
6346 // is profitable even if shuffles don't perform a swizzle.
6347 // If both shuffles use the same mask, and both shuffles have the same first
6348 // or second operand, then it might still be profitable to move the shuffle
6349 // after the xor/and/or operation.
6350 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
6351 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
6352 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
6353 assert(X.getValueType() == Y.getValueType() &&
6354 "Inputs to shuffles are not the same type");
6355
6356 // Check that both shuffles use the same mask. The masks are known to be of
6357 // the same length because the result vector type is the same.
6358 // Check also that shuffles have only one use to avoid introducing extra
6359 // instructions.
6360 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
6361 !SVN0->getMask().equals(SVN1->getMask()))
6362 return SDValue();
6363
6364 // Don't try to fold this node if it requires introducing a
6365 // build vector of all zeros that might be illegal at this stage.
6366 SDValue ShOp = N0.getOperand(1);
6367 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
6368 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
6369
6370 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
6371 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
6372 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
6373 N0.getOperand(0), N1.getOperand(0));
6374 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
6375 }
6376
6377 // Don't try to fold this node if it requires introducing a
6378 // build vector of all zeros that might be illegal at this stage.
6379 ShOp = N0.getOperand(0);
6380 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
6381 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
6382
6383 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
6384 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
6385 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
6386 N1.getOperand(1));
6387 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
6388 }
6389 }
6390
6391 return SDValue();
6392}
6393
6394/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
6395SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
6396 const SDLoc &DL) {
6397 SDValue LL, LR, RL, RR, N0CC, N1CC;
6398 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
6399 !isSetCCEquivalent(N1, RL, RR, N1CC))
6400 return SDValue();
6401
6402 assert(N0.getValueType() == N1.getValueType() &&
6403 "Unexpected operand types for bitwise logic op");
6404 assert(LL.getValueType() == LR.getValueType() &&
6405 RL.getValueType() == RR.getValueType() &&
6406 "Unexpected operand types for setcc");
6407
6408 // If we're here post-legalization or the logic op type is not i1, the logic
6409 // op type must match a setcc result type. Also, all folds require new
6410 // operations on the left and right operands, so those types must match.
6411 EVT VT = N0.getValueType();
6412 EVT OpVT = LL.getValueType();
6413 if (LegalOperations || VT.getScalarType() != MVT::i1)
6414 if (VT != getSetCCResultType(OpVT))
6415 return SDValue();
6416 if (OpVT != RL.getValueType())
6417 return SDValue();
6418
6419 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
6420 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
6421 bool IsInteger = OpVT.isInteger();
6422 if (LR == RR && CC0 == CC1 && IsInteger) {
6423 bool IsZero = isNullOrNullSplat(LR);
6424 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
6425
6426 // All bits clear?
6427 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
6428 // All sign bits clear?
6429 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
6430 // Any bits set?
6431 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
6432 // Any sign bits set?
6433 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
6434
6435 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
6436 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
6437 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
6438 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
6439 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
6440 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
6441 AddToWorklist(Or.getNode());
6442 return DAG.getSetCC(DL, VT, Or, LR, CC1);
6443 }
6444
6445 // All bits set?
6446 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
6447 // All sign bits set?
6448 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
6449 // Any bits clear?
6450 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
6451 // Any sign bits clear?
6452 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
6453
6454 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
6455 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
6456 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
6457 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
6458 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
6459 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
6460 AddToWorklist(And.getNode());
6461 return DAG.getSetCC(DL, VT, And, LR, CC1);
6462 }
6463 }
6464
6465 // TODO: What is the 'or' equivalent of this fold?
6466 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
6467 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
6468 IsInteger && CC0 == ISD::SETNE &&
6469 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
6470 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
6471 SDValue One = DAG.getConstant(1, DL, OpVT);
6472 SDValue Two = DAG.getConstant(2, DL, OpVT);
6473 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
6474 AddToWorklist(Add.getNode());
6475 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
6476 }
6477
6478 // Try more general transforms if the predicates match and the only user of
6479 // the compares is the 'and' or 'or'.
6480 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
6481 N0.hasOneUse() && N1.hasOneUse()) {
6482 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
6483 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
6484 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
6485 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
6486 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
6487 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
6488 SDValue Zero = DAG.getConstant(0, DL, OpVT);
6489 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
6490 }
6491
6492 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
6493 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
6494 // Match a shared variable operand and 2 non-opaque constant operands.
6495 auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) {
6496 // The difference of the constants must be a single bit.
6497 const APInt &CMax =
6498 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
6499 const APInt &CMin =
6500 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
6501 return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2();
6502 };
6503 if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) {
6504 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
6505 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
6506 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
6507 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
6508 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
6509 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
6510 SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
6511 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
6512 SDValue Zero = DAG.getConstant(0, DL, OpVT);
6513 return DAG.getSetCC(DL, VT, And, Zero, CC0);
6514 }
6515 }
6516 }
6517
6518 // Canonicalize equivalent operands to LL == RL.
6519 if (LL == RR && LR == RL) {
6521 std::swap(RL, RR);
6522 }
6523
6524 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
6525 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
6526 if (LL == RL && LR == RR) {
6527 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
6528 : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
6529 if (NewCC != ISD::SETCC_INVALID &&
6530 (!LegalOperations ||
6531 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
6532 TLI.isOperationLegal(ISD::SETCC, OpVT))))
6533 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
6534 }
6535
6536 return SDValue();
6537}
6538
6539static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2,
6540 SelectionDAG &DAG) {
6541 return DAG.isKnownNeverSNaN(Operand2) && DAG.isKnownNeverSNaN(Operand1);
6542}
6543
6544static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2,
6545 SelectionDAG &DAG) {
6546 return DAG.isKnownNeverNaN(Operand2) && DAG.isKnownNeverNaN(Operand1);
6547}
6548
6549// FIXME: use FMINIMUMNUM if possible, such as for RISC-V.
6550static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2,
6551 ISD::CondCode CC, unsigned OrAndOpcode,
6552 SelectionDAG &DAG,
6553 bool isFMAXNUMFMINNUM_IEEE,
6554 bool isFMAXNUMFMINNUM) {
6555 // The optimization cannot be applied for all the predicates because
6556 // of the way FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle
6557 // NaNs. For FMINNUM_IEEE/FMAXNUM_IEEE, the optimization cannot be
6558 // applied at all if one of the operands is a signaling NaN.
6559
6560 // It is safe to use FMINNUM_IEEE/FMAXNUM_IEEE if all the operands
6561 // are non NaN values.
6562 if (((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::OR)) ||
6563 ((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::AND))) {
6564 return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
6565 isFMAXNUMFMINNUM_IEEE
6566 ? ISD::FMINNUM_IEEE
6568 }
6569
6570 if (((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::OR)) ||
6571 ((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::AND))) {
6572 return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
6573 isFMAXNUMFMINNUM_IEEE
6574 ? ISD::FMAXNUM_IEEE
6576 }
6577
6578 // Both FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle quiet
6579 // NaNs in the same way. But, FMINNUM/FMAXNUM and FMINNUM_IEEE/
6580 // FMAXNUM_IEEE handle signaling NaNs differently. If we cannot prove
6581 // that there are not any sNaNs, then the optimization is not valid
6582 // for FMINNUM_IEEE/FMAXNUM_IEEE. In the presence of sNaNs, we apply
6583 // the optimization using FMINNUM/FMAXNUM for the following cases. If
6584 // we can prove that we do not have any sNaNs, then we can do the
6585 // optimization using FMINNUM_IEEE/FMAXNUM_IEEE for the following
6586 // cases.
6587 if (((CC == ISD::SETOLT || CC == ISD::SETOLE) && (OrAndOpcode == ISD::OR)) ||
6588 ((CC == ISD::SETUGT || CC == ISD::SETUGE) && (OrAndOpcode == ISD::AND))) {
6589 return isFMAXNUMFMINNUM ? ISD::FMINNUM
6590 : arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
6591 isFMAXNUMFMINNUM_IEEE
6592 ? ISD::FMINNUM_IEEE
6594 }
6595
6596 if (((CC == ISD::SETOGT || CC == ISD::SETOGE) && (OrAndOpcode == ISD::OR)) ||
6597 ((CC == ISD::SETULT || CC == ISD::SETULE) && (OrAndOpcode == ISD::AND))) {
6598 return isFMAXNUMFMINNUM ? ISD::FMAXNUM
6599 : arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
6600 isFMAXNUMFMINNUM_IEEE
6601 ? ISD::FMAXNUM_IEEE
6603 }
6604
6605 return ISD::DELETED_NODE;
6606}
6607
6610 assert(
6611 (LogicOp->getOpcode() == ISD::AND || LogicOp->getOpcode() == ISD::OR) &&
6612 "Invalid Op to combine SETCC with");
6613
6614 // TODO: Search past casts/truncates.
6615 SDValue LHS = LogicOp->getOperand(0);
6616 SDValue RHS = LogicOp->getOperand(1);
6617 if (LHS->getOpcode() != ISD::SETCC || RHS->getOpcode() != ISD::SETCC ||
6618 !LHS->hasOneUse() || !RHS->hasOneUse())
6619 return SDValue();
6620
6621 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6623 LogicOp, LHS.getNode(), RHS.getNode());
6624
6625 SDValue LHS0 = LHS->getOperand(0);
6626 SDValue RHS0 = RHS->getOperand(0);
6627 SDValue LHS1 = LHS->getOperand(1);
6628 SDValue RHS1 = RHS->getOperand(1);
6629 // TODO: We don't actually need a splat here, for vectors we just need the
6630 // invariants to hold for each element.
6631 auto *LHS1C = isConstOrConstSplat(LHS1);
6632 auto *RHS1C = isConstOrConstSplat(RHS1);
6633 ISD::CondCode CCL = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6634 ISD::CondCode CCR = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
6635 EVT VT = LogicOp->getValueType(0);
6636 EVT OpVT = LHS0.getValueType();
6637 SDLoc DL(LogicOp);
6638
6639 // Check if the operands of an and/or operation are comparisons and if they
6640 // compare against the same value. Replace the and/or-cmp-cmp sequence with
6641 // min/max cmp sequence. If LHS1 is equal to RHS1, then the or-cmp-cmp
6642 // sequence will be replaced with min-cmp sequence:
6643 // (LHS0 < LHS1) | (RHS0 < RHS1) -> min(LHS0, RHS0) < LHS1
6644 // and and-cmp-cmp will be replaced with max-cmp sequence:
6645 // (LHS0 < LHS1) & (RHS0 < RHS1) -> max(LHS0, RHS0) < LHS1
6646 // The optimization does not work for `==` or `!=` .
6647 // The two comparisons should have either the same predicate or the
6648 // predicate of one of the comparisons is the opposite of the other one.
6649 bool isFMAXNUMFMINNUM_IEEE = TLI.isOperationLegal(ISD::FMAXNUM_IEEE, OpVT) &&
6650 TLI.isOperationLegal(ISD::FMINNUM_IEEE, OpVT);
6651 bool isFMAXNUMFMINNUM = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, OpVT) &&
6652 TLI.isOperationLegalOrCustom(ISD::FMINNUM, OpVT);
6653 if (((OpVT.isInteger() && TLI.isOperationLegal(ISD::UMAX, OpVT) &&
6654 TLI.isOperationLegal(ISD::SMAX, OpVT) &&
6655 TLI.isOperationLegal(ISD::UMIN, OpVT) &&
6656 TLI.isOperationLegal(ISD::SMIN, OpVT)) ||
6657 (OpVT.isFloatingPoint() &&
6658 (isFMAXNUMFMINNUM_IEEE || isFMAXNUMFMINNUM))) &&
6660 CCL != ISD::SETFALSE && CCL != ISD::SETO && CCL != ISD::SETUO &&
6661 CCL != ISD::SETTRUE &&
6662 (CCL == CCR || CCL == ISD::getSetCCSwappedOperands(CCR))) {
6663
6664 SDValue CommonValue, Operand1, Operand2;
6666 if (CCL == CCR) {
6667 if (LHS0 == RHS0) {
6668 CommonValue = LHS0;
6669 Operand1 = LHS1;
6670 Operand2 = RHS1;
6672 } else if (LHS1 == RHS1) {
6673 CommonValue = LHS1;
6674 Operand1 = LHS0;
6675 Operand2 = RHS0;
6676 CC = CCL;
6677 }
6678 } else {
6679 assert(CCL == ISD::getSetCCSwappedOperands(CCR) && "Unexpected CC");
6680 if (LHS0 == RHS1) {
6681 CommonValue = LHS0;
6682 Operand1 = LHS1;
6683 Operand2 = RHS0;
6684 CC = CCR;
6685 } else if (RHS0 == LHS1) {
6686 CommonValue = LHS1;
6687 Operand1 = LHS0;
6688 Operand2 = RHS1;
6689 CC = CCL;
6690 }
6691 }
6692
6693 // Don't do this transform for sign bit tests. Let foldLogicOfSetCCs
6694 // handle it using OR/AND.
6695 if (CC == ISD::SETLT && isNullOrNullSplat(CommonValue))
6696 CC = ISD::SETCC_INVALID;
6697 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CommonValue))
6698 CC = ISD::SETCC_INVALID;
6699
6700 if (CC != ISD::SETCC_INVALID) {
6701 unsigned NewOpcode = ISD::DELETED_NODE;
6702 bool IsSigned = isSignedIntSetCC(CC);
6703 if (OpVT.isInteger()) {
6704 bool IsLess = (CC == ISD::SETLE || CC == ISD::SETULE ||
6705 CC == ISD::SETLT || CC == ISD::SETULT);
6706 bool IsOr = (LogicOp->getOpcode() == ISD::OR);
6707 if (IsLess == IsOr)
6708 NewOpcode = IsSigned ? ISD::SMIN : ISD::UMIN;
6709 else
6710 NewOpcode = IsSigned ? ISD::SMAX : ISD::UMAX;
6711 } else if (OpVT.isFloatingPoint())
6712 NewOpcode =
6713 getMinMaxOpcodeForFP(Operand1, Operand2, CC, LogicOp->getOpcode(),
6714 DAG, isFMAXNUMFMINNUM_IEEE, isFMAXNUMFMINNUM);
6715
6716 if (NewOpcode != ISD::DELETED_NODE) {
6717 SDValue MinMaxValue =
6718 DAG.getNode(NewOpcode, DL, OpVT, Operand1, Operand2);
6719 return DAG.getSetCC(DL, VT, MinMaxValue, CommonValue, CC);
6720 }
6721 }
6722 }
6723
6724 if (LHS0 == LHS1 && RHS0 == RHS1 && CCL == CCR &&
6725 LHS0.getValueType() == RHS0.getValueType() &&
6726 ((LogicOp->getOpcode() == ISD::AND && CCL == ISD::SETO) ||
6727 (LogicOp->getOpcode() == ISD::OR && CCL == ISD::SETUO)))
6728 return DAG.getSetCC(DL, VT, LHS0, RHS0, CCL);
6729
6730 if (TargetPreference == AndOrSETCCFoldKind::None)
6731 return SDValue();
6732
6733 if (CCL == CCR &&
6734 CCL == (LogicOp->getOpcode() == ISD::AND ? ISD::SETNE : ISD::SETEQ) &&
6735 LHS0 == RHS0 && LHS1C && RHS1C && OpVT.isInteger()) {
6736 const APInt &APLhs = LHS1C->getAPIntValue();
6737 const APInt &APRhs = RHS1C->getAPIntValue();
6738
6739 // Preference is to use ISD::ABS or we already have an ISD::ABS (in which
6740 // case this is just a compare).
6741 if (APLhs == (-APRhs) &&
6742 ((TargetPreference & AndOrSETCCFoldKind::ABS) ||
6743 DAG.doesNodeExist(ISD::ABS, DAG.getVTList(OpVT), {LHS0}))) {
6744 const APInt &C = APLhs.isNegative() ? APRhs : APLhs;
6745 // (icmp eq A, C) | (icmp eq A, -C)
6746 // -> (icmp eq Abs(A), C)
6747 // (icmp ne A, C) & (icmp ne A, -C)
6748 // -> (icmp ne Abs(A), C)
6749 SDValue AbsOp = DAG.getNode(ISD::ABS, DL, OpVT, LHS0);
6750 return DAG.getNode(ISD::SETCC, DL, VT, AbsOp,
6751 DAG.getConstant(C, DL, OpVT), LHS.getOperand(2));
6752 } else if (TargetPreference &
6754
6755 // AndOrSETCCFoldKind::AddAnd:
6756 // A == C0 | A == C1
6757 // IF IsPow2(smax(C0, C1)-smin(C0, C1))
6758 // -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) == 0
6759 // A != C0 & A != C1
6760 // IF IsPow2(smax(C0, C1)-smin(C0, C1))
6761 // -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) != 0
6762
6763 // AndOrSETCCFoldKind::NotAnd:
6764 // A == C0 | A == C1
6765 // IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
6766 // -> ~A & smin(C0, C1) == 0
6767 // A != C0 & A != C1
6768 // IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
6769 // -> ~A & smin(C0, C1) != 0
6770
6771 const APInt &MaxC = APIntOps::smax(APRhs, APLhs);
6772 const APInt &MinC = APIntOps::smin(APRhs, APLhs);
6773 APInt Dif = MaxC - MinC;
6774 if (!Dif.isZero() && Dif.isPowerOf2()) {
6775 if (MaxC.isAllOnes() &&
6776 (TargetPreference & AndOrSETCCFoldKind::NotAnd)) {
6777 SDValue NotOp = DAG.getNOT(DL, LHS0, OpVT);
6778 SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, NotOp,
6779 DAG.getConstant(MinC, DL, OpVT));
6780 return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
6781 DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
6782 } else if (TargetPreference & AndOrSETCCFoldKind::AddAnd) {
6783
6784 SDValue AddOp = DAG.getNode(ISD::ADD, DL, OpVT, LHS0,
6785 DAG.getConstant(-MinC, DL, OpVT));
6786 SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, AddOp,
6787 DAG.getConstant(~Dif, DL, OpVT));
6788 return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
6789 DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
6790 }
6791 }
6792 }
6793 }
6794
6795 return SDValue();
6796}
6797
6798// Combine `(select c, (X & 1), 0)` -> `(and (zext c), X)`.
6799// We canonicalize to the `select` form in the middle end, but the `and` form
6800// gets better codegen and all tested targets (arm, x86, riscv)
6802 const SDLoc &DL, SelectionDAG &DAG) {
6803 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6804 if (!isNullConstant(F))
6805 return SDValue();
6806
6807 EVT CondVT = Cond.getValueType();
6808 if (TLI.getBooleanContents(CondVT) !=
6810 return SDValue();
6811
6812 if (T.getOpcode() != ISD::AND)
6813 return SDValue();
6814
6815 if (!isOneConstant(T.getOperand(1)))
6816 return SDValue();
6817
6818 EVT OpVT = T.getValueType();
6819
6820 SDValue CondMask =
6821 OpVT == CondVT ? Cond : DAG.getBoolExtOrTrunc(Cond, DL, OpVT, CondVT);
6822 return DAG.getNode(ISD::AND, DL, OpVT, CondMask, T.getOperand(0));
6823}
6824
6825/// This contains all DAGCombine rules which reduce two values combined by
6826/// an And operation to a single value. This makes them reusable in the context
6827/// of visitSELECT(). Rules involving constants are not included as
6828/// visitSELECT() already handles those cases.
6829SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
6830 EVT VT = N1.getValueType();
6831 SDLoc DL(N);
6832
6833 // fold (and x, undef) -> 0
6834 if (N0.isUndef() || N1.isUndef())
6835 return DAG.getConstant(0, DL, VT);
6836
6837 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
6838 return V;
6839
6840 // Canonicalize:
6841 // and(x, add) -> and(add, x)
6842 if (N1.getOpcode() == ISD::ADD)
6843 std::swap(N0, N1);
6844
6845 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
6846 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
6847 VT.isScalarInteger() && VT.getSizeInBits() <= 64 && N0->hasOneUse()) {
6848 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6849 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
6850 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
6851 // immediate for an add, but it is legal if its top c2 bits are set,
6852 // transform the ADD so the immediate doesn't need to be materialized
6853 // in a register.
6854 APInt ADDC = ADDI->getAPIntValue();
6855 APInt SRLC = SRLI->getAPIntValue();
6856 if (ADDC.getSignificantBits() <= 64 && SRLC.ult(VT.getSizeInBits()) &&
6857 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
6859 SRLC.getZExtValue());
6860 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
6861 ADDC |= Mask;
6862 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
6863 SDLoc DL0(N0);
6864 SDValue NewAdd =
6865 DAG.getNode(ISD::ADD, DL0, VT,
6866 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
6867 CombineTo(N0.getNode(), NewAdd);
6868 // Return N so it doesn't get rechecked!
6869 return SDValue(N, 0);
6870 }
6871 }
6872 }
6873 }
6874 }
6875 }
6876
6877 return SDValue();
6878}
6879
6880bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
6881 EVT LoadResultTy, EVT &ExtVT) {
6882 if (!AndC->getAPIntValue().isMask())
6883 return false;
6884
6885 unsigned ActiveBits = AndC->getAPIntValue().countr_one();
6886
6887 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
6888 EVT LoadedVT = LoadN->getMemoryVT();
6889
6890 if (ExtVT == LoadedVT &&
6891 (!LegalOperations ||
6892 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
6893 // ZEXTLOAD will match without needing to change the size of the value being
6894 // loaded.
6895 return true;
6896 }
6897
6898 // Do not change the width of a volatile or atomic loads.
6899 if (!LoadN->isSimple())
6900 return false;
6901
6902 // Do not generate loads of non-round integer types since these can
6903 // be expensive (and would be wrong if the type is not byte sized).
6904 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
6905 return false;
6906
6907 if (LegalOperations &&
6908 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
6909 return false;
6910
6911 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT, /*ByteOffset=*/0))
6912 return false;
6913
6914 return true;
6915}
6916
6917bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
6918 ISD::LoadExtType ExtType, EVT &MemVT,
6919 unsigned ShAmt) {
6920 if (!LDST)
6921 return false;
6922
6923 // Only allow byte offsets.
6924 if (ShAmt % 8)
6925 return false;
6926 const unsigned ByteShAmt = ShAmt / 8;
6927
6928 // Do not generate loads of non-round integer types since these can
6929 // be expensive (and would be wrong if the type is not byte sized).
6930 if (!MemVT.isRound())
6931 return false;
6932
6933 // Don't change the width of a volatile or atomic loads.
6934 if (!LDST->isSimple())
6935 return false;
6936
6937 EVT LdStMemVT = LDST->getMemoryVT();
6938
6939 // Bail out when changing the scalable property, since we can't be sure that
6940 // we're actually narrowing here.
6941 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
6942 return false;
6943
6944 // Verify that we are actually reducing a load width here.
6945 if (LdStMemVT.bitsLT(MemVT))
6946 return false;
6947
6948 // Ensure that this isn't going to produce an unsupported memory access.
6949 if (ShAmt) {
6950 const Align LDSTAlign = LDST->getAlign();
6951 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
6952 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
6953 LDST->getAddressSpace(), NarrowAlign,
6954 LDST->getMemOperand()->getFlags()))
6955 return false;
6956 }
6957
6958 // It's not possible to generate a constant of extended or untyped type.
6959 EVT PtrType = LDST->getBasePtr().getValueType();
6960 if (PtrType == MVT::Untyped || PtrType.isExtended())
6961 return false;
6962
6963 if (isa<LoadSDNode>(LDST)) {
6964 LoadSDNode *Load = cast<LoadSDNode>(LDST);
6965 // Don't transform one with multiple uses, this would require adding a new
6966 // load.
6967 if (!SDValue(Load, 0).hasOneUse())
6968 return false;
6969
6970 if (LegalOperations &&
6971 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
6972 return false;
6973
6974 // For the transform to be legal, the load must produce only two values
6975 // (the value loaded and the chain). Don't transform a pre-increment
6976 // load, for example, which produces an extra value. Otherwise the
6977 // transformation is not equivalent, and the downstream logic to replace
6978 // uses gets things wrong.
6979 if (Load->getNumValues() > 2)
6980 return false;
6981
6982 // If the load that we're shrinking is an extload and we're not just
6983 // discarding the extension we can't simply shrink the load. Bail.
6984 // TODO: It would be possible to merge the extensions in some cases.
6985 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
6986 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
6987 return false;
6988
6989 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT, ByteShAmt))
6990 return false;
6991 } else {
6992 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
6993 StoreSDNode *Store = cast<StoreSDNode>(LDST);
6994 // Can't write outside the original store
6995 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
6996 return false;
6997
6998 if (LegalOperations &&
6999 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
7000 return false;
7001 }
7002 return true;
7003}
7004
7005bool DAGCombiner::SearchForAndLoads(SDNode *N,
7006 SmallVectorImpl<LoadSDNode*> &Loads,
7007 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
7008 ConstantSDNode *Mask,
7009 SDNode *&NodeToMask) {
7010 // Recursively search for the operands, looking for loads which can be
7011 // narrowed.
7012 for (SDValue Op : N->op_values()) {
7013 if (Op.getValueType().isVector())
7014 return false;
7015
7016 // Some constants may need fixing up later if they are too large.
7017 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7018 assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
7019 "Expected bitwise logic operation");
7020 if (!C->getAPIntValue().isSubsetOf(Mask->getAPIntValue()))
7021 NodesWithConsts.insert(N);
7022 continue;
7023 }
7024
7025 if (!Op.hasOneUse())
7026 return false;
7027
7028 switch(Op.getOpcode()) {
7029 case ISD::LOAD: {
7030 auto *Load = cast<LoadSDNode>(Op);
7031 EVT ExtVT;
7032 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
7033 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
7034
7035 // ZEXTLOAD is already small enough.
7036 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
7037 ExtVT.bitsGE(Load->getMemoryVT()))
7038 continue;
7039
7040 // Use LE to convert equal sized loads to zext.
7041 if (ExtVT.bitsLE(Load->getMemoryVT()))
7042 Loads.push_back(Load);
7043
7044 continue;
7045 }
7046 return false;
7047 }
7048 case ISD::ZERO_EXTEND:
7049 case ISD::AssertZext: {
7050 unsigned ActiveBits = Mask->getAPIntValue().countr_one();
7051 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
7052 EVT VT = Op.getOpcode() == ISD::AssertZext ?
7053 cast<VTSDNode>(Op.getOperand(1))->getVT() :
7054 Op.getOperand(0).getValueType();
7055
7056 // We can accept extending nodes if the mask is wider or an equal
7057 // width to the original type.
7058 if (ExtVT.bitsGE(VT))
7059 continue;
7060 break;
7061 }
7062 case ISD::OR:
7063 case ISD::XOR:
7064 case ISD::AND:
7065 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
7066 NodeToMask))
7067 return false;
7068 continue;
7069 }
7070
7071 // Allow one node which will masked along with any loads found.
7072 if (NodeToMask)
7073 return false;
7074
7075 // Also ensure that the node to be masked only produces one data result.
7076 NodeToMask = Op.getNode();
7077 if (NodeToMask->getNumValues() > 1) {
7078 bool HasValue = false;
7079 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
7080 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
7081 if (VT != MVT::Glue && VT != MVT::Other) {
7082 if (HasValue) {
7083 NodeToMask = nullptr;
7084 return false;
7085 }
7086 HasValue = true;
7087 }
7088 }
7089 assert(HasValue && "Node to be masked has no data result?");
7090 }
7091 }
7092 return true;
7093}
7094
7095bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
7096 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
7097 if (!Mask)
7098 return false;
7099
7100 if (!Mask->getAPIntValue().isMask())
7101 return false;
7102
7103 // No need to do anything if the and directly uses a load.
7104 if (isa<LoadSDNode>(N->getOperand(0)))
7105 return false;
7106
7108 SmallPtrSet<SDNode*, 2> NodesWithConsts;
7109 SDNode *FixupNode = nullptr;
7110 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
7111 if (Loads.empty())
7112 return false;
7113
7114 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
7115 SDValue MaskOp = N->getOperand(1);
7116
7117 // If it exists, fixup the single node we allow in the tree that needs
7118 // masking.
7119 if (FixupNode) {
7120 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
7121 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
7122 FixupNode->getValueType(0),
7123 SDValue(FixupNode, 0), MaskOp);
7124 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
7125 if (And.getOpcode() == ISD ::AND)
7126 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
7127 }
7128
7129 // Narrow any constants that need it.
7130 for (auto *LogicN : NodesWithConsts) {
7131 SDValue Op0 = LogicN->getOperand(0);
7132 SDValue Op1 = LogicN->getOperand(1);
7133
7134 // We only need to fix AND if both inputs are constants. And we only need
7135 // to fix one of the constants.
7136 if (LogicN->getOpcode() == ISD::AND &&
7138 continue;
7139
7140 if (isa<ConstantSDNode>(Op0) && LogicN->getOpcode() != ISD::AND)
7141 Op0 =
7142 DAG.getNode(ISD::AND, SDLoc(Op0), Op0.getValueType(), Op0, MaskOp);
7143
7144 if (isa<ConstantSDNode>(Op1))
7145 Op1 =
7146 DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), Op1, MaskOp);
7147
7148 if (isa<ConstantSDNode>(Op0) && !isa<ConstantSDNode>(Op1))
7149 std::swap(Op0, Op1);
7150
7151 DAG.UpdateNodeOperands(LogicN, Op0, Op1);
7152 }
7153
7154 // Create narrow loads.
7155 for (auto *Load : Loads) {
7156 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
7157 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
7158 SDValue(Load, 0), MaskOp);
7159 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
7160 if (And.getOpcode() == ISD ::AND)
7161 And = SDValue(
7162 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
7163 SDValue NewLoad = reduceLoadWidth(And.getNode());
7164 assert(NewLoad &&
7165 "Shouldn't be masking the load if it can't be narrowed");
7166 CombineTo(Load, NewLoad, NewLoad.getValue(1));
7167 }
7168 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
7169 return true;
7170 }
7171 return false;
7172}
7173
7174// Unfold
7175// x & (-1 'logical shift' y)
7176// To
7177// (x 'opposite logical shift' y) 'logical shift' y
7178// if it is better for performance.
7179SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
7180 assert(N->getOpcode() == ISD::AND);
7181
7182 SDValue N0 = N->getOperand(0);
7183 SDValue N1 = N->getOperand(1);
7184
7185 // Do we actually prefer shifts over mask?
7187 return SDValue();
7188
7189 // Try to match (-1 '[outer] logical shift' y)
7190 unsigned OuterShift;
7191 unsigned InnerShift; // The opposite direction to the OuterShift.
7192 SDValue Y; // Shift amount.
7193 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
7194 if (!M.hasOneUse())
7195 return false;
7196 OuterShift = M->getOpcode();
7197 if (OuterShift == ISD::SHL)
7198 InnerShift = ISD::SRL;
7199 else if (OuterShift == ISD::SRL)
7200 InnerShift = ISD::SHL;
7201 else
7202 return false;
7203 if (!isAllOnesConstant(M->getOperand(0)))
7204 return false;
7205 Y = M->getOperand(1);
7206 return true;
7207 };
7208
7209 SDValue X;
7210 if (matchMask(N1))
7211 X = N0;
7212 else if (matchMask(N0))
7213 X = N1;
7214 else
7215 return SDValue();
7216
7217 SDLoc DL(N);
7218 EVT VT = N->getValueType(0);
7219
7220 // tmp = x 'opposite logical shift' y
7221 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
7222 // ret = tmp 'logical shift' y
7223 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
7224
7225 return T1;
7226}
7227
7228/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
7229/// For a target with a bit test, this is expected to become test + set and save
7230/// at least 1 instruction.
7232 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
7233
7234 // Look through an optional extension.
7235 SDValue And0 = And->getOperand(0), And1 = And->getOperand(1);
7236 if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse())
7237 And0 = And0.getOperand(0);
7238 if (!isOneConstant(And1) || !And0.hasOneUse())
7239 return SDValue();
7240
7241 SDValue Src = And0;
7242
7243 // Attempt to find a 'not' op.
7244 // TODO: Should we favor test+set even without the 'not' op?
7245 bool FoundNot = false;
7246 if (isBitwiseNot(Src)) {
7247 FoundNot = true;
7248 Src = Src.getOperand(0);
7249
7250 // Look though an optional truncation. The source operand may not be the
7251 // same type as the original 'and', but that is ok because we are masking
7252 // off everything but the low bit.
7253 if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse())
7254 Src = Src.getOperand(0);
7255 }
7256
7257 // Match a shift-right by constant.
7258 if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse())
7259 return SDValue();
7260
7261 // This is probably not worthwhile without a supported type.
7262 EVT SrcVT = Src.getValueType();
7263 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7264 if (!TLI.isTypeLegal(SrcVT))
7265 return SDValue();
7266
7267 // We might have looked through casts that make this transform invalid.
7268 unsigned BitWidth = SrcVT.getScalarSizeInBits();
7269 SDValue ShiftAmt = Src.getOperand(1);
7270 auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt);
7271 if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(BitWidth))
7272 return SDValue();
7273
7274 // Set source to shift source.
7275 Src = Src.getOperand(0);
7276
7277 // Try again to find a 'not' op.
7278 // TODO: Should we favor test+set even with two 'not' ops?
7279 if (!FoundNot) {
7280 if (!isBitwiseNot(Src))
7281 return SDValue();
7282 Src = Src.getOperand(0);
7283 }
7284
7285 if (!TLI.hasBitTest(Src, ShiftAmt))
7286 return SDValue();
7287
7288 // Turn this into a bit-test pattern using mask op + setcc:
7289 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
7290 // and (srl (not X), C)), 1 --> (and X, 1<<C) == 0
7291 SDLoc DL(And);
7292 SDValue X = DAG.getZExtOrTrunc(Src, DL, SrcVT);
7293 EVT CCVT =
7294 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7295 SDValue Mask = DAG.getConstant(
7296 APInt::getOneBitSet(BitWidth, ShiftAmtC->getZExtValue()), DL, SrcVT);
7297 SDValue NewAnd = DAG.getNode(ISD::AND, DL, SrcVT, X, Mask);
7298 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
7299 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
7300 return DAG.getZExtOrTrunc(Setcc, DL, And->getValueType(0));
7301}
7302
7303/// For targets that support usubsat, match a bit-hack form of that operation
7304/// that ends in 'and' and convert it.
7306 EVT VT = N->getValueType(0);
7307 unsigned BitWidth = VT.getScalarSizeInBits();
7308 APInt SignMask = APInt::getSignMask(BitWidth);
7309
7310 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128
7311 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128
7312 // xor/add with SMIN (signmask) are logically equivalent.
7313 SDValue X;
7314 if (!sd_match(N, m_And(m_OneUse(m_Xor(m_Value(X), m_SpecificInt(SignMask))),
7316 m_SpecificInt(BitWidth - 1))))) &&
7319 m_SpecificInt(BitWidth - 1))))))
7320 return SDValue();
7321
7322 return DAG.getNode(ISD::USUBSAT, DL, VT, X,
7323 DAG.getConstant(SignMask, DL, VT));
7324}
7325
7326/// Given a bitwise logic operation N with a matching bitwise logic operand,
7327/// fold a pattern where 2 of the source operands are identically shifted
7328/// values. For example:
7329/// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z
7331 SelectionDAG &DAG) {
7332 unsigned LogicOpcode = N->getOpcode();
7333 assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
7334 "Expected bitwise logic operation");
7335
7336 if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse())
7337 return SDValue();
7338
7339 // Match another bitwise logic op and a shift.
7340 unsigned ShiftOpcode = ShiftOp.getOpcode();
7341 if (LogicOp.getOpcode() != LogicOpcode ||
7342 !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL ||
7343 ShiftOpcode == ISD::SRA))
7344 return SDValue();
7345
7346 // Match another shift op inside the first logic operand. Handle both commuted
7347 // possibilities.
7348 // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
7349 // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
7350 SDValue X1 = ShiftOp.getOperand(0);
7351 SDValue Y = ShiftOp.getOperand(1);
7352 SDValue X0, Z;
7353 if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode &&
7354 LogicOp.getOperand(0).getOperand(1) == Y) {
7355 X0 = LogicOp.getOperand(0).getOperand(0);
7356 Z = LogicOp.getOperand(1);
7357 } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode &&
7358 LogicOp.getOperand(1).getOperand(1) == Y) {
7359 X0 = LogicOp.getOperand(1).getOperand(0);
7360 Z = LogicOp.getOperand(0);
7361 } else {
7362 return SDValue();
7363 }
7364
7365 EVT VT = N->getValueType(0);
7366 SDLoc DL(N);
7367 SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1);
7368 SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y);
7369 return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z);
7370}
7371
7372/// Given a tree of logic operations with shape like
7373/// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y)))
7374/// try to match and fold shift operations with the same shift amount.
7375/// For example:
7376/// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) -->
7377/// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W)
7379 SDValue RightHand, SelectionDAG &DAG) {
7380 unsigned LogicOpcode = N->getOpcode();
7381 assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
7382 "Expected bitwise logic operation");
7383 if (LeftHand.getOpcode() != LogicOpcode ||
7384 RightHand.getOpcode() != LogicOpcode)
7385 return SDValue();
7386 if (!LeftHand.hasOneUse() || !RightHand.hasOneUse())
7387 return SDValue();
7388
7389 // Try to match one of following patterns:
7390 // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W)
7391 // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y))
7392 // Note that foldLogicOfShifts will handle commuted versions of the left hand
7393 // itself.
7394 SDValue CombinedShifts, W;
7395 SDValue R0 = RightHand.getOperand(0);
7396 SDValue R1 = RightHand.getOperand(1);
7397 if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG)))
7398 W = R1;
7399 else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG)))
7400 W = R0;
7401 else
7402 return SDValue();
7403
7404 EVT VT = N->getValueType(0);
7405 SDLoc DL(N);
7406 return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W);
7407}
7408
7409/// Fold "masked merge" expressions like `(m & x) | (~m & y)` and its DeMorgan
7410/// variant `(~m | x) & (m | y)` into the equivalent `((x ^ y) & m) ^ y)`
7411/// pattern. This is typically a better representation for targets without a
7412/// fused "and-not" operation.
7414 const TargetLowering &TLI, const SDLoc &DL) {
7415 // Note that masked-merge variants using XOR or ADD expressions are
7416 // normalized to OR by InstCombine so we only check for OR or AND.
7417 assert((Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::AND) &&
7418 "Must be called with ISD::OR or ISD::AND node");
7419
7420 // If the target supports and-not, don't fold this.
7421 if (TLI.hasAndNot(SDValue(Node, 0)))
7422 return SDValue();
7423
7424 SDValue M, X, Y;
7425
7426 if (sd_match(Node,
7428 m_OneUse(m_And(m_Deferred(M), m_Value(X))))) ||
7429 sd_match(Node,
7431 m_OneUse(m_Or(m_Deferred(M), m_Value(Y)))))) {
7432 EVT VT = M.getValueType();
7433 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, X, Y);
7434 SDValue And = DAG.getNode(ISD::AND, DL, VT, Xor, M);
7435 return DAG.getNode(ISD::XOR, DL, VT, And, Y);
7436 }
7437 return SDValue();
7438}
7439
7440SDValue DAGCombiner::visitAND(SDNode *N) {
7441 SDValue N0 = N->getOperand(0);
7442 SDValue N1 = N->getOperand(1);
7443 EVT VT = N1.getValueType();
7444 SDLoc DL(N);
7445
7446 // x & x --> x
7447 if (N0 == N1)
7448 return N0;
7449
7450 // fold (and c1, c2) -> c1&c2
7451 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N0, N1}))
7452 return C;
7453
7454 // canonicalize constant to RHS
7457 return DAG.getNode(ISD::AND, DL, VT, N1, N0);
7458
7459 if (areBitwiseNotOfEachother(N0, N1))
7460 return DAG.getConstant(APInt::getZero(VT.getScalarSizeInBits()), DL, VT);
7461
7462 // fold vector ops
7463 if (VT.isVector()) {
7464 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
7465 return FoldedVOp;
7466
7467 // fold (and x, 0) -> 0, vector edition
7469 // do not return N1, because undef node may exist in N1
7471 N1.getValueType());
7472
7473 // fold (and x, -1) -> x, vector edition
7475 return N0;
7476
7477 // fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load
7478 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
7479 ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true);
7480 if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat) {
7481 EVT LoadVT = MLoad->getMemoryVT();
7482 EVT ExtVT = VT;
7483 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
7484 // For this AND to be a zero extension of the masked load the elements
7485 // of the BuildVec must mask the bottom bits of the extended element
7486 // type
7487 uint64_t ElementSize =
7489 if (Splat->getAPIntValue().isMask(ElementSize)) {
7490 SDValue NewLoad = DAG.getMaskedLoad(
7491 ExtVT, DL, MLoad->getChain(), MLoad->getBasePtr(),
7492 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
7493 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
7494 ISD::ZEXTLOAD, MLoad->isExpandingLoad());
7495 bool LoadHasOtherUsers = !N0.hasOneUse();
7496 CombineTo(N, NewLoad);
7497 if (LoadHasOtherUsers)
7498 CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1));
7499 return SDValue(N, 0);
7500 }
7501 }
7502 }
7503 }
7504
7505 // fold (and x, -1) -> x
7506 if (isAllOnesConstant(N1))
7507 return N0;
7508
7509 // if (and x, c) is known to be zero, return 0
7510 unsigned BitWidth = VT.getScalarSizeInBits();
7511 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7513 return DAG.getConstant(0, DL, VT);
7514
7515 if (SDValue R = foldAndOrOfSETCC(N, DAG))
7516 return R;
7517
7518 if (SDValue NewSel = foldBinOpIntoSelect(N))
7519 return NewSel;
7520
7521 // reassociate and
7522 if (SDValue RAND = reassociateOps(ISD::AND, DL, N0, N1, N->getFlags()))
7523 return RAND;
7524
7525 // Fold and(vecreduce(x), vecreduce(y)) -> vecreduce(and(x, y))
7526 if (SDValue SD =
7527 reassociateReduction(ISD::VECREDUCE_AND, ISD::AND, DL, VT, N0, N1))
7528 return SD;
7529
7530 // fold (and (or x, C), D) -> D if (C & D) == D
7531 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7532 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
7533 };
7534 if (N0.getOpcode() == ISD::OR &&
7535 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
7536 return N1;
7537
7538 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
7539 SDValue N0Op0 = N0.getOperand(0);
7540 EVT SrcVT = N0Op0.getValueType();
7541 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
7542 APInt Mask = ~N1C->getAPIntValue();
7543 Mask = Mask.trunc(SrcBitWidth);
7544
7545 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
7546 if (DAG.MaskedValueIsZero(N0Op0, Mask))
7547 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0Op0);
7548
7549 // fold (and (any_ext V), c) -> (zero_ext (and (trunc V), c)) if profitable.
7550 if (N1C->getAPIntValue().countLeadingZeros() >= (BitWidth - SrcBitWidth) &&
7551 TLI.isTruncateFree(VT, SrcVT) && TLI.isZExtFree(SrcVT, VT) &&
7552 TLI.isTypeDesirableForOp(ISD::AND, SrcVT) &&
7553 TLI.isNarrowingProfitable(N, VT, SrcVT))
7554 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT,
7555 DAG.getNode(ISD::AND, DL, SrcVT, N0Op0,
7556 DAG.getZExtOrTrunc(N1, DL, SrcVT)));
7557 }
7558
7559 // fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2)))
7560 if (ISD::isExtOpcode(N0.getOpcode())) {
7561 unsigned ExtOpc = N0.getOpcode();
7562 SDValue N0Op0 = N0.getOperand(0);
7563 if (N0Op0.getOpcode() == ISD::AND &&
7564 (ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) &&
7565 N0->hasOneUse() && N0Op0->hasOneUse()) {
7566 if (SDValue NewExt = DAG.FoldConstantArithmetic(ExtOpc, DL, VT,
7567 {N0Op0.getOperand(1)})) {
7568 if (SDValue NewMask =
7569 DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N1, NewExt})) {
7570 return DAG.getNode(ISD::AND, DL, VT,
7571 DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)),
7572 NewMask);
7573 }
7574 }
7575 }
7576 }
7577
7578 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
7579 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
7580 // already be zero by virtue of the width of the base type of the load.
7581 //
7582 // the 'X' node here can either be nothing or an extract_vector_elt to catch
7583 // more cases.
7584 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7586 N0.getOperand(0).getOpcode() == ISD::LOAD &&
7587 N0.getOperand(0).getResNo() == 0) ||
7588 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
7589 auto *Load =
7590 cast<LoadSDNode>((N0.getOpcode() == ISD::LOAD) ? N0 : N0.getOperand(0));
7591
7592 // Get the constant (if applicable) the zero'th operand is being ANDed with.
7593 // This can be a pure constant or a vector splat, in which case we treat the
7594 // vector as a scalar and use the splat value.
7595 APInt Constant = APInt::getZero(1);
7596 if (const ConstantSDNode *C = isConstOrConstSplat(
7597 N1, /*AllowUndefs=*/false, /*AllowTruncation=*/true)) {
7598 Constant = C->getAPIntValue();
7599 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
7600 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
7601 APInt SplatValue, SplatUndef;
7602 unsigned SplatBitSize;
7603 bool HasAnyUndefs;
7604 // Endianness should not matter here. Code below makes sure that we only
7605 // use the result if the SplatBitSize is a multiple of the vector element
7606 // size. And after that we AND all element sized parts of the splat
7607 // together. So the end result should be the same regardless of in which
7608 // order we do those operations.
7609 const bool IsBigEndian = false;
7610 bool IsSplat =
7611 Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7612 HasAnyUndefs, EltBitWidth, IsBigEndian);
7613
7614 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
7615 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
7616 if (IsSplat && (SplatBitSize % EltBitWidth) == 0) {
7617 // Undef bits can contribute to a possible optimisation if set, so
7618 // set them.
7619 SplatValue |= SplatUndef;
7620
7621 // The splat value may be something like "0x00FFFFFF", which means 0 for
7622 // the first vector value and FF for the rest, repeating. We need a mask
7623 // that will apply equally to all members of the vector, so AND all the
7624 // lanes of the constant together.
7625 Constant = APInt::getAllOnes(EltBitWidth);
7626 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
7627 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
7628 }
7629 }
7630
7631 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
7632 // actually legal and isn't going to get expanded, else this is a false
7633 // optimisation.
7634 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
7635 Load->getValueType(0),
7636 Load->getMemoryVT());
7637
7638 // Resize the constant to the same size as the original memory access before
7639 // extension. If it is still the AllOnesValue then this AND is completely
7640 // unneeded.
7641 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
7642
7643 bool B;
7644 switch (Load->getExtensionType()) {
7645 default: B = false; break;
7646 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
7647 case ISD::ZEXTLOAD:
7648 case ISD::NON_EXTLOAD: B = true; break;
7649 }
7650
7651 if (B && Constant.isAllOnes()) {
7652 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
7653 // preserve semantics once we get rid of the AND.
7654 SDValue NewLoad(Load, 0);
7655
7656 // Fold the AND away. NewLoad may get replaced immediately.
7657 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
7658
7659 if (Load->getExtensionType() == ISD::EXTLOAD) {
7660 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
7661 Load->getValueType(0), SDLoc(Load),
7662 Load->getChain(), Load->getBasePtr(),
7663 Load->getOffset(), Load->getMemoryVT(),
7664 Load->getMemOperand());
7665 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
7666 if (Load->getNumValues() == 3) {
7667 // PRE/POST_INC loads have 3 values.
7668 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
7669 NewLoad.getValue(2) };
7670 CombineTo(Load, To, 3, true);
7671 } else {
7672 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
7673 }
7674 }
7675
7676 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7677 }
7678 }
7679
7680 // Try to convert a constant mask AND into a shuffle clear mask.
7681 if (VT.isVector())
7682 if (SDValue Shuffle = XformToShuffleWithZero(N))
7683 return Shuffle;
7684
7685 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
7686 return Combined;
7687
7688 if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C &&
7690 SDValue Ext = N0.getOperand(0);
7691 EVT ExtVT = Ext->getValueType(0);
7692 SDValue Extendee = Ext->getOperand(0);
7693
7694 unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits();
7695 if (N1C->getAPIntValue().isMask(ScalarWidth) &&
7696 (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) {
7697 // (and (extract_subvector (zext|anyext|sext v) _) iN_mask)
7698 // => (extract_subvector (iN_zeroext v))
7699 SDValue ZeroExtExtendee =
7700 DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Extendee);
7701
7702 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ZeroExtExtendee,
7703 N0.getOperand(1));
7704 }
7705 }
7706
7707 // fold (and (masked_gather x)) -> (zext_masked_gather x)
7708 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
7709 EVT MemVT = GN0->getMemoryVT();
7710 EVT ScalarVT = MemVT.getScalarType();
7711
7712 if (SDValue(GN0, 0).hasOneUse() &&
7713 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
7715 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
7716 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
7717
7718 SDValue ZExtLoad = DAG.getMaskedGather(
7719 DAG.getVTList(VT, MVT::Other), MemVT, DL, Ops, GN0->getMemOperand(),
7720 GN0->getIndexType(), ISD::ZEXTLOAD);
7721
7722 CombineTo(N, ZExtLoad);
7723 AddToWorklist(ZExtLoad.getNode());
7724 // Avoid recheck of N.
7725 return SDValue(N, 0);
7726 }
7727 }
7728
7729 // fold (and (load x), 255) -> (zextload x, i8)
7730 // fold (and (extload x, i16), 255) -> (zextload x, i8)
7731 if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector())
7732 if (SDValue Res = reduceLoadWidth(N))
7733 return Res;
7734
7735 if (LegalTypes) {
7736 // Attempt to propagate the AND back up to the leaves which, if they're
7737 // loads, can be combined to narrow loads and the AND node can be removed.
7738 // Perform after legalization so that extend nodes will already be
7739 // combined into the loads.
7740 if (BackwardsPropagateMask(N))
7741 return SDValue(N, 0);
7742 }
7743
7744 if (SDValue Combined = visitANDLike(N0, N1, N))
7745 return Combined;
7746
7747 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
7748 if (N0.getOpcode() == N1.getOpcode())
7749 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7750 return V;
7751
7752 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
7753 return R;
7754 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
7755 return R;
7756
7757 // Fold (and X, (bswap (not Y))) -> (and X, (not (bswap Y)))
7758 // Fold (and X, (bitreverse (not Y))) -> (and X, (not (bitreverse Y)))
7759 SDValue X, Y, Z, NotY;
7760 for (unsigned Opc : {ISD::BSWAP, ISD::BITREVERSE})
7761 if (sd_match(N,
7762 m_And(m_Value(X), m_OneUse(m_UnaryOp(Opc, m_Value(NotY))))) &&
7763 sd_match(NotY, m_Not(m_Value(Y))) &&
7764 (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
7765 return DAG.getNode(ISD::AND, DL, VT, X,
7766 DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y), VT));
7767
7768 // Fold (and X, (rot (not Y), Z)) -> (and X, (not (rot Y, Z)))
7769 for (unsigned Opc : {ISD::ROTL, ISD::ROTR})
7770 if (sd_match(N, m_And(m_Value(X),
7771 m_OneUse(m_BinOp(Opc, m_Value(NotY), m_Value(Z))))) &&
7772 sd_match(NotY, m_Not(m_Value(Y))) &&
7773 (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
7774 return DAG.getNode(ISD::AND, DL, VT, X,
7775 DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y, Z), VT));
7776
7777 // Fold (and X, (add (not Y), Z)) -> (and X, (not (sub Y, Z)))
7778 // Fold (and X, (sub (not Y), Z)) -> (and X, (not (add Y, Z)))
7779 if (TLI.hasAndNot(SDValue(N, 0)))
7780 if (SDValue Folded = foldBitwiseOpWithNeg(N, DL, VT))
7781 return Folded;
7782
7783 // Fold (and (srl X, C), 1) -> (srl X, BW-1) for signbit extraction
7784 // If we are shifting down an extended sign bit, see if we can simplify
7785 // this to shifting the MSB directly to expose further simplifications.
7786 // This pattern often appears after sext_inreg legalization.
7787 APInt Amt;
7788 if (sd_match(N, m_And(m_Srl(m_Value(X), m_ConstInt(Amt)), m_One())) &&
7789 Amt.ult(BitWidth - 1) && Amt.uge(BitWidth - DAG.ComputeNumSignBits(X)))
7790 return DAG.getNode(ISD::SRL, DL, VT, X,
7791 DAG.getShiftAmountConstant(BitWidth - 1, VT, DL));
7792
7793 // Masking the negated extension of a boolean is just the zero-extended
7794 // boolean:
7795 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
7796 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
7797 //
7798 // Note: the SimplifyDemandedBits fold below can make an information-losing
7799 // transform, and then we have no way to find this better fold.
7800 if (sd_match(N, m_And(m_Sub(m_Zero(), m_Value(X)), m_One()))) {
7801 if (X.getOpcode() == ISD::ZERO_EXTEND &&
7802 X.getOperand(0).getScalarValueSizeInBits() == 1)
7803 return X;
7804 if (X.getOpcode() == ISD::SIGN_EXTEND &&
7805 X.getOperand(0).getScalarValueSizeInBits() == 1)
7806 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, X.getOperand(0));
7807 }
7808
7809 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
7810 // fold (and (sra)) -> (and (srl)) when possible.
7812 return SDValue(N, 0);
7813
7814 // fold (zext_inreg (extload x)) -> (zextload x)
7815 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
7816 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
7817 (ISD::isEXTLoad(N0.getNode()) ||
7818 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
7819 auto *LN0 = cast<LoadSDNode>(N0);
7820 EVT MemVT = LN0->getMemoryVT();
7821 // If we zero all the possible extended bits, then we can turn this into
7822 // a zextload if we are running before legalize or the operation is legal.
7823 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
7824 unsigned MemBitSize = MemVT.getScalarSizeInBits();
7825 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
7826 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
7827 ((!LegalOperations && LN0->isSimple()) ||
7828 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
7829 SDValue ExtLoad =
7830 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
7831 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
7832 AddToWorklist(N);
7833 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
7834 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7835 }
7836 }
7837
7838 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
7839 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
7840 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
7841 N0.getOperand(1), false))
7842 return BSwap;
7843 }
7844
7845 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
7846 return Shifts;
7847
7848 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
7849 return V;
7850
7851 // Recognize the following pattern:
7852 //
7853 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
7854 //
7855 // where bitmask is a mask that clears the upper bits of AndVT. The
7856 // number of bits in bitmask must be a power of two.
7857 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
7858 if (LHS->getOpcode() != ISD::SIGN_EXTEND)
7859 return false;
7860
7862 if (!C)
7863 return false;
7864
7865 if (!C->getAPIntValue().isMask(
7866 LHS.getOperand(0).getValueType().getFixedSizeInBits()))
7867 return false;
7868
7869 return true;
7870 };
7871
7872 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
7873 if (IsAndZeroExtMask(N0, N1))
7874 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
7875
7876 if (hasOperation(ISD::USUBSAT, VT))
7877 if (SDValue V = foldAndToUsubsat(N, DAG, DL))
7878 return V;
7879
7880 // Postpone until legalization completed to avoid interference with bswap
7881 // folding
7882 if (LegalOperations || VT.isVector())
7883 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
7884 return R;
7885
7886 if (VT.isScalarInteger() && VT != MVT::i1)
7887 if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
7888 return R;
7889
7890 return SDValue();
7891}
7892
7893/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
7894SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
7895 bool DemandHighBits) {
7896 if (!LegalOperations)
7897 return SDValue();
7898
7899 EVT VT = N->getValueType(0);
7900 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
7901 return SDValue();
7903 return SDValue();
7904
7905 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
7906 bool LookPassAnd0 = false;
7907 bool LookPassAnd1 = false;
7908 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
7909 std::swap(N0, N1);
7910 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
7911 std::swap(N0, N1);
7912 if (N0.getOpcode() == ISD::AND) {
7913 if (!N0->hasOneUse())
7914 return SDValue();
7915 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7916 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
7917 // This is needed for X86.
7918 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
7919 N01C->getZExtValue() != 0xFFFF))
7920 return SDValue();
7921 N0 = N0.getOperand(0);
7922 LookPassAnd0 = true;
7923 }
7924
7925 if (N1.getOpcode() == ISD::AND) {
7926 if (!N1->hasOneUse())
7927 return SDValue();
7928 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7929 if (!N11C || N11C->getZExtValue() != 0xFF)
7930 return SDValue();
7931 N1 = N1.getOperand(0);
7932 LookPassAnd1 = true;
7933 }
7934
7935 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
7936 std::swap(N0, N1);
7937 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
7938 return SDValue();
7939 if (!N0->hasOneUse() || !N1->hasOneUse())
7940 return SDValue();
7941
7942 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7943 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7944 if (!N01C || !N11C)
7945 return SDValue();
7946 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
7947 return SDValue();
7948
7949 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
7950 SDValue N00 = N0->getOperand(0);
7951 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
7952 if (!N00->hasOneUse())
7953 return SDValue();
7954 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
7955 if (!N001C || N001C->getZExtValue() != 0xFF)
7956 return SDValue();
7957 N00 = N00.getOperand(0);
7958 LookPassAnd0 = true;
7959 }
7960
7961 SDValue N10 = N1->getOperand(0);
7962 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
7963 if (!N10->hasOneUse())
7964 return SDValue();
7965 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
7966 // Also allow 0xFFFF since the bits will be shifted out. This is needed
7967 // for X86.
7968 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
7969 N101C->getZExtValue() != 0xFFFF))
7970 return SDValue();
7971 N10 = N10.getOperand(0);
7972 LookPassAnd1 = true;
7973 }
7974
7975 if (N00 != N10)
7976 return SDValue();
7977
7978 // Make sure everything beyond the low halfword gets set to zero since the SRL
7979 // 16 will clear the top bits.
7980 unsigned OpSizeInBits = VT.getSizeInBits();
7981 if (OpSizeInBits > 16) {
7982 // If the left-shift isn't masked out then the only way this is a bswap is
7983 // if all bits beyond the low 8 are 0. In that case the entire pattern
7984 // reduces to a left shift anyway: leave it for other parts of the combiner.
7985 if (DemandHighBits && !LookPassAnd0)
7986 return SDValue();
7987
7988 // However, if the right shift isn't masked out then it might be because
7989 // it's not needed. See if we can spot that too. If the high bits aren't
7990 // demanded, we only need bits 23:16 to be zero. Otherwise, we need all
7991 // upper bits to be zero.
7992 if (!LookPassAnd1) {
7993 unsigned HighBit = DemandHighBits ? OpSizeInBits : 24;
7994 if (!DAG.MaskedValueIsZero(N10,
7995 APInt::getBitsSet(OpSizeInBits, 16, HighBit)))
7996 return SDValue();
7997 }
7998 }
7999
8000 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
8001 if (OpSizeInBits > 16) {
8002 SDLoc DL(N);
8003 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
8004 DAG.getShiftAmountConstant(OpSizeInBits - 16, VT, DL));
8005 }
8006 return Res;
8007}
8008
8009/// Return true if the specified node is an element that makes up a 32-bit
8010/// packed halfword byteswap.
8011/// ((x & 0x000000ff) << 8) |
8012/// ((x & 0x0000ff00) >> 8) |
8013/// ((x & 0x00ff0000) << 8) |
8014/// ((x & 0xff000000) >> 8)
8016 if (!N->hasOneUse())
8017 return false;
8018
8019 unsigned Opc = N.getOpcode();
8020 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
8021 return false;
8022
8023 SDValue N0 = N.getOperand(0);
8024 unsigned Opc0 = N0.getOpcode();
8025 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
8026 return false;
8027
8028 ConstantSDNode *N1C = nullptr;
8029 // SHL or SRL: look upstream for AND mask operand
8030 if (Opc == ISD::AND)
8031 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8032 else if (Opc0 == ISD::AND)
8034 if (!N1C)
8035 return false;
8036
8037 unsigned MaskByteOffset;
8038 switch (N1C->getZExtValue()) {
8039 default:
8040 return false;
8041 case 0xFF: MaskByteOffset = 0; break;
8042 case 0xFF00: MaskByteOffset = 1; break;
8043 case 0xFFFF:
8044 // In case demanded bits didn't clear the bits that will be shifted out.
8045 // This is needed for X86.
8046 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
8047 MaskByteOffset = 1;
8048 break;
8049 }
8050 return false;
8051 case 0xFF0000: MaskByteOffset = 2; break;
8052 case 0xFF000000: MaskByteOffset = 3; break;
8053 }
8054
8055 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
8056 if (Opc == ISD::AND) {
8057 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
8058 // (x >> 8) & 0xff
8059 // (x >> 8) & 0xff0000
8060 if (Opc0 != ISD::SRL)
8061 return false;
8063 if (!C || C->getZExtValue() != 8)
8064 return false;
8065 } else {
8066 // (x << 8) & 0xff00
8067 // (x << 8) & 0xff000000
8068 if (Opc0 != ISD::SHL)
8069 return false;
8071 if (!C || C->getZExtValue() != 8)
8072 return false;
8073 }
8074 } else if (Opc == ISD::SHL) {
8075 // (x & 0xff) << 8
8076 // (x & 0xff0000) << 8
8077 if (MaskByteOffset != 0 && MaskByteOffset != 2)
8078 return false;
8079 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8080 if (!C || C->getZExtValue() != 8)
8081 return false;
8082 } else { // Opc == ISD::SRL
8083 // (x & 0xff00) >> 8
8084 // (x & 0xff000000) >> 8
8085 if (MaskByteOffset != 1 && MaskByteOffset != 3)
8086 return false;
8087 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8088 if (!C || C->getZExtValue() != 8)
8089 return false;
8090 }
8091
8092 if (Parts[MaskByteOffset])
8093 return false;
8094
8095 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
8096 return true;
8097}
8098
8099// Match 2 elements of a packed halfword bswap.
8101 if (N.getOpcode() == ISD::OR)
8102 return isBSwapHWordElement(N.getOperand(0), Parts) &&
8103 isBSwapHWordElement(N.getOperand(1), Parts);
8104
8105 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
8106 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
8107 if (!C || C->getAPIntValue() != 16)
8108 return false;
8109 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
8110 return true;
8111 }
8112
8113 return false;
8114}
8115
8116// Match this pattern:
8117// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
8118// And rewrite this to:
8119// (rotr (bswap A), 16)
8121 SelectionDAG &DAG, SDNode *N, SDValue N0,
8122 SDValue N1, EVT VT) {
8123 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
8124 "MatchBSwapHWordOrAndAnd: expecting i32");
8125 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
8126 return SDValue();
8127 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
8128 return SDValue();
8129 // TODO: this is too restrictive; lifting this restriction requires more tests
8130 if (!N0->hasOneUse() || !N1->hasOneUse())
8131 return SDValue();
8134 if (!Mask0 || !Mask1)
8135 return SDValue();
8136 if (Mask0->getAPIntValue() != 0xff00ff00 ||
8137 Mask1->getAPIntValue() != 0x00ff00ff)
8138 return SDValue();
8139 SDValue Shift0 = N0.getOperand(0);
8140 SDValue Shift1 = N1.getOperand(0);
8141 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
8142 return SDValue();
8143 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
8144 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
8145 if (!ShiftAmt0 || !ShiftAmt1)
8146 return SDValue();
8147 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
8148 return SDValue();
8149 if (Shift0.getOperand(0) != Shift1.getOperand(0))
8150 return SDValue();
8151
8152 SDLoc DL(N);
8153 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
8154 SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
8155 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
8156}
8157
8158/// Match a 32-bit packed halfword bswap. That is
8159/// ((x & 0x000000ff) << 8) |
8160/// ((x & 0x0000ff00) >> 8) |
8161/// ((x & 0x00ff0000) << 8) |
8162/// ((x & 0xff000000) >> 8)
8163/// => (rotl (bswap x), 16)
8164SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
8165 if (!LegalOperations)
8166 return SDValue();
8167
8168 EVT VT = N->getValueType(0);
8169 if (VT != MVT::i32)
8170 return SDValue();
8172 return SDValue();
8173
8174 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT))
8175 return BSwap;
8176
8177 // Try again with commuted operands.
8178 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT))
8179 return BSwap;
8180
8181
8182 // Look for either
8183 // (or (bswaphpair), (bswaphpair))
8184 // (or (or (bswaphpair), (and)), (and))
8185 // (or (or (and), (bswaphpair)), (and))
8186 SDNode *Parts[4] = {};
8187
8188 if (isBSwapHWordPair(N0, Parts)) {
8189 // (or (or (and), (and)), (or (and), (and)))
8190 if (!isBSwapHWordPair(N1, Parts))
8191 return SDValue();
8192 } else if (N0.getOpcode() == ISD::OR) {
8193 // (or (or (or (and), (and)), (and)), (and))
8194 if (!isBSwapHWordElement(N1, Parts))
8195 return SDValue();
8196 SDValue N00 = N0.getOperand(0);
8197 SDValue N01 = N0.getOperand(1);
8198 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
8199 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
8200 return SDValue();
8201 } else {
8202 return SDValue();
8203 }
8204
8205 // Make sure the parts are all coming from the same node.
8206 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
8207 return SDValue();
8208
8209 SDLoc DL(N);
8210 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
8211 SDValue(Parts[0], 0));
8212
8213 // Result of the bswap should be rotated by 16. If it's not legal, then
8214 // do (x << 16) | (x >> 16).
8215 SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
8217 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
8219 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
8220 return DAG.getNode(ISD::OR, DL, VT,
8221 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
8222 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
8223}
8224
8225/// This contains all DAGCombine rules which reduce two values combined by
8226/// an Or operation to a single value \see visitANDLike().
8227SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, const SDLoc &DL) {
8228 EVT VT = N1.getValueType();
8229
8230 // fold (or x, undef) -> -1
8231 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
8232 return DAG.getAllOnesConstant(DL, VT);
8233
8234 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
8235 return V;
8236
8237 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
8238 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
8239 // Don't increase # computations.
8240 (N0->hasOneUse() || N1->hasOneUse())) {
8241 // We can only do this xform if we know that bits from X that are set in C2
8242 // but not in C1 are already zero. Likewise for Y.
8243 if (const ConstantSDNode *N0O1C =
8245 if (const ConstantSDNode *N1O1C =
8247 // We can only do this xform if we know that bits from X that are set in
8248 // C2 but not in C1 are already zero. Likewise for Y.
8249 const APInt &LHSMask = N0O1C->getAPIntValue();
8250 const APInt &RHSMask = N1O1C->getAPIntValue();
8251
8252 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
8253 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
8254 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
8255 N0.getOperand(0), N1.getOperand(0));
8256 return DAG.getNode(ISD::AND, DL, VT, X,
8257 DAG.getConstant(LHSMask | RHSMask, DL, VT));
8258 }
8259 }
8260 }
8261 }
8262
8263 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
8264 if (N0.getOpcode() == ISD::AND &&
8265 N1.getOpcode() == ISD::AND &&
8266 N0.getOperand(0) == N1.getOperand(0) &&
8267 // Don't increase # computations.
8268 (N0->hasOneUse() || N1->hasOneUse())) {
8269 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
8270 N0.getOperand(1), N1.getOperand(1));
8271 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
8272 }
8273
8274 return SDValue();
8275}
8276
8277/// OR combines for which the commuted variant will be tried as well.
8279 SDNode *N) {
8280 EVT VT = N0.getValueType();
8281 unsigned BW = VT.getScalarSizeInBits();
8282 SDLoc DL(N);
8283
8284 auto peekThroughResize = [](SDValue V) {
8285 if (V->getOpcode() == ISD::ZERO_EXTEND || V->getOpcode() == ISD::TRUNCATE)
8286 return V->getOperand(0);
8287 return V;
8288 };
8289
8290 SDValue N0Resized = peekThroughResize(N0);
8291 if (N0Resized.getOpcode() == ISD::AND) {
8292 SDValue N1Resized = peekThroughResize(N1);
8293 SDValue N00 = N0Resized.getOperand(0);
8294 SDValue N01 = N0Resized.getOperand(1);
8295
8296 // fold or (and x, y), x --> x
8297 if (N00 == N1Resized || N01 == N1Resized)
8298 return N1;
8299
8300 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
8301 // TODO: Set AllowUndefs = true.
8302 if (SDValue NotOperand = getBitwiseNotOperand(N01, N00,
8303 /* AllowUndefs */ false)) {
8304 if (peekThroughResize(NotOperand) == N1Resized)
8305 return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N00, DL, VT),
8306 N1);
8307 }
8308
8309 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
8310 if (SDValue NotOperand = getBitwiseNotOperand(N00, N01,
8311 /* AllowUndefs */ false)) {
8312 if (peekThroughResize(NotOperand) == N1Resized)
8313 return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N01, DL, VT),
8314 N1);
8315 }
8316 }
8317
8318 SDValue X, Y;
8319
8320 // fold or (xor X, N1), N1 --> or X, N1
8321 if (sd_match(N0, m_Xor(m_Value(X), m_Specific(N1))))
8322 return DAG.getNode(ISD::OR, DL, VT, X, N1);
8323
8324 // fold or (xor x, y), (x and/or y) --> or x, y
8325 if (sd_match(N0, m_Xor(m_Value(X), m_Value(Y))) &&
8326 (sd_match(N1, m_And(m_Specific(X), m_Specific(Y))) ||
8328 return DAG.getNode(ISD::OR, DL, VT, X, Y);
8329
8330 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
8331 return R;
8332
8333 auto peekThroughZext = [](SDValue V) {
8334 if (V->getOpcode() == ISD::ZERO_EXTEND)
8335 return V->getOperand(0);
8336 return V;
8337 };
8338
8339 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
8340 if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL &&
8341 N0.getOperand(0) == N1.getOperand(0) &&
8342 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
8343 return N0;
8344
8345 // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y
8346 if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL &&
8347 N0.getOperand(1) == N1.getOperand(0) &&
8348 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
8349 return N0;
8350
8351 // Attempt to match a legalized build_pair-esque pattern:
8352 // or(shl(aext(Hi),BW/2),zext(Lo))
8353 SDValue Lo, Hi;
8354 if (sd_match(N0,
8356 sd_match(N1, m_ZExt(m_Value(Lo))) &&
8357 Lo.getScalarValueSizeInBits() == (BW / 2) &&
8358 Lo.getValueType() == Hi.getValueType()) {
8359 // Fold build_pair(not(Lo),not(Hi)) -> not(build_pair(Lo,Hi)).
8360 SDValue NotLo, NotHi;
8361 if (sd_match(Lo, m_OneUse(m_Not(m_Value(NotLo)))) &&
8362 sd_match(Hi, m_OneUse(m_Not(m_Value(NotHi))))) {
8363 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotLo);
8364 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NotHi);
8365 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
8366 DAG.getShiftAmountConstant(BW / 2, VT, DL));
8367 return DAG.getNOT(DL, DAG.getNode(ISD::OR, DL, VT, Lo, Hi), VT);
8368 }
8369 }
8370
8371 return SDValue();
8372}
8373
8374SDValue DAGCombiner::visitOR(SDNode *N) {
8375 SDValue N0 = N->getOperand(0);
8376 SDValue N1 = N->getOperand(1);
8377 EVT VT = N1.getValueType();
8378 SDLoc DL(N);
8379
8380 // x | x --> x
8381 if (N0 == N1)
8382 return N0;
8383
8384 // fold (or c1, c2) -> c1|c2
8385 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, DL, VT, {N0, N1}))
8386 return C;
8387
8388 // canonicalize constant to RHS
8391 return DAG.getNode(ISD::OR, DL, VT, N1, N0);
8392
8393 // fold vector ops
8394 if (VT.isVector()) {
8395 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
8396 return FoldedVOp;
8397
8398 // fold (or x, 0) -> x, vector edition
8400 return N0;
8401
8402 // fold (or x, -1) -> -1, vector edition
8404 // do not return N1, because undef node may exist in N1
8405 return DAG.getAllOnesConstant(DL, N1.getValueType());
8406
8407 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
8408 // Do this only if the resulting type / shuffle is legal.
8409 auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0);
8410 auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1);
8411 if (SV0 && SV1 && TLI.isTypeLegal(VT)) {
8412 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
8413 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
8414 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8415 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
8416 // Ensure both shuffles have a zero input.
8417 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
8418 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
8419 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
8420 bool CanFold = true;
8421 int NumElts = VT.getVectorNumElements();
8422 SmallVector<int, 4> Mask(NumElts, -1);
8423
8424 for (int i = 0; i != NumElts; ++i) {
8425 int M0 = SV0->getMaskElt(i);
8426 int M1 = SV1->getMaskElt(i);
8427
8428 // Determine if either index is pointing to a zero vector.
8429 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
8430 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
8431
8432 // If one element is zero and the otherside is undef, keep undef.
8433 // This also handles the case that both are undef.
8434 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0))
8435 continue;
8436
8437 // Make sure only one of the elements is zero.
8438 if (M0Zero == M1Zero) {
8439 CanFold = false;
8440 break;
8441 }
8442
8443 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
8444
8445 // We have a zero and non-zero element. If the non-zero came from
8446 // SV0 make the index a LHS index. If it came from SV1, make it
8447 // a RHS index. We need to mod by NumElts because we don't care
8448 // which operand it came from in the original shuffles.
8449 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
8450 }
8451
8452 if (CanFold) {
8453 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
8454 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
8455 SDValue LegalShuffle =
8456 TLI.buildLegalVectorShuffle(VT, DL, NewLHS, NewRHS, Mask, DAG);
8457 if (LegalShuffle)
8458 return LegalShuffle;
8459 }
8460 }
8461 }
8462 }
8463
8464 // fold (or x, 0) -> x
8465 if (isNullConstant(N1))
8466 return N0;
8467
8468 // fold (or x, -1) -> -1
8469 if (isAllOnesConstant(N1))
8470 return N1;
8471
8472 if (SDValue NewSel = foldBinOpIntoSelect(N))
8473 return NewSel;
8474
8475 // fold (or x, c) -> c iff (x & ~c) == 0
8476 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8477 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
8478 return N1;
8479
8480 if (SDValue R = foldAndOrOfSETCC(N, DAG))
8481 return R;
8482
8483 if (SDValue Combined = visitORLike(N0, N1, DL))
8484 return Combined;
8485
8486 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
8487 return Combined;
8488
8489 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
8490 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
8491 return BSwap;
8492 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
8493 return BSwap;
8494
8495 // reassociate or
8496 if (SDValue ROR = reassociateOps(ISD::OR, DL, N0, N1, N->getFlags()))
8497 return ROR;
8498
8499 // Fold or(vecreduce(x), vecreduce(y)) -> vecreduce(or(x, y))
8500 if (SDValue SD =
8501 reassociateReduction(ISD::VECREDUCE_OR, ISD::OR, DL, VT, N0, N1))
8502 return SD;
8503
8504 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
8505 // iff (c1 & c2) != 0 or c1/c2 are undef.
8506 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
8507 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
8508 };
8509 if (N0.getOpcode() == ISD::AND && N0->hasOneUse() &&
8510 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
8511 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
8512 {N1, N0.getOperand(1)})) {
8513 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
8514 AddToWorklist(IOR.getNode());
8515 return DAG.getNode(ISD::AND, DL, VT, COR, IOR);
8516 }
8517 }
8518
8519 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
8520 return Combined;
8521 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
8522 return Combined;
8523
8524 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
8525 if (N0.getOpcode() == N1.getOpcode())
8526 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
8527 return V;
8528
8529 // See if this is some rotate idiom.
8530 if (SDValue Rot = MatchRotate(N0, N1, DL, /*FromAdd=*/false))
8531 return Rot;
8532
8533 if (SDValue Load = MatchLoadCombine(N))
8534 return Load;
8535
8536 // Simplify the operands using demanded-bits information.
8538 return SDValue(N, 0);
8539
8540 // If OR can be rewritten into ADD, try combines based on ADD.
8541 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
8542 DAG.isADDLike(SDValue(N, 0)))
8543 if (SDValue Combined = visitADDLike(N))
8544 return Combined;
8545
8546 // Postpone until legalization completed to avoid interference with bswap
8547 // folding
8548 if (LegalOperations || VT.isVector())
8549 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
8550 return R;
8551
8552 if (VT.isScalarInteger() && VT != MVT::i1)
8553 if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
8554 return R;
8555
8556 return SDValue();
8557}
8558
8560 SDValue &Mask) {
8561 if (Op.getOpcode() == ISD::AND &&
8562 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
8563 Mask = Op.getOperand(1);
8564 return Op.getOperand(0);
8565 }
8566 return Op;
8567}
8568
8569/// Match "(X shl/srl V1) & V2" where V2 may not be present.
8570static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift,
8571 SDValue &Mask) {
8572 Op = stripConstantMask(DAG, Op, Mask);
8573 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
8574 Shift = Op;
8575 return true;
8576 }
8577 return false;
8578}
8579
8580/// Helper function for visitOR to extract the needed side of a rotate idiom
8581/// from a shl/srl/mul/udiv. This is meant to handle cases where
8582/// InstCombine merged some outside op with one of the shifts from
8583/// the rotate pattern.
8584/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
8585/// Otherwise, returns an expansion of \p ExtractFrom based on the following
8586/// patterns:
8587///
8588/// (or (add v v) (shrl v bitwidth-1)):
8589/// expands (add v v) -> (shl v 1)
8590///
8591/// (or (mul v c0) (shrl (mul v c1) c2)):
8592/// expands (mul v c0) -> (shl (mul v c1) c3)
8593///
8594/// (or (udiv v c0) (shl (udiv v c1) c2)):
8595/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
8596///
8597/// (or (shl v c0) (shrl (shl v c1) c2)):
8598/// expands (shl v c0) -> (shl (shl v c1) c3)
8599///
8600/// (or (shrl v c0) (shl (shrl v c1) c2)):
8601/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
8602///
8603/// Such that in all cases, c3+c2==bitwidth(op v c1).
8605 SDValue ExtractFrom, SDValue &Mask,
8606 const SDLoc &DL) {
8607 assert(OppShift && ExtractFrom && "Empty SDValue");
8608 if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL)
8609 return SDValue();
8610
8611 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
8612
8613 // Value and Type of the shift.
8614 SDValue OppShiftLHS = OppShift.getOperand(0);
8615 EVT ShiftedVT = OppShiftLHS.getValueType();
8616
8617 // Amount of the existing shift.
8618 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
8619
8620 // (add v v) -> (shl v 1)
8621 // TODO: Should this be a general DAG canonicalization?
8622 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
8623 ExtractFrom.getOpcode() == ISD::ADD &&
8624 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
8625 ExtractFrom.getOperand(0) == OppShiftLHS &&
8626 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
8627 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
8628 DAG.getShiftAmountConstant(1, ShiftedVT, DL));
8629
8630 // Preconditions:
8631 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
8632 //
8633 // Find opcode of the needed shift to be extracted from (op0 v c0).
8634 unsigned Opcode = ISD::DELETED_NODE;
8635 bool IsMulOrDiv = false;
8636 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
8637 // opcode or its arithmetic (mul or udiv) variant.
8638 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
8639 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
8640 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
8641 return false;
8642 Opcode = NeededShift;
8643 return true;
8644 };
8645 // op0 must be either the needed shift opcode or the mul/udiv equivalent
8646 // that the needed shift can be extracted from.
8647 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
8648 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
8649 return SDValue();
8650
8651 // op0 must be the same opcode on both sides, have the same LHS argument,
8652 // and produce the same value type.
8653 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
8654 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
8655 ShiftedVT != ExtractFrom.getValueType())
8656 return SDValue();
8657
8658 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
8659 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
8660 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
8661 ConstantSDNode *ExtractFromCst =
8662 isConstOrConstSplat(ExtractFrom.getOperand(1));
8663 // TODO: We should be able to handle non-uniform constant vectors for these values
8664 // Check that we have constant values.
8665 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
8666 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
8667 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
8668 return SDValue();
8669
8670 // Compute the shift amount we need to extract to complete the rotate.
8671 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
8672 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
8673 return SDValue();
8674 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
8675 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
8676 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
8677 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
8678 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
8679
8680 // Now try extract the needed shift from the ExtractFrom op and see if the
8681 // result matches up with the existing shift's LHS op.
8682 if (IsMulOrDiv) {
8683 // Op to extract from is a mul or udiv by a constant.
8684 // Check:
8685 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
8686 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
8687 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
8688 NeededShiftAmt.getZExtValue());
8689 APInt ResultAmt;
8690 APInt Rem;
8691 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
8692 if (Rem != 0 || ResultAmt != OppLHSAmt)
8693 return SDValue();
8694 } else {
8695 // Op to extract from is a shift by a constant.
8696 // Check:
8697 // c2 - (bitwidth(op0 v c0) - c1) == c0
8698 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
8699 ExtractFromAmt.getBitWidth()))
8700 return SDValue();
8701 }
8702
8703 // Return the expanded shift op that should allow a rotate to be formed.
8704 EVT ShiftVT = OppShift.getOperand(1).getValueType();
8705 EVT ResVT = ExtractFrom.getValueType();
8706 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
8707 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
8708}
8709
8710// Return true if we can prove that, whenever Neg and Pos are both in the
8711// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
8712// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
8713//
8714// (or (shift1 X, Neg), (shift2 X, Pos))
8715//
8716// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
8717// in direction shift1 by Neg. The range [0, EltSize) means that we only need
8718// to consider shift amounts with defined behavior.
8719//
8720// The IsRotate flag should be set when the LHS of both shifts is the same.
8721// Otherwise if matching a general funnel shift, it should be clear.
8722static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
8723 SelectionDAG &DAG, bool IsRotate, bool FromAdd) {
8724 const auto &TLI = DAG.getTargetLoweringInfo();
8725 // If EltSize is a power of 2 then:
8726 //
8727 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
8728 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
8729 //
8730 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
8731 // for the stronger condition:
8732 //
8733 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
8734 //
8735 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
8736 // we can just replace Neg with Neg' for the rest of the function.
8737 //
8738 // In other cases we check for the even stronger condition:
8739 //
8740 // Neg == EltSize - Pos [B]
8741 //
8742 // for all Neg and Pos. Note that the (or ...) then invokes undefined
8743 // behavior if Pos == 0 (and consequently Neg == EltSize).
8744 //
8745 // We could actually use [A] whenever EltSize is a power of 2, but the
8746 // only extra cases that it would match are those uninteresting ones
8747 // where Neg and Pos are never in range at the same time. E.g. for
8748 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
8749 // as well as (sub 32, Pos), but:
8750 //
8751 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
8752 //
8753 // always invokes undefined behavior for 32-bit X.
8754 //
8755 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
8756 // This allows us to peek through any operations that only affect Mask's
8757 // un-demanded bits.
8758 //
8759 // NOTE: We can only do this when matching operations which won't modify the
8760 // least Log2(EltSize) significant bits and not a general funnel shift.
8761 unsigned MaskLoBits = 0;
8762 if (IsRotate && !FromAdd && isPowerOf2_64(EltSize)) {
8763 unsigned Bits = Log2_64(EltSize);
8764 unsigned NegBits = Neg.getScalarValueSizeInBits();
8765 if (NegBits >= Bits) {
8766 APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits);
8767 if (SDValue Inner =
8769 Neg = Inner;
8770 MaskLoBits = Bits;
8771 }
8772 }
8773 }
8774
8775 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
8776 if (Neg.getOpcode() != ISD::SUB)
8777 return false;
8779 if (!NegC)
8780 return false;
8781 SDValue NegOp1 = Neg.getOperand(1);
8782
8783 // On the RHS of [A], if Pos is the result of operation on Pos' that won't
8784 // affect Mask's demanded bits, just replace Pos with Pos'. These operations
8785 // are redundant for the purpose of the equality.
8786 if (MaskLoBits) {
8787 unsigned PosBits = Pos.getScalarValueSizeInBits();
8788 if (PosBits >= MaskLoBits) {
8789 APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits);
8790 if (SDValue Inner =
8792 Pos = Inner;
8793 }
8794 }
8795 }
8796
8797 // The condition we need is now:
8798 //
8799 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
8800 //
8801 // If NegOp1 == Pos then we need:
8802 //
8803 // EltSize & Mask == NegC & Mask
8804 //
8805 // (because "x & Mask" is a truncation and distributes through subtraction).
8806 //
8807 // We also need to account for a potential truncation of NegOp1 if the amount
8808 // has already been legalized to a shift amount type.
8809 APInt Width;
8810 if ((Pos == NegOp1) ||
8811 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
8812 Width = NegC->getAPIntValue();
8813
8814 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
8815 // Then the condition we want to prove becomes:
8816 //
8817 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
8818 //
8819 // which, again because "x & Mask" is a truncation, becomes:
8820 //
8821 // NegC & Mask == (EltSize - PosC) & Mask
8822 // EltSize & Mask == (NegC + PosC) & Mask
8823 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
8824 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
8825 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
8826 else
8827 return false;
8828 } else
8829 return false;
8830
8831 // Now we just need to check that EltSize & Mask == Width & Mask.
8832 if (MaskLoBits)
8833 // EltSize & Mask is 0 since Mask is EltSize - 1.
8834 return Width.getLoBits(MaskLoBits) == 0;
8835 return Width == EltSize;
8836}
8837
8838// A subroutine of MatchRotate used once we have found an OR of two opposite
8839// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
8840// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
8841// former being preferred if supported. InnerPos and InnerNeg are Pos and
8842// Neg with outer conversions stripped away.
8843SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
8844 SDValue Neg, SDValue InnerPos,
8845 SDValue InnerNeg, bool FromAdd,
8846 bool HasPos, unsigned PosOpcode,
8847 unsigned NegOpcode, const SDLoc &DL) {
8848 // fold (or/add (shl x, (*ext y)),
8849 // (srl x, (*ext (sub 32, y)))) ->
8850 // (rotl x, y) or (rotr x, (sub 32, y))
8851 //
8852 // fold (or/add (shl x, (*ext (sub 32, y))),
8853 // (srl x, (*ext y))) ->
8854 // (rotr x, y) or (rotl x, (sub 32, y))
8855 EVT VT = Shifted.getValueType();
8856 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
8857 /*IsRotate*/ true, FromAdd))
8858 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
8859 HasPos ? Pos : Neg);
8860
8861 return SDValue();
8862}
8863
8864// A subroutine of MatchRotate used once we have found an OR of two opposite
8865// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
8866// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
8867// former being preferred if supported. InnerPos and InnerNeg are Pos and
8868// Neg with outer conversions stripped away.
8869// TODO: Merge with MatchRotatePosNeg.
8870SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
8871 SDValue Neg, SDValue InnerPos,
8872 SDValue InnerNeg, bool FromAdd,
8873 bool HasPos, unsigned PosOpcode,
8874 unsigned NegOpcode, const SDLoc &DL) {
8875 EVT VT = N0.getValueType();
8876 unsigned EltBits = VT.getScalarSizeInBits();
8877
8878 // fold (or/add (shl x0, (*ext y)),
8879 // (srl x1, (*ext (sub 32, y)))) ->
8880 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
8881 //
8882 // fold (or/add (shl x0, (*ext (sub 32, y))),
8883 // (srl x1, (*ext y))) ->
8884 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
8885 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1,
8886 FromAdd))
8887 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
8888 HasPos ? Pos : Neg);
8889
8890 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
8891 // so for now just use the PosOpcode case if its legal.
8892 // TODO: When can we use the NegOpcode case?
8893 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
8894 SDValue X;
8895 // fold (or/add (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
8896 // -> (fshl x0, x1, y)
8897 if (sd_match(N1, m_Srl(m_Value(X), m_One())) &&
8898 sd_match(InnerNeg,
8899 m_Xor(m_Specific(InnerPos), m_SpecificInt(EltBits - 1))) &&
8901 return DAG.getNode(ISD::FSHL, DL, VT, N0, X, Pos);
8902 }
8903
8904 // fold (or/add (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
8905 // -> (fshr x0, x1, y)
8906 if (sd_match(N0, m_Shl(m_Value(X), m_One())) &&
8907 sd_match(InnerPos,
8908 m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
8910 return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
8911 }
8912
8913 // fold (or/add (shl (add x0, x0), (xor y, 31)), (srl x1, y))
8914 // -> (fshr x0, x1, y)
8915 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
8916 if (sd_match(N0, m_Add(m_Value(X), m_Deferred(X))) &&
8917 sd_match(InnerPos,
8918 m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
8920 return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
8921 }
8922 }
8923
8924 return SDValue();
8925}
8926
8927// MatchRotate - Handle an 'or' or 'add' of two operands. If this is one of the
8928// many idioms for rotate, and if the target supports rotation instructions,
8929// generate a rot[lr]. This also matches funnel shift patterns, similar to
8930// rotation but with different shifted sources.
8931SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
8932 bool FromAdd) {
8933 EVT VT = LHS.getValueType();
8934
8935 // The target must have at least one rotate/funnel flavor.
8936 // We still try to match rotate by constant pre-legalization.
8937 // TODO: Support pre-legalization funnel-shift by constant.
8938 bool HasROTL = hasOperation(ISD::ROTL, VT);
8939 bool HasROTR = hasOperation(ISD::ROTR, VT);
8940 bool HasFSHL = hasOperation(ISD::FSHL, VT);
8941 bool HasFSHR = hasOperation(ISD::FSHR, VT);
8942
8943 // If the type is going to be promoted and the target has enabled custom
8944 // lowering for rotate, allow matching rotate by non-constants. Only allow
8945 // this for scalar types.
8946 if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) ==
8950 }
8951
8952 if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
8953 return SDValue();
8954
8955 // Check for truncated rotate.
8956 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
8957 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
8958 assert(LHS.getValueType() == RHS.getValueType());
8959 if (SDValue Rot =
8960 MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL, FromAdd))
8961 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
8962 }
8963
8964 // Match "(X shl/srl V1) & V2" where V2 may not be present.
8965 SDValue LHSShift; // The shift.
8966 SDValue LHSMask; // AND value if any.
8967 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
8968
8969 SDValue RHSShift; // The shift.
8970 SDValue RHSMask; // AND value if any.
8971 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
8972
8973 // If neither side matched a rotate half, bail
8974 if (!LHSShift && !RHSShift)
8975 return SDValue();
8976
8977 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
8978 // side of the rotate, so try to handle that here. In all cases we need to
8979 // pass the matched shift from the opposite side to compute the opcode and
8980 // needed shift amount to extract. We still want to do this if both sides
8981 // matched a rotate half because one half may be a potential overshift that
8982 // can be broken down (ie if InstCombine merged two shl or srl ops into a
8983 // single one).
8984
8985 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
8986 if (LHSShift)
8987 if (SDValue NewRHSShift =
8988 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
8989 RHSShift = NewRHSShift;
8990 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
8991 if (RHSShift)
8992 if (SDValue NewLHSShift =
8993 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
8994 LHSShift = NewLHSShift;
8995
8996 // If a side is still missing, nothing else we can do.
8997 if (!RHSShift || !LHSShift)
8998 return SDValue();
8999
9000 // At this point we've matched or extracted a shift op on each side.
9001
9002 if (LHSShift.getOpcode() == RHSShift.getOpcode())
9003 return SDValue(); // Shifts must disagree.
9004
9005 // Canonicalize shl to left side in a shl/srl pair.
9006 if (RHSShift.getOpcode() == ISD::SHL) {
9007 std::swap(LHS, RHS);
9008 std::swap(LHSShift, RHSShift);
9009 std::swap(LHSMask, RHSMask);
9010 }
9011
9012 // Something has gone wrong - we've lost the shl/srl pair - bail.
9013 if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL)
9014 return SDValue();
9015
9016 unsigned EltSizeInBits = VT.getScalarSizeInBits();
9017 SDValue LHSShiftArg = LHSShift.getOperand(0);
9018 SDValue LHSShiftAmt = LHSShift.getOperand(1);
9019 SDValue RHSShiftArg = RHSShift.getOperand(0);
9020 SDValue RHSShiftAmt = RHSShift.getOperand(1);
9021
9022 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
9023 ConstantSDNode *RHS) {
9024 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
9025 };
9026
9027 auto ApplyMasks = [&](SDValue Res) {
9028 // If there is an AND of either shifted operand, apply it to the result.
9029 if (LHSMask.getNode() || RHSMask.getNode()) {
9032
9033 if (LHSMask.getNode()) {
9034 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
9035 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
9036 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
9037 }
9038 if (RHSMask.getNode()) {
9039 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
9040 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
9041 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
9042 }
9043
9044 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
9045 }
9046
9047 return Res;
9048 };
9049
9050 // TODO: Support pre-legalization funnel-shift by constant.
9051 bool IsRotate = LHSShiftArg == RHSShiftArg;
9052 if (!IsRotate && !(HasFSHL || HasFSHR)) {
9053 if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() &&
9054 ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
9055 // Look for a disguised rotate by constant.
9056 // The common shifted operand X may be hidden inside another 'or'.
9057 SDValue X, Y;
9058 auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) {
9059 if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR)
9060 return false;
9061 if (CommonOp == Or.getOperand(0)) {
9062 X = CommonOp;
9063 Y = Or.getOperand(1);
9064 return true;
9065 }
9066 if (CommonOp == Or.getOperand(1)) {
9067 X = CommonOp;
9068 Y = Or.getOperand(0);
9069 return true;
9070 }
9071 return false;
9072 };
9073
9074 SDValue Res;
9075 if (matchOr(LHSShiftArg, RHSShiftArg)) {
9076 // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
9077 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
9078 SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt);
9079 Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY);
9080 } else if (matchOr(RHSShiftArg, LHSShiftArg)) {
9081 // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
9082 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
9083 SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt);
9084 Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY);
9085 } else {
9086 return SDValue();
9087 }
9088
9089 return ApplyMasks(Res);
9090 }
9091
9092 return SDValue(); // Requires funnel shift support.
9093 }
9094
9095 // fold (or/add (shl x, C1), (srl x, C2)) -> (rotl x, C1)
9096 // fold (or/add (shl x, C1), (srl x, C2)) -> (rotr x, C2)
9097 // fold (or/add (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
9098 // fold (or/add (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
9099 // iff C1+C2 == EltSizeInBits
9100 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
9101 SDValue Res;
9102 if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) {
9103 bool UseROTL = !LegalOperations || HasROTL;
9104 Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
9105 UseROTL ? LHSShiftAmt : RHSShiftAmt);
9106 } else {
9107 bool UseFSHL = !LegalOperations || HasFSHL;
9108 Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
9109 RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt);
9110 }
9111
9112 return ApplyMasks(Res);
9113 }
9114
9115 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable
9116 // shift.
9117 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
9118 return SDValue();
9119
9120 // If there is a mask here, and we have a variable shift, we can't be sure
9121 // that we're masking out the right stuff.
9122 if (LHSMask.getNode() || RHSMask.getNode())
9123 return SDValue();
9124
9125 // If the shift amount is sign/zext/any-extended just peel it off.
9126 SDValue LExtOp0 = LHSShiftAmt;
9127 SDValue RExtOp0 = RHSShiftAmt;
9128 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
9129 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
9130 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
9131 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
9132 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
9133 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
9134 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
9135 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
9136 LExtOp0 = LHSShiftAmt.getOperand(0);
9137 RExtOp0 = RHSShiftAmt.getOperand(0);
9138 }
9139
9140 if (IsRotate && (HasROTL || HasROTR)) {
9141 if (SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
9142 LExtOp0, RExtOp0, FromAdd, HasROTL,
9144 return TryL;
9145
9146 if (SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
9147 RExtOp0, LExtOp0, FromAdd, HasROTR,
9149 return TryR;
9150 }
9151
9152 if (SDValue TryL = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt,
9153 RHSShiftAmt, LExtOp0, RExtOp0, FromAdd,
9154 HasFSHL, ISD::FSHL, ISD::FSHR, DL))
9155 return TryL;
9156
9157 if (SDValue TryR = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt,
9158 LHSShiftAmt, RExtOp0, LExtOp0, FromAdd,
9159 HasFSHR, ISD::FSHR, ISD::FSHL, DL))
9160 return TryR;
9161
9162 return SDValue();
9163}
9164
9165/// Recursively traverses the expression calculating the origin of the requested
9166/// byte of the given value. Returns std::nullopt if the provider can't be
9167/// calculated.
9168///
9169/// For all the values except the root of the expression, we verify that the
9170/// value has exactly one use and if not then return std::nullopt. This way if
9171/// the origin of the byte is returned it's guaranteed that the values which
9172/// contribute to the byte are not used outside of this expression.
9173
9174/// However, there is a special case when dealing with vector loads -- we allow
9175/// more than one use if the load is a vector type. Since the values that
9176/// contribute to the byte ultimately come from the ExtractVectorElements of the
9177/// Load, we don't care if the Load has uses other than ExtractVectorElements,
9178/// because those operations are independent from the pattern to be combined.
9179/// For vector loads, we simply care that the ByteProviders are adjacent
9180/// positions of the same vector, and their index matches the byte that is being
9181/// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex
9182/// is the index used in an ExtractVectorElement, and \p StartingIndex is the
9183/// byte position we are trying to provide for the LoadCombine. If these do
9184/// not match, then we can not combine the vector loads. \p Index uses the
9185/// byte position we are trying to provide for and is matched against the
9186/// shl and load size. The \p Index algorithm ensures the requested byte is
9187/// provided for by the pattern, and the pattern does not over provide bytes.
9188///
9189///
9190/// The supported LoadCombine pattern for vector loads is as follows
9191/// or
9192/// / \
9193/// or shl
9194/// / \ |
9195/// or shl zext
9196/// / \ | |
9197/// shl zext zext EVE*
9198/// | | | |
9199/// zext EVE* EVE* LOAD
9200/// | | |
9201/// EVE* LOAD LOAD
9202/// |
9203/// LOAD
9204///
9205/// *ExtractVectorElement
9207
9208static std::optional<SDByteProvider>
9209calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
9210 std::optional<uint64_t> VectorIndex,
9211 unsigned StartingIndex = 0) {
9212
9213 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
9214 if (Depth == 10)
9215 return std::nullopt;
9216
9217 // Only allow multiple uses if the instruction is a vector load (in which
9218 // case we will use the load for every ExtractVectorElement)
9219 if (Depth && !Op.hasOneUse() &&
9220 (Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector()))
9221 return std::nullopt;
9222
9223 // Fail to combine if we have encountered anything but a LOAD after handling
9224 // an ExtractVectorElement.
9225 if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value())
9226 return std::nullopt;
9227
9228 unsigned BitWidth = Op.getScalarValueSizeInBits();
9229 if (BitWidth % 8 != 0)
9230 return std::nullopt;
9231 unsigned ByteWidth = BitWidth / 8;
9232 assert(Index < ByteWidth && "invalid index requested");
9233 (void) ByteWidth;
9234
9235 switch (Op.getOpcode()) {
9236 case ISD::OR: {
9237 auto LHS =
9238 calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex);
9239 if (!LHS)
9240 return std::nullopt;
9241 auto RHS =
9242 calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex);
9243 if (!RHS)
9244 return std::nullopt;
9245
9246 if (LHS->isConstantZero())
9247 return RHS;
9248 if (RHS->isConstantZero())
9249 return LHS;
9250 return std::nullopt;
9251 }
9252 case ISD::SHL: {
9253 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9254 if (!ShiftOp)
9255 return std::nullopt;
9256
9257 uint64_t BitShift = ShiftOp->getZExtValue();
9258
9259 if (BitShift % 8 != 0)
9260 return std::nullopt;
9261 uint64_t ByteShift = BitShift / 8;
9262
9263 // If we are shifting by an amount greater than the index we are trying to
9264 // provide, then do not provide anything. Otherwise, subtract the index by
9265 // the amount we shifted by.
9266 return Index < ByteShift
9268 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
9269 Depth + 1, VectorIndex, Index);
9270 }
9271 case ISD::ANY_EXTEND:
9272 case ISD::SIGN_EXTEND:
9273 case ISD::ZERO_EXTEND: {
9274 SDValue NarrowOp = Op->getOperand(0);
9275 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
9276 if (NarrowBitWidth % 8 != 0)
9277 return std::nullopt;
9278 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9279
9280 if (Index >= NarrowByteWidth)
9281 return Op.getOpcode() == ISD::ZERO_EXTEND
9282 ? std::optional<SDByteProvider>(
9284 : std::nullopt;
9285 return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex,
9286 StartingIndex);
9287 }
9288 case ISD::BSWAP:
9289 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
9290 Depth + 1, VectorIndex, StartingIndex);
9292 auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9293 if (!OffsetOp)
9294 return std::nullopt;
9295
9296 VectorIndex = OffsetOp->getZExtValue();
9297
9298 SDValue NarrowOp = Op->getOperand(0);
9299 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
9300 if (NarrowBitWidth % 8 != 0)
9301 return std::nullopt;
9302 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9303 // EXTRACT_VECTOR_ELT can extend the element type to the width of the return
9304 // type, leaving the high bits undefined.
9305 if (Index >= NarrowByteWidth)
9306 return std::nullopt;
9307
9308 // Check to see if the position of the element in the vector corresponds
9309 // with the byte we are trying to provide for. In the case of a vector of
9310 // i8, this simply means the VectorIndex == StartingIndex. For non i8 cases,
9311 // the element will provide a range of bytes. For example, if we have a
9312 // vector of i16s, each element provides two bytes (V[1] provides byte 2 and
9313 // 3).
9314 if (*VectorIndex * NarrowByteWidth > StartingIndex)
9315 return std::nullopt;
9316 if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex)
9317 return std::nullopt;
9318
9319 return calculateByteProvider(Op->getOperand(0), Index, Depth + 1,
9320 VectorIndex, StartingIndex);
9321 }
9322 case ISD::LOAD: {
9323 auto L = cast<LoadSDNode>(Op.getNode());
9324 if (!L->isSimple() || L->isIndexed())
9325 return std::nullopt;
9326
9327 unsigned NarrowBitWidth = L->getMemoryVT().getScalarSizeInBits();
9328 if (NarrowBitWidth % 8 != 0)
9329 return std::nullopt;
9330 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9331
9332 // If the width of the load does not reach byte we are trying to provide for
9333 // and it is not a ZEXTLOAD, then the load does not provide for the byte in
9334 // question
9335 if (Index >= NarrowByteWidth)
9336 return L->getExtensionType() == ISD::ZEXTLOAD
9337 ? std::optional<SDByteProvider>(
9339 : std::nullopt;
9340
9341 unsigned BPVectorIndex = VectorIndex.value_or(0U);
9342 return SDByteProvider::getSrc(L, Index, BPVectorIndex);
9343 }
9344 }
9345
9346 return std::nullopt;
9347}
9348
9349static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
9350 return i;
9351}
9352
9353static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
9354 return BW - i - 1;
9355}
9356
9357// Check if the bytes offsets we are looking at match with either big or
9358// little endian value loaded. Return true for big endian, false for little
9359// endian, and std::nullopt if match failed.
9360static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
9361 int64_t FirstOffset) {
9362 // The endian can be decided only when it is 2 bytes at least.
9363 unsigned Width = ByteOffsets.size();
9364 if (Width < 2)
9365 return std::nullopt;
9366
9367 bool BigEndian = true, LittleEndian = true;
9368 for (unsigned i = 0; i < Width; i++) {
9369 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
9370 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
9371 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
9372 if (!BigEndian && !LittleEndian)
9373 return std::nullopt;
9374 }
9375
9376 assert((BigEndian != LittleEndian) && "It should be either big endian or"
9377 "little endian");
9378 return BigEndian;
9379}
9380
9381// Look through one layer of truncate or extend.
9383 switch (Value.getOpcode()) {
9384 case ISD::TRUNCATE:
9385 case ISD::ZERO_EXTEND:
9386 case ISD::SIGN_EXTEND:
9387 case ISD::ANY_EXTEND:
9388 return Value.getOperand(0);
9389 }
9390 return SDValue();
9391}
9392
9393/// Match a pattern where a wide type scalar value is stored by several narrow
9394/// stores. Fold it into a single store or a BSWAP and a store if the targets
9395/// supports it.
9396///
9397/// Assuming little endian target:
9398/// i8 *p = ...
9399/// i32 val = ...
9400/// p[0] = (val >> 0) & 0xFF;
9401/// p[1] = (val >> 8) & 0xFF;
9402/// p[2] = (val >> 16) & 0xFF;
9403/// p[3] = (val >> 24) & 0xFF;
9404/// =>
9405/// *((i32)p) = val;
9406///
9407/// i8 *p = ...
9408/// i32 val = ...
9409/// p[0] = (val >> 24) & 0xFF;
9410/// p[1] = (val >> 16) & 0xFF;
9411/// p[2] = (val >> 8) & 0xFF;
9412/// p[3] = (val >> 0) & 0xFF;
9413/// =>
9414/// *((i32)p) = BSWAP(val);
9415SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
9416 // The matching looks for "store (trunc x)" patterns that appear early but are
9417 // likely to be replaced by truncating store nodes during combining.
9418 // TODO: If there is evidence that running this later would help, this
9419 // limitation could be removed. Legality checks may need to be added
9420 // for the created store and optional bswap/rotate.
9421 if (LegalOperations || OptLevel == CodeGenOptLevel::None)
9422 return SDValue();
9423
9424 // We only handle merging simple stores of 1-4 bytes.
9425 // TODO: Allow unordered atomics when wider type is legal (see D66309)
9426 EVT MemVT = N->getMemoryVT();
9427 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
9428 !N->isSimple() || N->isIndexed())
9429 return SDValue();
9430
9431 // Collect all of the stores in the chain, upto the maximum store width (i64).
9432 SDValue Chain = N->getChain();
9434 unsigned NarrowNumBits = MemVT.getScalarSizeInBits();
9435 unsigned MaxWideNumBits = 64;
9436 unsigned MaxStores = MaxWideNumBits / NarrowNumBits;
9437 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
9438 // All stores must be the same size to ensure that we are writing all of the
9439 // bytes in the wide value.
9440 // This store should have exactly one use as a chain operand for another
9441 // store in the merging set. If there are other chain uses, then the
9442 // transform may not be safe because order of loads/stores outside of this
9443 // set may not be preserved.
9444 // TODO: We could allow multiple sizes by tracking each stored byte.
9445 if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
9446 Store->isIndexed() || !Store->hasOneUse())
9447 return SDValue();
9448 Stores.push_back(Store);
9449 Chain = Store->getChain();
9450 if (MaxStores < Stores.size())
9451 return SDValue();
9452 }
9453 // There is no reason to continue if we do not have at least a pair of stores.
9454 if (Stores.size() < 2)
9455 return SDValue();
9456
9457 // Handle simple types only.
9458 LLVMContext &Context = *DAG.getContext();
9459 unsigned NumStores = Stores.size();
9460 unsigned WideNumBits = NumStores * NarrowNumBits;
9461 if (WideNumBits != 16 && WideNumBits != 32 && WideNumBits != 64)
9462 return SDValue();
9463
9464 // Check if all bytes of the source value that we are looking at are stored
9465 // to the same base address. Collect offsets from Base address into OffsetMap.
9466 SDValue SourceValue;
9467 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
9468 int64_t FirstOffset = INT64_MAX;
9469 StoreSDNode *FirstStore = nullptr;
9470 std::optional<BaseIndexOffset> Base;
9471 for (auto *Store : Stores) {
9472 // All the stores store different parts of the CombinedValue. A truncate is
9473 // required to get the partial value.
9474 SDValue Trunc = Store->getValue();
9475 if (Trunc.getOpcode() != ISD::TRUNCATE)
9476 return SDValue();
9477 // Other than the first/last part, a shift operation is required to get the
9478 // offset.
9479 int64_t Offset = 0;
9480 SDValue WideVal = Trunc.getOperand(0);
9481 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
9482 isa<ConstantSDNode>(WideVal.getOperand(1))) {
9483 // The shift amount must be a constant multiple of the narrow type.
9484 // It is translated to the offset address in the wide source value "y".
9485 //
9486 // x = srl y, ShiftAmtC
9487 // i8 z = trunc x
9488 // store z, ...
9489 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
9490 if (ShiftAmtC % NarrowNumBits != 0)
9491 return SDValue();
9492
9493 // Make sure we aren't reading bits that are shifted in.
9494 if (ShiftAmtC > WideVal.getScalarValueSizeInBits() - NarrowNumBits)
9495 return SDValue();
9496
9497 Offset = ShiftAmtC / NarrowNumBits;
9498 WideVal = WideVal.getOperand(0);
9499 }
9500
9501 // Stores must share the same source value with different offsets.
9502 if (!SourceValue)
9503 SourceValue = WideVal;
9504 else if (SourceValue != WideVal) {
9505 // Truncate and extends can be stripped to see if the values are related.
9506 if (stripTruncAndExt(SourceValue) != WideVal &&
9507 stripTruncAndExt(WideVal) != SourceValue)
9508 return SDValue();
9509
9510 if (WideVal.getScalarValueSizeInBits() >
9511 SourceValue.getScalarValueSizeInBits())
9512 SourceValue = WideVal;
9513
9514 // Give up if the source value type is smaller than the store size.
9515 if (SourceValue.getScalarValueSizeInBits() < WideNumBits)
9516 return SDValue();
9517 }
9518
9519 // Stores must share the same base address.
9520 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
9521 int64_t ByteOffsetFromBase = 0;
9522 if (!Base)
9523 Base = Ptr;
9524 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
9525 return SDValue();
9526
9527 // Remember the first store.
9528 if (ByteOffsetFromBase < FirstOffset) {
9529 FirstStore = Store;
9530 FirstOffset = ByteOffsetFromBase;
9531 }
9532 // Map the offset in the store and the offset in the combined value, and
9533 // early return if it has been set before.
9534 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
9535 return SDValue();
9536 OffsetMap[Offset] = ByteOffsetFromBase;
9537 }
9538
9539 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
9540
9541 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
9542 assert(FirstStore && "First store must be set");
9543
9544 // Check that a store of the wide type is both allowed and fast on the target
9545 const DataLayout &Layout = DAG.getDataLayout();
9546 unsigned Fast = 0;
9547 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
9548 *FirstStore->getMemOperand(), &Fast);
9549 if (!Allowed || !Fast)
9550 return SDValue();
9551
9552 // Check if the pieces of the value are going to the expected places in memory
9553 // to merge the stores.
9554 auto checkOffsets = [&](bool MatchLittleEndian) {
9555 if (MatchLittleEndian) {
9556 for (unsigned i = 0; i != NumStores; ++i)
9557 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
9558 return false;
9559 } else { // MatchBigEndian by reversing loop counter.
9560 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
9561 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
9562 return false;
9563 }
9564 return true;
9565 };
9566
9567 // Check if the offsets line up for the native data layout of this target.
9568 bool NeedBswap = false;
9569 bool NeedRotate = false;
9570 if (!checkOffsets(Layout.isLittleEndian())) {
9571 // Special-case: check if byte offsets line up for the opposite endian.
9572 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
9573 NeedBswap = true;
9574 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
9575 NeedRotate = true;
9576 else
9577 return SDValue();
9578 }
9579
9580 SDLoc DL(N);
9581 if (WideVT != SourceValue.getValueType()) {
9582 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
9583 "Unexpected store value to merge");
9584 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
9585 }
9586
9587 // Before legalize we can introduce illegal bswaps/rotates which will be later
9588 // converted to an explicit bswap sequence. This way we end up with a single
9589 // store and byte shuffling instead of several stores and byte shuffling.
9590 if (NeedBswap) {
9591 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
9592 } else if (NeedRotate) {
9593 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
9594 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
9595 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
9596 }
9597
9598 SDValue NewStore =
9599 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
9600 FirstStore->getPointerInfo(), FirstStore->getAlign());
9601
9602 // Rely on other DAG combine rules to remove the other individual stores.
9603 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
9604 return NewStore;
9605}
9606
9607/// Match a pattern where a wide type scalar value is loaded by several narrow
9608/// loads and combined by shifts and ors. Fold it into a single load or a load
9609/// and a BSWAP if the targets supports it.
9610///
9611/// Assuming little endian target:
9612/// i8 *a = ...
9613/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
9614/// =>
9615/// i32 val = *((i32)a)
9616///
9617/// i8 *a = ...
9618/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
9619/// =>
9620/// i32 val = BSWAP(*((i32)a))
9621///
9622/// TODO: This rule matches complex patterns with OR node roots and doesn't
9623/// interact well with the worklist mechanism. When a part of the pattern is
9624/// updated (e.g. one of the loads) its direct users are put into the worklist,
9625/// but the root node of the pattern which triggers the load combine is not
9626/// necessarily a direct user of the changed node. For example, once the address
9627/// of t28 load is reassociated load combine won't be triggered:
9628/// t25: i32 = add t4, Constant:i32<2>
9629/// t26: i64 = sign_extend t25
9630/// t27: i64 = add t2, t26
9631/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
9632/// t29: i32 = zero_extend t28
9633/// t32: i32 = shl t29, Constant:i8<8>
9634/// t33: i32 = or t23, t32
9635/// As a possible fix visitLoad can check if the load can be a part of a load
9636/// combine pattern and add corresponding OR roots to the worklist.
9637SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
9638 assert(N->getOpcode() == ISD::OR &&
9639 "Can only match load combining against OR nodes");
9640
9641 // Handles simple types only
9642 EVT VT = N->getValueType(0);
9643 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9644 return SDValue();
9645 unsigned ByteWidth = VT.getSizeInBits() / 8;
9646
9647 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
9648 auto MemoryByteOffset = [&](SDByteProvider P) {
9649 assert(P.hasSrc() && "Must be a memory byte provider");
9650 auto *Load = cast<LoadSDNode>(P.Src.value());
9651
9652 unsigned LoadBitWidth = Load->getMemoryVT().getScalarSizeInBits();
9653
9654 assert(LoadBitWidth % 8 == 0 &&
9655 "can only analyze providers for individual bytes not bit");
9656 unsigned LoadByteWidth = LoadBitWidth / 8;
9657 return IsBigEndianTarget ? bigEndianByteAt(LoadByteWidth, P.DestOffset)
9658 : littleEndianByteAt(LoadByteWidth, P.DestOffset);
9659 };
9660
9661 std::optional<BaseIndexOffset> Base;
9662 SDValue Chain;
9663
9664 SmallPtrSet<LoadSDNode *, 8> Loads;
9665 std::optional<SDByteProvider> FirstByteProvider;
9666 int64_t FirstOffset = INT64_MAX;
9667
9668 // Check if all the bytes of the OR we are looking at are loaded from the same
9669 // base address. Collect bytes offsets from Base address in ByteOffsets.
9670 SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
9671 unsigned ZeroExtendedBytes = 0;
9672 for (int i = ByteWidth - 1; i >= 0; --i) {
9673 auto P =
9674 calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt,
9675 /*StartingIndex*/ i);
9676 if (!P)
9677 return SDValue();
9678
9679 if (P->isConstantZero()) {
9680 // It's OK for the N most significant bytes to be 0, we can just
9681 // zero-extend the load.
9682 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
9683 return SDValue();
9684 continue;
9685 }
9686 assert(P->hasSrc() && "provenance should either be memory or zero");
9687 auto *L = cast<LoadSDNode>(P->Src.value());
9688
9689 // All loads must share the same chain
9690 SDValue LChain = L->getChain();
9691 if (!Chain)
9692 Chain = LChain;
9693 else if (Chain != LChain)
9694 return SDValue();
9695
9696 // Loads must share the same base address
9697 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
9698 int64_t ByteOffsetFromBase = 0;
9699
9700 // For vector loads, the expected load combine pattern will have an
9701 // ExtractElement for each index in the vector. While each of these
9702 // ExtractElements will be accessing the same base address as determined
9703 // by the load instruction, the actual bytes they interact with will differ
9704 // due to different ExtractElement indices. To accurately determine the
9705 // byte position of an ExtractElement, we offset the base load ptr with
9706 // the index multiplied by the byte size of each element in the vector.
9707 if (L->getMemoryVT().isVector()) {
9708 unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits();
9709 if (LoadWidthInBit % 8 != 0)
9710 return SDValue();
9711 unsigned ByteOffsetFromVector = P->SrcOffset * LoadWidthInBit / 8;
9712 Ptr.addToOffset(ByteOffsetFromVector);
9713 }
9714
9715 if (!Base)
9716 Base = Ptr;
9717
9718 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
9719 return SDValue();
9720
9721 // Calculate the offset of the current byte from the base address
9722 ByteOffsetFromBase += MemoryByteOffset(*P);
9723 ByteOffsets[i] = ByteOffsetFromBase;
9724
9725 // Remember the first byte load
9726 if (ByteOffsetFromBase < FirstOffset) {
9727 FirstByteProvider = P;
9728 FirstOffset = ByteOffsetFromBase;
9729 }
9730
9731 Loads.insert(L);
9732 }
9733
9734 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
9735 "memory, so there must be at least one load which produces the value");
9736 assert(Base && "Base address of the accessed memory location must be set");
9737 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
9738
9739 bool NeedsZext = ZeroExtendedBytes > 0;
9740
9741 EVT MemVT =
9742 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
9743
9744 if (!MemVT.isSimple())
9745 return SDValue();
9746
9747 // Before legalize we can introduce too wide illegal loads which will be later
9748 // split into legal sized loads. This enables us to combine i64 load by i8
9749 // patterns to a couple of i32 loads on 32 bit targets.
9750 if (LegalOperations &&
9751 !TLI.isLoadExtLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, VT,
9752 MemVT))
9753 return SDValue();
9754
9755 // Check if the bytes of the OR we are looking at match with either big or
9756 // little endian value load
9757 std::optional<bool> IsBigEndian = isBigEndian(
9758 ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
9759 if (!IsBigEndian)
9760 return SDValue();
9761
9762 assert(FirstByteProvider && "must be set");
9763
9764 // Ensure that the first byte is loaded from zero offset of the first load.
9765 // So the combined value can be loaded from the first load address.
9766 if (MemoryByteOffset(*FirstByteProvider) != 0)
9767 return SDValue();
9768 auto *FirstLoad = cast<LoadSDNode>(FirstByteProvider->Src.value());
9769
9770 // The node we are looking at matches with the pattern, check if we can
9771 // replace it with a single (possibly zero-extended) load and bswap + shift if
9772 // needed.
9773
9774 // If the load needs byte swap check if the target supports it
9775 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
9776
9777 // Before legalize we can introduce illegal bswaps which will be later
9778 // converted to an explicit bswap sequence. This way we end up with a single
9779 // load and byte shuffling instead of several loads and byte shuffling.
9780 // We do not introduce illegal bswaps when zero-extending as this tends to
9781 // introduce too many arithmetic instructions.
9782 if (NeedsBswap && (LegalOperations || NeedsZext) &&
9783 !TLI.isOperationLegal(ISD::BSWAP, VT))
9784 return SDValue();
9785
9786 // If we need to bswap and zero extend, we have to insert a shift. Check that
9787 // it is legal.
9788 if (NeedsBswap && NeedsZext && LegalOperations &&
9789 !TLI.isOperationLegal(ISD::SHL, VT))
9790 return SDValue();
9791
9792 // Check that a load of the wide type is both allowed and fast on the target
9793 unsigned Fast = 0;
9794 bool Allowed =
9795 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
9796 *FirstLoad->getMemOperand(), &Fast);
9797 if (!Allowed || !Fast)
9798 return SDValue();
9799
9800 SDValue NewLoad =
9801 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
9802 Chain, FirstLoad->getBasePtr(),
9803 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
9804
9805 // Transfer chain users from old loads to the new load.
9806 for (LoadSDNode *L : Loads)
9807 DAG.makeEquivalentMemoryOrdering(L, NewLoad);
9808
9809 if (!NeedsBswap)
9810 return NewLoad;
9811
9812 SDValue ShiftedLoad =
9813 NeedsZext ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
9814 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8,
9815 VT, SDLoc(N)))
9816 : NewLoad;
9817 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
9818}
9819
9820// If the target has andn, bsl, or a similar bit-select instruction,
9821// we want to unfold masked merge, with canonical pattern of:
9822// | A | |B|
9823// ((x ^ y) & m) ^ y
9824// | D |
9825// Into:
9826// (x & m) | (y & ~m)
9827// If y is a constant, m is not a 'not', and the 'andn' does not work with
9828// immediates, we unfold into a different pattern:
9829// ~(~x & m) & (m | y)
9830// If x is a constant, m is a 'not', and the 'andn' does not work with
9831// immediates, we unfold into a different pattern:
9832// (x | ~m) & ~(~m & ~y)
9833// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
9834// the very least that breaks andnpd / andnps patterns, and because those
9835// patterns are simplified in IR and shouldn't be created in the DAG
9836SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
9837 assert(N->getOpcode() == ISD::XOR);
9838
9839 // Don't touch 'not' (i.e. where y = -1).
9840 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
9841 return SDValue();
9842
9843 EVT VT = N->getValueType(0);
9844
9845 // There are 3 commutable operators in the pattern,
9846 // so we have to deal with 8 possible variants of the basic pattern.
9847 SDValue X, Y, M;
9848 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
9849 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
9850 return false;
9851 SDValue Xor = And.getOperand(XorIdx);
9852 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
9853 return false;
9854 SDValue Xor0 = Xor.getOperand(0);
9855 SDValue Xor1 = Xor.getOperand(1);
9856 // Don't touch 'not' (i.e. where y = -1).
9857 if (isAllOnesOrAllOnesSplat(Xor1))
9858 return false;
9859 if (Other == Xor0)
9860 std::swap(Xor0, Xor1);
9861 if (Other != Xor1)
9862 return false;
9863 X = Xor0;
9864 Y = Xor1;
9865 M = And.getOperand(XorIdx ? 0 : 1);
9866 return true;
9867 };
9868
9869 SDValue N0 = N->getOperand(0);
9870 SDValue N1 = N->getOperand(1);
9871 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
9872 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
9873 return SDValue();
9874
9875 // Don't do anything if the mask is constant. This should not be reachable.
9876 // InstCombine should have already unfolded this pattern, and DAGCombiner
9877 // probably shouldn't produce it, too.
9878 if (isa<ConstantSDNode>(M.getNode()))
9879 return SDValue();
9880
9881 // We can transform if the target has AndNot
9882 if (!TLI.hasAndNot(M))
9883 return SDValue();
9884
9885 SDLoc DL(N);
9886
9887 // If Y is a constant, check that 'andn' works with immediates. Unless M is
9888 // a bitwise not that would already allow ANDN to be used.
9889 if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) {
9890 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
9891 // If not, we need to do a bit more work to make sure andn is still used.
9892 SDValue NotX = DAG.getNOT(DL, X, VT);
9893 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
9894 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
9895 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
9896 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
9897 }
9898
9899 // If X is a constant and M is a bitwise not, check that 'andn' works with
9900 // immediates.
9901 if (!TLI.hasAndNot(X) && isBitwiseNot(M)) {
9902 assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable.");
9903 // If not, we need to do a bit more work to make sure andn is still used.
9904 SDValue NotM = M.getOperand(0);
9905 SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM);
9906 SDValue NotY = DAG.getNOT(DL, Y, VT);
9907 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY);
9908 SDValue NotRHS = DAG.getNOT(DL, RHS, VT);
9909 return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS);
9910 }
9911
9912 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
9913 SDValue NotM = DAG.getNOT(DL, M, VT);
9914 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
9915
9916 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
9917}
9918
9919SDValue DAGCombiner::visitXOR(SDNode *N) {
9920 SDValue N0 = N->getOperand(0);
9921 SDValue N1 = N->getOperand(1);
9922 EVT VT = N0.getValueType();
9923 SDLoc DL(N);
9924
9925 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
9926 if (N0.isUndef() && N1.isUndef())
9927 return DAG.getConstant(0, DL, VT);
9928
9929 // fold (xor x, undef) -> undef
9930 if (N0.isUndef())
9931 return N0;
9932 if (N1.isUndef())
9933 return N1;
9934
9935 // fold (xor c1, c2) -> c1^c2
9936 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
9937 return C;
9938
9939 // canonicalize constant to RHS
9942 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
9943
9944 // fold vector ops
9945 if (VT.isVector()) {
9946 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
9947 return FoldedVOp;
9948
9949 // fold (xor x, 0) -> x, vector edition
9951 return N0;
9952 }
9953
9954 // fold (xor x, 0) -> x
9955 if (isNullConstant(N1))
9956 return N0;
9957
9958 if (SDValue NewSel = foldBinOpIntoSelect(N))
9959 return NewSel;
9960
9961 // reassociate xor
9962 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
9963 return RXOR;
9964
9965 // Fold xor(vecreduce(x), vecreduce(y)) -> vecreduce(xor(x, y))
9966 if (SDValue SD =
9967 reassociateReduction(ISD::VECREDUCE_XOR, ISD::XOR, DL, VT, N0, N1))
9968 return SD;
9969
9970 // fold (a^b) -> (a|b) iff a and b share no bits.
9971 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
9972 DAG.haveNoCommonBitsSet(N0, N1))
9973 return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
9974
9975 // look for 'add-like' folds:
9976 // XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE)
9977 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
9979 if (SDValue Combined = visitADDLike(N))
9980 return Combined;
9981
9982 // fold not (setcc x, y, cc) -> setcc x y !cc
9983 // Avoid breaking: and (not(setcc x, y, cc), z) -> andn for vec
9984 unsigned N0Opcode = N0.getOpcode();
9985 SDValue LHS, RHS, CC;
9986 if (TLI.isConstTrueVal(N1) &&
9987 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true) &&
9988 !(VT.isVector() && TLI.hasAndNot(SDValue(N, 0)) && N->hasOneUse() &&
9989 N->use_begin()->getUser()->getOpcode() == ISD::AND)) {
9991 LHS.getValueType());
9992 if (!LegalOperations ||
9993 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
9994 switch (N0Opcode) {
9995 default:
9996 llvm_unreachable("Unhandled SetCC Equivalent!");
9997 case ISD::SETCC:
9998 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
9999 case ISD::SELECT_CC:
10000 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
10001 N0.getOperand(3), NotCC);
10002 case ISD::STRICT_FSETCC:
10003 case ISD::STRICT_FSETCCS: {
10004 if (N0.hasOneUse()) {
10005 // FIXME Can we handle multiple uses? Could we token factor the chain
10006 // results from the new/old setcc?
10007 SDValue SetCC =
10008 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
10009 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
10010 CombineTo(N, SetCC);
10011 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
10012 recursivelyDeleteUnusedNodes(N0.getNode());
10013 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10014 }
10015 break;
10016 }
10017 }
10018 }
10019 }
10020
10021 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
10022 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
10023 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
10024 SDValue V = N0.getOperand(0);
10025 SDLoc DL0(N0);
10026 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
10027 DAG.getConstant(1, DL0, V.getValueType()));
10028 AddToWorklist(V.getNode());
10029 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
10030 }
10031
10032 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
10033 // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are setcc
10034 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
10035 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
10036 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
10037 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
10038 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
10039 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
10040 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
10041 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
10042 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
10043 }
10044 }
10045 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
10046 // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are constants
10047 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
10048 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
10049 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
10050 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
10051 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
10052 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
10053 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
10054 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
10055 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
10056 }
10057 }
10058
10059 // fold (not (sub Y, X)) -> (add X, ~Y) if Y is a constant
10060 if (N0.getOpcode() == ISD::SUB && isAllOnesConstant(N1)) {
10061 SDValue Y = N0.getOperand(0);
10062 SDValue X = N0.getOperand(1);
10063
10064 if (auto *YConst = dyn_cast<ConstantSDNode>(Y)) {
10065 APInt NotYValue = ~YConst->getAPIntValue();
10066 SDValue NotY = DAG.getConstant(NotYValue, DL, VT);
10067 return DAG.getNode(ISD::ADD, DL, VT, X, NotY, N->getFlags());
10068 }
10069 }
10070
10071 // fold (not (add X, -1)) -> (neg X)
10072 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && isAllOnesConstant(N1) &&
10074 return DAG.getNegative(N0.getOperand(0), DL, VT);
10075 }
10076
10077 // fold (xor (and x, y), y) -> (and (not x), y)
10078 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
10079 SDValue X = N0.getOperand(0);
10080 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
10081 AddToWorklist(NotX.getNode());
10082 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
10083 }
10084
10085 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
10086 if (!LegalOperations || hasOperation(ISD::ABS, VT)) {
10087 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
10088 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
10089 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
10090 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
10091 SDValue S0 = S.getOperand(0);
10092 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
10093 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
10094 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
10095 return DAG.getNode(ISD::ABS, DL, VT, S0);
10096 }
10097 }
10098
10099 // fold (xor x, x) -> 0
10100 if (N0 == N1)
10101 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
10102
10103 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
10104 // Here is a concrete example of this equivalence:
10105 // i16 x == 14
10106 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
10107 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
10108 //
10109 // =>
10110 //
10111 // i16 ~1 == 0b1111111111111110
10112 // i16 rol(~1, 14) == 0b1011111111111111
10113 //
10114 // Some additional tips to help conceptualize this transform:
10115 // - Try to see the operation as placing a single zero in a value of all ones.
10116 // - There exists no value for x which would allow the result to contain zero.
10117 // - Values of x larger than the bitwidth are undefined and do not require a
10118 // consistent result.
10119 // - Pushing the zero left requires shifting one bits in from the right.
10120 // A rotate left of ~1 is a nice way of achieving the desired result.
10121 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
10123 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getSignedConstant(~1, DL, VT),
10124 N0.getOperand(1));
10125 }
10126
10127 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
10128 if (N0Opcode == N1.getOpcode())
10129 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
10130 return V;
10131
10132 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
10133 return R;
10134 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
10135 return R;
10136 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
10137 return R;
10138
10139 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
10140 if (SDValue MM = unfoldMaskedMerge(N))
10141 return MM;
10142
10143 // Simplify the expression using non-local knowledge.
10145 return SDValue(N, 0);
10146
10147 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
10148 return Combined;
10149
10150 // fold (xor (smin(x, C), C)) -> select (x < C), xor(x, C), 0
10151 // fold (xor (smax(x, C), C)) -> select (x > C), xor(x, C), 0
10152 // fold (xor (umin(x, C), C)) -> select (x < C), xor(x, C), 0
10153 // fold (xor (umax(x, C), C)) -> select (x > C), xor(x, C), 0
10154 SDValue Op0;
10155 if (sd_match(N0, m_OneUse(m_AnyOf(m_SMin(m_Value(Op0), m_Specific(N1)),
10156 m_SMax(m_Value(Op0), m_Specific(N1)),
10157 m_UMin(m_Value(Op0), m_Specific(N1)),
10158 m_UMax(m_Value(Op0), m_Specific(N1)))))) {
10159
10160 if (isa<ConstantSDNode>(N1) ||
10162 // For vectors, only optimize when the constant is zero or all-ones to
10163 // avoid generating more instructions
10164 if (VT.isVector()) {
10165 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10166 if (!N1C || (!N1C->isZero() && !N1C->isAllOnes()))
10167 return SDValue();
10168 }
10169
10170 // Avoid the fold if the minmax operation is legal and select is expensive
10171 if (TLI.isOperationLegal(N0.getOpcode(), VT) &&
10173 return SDValue();
10174
10175 EVT CCVT = getSetCCResultType(VT);
10176 ISD::CondCode CC;
10177 switch (N0.getOpcode()) {
10178 case ISD::SMIN:
10179 CC = ISD::SETLT;
10180 break;
10181 case ISD::SMAX:
10182 CC = ISD::SETGT;
10183 break;
10184 case ISD::UMIN:
10185 CC = ISD::SETULT;
10186 break;
10187 case ISD::UMAX:
10188 CC = ISD::SETUGT;
10189 break;
10190 }
10191 SDValue FN1 = DAG.getFreeze(N1);
10192 SDValue Cmp = DAG.getSetCC(DL, CCVT, Op0, FN1, CC);
10193 SDValue XorXC = DAG.getNode(ISD::XOR, DL, VT, Op0, FN1);
10194 SDValue Zero = DAG.getConstant(0, DL, VT);
10195 return DAG.getSelect(DL, VT, Cmp, XorXC, Zero);
10196 }
10197 }
10198
10199 return SDValue();
10200}
10201
10202/// If we have a shift-by-constant of a bitwise logic op that itself has a
10203/// shift-by-constant operand with identical opcode, we may be able to convert
10204/// that into 2 independent shifts followed by the logic op. This is a
10205/// throughput improvement.
10207 // Match a one-use bitwise logic op.
10208 SDValue LogicOp = Shift->getOperand(0);
10209 if (!LogicOp.hasOneUse())
10210 return SDValue();
10211
10212 unsigned LogicOpcode = LogicOp.getOpcode();
10213 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
10214 LogicOpcode != ISD::XOR)
10215 return SDValue();
10216
10217 // Find a matching one-use shift by constant.
10218 unsigned ShiftOpcode = Shift->getOpcode();
10219 SDValue C1 = Shift->getOperand(1);
10220 ConstantSDNode *C1Node = isConstOrConstSplat(C1);
10221 assert(C1Node && "Expected a shift with constant operand");
10222 const APInt &C1Val = C1Node->getAPIntValue();
10223 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
10224 const APInt *&ShiftAmtVal) {
10225 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
10226 return false;
10227
10228 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
10229 if (!ShiftCNode)
10230 return false;
10231
10232 // Capture the shifted operand and shift amount value.
10233 ShiftOp = V.getOperand(0);
10234 ShiftAmtVal = &ShiftCNode->getAPIntValue();
10235
10236 // Shift amount types do not have to match their operand type, so check that
10237 // the constants are the same width.
10238 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
10239 return false;
10240
10241 // The fold is not valid if the sum of the shift values doesn't fit in the
10242 // given shift amount type.
10243 bool Overflow = false;
10244 APInt NewShiftAmt = C1Val.uadd_ov(*ShiftAmtVal, Overflow);
10245 if (Overflow)
10246 return false;
10247
10248 // The fold is not valid if the sum of the shift values exceeds bitwidth.
10249 if (NewShiftAmt.uge(V.getScalarValueSizeInBits()))
10250 return false;
10251
10252 return true;
10253 };
10254
10255 // Logic ops are commutative, so check each operand for a match.
10256 SDValue X, Y;
10257 const APInt *C0Val;
10258 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
10259 Y = LogicOp.getOperand(1);
10260 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
10261 Y = LogicOp.getOperand(0);
10262 else
10263 return SDValue();
10264
10265 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
10266 SDLoc DL(Shift);
10267 EVT VT = Shift->getValueType(0);
10268 EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
10269 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
10270 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
10271 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
10272 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2,
10273 LogicOp->getFlags());
10274}
10275
10276/// Handle transforms common to the three shifts, when the shift amount is a
10277/// constant.
10278/// We are looking for: (shift being one of shl/sra/srl)
10279/// shift (binop X, C0), C1
10280/// And want to transform into:
10281/// binop (shift X, C1), (shift C0, C1)
10282SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
10283 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
10284
10285 // Do not turn a 'not' into a regular xor.
10286 if (isBitwiseNot(N->getOperand(0)))
10287 return SDValue();
10288
10289 // The inner binop must be one-use, since we want to replace it.
10290 SDValue LHS = N->getOperand(0);
10291 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
10292 return SDValue();
10293
10294 // Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)).
10295 if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
10296 return R;
10297
10298 // We want to pull some binops through shifts, so that we have (and (shift))
10299 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
10300 // thing happens with address calculations, so it's important to canonicalize
10301 // it.
10302 switch (LHS.getOpcode()) {
10303 default:
10304 return SDValue();
10305 case ISD::OR:
10306 case ISD::XOR:
10307 case ISD::AND:
10308 break;
10309 case ISD::ADD:
10310 if (N->getOpcode() != ISD::SHL)
10311 return SDValue(); // only shl(add) not sr[al](add).
10312 break;
10313 }
10314
10315 // FIXME: disable this unless the input to the binop is a shift by a constant
10316 // or is copy/select. Enable this in other cases when figure out it's exactly
10317 // profitable.
10318 SDValue BinOpLHSVal = LHS.getOperand(0);
10319 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
10320 BinOpLHSVal.getOpcode() == ISD::SRA ||
10321 BinOpLHSVal.getOpcode() == ISD::SRL) &&
10322 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
10323 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
10324 BinOpLHSVal.getOpcode() == ISD::SELECT;
10325
10326 if (!IsShiftByConstant && !IsCopyOrSelect)
10327 return SDValue();
10328
10329 if (IsCopyOrSelect && N->hasOneUse())
10330 return SDValue();
10331
10332 // Attempt to fold the constants, shifting the binop RHS by the shift amount.
10333 SDLoc DL(N);
10334 EVT VT = N->getValueType(0);
10335 if (SDValue NewRHS = DAG.FoldConstantArithmetic(
10336 N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) {
10337 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
10338 N->getOperand(1));
10339 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
10340 }
10341
10342 return SDValue();
10343}
10344
10345SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
10346 assert(N->getOpcode() == ISD::TRUNCATE);
10347 assert(N->getOperand(0).getOpcode() == ISD::AND);
10348
10349 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
10350 EVT TruncVT = N->getValueType(0);
10351 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
10352 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
10353 SDValue N01 = N->getOperand(0).getOperand(1);
10354 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
10355 SDLoc DL(N);
10356 SDValue N00 = N->getOperand(0).getOperand(0);
10357 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
10358 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
10359 AddToWorklist(Trunc00.getNode());
10360 AddToWorklist(Trunc01.getNode());
10361 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
10362 }
10363 }
10364
10365 return SDValue();
10366}
10367
10368SDValue DAGCombiner::visitRotate(SDNode *N) {
10369 SDLoc dl(N);
10370 SDValue N0 = N->getOperand(0);
10371 SDValue N1 = N->getOperand(1);
10372 EVT VT = N->getValueType(0);
10373 unsigned Bitsize = VT.getScalarSizeInBits();
10374
10375 // fold (rot x, 0) -> x
10376 if (isNullOrNullSplat(N1))
10377 return N0;
10378
10379 // fold (rot x, c) -> x iff (c % BitSize) == 0
10380 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
10381 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
10382 if (DAG.MaskedValueIsZero(N1, ModuloMask))
10383 return N0;
10384 }
10385
10386 // fold (rot x, c) -> (rot x, c % BitSize)
10387 bool OutOfRange = false;
10388 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
10389 OutOfRange |= C->getAPIntValue().uge(Bitsize);
10390 return true;
10391 };
10392 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
10393 EVT AmtVT = N1.getValueType();
10394 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
10395 if (SDValue Amt =
10396 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
10397 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
10398 }
10399
10400 // rot i16 X, 8 --> bswap X
10401 auto *RotAmtC = isConstOrConstSplat(N1);
10402 if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
10403 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
10404 return DAG.getNode(ISD::BSWAP, dl, VT, N0);
10405
10406 // Simplify the operands using demanded-bits information.
10408 return SDValue(N, 0);
10409
10410 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
10411 if (N1.getOpcode() == ISD::TRUNCATE &&
10412 N1.getOperand(0).getOpcode() == ISD::AND) {
10413 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
10414 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
10415 }
10416
10417 unsigned NextOp = N0.getOpcode();
10418
10419 // fold (rot* (rot* x, c2), c1)
10420 // -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize)
10421 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
10422 bool C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
10424 if (C1 && C2 && N1.getValueType() == N0.getOperand(1).getValueType()) {
10425 EVT ShiftVT = N1.getValueType();
10426 bool SameSide = (N->getOpcode() == NextOp);
10427 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
10428 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
10429 SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
10430 {N1, BitsizeC});
10431 SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
10432 {N0.getOperand(1), BitsizeC});
10433 if (Norm1 && Norm2)
10434 if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
10435 CombineOp, dl, ShiftVT, {Norm1, Norm2})) {
10436 CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT,
10437 {CombinedShift, BitsizeC});
10438 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
10439 ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC});
10440 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
10441 CombinedShiftNorm);
10442 }
10443 }
10444 }
10445 return SDValue();
10446}
10447
10448SDValue DAGCombiner::visitSHL(SDNode *N) {
10449 SDValue N0 = N->getOperand(0);
10450 SDValue N1 = N->getOperand(1);
10451 if (SDValue V = DAG.simplifyShift(N0, N1))
10452 return V;
10453
10454 SDLoc DL(N);
10455 EVT VT = N0.getValueType();
10456 EVT ShiftVT = N1.getValueType();
10457 unsigned OpSizeInBits = VT.getScalarSizeInBits();
10458
10459 // fold (shl c1, c2) -> c1<<c2
10460 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N0, N1}))
10461 return C;
10462
10463 // fold vector ops
10464 if (VT.isVector()) {
10465 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
10466 return FoldedVOp;
10467
10468 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
10469 // If setcc produces all-one true value then:
10470 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
10471 if (N1CV && N1CV->isConstant()) {
10472 if (N0.getOpcode() == ISD::AND) {
10473 SDValue N00 = N0->getOperand(0);
10474 SDValue N01 = N0->getOperand(1);
10475 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
10476
10477 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
10480 if (SDValue C =
10481 DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N01, N1}))
10482 return DAG.getNode(ISD::AND, DL, VT, N00, C);
10483 }
10484 }
10485 }
10486 }
10487
10488 if (SDValue NewSel = foldBinOpIntoSelect(N))
10489 return NewSel;
10490
10491 // if (shl x, c) is known to be zero, return 0
10492 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
10493 return DAG.getConstant(0, DL, VT);
10494
10495 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
10496 if (N1.getOpcode() == ISD::TRUNCATE &&
10497 N1.getOperand(0).getOpcode() == ISD::AND) {
10498 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
10499 return DAG.getNode(ISD::SHL, DL, VT, N0, NewOp1);
10500 }
10501
10502 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
10503 if (N0.getOpcode() == ISD::SHL) {
10504 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
10505 ConstantSDNode *RHS) {
10506 APInt c1 = LHS->getAPIntValue();
10507 APInt c2 = RHS->getAPIntValue();
10508 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10509 return (c1 + c2).uge(OpSizeInBits);
10510 };
10511 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
10512 return DAG.getConstant(0, DL, VT);
10513
10514 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
10515 ConstantSDNode *RHS) {
10516 APInt c1 = LHS->getAPIntValue();
10517 APInt c2 = RHS->getAPIntValue();
10518 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10519 return (c1 + c2).ult(OpSizeInBits);
10520 };
10521 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
10522 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
10523 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
10524 }
10525 }
10526
10527 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
10528 // For this to be valid, the second form must not preserve any of the bits
10529 // that are shifted out by the inner shift in the first form. This means
10530 // the outer shift size must be >= the number of bits added by the ext.
10531 // As a corollary, we don't care what kind of ext it is.
10532 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
10533 N0.getOpcode() == ISD::ANY_EXTEND ||
10534 N0.getOpcode() == ISD::SIGN_EXTEND) &&
10535 N0.getOperand(0).getOpcode() == ISD::SHL) {
10536 SDValue N0Op0 = N0.getOperand(0);
10537 SDValue InnerShiftAmt = N0Op0.getOperand(1);
10538 EVT InnerVT = N0Op0.getValueType();
10539 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
10540
10541 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
10542 ConstantSDNode *RHS) {
10543 APInt c1 = LHS->getAPIntValue();
10544 APInt c2 = RHS->getAPIntValue();
10545 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10546 return c2.uge(OpSizeInBits - InnerBitwidth) &&
10547 (c1 + c2).uge(OpSizeInBits);
10548 };
10549 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
10550 /*AllowUndefs*/ false,
10551 /*AllowTypeMismatch*/ true))
10552 return DAG.getConstant(0, DL, VT);
10553
10554 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
10555 ConstantSDNode *RHS) {
10556 APInt c1 = LHS->getAPIntValue();
10557 APInt c2 = RHS->getAPIntValue();
10558 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10559 return c2.uge(OpSizeInBits - InnerBitwidth) &&
10560 (c1 + c2).ult(OpSizeInBits);
10561 };
10562 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
10563 /*AllowUndefs*/ false,
10564 /*AllowTypeMismatch*/ true)) {
10565 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
10566 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
10567 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
10568 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
10569 }
10570 }
10571
10572 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
10573 // Only fold this if the inner zext has no other uses to avoid increasing
10574 // the total number of instructions.
10575 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
10576 N0.getOperand(0).getOpcode() == ISD::SRL) {
10577 SDValue N0Op0 = N0.getOperand(0);
10578 SDValue InnerShiftAmt = N0Op0.getOperand(1);
10579
10580 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
10581 APInt c1 = LHS->getAPIntValue();
10582 APInt c2 = RHS->getAPIntValue();
10583 zeroExtendToMatch(c1, c2);
10584 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
10585 };
10586 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
10587 /*AllowUndefs*/ false,
10588 /*AllowTypeMismatch*/ true)) {
10589 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
10590 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
10591 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
10592 AddToWorklist(NewSHL.getNode());
10593 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
10594 }
10595 }
10596
10597 if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) {
10598 auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
10599 ConstantSDNode *RHS) {
10600 const APInt &LHSC = LHS->getAPIntValue();
10601 const APInt &RHSC = RHS->getAPIntValue();
10602 return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
10603 LHSC.getZExtValue() <= RHSC.getZExtValue();
10604 };
10605
10606 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
10607 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2
10608 if (N0->getFlags().hasExact()) {
10609 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
10610 /*AllowUndefs*/ false,
10611 /*AllowTypeMismatch*/ true)) {
10612 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10613 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
10614 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
10615 }
10616 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
10617 /*AllowUndefs*/ false,
10618 /*AllowTypeMismatch*/ true)) {
10619 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10620 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
10621 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff);
10622 }
10623 }
10624
10625 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
10626 // (and (srl x, (sub c1, c2), MASK)
10627 // Only fold this if the inner shift has no other uses -- if it does,
10628 // folding this will increase the total number of instructions.
10629 if (N0.getOpcode() == ISD::SRL &&
10630 (N0.getOperand(1) == N1 || N0.hasOneUse()) &&
10632 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
10633 /*AllowUndefs*/ false,
10634 /*AllowTypeMismatch*/ true)) {
10635 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10636 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
10637 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
10638 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01);
10639 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff);
10640 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
10641 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
10642 }
10643 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
10644 /*AllowUndefs*/ false,
10645 /*AllowTypeMismatch*/ true)) {
10646 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10647 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
10648 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
10649 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1);
10650 SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
10651 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
10652 }
10653 }
10654 }
10655
10656 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
10657 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
10658 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
10659 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
10660 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
10661 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
10662 }
10663
10664 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10665 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
10666 // Variant of version done on multiply, except mul by a power of 2 is turned
10667 // into a shift.
10668 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
10669 TLI.isDesirableToCommuteWithShift(N, Level)) {
10670 SDValue N01 = N0.getOperand(1);
10671 if (SDValue Shl1 =
10672 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) {
10673 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
10674 AddToWorklist(Shl0.getNode());
10675 SDNodeFlags Flags;
10676 // Preserve the disjoint flag for Or.
10677 if (N0.getOpcode() == ISD::OR && N0->getFlags().hasDisjoint())
10679 return DAG.getNode(N0.getOpcode(), DL, VT, Shl0, Shl1, Flags);
10680 }
10681 }
10682
10683 // fold (shl (sext (add_nsw x, c1)), c2) -> (add (shl (sext x), c2), c1 << c2)
10684 // TODO: Add zext/add_nuw variant with suitable test coverage
10685 // TODO: Should we limit this with isLegalAddImmediate?
10686 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
10687 N0.getOperand(0).getOpcode() == ISD::ADD &&
10688 N0.getOperand(0)->getFlags().hasNoSignedWrap() &&
10689 TLI.isDesirableToCommuteWithShift(N, Level)) {
10690 SDValue Add = N0.getOperand(0);
10691 SDLoc DL(N0);
10692 if (SDValue ExtC = DAG.FoldConstantArithmetic(N0.getOpcode(), DL, VT,
10693 {Add.getOperand(1)})) {
10694 if (SDValue ShlC =
10695 DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {ExtC, N1})) {
10696 SDValue ExtX = DAG.getNode(N0.getOpcode(), DL, VT, Add.getOperand(0));
10697 SDValue ShlX = DAG.getNode(ISD::SHL, DL, VT, ExtX, N1);
10698 return DAG.getNode(ISD::ADD, DL, VT, ShlX, ShlC);
10699 }
10700 }
10701 }
10702
10703 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
10704 if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) {
10705 SDValue N01 = N0.getOperand(1);
10706 if (SDValue Shl =
10707 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1}))
10708 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), Shl);
10709 }
10710
10711 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10712 if (N1C && !N1C->isOpaque())
10713 if (SDValue NewSHL = visitShiftByConstant(N))
10714 return NewSHL;
10715
10716 // fold (shl X, cttz(Y)) -> (mul (Y & -Y), X) if cttz is unsupported on the
10717 // target.
10718 if (((N1.getOpcode() == ISD::CTTZ &&
10719 VT.getScalarSizeInBits() <= ShiftVT.getScalarSizeInBits()) ||
10721 N1.hasOneUse() && !TLI.isOperationLegalOrCustom(ISD::CTTZ, ShiftVT) &&
10723 SDValue Y = N1.getOperand(0);
10724 SDLoc DL(N);
10725 SDValue NegY = DAG.getNegative(Y, DL, ShiftVT);
10726 SDValue And =
10727 DAG.getZExtOrTrunc(DAG.getNode(ISD::AND, DL, ShiftVT, Y, NegY), DL, VT);
10728 return DAG.getNode(ISD::MUL, DL, VT, And, N0);
10729 }
10730
10732 return SDValue(N, 0);
10733
10734 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
10735 if (N0.getOpcode() == ISD::VSCALE && N1C) {
10736 const APInt &C0 = N0.getConstantOperandAPInt(0);
10737 const APInt &C1 = N1C->getAPIntValue();
10738 return DAG.getVScale(DL, VT, C0 << C1);
10739 }
10740
10741 SDValue X;
10742 APInt VS0;
10743
10744 // fold (shl (X * vscale(VS0)), C1) -> (X * vscale(VS0 << C1))
10745 if (N1C && sd_match(N0, m_Mul(m_Value(X), m_VScale(m_ConstInt(VS0))))) {
10746 SDNodeFlags Flags;
10747 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
10748 N0->getFlags().hasNoUnsignedWrap());
10749
10750 SDValue VScale = DAG.getVScale(DL, VT, VS0 << N1C->getAPIntValue());
10751 return DAG.getNode(ISD::MUL, DL, VT, X, VScale, Flags);
10752 }
10753
10754 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
10755 APInt ShlVal;
10756 if (N0.getOpcode() == ISD::STEP_VECTOR &&
10757 ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
10758 const APInt &C0 = N0.getConstantOperandAPInt(0);
10759 if (ShlVal.ult(C0.getBitWidth())) {
10760 APInt NewStep = C0 << ShlVal;
10761 return DAG.getStepVector(DL, VT, NewStep);
10762 }
10763 }
10764
10765 return SDValue();
10766}
10767
10768// Transform a right shift of a multiply into a multiply-high.
10769// Examples:
10770// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
10771// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
10773 const TargetLowering &TLI) {
10774 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
10775 "SRL or SRA node is required here!");
10776
10777 // Check the shift amount. Proceed with the transformation if the shift
10778 // amount is constant.
10779 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
10780 if (!ShiftAmtSrc)
10781 return SDValue();
10782
10783 // The operation feeding into the shift must be a multiply.
10784 SDValue ShiftOperand = N->getOperand(0);
10785 if (ShiftOperand.getOpcode() != ISD::MUL)
10786 return SDValue();
10787
10788 // Both operands must be equivalent extend nodes.
10789 SDValue LeftOp = ShiftOperand.getOperand(0);
10790 SDValue RightOp = ShiftOperand.getOperand(1);
10791
10792 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
10793 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
10794
10795 if (!IsSignExt && !IsZeroExt)
10796 return SDValue();
10797
10798 EVT NarrowVT = LeftOp.getOperand(0).getValueType();
10799 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
10800
10801 // return true if U may use the lower bits of its operands
10802 auto UserOfLowerBits = [NarrowVTSize](SDNode *U) {
10803 if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) {
10804 return true;
10805 }
10806 ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1));
10807 if (!UShiftAmtSrc) {
10808 return true;
10809 }
10810 unsigned UShiftAmt = UShiftAmtSrc->getZExtValue();
10811 return UShiftAmt < NarrowVTSize;
10812 };
10813
10814 // If the lower part of the MUL is also used and MUL_LOHI is supported
10815 // do not introduce the MULH in favor of MUL_LOHI
10816 unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10817 if (!ShiftOperand.hasOneUse() &&
10818 TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) &&
10819 llvm::any_of(ShiftOperand->users(), UserOfLowerBits)) {
10820 return SDValue();
10821 }
10822
10823 SDValue MulhRightOp;
10825 unsigned ActiveBits = IsSignExt
10826 ? Constant->getAPIntValue().getSignificantBits()
10827 : Constant->getAPIntValue().getActiveBits();
10828 if (ActiveBits > NarrowVTSize)
10829 return SDValue();
10830 MulhRightOp = DAG.getConstant(
10831 Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL,
10832 NarrowVT);
10833 } else {
10834 if (LeftOp.getOpcode() != RightOp.getOpcode())
10835 return SDValue();
10836 // Check that the two extend nodes are the same type.
10837 if (NarrowVT != RightOp.getOperand(0).getValueType())
10838 return SDValue();
10839 MulhRightOp = RightOp.getOperand(0);
10840 }
10841
10842 EVT WideVT = LeftOp.getValueType();
10843 // Proceed with the transformation if the wide types match.
10844 assert((WideVT == RightOp.getValueType()) &&
10845 "Cannot have a multiply node with two different operand types.");
10846
10847 // Proceed with the transformation if the wide type is twice as large
10848 // as the narrow type.
10849 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize)
10850 return SDValue();
10851
10852 // Check the shift amount with the narrow type size.
10853 // Proceed with the transformation if the shift amount is the width
10854 // of the narrow type.
10855 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
10856 if (ShiftAmt != NarrowVTSize)
10857 return SDValue();
10858
10859 // If the operation feeding into the MUL is a sign extend (sext),
10860 // we use mulhs. Othewise, zero extends (zext) use mulhu.
10861 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
10862
10863 // Combine to mulh if mulh is legal/custom for the narrow type on the target
10864 // or if it is a vector type then we could transform to an acceptable type and
10865 // rely on legalization to split/combine the result.
10866 if (NarrowVT.isVector()) {
10867 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), NarrowVT);
10868 if (TransformVT.getVectorElementType() != NarrowVT.getVectorElementType() ||
10869 !TLI.isOperationLegalOrCustom(MulhOpcode, TransformVT))
10870 return SDValue();
10871 } else {
10872 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
10873 return SDValue();
10874 }
10875
10876 SDValue Result =
10877 DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp);
10878 bool IsSigned = N->getOpcode() == ISD::SRA;
10879 return DAG.getExtOrTrunc(IsSigned, Result, DL, WideVT);
10880}
10881
10882// fold (bswap (logic_op(bswap(x),y))) -> logic_op(x,bswap(y))
10883// This helper function accept SDNode with opcode ISD::BSWAP and ISD::BITREVERSE
10885 unsigned Opcode = N->getOpcode();
10886 if (Opcode != ISD::BSWAP && Opcode != ISD::BITREVERSE)
10887 return SDValue();
10888
10889 SDValue N0 = N->getOperand(0);
10890 EVT VT = N->getValueType(0);
10891 SDLoc DL(N);
10892 SDValue X, Y;
10893
10894 // If both operands are bswap/bitreverse, ignore the multiuse
10896 m_UnaryOp(Opcode, m_Value(Y))))))
10897 return DAG.getNode(N0.getOpcode(), DL, VT, X, Y);
10898
10899 // Otherwise need to ensure logic_op and bswap/bitreverse(x) have one use.
10901 m_OneUse(m_UnaryOp(Opcode, m_Value(X))), m_Value(Y))))) {
10902 SDValue NewBitReorder = DAG.getNode(Opcode, DL, VT, Y);
10903 return DAG.getNode(N0.getOpcode(), DL, VT, X, NewBitReorder);
10904 }
10905
10906 return SDValue();
10907}
10908
10909SDValue DAGCombiner::visitSRA(SDNode *N) {
10910 SDValue N0 = N->getOperand(0);
10911 SDValue N1 = N->getOperand(1);
10912 if (SDValue V = DAG.simplifyShift(N0, N1))
10913 return V;
10914
10915 SDLoc DL(N);
10916 EVT VT = N0.getValueType();
10917 unsigned OpSizeInBits = VT.getScalarSizeInBits();
10918
10919 // fold (sra c1, c2) -> (sra c1, c2)
10920 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, DL, VT, {N0, N1}))
10921 return C;
10922
10923 // Arithmetic shifting an all-sign-bit value is a no-op.
10924 // fold (sra 0, x) -> 0
10925 // fold (sra -1, x) -> -1
10926 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
10927 return N0;
10928
10929 // fold vector ops
10930 if (VT.isVector())
10931 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
10932 return FoldedVOp;
10933
10934 if (SDValue NewSel = foldBinOpIntoSelect(N))
10935 return NewSel;
10936
10937 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10938
10939 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
10940 // clamp (add c1, c2) to max shift.
10941 if (N0.getOpcode() == ISD::SRA) {
10942 EVT ShiftVT = N1.getValueType();
10943 EVT ShiftSVT = ShiftVT.getScalarType();
10944 SmallVector<SDValue, 16> ShiftValues;
10945
10946 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
10947 APInt c1 = LHS->getAPIntValue();
10948 APInt c2 = RHS->getAPIntValue();
10949 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10950 APInt Sum = c1 + c2;
10951 unsigned ShiftSum =
10952 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
10953 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
10954 return true;
10955 };
10956 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
10957 SDValue ShiftValue;
10958 if (N1.getOpcode() == ISD::BUILD_VECTOR)
10959 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
10960 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
10961 assert(ShiftValues.size() == 1 &&
10962 "Expected matchBinaryPredicate to return one element for "
10963 "SPLAT_VECTORs");
10964 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
10965 } else
10966 ShiftValue = ShiftValues[0];
10967 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
10968 }
10969 }
10970
10971 // fold (sra (shl X, m), (sub result_size, n))
10972 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
10973 // result_size - n != m.
10974 // If truncate is free for the target sext(shl) is likely to result in better
10975 // code.
10976 if (N0.getOpcode() == ISD::SHL && N1C) {
10977 // Get the two constants of the shifts, CN0 = m, CN = n.
10978 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
10979 if (N01C) {
10980 LLVMContext &Ctx = *DAG.getContext();
10981 // Determine what the truncate's result bitsize and type would be.
10982 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
10983
10984 if (VT.isVector())
10985 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
10986
10987 // Determine the residual right-shift amount.
10988 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
10989
10990 // If the shift is not a no-op (in which case this should be just a sign
10991 // extend already), the truncated to type is legal, sign_extend is legal
10992 // on that type, and the truncate to that type is both legal and free,
10993 // perform the transform.
10994 if ((ShiftAmt > 0) &&
10997 TLI.isTruncateFree(VT, TruncVT)) {
10998 SDValue Amt = DAG.getShiftAmountConstant(ShiftAmt, VT, DL);
10999 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
11000 N0.getOperand(0), Amt);
11001 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
11002 Shift);
11003 return DAG.getNode(ISD::SIGN_EXTEND, DL,
11004 N->getValueType(0), Trunc);
11005 }
11006 }
11007 }
11008
11009 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
11010 // sra (add (shl X, N1C), AddC), N1C -->
11011 // sext (add (trunc X to (width - N1C)), AddC')
11012 // sra (sub AddC, (shl X, N1C)), N1C -->
11013 // sext (sub AddC1',(trunc X to (width - N1C)))
11014 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C &&
11015 N0.hasOneUse()) {
11016 bool IsAdd = N0.getOpcode() == ISD::ADD;
11017 SDValue Shl = N0.getOperand(IsAdd ? 0 : 1);
11018 if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 &&
11019 Shl.hasOneUse()) {
11020 // TODO: AddC does not need to be a splat.
11021 if (ConstantSDNode *AddC =
11022 isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) {
11023 // Determine what the truncate's type would be and ask the target if
11024 // that is a free operation.
11025 LLVMContext &Ctx = *DAG.getContext();
11026 unsigned ShiftAmt = N1C->getZExtValue();
11027 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
11028 if (VT.isVector())
11029 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
11030
11031 // TODO: The simple type check probably belongs in the default hook
11032 // implementation and/or target-specific overrides (because
11033 // non-simple types likely require masking when legalized), but
11034 // that restriction may conflict with other transforms.
11035 if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
11036 TLI.isTruncateFree(VT, TruncVT)) {
11037 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
11038 SDValue ShiftC =
11039 DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc(
11040 TruncVT.getScalarSizeInBits()),
11041 DL, TruncVT);
11042 SDValue Add;
11043 if (IsAdd)
11044 Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
11045 else
11046 Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc);
11047 return DAG.getSExtOrTrunc(Add, DL, VT);
11048 }
11049 }
11050 }
11051 }
11052
11053 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
11054 if (N1.getOpcode() == ISD::TRUNCATE &&
11055 N1.getOperand(0).getOpcode() == ISD::AND) {
11056 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
11057 return DAG.getNode(ISD::SRA, DL, VT, N0, NewOp1);
11058 }
11059
11060 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
11061 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
11062 // if c1 is equal to the number of bits the trunc removes
11063 // TODO - support non-uniform vector shift amounts.
11064 if (N0.getOpcode() == ISD::TRUNCATE &&
11065 (N0.getOperand(0).getOpcode() == ISD::SRL ||
11066 N0.getOperand(0).getOpcode() == ISD::SRA) &&
11067 N0.getOperand(0).hasOneUse() &&
11068 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
11069 SDValue N0Op0 = N0.getOperand(0);
11070 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
11071 EVT LargeVT = N0Op0.getValueType();
11072 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
11073 if (LargeShift->getAPIntValue() == TruncBits) {
11074 EVT LargeShiftVT = getShiftAmountTy(LargeVT);
11075 SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT);
11076 Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt,
11077 DAG.getConstant(TruncBits, DL, LargeShiftVT));
11078 SDValue SRA =
11079 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
11080 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
11081 }
11082 }
11083 }
11084
11085 // Simplify, based on bits shifted out of the LHS.
11087 return SDValue(N, 0);
11088
11089 // If the sign bit is known to be zero, switch this to a SRL.
11090 if (DAG.SignBitIsZero(N0))
11091 return DAG.getNode(ISD::SRL, DL, VT, N0, N1);
11092
11093 if (N1C && !N1C->isOpaque())
11094 if (SDValue NewSRA = visitShiftByConstant(N))
11095 return NewSRA;
11096
11097 // Try to transform this shift into a multiply-high if
11098 // it matches the appropriate pattern detected in combineShiftToMULH.
11099 if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
11100 return MULH;
11101
11102 // Attempt to convert a sra of a load into a narrower sign-extending load.
11103 if (SDValue NarrowLoad = reduceLoadWidth(N))
11104 return NarrowLoad;
11105
11106 if (SDValue AVG = foldShiftToAvg(N, DL))
11107 return AVG;
11108
11109 return SDValue();
11110}
11111
11112SDValue DAGCombiner::visitSRL(SDNode *N) {
11113 SDValue N0 = N->getOperand(0);
11114 SDValue N1 = N->getOperand(1);
11115 if (SDValue V = DAG.simplifyShift(N0, N1))
11116 return V;
11117
11118 SDLoc DL(N);
11119 EVT VT = N0.getValueType();
11120 EVT ShiftVT = N1.getValueType();
11121 unsigned OpSizeInBits = VT.getScalarSizeInBits();
11122
11123 // fold (srl c1, c2) -> c1 >>u c2
11124 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, DL, VT, {N0, N1}))
11125 return C;
11126
11127 // fold vector ops
11128 if (VT.isVector())
11129 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
11130 return FoldedVOp;
11131
11132 if (SDValue NewSel = foldBinOpIntoSelect(N))
11133 return NewSel;
11134
11135 // if (srl x, c) is known to be zero, return 0
11136 ConstantSDNode *N1C = isConstOrConstSplat(N1);
11137 if (N1C &&
11138 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
11139 return DAG.getConstant(0, DL, VT);
11140
11141 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
11142 if (N0.getOpcode() == ISD::SRL) {
11143 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
11144 ConstantSDNode *RHS) {
11145 APInt c1 = LHS->getAPIntValue();
11146 APInt c2 = RHS->getAPIntValue();
11147 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
11148 return (c1 + c2).uge(OpSizeInBits);
11149 };
11150 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
11151 return DAG.getConstant(0, DL, VT);
11152
11153 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
11154 ConstantSDNode *RHS) {
11155 APInt c1 = LHS->getAPIntValue();
11156 APInt c2 = RHS->getAPIntValue();
11157 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
11158 return (c1 + c2).ult(OpSizeInBits);
11159 };
11160 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
11161 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
11162 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
11163 }
11164 }
11165
11166 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
11167 N0.getOperand(0).getOpcode() == ISD::SRL) {
11168 SDValue InnerShift = N0.getOperand(0);
11169 // TODO - support non-uniform vector shift amounts.
11170 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
11171 uint64_t c1 = N001C->getZExtValue();
11172 uint64_t c2 = N1C->getZExtValue();
11173 EVT InnerShiftVT = InnerShift.getValueType();
11174 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
11175 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
11176 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
11177 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
11178 if (c1 + OpSizeInBits == InnerShiftSize) {
11179 if (c1 + c2 >= InnerShiftSize)
11180 return DAG.getConstant(0, DL, VT);
11181 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
11182 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
11183 InnerShift.getOperand(0), NewShiftAmt);
11184 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
11185 }
11186 // In the more general case, we can clear the high bits after the shift:
11187 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
11188 if (N0.hasOneUse() && InnerShift.hasOneUse() &&
11189 c1 + c2 < InnerShiftSize) {
11190 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
11191 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
11192 InnerShift.getOperand(0), NewShiftAmt);
11193 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
11194 OpSizeInBits - c2),
11195 DL, InnerShiftVT);
11196 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
11197 return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
11198 }
11199 }
11200 }
11201
11202 if (N0.getOpcode() == ISD::SHL) {
11203 // fold (srl (shl nuw x, c), c) -> x
11204 if (N0.getOperand(1) == N1 && N0->getFlags().hasNoUnsignedWrap())
11205 return N0.getOperand(0);
11206
11207 // fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or
11208 // (and (srl x, (sub c2, c1), MASK)
11209 if ((N0.getOperand(1) == N1 || N0->hasOneUse()) &&
11211 auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
11212 ConstantSDNode *RHS) {
11213 const APInt &LHSC = LHS->getAPIntValue();
11214 const APInt &RHSC = RHS->getAPIntValue();
11215 return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
11216 LHSC.getZExtValue() <= RHSC.getZExtValue();
11217 };
11218 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
11219 /*AllowUndefs*/ false,
11220 /*AllowTypeMismatch*/ true)) {
11221 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
11222 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
11223 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
11224 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01);
11225 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff);
11226 SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
11227 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
11228 }
11229 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
11230 /*AllowUndefs*/ false,
11231 /*AllowTypeMismatch*/ true)) {
11232 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
11233 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
11234 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
11235 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1);
11236 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
11237 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
11238 }
11239 }
11240 }
11241
11242 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
11243 // TODO - support non-uniform vector shift amounts.
11244 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
11245 // Shifting in all undef bits?
11246 EVT SmallVT = N0.getOperand(0).getValueType();
11247 unsigned BitSize = SmallVT.getScalarSizeInBits();
11248 if (N1C->getAPIntValue().uge(BitSize))
11249 return DAG.getUNDEF(VT);
11250
11251 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
11252 uint64_t ShiftAmt = N1C->getZExtValue();
11253 SDLoc DL0(N0);
11254 SDValue SmallShift =
11255 DAG.getNode(ISD::SRL, DL0, SmallVT, N0.getOperand(0),
11256 DAG.getShiftAmountConstant(ShiftAmt, SmallVT, DL0));
11257 AddToWorklist(SmallShift.getNode());
11258 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
11259 return DAG.getNode(ISD::AND, DL, VT,
11260 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
11261 DAG.getConstant(Mask, DL, VT));
11262 }
11263 }
11264
11265 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
11266 // bit, which is unmodified by sra.
11267 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
11268 if (N0.getOpcode() == ISD::SRA)
11269 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
11270 }
11271
11272 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit), and x has a power
11273 // of two bitwidth. The "5" represents (log2 (bitwidth x)).
11274 if (N1C && N0.getOpcode() == ISD::CTLZ &&
11275 isPowerOf2_32(OpSizeInBits) &&
11276 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
11277 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
11278
11279 // If any of the input bits are KnownOne, then the input couldn't be all
11280 // zeros, thus the result of the srl will always be zero.
11281 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
11282
11283 // If all of the bits input the to ctlz node are known to be zero, then
11284 // the result of the ctlz is "32" and the result of the shift is one.
11285 APInt UnknownBits = ~Known.Zero;
11286 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
11287
11288 // Otherwise, check to see if there is exactly one bit input to the ctlz.
11289 if (UnknownBits.isPowerOf2()) {
11290 // Okay, we know that only that the single bit specified by UnknownBits
11291 // could be set on input to the CTLZ node. If this bit is set, the SRL
11292 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
11293 // to an SRL/XOR pair, which is likely to simplify more.
11294 unsigned ShAmt = UnknownBits.countr_zero();
11295 SDValue Op = N0.getOperand(0);
11296
11297 if (ShAmt) {
11298 SDLoc DL(N0);
11299 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
11300 DAG.getShiftAmountConstant(ShAmt, VT, DL));
11301 AddToWorklist(Op.getNode());
11302 }
11303 return DAG.getNode(ISD::XOR, DL, VT, Op, DAG.getConstant(1, DL, VT));
11304 }
11305 }
11306
11307 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
11308 if (N1.getOpcode() == ISD::TRUNCATE &&
11309 N1.getOperand(0).getOpcode() == ISD::AND) {
11310 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
11311 return DAG.getNode(ISD::SRL, DL, VT, N0, NewOp1);
11312 }
11313
11314 // fold (srl (logic_op x, (shl (zext y), c1)), c1)
11315 // -> (logic_op (srl x, c1), (zext y))
11316 // c1 <= leadingzeros(zext(y))
11317 SDValue X, ZExtY;
11318 if (N1C && sd_match(N0, m_OneUse(m_BitwiseLogic(
11319 m_Value(X),
11322 m_Specific(N1))))))) {
11323 unsigned NumLeadingZeros = ZExtY.getScalarValueSizeInBits() -
11325 if (N1C->getZExtValue() <= NumLeadingZeros)
11326 return DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
11327 DAG.getNode(ISD::SRL, SDLoc(N0), VT, X, N1), ZExtY);
11328 }
11329
11330 // fold operands of srl based on knowledge that the low bits are not
11331 // demanded.
11333 return SDValue(N, 0);
11334
11335 if (N1C && !N1C->isOpaque())
11336 if (SDValue NewSRL = visitShiftByConstant(N))
11337 return NewSRL;
11338
11339 // Attempt to convert a srl of a load into a narrower zero-extending load.
11340 if (SDValue NarrowLoad = reduceLoadWidth(N))
11341 return NarrowLoad;
11342
11343 // Here is a common situation. We want to optimize:
11344 //
11345 // %a = ...
11346 // %b = and i32 %a, 2
11347 // %c = srl i32 %b, 1
11348 // brcond i32 %c ...
11349 //
11350 // into
11351 //
11352 // %a = ...
11353 // %b = and %a, 2
11354 // %c = setcc eq %b, 0
11355 // brcond %c ...
11356 //
11357 // However when after the source operand of SRL is optimized into AND, the SRL
11358 // itself may not be optimized further. Look for it and add the BRCOND into
11359 // the worklist.
11360 //
11361 // The also tends to happen for binary operations when SimplifyDemandedBits
11362 // is involved.
11363 //
11364 // FIXME: This is unecessary if we process the DAG in topological order,
11365 // which we plan to do. This workaround can be removed once the DAG is
11366 // processed in topological order.
11367 if (N->hasOneUse()) {
11368 SDNode *User = *N->user_begin();
11369
11370 // Look pass the truncate.
11371 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse())
11372 User = *User->user_begin();
11373
11374 if (User->getOpcode() == ISD::BRCOND || User->getOpcode() == ISD::AND ||
11375 User->getOpcode() == ISD::OR || User->getOpcode() == ISD::XOR)
11376 AddToWorklist(User);
11377 }
11378
11379 // Try to transform this shift into a multiply-high if
11380 // it matches the appropriate pattern detected in combineShiftToMULH.
11381 if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
11382 return MULH;
11383
11384 if (SDValue AVG = foldShiftToAvg(N, DL))
11385 return AVG;
11386
11387 return SDValue();
11388}
11389
11390SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
11391 EVT VT = N->getValueType(0);
11392 SDValue N0 = N->getOperand(0);
11393 SDValue N1 = N->getOperand(1);
11394 SDValue N2 = N->getOperand(2);
11395 bool IsFSHL = N->getOpcode() == ISD::FSHL;
11396 unsigned BitWidth = VT.getScalarSizeInBits();
11397 SDLoc DL(N);
11398
11399 // fold (fshl/fshr C0, C1, C2) -> C3
11400 if (SDValue C =
11401 DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1, N2}))
11402 return C;
11403
11404 // fold (fshl N0, N1, 0) -> N0
11405 // fold (fshr N0, N1, 0) -> N1
11407 if (DAG.MaskedValueIsZero(
11408 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
11409 return IsFSHL ? N0 : N1;
11410
11411 auto IsUndefOrZero = [](SDValue V) {
11412 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
11413 };
11414
11415 // TODO - support non-uniform vector shift amounts.
11416 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
11417 EVT ShAmtTy = N2.getValueType();
11418
11419 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
11420 if (Cst->getAPIntValue().uge(BitWidth)) {
11421 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
11422 return DAG.getNode(N->getOpcode(), DL, VT, N0, N1,
11423 DAG.getConstant(RotAmt, DL, ShAmtTy));
11424 }
11425
11426 unsigned ShAmt = Cst->getZExtValue();
11427 if (ShAmt == 0)
11428 return IsFSHL ? N0 : N1;
11429
11430 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
11431 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
11432 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
11433 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
11434 if (IsUndefOrZero(N0))
11435 return DAG.getNode(
11436 ISD::SRL, DL, VT, N1,
11437 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, DL, ShAmtTy));
11438 if (IsUndefOrZero(N1))
11439 return DAG.getNode(
11440 ISD::SHL, DL, VT, N0,
11441 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, DL, ShAmtTy));
11442
11443 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
11444 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
11445 // TODO - bigendian support once we have test coverage.
11446 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
11447 // TODO - permit LHS EXTLOAD if extensions are shifted out.
11448 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
11449 !DAG.getDataLayout().isBigEndian()) {
11450 auto *LHS = dyn_cast<LoadSDNode>(N0);
11451 auto *RHS = dyn_cast<LoadSDNode>(N1);
11452 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
11453 LHS->getAddressSpace() == RHS->getAddressSpace() &&
11454 (LHS->hasNUsesOfValue(1, 0) || RHS->hasNUsesOfValue(1, 0)) &&
11456 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
11457 SDLoc DL(RHS);
11458 uint64_t PtrOff =
11459 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
11460 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
11461 unsigned Fast = 0;
11462 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
11463 RHS->getAddressSpace(), NewAlign,
11464 RHS->getMemOperand()->getFlags(), &Fast) &&
11465 Fast) {
11466 SDValue NewPtr = DAG.getMemBasePlusOffset(
11467 RHS->getBasePtr(), TypeSize::getFixed(PtrOff), DL);
11468 AddToWorklist(NewPtr.getNode());
11469 SDValue Load = DAG.getLoad(
11470 VT, DL, RHS->getChain(), NewPtr,
11471 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
11472 RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
11473 DAG.makeEquivalentMemoryOrdering(LHS, Load.getValue(1));
11474 DAG.makeEquivalentMemoryOrdering(RHS, Load.getValue(1));
11475 return Load;
11476 }
11477 }
11478 }
11479 }
11480 }
11481
11482 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
11483 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
11484 // iff We know the shift amount is in range.
11485 // TODO: when is it worth doing SUB(BW, N2) as well?
11486 if (isPowerOf2_32(BitWidth)) {
11487 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
11488 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
11489 return DAG.getNode(ISD::SRL, DL, VT, N1, N2);
11490 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
11491 return DAG.getNode(ISD::SHL, DL, VT, N0, N2);
11492 }
11493
11494 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
11495 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
11496 // TODO: Investigate flipping this rotate if only one is legal.
11497 // If funnel shift is legal as well we might be better off avoiding
11498 // non-constant (BW - N2).
11499 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
11500 if (N0 == N1 && hasOperation(RotOpc, VT))
11501 return DAG.getNode(RotOpc, DL, VT, N0, N2);
11502
11503 // Simplify, based on bits shifted out of N0/N1.
11505 return SDValue(N, 0);
11506
11507 return SDValue();
11508}
11509
11510SDValue DAGCombiner::visitSHLSAT(SDNode *N) {
11511 SDValue N0 = N->getOperand(0);
11512 SDValue N1 = N->getOperand(1);
11513 if (SDValue V = DAG.simplifyShift(N0, N1))
11514 return V;
11515
11516 SDLoc DL(N);
11517 EVT VT = N0.getValueType();
11518
11519 // fold (*shlsat c1, c2) -> c1<<c2
11520 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
11521 return C;
11522
11523 ConstantSDNode *N1C = isConstOrConstSplat(N1);
11524
11525 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) {
11526 // fold (sshlsat x, c) -> (shl x, c)
11527 if (N->getOpcode() == ISD::SSHLSAT && N1C &&
11528 N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0)))
11529 return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
11530
11531 // fold (ushlsat x, c) -> (shl x, c)
11532 if (N->getOpcode() == ISD::USHLSAT && N1C &&
11533 N1C->getAPIntValue().ule(
11535 return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
11536 }
11537
11538 return SDValue();
11539}
11540
11541// Given a ABS node, detect the following patterns:
11542// (ABS (SUB (EXTEND a), (EXTEND b))).
11543// (TRUNC (ABS (SUB (EXTEND a), (EXTEND b)))).
11544// Generates UABD/SABD instruction.
11545SDValue DAGCombiner::foldABSToABD(SDNode *N, const SDLoc &DL) {
11546 EVT SrcVT = N->getValueType(0);
11547
11548 if (N->getOpcode() == ISD::TRUNCATE)
11549 N = N->getOperand(0).getNode();
11550
11551 EVT VT = N->getValueType(0);
11552 SDValue Op0, Op1;
11553
11554 if (!sd_match(N, m_Abs(m_Sub(m_Value(Op0), m_Value(Op1)))))
11555 return SDValue();
11556
11557 SDValue AbsOp0 = N->getOperand(0);
11558 unsigned Opc0 = Op0.getOpcode();
11559
11560 // Check if the operands of the sub are (zero|sign)-extended, otherwise
11561 // fallback to ValueTracking.
11562 if (Opc0 != Op1.getOpcode() ||
11563 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND &&
11564 Opc0 != ISD::SIGN_EXTEND_INREG)) {
11565 // fold (abs (sub nsw x, y)) -> abds(x, y)
11566 // Don't fold this for unsupported types as we lose the NSW handling.
11567 if (hasOperation(ISD::ABDS, VT) && TLI.preferABDSToABSWithNSW(VT) &&
11568 (AbsOp0->getFlags().hasNoSignedWrap() ||
11569 DAG.willNotOverflowSub(/*IsSigned=*/true, Op0, Op1))) {
11570 SDValue ABD = DAG.getNode(ISD::ABDS, DL, VT, Op0, Op1);
11571 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11572 }
11573 // fold (abs (sub x, y)) -> abdu(x, y)
11574 if (hasOperation(ISD::ABDU, VT) && DAG.SignBitIsZero(Op0) &&
11575 DAG.SignBitIsZero(Op1)) {
11576 SDValue ABD = DAG.getNode(ISD::ABDU, DL, VT, Op0, Op1);
11577 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11578 }
11579 return SDValue();
11580 }
11581
11582 EVT VT0, VT1;
11583 if (Opc0 == ISD::SIGN_EXTEND_INREG) {
11584 VT0 = cast<VTSDNode>(Op0.getOperand(1))->getVT();
11585 VT1 = cast<VTSDNode>(Op1.getOperand(1))->getVT();
11586 } else {
11587 VT0 = Op0.getOperand(0).getValueType();
11588 VT1 = Op1.getOperand(0).getValueType();
11589 }
11590 unsigned ABDOpcode = (Opc0 == ISD::ZERO_EXTEND) ? ISD::ABDU : ISD::ABDS;
11591
11592 // fold abs(sext(x) - sext(y)) -> zext(abds(x, y))
11593 // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y))
11594 EVT MaxVT = VT0.bitsGT(VT1) ? VT0 : VT1;
11595 if ((VT0 == MaxVT || Op0->hasOneUse()) &&
11596 (VT1 == MaxVT || Op1->hasOneUse()) &&
11597 (!LegalTypes || hasOperation(ABDOpcode, MaxVT))) {
11598 SDValue ABD = DAG.getNode(ABDOpcode, DL, MaxVT,
11599 DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op0),
11600 DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op1));
11601 ABD = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ABD);
11602 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11603 }
11604
11605 // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y))
11606 // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y))
11607 if (!LegalOperations || hasOperation(ABDOpcode, VT)) {
11608 SDValue ABD = DAG.getNode(ABDOpcode, DL, VT, Op0, Op1);
11609 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11610 }
11611
11612 return SDValue();
11613}
11614
11615SDValue DAGCombiner::visitABS(SDNode *N) {
11616 SDValue N0 = N->getOperand(0);
11617 EVT VT = N->getValueType(0);
11618 SDLoc DL(N);
11619
11620 // fold (abs c1) -> c2
11621 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ABS, DL, VT, {N0}))
11622 return C;
11623 // fold (abs (abs x)) -> (abs x)
11624 if (N0.getOpcode() == ISD::ABS)
11625 return N0;
11626 // fold (abs x) -> x iff not-negative
11627 if (DAG.SignBitIsZero(N0))
11628 return N0;
11629
11630 if (SDValue ABD = foldABSToABD(N, DL))
11631 return ABD;
11632
11633 // fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x)))
11634 // iff zero_extend/truncate are free.
11635 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
11636 EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT();
11637 if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) &&
11638 TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) &&
11639 hasOperation(ISD::ABS, ExtVT)) {
11640 return DAG.getNode(
11641 ISD::ZERO_EXTEND, DL, VT,
11642 DAG.getNode(ISD::ABS, DL, ExtVT,
11643 DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0))));
11644 }
11645 }
11646
11647 return SDValue();
11648}
11649
11650SDValue DAGCombiner::visitBSWAP(SDNode *N) {
11651 SDValue N0 = N->getOperand(0);
11652 EVT VT = N->getValueType(0);
11653 SDLoc DL(N);
11654
11655 // fold (bswap c1) -> c2
11656 if (SDValue C = DAG.FoldConstantArithmetic(ISD::BSWAP, DL, VT, {N0}))
11657 return C;
11658 // fold (bswap (bswap x)) -> x
11659 if (N0.getOpcode() == ISD::BSWAP)
11660 return N0.getOperand(0);
11661
11662 // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse
11663 // isn't supported, it will be expanded to bswap followed by a manual reversal
11664 // of bits in each byte. By placing bswaps before bitreverse, we can remove
11665 // the two bswaps if the bitreverse gets expanded.
11666 if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) {
11667 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
11668 return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap);
11669 }
11670
11671 // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2))))))
11672 // iff x >= bw/2 (i.e. lower half is known zero)
11673 unsigned BW = VT.getScalarSizeInBits();
11674 if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) {
11675 auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11676 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2);
11677 if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
11678 ShAmt->getZExtValue() >= (BW / 2) &&
11679 (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) &&
11680 TLI.isTruncateFree(VT, HalfVT) &&
11681 (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) {
11682 SDValue Res = N0.getOperand(0);
11683 if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2)))
11684 Res = DAG.getNode(ISD::SHL, DL, VT, Res,
11685 DAG.getShiftAmountConstant(NewShAmt, VT, DL));
11686 Res = DAG.getZExtOrTrunc(Res, DL, HalfVT);
11687 Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res);
11688 return DAG.getZExtOrTrunc(Res, DL, VT);
11689 }
11690 }
11691
11692 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
11693 // inverse-shift-of-bswap:
11694 // bswap (X u<< C) --> (bswap X) u>> C
11695 // bswap (X u>> C) --> (bswap X) u<< C
11696 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
11697 N0.hasOneUse()) {
11698 auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11699 if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
11700 ShAmt->getZExtValue() % 8 == 0) {
11701 SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
11702 unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL;
11703 return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1));
11704 }
11705 }
11706
11707 if (SDValue V = foldBitOrderCrossLogicOp(N, DAG))
11708 return V;
11709
11710 return SDValue();
11711}
11712
11713SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
11714 SDValue N0 = N->getOperand(0);
11715 EVT VT = N->getValueType(0);
11716 SDLoc DL(N);
11717
11718 // fold (bitreverse c1) -> c2
11719 if (SDValue C = DAG.FoldConstantArithmetic(ISD::BITREVERSE, DL, VT, {N0}))
11720 return C;
11721
11722 // fold (bitreverse (bitreverse x)) -> x
11723 if (N0.getOpcode() == ISD::BITREVERSE)
11724 return N0.getOperand(0);
11725
11726 SDValue X, Y;
11727
11728 // fold (bitreverse (lshr (bitreverse x), y)) -> (shl x, y)
11729 if ((!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
11731 return DAG.getNode(ISD::SHL, DL, VT, X, Y);
11732
11733 // fold (bitreverse (shl (bitreverse x), y)) -> (lshr x, y)
11734 if ((!LegalOperations || TLI.isOperationLegal(ISD::SRL, VT)) &&
11736 return DAG.getNode(ISD::SRL, DL, VT, X, Y);
11737
11738 return SDValue();
11739}
11740
11741SDValue DAGCombiner::visitCTLZ(SDNode *N) {
11742 SDValue N0 = N->getOperand(0);
11743 EVT VT = N->getValueType(0);
11744 SDLoc DL(N);
11745
11746 // fold (ctlz c1) -> c2
11747 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTLZ, DL, VT, {N0}))
11748 return C;
11749
11750 // If the value is known never to be zero, switch to the undef version.
11751 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT))
11752 if (DAG.isKnownNeverZero(N0))
11753 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, N0);
11754
11755 return SDValue();
11756}
11757
11758SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
11759 SDValue N0 = N->getOperand(0);
11760 EVT VT = N->getValueType(0);
11761 SDLoc DL(N);
11762
11763 // fold (ctlz_zero_undef c1) -> c2
11764 if (SDValue C =
11766 return C;
11767 return SDValue();
11768}
11769
11770SDValue DAGCombiner::visitCTTZ(SDNode *N) {
11771 SDValue N0 = N->getOperand(0);
11772 EVT VT = N->getValueType(0);
11773 SDLoc DL(N);
11774
11775 // fold (cttz c1) -> c2
11776 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTTZ, DL, VT, {N0}))
11777 return C;
11778
11779 // If the value is known never to be zero, switch to the undef version.
11780 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT))
11781 if (DAG.isKnownNeverZero(N0))
11782 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, DL, VT, N0);
11783
11784 return SDValue();
11785}
11786
11787SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
11788 SDValue N0 = N->getOperand(0);
11789 EVT VT = N->getValueType(0);
11790 SDLoc DL(N);
11791
11792 // fold (cttz_zero_undef c1) -> c2
11793 if (SDValue C =
11795 return C;
11796 return SDValue();
11797}
11798
11799SDValue DAGCombiner::visitCTPOP(SDNode *N) {
11800 SDValue N0 = N->getOperand(0);
11801 EVT VT = N->getValueType(0);
11802 unsigned NumBits = VT.getScalarSizeInBits();
11803 SDLoc DL(N);
11804
11805 // fold (ctpop c1) -> c2
11806 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTPOP, DL, VT, {N0}))
11807 return C;
11808
11809 // If the source is being shifted, but doesn't affect any active bits,
11810 // then we can call CTPOP on the shift source directly.
11811 if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SHL) {
11812 if (ConstantSDNode *AmtC = isConstOrConstSplat(N0.getOperand(1))) {
11813 const APInt &Amt = AmtC->getAPIntValue();
11814 if (Amt.ult(NumBits)) {
11815 KnownBits KnownSrc = DAG.computeKnownBits(N0.getOperand(0));
11816 if ((N0.getOpcode() == ISD::SRL &&
11817 Amt.ule(KnownSrc.countMinTrailingZeros())) ||
11818 (N0.getOpcode() == ISD::SHL &&
11819 Amt.ule(KnownSrc.countMinLeadingZeros()))) {
11820 return DAG.getNode(ISD::CTPOP, DL, VT, N0.getOperand(0));
11821 }
11822 }
11823 }
11824 }
11825
11826 // If the upper bits are known to be zero, then see if its profitable to
11827 // only count the lower bits.
11828 if (VT.isScalarInteger() && NumBits > 8 && (NumBits & 1) == 0) {
11829 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), NumBits / 2);
11830 if (hasOperation(ISD::CTPOP, HalfVT) &&
11831 TLI.isTypeDesirableForOp(ISD::CTPOP, HalfVT) &&
11832 TLI.isTruncateFree(N0, HalfVT) && TLI.isZExtFree(HalfVT, VT)) {
11833 APInt UpperBits = APInt::getHighBitsSet(NumBits, NumBits / 2);
11834 if (DAG.MaskedValueIsZero(N0, UpperBits)) {
11835 SDValue PopCnt = DAG.getNode(ISD::CTPOP, DL, HalfVT,
11836 DAG.getZExtOrTrunc(N0, DL, HalfVT));
11837 return DAG.getZExtOrTrunc(PopCnt, DL, VT);
11838 }
11839 }
11840 }
11841
11842 return SDValue();
11843}
11844
11846 SDValue RHS, const SDNodeFlags Flags,
11847 const TargetLowering &TLI) {
11848 EVT VT = LHS.getValueType();
11849 if (!VT.isFloatingPoint())
11850 return false;
11851
11852 const TargetOptions &Options = DAG.getTarget().Options;
11853
11854 return (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) &&
11856 (Flags.hasNoNaNs() ||
11857 (DAG.isKnownNeverNaN(RHS) && DAG.isKnownNeverNaN(LHS)));
11858}
11859
11861 SDValue RHS, SDValue True, SDValue False,
11862 ISD::CondCode CC,
11863 const TargetLowering &TLI,
11864 SelectionDAG &DAG) {
11865 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
11866 switch (CC) {
11867 case ISD::SETOLT:
11868 case ISD::SETOLE:
11869 case ISD::SETLT:
11870 case ISD::SETLE:
11871 case ISD::SETULT:
11872 case ISD::SETULE: {
11873 // Since it's known never nan to get here already, either fminnum or
11874 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
11875 // expanded in terms of it.
11876 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
11877 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
11878 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
11879
11880 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
11881 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
11882 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
11883 return SDValue();
11884 }
11885 case ISD::SETOGT:
11886 case ISD::SETOGE:
11887 case ISD::SETGT:
11888 case ISD::SETGE:
11889 case ISD::SETUGT:
11890 case ISD::SETUGE: {
11891 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
11892 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
11893 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
11894
11895 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
11896 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
11897 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
11898 return SDValue();
11899 }
11900 default:
11901 return SDValue();
11902 }
11903}
11904
11905// Convert (sr[al] (add n[su]w x, y)) -> (avgfloor[su] x, y)
11906SDValue DAGCombiner::foldShiftToAvg(SDNode *N, const SDLoc &DL) {
11907 const unsigned Opcode = N->getOpcode();
11908 if (Opcode != ISD::SRA && Opcode != ISD::SRL)
11909 return SDValue();
11910
11911 EVT VT = N->getValueType(0);
11912 bool IsUnsigned = Opcode == ISD::SRL;
11913
11914 // Captured values.
11915 SDValue A, B, Add;
11916
11917 // Match floor average as it is common to both floor/ceil avgs.
11918 if (sd_match(N, m_BinOp(Opcode,
11920 m_One()))) {
11921 // Decide whether signed or unsigned.
11922 unsigned FloorISD = IsUnsigned ? ISD::AVGFLOORU : ISD::AVGFLOORS;
11923 if (!hasOperation(FloorISD, VT))
11924 return SDValue();
11925
11926 // Can't optimize adds that may wrap.
11927 if ((IsUnsigned && !Add->getFlags().hasNoUnsignedWrap()) ||
11928 (!IsUnsigned && !Add->getFlags().hasNoSignedWrap()))
11929 return SDValue();
11930
11931 return DAG.getNode(FloorISD, DL, N->getValueType(0), {A, B});
11932 }
11933
11934 return SDValue();
11935}
11936
11937SDValue DAGCombiner::foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT) {
11938 unsigned Opc = N->getOpcode();
11939 SDValue X, Y, Z;
11940 if (sd_match(
11942 return DAG.getNode(Opc, DL, VT, X,
11943 DAG.getNOT(DL, DAG.getNode(ISD::SUB, DL, VT, Y, Z), VT));
11944
11946 m_Value(Z)))))
11947 return DAG.getNode(Opc, DL, VT, X,
11948 DAG.getNOT(DL, DAG.getNode(ISD::ADD, DL, VT, Y, Z), VT));
11949
11950 return SDValue();
11951}
11952
11953/// Generate Min/Max node
11954SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
11955 SDValue RHS, SDValue True,
11956 SDValue False, ISD::CondCode CC) {
11957 if ((LHS == True && RHS == False) || (LHS == False && RHS == True))
11958 return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG);
11959
11960 // If we can't directly match this, try to see if we can pull an fneg out of
11961 // the select.
11963 True, DAG, LegalOperations, ForCodeSize);
11964 if (!NegTrue)
11965 return SDValue();
11966
11967 HandleSDNode NegTrueHandle(NegTrue);
11968
11969 // Try to unfold an fneg from the select if we are comparing the negated
11970 // constant.
11971 //
11972 // select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K))
11973 //
11974 // TODO: Handle fabs
11975 if (LHS == NegTrue) {
11976 // If we can't directly match this, try to see if we can pull an fneg out of
11977 // the select.
11979 RHS, DAG, LegalOperations, ForCodeSize);
11980 if (NegRHS) {
11981 HandleSDNode NegRHSHandle(NegRHS);
11982 if (NegRHS == False) {
11983 SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue,
11984 False, CC, TLI, DAG);
11985 if (Combined)
11986 return DAG.getNode(ISD::FNEG, DL, VT, Combined);
11987 }
11988 }
11989 }
11990
11991 return SDValue();
11992}
11993
11994/// If a (v)select has a condition value that is a sign-bit test, try to smear
11995/// the condition operand sign-bit across the value width and use it as a mask.
11997 SelectionDAG &DAG) {
11998 SDValue Cond = N->getOperand(0);
11999 SDValue C1 = N->getOperand(1);
12000 SDValue C2 = N->getOperand(2);
12002 return SDValue();
12003
12004 EVT VT = N->getValueType(0);
12005 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
12006 VT != Cond.getOperand(0).getValueType())
12007 return SDValue();
12008
12009 // The inverted-condition + commuted-select variants of these patterns are
12010 // canonicalized to these forms in IR.
12011 SDValue X = Cond.getOperand(0);
12012 SDValue CondC = Cond.getOperand(1);
12013 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12014 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
12016 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
12017 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
12018 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
12019 return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
12020 }
12021 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
12022 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
12023 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
12024 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
12025 return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
12026 }
12027 return SDValue();
12028}
12029
12031 const TargetLowering &TLI) {
12032 if (!TLI.convertSelectOfConstantsToMath(VT))
12033 return false;
12034
12035 if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse())
12036 return true;
12038 return true;
12039
12040 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12041 if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1)))
12042 return true;
12043 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1)))
12044 return true;
12045
12046 return false;
12047}
12048
12049SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
12050 SDValue Cond = N->getOperand(0);
12051 SDValue N1 = N->getOperand(1);
12052 SDValue N2 = N->getOperand(2);
12053 EVT VT = N->getValueType(0);
12054 EVT CondVT = Cond.getValueType();
12055 SDLoc DL(N);
12056
12057 if (!VT.isInteger())
12058 return SDValue();
12059
12060 auto *C1 = dyn_cast<ConstantSDNode>(N1);
12061 auto *C2 = dyn_cast<ConstantSDNode>(N2);
12062 if (!C1 || !C2)
12063 return SDValue();
12064
12065 if (CondVT != MVT::i1 || LegalOperations) {
12066 // fold (select Cond, 0, 1) -> (xor Cond, 1)
12067 // We can't do this reliably if integer based booleans have different contents
12068 // to floating point based booleans. This is because we can't tell whether we
12069 // have an integer-based boolean or a floating-point-based boolean unless we
12070 // can find the SETCC that produced it and inspect its operands. This is
12071 // fairly easy if C is the SETCC node, but it can potentially be
12072 // undiscoverable (or not reasonably discoverable). For example, it could be
12073 // in another basic block or it could require searching a complicated
12074 // expression.
12075 if (CondVT.isInteger() &&
12076 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
12078 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
12080 C1->isZero() && C2->isOne()) {
12081 SDValue NotCond =
12082 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
12083 if (VT.bitsEq(CondVT))
12084 return NotCond;
12085 return DAG.getZExtOrTrunc(NotCond, DL, VT);
12086 }
12087
12088 return SDValue();
12089 }
12090
12091 // Only do this before legalization to avoid conflicting with target-specific
12092 // transforms in the other direction (create a select from a zext/sext). There
12093 // is also a target-independent combine here in DAGCombiner in the other
12094 // direction for (select Cond, -1, 0) when the condition is not i1.
12095 assert(CondVT == MVT::i1 && !LegalOperations);
12096
12097 // select Cond, 1, 0 --> zext (Cond)
12098 if (C1->isOne() && C2->isZero())
12099 return DAG.getZExtOrTrunc(Cond, DL, VT);
12100
12101 // select Cond, -1, 0 --> sext (Cond)
12102 if (C1->isAllOnes() && C2->isZero())
12103 return DAG.getSExtOrTrunc(Cond, DL, VT);
12104
12105 // select Cond, 0, 1 --> zext (!Cond)
12106 if (C1->isZero() && C2->isOne()) {
12107 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12108 NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT);
12109 return NotCond;
12110 }
12111
12112 // select Cond, 0, -1 --> sext (!Cond)
12113 if (C1->isZero() && C2->isAllOnes()) {
12114 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12115 NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
12116 return NotCond;
12117 }
12118
12119 // Use a target hook because some targets may prefer to transform in the
12120 // other direction.
12122 return SDValue();
12123
12124 // For any constants that differ by 1, we can transform the select into
12125 // an extend and add.
12126 const APInt &C1Val = C1->getAPIntValue();
12127 const APInt &C2Val = C2->getAPIntValue();
12128
12129 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
12130 if (C1Val - 1 == C2Val) {
12131 Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
12132 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
12133 }
12134
12135 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
12136 if (C1Val + 1 == C2Val) {
12137 Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
12138 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
12139 }
12140
12141 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
12142 if (C1Val.isPowerOf2() && C2Val.isZero()) {
12143 Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
12144 SDValue ShAmtC =
12145 DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL);
12146 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
12147 }
12148
12149 // select Cond, -1, C --> or (sext Cond), C
12150 if (C1->isAllOnes()) {
12151 Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
12152 return DAG.getNode(ISD::OR, DL, VT, Cond, N2);
12153 }
12154
12155 // select Cond, C, -1 --> or (sext (not Cond)), C
12156 if (C2->isAllOnes()) {
12157 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12158 NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
12159 return DAG.getNode(ISD::OR, DL, VT, NotCond, N1);
12160 }
12161
12163 return V;
12164
12165 return SDValue();
12166}
12167
12168template <class MatchContextClass>
12170 SelectionDAG &DAG) {
12171 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT ||
12172 N->getOpcode() == ISD::VP_SELECT) &&
12173 "Expected a (v)(vp.)select");
12174 SDValue Cond = N->getOperand(0);
12175 SDValue T = N->getOperand(1), F = N->getOperand(2);
12176 EVT VT = N->getValueType(0);
12177 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12178 MatchContextClass matcher(DAG, TLI, N);
12179
12180 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
12181 return SDValue();
12182
12183 // select Cond, Cond, F --> or Cond, freeze(F)
12184 // select Cond, 1, F --> or Cond, freeze(F)
12185 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
12186 return matcher.getNode(ISD::OR, DL, VT, Cond, DAG.getFreeze(F));
12187
12188 // select Cond, T, Cond --> and Cond, freeze(T)
12189 // select Cond, T, 0 --> and Cond, freeze(T)
12190 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
12191 return matcher.getNode(ISD::AND, DL, VT, Cond, DAG.getFreeze(T));
12192
12193 // select Cond, T, 1 --> or (not Cond), freeze(T)
12194 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
12195 SDValue NotCond =
12196 matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
12197 return matcher.getNode(ISD::OR, DL, VT, NotCond, DAG.getFreeze(T));
12198 }
12199
12200 // select Cond, 0, F --> and (not Cond), freeze(F)
12201 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
12202 SDValue NotCond =
12203 matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
12204 return matcher.getNode(ISD::AND, DL, VT, NotCond, DAG.getFreeze(F));
12205 }
12206
12207 return SDValue();
12208}
12209
12211 SDValue N0 = N->getOperand(0);
12212 SDValue N1 = N->getOperand(1);
12213 SDValue N2 = N->getOperand(2);
12214 EVT VT = N->getValueType(0);
12215 unsigned EltSizeInBits = VT.getScalarSizeInBits();
12216
12217 SDValue Cond0, Cond1;
12218 ISD::CondCode CC;
12219 if (!sd_match(N0, m_OneUse(m_SetCC(m_Value(Cond0), m_Value(Cond1),
12220 m_CondCode(CC)))) ||
12221 VT != Cond0.getValueType())
12222 return SDValue();
12223
12224 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the
12225 // compare is inverted from that pattern ("Cond0 s> -1").
12226 if (CC == ISD::SETLT && isNullOrNullSplat(Cond1))
12227 ; // This is the pattern we are looking for.
12228 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1))
12229 std::swap(N1, N2);
12230 else
12231 return SDValue();
12232
12233 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & freeze(N1)
12234 if (isNullOrNullSplat(N2)) {
12235 SDLoc DL(N);
12236 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12237 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12238 return DAG.getNode(ISD::AND, DL, VT, Sra, DAG.getFreeze(N1));
12239 }
12240
12241 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | freeze(N2)
12242 if (isAllOnesOrAllOnesSplat(N1)) {
12243 SDLoc DL(N);
12244 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12245 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12246 return DAG.getNode(ISD::OR, DL, VT, Sra, DAG.getFreeze(N2));
12247 }
12248
12249 // If we have to invert the sign bit mask, only do that transform if the
12250 // target has a bitwise 'and not' instruction (the invert is free).
12251 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & freeze(N2)
12252 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12253 if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) {
12254 SDLoc DL(N);
12255 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12256 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12257 SDValue Not = DAG.getNOT(DL, Sra, VT);
12258 return DAG.getNode(ISD::AND, DL, VT, Not, DAG.getFreeze(N2));
12259 }
12260
12261 // TODO: There's another pattern in this family, but it may require
12262 // implementing hasOrNot() to check for profitability:
12263 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | freeze(N2)
12264
12265 return SDValue();
12266}
12267
12268// Match SELECTs with absolute difference patterns.
12269// (select (setcc a, b, set?gt), (sub a, b), (sub b, a)) --> (abd? a, b)
12270// (select (setcc a, b, set?ge), (sub a, b), (sub b, a)) --> (abd? a, b)
12271// (select (setcc a, b, set?lt), (sub b, a), (sub a, b)) --> (abd? a, b)
12272// (select (setcc a, b, set?le), (sub b, a), (sub a, b)) --> (abd? a, b)
12273SDValue DAGCombiner::foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
12274 SDValue False, ISD::CondCode CC,
12275 const SDLoc &DL) {
12276 bool IsSigned = isSignedIntSetCC(CC);
12277 unsigned ABDOpc = IsSigned ? ISD::ABDS : ISD::ABDU;
12278 EVT VT = LHS.getValueType();
12279
12280 if (LegalOperations && !hasOperation(ABDOpc, VT))
12281 return SDValue();
12282
12283 switch (CC) {
12284 case ISD::SETGT:
12285 case ISD::SETGE:
12286 case ISD::SETUGT:
12287 case ISD::SETUGE:
12288 if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12290 return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
12291 if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12292 sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12293 hasOperation(ABDOpc, VT))
12294 return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
12295 break;
12296 case ISD::SETLT:
12297 case ISD::SETLE:
12298 case ISD::SETULT:
12299 case ISD::SETULE:
12300 if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12302 return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
12303 if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12304 sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12305 hasOperation(ABDOpc, VT))
12306 return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
12307 break;
12308 default:
12309 break;
12310 }
12311
12312 return SDValue();
12313}
12314
12315// ([v]select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
12316// ([v]select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
12317SDValue DAGCombiner::foldSelectToUMin(SDValue LHS, SDValue RHS, SDValue True,
12318 SDValue False, ISD::CondCode CC,
12319 const SDLoc &DL) {
12320 APInt C;
12321 EVT VT = True.getValueType();
12322 if (sd_match(RHS, m_ConstInt(C)) && hasUMin(VT)) {
12323 if (CC == ISD::SETUGT && LHS == False &&
12324 sd_match(True, m_Add(m_Specific(False), m_SpecificInt(~C)))) {
12325 SDValue AddC = DAG.getConstant(~C, DL, VT);
12326 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, False, AddC);
12327 return DAG.getNode(ISD::UMIN, DL, VT, Add, False);
12328 }
12329 if (CC == ISD::SETULT && LHS == True &&
12330 sd_match(False, m_Add(m_Specific(True), m_SpecificInt(-C)))) {
12331 SDValue AddC = DAG.getConstant(-C, DL, VT);
12332 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, True, AddC);
12333 return DAG.getNode(ISD::UMIN, DL, VT, True, Add);
12334 }
12335 }
12336 return SDValue();
12337}
12338
12339SDValue DAGCombiner::visitSELECT(SDNode *N) {
12340 SDValue N0 = N->getOperand(0);
12341 SDValue N1 = N->getOperand(1);
12342 SDValue N2 = N->getOperand(2);
12343 EVT VT = N->getValueType(0);
12344 EVT VT0 = N0.getValueType();
12345 SDLoc DL(N);
12346 SDNodeFlags Flags = N->getFlags();
12347
12348 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
12349 return V;
12350
12352 return V;
12353
12354 // select (not Cond), N1, N2 -> select Cond, N2, N1
12355 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
12356 return DAG.getSelect(DL, VT, F, N2, N1, Flags);
12357
12358 if (SDValue V = foldSelectOfConstants(N))
12359 return V;
12360
12361 // If we can fold this based on the true/false value, do so.
12362 if (SimplifySelectOps(N, N1, N2))
12363 return SDValue(N, 0); // Don't revisit N.
12364
12365 if (VT0 == MVT::i1) {
12366 // The code in this block deals with the following 2 equivalences:
12367 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
12368 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
12369 // The target can specify its preferred form with the
12370 // shouldNormalizeToSelectSequence() callback. However we always transform
12371 // to the right anyway if we find the inner select exists in the DAG anyway
12372 // and we always transform to the left side if we know that we can further
12373 // optimize the combination of the conditions.
12374 bool normalizeToSequence =
12376 // select (and Cond0, Cond1), X, Y
12377 // -> select Cond0, (select Cond1, X, Y), Y
12378 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
12379 SDValue Cond0 = N0->getOperand(0);
12380 SDValue Cond1 = N0->getOperand(1);
12381 SDValue InnerSelect =
12382 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
12383 if (normalizeToSequence || !InnerSelect.use_empty())
12384 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
12385 InnerSelect, N2, Flags);
12386 // Cleanup on failure.
12387 if (InnerSelect.use_empty())
12388 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
12389 }
12390 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
12391 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
12392 SDValue Cond0 = N0->getOperand(0);
12393 SDValue Cond1 = N0->getOperand(1);
12394 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
12395 Cond1, N1, N2, Flags);
12396 if (normalizeToSequence || !InnerSelect.use_empty())
12397 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
12398 InnerSelect, Flags);
12399 // Cleanup on failure.
12400 if (InnerSelect.use_empty())
12401 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
12402 }
12403
12404 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
12405 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
12406 SDValue N1_0 = N1->getOperand(0);
12407 SDValue N1_1 = N1->getOperand(1);
12408 SDValue N1_2 = N1->getOperand(2);
12409 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
12410 // Create the actual and node if we can generate good code for it.
12411 if (!normalizeToSequence) {
12412 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
12413 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
12414 N2, Flags);
12415 }
12416 // Otherwise see if we can optimize the "and" to a better pattern.
12417 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
12418 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
12419 N2, Flags);
12420 }
12421 }
12422 }
12423 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
12424 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
12425 SDValue N2_0 = N2->getOperand(0);
12426 SDValue N2_1 = N2->getOperand(1);
12427 SDValue N2_2 = N2->getOperand(2);
12428 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
12429 // Create the actual or node if we can generate good code for it.
12430 if (!normalizeToSequence) {
12431 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
12432 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
12433 N2_2, Flags);
12434 }
12435 // Otherwise see if we can optimize to a better pattern.
12436 if (SDValue Combined = visitORLike(N0, N2_0, DL))
12437 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
12438 N2_2, Flags);
12439 }
12440 }
12441
12442 // select usubo(x, y).overflow, (sub y, x), (usubo x, y) -> abdu(x, y)
12443 if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
12444 N2.getNode() == N0.getNode() && N2.getResNo() == 0 &&
12445 N1.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
12446 N2.getOperand(1) == N1.getOperand(0) &&
12447 (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
12448 return DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1));
12449
12450 // select usubo(x, y).overflow, (usubo x, y), (sub y, x) -> neg (abdu x, y)
12451 if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
12452 N1.getNode() == N0.getNode() && N1.getResNo() == 0 &&
12453 N2.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
12454 N2.getOperand(1) == N1.getOperand(0) &&
12455 (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
12456 return DAG.getNegative(
12457 DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1)),
12458 DL, VT);
12459 }
12460
12461 // Fold selects based on a setcc into other things, such as min/max/abs.
12462 if (N0.getOpcode() == ISD::SETCC) {
12463 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
12465
12466 // select (fcmp lt x, y), x, y -> fminnum x, y
12467 // select (fcmp gt x, y), x, y -> fmaxnum x, y
12468 //
12469 // This is OK if we don't care what happens if either operand is a NaN.
12470 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, Flags, TLI))
12471 if (SDValue FMinMax =
12472 combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC))
12473 return FMinMax;
12474
12475 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
12476 // This is conservatively limited to pre-legal-operations to give targets
12477 // a chance to reverse the transform if they want to do that. Also, it is
12478 // unlikely that the pattern would be formed late, so it's probably not
12479 // worth going through the other checks.
12480 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
12481 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
12482 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
12483 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
12484 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
12485 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
12486 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
12487 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
12488 //
12489 // The IR equivalent of this transform would have this form:
12490 // %a = add %x, C
12491 // %c = icmp ugt %x, ~C
12492 // %r = select %c, -1, %a
12493 // =>
12494 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
12495 // %u0 = extractvalue %u, 0
12496 // %u1 = extractvalue %u, 1
12497 // %r = select %u1, -1, %u0
12498 SDVTList VTs = DAG.getVTList(VT, VT0);
12499 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
12500 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
12501 }
12502 }
12503
12504 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
12505 (!LegalOperations &&
12507 // Any flags available in a select/setcc fold will be on the setcc as they
12508 // migrated from fcmp
12509 return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2,
12510 N0.getOperand(2), N0->getFlags());
12511 }
12512
12513 if (SDValue ABD = foldSelectToABD(Cond0, Cond1, N1, N2, CC, DL))
12514 return ABD;
12515
12516 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
12517 return NewSel;
12518
12519 // (select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
12520 // (select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
12521 if (SDValue UMin = foldSelectToUMin(Cond0, Cond1, N1, N2, CC, DL))
12522 return UMin;
12523 }
12524
12525 if (!VT.isVector())
12526 if (SDValue BinOp = foldSelectOfBinops(N))
12527 return BinOp;
12528
12529 if (SDValue R = combineSelectAsExtAnd(N0, N1, N2, DL, DAG))
12530 return R;
12531
12532 return SDValue();
12533}
12534
12535// This function assumes all the vselect's arguments are CONCAT_VECTOR
12536// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
12538 SDLoc DL(N);
12539 SDValue Cond = N->getOperand(0);
12540 SDValue LHS = N->getOperand(1);
12541 SDValue RHS = N->getOperand(2);
12542 EVT VT = N->getValueType(0);
12543 int NumElems = VT.getVectorNumElements();
12544 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
12545 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
12546 Cond.getOpcode() == ISD::BUILD_VECTOR);
12547
12548 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
12549 // binary ones here.
12550 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
12551 return SDValue();
12552
12553 // We're sure we have an even number of elements due to the
12554 // concat_vectors we have as arguments to vselect.
12555 // Skip BV elements until we find one that's not an UNDEF
12556 // After we find an UNDEF element, keep looping until we get to half the
12557 // length of the BV and see if all the non-undef nodes are the same.
12558 ConstantSDNode *BottomHalf = nullptr;
12559 for (int i = 0; i < NumElems / 2; ++i) {
12560 if (Cond->getOperand(i)->isUndef())
12561 continue;
12562
12563 if (BottomHalf == nullptr)
12564 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
12565 else if (Cond->getOperand(i).getNode() != BottomHalf)
12566 return SDValue();
12567 }
12568
12569 // Do the same for the second half of the BuildVector
12570 ConstantSDNode *TopHalf = nullptr;
12571 for (int i = NumElems / 2; i < NumElems; ++i) {
12572 if (Cond->getOperand(i)->isUndef())
12573 continue;
12574
12575 if (TopHalf == nullptr)
12576 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
12577 else if (Cond->getOperand(i).getNode() != TopHalf)
12578 return SDValue();
12579 }
12580
12581 assert(TopHalf && BottomHalf &&
12582 "One half of the selector was all UNDEFs and the other was all the "
12583 "same value. This should have been addressed before this function.");
12584 return DAG.getNode(
12586 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0),
12587 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1));
12588}
12589
12590bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled,
12591 SelectionDAG &DAG, const SDLoc &DL) {
12592
12593 // Only perform the transformation when existing operands can be reused.
12594 if (IndexIsScaled)
12595 return false;
12596
12597 if (!isNullConstant(BasePtr) && !Index.hasOneUse())
12598 return false;
12599
12600 EVT VT = BasePtr.getValueType();
12601
12602 if (SDValue SplatVal = DAG.getSplatValue(Index);
12603 SplatVal && !isNullConstant(SplatVal) &&
12604 SplatVal.getValueType() == VT) {
12605 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12606 Index = DAG.getSplat(Index.getValueType(), DL, DAG.getConstant(0, DL, VT));
12607 return true;
12608 }
12609
12610 if (Index.getOpcode() != ISD::ADD)
12611 return false;
12612
12613 if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0));
12614 SplatVal && SplatVal.getValueType() == VT) {
12615 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12616 Index = Index.getOperand(1);
12617 return true;
12618 }
12619 if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1));
12620 SplatVal && SplatVal.getValueType() == VT) {
12621 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12622 Index = Index.getOperand(0);
12623 return true;
12624 }
12625 return false;
12626}
12627
12628// Fold sext/zext of index into index type.
12629bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT,
12630 SelectionDAG &DAG) {
12631 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12632
12633 // It's always safe to look through zero extends.
12634 if (Index.getOpcode() == ISD::ZERO_EXTEND) {
12635 if (TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
12636 IndexType = ISD::UNSIGNED_SCALED;
12637 Index = Index.getOperand(0);
12638 return true;
12639 }
12640 if (ISD::isIndexTypeSigned(IndexType)) {
12641 IndexType = ISD::UNSIGNED_SCALED;
12642 return true;
12643 }
12644 }
12645
12646 // It's only safe to look through sign extends when Index is signed.
12647 if (Index.getOpcode() == ISD::SIGN_EXTEND &&
12648 ISD::isIndexTypeSigned(IndexType) &&
12649 TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
12650 Index = Index.getOperand(0);
12651 return true;
12652 }
12653
12654 return false;
12655}
12656
12657SDValue DAGCombiner::visitVPSCATTER(SDNode *N) {
12658 VPScatterSDNode *MSC = cast<VPScatterSDNode>(N);
12659 SDValue Mask = MSC->getMask();
12660 SDValue Chain = MSC->getChain();
12661 SDValue Index = MSC->getIndex();
12662 SDValue Scale = MSC->getScale();
12663 SDValue StoreVal = MSC->getValue();
12664 SDValue BasePtr = MSC->getBasePtr();
12665 SDValue VL = MSC->getVectorLength();
12666 ISD::MemIndexType IndexType = MSC->getIndexType();
12667 SDLoc DL(N);
12668
12669 // Zap scatters with a zero mask.
12671 return Chain;
12672
12673 if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
12674 SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
12675 return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12676 DL, Ops, MSC->getMemOperand(), IndexType);
12677 }
12678
12679 if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
12680 SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
12681 return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12682 DL, Ops, MSC->getMemOperand(), IndexType);
12683 }
12684
12685 return SDValue();
12686}
12687
12688SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
12689 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
12690 SDValue Mask = MSC->getMask();
12691 SDValue Chain = MSC->getChain();
12692 SDValue Index = MSC->getIndex();
12693 SDValue Scale = MSC->getScale();
12694 SDValue StoreVal = MSC->getValue();
12695 SDValue BasePtr = MSC->getBasePtr();
12696 ISD::MemIndexType IndexType = MSC->getIndexType();
12697 SDLoc DL(N);
12698
12699 // Zap scatters with a zero mask.
12701 return Chain;
12702
12703 if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
12704 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
12705 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12706 DL, Ops, MSC->getMemOperand(), IndexType,
12707 MSC->isTruncatingStore());
12708 }
12709
12710 if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
12711 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
12712 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12713 DL, Ops, MSC->getMemOperand(), IndexType,
12714 MSC->isTruncatingStore());
12715 }
12716
12717 return SDValue();
12718}
12719
12720SDValue DAGCombiner::visitMSTORE(SDNode *N) {
12721 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
12722 SDValue Mask = MST->getMask();
12723 SDValue Chain = MST->getChain();
12724 SDValue Value = MST->getValue();
12725 SDValue Ptr = MST->getBasePtr();
12726
12727 // Zap masked stores with a zero mask.
12729 return Chain;
12730
12731 // Remove a masked store if base pointers and masks are equal.
12732 if (MaskedStoreSDNode *MST1 = dyn_cast<MaskedStoreSDNode>(Chain)) {
12733 if (MST->isUnindexed() && MST->isSimple() && MST1->isUnindexed() &&
12734 MST1->isSimple() && MST1->getBasePtr() == Ptr &&
12735 !MST->getBasePtr().isUndef() &&
12736 ((Mask == MST1->getMask() && MST->getMemoryVT().getStoreSize() ==
12737 MST1->getMemoryVT().getStoreSize()) ||
12739 TypeSize::isKnownLE(MST1->getMemoryVT().getStoreSize(),
12740 MST->getMemoryVT().getStoreSize())) {
12741 CombineTo(MST1, MST1->getChain());
12742 if (N->getOpcode() != ISD::DELETED_NODE)
12743 AddToWorklist(N);
12744 return SDValue(N, 0);
12745 }
12746 }
12747
12748 // If this is a masked load with an all ones mask, we can use a unmasked load.
12749 // FIXME: Can we do this for indexed, compressing, or truncating stores?
12750 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() &&
12751 !MST->isCompressingStore() && !MST->isTruncatingStore())
12752 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
12753 MST->getBasePtr(), MST->getPointerInfo(),
12754 MST->getBaseAlign(), MST->getMemOperand()->getFlags(),
12755 MST->getAAInfo());
12756
12757 // Try transforming N to an indexed store.
12758 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
12759 return SDValue(N, 0);
12760
12761 if (MST->isTruncatingStore() && MST->isUnindexed() &&
12762 Value.getValueType().isInteger() &&
12764 !cast<ConstantSDNode>(Value)->isOpaque())) {
12765 APInt TruncDemandedBits =
12766 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
12768
12769 // See if we can simplify the operation with
12770 // SimplifyDemandedBits, which only works if the value has a single use.
12771 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
12772 // Re-visit the store if anything changed and the store hasn't been merged
12773 // with another node (N is deleted) SimplifyDemandedBits will add Value's
12774 // node back to the worklist if necessary, but we also need to re-visit
12775 // the Store node itself.
12776 if (N->getOpcode() != ISD::DELETED_NODE)
12777 AddToWorklist(N);
12778 return SDValue(N, 0);
12779 }
12780 }
12781
12782 // If this is a TRUNC followed by a masked store, fold this into a masked
12783 // truncating store. We can do this even if this is already a masked
12784 // truncstore.
12785 // TODO: Try combine to masked compress store if possiable.
12786 if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() &&
12787 MST->isUnindexed() && !MST->isCompressingStore() &&
12788 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
12789 MST->getMemoryVT(), LegalOperations)) {
12790 auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(),
12791 Value.getOperand(0).getValueType());
12792 return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
12793 MST->getOffset(), Mask, MST->getMemoryVT(),
12794 MST->getMemOperand(), MST->getAddressingMode(),
12795 /*IsTruncating=*/true);
12796 }
12797
12798 return SDValue();
12799}
12800
12801SDValue DAGCombiner::visitVP_STRIDED_STORE(SDNode *N) {
12802 auto *SST = cast<VPStridedStoreSDNode>(N);
12803 EVT EltVT = SST->getValue().getValueType().getVectorElementType();
12804 // Combine strided stores with unit-stride to a regular VP store.
12805 if (auto *CStride = dyn_cast<ConstantSDNode>(SST->getStride());
12806 CStride && CStride->getZExtValue() == EltVT.getStoreSize()) {
12807 return DAG.getStoreVP(SST->getChain(), SDLoc(N), SST->getValue(),
12808 SST->getBasePtr(), SST->getOffset(), SST->getMask(),
12809 SST->getVectorLength(), SST->getMemoryVT(),
12810 SST->getMemOperand(), SST->getAddressingMode(),
12811 SST->isTruncatingStore(), SST->isCompressingStore());
12812 }
12813 return SDValue();
12814}
12815
12816SDValue DAGCombiner::visitVECTOR_COMPRESS(SDNode *N) {
12817 SDLoc DL(N);
12818 SDValue Vec = N->getOperand(0);
12819 SDValue Mask = N->getOperand(1);
12820 SDValue Passthru = N->getOperand(2);
12821 EVT VecVT = Vec.getValueType();
12822
12823 bool HasPassthru = !Passthru.isUndef();
12824
12825 APInt SplatVal;
12826 if (ISD::isConstantSplatVector(Mask.getNode(), SplatVal))
12827 return TLI.isConstTrueVal(Mask) ? Vec : Passthru;
12828
12829 if (Vec.isUndef() || Mask.isUndef())
12830 return Passthru;
12831
12832 // No need for potentially expensive compress if the mask is constant.
12835 EVT ScalarVT = VecVT.getVectorElementType();
12836 unsigned NumSelected = 0;
12837 unsigned NumElmts = VecVT.getVectorNumElements();
12838 for (unsigned I = 0; I < NumElmts; ++I) {
12839 SDValue MaskI = Mask.getOperand(I);
12840 // We treat undef mask entries as "false".
12841 if (MaskI.isUndef())
12842 continue;
12843
12844 if (TLI.isConstTrueVal(MaskI)) {
12845 SDValue VecI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec,
12846 DAG.getVectorIdxConstant(I, DL));
12847 Ops.push_back(VecI);
12848 NumSelected++;
12849 }
12850 }
12851 for (unsigned Rest = NumSelected; Rest < NumElmts; ++Rest) {
12852 SDValue Val =
12853 HasPassthru
12854 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Passthru,
12855 DAG.getVectorIdxConstant(Rest, DL))
12856 : DAG.getUNDEF(ScalarVT);
12857 Ops.push_back(Val);
12858 }
12859 return DAG.getBuildVector(VecVT, DL, Ops);
12860 }
12861
12862 return SDValue();
12863}
12864
12865SDValue DAGCombiner::visitVPGATHER(SDNode *N) {
12866 VPGatherSDNode *MGT = cast<VPGatherSDNode>(N);
12867 SDValue Mask = MGT->getMask();
12868 SDValue Chain = MGT->getChain();
12869 SDValue Index = MGT->getIndex();
12870 SDValue Scale = MGT->getScale();
12871 SDValue BasePtr = MGT->getBasePtr();
12872 SDValue VL = MGT->getVectorLength();
12873 ISD::MemIndexType IndexType = MGT->getIndexType();
12874 SDLoc DL(N);
12875
12876 if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
12877 SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
12878 return DAG.getGatherVP(
12879 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12880 Ops, MGT->getMemOperand(), IndexType);
12881 }
12882
12883 if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
12884 SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
12885 return DAG.getGatherVP(
12886 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12887 Ops, MGT->getMemOperand(), IndexType);
12888 }
12889
12890 return SDValue();
12891}
12892
12893SDValue DAGCombiner::visitMGATHER(SDNode *N) {
12894 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
12895 SDValue Mask = MGT->getMask();
12896 SDValue Chain = MGT->getChain();
12897 SDValue Index = MGT->getIndex();
12898 SDValue Scale = MGT->getScale();
12899 SDValue PassThru = MGT->getPassThru();
12900 SDValue BasePtr = MGT->getBasePtr();
12901 ISD::MemIndexType IndexType = MGT->getIndexType();
12902 SDLoc DL(N);
12903
12904 // Zap gathers with a zero mask.
12906 return CombineTo(N, PassThru, MGT->getChain());
12907
12908 if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
12909 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
12910 return DAG.getMaskedGather(
12911 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12912 Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
12913 }
12914
12915 if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
12916 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
12917 return DAG.getMaskedGather(
12918 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12919 Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
12920 }
12921
12922 return SDValue();
12923}
12924
12925SDValue DAGCombiner::visitMLOAD(SDNode *N) {
12926 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
12927 SDValue Mask = MLD->getMask();
12928
12929 // Zap masked loads with a zero mask.
12931 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
12932
12933 // If this is a masked load with an all ones mask, we can use a unmasked load.
12934 // FIXME: Can we do this for indexed, expanding, or extending loads?
12935 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() &&
12936 !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) {
12937 SDValue NewLd = DAG.getLoad(
12938 N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(),
12939 MLD->getPointerInfo(), MLD->getBaseAlign(),
12940 MLD->getMemOperand()->getFlags(), MLD->getAAInfo(), MLD->getRanges());
12941 return CombineTo(N, NewLd, NewLd.getValue(1));
12942 }
12943
12944 // Try transforming N to an indexed load.
12945 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
12946 return SDValue(N, 0);
12947
12948 return SDValue();
12949}
12950
12951SDValue DAGCombiner::visitMHISTOGRAM(SDNode *N) {
12952 MaskedHistogramSDNode *HG = cast<MaskedHistogramSDNode>(N);
12953 SDValue Chain = HG->getChain();
12954 SDValue Inc = HG->getInc();
12955 SDValue Mask = HG->getMask();
12956 SDValue BasePtr = HG->getBasePtr();
12957 SDValue Index = HG->getIndex();
12958 SDLoc DL(HG);
12959
12960 EVT MemVT = HG->getMemoryVT();
12961 EVT DataVT = Index.getValueType();
12962 MachineMemOperand *MMO = HG->getMemOperand();
12963 ISD::MemIndexType IndexType = HG->getIndexType();
12964
12966 return Chain;
12967
12968 if (refineUniformBase(BasePtr, Index, HG->isIndexScaled(), DAG, DL) ||
12969 refineIndexType(Index, IndexType, DataVT, DAG)) {
12970 SDValue Ops[] = {Chain, Inc, Mask, BasePtr, Index,
12971 HG->getScale(), HG->getIntID()};
12972 return DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), MemVT, DL, Ops,
12973 MMO, IndexType);
12974 }
12975
12976 return SDValue();
12977}
12978
12979SDValue DAGCombiner::visitPARTIAL_REDUCE_MLA(SDNode *N) {
12980 if (SDValue Res = foldPartialReduceMLAMulOp(N))
12981 return Res;
12982 if (SDValue Res = foldPartialReduceAdd(N))
12983 return Res;
12984 return SDValue();
12985}
12986
12987// partial_reduce_*mla(acc, mul(ext(a), ext(b)), splat(1))
12988// -> partial_reduce_*mla(acc, a, b)
12989//
12990// partial_reduce_*mla(acc, mul(ext(x), splat(C)), splat(1))
12991// -> partial_reduce_*mla(acc, x, C)
12992SDValue DAGCombiner::foldPartialReduceMLAMulOp(SDNode *N) {
12993 SDLoc DL(N);
12994 auto *Context = DAG.getContext();
12995 SDValue Acc = N->getOperand(0);
12996 SDValue Op1 = N->getOperand(1);
12997 SDValue Op2 = N->getOperand(2);
12998
12999 APInt C;
13000 if (Op1->getOpcode() != ISD::MUL ||
13001 !ISD::isConstantSplatVector(Op2.getNode(), C) || !C.isOne())
13002 return SDValue();
13003
13004 SDValue LHS = Op1->getOperand(0);
13005 SDValue RHS = Op1->getOperand(1);
13006 unsigned LHSOpcode = LHS->getOpcode();
13007 if (!ISD::isExtOpcode(LHSOpcode))
13008 return SDValue();
13009
13010 SDValue LHSExtOp = LHS->getOperand(0);
13011 EVT LHSExtOpVT = LHSExtOp.getValueType();
13012
13013 // partial_reduce_*mla(acc, mul(ext(x), splat(C)), splat(1))
13014 // -> partial_reduce_*mla(acc, x, C)
13015 if (ISD::isConstantSplatVector(RHS.getNode(), C)) {
13016 // TODO: Make use of partial_reduce_sumla here
13017 APInt CTrunc = C.trunc(LHSExtOpVT.getScalarSizeInBits());
13018 unsigned LHSBits = LHS.getValueType().getScalarSizeInBits();
13019 if ((LHSOpcode != ISD::ZERO_EXTEND || CTrunc.zext(LHSBits) != C) &&
13020 (LHSOpcode != ISD::SIGN_EXTEND || CTrunc.sext(LHSBits) != C))
13021 return SDValue();
13022
13023 unsigned NewOpcode = LHSOpcode == ISD::SIGN_EXTEND
13024 ? ISD::PARTIAL_REDUCE_SMLA
13025 : ISD::PARTIAL_REDUCE_UMLA;
13026
13027 // Only perform these combines if the target supports folding
13028 // the extends into the operation.
13030 NewOpcode, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13031 TLI.getTypeToTransformTo(*Context, LHSExtOpVT)))
13032 return SDValue();
13033
13034 return DAG.getNode(NewOpcode, DL, N->getValueType(0), Acc, LHSExtOp,
13035 DAG.getConstant(CTrunc, DL, LHSExtOpVT));
13036 }
13037
13038 unsigned RHSOpcode = RHS->getOpcode();
13039 if (!ISD::isExtOpcode(RHSOpcode))
13040 return SDValue();
13041
13042 SDValue RHSExtOp = RHS->getOperand(0);
13043 if (LHSExtOpVT != RHSExtOp.getValueType())
13044 return SDValue();
13045
13046 unsigned NewOpc;
13047 if (LHSOpcode == ISD::SIGN_EXTEND && RHSOpcode == ISD::SIGN_EXTEND)
13048 NewOpc = ISD::PARTIAL_REDUCE_SMLA;
13049 else if (LHSOpcode == ISD::ZERO_EXTEND && RHSOpcode == ISD::ZERO_EXTEND)
13050 NewOpc = ISD::PARTIAL_REDUCE_UMLA;
13051 else if (LHSOpcode == ISD::SIGN_EXTEND && RHSOpcode == ISD::ZERO_EXTEND)
13052 NewOpc = ISD::PARTIAL_REDUCE_SUMLA;
13053 else if (LHSOpcode == ISD::ZERO_EXTEND && RHSOpcode == ISD::SIGN_EXTEND) {
13054 NewOpc = ISD::PARTIAL_REDUCE_SUMLA;
13055 std::swap(LHSExtOp, RHSExtOp);
13056 } else
13057 return SDValue();
13058 // For a 2-stage extend the signedness of both of the extends must match
13059 // If the mul has the same type, there is no outer extend, and thus we
13060 // can simply use the inner extends to pick the result node.
13061 // TODO: extend to handle nonneg zext as sext
13062 EVT AccElemVT = Acc.getValueType().getVectorElementType();
13063 if (Op1.getValueType().getVectorElementType() != AccElemVT &&
13064 NewOpc != N->getOpcode())
13065 return SDValue();
13066
13067 // Only perform these combines if the target supports folding
13068 // the extends into the operation.
13070 NewOpc, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13071 TLI.getTypeToTransformTo(*Context, LHSExtOpVT)))
13072 return SDValue();
13073
13074 return DAG.getNode(NewOpc, DL, N->getValueType(0), Acc, LHSExtOp, RHSExtOp);
13075}
13076
13077// partial.reduce.umla(acc, zext(op), splat(1))
13078// -> partial.reduce.umla(acc, op, splat(trunc(1)))
13079// partial.reduce.smla(acc, sext(op), splat(1))
13080// -> partial.reduce.smla(acc, op, splat(trunc(1)))
13081// partial.reduce.sumla(acc, sext(op), splat(1))
13082// -> partial.reduce.smla(acc, op, splat(trunc(1)))
13083SDValue DAGCombiner::foldPartialReduceAdd(SDNode *N) {
13084 SDLoc DL(N);
13085 SDValue Acc = N->getOperand(0);
13086 SDValue Op1 = N->getOperand(1);
13087 SDValue Op2 = N->getOperand(2);
13088
13089 APInt ConstantOne;
13090 if (!ISD::isConstantSplatVector(Op2.getNode(), ConstantOne) ||
13091 !ConstantOne.isOne())
13092 return SDValue();
13093
13094 unsigned Op1Opcode = Op1.getOpcode();
13095 if (!ISD::isExtOpcode(Op1Opcode))
13096 return SDValue();
13097
13098 bool Op1IsSigned = Op1Opcode == ISD::SIGN_EXTEND;
13099 bool NodeIsSigned = N->getOpcode() != ISD::PARTIAL_REDUCE_UMLA;
13100 EVT AccElemVT = Acc.getValueType().getVectorElementType();
13101 if (Op1IsSigned != NodeIsSigned &&
13102 Op1.getValueType().getVectorElementType() != AccElemVT)
13103 return SDValue();
13104
13105 unsigned NewOpcode =
13106 Op1IsSigned ? ISD::PARTIAL_REDUCE_SMLA : ISD::PARTIAL_REDUCE_UMLA;
13107
13108 SDValue UnextOp1 = Op1.getOperand(0);
13109 EVT UnextOp1VT = UnextOp1.getValueType();
13110 auto *Context = DAG.getContext();
13112 NewOpcode, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13113 TLI.getTypeToTransformTo(*Context, UnextOp1VT)))
13114 return SDValue();
13115
13116 return DAG.getNode(NewOpcode, DL, N->getValueType(0), Acc, UnextOp1,
13117 DAG.getConstant(1, DL, UnextOp1VT));
13118}
13119
13120SDValue DAGCombiner::visitVP_STRIDED_LOAD(SDNode *N) {
13121 auto *SLD = cast<VPStridedLoadSDNode>(N);
13122 EVT EltVT = SLD->getValueType(0).getVectorElementType();
13123 // Combine strided loads with unit-stride to a regular VP load.
13124 if (auto *CStride = dyn_cast<ConstantSDNode>(SLD->getStride());
13125 CStride && CStride->getZExtValue() == EltVT.getStoreSize()) {
13126 SDValue NewLd = DAG.getLoadVP(
13127 SLD->getAddressingMode(), SLD->getExtensionType(), SLD->getValueType(0),
13128 SDLoc(N), SLD->getChain(), SLD->getBasePtr(), SLD->getOffset(),
13129 SLD->getMask(), SLD->getVectorLength(), SLD->getMemoryVT(),
13130 SLD->getMemOperand(), SLD->isExpandingLoad());
13131 return CombineTo(N, NewLd, NewLd.getValue(1));
13132 }
13133 return SDValue();
13134}
13135
13136/// A vector select of 2 constant vectors can be simplified to math/logic to
13137/// avoid a variable select instruction and possibly avoid constant loads.
13138SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
13139 SDValue Cond = N->getOperand(0);
13140 SDValue N1 = N->getOperand(1);
13141 SDValue N2 = N->getOperand(2);
13142 EVT VT = N->getValueType(0);
13143 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
13147 return SDValue();
13148
13149 // Check if we can use the condition value to increment/decrement a single
13150 // constant value. This simplifies a select to an add and removes a constant
13151 // load/materialization from the general case.
13152 bool AllAddOne = true;
13153 bool AllSubOne = true;
13154 unsigned Elts = VT.getVectorNumElements();
13155 for (unsigned i = 0; i != Elts; ++i) {
13156 SDValue N1Elt = N1.getOperand(i);
13157 SDValue N2Elt = N2.getOperand(i);
13158 if (N1Elt.isUndef())
13159 continue;
13160 // N2 should not contain undef values since it will be reused in the fold.
13161 if (N2Elt.isUndef() || N1Elt.getValueType() != N2Elt.getValueType()) {
13162 AllAddOne = false;
13163 AllSubOne = false;
13164 break;
13165 }
13166
13167 const APInt &C1 = N1Elt->getAsAPIntVal();
13168 const APInt &C2 = N2Elt->getAsAPIntVal();
13169 if (C1 != C2 + 1)
13170 AllAddOne = false;
13171 if (C1 != C2 - 1)
13172 AllSubOne = false;
13173 }
13174
13175 // Further simplifications for the extra-special cases where the constants are
13176 // all 0 or all -1 should be implemented as folds of these patterns.
13177 SDLoc DL(N);
13178 if (AllAddOne || AllSubOne) {
13179 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
13180 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
13181 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
13182 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
13183 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
13184 }
13185
13186 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
13187 APInt Pow2C;
13188 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
13189 isNullOrNullSplat(N2)) {
13190 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
13191 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
13192 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
13193 }
13194
13196 return V;
13197
13198 // The general case for select-of-constants:
13199 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
13200 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
13201 // leave that to a machine-specific pass.
13202 return SDValue();
13203}
13204
13205SDValue DAGCombiner::visitVP_SELECT(SDNode *N) {
13206 SDValue N0 = N->getOperand(0);
13207 SDValue N1 = N->getOperand(1);
13208 SDValue N2 = N->getOperand(2);
13209 SDLoc DL(N);
13210
13211 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
13212 return V;
13213
13215 return V;
13216
13217 return SDValue();
13218}
13219
13221 SDValue FVal,
13222 const TargetLowering &TLI,
13223 SelectionDAG &DAG,
13224 const SDLoc &DL) {
13225 EVT VT = TVal.getValueType();
13226 if (!TLI.isTypeLegal(VT))
13227 return SDValue();
13228
13229 EVT CondVT = Cond.getValueType();
13230 assert(CondVT.isVector() && "Vector select expects a vector selector!");
13231
13232 bool IsTAllZero = ISD::isConstantSplatVectorAllZeros(TVal.getNode());
13233 bool IsTAllOne = ISD::isConstantSplatVectorAllOnes(TVal.getNode());
13234 bool IsFAllZero = ISD::isConstantSplatVectorAllZeros(FVal.getNode());
13235 bool IsFAllOne = ISD::isConstantSplatVectorAllOnes(FVal.getNode());
13236
13237 // no vselect(cond, 0/-1, X) or vselect(cond, X, 0/-1), return
13238 if (!IsTAllZero && !IsTAllOne && !IsFAllZero && !IsFAllOne)
13239 return SDValue();
13240
13241 // select Cond, 0, 0 → 0
13242 if (IsTAllZero && IsFAllZero) {
13243 return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, DL, VT)
13244 : DAG.getConstant(0, DL, VT);
13245 }
13246
13247 // check select(setgt lhs, -1), 1, -1 --> or (sra lhs, bitwidth - 1), 1
13248 APInt TValAPInt;
13249 if (Cond.getOpcode() == ISD::SETCC &&
13250 Cond.getOperand(2) == DAG.getCondCode(ISD::SETGT) &&
13251 Cond.getOperand(0).getValueType() == VT && VT.isSimple() &&
13252 ISD::isConstantSplatVector(TVal.getNode(), TValAPInt) &&
13253 TValAPInt.isOne() &&
13254 ISD::isConstantSplatVectorAllOnes(Cond.getOperand(1).getNode()) &&
13256 return SDValue();
13257 }
13258
13259 // To use the condition operand as a bitwise mask, it must have elements that
13260 // are the same size as the select elements. i.e, the condition operand must
13261 // have already been promoted from the IR select condition type <N x i1>.
13262 // Don't check if the types themselves are equal because that excludes
13263 // vector floating-point selects.
13264 if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
13265 return SDValue();
13266
13267 // Cond value must be 'sign splat' to be converted to a logical op.
13268 if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
13269 return SDValue();
13270
13271 // Try inverting Cond and swapping T/F if it gives all-ones/all-zeros form
13272 if (!IsTAllOne && !IsFAllZero && Cond.hasOneUse() &&
13273 Cond.getOpcode() == ISD::SETCC &&
13274 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
13275 CondVT) {
13276 if (IsTAllZero || IsFAllOne) {
13277 SDValue CC = Cond.getOperand(2);
13279 cast<CondCodeSDNode>(CC)->get(), Cond.getOperand(0).getValueType());
13280 Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
13281 InverseCC);
13282 std::swap(TVal, FVal);
13283 std::swap(IsTAllOne, IsFAllOne);
13284 std::swap(IsTAllZero, IsFAllZero);
13285 }
13286 }
13287
13289 "Select condition no longer all-sign bits");
13290
13291 // select Cond, -1, 0 → bitcast Cond
13292 if (IsTAllOne && IsFAllZero)
13293 return DAG.getBitcast(VT, Cond);
13294
13295 // select Cond, -1, x → or Cond, x
13296 if (IsTAllOne) {
13297 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(FVal));
13298 SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, X);
13299 return DAG.getBitcast(VT, Or);
13300 }
13301
13302 // select Cond, x, 0 → and Cond, x
13303 if (IsFAllZero) {
13304 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(TVal));
13305 SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, X);
13306 return DAG.getBitcast(VT, And);
13307 }
13308
13309 // select Cond, 0, x -> and not(Cond), x
13310 if (IsTAllZero &&
13312 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(FVal));
13313 SDValue And =
13314 DAG.getNode(ISD::AND, DL, CondVT, DAG.getNOT(DL, Cond, CondVT), X);
13315 return DAG.getBitcast(VT, And);
13316 }
13317
13318 return SDValue();
13319}
13320
13321SDValue DAGCombiner::visitVSELECT(SDNode *N) {
13322 SDValue N0 = N->getOperand(0);
13323 SDValue N1 = N->getOperand(1);
13324 SDValue N2 = N->getOperand(2);
13325 EVT VT = N->getValueType(0);
13326 SDLoc DL(N);
13327
13328 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
13329 return V;
13330
13332 return V;
13333
13334 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
13335 if (!TLI.isTargetCanonicalSelect(N))
13336 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
13337 return DAG.getSelect(DL, VT, F, N2, N1);
13338
13339 // select (sext m), (add X, C), X --> (add X, (and C, (sext m))))
13340 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N2 && N1->hasOneUse() &&
13343 TLI.getBooleanContents(N0.getValueType()) ==
13345 return DAG.getNode(
13346 ISD::ADD, DL, N1.getValueType(), N2,
13347 DAG.getNode(ISD::AND, DL, N0.getValueType(), N1.getOperand(1), N0));
13348 }
13349
13350 // Canonicalize integer abs.
13351 // vselect (setg[te] X, 0), X, -X ->
13352 // vselect (setgt X, -1), X, -X ->
13353 // vselect (setl[te] X, 0), -X, X ->
13354 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
13355 if (N0.getOpcode() == ISD::SETCC) {
13356 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
13358 bool isAbs = false;
13359 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
13360
13361 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
13362 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
13363 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
13365 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
13366 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
13368
13369 if (isAbs) {
13371 return DAG.getNode(ISD::ABS, DL, VT, LHS);
13372
13373 SDValue Shift = DAG.getNode(
13374 ISD::SRA, DL, VT, LHS,
13375 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, DL));
13376 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
13377 AddToWorklist(Shift.getNode());
13378 AddToWorklist(Add.getNode());
13379 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
13380 }
13381
13382 // vselect x, y (fcmp lt x, y) -> fminnum x, y
13383 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
13384 //
13385 // This is OK if we don't care about what happens if either operand is a
13386 // NaN.
13387 //
13388 if (N0.hasOneUse() &&
13389 isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, N->getFlags(), TLI)) {
13390 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC))
13391 return FMinMax;
13392 }
13393
13394 if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
13395 return S;
13396 if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
13397 return S;
13398
13399 // If this select has a condition (setcc) with narrower operands than the
13400 // select, try to widen the compare to match the select width.
13401 // TODO: This should be extended to handle any constant.
13402 // TODO: This could be extended to handle non-loading patterns, but that
13403 // requires thorough testing to avoid regressions.
13404 if (isNullOrNullSplat(RHS)) {
13405 EVT NarrowVT = LHS.getValueType();
13407 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
13408 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
13409 unsigned WideWidth = WideVT.getScalarSizeInBits();
13410 bool IsSigned = isSignedIntSetCC(CC);
13411 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
13412 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
13413 SetCCWidth != 1 && SetCCWidth < WideWidth &&
13414 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
13415 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
13416 // Both compare operands can be widened for free. The LHS can use an
13417 // extended load, and the RHS is a constant:
13418 // vselect (ext (setcc load(X), C)), N1, N2 -->
13419 // vselect (setcc extload(X), C'), N1, N2
13420 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
13421 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
13422 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
13423 EVT WideSetCCVT = getSetCCResultType(WideVT);
13424 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
13425 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
13426 }
13427 }
13428
13429 if (SDValue ABD = foldSelectToABD(LHS, RHS, N1, N2, CC, DL))
13430 return ABD;
13431
13432 // Match VSELECTs into add with unsigned saturation.
13433 if (hasOperation(ISD::UADDSAT, VT)) {
13434 // Check if one of the arms of the VSELECT is vector with all bits set.
13435 // If it's on the left side invert the predicate to simplify logic below.
13436 SDValue Other;
13437 ISD::CondCode SatCC = CC;
13439 Other = N2;
13440 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
13441 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) {
13442 Other = N1;
13443 }
13444
13445 if (Other && Other.getOpcode() == ISD::ADD) {
13446 SDValue CondLHS = LHS, CondRHS = RHS;
13447 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
13448
13449 // Canonicalize condition operands.
13450 if (SatCC == ISD::SETUGE) {
13451 std::swap(CondLHS, CondRHS);
13452 SatCC = ISD::SETULE;
13453 }
13454
13455 // We can test against either of the addition operands.
13456 // x <= x+y ? x+y : ~0 --> uaddsat x, y
13457 // x+y >= x ? x+y : ~0 --> uaddsat x, y
13458 if (SatCC == ISD::SETULE && Other == CondRHS &&
13459 (OpLHS == CondLHS || OpRHS == CondLHS))
13460 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
13461
13462 if (OpRHS.getOpcode() == CondRHS.getOpcode() &&
13463 (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
13464 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) &&
13465 CondLHS == OpLHS) {
13466 // If the RHS is a constant we have to reverse the const
13467 // canonicalization.
13468 // x >= ~C ? x+C : ~0 --> uaddsat x, C
13469 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
13470 return Cond->getAPIntValue() == ~Op->getAPIntValue();
13471 };
13472 if (SatCC == ISD::SETULE &&
13473 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
13474 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
13475 }
13476 }
13477 }
13478
13479 // Match VSELECTs into sub with unsigned saturation.
13480 if (hasOperation(ISD::USUBSAT, VT)) {
13481 // Check if one of the arms of the VSELECT is a zero vector. If it's on
13482 // the left side invert the predicate to simplify logic below.
13483 SDValue Other;
13484 ISD::CondCode SatCC = CC;
13486 Other = N2;
13487 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
13489 Other = N1;
13490 }
13491
13492 // zext(x) >= y ? trunc(zext(x) - y) : 0
13493 // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
13494 // zext(x) > y ? trunc(zext(x) - y) : 0
13495 // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
13496 if (Other && Other.getOpcode() == ISD::TRUNCATE &&
13497 Other.getOperand(0).getOpcode() == ISD::SUB &&
13498 (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)) {
13499 SDValue OpLHS = Other.getOperand(0).getOperand(0);
13500 SDValue OpRHS = Other.getOperand(0).getOperand(1);
13501 if (LHS == OpLHS && RHS == OpRHS && LHS.getOpcode() == ISD::ZERO_EXTEND)
13502 if (SDValue R = getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS,
13503 DAG, DL))
13504 return R;
13505 }
13506
13507 if (Other && Other.getNumOperands() == 2) {
13508 SDValue CondRHS = RHS;
13509 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
13510
13511 if (OpLHS == LHS) {
13512 // Look for a general sub with unsigned saturation first.
13513 // x >= y ? x-y : 0 --> usubsat x, y
13514 // x > y ? x-y : 0 --> usubsat x, y
13515 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
13516 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
13517 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13518
13519 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
13520 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) {
13521 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR ||
13522 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) {
13523 // If the RHS is a constant we have to reverse the const
13524 // canonicalization.
13525 // x > C-1 ? x+-C : 0 --> usubsat x, C
13526 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
13527 return (!Op && !Cond) ||
13528 (Op && Cond &&
13529 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
13530 };
13531 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
13532 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
13533 /*AllowUndefs*/ true)) {
13534 OpRHS = DAG.getNegative(OpRHS, DL, VT);
13535 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13536 }
13537
13538 // Another special case: If C was a sign bit, the sub has been
13539 // canonicalized into a xor.
13540 // FIXME: Would it be better to use computeKnownBits to
13541 // determine whether it's safe to decanonicalize the xor?
13542 // x s< 0 ? x^C : 0 --> usubsat x, C
13543 APInt SplatValue;
13544 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
13545 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) &&
13547 SplatValue.isSignMask()) {
13548 // Note that we have to rebuild the RHS constant here to
13549 // ensure we don't rely on particular values of undef lanes.
13550 OpRHS = DAG.getConstant(SplatValue, DL, VT);
13551 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13552 }
13553 }
13554 }
13555 }
13556 }
13557 }
13558
13559 // (vselect (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
13560 // (vselect (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
13561 if (SDValue UMin = foldSelectToUMin(LHS, RHS, N1, N2, CC, DL))
13562 return UMin;
13563 }
13564
13565 if (SimplifySelectOps(N, N1, N2))
13566 return SDValue(N, 0); // Don't revisit N.
13567
13568 // Fold (vselect all_ones, N1, N2) -> N1
13570 return N1;
13571 // Fold (vselect all_zeros, N1, N2) -> N2
13573 return N2;
13574
13575 // The ConvertSelectToConcatVector function is assuming both the above
13576 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
13577 // and addressed.
13578 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
13581 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
13582 return CV;
13583 }
13584
13585 if (SDValue V = foldVSelectOfConstants(N))
13586 return V;
13587
13588 if (hasOperation(ISD::SRA, VT))
13590 return V;
13591
13593 return SDValue(N, 0);
13594
13595 if (SDValue V = combineVSelectWithAllOnesOrZeros(N0, N1, N2, TLI, DAG, DL))
13596 return V;
13597
13598 return SDValue();
13599}
13600
13601SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
13602 SDValue N0 = N->getOperand(0);
13603 SDValue N1 = N->getOperand(1);
13604 SDValue N2 = N->getOperand(2);
13605 SDValue N3 = N->getOperand(3);
13606 SDValue N4 = N->getOperand(4);
13607 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
13608 SDLoc DL(N);
13609
13610 // fold select_cc lhs, rhs, x, x, cc -> x
13611 if (N2 == N3)
13612 return N2;
13613
13614 // select_cc bool, 0, x, y, seteq -> select bool, y, x
13615 if (CC == ISD::SETEQ && !LegalTypes && N0.getValueType() == MVT::i1 &&
13616 isNullConstant(N1))
13617 return DAG.getSelect(DL, N2.getValueType(), N0, N3, N2);
13618
13619 // Determine if the condition we're dealing with is constant
13620 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
13621 CC, DL, false)) {
13622 AddToWorklist(SCC.getNode());
13623
13624 // cond always true -> true val
13625 // cond always false -> false val
13626 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode()))
13627 return SCCC->isZero() ? N3 : N2;
13628
13629 // When the condition is UNDEF, just return the first operand. This is
13630 // coherent the DAG creation, no setcc node is created in this case
13631 if (SCC->isUndef())
13632 return N2;
13633
13634 // Fold to a simpler select_cc
13635 if (SCC.getOpcode() == ISD::SETCC) {
13636 return DAG.getNode(ISD::SELECT_CC, DL, N2.getValueType(),
13637 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
13638 SCC.getOperand(2), SCC->getFlags());
13639 }
13640 }
13641
13642 // If we can fold this based on the true/false value, do so.
13643 if (SimplifySelectOps(N, N2, N3))
13644 return SDValue(N, 0); // Don't revisit N.
13645
13646 // fold select_cc into other things, such as min/max/abs
13647 return SimplifySelectCC(DL, N0, N1, N2, N3, CC);
13648}
13649
13650SDValue DAGCombiner::visitSETCC(SDNode *N) {
13651 // setcc is very commonly used as an argument to brcond. This pattern
13652 // also lend itself to numerous combines and, as a result, it is desired
13653 // we keep the argument to a brcond as a setcc as much as possible.
13654 bool PreferSetCC =
13655 N->hasOneUse() && N->user_begin()->getOpcode() == ISD::BRCOND;
13656
13657 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
13658 EVT VT = N->getValueType(0);
13659 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
13660 SDLoc DL(N);
13661
13662 if (SDValue Combined = SimplifySetCC(VT, N0, N1, Cond, DL, !PreferSetCC)) {
13663 // If we prefer to have a setcc, and we don't, we'll try our best to
13664 // recreate one using rebuildSetCC.
13665 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
13666 SDValue NewSetCC = rebuildSetCC(Combined);
13667
13668 // We don't have anything interesting to combine to.
13669 if (NewSetCC.getNode() == N)
13670 return SDValue();
13671
13672 if (NewSetCC)
13673 return NewSetCC;
13674 }
13675 return Combined;
13676 }
13677
13678 // Optimize
13679 // 1) (icmp eq/ne (and X, C0), (shift X, C1))
13680 // or
13681 // 2) (icmp eq/ne X, (rotate X, C1))
13682 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
13683 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
13684 // Then:
13685 // If C1 is a power of 2, then the rotate and shift+and versions are
13686 // equivilent, so we can interchange them depending on target preference.
13687 // Otherwise, if we have the shift+and version we can interchange srl/shl
13688 // which inturn affects the constant C0. We can use this to get better
13689 // constants again determined by target preference.
13690 if (Cond == ISD::SETNE || Cond == ISD::SETEQ) {
13691 auto IsAndWithShift = [](SDValue A, SDValue B) {
13692 return A.getOpcode() == ISD::AND &&
13693 (B.getOpcode() == ISD::SRL || B.getOpcode() == ISD::SHL) &&
13694 A.getOperand(0) == B.getOperand(0);
13695 };
13696 auto IsRotateWithOp = [](SDValue A, SDValue B) {
13697 return (B.getOpcode() == ISD::ROTL || B.getOpcode() == ISD::ROTR) &&
13698 B.getOperand(0) == A;
13699 };
13700 SDValue AndOrOp = SDValue(), ShiftOrRotate = SDValue();
13701 bool IsRotate = false;
13702
13703 // Find either shift+and or rotate pattern.
13704 if (IsAndWithShift(N0, N1)) {
13705 AndOrOp = N0;
13706 ShiftOrRotate = N1;
13707 } else if (IsAndWithShift(N1, N0)) {
13708 AndOrOp = N1;
13709 ShiftOrRotate = N0;
13710 } else if (IsRotateWithOp(N0, N1)) {
13711 IsRotate = true;
13712 AndOrOp = N0;
13713 ShiftOrRotate = N1;
13714 } else if (IsRotateWithOp(N1, N0)) {
13715 IsRotate = true;
13716 AndOrOp = N1;
13717 ShiftOrRotate = N0;
13718 }
13719
13720 if (AndOrOp && ShiftOrRotate && ShiftOrRotate.hasOneUse() &&
13721 (IsRotate || AndOrOp.hasOneUse())) {
13722 EVT OpVT = N0.getValueType();
13723 // Get constant shift/rotate amount and possibly mask (if its shift+and
13724 // variant).
13725 auto GetAPIntValue = [](SDValue Op) -> std::optional<APInt> {
13726 ConstantSDNode *CNode = isConstOrConstSplat(Op, /*AllowUndefs*/ false,
13727 /*AllowTrunc*/ false);
13728 if (CNode == nullptr)
13729 return std::nullopt;
13730 return CNode->getAPIntValue();
13731 };
13732 std::optional<APInt> AndCMask =
13733 IsRotate ? std::nullopt : GetAPIntValue(AndOrOp.getOperand(1));
13734 std::optional<APInt> ShiftCAmt =
13735 GetAPIntValue(ShiftOrRotate.getOperand(1));
13736 unsigned NumBits = OpVT.getScalarSizeInBits();
13737
13738 // We found constants.
13739 if (ShiftCAmt && (IsRotate || AndCMask) && ShiftCAmt->ult(NumBits)) {
13740 unsigned ShiftOpc = ShiftOrRotate.getOpcode();
13741 // Check that the constants meet the constraints.
13742 bool CanTransform = IsRotate;
13743 if (!CanTransform) {
13744 // Check that mask and shift compliment eachother
13745 CanTransform = *ShiftCAmt == (~*AndCMask).popcount();
13746 // Check that we are comparing all bits
13747 CanTransform &= (*ShiftCAmt + AndCMask->popcount()) == NumBits;
13748 // Check that the and mask is correct for the shift
13749 CanTransform &=
13750 ShiftOpc == ISD::SHL ? (~*AndCMask).isMask() : AndCMask->isMask();
13751 }
13752
13753 // See if target prefers another shift/rotate opcode.
13754 unsigned NewShiftOpc = TLI.preferedOpcodeForCmpEqPiecesOfOperand(
13755 OpVT, ShiftOpc, ShiftCAmt->isPowerOf2(), *ShiftCAmt, AndCMask);
13756 // Transform is valid and we have a new preference.
13757 if (CanTransform && NewShiftOpc != ShiftOpc) {
13758 SDValue NewShiftOrRotate =
13759 DAG.getNode(NewShiftOpc, DL, OpVT, ShiftOrRotate.getOperand(0),
13760 ShiftOrRotate.getOperand(1));
13761 SDValue NewAndOrOp = SDValue();
13762
13763 if (NewShiftOpc == ISD::SHL || NewShiftOpc == ISD::SRL) {
13764 APInt NewMask =
13765 NewShiftOpc == ISD::SHL
13766 ? APInt::getHighBitsSet(NumBits,
13767 NumBits - ShiftCAmt->getZExtValue())
13768 : APInt::getLowBitsSet(NumBits,
13769 NumBits - ShiftCAmt->getZExtValue());
13770 NewAndOrOp =
13771 DAG.getNode(ISD::AND, DL, OpVT, ShiftOrRotate.getOperand(0),
13772 DAG.getConstant(NewMask, DL, OpVT));
13773 } else {
13774 NewAndOrOp = ShiftOrRotate.getOperand(0);
13775 }
13776
13777 return DAG.getSetCC(DL, VT, NewAndOrOp, NewShiftOrRotate, Cond);
13778 }
13779 }
13780 }
13781 }
13782 return SDValue();
13783}
13784
13785SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
13786 SDValue LHS = N->getOperand(0);
13787 SDValue RHS = N->getOperand(1);
13788 SDValue Carry = N->getOperand(2);
13789 SDValue Cond = N->getOperand(3);
13790
13791 // If Carry is false, fold to a regular SETCC.
13792 if (isNullConstant(Carry))
13793 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
13794
13795 return SDValue();
13796}
13797
13798/// Check if N satisfies:
13799/// N is used once.
13800/// N is a Load.
13801/// The load is compatible with ExtOpcode. It means
13802/// If load has explicit zero/sign extension, ExpOpcode must have the same
13803/// extension.
13804/// Otherwise returns true.
13805static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
13806 if (!N.hasOneUse())
13807 return false;
13808
13809 if (!isa<LoadSDNode>(N))
13810 return false;
13811
13812 LoadSDNode *Load = cast<LoadSDNode>(N);
13813 ISD::LoadExtType LoadExt = Load->getExtensionType();
13814 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
13815 return true;
13816
13817 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
13818 // extension.
13819 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
13820 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
13821 return false;
13822
13823 return true;
13824}
13825
13826/// Fold
13827/// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
13828/// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
13829/// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
13830/// This function is called by the DAGCombiner when visiting sext/zext/aext
13831/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
13833 SelectionDAG &DAG, const SDLoc &DL,
13834 CombineLevel Level) {
13835 unsigned Opcode = N->getOpcode();
13836 SDValue N0 = N->getOperand(0);
13837 EVT VT = N->getValueType(0);
13838 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
13839 Opcode == ISD::ANY_EXTEND) &&
13840 "Expected EXTEND dag node in input!");
13841
13842 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
13843 !N0.hasOneUse())
13844 return SDValue();
13845
13846 SDValue Op1 = N0->getOperand(1);
13847 SDValue Op2 = N0->getOperand(2);
13848 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
13849 return SDValue();
13850
13851 auto ExtLoadOpcode = ISD::EXTLOAD;
13852 if (Opcode == ISD::SIGN_EXTEND)
13853 ExtLoadOpcode = ISD::SEXTLOAD;
13854 else if (Opcode == ISD::ZERO_EXTEND)
13855 ExtLoadOpcode = ISD::ZEXTLOAD;
13856
13857 // Illegal VSELECT may ISel fail if happen after legalization (DAG
13858 // Combine2), so we should conservatively check the OperationAction.
13859 LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
13860 LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
13861 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
13862 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()) ||
13863 (N0->getOpcode() == ISD::VSELECT && Level >= AfterLegalizeTypes &&
13865 return SDValue();
13866
13867 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
13868 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
13869 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
13870}
13871
13872/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
13873/// a build_vector of constants.
13874/// This function is called by the DAGCombiner when visiting sext/zext/aext
13875/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
13876/// Vector extends are not folded if operations are legal; this is to
13877/// avoid introducing illegal build_vector dag nodes.
13879 const TargetLowering &TLI,
13880 SelectionDAG &DAG, bool LegalTypes) {
13881 unsigned Opcode = N->getOpcode();
13882 SDValue N0 = N->getOperand(0);
13883 EVT VT = N->getValueType(0);
13884
13885 assert((ISD::isExtOpcode(Opcode) || ISD::isExtVecInRegOpcode(Opcode)) &&
13886 "Expected EXTEND dag node in input!");
13887
13888 // fold (sext c1) -> c1
13889 // fold (zext c1) -> c1
13890 // fold (aext c1) -> c1
13891 if (isa<ConstantSDNode>(N0))
13892 return DAG.getNode(Opcode, DL, VT, N0);
13893
13894 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
13895 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
13896 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
13897 if (N0->getOpcode() == ISD::SELECT) {
13898 SDValue Op1 = N0->getOperand(1);
13899 SDValue Op2 = N0->getOperand(2);
13900 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
13901 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
13902 // For any_extend, choose sign extension of the constants to allow a
13903 // possible further transform to sign_extend_inreg.i.e.
13904 //
13905 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
13906 // t2: i64 = any_extend t1
13907 // -->
13908 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
13909 // -->
13910 // t4: i64 = sign_extend_inreg t3
13911 unsigned FoldOpc = Opcode;
13912 if (FoldOpc == ISD::ANY_EXTEND)
13913 FoldOpc = ISD::SIGN_EXTEND;
13914 return DAG.getSelect(DL, VT, N0->getOperand(0),
13915 DAG.getNode(FoldOpc, DL, VT, Op1),
13916 DAG.getNode(FoldOpc, DL, VT, Op2));
13917 }
13918 }
13919
13920 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
13921 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
13922 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
13923 EVT SVT = VT.getScalarType();
13924 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
13926 return SDValue();
13927
13928 // We can fold this node into a build_vector.
13929 unsigned VTBits = SVT.getSizeInBits();
13930 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
13932 unsigned NumElts = VT.getVectorNumElements();
13933
13934 for (unsigned i = 0; i != NumElts; ++i) {
13935 SDValue Op = N0.getOperand(i);
13936 if (Op.isUndef()) {
13937 if (Opcode == ISD::ANY_EXTEND || Opcode == ISD::ANY_EXTEND_VECTOR_INREG)
13938 Elts.push_back(DAG.getUNDEF(SVT));
13939 else
13940 Elts.push_back(DAG.getConstant(0, DL, SVT));
13941 continue;
13942 }
13943
13944 SDLoc DL(Op);
13945 // Get the constant value and if needed trunc it to the size of the type.
13946 // Nodes like build_vector might have constants wider than the scalar type.
13947 APInt C = Op->getAsAPIntVal().zextOrTrunc(EVTBits);
13948 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
13949 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
13950 else
13951 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
13952 }
13953
13954 return DAG.getBuildVector(VT, DL, Elts);
13955}
13956
13957// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
13958// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
13959// transformation. Returns true if extension are possible and the above
13960// mentioned transformation is profitable.
13962 unsigned ExtOpc,
13963 SmallVectorImpl<SDNode *> &ExtendNodes,
13964 const TargetLowering &TLI) {
13965 bool HasCopyToRegUses = false;
13966 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
13967 for (SDUse &Use : N0->uses()) {
13968 SDNode *User = Use.getUser();
13969 if (User == N)
13970 continue;
13971 if (Use.getResNo() != N0.getResNo())
13972 continue;
13973 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
13974 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
13976 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
13977 // Sign bits will be lost after a zext.
13978 return false;
13979 bool Add = false;
13980 for (unsigned i = 0; i != 2; ++i) {
13981 SDValue UseOp = User->getOperand(i);
13982 if (UseOp == N0)
13983 continue;
13984 if (!isa<ConstantSDNode>(UseOp))
13985 return false;
13986 Add = true;
13987 }
13988 if (Add)
13989 ExtendNodes.push_back(User);
13990 continue;
13991 }
13992 // If truncates aren't free and there are users we can't
13993 // extend, it isn't worthwhile.
13994 if (!isTruncFree)
13995 return false;
13996 // Remember if this value is live-out.
13997 if (User->getOpcode() == ISD::CopyToReg)
13998 HasCopyToRegUses = true;
13999 }
14000
14001 if (HasCopyToRegUses) {
14002 bool BothLiveOut = false;
14003 for (SDUse &Use : N->uses()) {
14004 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
14005 BothLiveOut = true;
14006 break;
14007 }
14008 }
14009 if (BothLiveOut)
14010 // Both unextended and extended values are live out. There had better be
14011 // a good reason for the transformation.
14012 return !ExtendNodes.empty();
14013 }
14014 return true;
14015}
14016
14017void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
14018 SDValue OrigLoad, SDValue ExtLoad,
14019 ISD::NodeType ExtType) {
14020 // Extend SetCC uses if necessary.
14021 SDLoc DL(ExtLoad);
14022 for (SDNode *SetCC : SetCCs) {
14024
14025 for (unsigned j = 0; j != 2; ++j) {
14026 SDValue SOp = SetCC->getOperand(j);
14027 if (SOp == OrigLoad)
14028 Ops.push_back(ExtLoad);
14029 else
14030 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
14031 }
14032
14033 Ops.push_back(SetCC->getOperand(2));
14034 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
14035 }
14036}
14037
14038// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
14039SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
14040 SDValue N0 = N->getOperand(0);
14041 EVT DstVT = N->getValueType(0);
14042 EVT SrcVT = N0.getValueType();
14043
14044 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
14045 N->getOpcode() == ISD::ZERO_EXTEND) &&
14046 "Unexpected node type (not an extend)!");
14047
14048 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
14049 // For example, on a target with legal v4i32, but illegal v8i32, turn:
14050 // (v8i32 (sext (v8i16 (load x))))
14051 // into:
14052 // (v8i32 (concat_vectors (v4i32 (sextload x)),
14053 // (v4i32 (sextload (x + 16)))))
14054 // Where uses of the original load, i.e.:
14055 // (v8i16 (load x))
14056 // are replaced with:
14057 // (v8i16 (truncate
14058 // (v8i32 (concat_vectors (v4i32 (sextload x)),
14059 // (v4i32 (sextload (x + 16)))))))
14060 //
14061 // This combine is only applicable to illegal, but splittable, vectors.
14062 // All legal types, and illegal non-vector types, are handled elsewhere.
14063 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
14064 //
14065 if (N0->getOpcode() != ISD::LOAD)
14066 return SDValue();
14067
14068 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14069
14070 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
14071 !N0.hasOneUse() || !LN0->isSimple() ||
14072 !DstVT.isVector() || !DstVT.isPow2VectorType() ||
14074 return SDValue();
14075
14077 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
14078 return SDValue();
14079
14080 ISD::LoadExtType ExtType =
14081 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14082
14083 // Try to split the vector types to get down to legal types.
14084 EVT SplitSrcVT = SrcVT;
14085 EVT SplitDstVT = DstVT;
14086 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
14087 SplitSrcVT.getVectorNumElements() > 1) {
14088 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
14089 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
14090 }
14091
14092 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
14093 return SDValue();
14094
14095 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
14096
14097 SDLoc DL(N);
14098 const unsigned NumSplits =
14099 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
14100 const unsigned Stride = SplitSrcVT.getStoreSize();
14103
14104 SDValue BasePtr = LN0->getBasePtr();
14105 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
14106 const unsigned Offset = Idx * Stride;
14107
14109 DAG.getExtLoad(ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(),
14110 BasePtr, LN0->getPointerInfo().getWithOffset(Offset),
14111 SplitSrcVT, LN0->getBaseAlign(),
14112 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
14113
14114 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::getFixed(Stride), DL);
14115
14116 Loads.push_back(SplitLoad.getValue(0));
14117 Chains.push_back(SplitLoad.getValue(1));
14118 }
14119
14120 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
14121 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
14122
14123 // Simplify TF.
14124 AddToWorklist(NewChain.getNode());
14125
14126 CombineTo(N, NewValue);
14127
14128 // Replace uses of the original load (before extension)
14129 // with a truncate of the concatenated sextloaded vectors.
14130 SDValue Trunc =
14131 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
14132 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
14133 CombineTo(N0.getNode(), Trunc, NewChain);
14134 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14135}
14136
14137// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
14138// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
14139SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
14140 assert(N->getOpcode() == ISD::ZERO_EXTEND);
14141 EVT VT = N->getValueType(0);
14142 EVT OrigVT = N->getOperand(0).getValueType();
14143 if (TLI.isZExtFree(OrigVT, VT))
14144 return SDValue();
14145
14146 // and/or/xor
14147 SDValue N0 = N->getOperand(0);
14148 if (!ISD::isBitwiseLogicOp(N0.getOpcode()) ||
14149 N0.getOperand(1).getOpcode() != ISD::Constant ||
14150 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
14151 return SDValue();
14152
14153 // shl/shr
14154 SDValue N1 = N0->getOperand(0);
14155 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
14156 N1.getOperand(1).getOpcode() != ISD::Constant ||
14157 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
14158 return SDValue();
14159
14160 // load
14161 if (!isa<LoadSDNode>(N1.getOperand(0)))
14162 return SDValue();
14163 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
14164 EVT MemVT = Load->getMemoryVT();
14165 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
14166 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
14167 return SDValue();
14168
14169
14170 // If the shift op is SHL, the logic op must be AND, otherwise the result
14171 // will be wrong.
14172 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
14173 return SDValue();
14174
14175 if (!N0.hasOneUse() || !N1.hasOneUse())
14176 return SDValue();
14177
14179 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
14180 ISD::ZERO_EXTEND, SetCCs, TLI))
14181 return SDValue();
14182
14183 // Actually do the transformation.
14184 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
14185 Load->getChain(), Load->getBasePtr(),
14186 Load->getMemoryVT(), Load->getMemOperand());
14187
14188 SDLoc DL1(N1);
14189 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
14190 N1.getOperand(1));
14191
14192 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
14193 SDLoc DL0(N0);
14194 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
14195 DAG.getConstant(Mask, DL0, VT));
14196
14197 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
14198 CombineTo(N, And);
14199 if (SDValue(Load, 0).hasOneUse()) {
14200 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
14201 } else {
14202 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
14203 Load->getValueType(0), ExtLoad);
14204 CombineTo(Load, Trunc, ExtLoad.getValue(1));
14205 }
14206
14207 // N0 is dead at this point.
14208 recursivelyDeleteUnusedNodes(N0.getNode());
14209
14210 return SDValue(N,0); // Return N so it doesn't get rechecked!
14211}
14212
14213/// If we're narrowing or widening the result of a vector select and the final
14214/// size is the same size as a setcc (compare) feeding the select, then try to
14215/// apply the cast operation to the select's operands because matching vector
14216/// sizes for a select condition and other operands should be more efficient.
14217SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
14218 unsigned CastOpcode = Cast->getOpcode();
14219 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
14220 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
14221 CastOpcode == ISD::FP_ROUND) &&
14222 "Unexpected opcode for vector select narrowing/widening");
14223
14224 // We only do this transform before legal ops because the pattern may be
14225 // obfuscated by target-specific operations after legalization. Do not create
14226 // an illegal select op, however, because that may be difficult to lower.
14227 EVT VT = Cast->getValueType(0);
14228 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
14229 return SDValue();
14230
14231 SDValue VSel = Cast->getOperand(0);
14232 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
14233 VSel.getOperand(0).getOpcode() != ISD::SETCC)
14234 return SDValue();
14235
14236 // Does the setcc have the same vector size as the casted select?
14237 SDValue SetCC = VSel.getOperand(0);
14238 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
14239 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
14240 return SDValue();
14241
14242 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
14243 SDValue A = VSel.getOperand(1);
14244 SDValue B = VSel.getOperand(2);
14245 SDValue CastA, CastB;
14246 SDLoc DL(Cast);
14247 if (CastOpcode == ISD::FP_ROUND) {
14248 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
14249 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
14250 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
14251 } else {
14252 CastA = DAG.getNode(CastOpcode, DL, VT, A);
14253 CastB = DAG.getNode(CastOpcode, DL, VT, B);
14254 }
14255 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
14256}
14257
14258// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14259// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14261 const TargetLowering &TLI, EVT VT,
14262 bool LegalOperations, SDNode *N,
14263 SDValue N0, ISD::LoadExtType ExtLoadType) {
14264 SDNode *N0Node = N0.getNode();
14265 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
14266 : ISD::isZEXTLoad(N0Node);
14267 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
14268 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
14269 return SDValue();
14270
14271 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14272 EVT MemVT = LN0->getMemoryVT();
14273 if ((LegalOperations || !LN0->isSimple() ||
14274 VT.isVector()) &&
14275 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
14276 return SDValue();
14277
14278 SDValue ExtLoad =
14279 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
14280 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
14281 Combiner.CombineTo(N, ExtLoad);
14282 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
14283 if (LN0->use_empty())
14284 Combiner.recursivelyDeleteUnusedNodes(LN0);
14285 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14286}
14287
14288// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14289// Only generate vector extloads when 1) they're legal, and 2) they are
14290// deemed desirable by the target. NonNegZExt can be set to true if a zero
14291// extend has the nonneg flag to allow use of sextload if profitable.
14293 const TargetLowering &TLI, EVT VT,
14294 bool LegalOperations, SDNode *N, SDValue N0,
14295 ISD::LoadExtType ExtLoadType,
14296 ISD::NodeType ExtOpc,
14297 bool NonNegZExt = false) {
14299 return {};
14300
14301 // If this is zext nneg, see if it would make sense to treat it as a sext.
14302 if (NonNegZExt) {
14303 assert(ExtLoadType == ISD::ZEXTLOAD && ExtOpc == ISD::ZERO_EXTEND &&
14304 "Unexpected load type or opcode");
14305 for (SDNode *User : N0->users()) {
14306 if (User->getOpcode() == ISD::SETCC) {
14308 if (ISD::isSignedIntSetCC(CC)) {
14309 ExtLoadType = ISD::SEXTLOAD;
14310 ExtOpc = ISD::SIGN_EXTEND;
14311 break;
14312 }
14313 }
14314 }
14315 }
14316
14317 // TODO: isFixedLengthVector() should be removed and any negative effects on
14318 // code generation being the result of that target's implementation of
14319 // isVectorLoadExtDesirable().
14320 if ((LegalOperations || VT.isFixedLengthVector() ||
14321 !cast<LoadSDNode>(N0)->isSimple()) &&
14322 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))
14323 return {};
14324
14325 bool DoXform = true;
14327 if (!N0.hasOneUse())
14328 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
14329 if (VT.isVector())
14330 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
14331 if (!DoXform)
14332 return {};
14333
14334 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14335 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
14336 LN0->getBasePtr(), N0.getValueType(),
14337 LN0->getMemOperand());
14338 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
14339 // If the load value is used only by N, replace it via CombineTo N.
14340 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
14341 Combiner.CombineTo(N, ExtLoad);
14342 if (NoReplaceTrunc) {
14343 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
14344 Combiner.recursivelyDeleteUnusedNodes(LN0);
14345 } else {
14346 SDValue Trunc =
14347 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
14348 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
14349 }
14350 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14351}
14352
14353static SDValue
14355 bool LegalOperations, SDNode *N, SDValue N0,
14356 ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc) {
14357 if (!N0.hasOneUse())
14358 return SDValue();
14359
14361 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
14362 return SDValue();
14363
14364 if ((LegalOperations || !cast<MaskedLoadSDNode>(N0)->isSimple()) &&
14365 !TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0)))
14366 return SDValue();
14367
14368 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
14369 return SDValue();
14370
14371 SDLoc dl(Ld);
14372 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
14373 SDValue NewLoad = DAG.getMaskedLoad(
14374 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
14375 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
14376 ExtLoadType, Ld->isExpandingLoad());
14377 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
14378 return NewLoad;
14379}
14380
14381// fold ([s|z]ext (atomic_load)) -> ([s|z]ext (truncate ([s|z]ext atomic_load)))
14383 const TargetLowering &TLI, EVT VT,
14384 SDValue N0,
14385 ISD::LoadExtType ExtLoadType) {
14386 auto *ALoad = dyn_cast<AtomicSDNode>(N0);
14387 if (!ALoad || ALoad->getOpcode() != ISD::ATOMIC_LOAD)
14388 return {};
14389 EVT MemoryVT = ALoad->getMemoryVT();
14390 if (!TLI.isAtomicLoadExtLegal(ExtLoadType, VT, MemoryVT))
14391 return {};
14392 // Can't fold into ALoad if it is already extending differently.
14393 ISD::LoadExtType ALoadExtTy = ALoad->getExtensionType();
14394 if ((ALoadExtTy == ISD::ZEXTLOAD && ExtLoadType == ISD::SEXTLOAD) ||
14395 (ALoadExtTy == ISD::SEXTLOAD && ExtLoadType == ISD::ZEXTLOAD))
14396 return {};
14397
14398 EVT OrigVT = ALoad->getValueType(0);
14399 assert(OrigVT.getSizeInBits() < VT.getSizeInBits() && "VT should be wider.");
14400 auto *NewALoad = cast<AtomicSDNode>(DAG.getAtomicLoad(
14401 ExtLoadType, SDLoc(ALoad), MemoryVT, VT, ALoad->getChain(),
14402 ALoad->getBasePtr(), ALoad->getMemOperand()));
14404 SDValue(ALoad, 0),
14405 DAG.getNode(ISD::TRUNCATE, SDLoc(ALoad), OrigVT, SDValue(NewALoad, 0)));
14406 // Update the chain uses.
14407 DAG.ReplaceAllUsesOfValueWith(SDValue(ALoad, 1), SDValue(NewALoad, 1));
14408 return SDValue(NewALoad, 0);
14409}
14410
14412 bool LegalOperations) {
14413 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
14414 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
14415
14416 SDValue SetCC = N->getOperand(0);
14417 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
14418 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
14419 return SDValue();
14420
14421 SDValue X = SetCC.getOperand(0);
14422 SDValue Ones = SetCC.getOperand(1);
14423 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
14424 EVT VT = N->getValueType(0);
14425 EVT XVT = X.getValueType();
14426 // setge X, C is canonicalized to setgt, so we do not need to match that
14427 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
14428 // not require the 'not' op.
14429 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
14430 // Invert and smear/shift the sign bit:
14431 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
14432 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
14433 SDLoc DL(N);
14434 unsigned ShCt = VT.getSizeInBits() - 1;
14435 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14436 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
14437 SDValue NotX = DAG.getNOT(DL, X, VT);
14438 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
14439 auto ShiftOpcode =
14440 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
14441 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
14442 }
14443 }
14444 return SDValue();
14445}
14446
14447SDValue DAGCombiner::foldSextSetcc(SDNode *N) {
14448 SDValue N0 = N->getOperand(0);
14449 if (N0.getOpcode() != ISD::SETCC)
14450 return SDValue();
14451
14452 SDValue N00 = N0.getOperand(0);
14453 SDValue N01 = N0.getOperand(1);
14455 EVT VT = N->getValueType(0);
14456 EVT N00VT = N00.getValueType();
14457 SDLoc DL(N);
14458
14459 // Propagate fast-math-flags.
14460 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
14461
14462 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
14463 // the same size as the compared operands. Try to optimize sext(setcc())
14464 // if this is the case.
14465 if (VT.isVector() && !LegalOperations &&
14466 TLI.getBooleanContents(N00VT) ==
14468 EVT SVT = getSetCCResultType(N00VT);
14469
14470 // If we already have the desired type, don't change it.
14471 if (SVT != N0.getValueType()) {
14472 // We know that the # elements of the results is the same as the
14473 // # elements of the compare (and the # elements of the compare result
14474 // for that matter). Check to see that they are the same size. If so,
14475 // we know that the element size of the sext'd result matches the
14476 // element size of the compare operands.
14477 if (VT.getSizeInBits() == SVT.getSizeInBits())
14478 return DAG.getSetCC(DL, VT, N00, N01, CC);
14479
14480 // If the desired elements are smaller or larger than the source
14481 // elements, we can use a matching integer vector type and then
14482 // truncate/sign extend.
14483 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
14484 if (SVT == MatchingVecType) {
14485 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
14486 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
14487 }
14488 }
14489
14490 // Try to eliminate the sext of a setcc by zexting the compare operands.
14491 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) &&
14493 bool IsSignedCmp = ISD::isSignedIntSetCC(CC);
14494 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14495 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
14496
14497 // We have an unsupported narrow vector compare op that would be legal
14498 // if extended to the destination type. See if the compare operands
14499 // can be freely extended to the destination type.
14500 auto IsFreeToExtend = [&](SDValue V) {
14501 if (isConstantOrConstantVector(V, /*NoOpaques*/ true))
14502 return true;
14503 // Match a simple, non-extended load that can be converted to a
14504 // legal {z/s}ext-load.
14505 // TODO: Allow widening of an existing {z/s}ext-load?
14506 if (!(ISD::isNON_EXTLoad(V.getNode()) &&
14507 ISD::isUNINDEXEDLoad(V.getNode()) &&
14508 cast<LoadSDNode>(V)->isSimple() &&
14509 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType())))
14510 return false;
14511
14512 // Non-chain users of this value must either be the setcc in this
14513 // sequence or extends that can be folded into the new {z/s}ext-load.
14514 for (SDUse &Use : V->uses()) {
14515 // Skip uses of the chain and the setcc.
14516 SDNode *User = Use.getUser();
14517 if (Use.getResNo() != 0 || User == N0.getNode())
14518 continue;
14519 // Extra users must have exactly the same cast we are about to create.
14520 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
14521 // is enhanced similarly.
14522 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT)
14523 return false;
14524 }
14525 return true;
14526 };
14527
14528 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) {
14529 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00);
14530 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01);
14531 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC);
14532 }
14533 }
14534 }
14535
14536 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
14537 // Here, T can be 1 or -1, depending on the type of the setcc and
14538 // getBooleanContents().
14539 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
14540
14541 // To determine the "true" side of the select, we need to know the high bit
14542 // of the value returned by the setcc if it evaluates to true.
14543 // If the type of the setcc is i1, then the true case of the select is just
14544 // sext(i1 1), that is, -1.
14545 // If the type of the setcc is larger (say, i8) then the value of the high
14546 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
14547 // of the appropriate width.
14548 SDValue ExtTrueVal = (SetCCWidth == 1)
14549 ? DAG.getAllOnesConstant(DL, VT)
14550 : DAG.getBoolConstant(true, DL, VT, N00VT);
14551 SDValue Zero = DAG.getConstant(0, DL, VT);
14552 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
14553 return SCC;
14554
14555 if (!VT.isVector() && !shouldConvertSelectOfConstantsToMath(N0, VT, TLI)) {
14556 EVT SetCCVT = getSetCCResultType(N00VT);
14557 // Don't do this transform for i1 because there's a select transform
14558 // that would reverse it.
14559 // TODO: We should not do this transform at all without a target hook
14560 // because a sext is likely cheaper than a select?
14561 if (SetCCVT.getScalarSizeInBits() != 1 &&
14562 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
14563 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
14564 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
14565 }
14566 }
14567
14568 return SDValue();
14569}
14570
14571SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
14572 SDValue N0 = N->getOperand(0);
14573 EVT VT = N->getValueType(0);
14574 SDLoc DL(N);
14575
14576 if (VT.isVector())
14577 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
14578 return FoldedVOp;
14579
14580 // sext(undef) = 0 because the top bit will all be the same.
14581 if (N0.isUndef())
14582 return DAG.getConstant(0, DL, VT);
14583
14584 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
14585 return Res;
14586
14587 // fold (sext (sext x)) -> (sext x)
14588 // fold (sext (aext x)) -> (sext x)
14589 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
14590 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
14591
14592 // fold (sext (aext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
14593 // fold (sext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
14596 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
14597 N0.getOperand(0));
14598
14599 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
14600 SDValue N00 = N0.getOperand(0);
14601 EVT ExtVT = cast<VTSDNode>(N0->getOperand(1))->getVT();
14602 if (N00.getOpcode() == ISD::TRUNCATE || TLI.isTruncateFree(N00, ExtVT)) {
14603 // fold (sext (sext_inreg x)) -> (sext (trunc x))
14604 if ((!LegalTypes || TLI.isTypeLegal(ExtVT))) {
14605 SDValue T = DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N00);
14606 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, T);
14607 }
14608
14609 // If the trunc wasn't legal, try to fold to (sext_inreg (anyext x))
14610 if (!LegalTypes || TLI.isTypeLegal(VT)) {
14611 SDValue ExtSrc = DAG.getAnyExtOrTrunc(N00, DL, VT);
14612 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, ExtSrc,
14613 N0->getOperand(1));
14614 }
14615 }
14616 }
14617
14618 if (N0.getOpcode() == ISD::TRUNCATE) {
14619 // fold (sext (truncate (load x))) -> (sext (smaller load x))
14620 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
14621 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
14622 SDNode *oye = N0.getOperand(0).getNode();
14623 if (NarrowLoad.getNode() != N0.getNode()) {
14624 CombineTo(N0.getNode(), NarrowLoad);
14625 // CombineTo deleted the truncate, if needed, but not what's under it.
14626 AddToWorklist(oye);
14627 }
14628 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14629 }
14630
14631 // See if the value being truncated is already sign extended. If so, just
14632 // eliminate the trunc/sext pair.
14633 SDValue Op = N0.getOperand(0);
14634 unsigned OpBits = Op.getScalarValueSizeInBits();
14635 unsigned MidBits = N0.getScalarValueSizeInBits();
14636 unsigned DestBits = VT.getScalarSizeInBits();
14637
14638 if (N0->getFlags().hasNoSignedWrap() ||
14639 DAG.ComputeNumSignBits(Op) > OpBits - MidBits) {
14640 if (OpBits == DestBits) {
14641 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
14642 // bits, it is already ready.
14643 return Op;
14644 }
14645
14646 if (OpBits < DestBits) {
14647 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
14648 // bits, just sext from i32.
14649 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
14650 }
14651
14652 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
14653 // bits, just truncate to i32.
14654 SDNodeFlags Flags;
14655 Flags.setNoSignedWrap(true);
14656 Flags.setNoUnsignedWrap(N0->getFlags().hasNoUnsignedWrap());
14657 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags);
14658 }
14659
14660 // fold (sext (truncate x)) -> (sextinreg x).
14661 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
14662 N0.getValueType())) {
14663 if (OpBits < DestBits)
14664 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
14665 else if (OpBits > DestBits)
14666 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
14667 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
14668 DAG.getValueType(N0.getValueType()));
14669 }
14670 }
14671
14672 // Try to simplify (sext (load x)).
14673 if (SDValue foldedExt =
14674 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
14676 return foldedExt;
14677
14678 if (SDValue foldedExt =
14679 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0,
14681 return foldedExt;
14682
14683 // fold (sext (load x)) to multiple smaller sextloads.
14684 // Only on illegal but splittable vectors.
14685 if (SDValue ExtLoad = CombineExtLoad(N))
14686 return ExtLoad;
14687
14688 // Try to simplify (sext (sextload x)).
14689 if (SDValue foldedExt = tryToFoldExtOfExtload(
14690 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
14691 return foldedExt;
14692
14693 // Try to simplify (sext (atomic_load x)).
14694 if (SDValue foldedExt =
14695 tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::SEXTLOAD))
14696 return foldedExt;
14697
14698 // fold (sext (and/or/xor (load x), cst)) ->
14699 // (and/or/xor (sextload x), (sext cst))
14700 if (ISD::isBitwiseLogicOp(N0.getOpcode()) &&
14701 isa<LoadSDNode>(N0.getOperand(0)) &&
14702 N0.getOperand(1).getOpcode() == ISD::Constant &&
14703 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
14704 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
14705 EVT MemVT = LN00->getMemoryVT();
14706 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
14707 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
14709 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
14710 ISD::SIGN_EXTEND, SetCCs, TLI);
14711 if (DoXform) {
14712 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
14713 LN00->getChain(), LN00->getBasePtr(),
14714 LN00->getMemoryVT(),
14715 LN00->getMemOperand());
14716 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
14717 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
14718 ExtLoad, DAG.getConstant(Mask, DL, VT));
14719 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
14720 bool NoReplaceTruncAnd = !N0.hasOneUse();
14721 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
14722 CombineTo(N, And);
14723 // If N0 has multiple uses, change other uses as well.
14724 if (NoReplaceTruncAnd) {
14725 SDValue TruncAnd =
14727 CombineTo(N0.getNode(), TruncAnd);
14728 }
14729 if (NoReplaceTrunc) {
14730 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
14731 } else {
14732 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
14733 LN00->getValueType(0), ExtLoad);
14734 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
14735 }
14736 return SDValue(N,0); // Return N so it doesn't get rechecked!
14737 }
14738 }
14739 }
14740
14741 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
14742 return V;
14743
14744 if (SDValue V = foldSextSetcc(N))
14745 return V;
14746
14747 // fold (sext x) -> (zext x) if the sign bit is known zero.
14748 if (!TLI.isSExtCheaperThanZExt(N0.getValueType(), VT) &&
14749 (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
14750 DAG.SignBitIsZero(N0))
14751 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0, SDNodeFlags::NonNeg);
14752
14753 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14754 return NewVSel;
14755
14756 // Eliminate this sign extend by doing a negation in the destination type:
14757 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
14758 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
14762 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
14763 return DAG.getNegative(Zext, DL, VT);
14764 }
14765 // Eliminate this sign extend by doing a decrement in the destination type:
14766 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
14767 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
14771 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
14772 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
14773 }
14774
14775 // fold sext (not i1 X) -> add (zext i1 X), -1
14776 // TODO: This could be extended to handle bool vectors.
14777 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
14778 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
14779 TLI.isOperationLegal(ISD::ADD, VT)))) {
14780 // If we can eliminate the 'not', the sext form should be better
14781 if (SDValue NewXor = visitXOR(N0.getNode())) {
14782 // Returning N0 is a form of in-visit replacement that may have
14783 // invalidated N0.
14784 if (NewXor.getNode() == N0.getNode()) {
14785 // Return SDValue here as the xor should have already been replaced in
14786 // this sext.
14787 return SDValue();
14788 }
14789
14790 // Return a new sext with the new xor.
14791 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
14792 }
14793
14794 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
14795 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
14796 }
14797
14798 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
14799 return Res;
14800
14801 return SDValue();
14802}
14803
14804/// Given an extending node with a pop-count operand, if the target does not
14805/// support a pop-count in the narrow source type but does support it in the
14806/// destination type, widen the pop-count to the destination type.
14807static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG, const SDLoc &DL) {
14808 assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
14809 Extend->getOpcode() == ISD::ANY_EXTEND) &&
14810 "Expected extend op");
14811
14812 SDValue CtPop = Extend->getOperand(0);
14813 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
14814 return SDValue();
14815
14816 EVT VT = Extend->getValueType(0);
14817 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14820 return SDValue();
14821
14822 // zext (ctpop X) --> ctpop (zext X)
14823 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
14824 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
14825}
14826
14827// If we have (zext (abs X)) where X is a type that will be promoted by type
14828// legalization, convert to (abs (sext X)). But don't extend past a legal type.
14829static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG) {
14830 assert(Extend->getOpcode() == ISD::ZERO_EXTEND && "Expected zero extend.");
14831
14832 EVT VT = Extend->getValueType(0);
14833 if (VT.isVector())
14834 return SDValue();
14835
14836 SDValue Abs = Extend->getOperand(0);
14837 if (Abs.getOpcode() != ISD::ABS || !Abs.hasOneUse())
14838 return SDValue();
14839
14840 EVT AbsVT = Abs.getValueType();
14841 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14842 if (TLI.getTypeAction(*DAG.getContext(), AbsVT) !=
14844 return SDValue();
14845
14846 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), AbsVT);
14847
14848 SDValue SExt =
14849 DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Abs), LegalVT, Abs.getOperand(0));
14850 SDValue NewAbs = DAG.getNode(ISD::ABS, SDLoc(Abs), LegalVT, SExt);
14851 return DAG.getZExtOrTrunc(NewAbs, SDLoc(Extend), VT);
14852}
14853
14854SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
14855 SDValue N0 = N->getOperand(0);
14856 EVT VT = N->getValueType(0);
14857 SDLoc DL(N);
14858
14859 if (VT.isVector())
14860 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
14861 return FoldedVOp;
14862
14863 // zext(undef) = 0
14864 if (N0.isUndef())
14865 return DAG.getConstant(0, DL, VT);
14866
14867 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
14868 return Res;
14869
14870 // fold (zext (zext x)) -> (zext x)
14871 // fold (zext (aext x)) -> (zext x)
14872 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
14873 SDNodeFlags Flags;
14874 if (N0.getOpcode() == ISD::ZERO_EXTEND)
14875 Flags.setNonNeg(N0->getFlags().hasNonNeg());
14876 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0), Flags);
14877 }
14878
14879 // fold (zext (aext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
14880 // fold (zext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
14883 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, N0.getOperand(0));
14884
14885 // fold (zext (truncate x)) -> (zext x) or
14886 // (zext (truncate x)) -> (truncate x)
14887 // This is valid when the truncated bits of x are already zero.
14888 SDValue Op;
14889 KnownBits Known;
14890 if (isTruncateOf(DAG, N0, Op, Known)) {
14891 APInt TruncatedBits =
14892 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
14893 APInt(Op.getScalarValueSizeInBits(), 0) :
14894 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
14895 N0.getScalarValueSizeInBits(),
14896 std::min(Op.getScalarValueSizeInBits(),
14897 VT.getScalarSizeInBits()));
14898 if (TruncatedBits.isSubsetOf(Known.Zero)) {
14899 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT);
14900 DAG.salvageDebugInfo(*N0.getNode());
14901
14902 return ZExtOrTrunc;
14903 }
14904 }
14905
14906 // fold (zext (truncate x)) -> (and x, mask)
14907 if (N0.getOpcode() == ISD::TRUNCATE) {
14908 // fold (zext (truncate (load x))) -> (zext (smaller load x))
14909 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
14910 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
14911 SDNode *oye = N0.getOperand(0).getNode();
14912 if (NarrowLoad.getNode() != N0.getNode()) {
14913 CombineTo(N0.getNode(), NarrowLoad);
14914 // CombineTo deleted the truncate, if needed, but not what's under it.
14915 AddToWorklist(oye);
14916 }
14917 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14918 }
14919
14920 EVT SrcVT = N0.getOperand(0).getValueType();
14921 EVT MinVT = N0.getValueType();
14922
14923 if (N->getFlags().hasNonNeg()) {
14924 SDValue Op = N0.getOperand(0);
14925 unsigned OpBits = SrcVT.getScalarSizeInBits();
14926 unsigned MidBits = MinVT.getScalarSizeInBits();
14927 unsigned DestBits = VT.getScalarSizeInBits();
14928
14929 if (N0->getFlags().hasNoSignedWrap() ||
14930 DAG.ComputeNumSignBits(Op) > OpBits - MidBits) {
14931 if (OpBits == DestBits) {
14932 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
14933 // bits, it is already ready.
14934 return Op;
14935 }
14936
14937 if (OpBits < DestBits) {
14938 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
14939 // bits, just sext from i32.
14940 // FIXME: This can probably be ZERO_EXTEND nneg?
14941 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
14942 }
14943
14944 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
14945 // bits, just truncate to i32.
14946 SDNodeFlags Flags;
14947 Flags.setNoSignedWrap(true);
14948 Flags.setNoUnsignedWrap(true);
14949 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags);
14950 }
14951 }
14952
14953 // Try to mask before the extension to avoid having to generate a larger mask,
14954 // possibly over several sub-vectors.
14955 if (SrcVT.bitsLT(VT) && VT.isVector()) {
14956 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
14958 SDValue Op = N0.getOperand(0);
14959 Op = DAG.getZeroExtendInReg(Op, DL, MinVT);
14960 AddToWorklist(Op.getNode());
14961 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT);
14962 // Transfer the debug info; the new node is equivalent to N0.
14963 DAG.transferDbgValues(N0, ZExtOrTrunc);
14964 return ZExtOrTrunc;
14965 }
14966 }
14967
14968 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
14969 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT);
14970 AddToWorklist(Op.getNode());
14971 SDValue And = DAG.getZeroExtendInReg(Op, DL, MinVT);
14972 // We may safely transfer the debug info describing the truncate node over
14973 // to the equivalent and operation.
14974 DAG.transferDbgValues(N0, And);
14975 return And;
14976 }
14977 }
14978
14979 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
14980 // if either of the casts is not free.
14981 if (N0.getOpcode() == ISD::AND &&
14982 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
14983 N0.getOperand(1).getOpcode() == ISD::Constant &&
14984 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType()) ||
14985 !TLI.isZExtFree(N0.getValueType(), VT))) {
14986 SDValue X = N0.getOperand(0).getOperand(0);
14987 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
14988 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
14989 return DAG.getNode(ISD::AND, DL, VT,
14990 X, DAG.getConstant(Mask, DL, VT));
14991 }
14992
14993 // Try to simplify (zext (load x)).
14994 if (SDValue foldedExt = tryToFoldExtOfLoad(
14995 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD,
14996 ISD::ZERO_EXTEND, N->getFlags().hasNonNeg()))
14997 return foldedExt;
14998
14999 if (SDValue foldedExt =
15000 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0,
15002 return foldedExt;
15003
15004 // fold (zext (load x)) to multiple smaller zextloads.
15005 // Only on illegal but splittable vectors.
15006 if (SDValue ExtLoad = CombineExtLoad(N))
15007 return ExtLoad;
15008
15009 // Try to simplify (zext (atomic_load x)).
15010 if (SDValue foldedExt =
15011 tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::ZEXTLOAD))
15012 return foldedExt;
15013
15014 // fold (zext (and/or/xor (load x), cst)) ->
15015 // (and/or/xor (zextload x), (zext cst))
15016 // Unless (and (load x) cst) will match as a zextload already and has
15017 // additional users, or the zext is already free.
15018 if (ISD::isBitwiseLogicOp(N0.getOpcode()) && !TLI.isZExtFree(N0, VT) &&
15019 isa<LoadSDNode>(N0.getOperand(0)) &&
15020 N0.getOperand(1).getOpcode() == ISD::Constant &&
15021 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
15022 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
15023 EVT MemVT = LN00->getMemoryVT();
15024 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
15025 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
15026 bool DoXform = true;
15028 if (!N0.hasOneUse()) {
15029 if (N0.getOpcode() == ISD::AND) {
15030 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
15031 EVT LoadResultTy = AndC->getValueType(0);
15032 EVT ExtVT;
15033 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
15034 DoXform = false;
15035 }
15036 }
15037 if (DoXform)
15038 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
15039 ISD::ZERO_EXTEND, SetCCs, TLI);
15040 if (DoXform) {
15041 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
15042 LN00->getChain(), LN00->getBasePtr(),
15043 LN00->getMemoryVT(),
15044 LN00->getMemOperand());
15045 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
15046 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
15047 ExtLoad, DAG.getConstant(Mask, DL, VT));
15048 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
15049 bool NoReplaceTruncAnd = !N0.hasOneUse();
15050 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
15051 CombineTo(N, And);
15052 // If N0 has multiple uses, change other uses as well.
15053 if (NoReplaceTruncAnd) {
15054 SDValue TruncAnd =
15056 CombineTo(N0.getNode(), TruncAnd);
15057 }
15058 if (NoReplaceTrunc) {
15059 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
15060 } else {
15061 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
15062 LN00->getValueType(0), ExtLoad);
15063 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
15064 }
15065 return SDValue(N,0); // Return N so it doesn't get rechecked!
15066 }
15067 }
15068 }
15069
15070 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
15071 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
15072 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
15073 return ZExtLoad;
15074
15075 // Try to simplify (zext (zextload x)).
15076 if (SDValue foldedExt = tryToFoldExtOfExtload(
15077 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
15078 return foldedExt;
15079
15080 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
15081 return V;
15082
15083 if (N0.getOpcode() == ISD::SETCC) {
15084 // Propagate fast-math-flags.
15085 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
15086
15087 // Only do this before legalize for now.
15088 if (!LegalOperations && VT.isVector() &&
15089 N0.getValueType().getVectorElementType() == MVT::i1) {
15090 EVT N00VT = N0.getOperand(0).getValueType();
15091 if (getSetCCResultType(N00VT) == N0.getValueType())
15092 return SDValue();
15093
15094 // We know that the # elements of the results is the same as the #
15095 // elements of the compare (and the # elements of the compare result for
15096 // that matter). Check to see that they are the same size. If so, we know
15097 // that the element size of the sext'd result matches the element size of
15098 // the compare operands.
15099 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
15100 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
15101 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
15102 N0.getOperand(1), N0.getOperand(2));
15103 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
15104 }
15105
15106 // If the desired elements are smaller or larger than the source
15107 // elements we can use a matching integer vector type and then
15108 // truncate/any extend followed by zext_in_reg.
15109 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
15110 SDValue VsetCC =
15111 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
15112 N0.getOperand(1), N0.getOperand(2));
15113 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
15114 N0.getValueType());
15115 }
15116
15117 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
15118 EVT N0VT = N0.getValueType();
15119 EVT N00VT = N0.getOperand(0).getValueType();
15120 if (SDValue SCC = SimplifySelectCC(
15121 DL, N0.getOperand(0), N0.getOperand(1),
15122 DAG.getBoolConstant(true, DL, N0VT, N00VT),
15123 DAG.getBoolConstant(false, DL, N0VT, N00VT),
15124 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
15125 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
15126 }
15127
15128 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
15129 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
15130 !TLI.isZExtFree(N0, VT)) {
15131 SDValue ShVal = N0.getOperand(0);
15132 SDValue ShAmt = N0.getOperand(1);
15133 if (auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt)) {
15134 if (ShVal.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse()) {
15135 if (N0.getOpcode() == ISD::SHL) {
15136 // If the original shl may be shifting out bits, do not perform this
15137 // transformation.
15138 unsigned KnownZeroBits = ShVal.getValueSizeInBits() -
15139 ShVal.getOperand(0).getValueSizeInBits();
15140 if (ShAmtC->getAPIntValue().ugt(KnownZeroBits)) {
15141 // If the shift is too large, then see if we can deduce that the
15142 // shift is safe anyway.
15143
15144 // Check if the bits being shifted out are known to be zero.
15145 KnownBits KnownShVal = DAG.computeKnownBits(ShVal);
15146 if (ShAmtC->getAPIntValue().ugt(KnownShVal.countMinLeadingZeros()))
15147 return SDValue();
15148 }
15149 }
15150
15151 // Ensure that the shift amount is wide enough for the shifted value.
15152 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
15153 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
15154
15155 return DAG.getNode(N0.getOpcode(), DL, VT,
15156 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ShVal), ShAmt);
15157 }
15158 }
15159 }
15160
15161 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
15162 return NewVSel;
15163
15164 if (SDValue NewCtPop = widenCtPop(N, DAG, DL))
15165 return NewCtPop;
15166
15167 if (SDValue V = widenAbs(N, DAG))
15168 return V;
15169
15170 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
15171 return Res;
15172
15173 // CSE zext nneg with sext if the zext is not free.
15174 if (N->getFlags().hasNonNeg() && !TLI.isZExtFree(N0.getValueType(), VT)) {
15175 SDNode *CSENode = DAG.getNodeIfExists(ISD::SIGN_EXTEND, N->getVTList(), N0);
15176 if (CSENode)
15177 return SDValue(CSENode, 0);
15178 }
15179
15180 return SDValue();
15181}
15182
15183SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
15184 SDValue N0 = N->getOperand(0);
15185 EVT VT = N->getValueType(0);
15186 SDLoc DL(N);
15187
15188 // aext(undef) = undef
15189 if (N0.isUndef())
15190 return DAG.getUNDEF(VT);
15191
15192 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
15193 return Res;
15194
15195 // fold (aext (aext x)) -> (aext x)
15196 // fold (aext (zext x)) -> (zext x)
15197 // fold (aext (sext x)) -> (sext x)
15198 if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND ||
15199 N0.getOpcode() == ISD::SIGN_EXTEND) {
15200 SDNodeFlags Flags;
15201 if (N0.getOpcode() == ISD::ZERO_EXTEND)
15202 Flags.setNonNeg(N0->getFlags().hasNonNeg());
15203 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Flags);
15204 }
15205
15206 // fold (aext (aext_extend_vector_inreg x)) -> (aext_extend_vector_inreg x)
15207 // fold (aext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
15208 // fold (aext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
15212 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0));
15213
15214 // fold (aext (truncate (load x))) -> (aext (smaller load x))
15215 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
15216 if (N0.getOpcode() == ISD::TRUNCATE) {
15217 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
15218 SDNode *oye = N0.getOperand(0).getNode();
15219 if (NarrowLoad.getNode() != N0.getNode()) {
15220 CombineTo(N0.getNode(), NarrowLoad);
15221 // CombineTo deleted the truncate, if needed, but not what's under it.
15222 AddToWorklist(oye);
15223 }
15224 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15225 }
15226 }
15227
15228 // fold (aext (truncate x))
15229 if (N0.getOpcode() == ISD::TRUNCATE)
15230 return DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT);
15231
15232 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
15233 // if the trunc is not free.
15234 if (N0.getOpcode() == ISD::AND &&
15235 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
15236 N0.getOperand(1).getOpcode() == ISD::Constant &&
15237 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType())) {
15238 SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
15239 SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1));
15240 assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!");
15241 return DAG.getNode(ISD::AND, DL, VT, X, Y);
15242 }
15243
15244 // fold (aext (load x)) -> (aext (truncate (extload x)))
15245 // None of the supported targets knows how to perform load and any_ext
15246 // on vectors in one instruction, so attempt to fold to zext instead.
15247 if (VT.isVector()) {
15248 // Try to simplify (zext (load x)).
15249 if (SDValue foldedExt =
15250 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
15252 return foldedExt;
15253 } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
15256 bool DoXform = true;
15258 if (!N0.hasOneUse())
15259 DoXform =
15260 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
15261 if (DoXform) {
15262 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15263 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, LN0->getChain(),
15264 LN0->getBasePtr(), N0.getValueType(),
15265 LN0->getMemOperand());
15266 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
15267 // If the load value is used only by N, replace it via CombineTo N.
15268 bool NoReplaceTrunc = N0.hasOneUse();
15269 CombineTo(N, ExtLoad);
15270 if (NoReplaceTrunc) {
15271 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
15272 recursivelyDeleteUnusedNodes(LN0);
15273 } else {
15274 SDValue Trunc =
15275 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
15276 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
15277 }
15278 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15279 }
15280 }
15281
15282 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
15283 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
15284 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
15285 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
15286 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
15287 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15288 ISD::LoadExtType ExtType = LN0->getExtensionType();
15289 EVT MemVT = LN0->getMemoryVT();
15290 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
15291 SDValue ExtLoad =
15292 DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), LN0->getBasePtr(),
15293 MemVT, LN0->getMemOperand());
15294 CombineTo(N, ExtLoad);
15295 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
15296 recursivelyDeleteUnusedNodes(LN0);
15297 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15298 }
15299 }
15300
15301 if (N0.getOpcode() == ISD::SETCC) {
15302 // Propagate fast-math-flags.
15303 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
15304
15305 // For vectors:
15306 // aext(setcc) -> vsetcc
15307 // aext(setcc) -> truncate(vsetcc)
15308 // aext(setcc) -> aext(vsetcc)
15309 // Only do this before legalize for now.
15310 if (VT.isVector() && !LegalOperations) {
15311 EVT N00VT = N0.getOperand(0).getValueType();
15312 if (getSetCCResultType(N00VT) == N0.getValueType())
15313 return SDValue();
15314
15315 // We know that the # elements of the results is the same as the
15316 // # elements of the compare (and the # elements of the compare result
15317 // for that matter). Check to see that they are the same size. If so,
15318 // we know that the element size of the sext'd result matches the
15319 // element size of the compare operands.
15320 if (VT.getSizeInBits() == N00VT.getSizeInBits())
15321 return DAG.getSetCC(DL, VT, N0.getOperand(0), N0.getOperand(1),
15322 cast<CondCodeSDNode>(N0.getOperand(2))->get());
15323
15324 // If the desired elements are smaller or larger than the source
15325 // elements we can use a matching integer vector type and then
15326 // truncate/any extend
15327 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
15328 SDValue VsetCC = DAG.getSetCC(
15329 DL, MatchingVectorType, N0.getOperand(0), N0.getOperand(1),
15330 cast<CondCodeSDNode>(N0.getOperand(2))->get());
15331 return DAG.getAnyExtOrTrunc(VsetCC, DL, VT);
15332 }
15333
15334 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
15335 if (SDValue SCC = SimplifySelectCC(
15336 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
15337 DAG.getConstant(0, DL, VT),
15338 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
15339 return SCC;
15340 }
15341
15342 if (SDValue NewCtPop = widenCtPop(N, DAG, DL))
15343 return NewCtPop;
15344
15345 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
15346 return Res;
15347
15348 return SDValue();
15349}
15350
15351SDValue DAGCombiner::visitAssertExt(SDNode *N) {
15352 unsigned Opcode = N->getOpcode();
15353 SDValue N0 = N->getOperand(0);
15354 SDValue N1 = N->getOperand(1);
15355 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
15356
15357 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
15358 if (N0.getOpcode() == Opcode &&
15359 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
15360 return N0;
15361
15362 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
15363 N0.getOperand(0).getOpcode() == Opcode) {
15364 // We have an assert, truncate, assert sandwich. Make one stronger assert
15365 // by asserting on the smallest asserted type to the larger source type.
15366 // This eliminates the later assert:
15367 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
15368 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
15369 SDLoc DL(N);
15370 SDValue BigA = N0.getOperand(0);
15371 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15372 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
15373 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
15374 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
15375 BigA.getOperand(0), MinAssertVTVal);
15376 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
15377 }
15378
15379 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
15380 // than X. Just move the AssertZext in front of the truncate and drop the
15381 // AssertSExt.
15382 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
15384 Opcode == ISD::AssertZext) {
15385 SDValue BigA = N0.getOperand(0);
15386 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15387 if (AssertVT.bitsLT(BigA_AssertVT)) {
15388 SDLoc DL(N);
15389 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
15390 BigA.getOperand(0), N1);
15391 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
15392 }
15393 }
15394
15395 if (Opcode == ISD::AssertZext && N0.getOpcode() == ISD::AND &&
15397 const APInt &Mask = N0.getConstantOperandAPInt(1);
15398
15399 // If we have (AssertZext (and (AssertSext X, iX), M), iY) and Y is smaller
15400 // than X, and the And doesn't change the lower iX bits, we can move the
15401 // AssertZext in front of the And and drop the AssertSext.
15402 if (N0.getOperand(0).getOpcode() == ISD::AssertSext && N0.hasOneUse()) {
15403 SDValue BigA = N0.getOperand(0);
15404 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15405 if (AssertVT.bitsLT(BigA_AssertVT) &&
15406 Mask.countr_one() >= BigA_AssertVT.getScalarSizeInBits()) {
15407 SDLoc DL(N);
15408 SDValue NewAssert =
15409 DAG.getNode(Opcode, DL, N->getValueType(0), BigA.getOperand(0), N1);
15410 return DAG.getNode(ISD::AND, DL, N->getValueType(0), NewAssert,
15411 N0.getOperand(1));
15412 }
15413 }
15414
15415 // Remove AssertZext entirely if the mask guarantees the assertion cannot
15416 // fail.
15417 // TODO: Use KB countMinLeadingZeros to handle non-constant masks?
15418 if (Mask.isIntN(AssertVT.getScalarSizeInBits()))
15419 return N0;
15420 }
15421
15422 return SDValue();
15423}
15424
15425SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
15426 SDLoc DL(N);
15427
15428 Align AL = cast<AssertAlignSDNode>(N)->getAlign();
15429 SDValue N0 = N->getOperand(0);
15430
15431 // Fold (assertalign (assertalign x, AL0), AL1) ->
15432 // (assertalign x, max(AL0, AL1))
15433 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
15434 return DAG.getAssertAlign(DL, N0.getOperand(0),
15435 std::max(AL, AAN->getAlign()));
15436
15437 // In rare cases, there are trivial arithmetic ops in source operands. Sink
15438 // this assert down to source operands so that those arithmetic ops could be
15439 // exposed to the DAG combining.
15440 switch (N0.getOpcode()) {
15441 default:
15442 break;
15443 case ISD::ADD:
15444 case ISD::PTRADD:
15445 case ISD::SUB: {
15446 unsigned AlignShift = Log2(AL);
15447 SDValue LHS = N0.getOperand(0);
15448 SDValue RHS = N0.getOperand(1);
15449 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
15450 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
15451 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
15452 if (LHSAlignShift < AlignShift)
15453 LHS = DAG.getAssertAlign(DL, LHS, AL);
15454 if (RHSAlignShift < AlignShift)
15455 RHS = DAG.getAssertAlign(DL, RHS, AL);
15456 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
15457 }
15458 break;
15459 }
15460 }
15461
15462 return SDValue();
15463}
15464
15465/// If the result of a load is shifted/masked/truncated to an effectively
15466/// narrower type, try to transform the load to a narrower type and/or
15467/// use an extending load.
15468SDValue DAGCombiner::reduceLoadWidth(SDNode *N) {
15469 unsigned Opc = N->getOpcode();
15470
15472 SDValue N0 = N->getOperand(0);
15473 EVT VT = N->getValueType(0);
15474 EVT ExtVT = VT;
15475
15476 // This transformation isn't valid for vector loads.
15477 if (VT.isVector())
15478 return SDValue();
15479
15480 // The ShAmt variable is used to indicate that we've consumed a right
15481 // shift. I.e. we want to narrow the width of the load by skipping to load the
15482 // ShAmt least significant bits.
15483 unsigned ShAmt = 0;
15484 // A special case is when the least significant bits from the load are masked
15485 // away, but using an AND rather than a right shift. HasShiftedOffset is used
15486 // to indicate that the narrowed load should be left-shifted ShAmt bits to get
15487 // the result.
15488 unsigned ShiftedOffset = 0;
15489 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
15490 // extended to VT.
15491 if (Opc == ISD::SIGN_EXTEND_INREG) {
15492 ExtType = ISD::SEXTLOAD;
15493 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
15494 } else if (Opc == ISD::SRL || Opc == ISD::SRA) {
15495 // Another special-case: SRL/SRA is basically zero/sign-extending a narrower
15496 // value, or it may be shifting a higher subword, half or byte into the
15497 // lowest bits.
15498
15499 // Only handle shift with constant shift amount, and the shiftee must be a
15500 // load.
15501 auto *LN = dyn_cast<LoadSDNode>(N0);
15502 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15503 if (!N1C || !LN)
15504 return SDValue();
15505 // If the shift amount is larger than the memory type then we're not
15506 // accessing any of the loaded bytes.
15507 ShAmt = N1C->getZExtValue();
15508 uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits();
15509 if (MemoryWidth <= ShAmt)
15510 return SDValue();
15511 // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD.
15512 ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
15513 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
15514 // If original load is a SEXTLOAD then we can't simply replace it by a
15515 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD
15516 // followed by a ZEXT, but that is not handled at the moment). Similarly if
15517 // the original load is a ZEXTLOAD and we want to use a SEXTLOAD.
15518 if ((LN->getExtensionType() == ISD::SEXTLOAD ||
15519 LN->getExtensionType() == ISD::ZEXTLOAD) &&
15520 LN->getExtensionType() != ExtType)
15521 return SDValue();
15522 } else if (Opc == ISD::AND) {
15523 // An AND with a constant mask is the same as a truncate + zero-extend.
15524 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
15525 if (!AndC)
15526 return SDValue();
15527
15528 const APInt &Mask = AndC->getAPIntValue();
15529 unsigned ActiveBits = 0;
15530 if (Mask.isMask()) {
15531 ActiveBits = Mask.countr_one();
15532 } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) {
15533 ShiftedOffset = ShAmt;
15534 } else {
15535 return SDValue();
15536 }
15537
15538 ExtType = ISD::ZEXTLOAD;
15539 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
15540 }
15541
15542 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing
15543 // a right shift. Here we redo some of those checks, to possibly adjust the
15544 // ExtVT even further based on "a masking AND". We could also end up here for
15545 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks
15546 // need to be done here as well.
15547 if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) {
15548 SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0;
15549 // Bail out when the SRL has more than one use. This is done for historical
15550 // (undocumented) reasons. Maybe intent was to guard the AND-masking below
15551 // check below? And maybe it could be non-profitable to do the transform in
15552 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL?
15553 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case.
15554 if (!SRL.hasOneUse())
15555 return SDValue();
15556
15557 // Only handle shift with constant shift amount, and the shiftee must be a
15558 // load.
15559 auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0));
15560 auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1));
15561 if (!SRL1C || !LN)
15562 return SDValue();
15563
15564 // If the shift amount is larger than the input type then we're not
15565 // accessing any of the loaded bytes. If the load was a zextload/extload
15566 // then the result of the shift+trunc is zero/undef (handled elsewhere).
15567 ShAmt = SRL1C->getZExtValue();
15568 uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits();
15569 if (ShAmt >= MemoryWidth)
15570 return SDValue();
15571
15572 // Because a SRL must be assumed to *need* to zero-extend the high bits
15573 // (as opposed to anyext the high bits), we can't combine the zextload
15574 // lowering of SRL and an sextload.
15575 if (LN->getExtensionType() == ISD::SEXTLOAD)
15576 return SDValue();
15577
15578 // Avoid reading outside the memory accessed by the original load (could
15579 // happened if we only adjust the load base pointer by ShAmt). Instead we
15580 // try to narrow the load even further. The typical scenario here is:
15581 // (i64 (truncate (i96 (srl (load x), 64)))) ->
15582 // (i64 (truncate (i96 (zextload (load i32 + offset) from i32))))
15583 if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) {
15584 // Don't replace sextload by zextload.
15585 if (ExtType == ISD::SEXTLOAD)
15586 return SDValue();
15587 // Narrow the load.
15588 ExtType = ISD::ZEXTLOAD;
15589 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
15590 }
15591
15592 // If the SRL is only used by a masking AND, we may be able to adjust
15593 // the ExtVT to make the AND redundant.
15594 SDNode *Mask = *(SRL->user_begin());
15595 if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND &&
15596 isa<ConstantSDNode>(Mask->getOperand(1))) {
15597 unsigned Offset, ActiveBits;
15598 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
15599 if (ShiftMask.isMask()) {
15600 EVT MaskedVT =
15601 EVT::getIntegerVT(*DAG.getContext(), ShiftMask.countr_one());
15602 // If the mask is smaller, recompute the type.
15603 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
15604 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT))
15605 ExtVT = MaskedVT;
15606 } else if (ExtType == ISD::ZEXTLOAD &&
15607 ShiftMask.isShiftedMask(Offset, ActiveBits) &&
15608 (Offset + ShAmt) < VT.getScalarSizeInBits()) {
15609 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
15610 // If the mask is shifted we can use a narrower load and a shl to insert
15611 // the trailing zeros.
15612 if (((Offset + ActiveBits) <= ExtVT.getScalarSizeInBits()) &&
15613 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) {
15614 ExtVT = MaskedVT;
15615 ShAmt = Offset + ShAmt;
15616 ShiftedOffset = Offset;
15617 }
15618 }
15619 }
15620
15621 N0 = SRL.getOperand(0);
15622 }
15623
15624 // If the load is shifted left (and the result isn't shifted back right), we
15625 // can fold a truncate through the shift. The typical scenario is that N
15626 // points at a TRUNCATE here so the attempted fold is:
15627 // (truncate (shl (load x), c))) -> (shl (narrow load x), c)
15628 // ShLeftAmt will indicate how much a narrowed load should be shifted left.
15629 unsigned ShLeftAmt = 0;
15630 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
15631 ExtVT == VT && TLI.isNarrowingProfitable(N, N0.getValueType(), VT)) {
15632 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
15633 ShLeftAmt = N01->getZExtValue();
15634 N0 = N0.getOperand(0);
15635 }
15636 }
15637
15638 // If we haven't found a load, we can't narrow it.
15639 if (!isa<LoadSDNode>(N0))
15640 return SDValue();
15641
15642 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15643 // Reducing the width of a volatile load is illegal. For atomics, we may be
15644 // able to reduce the width provided we never widen again. (see D66309)
15645 if (!LN0->isSimple() ||
15646 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
15647 return SDValue();
15648
15649 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
15650 unsigned LVTStoreBits =
15652 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedValue();
15653 return LVTStoreBits - EVTStoreBits - ShAmt;
15654 };
15655
15656 // We need to adjust the pointer to the load by ShAmt bits in order to load
15657 // the correct bytes.
15658 unsigned PtrAdjustmentInBits =
15659 DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt;
15660
15661 uint64_t PtrOff = PtrAdjustmentInBits / 8;
15662 SDLoc DL(LN0);
15663 // The original load itself didn't wrap, so an offset within it doesn't.
15664 SDValue NewPtr =
15667 AddToWorklist(NewPtr.getNode());
15668
15669 SDValue Load;
15670 if (ExtType == ISD::NON_EXTLOAD) {
15671 const MDNode *OldRanges = LN0->getRanges();
15672 const MDNode *NewRanges = nullptr;
15673 // If LSBs are loaded and the truncated ConstantRange for the OldRanges
15674 // metadata is not the full-set for the new width then create a NewRanges
15675 // metadata for the truncated load
15676 if (ShAmt == 0 && OldRanges) {
15677 ConstantRange CR = getConstantRangeFromMetadata(*OldRanges);
15678 unsigned BitSize = VT.getScalarSizeInBits();
15679
15680 // It is possible for an 8-bit extending load with 8-bit range
15681 // metadata to be narrowed to an 8-bit load. This guard is necessary to
15682 // ensure that truncation is strictly smaller.
15683 if (CR.getBitWidth() > BitSize) {
15684 ConstantRange TruncatedCR = CR.truncate(BitSize);
15685 if (!TruncatedCR.isFullSet()) {
15686 Metadata *Bounds[2] = {
15688 ConstantInt::get(*DAG.getContext(), TruncatedCR.getLower())),
15690 ConstantInt::get(*DAG.getContext(), TruncatedCR.getUpper()))};
15691 NewRanges = MDNode::get(*DAG.getContext(), Bounds);
15692 }
15693 } else if (CR.getBitWidth() == BitSize)
15694 NewRanges = OldRanges;
15695 }
15696 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
15697 LN0->getPointerInfo().getWithOffset(PtrOff),
15698 LN0->getBaseAlign(), LN0->getMemOperand()->getFlags(),
15699 LN0->getAAInfo(), NewRanges);
15700 } else
15701 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
15702 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
15703 LN0->getBaseAlign(), LN0->getMemOperand()->getFlags(),
15704 LN0->getAAInfo());
15705
15706 // Replace the old load's chain with the new load's chain.
15707 WorklistRemover DeadNodes(*this);
15708 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15709
15710 // Shift the result left, if we've swallowed a left shift.
15712 if (ShLeftAmt != 0) {
15713 // If the shift amount is as large as the result size (but, presumably,
15714 // no larger than the source) then the useful bits of the result are
15715 // zero; we can't simply return the shortened shift, because the result
15716 // of that operation is undefined.
15717 if (ShLeftAmt >= VT.getScalarSizeInBits())
15718 Result = DAG.getConstant(0, DL, VT);
15719 else
15720 Result = DAG.getNode(ISD::SHL, DL, VT, Result,
15721 DAG.getShiftAmountConstant(ShLeftAmt, VT, DL));
15722 }
15723
15724 if (ShiftedOffset != 0) {
15725 // We're using a shifted mask, so the load now has an offset. This means
15726 // that data has been loaded into the lower bytes than it would have been
15727 // before, so we need to shl the loaded data into the correct position in the
15728 // register.
15729 SDValue ShiftC = DAG.getConstant(ShiftedOffset, DL, VT);
15730 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
15731 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
15732 }
15733
15734 // Return the new loaded value.
15735 return Result;
15736}
15737
15738SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
15739 SDValue N0 = N->getOperand(0);
15740 SDValue N1 = N->getOperand(1);
15741 EVT VT = N->getValueType(0);
15742 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
15743 unsigned VTBits = VT.getScalarSizeInBits();
15744 unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
15745 SDLoc DL(N);
15746
15747 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
15748 if (N0.isUndef())
15749 return DAG.getConstant(0, DL, VT);
15750
15751 // fold (sext_in_reg c1) -> c1
15752 if (SDValue C =
15754 return C;
15755
15756 // If the input is already sign extended, just drop the extension.
15757 if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0))
15758 return N0;
15759
15760 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
15761 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
15762 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
15763 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N0.getOperand(0), N1);
15764
15765 // fold (sext_in_reg (sext x)) -> (sext x)
15766 // fold (sext_in_reg (aext x)) -> (sext x)
15767 // if x is small enough or if we know that x has more than 1 sign bit and the
15768 // sign_extend_inreg is extending from one of them.
15769 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
15770 SDValue N00 = N0.getOperand(0);
15771 unsigned N00Bits = N00.getScalarValueSizeInBits();
15772 if ((N00Bits <= ExtVTBits ||
15773 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) &&
15774 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
15775 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00);
15776 }
15777
15778 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
15779 // if x is small enough or if we know that x has more than 1 sign bit and the
15780 // sign_extend_inreg is extending from one of them.
15782 SDValue N00 = N0.getOperand(0);
15783 unsigned N00Bits = N00.getScalarValueSizeInBits();
15784 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
15785 if ((N00Bits == ExtVTBits ||
15786 (!IsZext && (N00Bits < ExtVTBits ||
15787 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) &&
15788 (!LegalOperations ||
15790 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, N00);
15791 }
15792
15793 // fold (sext_in_reg (zext x)) -> (sext x)
15794 // iff we are extending the source sign bit.
15795 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
15796 SDValue N00 = N0.getOperand(0);
15797 if (N00.getScalarValueSizeInBits() == ExtVTBits &&
15798 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
15799 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00);
15800 }
15801
15802 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
15803 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
15804 return DAG.getZeroExtendInReg(N0, DL, ExtVT);
15805
15806 // fold operands of sext_in_reg based on knowledge that the top bits are not
15807 // demanded.
15809 return SDValue(N, 0);
15810
15811 // fold (sext_in_reg (load x)) -> (smaller sextload x)
15812 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
15813 if (SDValue NarrowLoad = reduceLoadWidth(N))
15814 return NarrowLoad;
15815
15816 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
15817 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
15818 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
15819 if (N0.getOpcode() == ISD::SRL) {
15820 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
15821 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
15822 // We can turn this into an SRA iff the input to the SRL is already sign
15823 // extended enough.
15824 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
15825 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
15826 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
15827 N0.getOperand(1));
15828 }
15829 }
15830
15831 // fold (sext_inreg (extload x)) -> (sextload x)
15832 // If sextload is not supported by target, we can only do the combine when
15833 // load has one use. Doing otherwise can block folding the extload with other
15834 // extends that the target does support.
15836 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
15837 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
15838 N0.hasOneUse()) ||
15839 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
15840 auto *LN0 = cast<LoadSDNode>(N0);
15841 SDValue ExtLoad =
15842 DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(),
15843 LN0->getBasePtr(), ExtVT, LN0->getMemOperand());
15844 CombineTo(N, ExtLoad);
15845 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15846 AddToWorklist(ExtLoad.getNode());
15847 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15848 }
15849
15850 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
15852 N0.hasOneUse() && ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
15853 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
15854 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
15855 auto *LN0 = cast<LoadSDNode>(N0);
15856 SDValue ExtLoad =
15857 DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(),
15858 LN0->getBasePtr(), ExtVT, LN0->getMemOperand());
15859 CombineTo(N, ExtLoad);
15860 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15861 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15862 }
15863
15864 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
15865 // ignore it if the masked load is already sign extended
15866 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
15867 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
15868 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
15869 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
15870 SDValue ExtMaskedLoad = DAG.getMaskedLoad(
15871 VT, DL, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
15872 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
15873 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
15874 CombineTo(N, ExtMaskedLoad);
15875 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
15876 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15877 }
15878 }
15879
15880 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
15881 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
15882 if (SDValue(GN0, 0).hasOneUse() && ExtVT == GN0->getMemoryVT() &&
15884 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
15885 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
15886
15887 SDValue ExtLoad = DAG.getMaskedGather(
15888 DAG.getVTList(VT, MVT::Other), ExtVT, DL, Ops, GN0->getMemOperand(),
15889 GN0->getIndexType(), ISD::SEXTLOAD);
15890
15891 CombineTo(N, ExtLoad);
15892 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15893 AddToWorklist(ExtLoad.getNode());
15894 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15895 }
15896 }
15897
15898 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
15899 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
15900 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
15901 N0.getOperand(1), false))
15902 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, BSwap, N1);
15903 }
15904
15905 // Fold (iM_signext_inreg
15906 // (extract_subvector (zext|anyext|sext iN_v to _) _)
15907 // from iN)
15908 // -> (extract_subvector (signext iN_v to iM))
15909 if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() &&
15911 SDValue InnerExt = N0.getOperand(0);
15912 EVT InnerExtVT = InnerExt->getValueType(0);
15913 SDValue Extendee = InnerExt->getOperand(0);
15914
15915 if (ExtVTBits == Extendee.getValueType().getScalarSizeInBits() &&
15916 (!LegalOperations ||
15917 TLI.isOperationLegal(ISD::SIGN_EXTEND, InnerExtVT))) {
15918 SDValue SignExtExtendee =
15919 DAG.getNode(ISD::SIGN_EXTEND, DL, InnerExtVT, Extendee);
15920 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SignExtExtendee,
15921 N0.getOperand(1));
15922 }
15923 }
15924
15925 return SDValue();
15926}
15927
15929 SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG,
15930 bool LegalOperations) {
15931 unsigned InregOpcode = N->getOpcode();
15932 unsigned Opcode = DAG.getOpcode_EXTEND(InregOpcode);
15933
15934 SDValue Src = N->getOperand(0);
15935 EVT VT = N->getValueType(0);
15936 EVT SrcVT = EVT::getVectorVT(*DAG.getContext(),
15937 Src.getValueType().getVectorElementType(),
15939
15940 assert(ISD::isExtVecInRegOpcode(InregOpcode) &&
15941 "Expected EXTEND_VECTOR_INREG dag node in input!");
15942
15943 // Profitability check: our operand must be an one-use CONCAT_VECTORS.
15944 // FIXME: one-use check may be overly restrictive
15945 if (!Src.hasOneUse() || Src.getOpcode() != ISD::CONCAT_VECTORS)
15946 return SDValue();
15947
15948 // Profitability check: we must be extending exactly one of it's operands.
15949 // FIXME: this is probably overly restrictive.
15950 Src = Src.getOperand(0);
15951 if (Src.getValueType() != SrcVT)
15952 return SDValue();
15953
15954 if (LegalOperations && !TLI.isOperationLegal(Opcode, VT))
15955 return SDValue();
15956
15957 return DAG.getNode(Opcode, DL, VT, Src);
15958}
15959
15960SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) {
15961 SDValue N0 = N->getOperand(0);
15962 EVT VT = N->getValueType(0);
15963 SDLoc DL(N);
15964
15965 if (N0.isUndef()) {
15966 // aext_vector_inreg(undef) = undef because the top bits are undefined.
15967 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
15968 return N->getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
15969 ? DAG.getUNDEF(VT)
15970 : DAG.getConstant(0, DL, VT);
15971 }
15972
15973 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
15974 return Res;
15975
15977 return SDValue(N, 0);
15978
15980 LegalOperations))
15981 return R;
15982
15983 return SDValue();
15984}
15985
15986SDValue DAGCombiner::visitTRUNCATE_USAT_U(SDNode *N) {
15987 EVT VT = N->getValueType(0);
15988 SDValue N0 = N->getOperand(0);
15989
15990 SDValue FPVal;
15991 if (sd_match(N0, m_FPToUI(m_Value(FPVal))) &&
15993 ISD::FP_TO_UINT_SAT, FPVal.getValueType(), VT))
15994 return DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), VT, FPVal,
15995 DAG.getValueType(VT.getScalarType()));
15996
15997 return SDValue();
15998}
15999
16000/// Detect patterns of truncation with unsigned saturation:
16001///
16002/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
16003/// Return the source value x to be truncated or SDValue() if the pattern was
16004/// not matched.
16005///
16007 unsigned NumDstBits = VT.getScalarSizeInBits();
16008 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16009 // Saturation with truncation. We truncate from InVT to VT.
16010 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16011
16012 SDValue Min;
16013 APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits);
16014 if (sd_match(In, m_UMin(m_Value(Min), m_SpecificInt(UnsignedMax))))
16015 return Min;
16016
16017 return SDValue();
16018}
16019
16020/// Detect patterns of truncation with signed saturation:
16021/// (truncate (smin (smax (x, signed_min_of_dest_type),
16022/// signed_max_of_dest_type)) to dest_type)
16023/// or:
16024/// (truncate (smax (smin (x, signed_max_of_dest_type),
16025/// signed_min_of_dest_type)) to dest_type).
16026///
16027/// Return the source value to be truncated or SDValue() if the pattern was not
16028/// matched.
16030 unsigned NumDstBits = VT.getScalarSizeInBits();
16031 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16032 // Saturation with truncation. We truncate from InVT to VT.
16033 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16034
16035 SDValue Val;
16036 APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
16037 APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
16038
16039 if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_SpecificInt(SignedMin)),
16040 m_SpecificInt(SignedMax))))
16041 return Val;
16042
16043 if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(SignedMax)),
16044 m_SpecificInt(SignedMin))))
16045 return Val;
16046
16047 return SDValue();
16048}
16049
16050/// Detect patterns of truncation with unsigned saturation:
16052 const SDLoc &DL) {
16053 unsigned NumDstBits = VT.getScalarSizeInBits();
16054 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16055 // Saturation with truncation. We truncate from InVT to VT.
16056 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16057
16058 SDValue Val;
16059 APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits);
16060 // Min == 0, Max is unsigned max of destination type.
16061 if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(UnsignedMax)),
16062 m_Zero())))
16063 return Val;
16064
16065 if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_Zero()),
16066 m_SpecificInt(UnsignedMax))))
16067 return Val;
16068
16069 if (sd_match(In, m_UMin(m_SMax(m_Value(Val), m_Zero()),
16070 m_SpecificInt(UnsignedMax))))
16071 return Val;
16072
16073 return SDValue();
16074}
16075
16076static SDValue foldToSaturated(SDNode *N, EVT &VT, SDValue &Src, EVT &SrcVT,
16077 SDLoc &DL, const TargetLowering &TLI,
16078 SelectionDAG &DAG) {
16079 auto AllowedTruncateSat = [&](unsigned Opc, EVT SrcVT, EVT VT) -> bool {
16080 return (TLI.isOperationLegalOrCustom(Opc, SrcVT) &&
16081 TLI.isTypeDesirableForOp(Opc, VT));
16082 };
16083
16084 if (Src.getOpcode() == ISD::SMIN || Src.getOpcode() == ISD::SMAX) {
16085 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_S, SrcVT, VT))
16086 if (SDValue SSatVal = detectSSatSPattern(Src, VT))
16087 return DAG.getNode(ISD::TRUNCATE_SSAT_S, DL, VT, SSatVal);
16088 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT))
16089 if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL))
16090 return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal);
16091 } else if (Src.getOpcode() == ISD::UMIN) {
16092 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT))
16093 if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL))
16094 return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal);
16095 if (AllowedTruncateSat(ISD::TRUNCATE_USAT_U, SrcVT, VT))
16096 if (SDValue USatVal = detectUSatUPattern(Src, VT))
16097 return DAG.getNode(ISD::TRUNCATE_USAT_U, DL, VT, USatVal);
16098 }
16099
16100 return SDValue();
16101}
16102
16103SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
16104 SDValue N0 = N->getOperand(0);
16105 EVT VT = N->getValueType(0);
16106 EVT SrcVT = N0.getValueType();
16107 bool isLE = DAG.getDataLayout().isLittleEndian();
16108 SDLoc DL(N);
16109
16110 // trunc(undef) = undef
16111 if (N0.isUndef())
16112 return DAG.getUNDEF(VT);
16113
16114 // fold (truncate (truncate x)) -> (truncate x)
16115 if (N0.getOpcode() == ISD::TRUNCATE)
16116 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16117
16118 // fold saturated truncate
16119 if (SDValue SaturatedTR = foldToSaturated(N, VT, N0, SrcVT, DL, TLI, DAG))
16120 return SaturatedTR;
16121
16122 // fold (truncate c1) -> c1
16123 if (SDValue C = DAG.FoldConstantArithmetic(ISD::TRUNCATE, DL, VT, {N0}))
16124 return C;
16125
16126 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
16127 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
16128 N0.getOpcode() == ISD::SIGN_EXTEND ||
16129 N0.getOpcode() == ISD::ANY_EXTEND) {
16130 // if the source is smaller than the dest, we still need an extend.
16131 if (N0.getOperand(0).getValueType().bitsLT(VT)) {
16132 SDNodeFlags Flags;
16133 if (N0.getOpcode() == ISD::ZERO_EXTEND)
16134 Flags.setNonNeg(N0->getFlags().hasNonNeg());
16135 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Flags);
16136 }
16137 // if the source is larger than the dest, than we just need the truncate.
16138 if (N0.getOperand(0).getValueType().bitsGT(VT))
16139 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16140 // if the source and dest are the same type, we can drop both the extend
16141 // and the truncate.
16142 return N0.getOperand(0);
16143 }
16144
16145 // Try to narrow a truncate-of-sext_in_reg to the destination type:
16146 // trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM
16147 if (!LegalTypes && N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
16148 N0.hasOneUse()) {
16149 SDValue X = N0.getOperand(0);
16150 SDValue ExtVal = N0.getOperand(1);
16151 EVT ExtVT = cast<VTSDNode>(ExtVal)->getVT();
16152 if (ExtVT.bitsLT(VT) && TLI.preferSextInRegOfTruncate(VT, SrcVT, ExtVT)) {
16153 SDValue TrX = DAG.getNode(ISD::TRUNCATE, DL, VT, X);
16154 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, TrX, ExtVal);
16155 }
16156 }
16157
16158 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
16159 if (N->hasOneUse() && (N->user_begin()->getOpcode() == ISD::ANY_EXTEND))
16160 return SDValue();
16161
16162 // Fold extract-and-trunc into a narrow extract. For example:
16163 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
16164 // i32 y = TRUNCATE(i64 x)
16165 // -- becomes --
16166 // v16i8 b = BITCAST (v2i64 val)
16167 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
16168 //
16169 // Note: We only run this optimization after type legalization (which often
16170 // creates this pattern) and before operation legalization after which
16171 // we need to be more careful about the vector instructions that we generate.
16172 if (LegalTypes && !LegalOperations && VT.isScalarInteger() && VT != MVT::i1 &&
16173 N0->hasOneUse()) {
16174 EVT TrTy = N->getValueType(0);
16175 SDValue Src = N0;
16176
16177 // Check for cases where we shift down an upper element before truncation.
16178 int EltOffset = 0;
16179 if (Src.getOpcode() == ISD::SRL && Src.getOperand(0)->hasOneUse()) {
16180 if (auto ShAmt = DAG.getValidShiftAmount(Src)) {
16181 if ((*ShAmt % TrTy.getSizeInBits()) == 0) {
16182 Src = Src.getOperand(0);
16183 EltOffset = *ShAmt / TrTy.getSizeInBits();
16184 }
16185 }
16186 }
16187
16188 if (Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16189 EVT VecTy = Src.getOperand(0).getValueType();
16190 EVT ExTy = Src.getValueType();
16191
16192 auto EltCnt = VecTy.getVectorElementCount();
16193 unsigned SizeRatio = ExTy.getSizeInBits() / TrTy.getSizeInBits();
16194 auto NewEltCnt = EltCnt * SizeRatio;
16195
16196 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
16197 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
16198
16199 SDValue EltNo = Src->getOperand(1);
16200 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
16201 int Elt = EltNo->getAsZExtVal();
16202 int Index = isLE ? (Elt * SizeRatio + EltOffset)
16203 : (Elt * SizeRatio + (SizeRatio - 1) - EltOffset);
16204 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
16205 DAG.getBitcast(NVT, Src.getOperand(0)),
16206 DAG.getVectorIdxConstant(Index, DL));
16207 }
16208 }
16209 }
16210
16211 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
16212 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse() &&
16213 TLI.isTruncateFree(SrcVT, VT)) {
16214 if (!LegalOperations ||
16215 (TLI.isOperationLegal(ISD::SELECT, SrcVT) &&
16216 TLI.isNarrowingProfitable(N0.getNode(), SrcVT, VT))) {
16217 SDLoc SL(N0);
16218 SDValue Cond = N0.getOperand(0);
16219 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
16220 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
16221 return DAG.getNode(ISD::SELECT, DL, VT, Cond, TruncOp0, TruncOp1);
16222 }
16223 }
16224
16225 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
16226 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
16227 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
16228 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
16229 SDValue Amt = N0.getOperand(1);
16230 KnownBits Known = DAG.computeKnownBits(Amt);
16231 unsigned Size = VT.getScalarSizeInBits();
16232 if (Known.countMaxActiveBits() <= Log2_32(Size)) {
16233 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
16234 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16235 if (AmtVT != Amt.getValueType()) {
16236 Amt = DAG.getZExtOrTrunc(Amt, DL, AmtVT);
16237 AddToWorklist(Amt.getNode());
16238 }
16239 return DAG.getNode(ISD::SHL, DL, VT, Trunc, Amt);
16240 }
16241 }
16242
16243 if (SDValue V = foldSubToUSubSat(VT, N0.getNode(), DL))
16244 return V;
16245
16246 if (SDValue ABD = foldABSToABD(N, DL))
16247 return ABD;
16248
16249 // Attempt to pre-truncate BUILD_VECTOR sources.
16250 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
16251 N0.hasOneUse() &&
16252 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
16253 // Avoid creating illegal types if running after type legalizer.
16254 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
16255 EVT SVT = VT.getScalarType();
16256 SmallVector<SDValue, 8> TruncOps;
16257 for (const SDValue &Op : N0->op_values()) {
16258 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
16259 TruncOps.push_back(TruncOp);
16260 }
16261 return DAG.getBuildVector(VT, DL, TruncOps);
16262 }
16263
16264 // trunc (splat_vector x) -> splat_vector (trunc x)
16265 if (N0.getOpcode() == ISD::SPLAT_VECTOR &&
16266 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType())) &&
16267 (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, VT))) {
16268 EVT SVT = VT.getScalarType();
16269 return DAG.getSplatVector(
16270 VT, DL, DAG.getNode(ISD::TRUNCATE, DL, SVT, N0->getOperand(0)));
16271 }
16272
16273 // Fold a series of buildvector, bitcast, and truncate if possible.
16274 // For example fold
16275 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
16276 // (2xi32 (buildvector x, y)).
16277 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
16278 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
16280 N0.getOperand(0).hasOneUse()) {
16281 SDValue BuildVect = N0.getOperand(0);
16282 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
16283 EVT TruncVecEltTy = VT.getVectorElementType();
16284
16285 // Check that the element types match.
16286 if (BuildVectEltTy == TruncVecEltTy) {
16287 // Now we only need to compute the offset of the truncated elements.
16288 unsigned BuildVecNumElts = BuildVect.getNumOperands();
16289 unsigned TruncVecNumElts = VT.getVectorNumElements();
16290 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
16291 unsigned FirstElt = isLE ? 0 : (TruncEltOffset - 1);
16292
16293 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
16294 "Invalid number of elements");
16295
16297 for (unsigned i = FirstElt, e = BuildVecNumElts; i < e;
16298 i += TruncEltOffset)
16299 Opnds.push_back(BuildVect.getOperand(i));
16300
16301 return DAG.getBuildVector(VT, DL, Opnds);
16302 }
16303 }
16304
16305 // fold (truncate (load x)) -> (smaller load x)
16306 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
16307 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
16308 if (SDValue Reduced = reduceLoadWidth(N))
16309 return Reduced;
16310
16311 // Handle the case where the truncated result is at least as wide as the
16312 // loaded type.
16313 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
16314 auto *LN0 = cast<LoadSDNode>(N0);
16315 if (LN0->isSimple() && LN0->getMemoryVT().bitsLE(VT)) {
16316 SDValue NewLoad = DAG.getExtLoad(
16317 LN0->getExtensionType(), SDLoc(LN0), VT, LN0->getChain(),
16318 LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand());
16319 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
16320 return NewLoad;
16321 }
16322 }
16323 }
16324
16325 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
16326 // where ... are all 'undef'.
16327 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
16329 SDValue V;
16330 unsigned Idx = 0;
16331 unsigned NumDefs = 0;
16332
16333 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
16334 SDValue X = N0.getOperand(i);
16335 if (!X.isUndef()) {
16336 V = X;
16337 Idx = i;
16338 NumDefs++;
16339 }
16340 // Stop if more than one members are non-undef.
16341 if (NumDefs > 1)
16342 break;
16343
16346 X.getValueType().getVectorElementCount()));
16347 }
16348
16349 if (NumDefs == 0)
16350 return DAG.getUNDEF(VT);
16351
16352 if (NumDefs == 1) {
16353 assert(V.getNode() && "The single defined operand is empty!");
16355 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
16356 if (i != Idx) {
16357 Opnds.push_back(DAG.getUNDEF(VTs[i]));
16358 continue;
16359 }
16360 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
16361 AddToWorklist(NV.getNode());
16362 Opnds.push_back(NV);
16363 }
16364 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
16365 }
16366 }
16367
16368 // Fold truncate of a bitcast of a vector to an extract of the low vector
16369 // element.
16370 //
16371 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
16372 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
16373 SDValue VecSrc = N0.getOperand(0);
16374 EVT VecSrcVT = VecSrc.getValueType();
16375 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
16376 (!LegalOperations ||
16377 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
16378 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
16379 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, VecSrc,
16380 DAG.getVectorIdxConstant(Idx, DL));
16381 }
16382 }
16383
16384 // Simplify the operands using demanded-bits information.
16386 return SDValue(N, 0);
16387
16388 // fold (truncate (extract_subvector(ext x))) ->
16389 // (extract_subvector x)
16390 // TODO: This can be generalized to cover cases where the truncate and extract
16391 // do not fully cancel each other out.
16392 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
16393 SDValue N00 = N0.getOperand(0);
16394 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
16395 N00.getOpcode() == ISD::ZERO_EXTEND ||
16396 N00.getOpcode() == ISD::ANY_EXTEND) {
16397 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
16399 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
16400 N00.getOperand(0), N0.getOperand(1));
16401 }
16402 }
16403
16404 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
16405 return NewVSel;
16406
16407 // Narrow a suitable binary operation with a non-opaque constant operand by
16408 // moving it ahead of the truncate. This is limited to pre-legalization
16409 // because targets may prefer a wider type during later combines and invert
16410 // this transform.
16411 switch (N0.getOpcode()) {
16412 case ISD::ADD:
16413 case ISD::SUB:
16414 case ISD::MUL:
16415 case ISD::AND:
16416 case ISD::OR:
16417 case ISD::XOR:
16418 if (!LegalOperations && N0.hasOneUse() &&
16419 (isConstantOrConstantVector(N0.getOperand(0), true) ||
16420 isConstantOrConstantVector(N0.getOperand(1), true))) {
16421 // TODO: We already restricted this to pre-legalization, but for vectors
16422 // we are extra cautious to not create an unsupported operation.
16423 // Target-specific changes are likely needed to avoid regressions here.
16424 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
16425 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16426 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
16427 SDNodeFlags Flags;
16428 // Propagate nuw for sub.
16429 if (N0->getOpcode() == ISD::SUB && N0->getFlags().hasNoUnsignedWrap() &&
16431 N0->getOperand(0),
16433 VT.getScalarSizeInBits())))
16434 Flags.setNoUnsignedWrap(true);
16435 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR, Flags);
16436 }
16437 }
16438 break;
16439 case ISD::ADDE:
16440 case ISD::UADDO_CARRY:
16441 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
16442 // (trunc uaddo_carry(X, Y, Carry)) ->
16443 // (uaddo_carry trunc(X), trunc(Y), Carry)
16444 // When the adde's carry is not used.
16445 // We only do for uaddo_carry before legalize operation
16446 if (((!LegalOperations && N0.getOpcode() == ISD::UADDO_CARRY) ||
16447 TLI.isOperationLegal(N0.getOpcode(), VT)) &&
16448 N0.hasOneUse() && !N0->hasAnyUseOfValue(1)) {
16449 SDValue X = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16450 SDValue Y = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
16451 SDVTList VTs = DAG.getVTList(VT, N0->getValueType(1));
16452 return DAG.getNode(N0.getOpcode(), DL, VTs, X, Y, N0.getOperand(2));
16453 }
16454 break;
16455 case ISD::USUBSAT:
16456 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
16457 // enough to know that the upper bits are zero we must ensure that we don't
16458 // introduce an extra truncate.
16459 if (!LegalOperations && N0.hasOneUse() &&
16462 VT.getScalarSizeInBits() &&
16463 hasOperation(N0.getOpcode(), VT)) {
16464 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
16465 DAG, DL);
16466 }
16467 break;
16468 case ISD::AVGFLOORS:
16469 case ISD::AVGFLOORU:
16470 case ISD::AVGCEILS:
16471 case ISD::AVGCEILU:
16472 case ISD::ABDS:
16473 case ISD::ABDU:
16474 // (trunc (avg a, b)) -> (avg (trunc a), (trunc b))
16475 // (trunc (abdu/abds a, b)) -> (abdu/abds (trunc a), (trunc b))
16476 if (!LegalOperations && N0.hasOneUse() &&
16477 TLI.isOperationLegal(N0.getOpcode(), VT)) {
16478 EVT TruncVT = VT;
16479 unsigned SrcBits = SrcVT.getScalarSizeInBits();
16480 unsigned TruncBits = TruncVT.getScalarSizeInBits();
16481
16482 SDValue A = N0.getOperand(0);
16483 SDValue B = N0.getOperand(1);
16484 bool CanFold = false;
16485
16486 if (N0.getOpcode() == ISD::AVGFLOORU || N0.getOpcode() == ISD::AVGCEILU ||
16487 N0.getOpcode() == ISD::ABDU) {
16488 APInt UpperBits = APInt::getBitsSetFrom(SrcBits, TruncBits);
16489 CanFold = DAG.MaskedValueIsZero(B, UpperBits) &&
16490 DAG.MaskedValueIsZero(A, UpperBits);
16491 } else {
16492 unsigned NeededBits = SrcBits - TruncBits;
16493 CanFold = DAG.ComputeNumSignBits(B) > NeededBits &&
16494 DAG.ComputeNumSignBits(A) > NeededBits;
16495 }
16496
16497 if (CanFold) {
16498 SDValue NewA = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, A);
16499 SDValue NewB = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, B);
16500 return DAG.getNode(N0.getOpcode(), DL, TruncVT, NewA, NewB);
16501 }
16502 }
16503 break;
16504 }
16505
16506 return SDValue();
16507}
16508
16509static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
16510 SDValue Elt = N->getOperand(i);
16511 if (Elt.getOpcode() != ISD::MERGE_VALUES)
16512 return Elt.getNode();
16513 return Elt.getOperand(Elt.getResNo()).getNode();
16514}
16515
16516/// build_pair (load, load) -> load
16517/// if load locations are consecutive.
16518SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
16519 assert(N->getOpcode() == ISD::BUILD_PAIR);
16520
16521 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
16522 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
16523
16524 // A BUILD_PAIR is always having the least significant part in elt 0 and the
16525 // most significant part in elt 1. So when combining into one large load, we
16526 // need to consider the endianness.
16527 if (DAG.getDataLayout().isBigEndian())
16528 std::swap(LD1, LD2);
16529
16530 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) ||
16531 !LD1->hasOneUse() || !LD2->hasOneUse() ||
16532 LD1->getAddressSpace() != LD2->getAddressSpace())
16533 return SDValue();
16534
16535 unsigned LD1Fast = 0;
16536 EVT LD1VT = LD1->getValueType(0);
16537 unsigned LD1Bytes = LD1VT.getStoreSize();
16538 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
16539 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) &&
16540 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
16541 *LD1->getMemOperand(), &LD1Fast) && LD1Fast)
16542 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
16543 LD1->getPointerInfo(), LD1->getAlign());
16544
16545 return SDValue();
16546}
16547
16548static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
16549 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
16550 // and Lo parts; on big-endian machines it doesn't.
16551 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
16552}
16553
16554SDValue DAGCombiner::foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
16555 const TargetLowering &TLI) {
16556 // If this is not a bitcast to an FP type or if the target doesn't have
16557 // IEEE754-compliant FP logic, we're done.
16558 EVT VT = N->getValueType(0);
16559 SDValue N0 = N->getOperand(0);
16560 EVT SourceVT = N0.getValueType();
16561
16562 if (!VT.isFloatingPoint())
16563 return SDValue();
16564
16565 // TODO: Handle cases where the integer constant is a different scalar
16566 // bitwidth to the FP.
16567 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
16568 return SDValue();
16569
16570 unsigned FPOpcode;
16571 APInt SignMask;
16572 switch (N0.getOpcode()) {
16573 case ISD::AND:
16574 FPOpcode = ISD::FABS;
16575 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
16576 break;
16577 case ISD::XOR:
16578 FPOpcode = ISD::FNEG;
16579 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
16580 break;
16581 case ISD::OR:
16582 FPOpcode = ISD::FABS;
16583 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
16584 break;
16585 default:
16586 return SDValue();
16587 }
16588
16589 if (LegalOperations && !TLI.isOperationLegal(FPOpcode, VT))
16590 return SDValue();
16591
16592 // This needs to be the inverse of logic in foldSignChangeInBitcast.
16593 // FIXME: I don't think looking for bitcast intrinsically makes sense, but
16594 // removing this would require more changes.
16595 auto IsBitCastOrFree = [&TLI, FPOpcode](SDValue Op, EVT VT) {
16596 if (sd_match(Op, m_BitCast(m_SpecificVT(VT))))
16597 return true;
16598
16599 return FPOpcode == ISD::FABS ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
16600 };
16601
16602 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
16603 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
16604 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
16605 // fneg (fabs X)
16606 SDValue LogicOp0 = N0.getOperand(0);
16607 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
16608 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
16609 IsBitCastOrFree(LogicOp0, VT)) {
16610 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, LogicOp0);
16611 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, CastOp0);
16612 NumFPLogicOpsConv++;
16613 if (N0.getOpcode() == ISD::OR)
16614 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
16615 return FPOp;
16616 }
16617
16618 return SDValue();
16619}
16620
16621SDValue DAGCombiner::visitBITCAST(SDNode *N) {
16622 SDValue N0 = N->getOperand(0);
16623 EVT VT = N->getValueType(0);
16624
16625 if (N0.isUndef())
16626 return DAG.getUNDEF(VT);
16627
16628 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
16629 // Only do this before legalize types, unless both types are integer and the
16630 // scalar type is legal. Only do this before legalize ops, since the target
16631 // maybe depending on the bitcast.
16632 // First check to see if this is all constant.
16633 // TODO: Support FP bitcasts after legalize types.
16634 if (VT.isVector() &&
16635 (!LegalTypes ||
16636 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
16637 TLI.isTypeLegal(VT.getVectorElementType()))) &&
16638 N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() &&
16639 cast<BuildVectorSDNode>(N0)->isConstant())
16640 return DAG.FoldConstantBuildVector(cast<BuildVectorSDNode>(N0), SDLoc(N),
16642
16643 // If the input is a constant, let getNode fold it.
16644 if (isIntOrFPConstant(N0)) {
16645 // If we can't allow illegal operations, we need to check that this is just
16646 // a fp -> int or int -> conversion and that the resulting operation will
16647 // be legal.
16648 if (!LegalOperations ||
16649 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
16651 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
16652 TLI.isOperationLegal(ISD::Constant, VT))) {
16653 SDValue C = DAG.getBitcast(VT, N0);
16654 if (C.getNode() != N)
16655 return C;
16656 }
16657 }
16658
16659 // (conv (conv x, t1), t2) -> (conv x, t2)
16660 if (N0.getOpcode() == ISD::BITCAST)
16661 return DAG.getBitcast(VT, N0.getOperand(0));
16662
16663 // fold (conv (logicop (conv x), (c))) -> (logicop x, (conv c))
16664 // iff the current bitwise logicop type isn't legal
16665 if (ISD::isBitwiseLogicOp(N0.getOpcode()) && VT.isInteger() &&
16666 !TLI.isTypeLegal(N0.getOperand(0).getValueType())) {
16667 auto IsFreeBitcast = [VT](SDValue V) {
16668 return (V.getOpcode() == ISD::BITCAST &&
16669 V.getOperand(0).getValueType() == VT) ||
16671 V->hasOneUse());
16672 };
16673 if (IsFreeBitcast(N0.getOperand(0)) && IsFreeBitcast(N0.getOperand(1)))
16674 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
16675 DAG.getBitcast(VT, N0.getOperand(0)),
16676 DAG.getBitcast(VT, N0.getOperand(1)));
16677 }
16678
16679 // fold (conv (load x)) -> (load (conv*)x)
16680 // If the resultant load doesn't need a higher alignment than the original!
16681 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
16682 // Do not remove the cast if the types differ in endian layout.
16684 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
16685 // If the load is volatile, we only want to change the load type if the
16686 // resulting load is legal. Otherwise we might increase the number of
16687 // memory accesses. We don't care if the original type was legal or not
16688 // as we assume software couldn't rely on the number of accesses of an
16689 // illegal type.
16690 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
16691 TLI.isOperationLegal(ISD::LOAD, VT))) {
16692 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
16693
16694 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
16695 *LN0->getMemOperand())) {
16696 // If the range metadata type does not match the new memory
16697 // operation type, remove the range metadata.
16698 if (const MDNode *MD = LN0->getRanges()) {
16699 ConstantInt *Lower = mdconst::extract<ConstantInt>(MD->getOperand(0));
16700 if (Lower->getBitWidth() != VT.getScalarSizeInBits() ||
16701 !VT.isInteger()) {
16702 LN0->getMemOperand()->clearRanges();
16703 }
16704 }
16705 SDValue Load =
16706 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
16707 LN0->getMemOperand());
16708 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
16709 return Load;
16710 }
16711 }
16712
16713 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
16714 return V;
16715
16716 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
16717 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
16718 //
16719 // For ppc_fp128:
16720 // fold (bitcast (fneg x)) ->
16721 // flipbit = signbit
16722 // (xor (bitcast x) (build_pair flipbit, flipbit))
16723 //
16724 // fold (bitcast (fabs x)) ->
16725 // flipbit = (and (extract_element (bitcast x), 0), signbit)
16726 // (xor (bitcast x) (build_pair flipbit, flipbit))
16727 // This often reduces constant pool loads.
16728 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
16729 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
16730 N0->hasOneUse() && VT.isInteger() && !VT.isVector() &&
16731 !N0.getValueType().isVector()) {
16732 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
16733 AddToWorklist(NewConv.getNode());
16734
16735 SDLoc DL(N);
16736 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
16737 assert(VT.getSizeInBits() == 128);
16738 SDValue SignBit = DAG.getConstant(
16739 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
16740 SDValue FlipBit;
16741 if (N0.getOpcode() == ISD::FNEG) {
16742 FlipBit = SignBit;
16743 AddToWorklist(FlipBit.getNode());
16744 } else {
16745 assert(N0.getOpcode() == ISD::FABS);
16746 SDValue Hi =
16747 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
16749 SDLoc(NewConv)));
16750 AddToWorklist(Hi.getNode());
16751 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
16752 AddToWorklist(FlipBit.getNode());
16753 }
16754 SDValue FlipBits =
16755 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
16756 AddToWorklist(FlipBits.getNode());
16757 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
16758 }
16759 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
16760 if (N0.getOpcode() == ISD::FNEG)
16761 return DAG.getNode(ISD::XOR, DL, VT,
16762 NewConv, DAG.getConstant(SignBit, DL, VT));
16763 assert(N0.getOpcode() == ISD::FABS);
16764 return DAG.getNode(ISD::AND, DL, VT,
16765 NewConv, DAG.getConstant(~SignBit, DL, VT));
16766 }
16767
16768 // fold (bitconvert (fcopysign cst, x)) ->
16769 // (or (and (bitconvert x), sign), (and cst, (not sign)))
16770 // Note that we don't handle (copysign x, cst) because this can always be
16771 // folded to an fneg or fabs.
16772 //
16773 // For ppc_fp128:
16774 // fold (bitcast (fcopysign cst, x)) ->
16775 // flipbit = (and (extract_element
16776 // (xor (bitcast cst), (bitcast x)), 0),
16777 // signbit)
16778 // (xor (bitcast cst) (build_pair flipbit, flipbit))
16779 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() &&
16781 !VT.isVector()) {
16782 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
16783 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
16784 if (isTypeLegal(IntXVT)) {
16785 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
16786 AddToWorklist(X.getNode());
16787
16788 // If X has a different width than the result/lhs, sext it or truncate it.
16789 unsigned VTWidth = VT.getSizeInBits();
16790 if (OrigXWidth < VTWidth) {
16791 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
16792 AddToWorklist(X.getNode());
16793 } else if (OrigXWidth > VTWidth) {
16794 // To get the sign bit in the right place, we have to shift it right
16795 // before truncating.
16796 SDLoc DL(X);
16797 X = DAG.getNode(ISD::SRL, DL,
16798 X.getValueType(), X,
16799 DAG.getConstant(OrigXWidth-VTWidth, DL,
16800 X.getValueType()));
16801 AddToWorklist(X.getNode());
16802 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
16803 AddToWorklist(X.getNode());
16804 }
16805
16806 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
16807 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
16808 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
16809 AddToWorklist(Cst.getNode());
16810 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
16811 AddToWorklist(X.getNode());
16812 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
16813 AddToWorklist(XorResult.getNode());
16814 SDValue XorResult64 = DAG.getNode(
16815 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
16817 SDLoc(XorResult)));
16818 AddToWorklist(XorResult64.getNode());
16819 SDValue FlipBit =
16820 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
16821 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
16822 AddToWorklist(FlipBit.getNode());
16823 SDValue FlipBits =
16824 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
16825 AddToWorklist(FlipBits.getNode());
16826 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
16827 }
16828 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
16829 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
16830 X, DAG.getConstant(SignBit, SDLoc(X), VT));
16831 AddToWorklist(X.getNode());
16832
16833 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
16834 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
16835 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
16836 AddToWorklist(Cst.getNode());
16837
16838 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
16839 }
16840 }
16841
16842 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
16843 if (N0.getOpcode() == ISD::BUILD_PAIR)
16844 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
16845 return CombineLD;
16846
16847 // int_vt (bitcast (vec_vt (scalar_to_vector elt_vt:x)))
16848 // => int_vt (any_extend elt_vt:x)
16849 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && VT.isScalarInteger()) {
16850 SDValue SrcScalar = N0.getOperand(0);
16851 if (SrcScalar.getValueType().isScalarInteger())
16852 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SrcScalar);
16853 }
16854
16855 // Remove double bitcasts from shuffles - this is often a legacy of
16856 // XformToShuffleWithZero being used to combine bitmaskings (of
16857 // float vectors bitcast to integer vectors) into shuffles.
16858 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
16859 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
16860 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
16863 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
16864
16865 // If operands are a bitcast, peek through if it casts the original VT.
16866 // If operands are a constant, just bitcast back to original VT.
16867 auto PeekThroughBitcast = [&](SDValue Op) {
16868 if (Op.getOpcode() == ISD::BITCAST &&
16869 Op.getOperand(0).getValueType() == VT)
16870 return SDValue(Op.getOperand(0));
16871 if (Op.isUndef() || isAnyConstantBuildVector(Op))
16872 return DAG.getBitcast(VT, Op);
16873 return SDValue();
16874 };
16875
16876 // FIXME: If either input vector is bitcast, try to convert the shuffle to
16877 // the result type of this bitcast. This would eliminate at least one
16878 // bitcast. See the transform in InstCombine.
16879 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
16880 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
16881 if (!(SV0 && SV1))
16882 return SDValue();
16883
16884 int MaskScale =
16886 SmallVector<int, 8> NewMask;
16887 for (int M : SVN->getMask())
16888 for (int i = 0; i != MaskScale; ++i)
16889 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
16890
16891 SDValue LegalShuffle =
16892 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
16893 if (LegalShuffle)
16894 return LegalShuffle;
16895 }
16896
16897 return SDValue();
16898}
16899
16900SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
16901 EVT VT = N->getValueType(0);
16902 return CombineConsecutiveLoads(N, VT);
16903}
16904
16905SDValue DAGCombiner::visitFREEZE(SDNode *N) {
16906 SDValue N0 = N->getOperand(0);
16907
16908 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false))
16909 return N0;
16910
16911 // If we have frozen and unfrozen users of N0, update so everything uses N.
16912 if (!N0.isUndef() && !N0.hasOneUse()) {
16913 SDValue FrozenN0(N, 0);
16914 // Unfreeze all uses of N to avoid double deleting N from the CSE map.
16915 DAG.ReplaceAllUsesOfValueWith(FrozenN0, N0);
16916 DAG.ReplaceAllUsesOfValueWith(N0, FrozenN0);
16917 // ReplaceAllUsesOfValueWith will have also updated the use in N, thus
16918 // creating a cycle in a DAG. Let's undo that by mutating the freeze.
16919 assert(N->getOperand(0) == FrozenN0 && "Expected cycle in DAG");
16920 DAG.UpdateNodeOperands(N, N0);
16921 return FrozenN0;
16922 }
16923
16924 // We currently avoid folding freeze over SRA/SRL, due to the problems seen
16925 // with (freeze (assert ext)) blocking simplifications of SRA/SRL. See for
16926 // example https://reviews.llvm.org/D136529#4120959.
16927 if (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)
16928 return SDValue();
16929
16930 // Fold freeze(op(x, ...)) -> op(freeze(x), ...).
16931 // Try to push freeze through instructions that propagate but don't produce
16932 // poison as far as possible. If an operand of freeze follows three
16933 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
16934 // guaranteed-non-poison operands (or is a BUILD_VECTOR or similar) then push
16935 // the freeze through to the operands that are not guaranteed non-poison.
16936 // NOTE: we will strip poison-generating flags, so ignore them here.
16937 if (DAG.canCreateUndefOrPoison(N0, /*PoisonOnly*/ false,
16938 /*ConsiderFlags*/ false) ||
16939 N0->getNumValues() != 1 || !N0->hasOneUse())
16940 return SDValue();
16941
16942 // TOOD: we should always allow multiple operands, however this increases the
16943 // likelihood of infinite loops due to the ReplaceAllUsesOfValueWith call
16944 // below causing later nodes that share frozen operands to fold again and no
16945 // longer being able to confirm other operands are not poison due to recursion
16946 // depth limits on isGuaranteedNotToBeUndefOrPoison.
16947 bool AllowMultipleMaybePoisonOperands =
16948 N0.getOpcode() == ISD::SELECT_CC || N0.getOpcode() == ISD::SETCC ||
16949 N0.getOpcode() == ISD::BUILD_VECTOR ||
16951 N0.getOpcode() == ISD::BUILD_PAIR ||
16954
16955 // Avoid turning a BUILD_VECTOR that can be recognized as "all zeros", "all
16956 // ones" or "constant" into something that depends on FrozenUndef. We can
16957 // instead pick undef values to keep those properties, while at the same time
16958 // folding away the freeze.
16959 // If we implement a more general solution for folding away freeze(undef) in
16960 // the future, then this special handling can be removed.
16961 if (N0.getOpcode() == ISD::BUILD_VECTOR) {
16962 SDLoc DL(N0);
16963 EVT VT = N0.getValueType();
16965 return DAG.getAllOnesConstant(DL, VT);
16968 for (const SDValue &Op : N0->op_values())
16969 NewVecC.push_back(
16970 Op.isUndef() ? DAG.getConstant(0, DL, Op.getValueType()) : Op);
16971 return DAG.getBuildVector(VT, DL, NewVecC);
16972 }
16973 }
16974
16975 SmallSet<SDValue, 8> MaybePoisonOperands;
16976 SmallVector<unsigned, 8> MaybePoisonOperandNumbers;
16977 for (auto [OpNo, Op] : enumerate(N0->ops())) {
16978 if (DAG.isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly=*/false))
16979 continue;
16980 bool HadMaybePoisonOperands = !MaybePoisonOperands.empty();
16981 bool IsNewMaybePoisonOperand = MaybePoisonOperands.insert(Op).second;
16982 if (IsNewMaybePoisonOperand)
16983 MaybePoisonOperandNumbers.push_back(OpNo);
16984 if (!HadMaybePoisonOperands)
16985 continue;
16986 if (IsNewMaybePoisonOperand && !AllowMultipleMaybePoisonOperands) {
16987 // Multiple maybe-poison ops when not allowed - bail out.
16988 return SDValue();
16989 }
16990 }
16991 // NOTE: the whole op may be not guaranteed to not be undef or poison because
16992 // it could create undef or poison due to it's poison-generating flags.
16993 // So not finding any maybe-poison operands is fine.
16994
16995 for (unsigned OpNo : MaybePoisonOperandNumbers) {
16996 // N0 can mutate during iteration, so make sure to refetch the maybe poison
16997 // operands via the operand numbers. The typical scenario is that we have
16998 // something like this
16999 // t262: i32 = freeze t181
17000 // t150: i32 = ctlz_zero_undef t262
17001 // t184: i32 = ctlz_zero_undef t181
17002 // t268: i32 = select_cc t181, Constant:i32<0>, t184, t186, setne:ch
17003 // When freezing the t181 operand we get t262 back, and then the
17004 // ReplaceAllUsesOfValueWith call will not only replace t181 by t262, but
17005 // also recursively replace t184 by t150.
17006 SDValue MaybePoisonOperand = N->getOperand(0).getOperand(OpNo);
17007 // Don't replace every single UNDEF everywhere with frozen UNDEF, though.
17008 if (MaybePoisonOperand.isUndef())
17009 continue;
17010 // First, freeze each offending operand.
17011 SDValue FrozenMaybePoisonOperand = DAG.getFreeze(MaybePoisonOperand);
17012 // Then, change all other uses of unfrozen operand to use frozen operand.
17013 DAG.ReplaceAllUsesOfValueWith(MaybePoisonOperand, FrozenMaybePoisonOperand);
17014 if (FrozenMaybePoisonOperand.getOpcode() == ISD::FREEZE &&
17015 FrozenMaybePoisonOperand.getOperand(0) == FrozenMaybePoisonOperand) {
17016 // But, that also updated the use in the freeze we just created, thus
17017 // creating a cycle in a DAG. Let's undo that by mutating the freeze.
17018 DAG.UpdateNodeOperands(FrozenMaybePoisonOperand.getNode(),
17019 MaybePoisonOperand);
17020 }
17021
17022 // This node has been merged with another.
17023 if (N->getOpcode() == ISD::DELETED_NODE)
17024 return SDValue(N, 0);
17025 }
17026
17027 assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted!");
17028
17029 // The whole node may have been updated, so the value we were holding
17030 // may no longer be valid. Re-fetch the operand we're `freeze`ing.
17031 N0 = N->getOperand(0);
17032
17033 // Finally, recreate the node, it's operands were updated to use
17034 // frozen operands, so we just need to use it's "original" operands.
17036 // TODO: ISD::UNDEF and ISD::POISON should get separate handling, but best
17037 // leave for a future patch.
17038 for (SDValue &Op : Ops) {
17039 if (Op.isUndef())
17040 Op = DAG.getFreeze(Op);
17041 }
17042
17043 SDLoc DL(N0);
17044
17045 // Special case handling for ShuffleVectorSDNode nodes.
17046 if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N0))
17047 return DAG.getVectorShuffle(N0.getValueType(), DL, Ops[0], Ops[1],
17048 SVN->getMask());
17049
17050 // NOTE: this strips poison generating flags.
17051 // Folding freeze(op(x, ...)) -> op(freeze(x), ...) does not require nnan,
17052 // ninf, nsz, or fast.
17053 // However, contract, reassoc, afn, and arcp should be preserved,
17054 // as these fast-math flags do not introduce poison values.
17055 SDNodeFlags SrcFlags = N0->getFlags();
17056 SDNodeFlags SafeFlags;
17057 SafeFlags.setAllowContract(SrcFlags.hasAllowContract());
17058 SafeFlags.setAllowReassociation(SrcFlags.hasAllowReassociation());
17059 SafeFlags.setApproximateFuncs(SrcFlags.hasApproximateFuncs());
17060 SafeFlags.setAllowReciprocal(SrcFlags.hasAllowReciprocal());
17061 return DAG.getNode(N0.getOpcode(), DL, N0->getVTList(), Ops, SafeFlags);
17062}
17063
17064// Returns true if floating point contraction is allowed on the FMUL-SDValue
17065// `N`
17067 assert(N.getOpcode() == ISD::FMUL);
17068
17069 return Options.AllowFPOpFusion == FPOpFusion::Fast ||
17070 N->getFlags().hasAllowContract();
17071}
17072
17073// Returns true if `N` can assume no infinities involved in its computation.
17075 return Options.NoInfsFPMath || N->getFlags().hasNoInfs();
17076}
17077
17078/// Try to perform FMA combining on a given FADD node.
17079template <class MatchContextClass>
17080SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
17081 SDValue N0 = N->getOperand(0);
17082 SDValue N1 = N->getOperand(1);
17083 EVT VT = N->getValueType(0);
17084 SDLoc SL(N);
17085 MatchContextClass matcher(DAG, TLI, N);
17086 const TargetOptions &Options = DAG.getTarget().Options;
17087
17088 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
17089
17090 // Floating-point multiply-add with intermediate rounding.
17091 // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext.
17092 // FIXME: Add VP_FMAD opcode.
17093 bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N));
17094
17095 // Floating-point multiply-add without intermediate rounding.
17096 bool HasFMA =
17097 (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17099
17100 // No valid opcode, do not combine.
17101 if (!HasFMAD && !HasFMA)
17102 return SDValue();
17103
17104 bool AllowFusionGlobally =
17105 Options.AllowFPOpFusion == FPOpFusion::Fast || HasFMAD;
17106 // If the addition is not contractable, do not combine.
17107 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
17108 return SDValue();
17109
17110 // Folding fadd (fmul x, y), (fmul x, y) -> fma x, y, (fmul x, y) is never
17111 // beneficial. It does not reduce latency. It increases register pressure. It
17112 // replaces an fadd with an fma which is a more complex instruction, so is
17113 // likely to have a larger encoding, use more functional units, etc.
17114 if (N0 == N1)
17115 return SDValue();
17116
17117 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
17118 return SDValue();
17119
17120 // Always prefer FMAD to FMA for precision.
17121 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17123
17124 auto isFusedOp = [&](SDValue N) {
17125 return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD);
17126 };
17127
17128 // Is the node an FMUL and contractable either due to global flags or
17129 // SDNodeFlags.
17130 auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) {
17131 if (!matcher.match(N, ISD::FMUL))
17132 return false;
17133 return AllowFusionGlobally || N->getFlags().hasAllowContract();
17134 };
17135 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
17136 // prefer to fold the multiply with fewer uses.
17138 if (N0->use_size() > N1->use_size())
17139 std::swap(N0, N1);
17140 }
17141
17142 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
17143 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
17144 return matcher.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
17145 N0.getOperand(1), N1);
17146 }
17147
17148 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
17149 // Note: Commutes FADD operands.
17150 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
17151 return matcher.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
17152 N1.getOperand(1), N0);
17153 }
17154
17155 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
17156 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
17157 // This also works with nested fma instructions:
17158 // fadd (fma A, B, (fma (C, D, (fmul (E, F))))), G -->
17159 // fma A, B, (fma C, D, fma (E, F, G))
17160 // fadd (G, (fma A, B, (fma (C, D, (fmul (E, F)))))) -->
17161 // fma A, B, (fma C, D, fma (E, F, G)).
17162 // This requires reassociation because it changes the order of operations.
17163 bool CanReassociate = N->getFlags().hasAllowReassociation();
17164 if (CanReassociate) {
17165 SDValue FMA, E;
17166 if (isFusedOp(N0) && N0.hasOneUse()) {
17167 FMA = N0;
17168 E = N1;
17169 } else if (isFusedOp(N1) && N1.hasOneUse()) {
17170 FMA = N1;
17171 E = N0;
17172 }
17173
17174 SDValue TmpFMA = FMA;
17175 while (E && isFusedOp(TmpFMA) && TmpFMA.hasOneUse()) {
17176 SDValue FMul = TmpFMA->getOperand(2);
17177 if (matcher.match(FMul, ISD::FMUL) && FMul.hasOneUse()) {
17178 SDValue C = FMul.getOperand(0);
17179 SDValue D = FMul.getOperand(1);
17180 SDValue CDE = matcher.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
17182 // Replacing the inner FMul could cause the outer FMA to be simplified
17183 // away.
17184 return FMA.getOpcode() == ISD::DELETED_NODE ? SDValue(N, 0) : FMA;
17185 }
17186
17187 TmpFMA = TmpFMA->getOperand(2);
17188 }
17189 }
17190
17191 // Look through FP_EXTEND nodes to do more combining.
17192
17193 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
17194 if (matcher.match(N0, ISD::FP_EXTEND)) {
17195 SDValue N00 = N0.getOperand(0);
17196 if (isContractableFMUL(N00) &&
17197 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17198 N00.getValueType())) {
17199 return matcher.getNode(
17200 PreferredFusedOpcode, SL, VT,
17201 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17202 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), N1);
17203 }
17204 }
17205
17206 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
17207 // Note: Commutes FADD operands.
17208 if (matcher.match(N1, ISD::FP_EXTEND)) {
17209 SDValue N10 = N1.getOperand(0);
17210 if (isContractableFMUL(N10) &&
17211 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17212 N10.getValueType())) {
17213 return matcher.getNode(
17214 PreferredFusedOpcode, SL, VT,
17215 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
17216 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
17217 }
17218 }
17219
17220 // More folding opportunities when target permits.
17221 if (Aggressive) {
17222 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
17223 // -> (fma x, y, (fma (fpext u), (fpext v), z))
17224 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
17225 SDValue Z) {
17226 return matcher.getNode(
17227 PreferredFusedOpcode, SL, VT, X, Y,
17228 matcher.getNode(PreferredFusedOpcode, SL, VT,
17229 matcher.getNode(ISD::FP_EXTEND, SL, VT, U),
17230 matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
17231 };
17232 if (isFusedOp(N0)) {
17233 SDValue N02 = N0.getOperand(2);
17234 if (matcher.match(N02, ISD::FP_EXTEND)) {
17235 SDValue N020 = N02.getOperand(0);
17236 if (isContractableFMUL(N020) &&
17237 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17238 N020.getValueType())) {
17239 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
17240 N020.getOperand(0), N020.getOperand(1),
17241 N1);
17242 }
17243 }
17244 }
17245
17246 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
17247 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
17248 // FIXME: This turns two single-precision and one double-precision
17249 // operation into two double-precision operations, which might not be
17250 // interesting for all targets, especially GPUs.
17251 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
17252 SDValue Z) {
17253 return matcher.getNode(
17254 PreferredFusedOpcode, SL, VT,
17255 matcher.getNode(ISD::FP_EXTEND, SL, VT, X),
17256 matcher.getNode(ISD::FP_EXTEND, SL, VT, Y),
17257 matcher.getNode(PreferredFusedOpcode, SL, VT,
17258 matcher.getNode(ISD::FP_EXTEND, SL, VT, U),
17259 matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
17260 };
17261 if (N0.getOpcode() == ISD::FP_EXTEND) {
17262 SDValue N00 = N0.getOperand(0);
17263 if (isFusedOp(N00)) {
17264 SDValue N002 = N00.getOperand(2);
17265 if (isContractableFMUL(N002) &&
17266 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17267 N00.getValueType())) {
17268 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
17269 N002.getOperand(0), N002.getOperand(1),
17270 N1);
17271 }
17272 }
17273 }
17274
17275 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
17276 // -> (fma y, z, (fma (fpext u), (fpext v), x))
17277 if (isFusedOp(N1)) {
17278 SDValue N12 = N1.getOperand(2);
17279 if (N12.getOpcode() == ISD::FP_EXTEND) {
17280 SDValue N120 = N12.getOperand(0);
17281 if (isContractableFMUL(N120) &&
17282 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17283 N120.getValueType())) {
17284 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
17285 N120.getOperand(0), N120.getOperand(1),
17286 N0);
17287 }
17288 }
17289 }
17290
17291 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
17292 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
17293 // FIXME: This turns two single-precision and one double-precision
17294 // operation into two double-precision operations, which might not be
17295 // interesting for all targets, especially GPUs.
17296 if (N1.getOpcode() == ISD::FP_EXTEND) {
17297 SDValue N10 = N1.getOperand(0);
17298 if (isFusedOp(N10)) {
17299 SDValue N102 = N10.getOperand(2);
17300 if (isContractableFMUL(N102) &&
17301 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17302 N10.getValueType())) {
17303 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
17304 N102.getOperand(0), N102.getOperand(1),
17305 N0);
17306 }
17307 }
17308 }
17309 }
17310
17311 return SDValue();
17312}
17313
17314/// Try to perform FMA combining on a given FSUB node.
17315template <class MatchContextClass>
17316SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
17317 SDValue N0 = N->getOperand(0);
17318 SDValue N1 = N->getOperand(1);
17319 EVT VT = N->getValueType(0);
17320 SDLoc SL(N);
17321 MatchContextClass matcher(DAG, TLI, N);
17322 const TargetOptions &Options = DAG.getTarget().Options;
17323
17324 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
17325
17326 // Floating-point multiply-add with intermediate rounding.
17327 // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext.
17328 // FIXME: Add VP_FMAD opcode.
17329 bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N));
17330
17331 // Floating-point multiply-add without intermediate rounding.
17332 bool HasFMA =
17333 (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17335
17336 // No valid opcode, do not combine.
17337 if (!HasFMAD && !HasFMA)
17338 return SDValue();
17339
17340 const SDNodeFlags Flags = N->getFlags();
17341 bool AllowFusionGlobally =
17342 (Options.AllowFPOpFusion == FPOpFusion::Fast || HasFMAD);
17343
17344 // If the subtraction is not contractable, do not combine.
17345 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
17346 return SDValue();
17347
17348 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
17349 return SDValue();
17350
17351 // Always prefer FMAD to FMA for precision.
17352 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17354 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();
17355
17356 // Is the node an FMUL and contractable either due to global flags or
17357 // SDNodeFlags.
17358 auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) {
17359 if (!matcher.match(N, ISD::FMUL))
17360 return false;
17361 return AllowFusionGlobally || N->getFlags().hasAllowContract();
17362 };
17363
17364 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
17365 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
17366 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
17367 return matcher.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
17368 XY.getOperand(1),
17369 matcher.getNode(ISD::FNEG, SL, VT, Z));
17370 }
17371 return SDValue();
17372 };
17373
17374 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
17375 // Note: Commutes FSUB operands.
17376 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
17377 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
17378 return matcher.getNode(
17379 PreferredFusedOpcode, SL, VT,
17380 matcher.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
17381 YZ.getOperand(1), X);
17382 }
17383 return SDValue();
17384 };
17385
17386 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
17387 // prefer to fold the multiply with fewer uses.
17388 if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
17389 (N0->use_size() > N1->use_size())) {
17390 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
17391 if (SDValue V = tryToFoldXSubYZ(N0, N1))
17392 return V;
17393 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
17394 if (SDValue V = tryToFoldXYSubZ(N0, N1))
17395 return V;
17396 } else {
17397 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
17398 if (SDValue V = tryToFoldXYSubZ(N0, N1))
17399 return V;
17400 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
17401 if (SDValue V = tryToFoldXSubYZ(N0, N1))
17402 return V;
17403 }
17404
17405 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
17406 if (matcher.match(N0, ISD::FNEG) && isContractableFMUL(N0.getOperand(0)) &&
17407 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
17408 SDValue N00 = N0.getOperand(0).getOperand(0);
17409 SDValue N01 = N0.getOperand(0).getOperand(1);
17410 return matcher.getNode(PreferredFusedOpcode, SL, VT,
17411 matcher.getNode(ISD::FNEG, SL, VT, N00), N01,
17412 matcher.getNode(ISD::FNEG, SL, VT, N1));
17413 }
17414
17415 // Look through FP_EXTEND nodes to do more combining.
17416
17417 // fold (fsub (fpext (fmul x, y)), z)
17418 // -> (fma (fpext x), (fpext y), (fneg z))
17419 if (matcher.match(N0, ISD::FP_EXTEND)) {
17420 SDValue N00 = N0.getOperand(0);
17421 if (isContractableFMUL(N00) &&
17422 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17423 N00.getValueType())) {
17424 return matcher.getNode(
17425 PreferredFusedOpcode, SL, VT,
17426 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17427 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
17428 matcher.getNode(ISD::FNEG, SL, VT, N1));
17429 }
17430 }
17431
17432 // fold (fsub x, (fpext (fmul y, z)))
17433 // -> (fma (fneg (fpext y)), (fpext z), x)
17434 // Note: Commutes FSUB operands.
17435 if (matcher.match(N1, ISD::FP_EXTEND)) {
17436 SDValue N10 = N1.getOperand(0);
17437 if (isContractableFMUL(N10) &&
17438 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17439 N10.getValueType())) {
17440 return matcher.getNode(
17441 PreferredFusedOpcode, SL, VT,
17442 matcher.getNode(
17443 ISD::FNEG, SL, VT,
17444 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
17445 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
17446 }
17447 }
17448
17449 // fold (fsub (fpext (fneg (fmul, x, y))), z)
17450 // -> (fneg (fma (fpext x), (fpext y), z))
17451 // Note: This could be removed with appropriate canonicalization of the
17452 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
17453 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
17454 // from implementing the canonicalization in visitFSUB.
17455 if (matcher.match(N0, ISD::FP_EXTEND)) {
17456 SDValue N00 = N0.getOperand(0);
17457 if (matcher.match(N00, ISD::FNEG)) {
17458 SDValue N000 = N00.getOperand(0);
17459 if (isContractableFMUL(N000) &&
17460 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17461 N00.getValueType())) {
17462 return matcher.getNode(
17463 ISD::FNEG, SL, VT,
17464 matcher.getNode(
17465 PreferredFusedOpcode, SL, VT,
17466 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
17467 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
17468 N1));
17469 }
17470 }
17471 }
17472
17473 // fold (fsub (fneg (fpext (fmul, x, y))), z)
17474 // -> (fneg (fma (fpext x)), (fpext y), z)
17475 // Note: This could be removed with appropriate canonicalization of the
17476 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
17477 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
17478 // from implementing the canonicalization in visitFSUB.
17479 if (matcher.match(N0, ISD::FNEG)) {
17480 SDValue N00 = N0.getOperand(0);
17481 if (matcher.match(N00, ISD::FP_EXTEND)) {
17482 SDValue N000 = N00.getOperand(0);
17483 if (isContractableFMUL(N000) &&
17484 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17485 N000.getValueType())) {
17486 return matcher.getNode(
17487 ISD::FNEG, SL, VT,
17488 matcher.getNode(
17489 PreferredFusedOpcode, SL, VT,
17490 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
17491 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
17492 N1));
17493 }
17494 }
17495 }
17496
17497 auto isContractableAndReassociableFMUL = [&isContractableFMUL](SDValue N) {
17498 return isContractableFMUL(N) && N->getFlags().hasAllowReassociation();
17499 };
17500
17501 auto isFusedOp = [&](SDValue N) {
17502 return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD);
17503 };
17504
17505 // More folding opportunities when target permits.
17506 if (Aggressive && N->getFlags().hasAllowReassociation()) {
17507 bool CanFuse = N->getFlags().hasAllowContract();
17508 // fold (fsub (fma x, y, (fmul u, v)), z)
17509 // -> (fma x, y (fma u, v, (fneg z)))
17510 if (CanFuse && isFusedOp(N0) &&
17511 isContractableAndReassociableFMUL(N0.getOperand(2)) &&
17512 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
17513 return matcher.getNode(
17514 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
17515 matcher.getNode(PreferredFusedOpcode, SL, VT,
17516 N0.getOperand(2).getOperand(0),
17517 N0.getOperand(2).getOperand(1),
17518 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17519 }
17520
17521 // fold (fsub x, (fma y, z, (fmul u, v)))
17522 // -> (fma (fneg y), z, (fma (fneg u), v, x))
17523 if (CanFuse && isFusedOp(N1) &&
17524 isContractableAndReassociableFMUL(N1.getOperand(2)) &&
17525 N1->hasOneUse() && NoSignedZero) {
17526 SDValue N20 = N1.getOperand(2).getOperand(0);
17527 SDValue N21 = N1.getOperand(2).getOperand(1);
17528 return matcher.getNode(
17529 PreferredFusedOpcode, SL, VT,
17530 matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
17531 N1.getOperand(1),
17532 matcher.getNode(PreferredFusedOpcode, SL, VT,
17533 matcher.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
17534 }
17535
17536 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
17537 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
17538 if (isFusedOp(N0) && N0->hasOneUse()) {
17539 SDValue N02 = N0.getOperand(2);
17540 if (matcher.match(N02, ISD::FP_EXTEND)) {
17541 SDValue N020 = N02.getOperand(0);
17542 if (isContractableAndReassociableFMUL(N020) &&
17543 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17544 N020.getValueType())) {
17545 return matcher.getNode(
17546 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
17547 matcher.getNode(
17548 PreferredFusedOpcode, SL, VT,
17549 matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
17550 matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
17551 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17552 }
17553 }
17554 }
17555
17556 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
17557 // -> (fma (fpext x), (fpext y),
17558 // (fma (fpext u), (fpext v), (fneg z)))
17559 // FIXME: This turns two single-precision and one double-precision
17560 // operation into two double-precision operations, which might not be
17561 // interesting for all targets, especially GPUs.
17562 if (matcher.match(N0, ISD::FP_EXTEND)) {
17563 SDValue N00 = N0.getOperand(0);
17564 if (isFusedOp(N00)) {
17565 SDValue N002 = N00.getOperand(2);
17566 if (isContractableAndReassociableFMUL(N002) &&
17567 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17568 N00.getValueType())) {
17569 return matcher.getNode(
17570 PreferredFusedOpcode, SL, VT,
17571 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17572 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
17573 matcher.getNode(
17574 PreferredFusedOpcode, SL, VT,
17575 matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
17576 matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
17577 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17578 }
17579 }
17580 }
17581
17582 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
17583 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
17584 if (isFusedOp(N1) && matcher.match(N1.getOperand(2), ISD::FP_EXTEND) &&
17585 N1->hasOneUse()) {
17586 SDValue N120 = N1.getOperand(2).getOperand(0);
17587 if (isContractableAndReassociableFMUL(N120) &&
17588 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17589 N120.getValueType())) {
17590 SDValue N1200 = N120.getOperand(0);
17591 SDValue N1201 = N120.getOperand(1);
17592 return matcher.getNode(
17593 PreferredFusedOpcode, SL, VT,
17594 matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
17595 N1.getOperand(1),
17596 matcher.getNode(
17597 PreferredFusedOpcode, SL, VT,
17598 matcher.getNode(ISD::FNEG, SL, VT,
17599 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
17600 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
17601 }
17602 }
17603
17604 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
17605 // -> (fma (fneg (fpext y)), (fpext z),
17606 // (fma (fneg (fpext u)), (fpext v), x))
17607 // FIXME: This turns two single-precision and one double-precision
17608 // operation into two double-precision operations, which might not be
17609 // interesting for all targets, especially GPUs.
17610 if (matcher.match(N1, ISD::FP_EXTEND) && isFusedOp(N1.getOperand(0))) {
17611 SDValue CvtSrc = N1.getOperand(0);
17612 SDValue N100 = CvtSrc.getOperand(0);
17613 SDValue N101 = CvtSrc.getOperand(1);
17614 SDValue N102 = CvtSrc.getOperand(2);
17615 if (isContractableAndReassociableFMUL(N102) &&
17616 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17617 CvtSrc.getValueType())) {
17618 SDValue N1020 = N102.getOperand(0);
17619 SDValue N1021 = N102.getOperand(1);
17620 return matcher.getNode(
17621 PreferredFusedOpcode, SL, VT,
17622 matcher.getNode(ISD::FNEG, SL, VT,
17623 matcher.getNode(ISD::FP_EXTEND, SL, VT, N100)),
17624 matcher.getNode(ISD::FP_EXTEND, SL, VT, N101),
17625 matcher.getNode(
17626 PreferredFusedOpcode, SL, VT,
17627 matcher.getNode(ISD::FNEG, SL, VT,
17628 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
17629 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
17630 }
17631 }
17632 }
17633
17634 return SDValue();
17635}
17636
17637/// Try to perform FMA combining on a given FMUL node based on the distributive
17638/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
17639/// subtraction instead of addition).
17640SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
17641 SDValue N0 = N->getOperand(0);
17642 SDValue N1 = N->getOperand(1);
17643 EVT VT = N->getValueType(0);
17644 SDLoc SL(N);
17645
17646 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
17647
17648 const TargetOptions &Options = DAG.getTarget().Options;
17649
17650 // The transforms below are incorrect when x == 0 and y == inf, because the
17651 // intermediate multiplication produces a nan.
17652 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1;
17653 if (!hasNoInfs(Options, FAdd))
17654 return SDValue();
17655
17656 // Floating-point multiply-add without intermediate rounding.
17657 bool HasFMA =
17659 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17661
17662 // Floating-point multiply-add with intermediate rounding. This can result
17663 // in a less precise result due to the changed rounding order.
17664 bool HasFMAD = LegalOperations && TLI.isFMADLegal(DAG, N);
17665
17666 // No valid opcode, do not combine.
17667 if (!HasFMAD && !HasFMA)
17668 return SDValue();
17669
17670 // Always prefer FMAD to FMA for precision.
17671 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17673
17674 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
17675 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
17676 auto FuseFADD = [&](SDValue X, SDValue Y) {
17677 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
17678 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
17679 if (C->isExactlyValue(+1.0))
17680 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17681 Y);
17682 if (C->isExactlyValue(-1.0))
17683 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17684 DAG.getNode(ISD::FNEG, SL, VT, Y));
17685 }
17686 }
17687 return SDValue();
17688 };
17689
17690 if (SDValue FMA = FuseFADD(N0, N1))
17691 return FMA;
17692 if (SDValue FMA = FuseFADD(N1, N0))
17693 return FMA;
17694
17695 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
17696 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
17697 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
17698 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
17699 auto FuseFSUB = [&](SDValue X, SDValue Y) {
17700 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
17701 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
17702 if (C0->isExactlyValue(+1.0))
17703 return DAG.getNode(PreferredFusedOpcode, SL, VT,
17704 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
17705 Y);
17706 if (C0->isExactlyValue(-1.0))
17707 return DAG.getNode(PreferredFusedOpcode, SL, VT,
17708 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
17709 DAG.getNode(ISD::FNEG, SL, VT, Y));
17710 }
17711 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
17712 if (C1->isExactlyValue(+1.0))
17713 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17714 DAG.getNode(ISD::FNEG, SL, VT, Y));
17715 if (C1->isExactlyValue(-1.0))
17716 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17717 Y);
17718 }
17719 }
17720 return SDValue();
17721 };
17722
17723 if (SDValue FMA = FuseFSUB(N0, N1))
17724 return FMA;
17725 if (SDValue FMA = FuseFSUB(N1, N0))
17726 return FMA;
17727
17728 return SDValue();
17729}
17730
17731SDValue DAGCombiner::visitVP_FADD(SDNode *N) {
17732 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17733
17734 // FADD -> FMA combines:
17735 if (SDValue Fused = visitFADDForFMACombine<VPMatchContext>(N)) {
17736 if (Fused.getOpcode() != ISD::DELETED_NODE)
17737 AddToWorklist(Fused.getNode());
17738 return Fused;
17739 }
17740 return SDValue();
17741}
17742
17743SDValue DAGCombiner::visitFADD(SDNode *N) {
17744 SDValue N0 = N->getOperand(0);
17745 SDValue N1 = N->getOperand(1);
17746 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
17747 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
17748 EVT VT = N->getValueType(0);
17749 SDLoc DL(N);
17750 const TargetOptions &Options = DAG.getTarget().Options;
17751 SDNodeFlags Flags = N->getFlags();
17752 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17753
17754 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
17755 return R;
17756
17757 // fold (fadd c1, c2) -> c1 + c2
17758 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1}))
17759 return C;
17760
17761 // canonicalize constant to RHS
17762 if (N0CFP && !N1CFP)
17763 return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
17764
17765 // fold vector ops
17766 if (VT.isVector())
17767 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
17768 return FoldedVOp;
17769
17770 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
17771 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
17772 if (N1C && N1C->isZero())
17773 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
17774 return N0;
17775
17776 if (SDValue NewSel = foldBinOpIntoSelect(N))
17777 return NewSel;
17778
17779 // fold (fadd A, (fneg B)) -> (fsub A, B)
17780 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
17781 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
17782 N1, DAG, LegalOperations, ForCodeSize))
17783 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
17784
17785 // fold (fadd (fneg A), B) -> (fsub B, A)
17786 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
17787 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
17788 N0, DAG, LegalOperations, ForCodeSize))
17789 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
17790
17791 auto isFMulNegTwo = [](SDValue FMul) {
17792 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
17793 return false;
17794 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
17795 return C && C->isExactlyValue(-2.0);
17796 };
17797
17798 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
17799 if (isFMulNegTwo(N0)) {
17800 SDValue B = N0.getOperand(0);
17801 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
17802 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
17803 }
17804 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
17805 if (isFMulNegTwo(N1)) {
17806 SDValue B = N1.getOperand(0);
17807 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
17808 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
17809 }
17810
17811 // No FP constant should be created after legalization as Instruction
17812 // Selection pass has a hard time dealing with FP constants.
17813 bool AllowNewConst = (Level < AfterLegalizeDAG);
17814
17815 // If nnan is enabled, fold lots of things.
17816 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
17817 // If allowed, fold (fadd (fneg x), x) -> 0.0
17818 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
17819 return DAG.getConstantFP(0.0, DL, VT);
17820
17821 // If allowed, fold (fadd x, (fneg x)) -> 0.0
17822 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
17823 return DAG.getConstantFP(0.0, DL, VT);
17824 }
17825
17826 // If 'unsafe math' or reassoc and nsz, fold lots of things.
17827 // TODO: break out portions of the transformations below for which Unsafe is
17828 // considered and which do not require both nsz and reassoc
17829 if ((Options.NoSignedZerosFPMath ||
17830 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
17831 AllowNewConst) {
17832 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
17833 if (N1CFP && N0.getOpcode() == ISD::FADD &&
17835 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
17836 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
17837 }
17838
17839 // We can fold chains of FADD's of the same value into multiplications.
17840 // This transform is not safe in general because we are reducing the number
17841 // of rounding steps.
17842 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
17843 if (N0.getOpcode() == ISD::FMUL) {
17844 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
17845 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
17846
17847 // (fadd (fmul x, c), x) -> (fmul x, c+1)
17848 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
17849 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
17850 DAG.getConstantFP(1.0, DL, VT));
17851 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
17852 }
17853
17854 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
17855 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
17856 N1.getOperand(0) == N1.getOperand(1) &&
17857 N0.getOperand(0) == N1.getOperand(0)) {
17858 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
17859 DAG.getConstantFP(2.0, DL, VT));
17860 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
17861 }
17862 }
17863
17864 if (N1.getOpcode() == ISD::FMUL) {
17865 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
17866 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
17867
17868 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
17869 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
17870 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
17871 DAG.getConstantFP(1.0, DL, VT));
17872 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
17873 }
17874
17875 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
17876 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
17877 N0.getOperand(0) == N0.getOperand(1) &&
17878 N1.getOperand(0) == N0.getOperand(0)) {
17879 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
17880 DAG.getConstantFP(2.0, DL, VT));
17881 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
17882 }
17883 }
17884
17885 if (N0.getOpcode() == ISD::FADD) {
17886 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
17887 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
17888 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
17889 (N0.getOperand(0) == N1)) {
17890 return DAG.getNode(ISD::FMUL, DL, VT, N1,
17891 DAG.getConstantFP(3.0, DL, VT));
17892 }
17893 }
17894
17895 if (N1.getOpcode() == ISD::FADD) {
17896 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
17897 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
17898 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
17899 N1.getOperand(0) == N0) {
17900 return DAG.getNode(ISD::FMUL, DL, VT, N0,
17901 DAG.getConstantFP(3.0, DL, VT));
17902 }
17903 }
17904
17905 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
17906 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
17907 N0.getOperand(0) == N0.getOperand(1) &&
17908 N1.getOperand(0) == N1.getOperand(1) &&
17909 N0.getOperand(0) == N1.getOperand(0)) {
17910 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
17911 DAG.getConstantFP(4.0, DL, VT));
17912 }
17913 }
17914 } // enable-unsafe-fp-math && AllowNewConst
17915
17916 if ((Options.NoSignedZerosFPMath ||
17917 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()))) {
17918 // Fold fadd(vecreduce(x), vecreduce(y)) -> vecreduce(fadd(x, y))
17919 if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FADD, ISD::FADD, DL,
17920 VT, N0, N1, Flags))
17921 return SD;
17922 }
17923
17924 // FADD -> FMA combines:
17925 if (SDValue Fused = visitFADDForFMACombine<EmptyMatchContext>(N)) {
17926 if (Fused.getOpcode() != ISD::DELETED_NODE)
17927 AddToWorklist(Fused.getNode());
17928 return Fused;
17929 }
17930 return SDValue();
17931}
17932
17933SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
17934 SDValue Chain = N->getOperand(0);
17935 SDValue N0 = N->getOperand(1);
17936 SDValue N1 = N->getOperand(2);
17937 EVT VT = N->getValueType(0);
17938 EVT ChainVT = N->getValueType(1);
17939 SDLoc DL(N);
17940 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17941
17942 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
17943 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
17944 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
17945 N1, DAG, LegalOperations, ForCodeSize)) {
17946 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
17947 {Chain, N0, NegN1});
17948 }
17949
17950 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
17951 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
17952 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
17953 N0, DAG, LegalOperations, ForCodeSize)) {
17954 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
17955 {Chain, N1, NegN0});
17956 }
17957 return SDValue();
17958}
17959
17960SDValue DAGCombiner::visitFSUB(SDNode *N) {
17961 SDValue N0 = N->getOperand(0);
17962 SDValue N1 = N->getOperand(1);
17963 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
17964 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
17965 EVT VT = N->getValueType(0);
17966 SDLoc DL(N);
17967 const TargetOptions &Options = DAG.getTarget().Options;
17968 const SDNodeFlags Flags = N->getFlags();
17969 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17970
17971 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
17972 return R;
17973
17974 // fold (fsub c1, c2) -> c1-c2
17975 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1}))
17976 return C;
17977
17978 // fold vector ops
17979 if (VT.isVector())
17980 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
17981 return FoldedVOp;
17982
17983 if (SDValue NewSel = foldBinOpIntoSelect(N))
17984 return NewSel;
17985
17986 // (fsub A, 0) -> A
17987 if (N1CFP && N1CFP->isZero()) {
17988 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
17989 Flags.hasNoSignedZeros()) {
17990 return N0;
17991 }
17992 }
17993
17994 if (N0 == N1) {
17995 // (fsub x, x) -> 0.0
17996 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
17997 return DAG.getConstantFP(0.0f, DL, VT);
17998 }
17999
18000 // (fsub -0.0, N1) -> -N1
18001 if (N0CFP && N0CFP->isZero()) {
18002 if (N0CFP->isNegative() ||
18003 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
18004 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
18005 // flushed to zero, unless all users treat denorms as zero (DAZ).
18006 // FIXME: This transform will change the sign of a NaN and the behavior
18007 // of a signaling NaN. It is only valid when a NoNaN flag is present.
18008 DenormalMode DenormMode = DAG.getDenormalMode(VT);
18009 if (DenormMode == DenormalMode::getIEEE()) {
18010 if (SDValue NegN1 =
18011 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
18012 return NegN1;
18013 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
18014 return DAG.getNode(ISD::FNEG, DL, VT, N1);
18015 }
18016 }
18017 }
18018
18019 if ((Options.NoSignedZerosFPMath ||
18020 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
18021 N1.getOpcode() == ISD::FADD) {
18022 // X - (X + Y) -> -Y
18023 if (N0 == N1->getOperand(0))
18024 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
18025 // X - (Y + X) -> -Y
18026 if (N0 == N1->getOperand(1))
18027 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
18028 }
18029
18030 // fold (fsub A, (fneg B)) -> (fadd A, B)
18031 if (SDValue NegN1 =
18032 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
18033 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
18034
18035 // FSUB -> FMA combines:
18036 if (SDValue Fused = visitFSUBForFMACombine<EmptyMatchContext>(N)) {
18037 AddToWorklist(Fused.getNode());
18038 return Fused;
18039 }
18040
18041 return SDValue();
18042}
18043
18044// Transform IEEE Floats:
18045// (fmul C, (uitofp Pow2))
18046// -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
18047// (fdiv C, (uitofp Pow2))
18048// -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
18049//
18050// The rationale is fmul/fdiv by a power of 2 is just change the exponent, so
18051// there is no need for more than an add/sub.
18052//
18053// This is valid under the following circumstances:
18054// 1) We are dealing with IEEE floats
18055// 2) C is normal
18056// 3) The fmul/fdiv add/sub will not go outside of min/max exponent bounds.
18057// TODO: Much of this could also be used for generating `ldexp` on targets the
18058// prefer it.
18059SDValue DAGCombiner::combineFMulOrFDivWithIntPow2(SDNode *N) {
18060 EVT VT = N->getValueType(0);
18062 return SDValue();
18063
18064 SDValue ConstOp, Pow2Op;
18065
18066 std::optional<int> Mantissa;
18067 auto GetConstAndPow2Ops = [&](unsigned ConstOpIdx) {
18068 if (ConstOpIdx == 1 && N->getOpcode() == ISD::FDIV)
18069 return false;
18070
18071 ConstOp = peekThroughBitcasts(N->getOperand(ConstOpIdx));
18072 Pow2Op = N->getOperand(1 - ConstOpIdx);
18073 if (Pow2Op.getOpcode() != ISD::UINT_TO_FP &&
18074 (Pow2Op.getOpcode() != ISD::SINT_TO_FP ||
18075 !DAG.computeKnownBits(Pow2Op).isNonNegative()))
18076 return false;
18077
18078 Pow2Op = Pow2Op.getOperand(0);
18079
18080 // `Log2(Pow2Op) < Pow2Op.getScalarSizeInBits()`.
18081 // TODO: We could use knownbits to make this bound more precise.
18082 int MaxExpChange = Pow2Op.getValueType().getScalarSizeInBits();
18083
18084 auto IsFPConstValid = [N, MaxExpChange, &Mantissa](ConstantFPSDNode *CFP) {
18085 if (CFP == nullptr)
18086 return false;
18087
18088 const APFloat &APF = CFP->getValueAPF();
18089
18090 // Make sure we have normal constant.
18091 if (!APF.isNormal())
18092 return false;
18093
18094 // Make sure the floats exponent is within the bounds that this transform
18095 // produces bitwise equals value.
18096 int CurExp = ilogb(APF);
18097 // FMul by pow2 will only increase exponent.
18098 int MinExp =
18099 N->getOpcode() == ISD::FMUL ? CurExp : (CurExp - MaxExpChange);
18100 // FDiv by pow2 will only decrease exponent.
18101 int MaxExp =
18102 N->getOpcode() == ISD::FDIV ? CurExp : (CurExp + MaxExpChange);
18103 if (MinExp <= APFloat::semanticsMinExponent(APF.getSemantics()) ||
18105 return false;
18106
18107 // Finally make sure we actually know the mantissa for the float type.
18108 int ThisMantissa = APFloat::semanticsPrecision(APF.getSemantics()) - 1;
18109 if (!Mantissa)
18110 Mantissa = ThisMantissa;
18111
18112 return *Mantissa == ThisMantissa && ThisMantissa > 0;
18113 };
18114
18115 // TODO: We may be able to include undefs.
18116 return ISD::matchUnaryFpPredicate(ConstOp, IsFPConstValid);
18117 };
18118
18119 if (!GetConstAndPow2Ops(0) && !GetConstAndPow2Ops(1))
18120 return SDValue();
18121
18122 if (!TLI.optimizeFMulOrFDivAsShiftAddBitcast(N, ConstOp, Pow2Op))
18123 return SDValue();
18124
18125 // Get log2 after all other checks have taken place. This is because
18126 // BuildLogBase2 may create a new node.
18127 SDLoc DL(N);
18128 // Get Log2 type with same bitwidth as the float type (VT).
18129 EVT NewIntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits());
18130 if (VT.isVector())
18131 NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewIntVT,
18133
18134 SDValue Log2 = BuildLogBase2(Pow2Op, DL, DAG.isKnownNeverZero(Pow2Op),
18135 /*InexpensiveOnly*/ true, NewIntVT);
18136 if (!Log2)
18137 return SDValue();
18138
18139 // Perform actual transform.
18140 SDValue MantissaShiftCnt =
18141 DAG.getShiftAmountConstant(*Mantissa, NewIntVT, DL);
18142 // TODO: Sometimes Log2 is of form `(X + C)`. `(X + C) << C1` should fold to
18143 // `(X << C1) + (C << C1)`, but that isn't always the case because of the
18144 // cast. We could implement that by handle here to handle the casts.
18145 SDValue Shift = DAG.getNode(ISD::SHL, DL, NewIntVT, Log2, MantissaShiftCnt);
18146 SDValue ResAsInt =
18147 DAG.getNode(N->getOpcode() == ISD::FMUL ? ISD::ADD : ISD::SUB, DL,
18148 NewIntVT, DAG.getBitcast(NewIntVT, ConstOp), Shift);
18149 SDValue ResAsFP = DAG.getBitcast(VT, ResAsInt);
18150 return ResAsFP;
18151}
18152
18153SDValue DAGCombiner::visitFMUL(SDNode *N) {
18154 SDValue N0 = N->getOperand(0);
18155 SDValue N1 = N->getOperand(1);
18156 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
18157 EVT VT = N->getValueType(0);
18158 SDLoc DL(N);
18159 const SDNodeFlags Flags = N->getFlags();
18160 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18161
18162 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18163 return R;
18164
18165 // fold (fmul c1, c2) -> c1*c2
18166 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1}))
18167 return C;
18168
18169 // canonicalize constant to RHS
18172 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
18173
18174 // fold vector ops
18175 if (VT.isVector())
18176 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
18177 return FoldedVOp;
18178
18179 if (SDValue NewSel = foldBinOpIntoSelect(N))
18180 return NewSel;
18181
18182 if (Flags.hasAllowReassociation()) {
18183 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
18185 N0.getOpcode() == ISD::FMUL) {
18186 SDValue N00 = N0.getOperand(0);
18187 SDValue N01 = N0.getOperand(1);
18188 // Avoid an infinite loop by making sure that N00 is not a constant
18189 // (the inner multiply has not been constant folded yet).
18192 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
18193 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
18194 }
18195 }
18196
18197 // Match a special-case: we convert X * 2.0 into fadd.
18198 // fmul (fadd X, X), C -> fmul X, 2.0 * C
18199 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
18200 N0.getOperand(0) == N0.getOperand(1)) {
18201 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
18202 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
18203 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
18204 }
18205
18206 // Fold fmul(vecreduce(x), vecreduce(y)) -> vecreduce(fmul(x, y))
18207 if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FMUL, ISD::FMUL, DL,
18208 VT, N0, N1, Flags))
18209 return SD;
18210 }
18211
18212 // fold (fmul X, 2.0) -> (fadd X, X)
18213 if (N1CFP && N1CFP->isExactlyValue(+2.0))
18214 return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
18215
18216 // fold (fmul X, -1.0) -> (fsub -0.0, X)
18217 if (N1CFP && N1CFP->isExactlyValue(-1.0)) {
18218 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) {
18219 return DAG.getNode(ISD::FSUB, DL, VT,
18220 DAG.getConstantFP(-0.0, DL, VT), N0, Flags);
18221 }
18222 }
18223
18224 // -N0 * -N1 --> N0 * N1
18229 SDValue NegN0 =
18230 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18231 if (NegN0) {
18232 HandleSDNode NegN0Handle(NegN0);
18233 SDValue NegN1 =
18234 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18235 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18237 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
18238 }
18239
18240 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
18241 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
18242 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
18243 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
18244 TLI.isOperationLegal(ISD::FABS, VT)) {
18245 SDValue Select = N0, X = N1;
18246 if (Select.getOpcode() != ISD::SELECT)
18247 std::swap(Select, X);
18248
18249 SDValue Cond = Select.getOperand(0);
18250 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
18251 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
18252
18253 if (TrueOpnd && FalseOpnd &&
18254 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
18255 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
18256 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
18257 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
18258 switch (CC) {
18259 default: break;
18260 case ISD::SETOLT:
18261 case ISD::SETULT:
18262 case ISD::SETOLE:
18263 case ISD::SETULE:
18264 case ISD::SETLT:
18265 case ISD::SETLE:
18266 std::swap(TrueOpnd, FalseOpnd);
18267 [[fallthrough]];
18268 case ISD::SETOGT:
18269 case ISD::SETUGT:
18270 case ISD::SETOGE:
18271 case ISD::SETUGE:
18272 case ISD::SETGT:
18273 case ISD::SETGE:
18274 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
18275 TLI.isOperationLegal(ISD::FNEG, VT))
18276 return DAG.getNode(ISD::FNEG, DL, VT,
18277 DAG.getNode(ISD::FABS, DL, VT, X));
18278 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
18279 return DAG.getNode(ISD::FABS, DL, VT, X);
18280
18281 break;
18282 }
18283 }
18284 }
18285
18286 // FMUL -> FMA combines:
18287 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
18288 AddToWorklist(Fused.getNode());
18289 return Fused;
18290 }
18291
18292 // Don't do `combineFMulOrFDivWithIntPow2` until after FMUL -> FMA has been
18293 // able to run.
18294 if (SDValue R = combineFMulOrFDivWithIntPow2(N))
18295 return R;
18296
18297 return SDValue();
18298}
18299
18300template <class MatchContextClass> SDValue DAGCombiner::visitFMA(SDNode *N) {
18301 SDValue N0 = N->getOperand(0);
18302 SDValue N1 = N->getOperand(1);
18303 SDValue N2 = N->getOperand(2);
18304 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
18305 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
18306 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
18307 EVT VT = N->getValueType(0);
18308 SDLoc DL(N);
18309 const TargetOptions &Options = DAG.getTarget().Options;
18310 // FMA nodes have flags that propagate to the created nodes.
18311 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18312 MatchContextClass matcher(DAG, TLI, N);
18313
18314 // Constant fold FMA.
18315 if (SDValue C =
18316 DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1, N2}))
18317 return C;
18318
18319 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
18324 SDValue NegN0 =
18325 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18326 if (NegN0) {
18327 HandleSDNode NegN0Handle(NegN0);
18328 SDValue NegN1 =
18329 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18330 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18332 return matcher.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
18333 }
18334
18335 // FIXME: use fast math flags instead of Options.UnsafeFPMath
18336 // TODO: Finally migrate away from global TargetOptions.
18337 if ((Options.NoNaNsFPMath && Options.NoInfsFPMath) ||
18338 (N->getFlags().hasNoNaNs() && N->getFlags().hasNoInfs())) {
18339 if (Options.NoSignedZerosFPMath || N->getFlags().hasNoSignedZeros() ||
18340 (N2CFP && !N2CFP->isExactlyValue(-0.0))) {
18341 if (N0CFP && N0CFP->isZero())
18342 return N2;
18343 if (N1CFP && N1CFP->isZero())
18344 return N2;
18345 }
18346 }
18347
18348 // FIXME: Support splat of constant.
18349 if (N0CFP && N0CFP->isExactlyValue(1.0))
18350 return matcher.getNode(ISD::FADD, DL, VT, N1, N2);
18351 if (N1CFP && N1CFP->isExactlyValue(1.0))
18352 return matcher.getNode(ISD::FADD, DL, VT, N0, N2);
18353
18354 // Canonicalize (fma c, x, y) -> (fma x, c, y)
18357 return matcher.getNode(ISD::FMA, DL, VT, N1, N0, N2);
18358
18359 bool CanReassociate = N->getFlags().hasAllowReassociation();
18360 if (CanReassociate) {
18361 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
18362 if (matcher.match(N2, ISD::FMUL) && N0 == N2.getOperand(0) &&
18365 return matcher.getNode(
18366 ISD::FMUL, DL, VT, N0,
18367 matcher.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
18368 }
18369
18370 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
18371 if (matcher.match(N0, ISD::FMUL) &&
18374 return matcher.getNode(
18375 ISD::FMA, DL, VT, N0.getOperand(0),
18376 matcher.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), N2);
18377 }
18378 }
18379
18380 // (fma x, -1, y) -> (fadd (fneg x), y)
18381 // FIXME: Support splat of constant.
18382 if (N1CFP) {
18383 if (N1CFP->isExactlyValue(1.0))
18384 return matcher.getNode(ISD::FADD, DL, VT, N0, N2);
18385
18386 if (N1CFP->isExactlyValue(-1.0) &&
18387 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
18388 SDValue RHSNeg = matcher.getNode(ISD::FNEG, DL, VT, N0);
18389 AddToWorklist(RHSNeg.getNode());
18390 return matcher.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
18391 }
18392
18393 // fma (fneg x), K, y -> fma x -K, y
18394 if (matcher.match(N0, ISD::FNEG) &&
18396 (N1.hasOneUse() &&
18397 !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, ForCodeSize)))) {
18398 return matcher.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
18399 matcher.getNode(ISD::FNEG, DL, VT, N1), N2);
18400 }
18401 }
18402
18403 // FIXME: Support splat of constant.
18404 if (CanReassociate) {
18405 // (fma x, c, x) -> (fmul x, (c+1))
18406 if (N1CFP && N0 == N2) {
18407 return matcher.getNode(ISD::FMUL, DL, VT, N0,
18408 matcher.getNode(ISD::FADD, DL, VT, N1,
18409 DAG.getConstantFP(1.0, DL, VT)));
18410 }
18411
18412 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
18413 if (N1CFP && matcher.match(N2, ISD::FNEG) && N2.getOperand(0) == N0) {
18414 return matcher.getNode(ISD::FMUL, DL, VT, N0,
18415 matcher.getNode(ISD::FADD, DL, VT, N1,
18416 DAG.getConstantFP(-1.0, DL, VT)));
18417 }
18418 }
18419
18420 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
18421 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
18422 if (!TLI.isFNegFree(VT))
18424 SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
18425 return matcher.getNode(ISD::FNEG, DL, VT, Neg);
18426 return SDValue();
18427}
18428
18429SDValue DAGCombiner::visitFMAD(SDNode *N) {
18430 SDValue N0 = N->getOperand(0);
18431 SDValue N1 = N->getOperand(1);
18432 SDValue N2 = N->getOperand(2);
18433 EVT VT = N->getValueType(0);
18434 SDLoc DL(N);
18435
18436 // Constant fold FMAD.
18437 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMAD, DL, VT, {N0, N1, N2}))
18438 return C;
18439
18440 return SDValue();
18441}
18442
18443// Combine multiple FDIVs with the same divisor into multiple FMULs by the
18444// reciprocal.
18445// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
18446// Notice that this is not always beneficial. One reason is different targets
18447// may have different costs for FDIV and FMUL, so sometimes the cost of two
18448// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
18449// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
18450SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
18451 // TODO: Limit this transform based on optsize/minsize - it always creates at
18452 // least 1 extra instruction. But the perf win may be substantial enough
18453 // that only minsize should restrict this.
18454 const SDNodeFlags Flags = N->getFlags();
18455 if (LegalDAG || !Flags.hasAllowReciprocal())
18456 return SDValue();
18457
18458 // Skip if current node is a reciprocal/fneg-reciprocal.
18459 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
18460 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
18461 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
18462 return SDValue();
18463
18464 // Exit early if the target does not want this transform or if there can't
18465 // possibly be enough uses of the divisor to make the transform worthwhile.
18466 unsigned MinUses = TLI.combineRepeatedFPDivisors();
18467
18468 // For splat vectors, scale the number of uses by the splat factor. If we can
18469 // convert the division into a scalar op, that will likely be much faster.
18470 unsigned NumElts = 1;
18471 EVT VT = N->getValueType(0);
18472 if (VT.isVector() && DAG.isSplatValue(N1))
18473 NumElts = VT.getVectorMinNumElements();
18474
18475 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
18476 return SDValue();
18477
18478 // Find all FDIV users of the same divisor.
18479 // Use a set because duplicates may be present in the user list.
18480 SetVector<SDNode *> Users;
18481 for (auto *U : N1->users()) {
18482 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
18483 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
18484 if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
18485 U->getOperand(0) == U->getOperand(1).getOperand(0) &&
18486 U->getFlags().hasAllowReassociation() &&
18487 U->getFlags().hasNoSignedZeros())
18488 continue;
18489
18490 // This division is eligible for optimization only if global unsafe math
18491 // is enabled or if this division allows reciprocal formation.
18492 if (U->getFlags().hasAllowReciprocal())
18493 Users.insert(U);
18494 }
18495 }
18496
18497 // Now that we have the actual number of divisor uses, make sure it meets
18498 // the minimum threshold specified by the target.
18499 if ((Users.size() * NumElts) < MinUses)
18500 return SDValue();
18501
18502 SDLoc DL(N);
18503 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
18504 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
18505
18506 // Dividend / Divisor -> Dividend * Reciprocal
18507 for (auto *U : Users) {
18508 SDValue Dividend = U->getOperand(0);
18509 if (Dividend != FPOne) {
18510 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
18511 Reciprocal, Flags);
18512 CombineTo(U, NewNode);
18513 } else if (U != Reciprocal.getNode()) {
18514 // In the absence of fast-math-flags, this user node is always the
18515 // same node as Reciprocal, but with FMF they may be different nodes.
18516 CombineTo(U, Reciprocal);
18517 }
18518 }
18519 return SDValue(N, 0); // N was replaced.
18520}
18521
18522SDValue DAGCombiner::visitFDIV(SDNode *N) {
18523 SDValue N0 = N->getOperand(0);
18524 SDValue N1 = N->getOperand(1);
18525 EVT VT = N->getValueType(0);
18526 SDLoc DL(N);
18527 const TargetOptions &Options = DAG.getTarget().Options;
18528 SDNodeFlags Flags = N->getFlags();
18529 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18530
18531 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18532 return R;
18533
18534 // fold (fdiv c1, c2) -> c1/c2
18535 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1}))
18536 return C;
18537
18538 // fold vector ops
18539 if (VT.isVector())
18540 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
18541 return FoldedVOp;
18542
18543 if (SDValue NewSel = foldBinOpIntoSelect(N))
18544 return NewSel;
18545
18547 return V;
18548
18549 // fold (fdiv X, c2) -> (fmul X, 1/c2) if there is no loss in precision, or
18550 // the loss is acceptable with AllowReciprocal.
18551 if (auto *N1CFP = isConstOrConstSplatFP(N1, true)) {
18552 // Compute the reciprocal 1.0 / c2.
18553 const APFloat &N1APF = N1CFP->getValueAPF();
18554 APFloat Recip = APFloat::getOne(N1APF.getSemantics());
18556 // Only do the transform if the reciprocal is a legal fp immediate that
18557 // isn't too nasty (eg NaN, denormal, ...).
18558 if (((st == APFloat::opOK && !Recip.isDenormal()) ||
18559 (st == APFloat::opInexact && Flags.hasAllowReciprocal())) &&
18560 (!LegalOperations ||
18561 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
18562 // backend)... we should handle this gracefully after Legalize.
18563 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
18565 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
18566 return DAG.getNode(ISD::FMUL, DL, VT, N0,
18567 DAG.getConstantFP(Recip, DL, VT));
18568 }
18569
18570 if (Flags.hasAllowReciprocal()) {
18571 // If this FDIV is part of a reciprocal square root, it may be folded
18572 // into a target-specific square root estimate instruction.
18573 if (N1.getOpcode() == ISD::FSQRT) {
18574 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
18575 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18576 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
18577 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18578 if (SDValue RV =
18579 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
18580 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
18581 AddToWorklist(RV.getNode());
18582 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18583 }
18584 } else if (N1.getOpcode() == ISD::FP_ROUND &&
18585 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18586 if (SDValue RV =
18587 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
18588 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
18589 AddToWorklist(RV.getNode());
18590 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18591 }
18592 } else if (N1.getOpcode() == ISD::FMUL) {
18593 // Look through an FMUL. Even though this won't remove the FDIV directly,
18594 // it's still worthwhile to get rid of the FSQRT if possible.
18595 SDValue Sqrt, Y;
18596 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18597 Sqrt = N1.getOperand(0);
18598 Y = N1.getOperand(1);
18599 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
18600 Sqrt = N1.getOperand(1);
18601 Y = N1.getOperand(0);
18602 }
18603 if (Sqrt.getNode()) {
18604 // If the other multiply operand is known positive, pull it into the
18605 // sqrt. That will eliminate the division if we convert to an estimate.
18606 if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
18607 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
18608 SDValue A;
18609 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
18610 A = Y.getOperand(0);
18611 else if (Y == Sqrt.getOperand(0))
18612 A = Y;
18613 if (A) {
18614 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
18615 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
18616 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
18617 SDValue AAZ =
18618 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
18619 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
18620 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
18621
18622 // Estimate creation failed. Clean up speculatively created nodes.
18623 recursivelyDeleteUnusedNodes(AAZ.getNode());
18624 }
18625 }
18626
18627 // We found a FSQRT, so try to make this fold:
18628 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
18629 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
18630 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
18631 AddToWorklist(Div.getNode());
18632 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
18633 }
18634 }
18635 }
18636
18637 // Fold into a reciprocal estimate and multiply instead of a real divide.
18638 if (Options.NoInfsFPMath || Flags.hasNoInfs())
18639 if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
18640 return RV;
18641 }
18642
18643 // Fold X/Sqrt(X) -> Sqrt(X)
18644 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
18645 Flags.hasAllowReassociation())
18646 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
18647 return N1;
18648
18649 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
18654 SDValue NegN0 =
18655 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18656 if (NegN0) {
18657 HandleSDNode NegN0Handle(NegN0);
18658 SDValue NegN1 =
18659 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18660 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18662 return DAG.getNode(ISD::FDIV, DL, VT, NegN0, NegN1);
18663 }
18664
18665 if (SDValue R = combineFMulOrFDivWithIntPow2(N))
18666 return R;
18667
18668 return SDValue();
18669}
18670
18671SDValue DAGCombiner::visitFREM(SDNode *N) {
18672 SDValue N0 = N->getOperand(0);
18673 SDValue N1 = N->getOperand(1);
18674 EVT VT = N->getValueType(0);
18675 SDNodeFlags Flags = N->getFlags();
18676 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18677 SDLoc DL(N);
18678
18679 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18680 return R;
18681
18682 // fold (frem c1, c2) -> fmod(c1,c2)
18683 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, DL, VT, {N0, N1}))
18684 return C;
18685
18686 if (SDValue NewSel = foldBinOpIntoSelect(N))
18687 return NewSel;
18688
18689 // Lower frem N0, N1 => x - trunc(N0 / N1) * N1, providing N1 is an integer
18690 // power of 2.
18691 if (!TLI.isOperationLegal(ISD::FREM, VT) &&
18694 TLI.isOperationLegalOrCustom(ISD::FTRUNC, VT) &&
18695 DAG.isKnownToBeAPowerOfTwoFP(N1)) {
18696 bool NeedsCopySign =
18697 !Flags.hasNoSignedZeros() && !DAG.cannotBeOrderedNegativeFP(N0);
18698 SDValue Div = DAG.getNode(ISD::FDIV, DL, VT, N0, N1);
18699 SDValue Rnd = DAG.getNode(ISD::FTRUNC, DL, VT, Div);
18700 SDValue MLA;
18702 MLA = DAG.getNode(ISD::FMA, DL, VT, DAG.getNode(ISD::FNEG, DL, VT, Rnd),
18703 N1, N0);
18704 } else {
18705 SDValue Mul = DAG.getNode(ISD::FMUL, DL, VT, Rnd, N1);
18706 MLA = DAG.getNode(ISD::FSUB, DL, VT, N0, Mul);
18707 }
18708 return NeedsCopySign ? DAG.getNode(ISD::FCOPYSIGN, DL, VT, MLA, N0) : MLA;
18709 }
18710
18711 return SDValue();
18712}
18713
18714SDValue DAGCombiner::visitFSQRT(SDNode *N) {
18715 SDNodeFlags Flags = N->getFlags();
18716 const TargetOptions &Options = DAG.getTarget().Options;
18717
18718 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
18719 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
18720 if (!Flags.hasApproximateFuncs() ||
18721 (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
18722 return SDValue();
18723
18724 SDValue N0 = N->getOperand(0);
18725 if (TLI.isFsqrtCheap(N0, DAG))
18726 return SDValue();
18727
18728 // FSQRT nodes have flags that propagate to the created nodes.
18729 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
18730 // transform the fdiv, we may produce a sub-optimal estimate sequence
18731 // because the reciprocal calculation may not have to filter out a
18732 // 0.0 input.
18733 return buildSqrtEstimate(N0, Flags);
18734}
18735
18736/// copysign(x, fp_extend(y)) -> copysign(x, y)
18737/// copysign(x, fp_round(y)) -> copysign(x, y)
18738/// Operands to the functions are the type of X and Y respectively.
18739static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(EVT XTy, EVT YTy) {
18740 // Always fold no-op FP casts.
18741 if (XTy == YTy)
18742 return true;
18743
18744 // Do not optimize out type conversion of f128 type yet.
18745 // For some targets like x86_64, configuration is changed to keep one f128
18746 // value in one SSE register, but instruction selection cannot handle
18747 // FCOPYSIGN on SSE registers yet.
18748 if (YTy == MVT::f128)
18749 return false;
18750
18751 // Avoid mismatched vector operand types, for better instruction selection.
18752 return !YTy.isVector();
18753}
18754
18756 SDValue N1 = N->getOperand(1);
18757 if (N1.getOpcode() != ISD::FP_EXTEND &&
18758 N1.getOpcode() != ISD::FP_ROUND)
18759 return false;
18760 EVT N1VT = N1->getValueType(0);
18761 EVT N1Op0VT = N1->getOperand(0).getValueType();
18762 return CanCombineFCOPYSIGN_EXTEND_ROUND(N1VT, N1Op0VT);
18763}
18764
18765SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
18766 SDValue N0 = N->getOperand(0);
18767 SDValue N1 = N->getOperand(1);
18768 EVT VT = N->getValueType(0);
18769 SDLoc DL(N);
18770
18771 // fold (fcopysign c1, c2) -> fcopysign(c1,c2)
18772 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, DL, VT, {N0, N1}))
18773 return C;
18774
18775 // copysign(x, fp_extend(y)) -> copysign(x, y)
18776 // copysign(x, fp_round(y)) -> copysign(x, y)
18778 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N0, N1.getOperand(0));
18779
18781 return SDValue(N, 0);
18782
18783 return SDValue();
18784}
18785
18786SDValue DAGCombiner::visitFPOW(SDNode *N) {
18787 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
18788 if (!ExponentC)
18789 return SDValue();
18790 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18791
18792 // Try to convert x ** (1/3) into cube root.
18793 // TODO: Handle the various flavors of long double.
18794 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
18795 // Some range near 1/3 should be fine.
18796 EVT VT = N->getValueType(0);
18797 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
18798 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
18799 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
18800 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
18801 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
18802 // For regular numbers, rounding may cause the results to differ.
18803 // Therefore, we require { nsz ninf nnan afn } for this transform.
18804 // TODO: We could select out the special cases if we don't have nsz/ninf.
18805 SDNodeFlags Flags = N->getFlags();
18806 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
18807 !Flags.hasApproximateFuncs())
18808 return SDValue();
18809
18810 // Do not create a cbrt() libcall if the target does not have it, and do not
18811 // turn a pow that has lowering support into a cbrt() libcall.
18812 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
18813 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
18814 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
18815 return SDValue();
18816
18817 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
18818 }
18819
18820 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
18821 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
18822 // TODO: This could be extended (using a target hook) to handle smaller
18823 // power-of-2 fractional exponents.
18824 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
18825 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
18826 if (ExponentIs025 || ExponentIs075) {
18827 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
18828 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
18829 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
18830 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
18831 // For regular numbers, rounding may cause the results to differ.
18832 // Therefore, we require { nsz ninf afn } for this transform.
18833 // TODO: We could select out the special cases if we don't have nsz/ninf.
18834 SDNodeFlags Flags = N->getFlags();
18835
18836 // We only need no signed zeros for the 0.25 case.
18837 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
18838 !Flags.hasApproximateFuncs())
18839 return SDValue();
18840
18841 // Don't double the number of libcalls. We are trying to inline fast code.
18842 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
18843 return SDValue();
18844
18845 // Assume that libcalls are the smallest code.
18846 // TODO: This restriction should probably be lifted for vectors.
18847 if (ForCodeSize)
18848 return SDValue();
18849
18850 // pow(X, 0.25) --> sqrt(sqrt(X))
18851 SDLoc DL(N);
18852 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
18853 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
18854 if (ExponentIs025)
18855 return SqrtSqrt;
18856 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
18857 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
18858 }
18859
18860 return SDValue();
18861}
18862
18864 const TargetLowering &TLI) {
18865 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
18866 // replacing casts with a libcall. We also must be allowed to ignore -0.0
18867 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
18868 // conversions would return +0.0.
18869 // FIXME: We should be able to use node-level FMF here.
18870 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
18871 EVT VT = N->getValueType(0);
18872 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
18874 return SDValue();
18875
18876 // fptosi/fptoui round towards zero, so converting from FP to integer and
18877 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
18878 SDValue N0 = N->getOperand(0);
18879 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
18880 N0.getOperand(0).getValueType() == VT)
18881 return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0));
18882
18883 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
18884 N0.getOperand(0).getValueType() == VT)
18885 return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0));
18886
18887 return SDValue();
18888}
18889
18890SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
18891 SDValue N0 = N->getOperand(0);
18892 EVT VT = N->getValueType(0);
18893 EVT OpVT = N0.getValueType();
18894 SDLoc DL(N);
18895
18896 // [us]itofp(undef) = 0, because the result value is bounded.
18897 if (N0.isUndef())
18898 return DAG.getConstantFP(0.0, DL, VT);
18899
18900 // fold (sint_to_fp c1) -> c1fp
18901 // ...but only if the target supports immediate floating-point values
18902 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18903 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SINT_TO_FP, DL, VT, {N0}))
18904 return C;
18905
18906 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
18907 // but UINT_TO_FP is legal on this target, try to convert.
18908 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
18909 hasOperation(ISD::UINT_TO_FP, OpVT)) {
18910 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
18911 if (DAG.SignBitIsZero(N0))
18912 return DAG.getNode(ISD::UINT_TO_FP, DL, VT, N0);
18913 }
18914
18915 // The next optimizations are desirable only if SELECT_CC can be lowered.
18916 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
18917 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
18918 !VT.isVector() &&
18919 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18920 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
18921 DAG.getConstantFP(0.0, DL, VT));
18922
18923 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
18924 // (select (setcc x, y, cc), 1.0, 0.0)
18925 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
18926 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
18927 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18928 return DAG.getSelect(DL, VT, N0.getOperand(0),
18929 DAG.getConstantFP(1.0, DL, VT),
18930 DAG.getConstantFP(0.0, DL, VT));
18931
18932 if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI))
18933 return FTrunc;
18934
18935 // fold (sint_to_fp (trunc nsw x)) -> (sint_to_fp x)
18936 if (N0.getOpcode() == ISD::TRUNCATE && N0->getFlags().hasNoSignedWrap() &&
18938 N0.getOperand(0).getValueType()))
18939 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, N0.getOperand(0));
18940
18941 return SDValue();
18942}
18943
18944SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
18945 SDValue N0 = N->getOperand(0);
18946 EVT VT = N->getValueType(0);
18947 EVT OpVT = N0.getValueType();
18948 SDLoc DL(N);
18949
18950 // [us]itofp(undef) = 0, because the result value is bounded.
18951 if (N0.isUndef())
18952 return DAG.getConstantFP(0.0, DL, VT);
18953
18954 // fold (uint_to_fp c1) -> c1fp
18955 // ...but only if the target supports immediate floating-point values
18956 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18957 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UINT_TO_FP, DL, VT, {N0}))
18958 return C;
18959
18960 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
18961 // but SINT_TO_FP is legal on this target, try to convert.
18962 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
18963 hasOperation(ISD::SINT_TO_FP, OpVT)) {
18964 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
18965 if (DAG.SignBitIsZero(N0))
18966 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, N0);
18967 }
18968
18969 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
18970 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
18971 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18972 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
18973 DAG.getConstantFP(0.0, DL, VT));
18974
18975 if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI))
18976 return FTrunc;
18977
18978 // fold (uint_to_fp (trunc nuw x)) -> (uint_to_fp x)
18979 if (N0.getOpcode() == ISD::TRUNCATE && N0->getFlags().hasNoUnsignedWrap() &&
18981 N0.getOperand(0).getValueType()))
18982 return DAG.getNode(ISD::UINT_TO_FP, DL, VT, N0.getOperand(0));
18983
18984 return SDValue();
18985}
18986
18987// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
18989 SDValue N0 = N->getOperand(0);
18990 EVT VT = N->getValueType(0);
18991
18992 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
18993 return SDValue();
18994
18995 SDValue Src = N0.getOperand(0);
18996 EVT SrcVT = Src.getValueType();
18997 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
18998 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
18999
19000 // We can safely assume the conversion won't overflow the output range,
19001 // because (for example) (uint8_t)18293.f is undefined behavior.
19002
19003 // Since we can assume the conversion won't overflow, our decision as to
19004 // whether the input will fit in the float should depend on the minimum
19005 // of the input range and output range.
19006
19007 // This means this is also safe for a signed input and unsigned output, since
19008 // a negative input would lead to undefined behavior.
19009 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
19010 unsigned OutputSize = (int)VT.getScalarSizeInBits();
19011 unsigned ActualSize = std::min(InputSize, OutputSize);
19012 const fltSemantics &Sem = N0.getValueType().getFltSemantics();
19013
19014 // We can only fold away the float conversion if the input range can be
19015 // represented exactly in the float range.
19016 if (APFloat::semanticsPrecision(Sem) >= ActualSize) {
19017 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
19018 unsigned ExtOp =
19019 IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
19020 return DAG.getNode(ExtOp, DL, VT, Src);
19021 }
19022 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
19023 return DAG.getNode(ISD::TRUNCATE, DL, VT, Src);
19024 return DAG.getBitcast(VT, Src);
19025 }
19026 return SDValue();
19027}
19028
19029SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
19030 SDValue N0 = N->getOperand(0);
19031 EVT VT = N->getValueType(0);
19032 SDLoc DL(N);
19033
19034 // fold (fp_to_sint undef) -> undef
19035 if (N0.isUndef())
19036 return DAG.getUNDEF(VT);
19037
19038 // fold (fp_to_sint c1fp) -> c1
19039 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_SINT, DL, VT, {N0}))
19040 return C;
19041
19042 return FoldIntToFPToInt(N, DL, DAG);
19043}
19044
19045SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
19046 SDValue N0 = N->getOperand(0);
19047 EVT VT = N->getValueType(0);
19048 SDLoc DL(N);
19049
19050 // fold (fp_to_uint undef) -> undef
19051 if (N0.isUndef())
19052 return DAG.getUNDEF(VT);
19053
19054 // fold (fp_to_uint c1fp) -> c1
19055 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_UINT, DL, VT, {N0}))
19056 return C;
19057
19058 return FoldIntToFPToInt(N, DL, DAG);
19059}
19060
19061SDValue DAGCombiner::visitXROUND(SDNode *N) {
19062 SDValue N0 = N->getOperand(0);
19063 EVT VT = N->getValueType(0);
19064
19065 // fold (lrint|llrint undef) -> undef
19066 // fold (lround|llround undef) -> undef
19067 if (N0.isUndef())
19068 return DAG.getUNDEF(VT);
19069
19070 // fold (lrint|llrint c1fp) -> c1
19071 // fold (lround|llround c1fp) -> c1
19072 if (SDValue C =
19073 DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0}))
19074 return C;
19075
19076 return SDValue();
19077}
19078
19079SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
19080 SDValue N0 = N->getOperand(0);
19081 SDValue N1 = N->getOperand(1);
19082 EVT VT = N->getValueType(0);
19083 SDLoc DL(N);
19084
19085 // fold (fp_round c1fp) -> c1fp
19086 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_ROUND, DL, VT, {N0, N1}))
19087 return C;
19088
19089 // fold (fp_round (fp_extend x)) -> x
19090 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
19091 return N0.getOperand(0);
19092
19093 // fold (fp_round (fp_round x)) -> (fp_round x)
19094 if (N0.getOpcode() == ISD::FP_ROUND) {
19095 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
19096 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
19097
19098 // Avoid folding legal fp_rounds into non-legal ones.
19099 if (!hasOperation(ISD::FP_ROUND, VT))
19100 return SDValue();
19101
19102 // Skip this folding if it results in an fp_round from f80 to f16.
19103 //
19104 // f80 to f16 always generates an expensive (and as yet, unimplemented)
19105 // libcall to __truncxfhf2 instead of selecting native f16 conversion
19106 // instructions from f32 or f64. Moreover, the first (value-preserving)
19107 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
19108 // x86.
19109 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
19110 return SDValue();
19111
19112 // If the first fp_round isn't a value preserving truncation, it might
19113 // introduce a tie in the second fp_round, that wouldn't occur in the
19114 // single-step fp_round we want to fold to.
19115 // In other words, double rounding isn't the same as rounding.
19116 // Also, this is a value preserving truncation iff both fp_round's are.
19117 if ((N->getFlags().hasAllowContract() &&
19118 N0->getFlags().hasAllowContract()) ||
19119 N0IsTrunc)
19120 return DAG.getNode(
19121 ISD::FP_ROUND, DL, VT, N0.getOperand(0),
19122 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL, /*isTarget=*/true));
19123 }
19124
19125 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
19126 // Note: From a legality perspective, this is a two step transform. First,
19127 // we duplicate the fp_round to the arguments of the copysign, then we
19128 // eliminate the fp_round on Y. The second step requires an additional
19129 // predicate to match the implementation above.
19130 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() &&
19132 N0.getValueType())) {
19133 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
19134 N0.getOperand(0), N1);
19135 AddToWorklist(Tmp.getNode());
19136 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, Tmp, N0.getOperand(1));
19137 }
19138
19139 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
19140 return NewVSel;
19141
19142 return SDValue();
19143}
19144
19145// Eliminate a floating-point widening of a narrowed value if the fast math
19146// flags allow it.
19148 SDValue N0 = N->getOperand(0);
19149 EVT VT = N->getValueType(0);
19150
19151 unsigned NarrowingOp;
19152 switch (N->getOpcode()) {
19153 case ISD::FP16_TO_FP:
19154 NarrowingOp = ISD::FP_TO_FP16;
19155 break;
19156 case ISD::BF16_TO_FP:
19157 NarrowingOp = ISD::FP_TO_BF16;
19158 break;
19159 case ISD::FP_EXTEND:
19160 NarrowingOp = ISD::FP_ROUND;
19161 break;
19162 default:
19163 llvm_unreachable("Expected widening FP cast");
19164 }
19165
19166 if (N0.getOpcode() == NarrowingOp && N0.getOperand(0).getValueType() == VT) {
19167 const SDNodeFlags NarrowFlags = N0->getFlags();
19168 const SDNodeFlags WidenFlags = N->getFlags();
19169 // Narrowing can introduce inf and change the encoding of a nan, so the
19170 // widen must have the nnan and ninf flags to indicate that we don't need to
19171 // care about that. We are also removing a rounding step, and that requires
19172 // both the narrow and widen to allow contraction.
19173 if (WidenFlags.hasNoNaNs() && WidenFlags.hasNoInfs() &&
19174 NarrowFlags.hasAllowContract() && WidenFlags.hasAllowContract()) {
19175 return N0.getOperand(0);
19176 }
19177 }
19178
19179 return SDValue();
19180}
19181
19182SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
19183 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19184 SDValue N0 = N->getOperand(0);
19185 EVT VT = N->getValueType(0);
19186 SDLoc DL(N);
19187
19188 if (VT.isVector())
19189 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
19190 return FoldedVOp;
19191
19192 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
19193 if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::FP_ROUND)
19194 return SDValue();
19195
19196 // fold (fp_extend c1fp) -> c1fp
19197 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_EXTEND, DL, VT, {N0}))
19198 return C;
19199
19200 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
19201 if (N0.getOpcode() == ISD::FP16_TO_FP &&
19202 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
19203 return DAG.getNode(ISD::FP16_TO_FP, DL, VT, N0.getOperand(0));
19204
19205 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
19206 // value of X.
19207 if (N0.getOpcode() == ISD::FP_ROUND && N0.getConstantOperandVal(1) == 1) {
19208 SDValue In = N0.getOperand(0);
19209 if (In.getValueType() == VT) return In;
19210 if (VT.bitsLT(In.getValueType()))
19211 return DAG.getNode(ISD::FP_ROUND, DL, VT, In, N0.getOperand(1));
19212 return DAG.getNode(ISD::FP_EXTEND, DL, VT, In);
19213 }
19214
19215 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
19216 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
19218 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
19219 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT,
19220 LN0->getChain(),
19221 LN0->getBasePtr(), N0.getValueType(),
19222 LN0->getMemOperand());
19223 CombineTo(N, ExtLoad);
19224 CombineTo(
19225 N0.getNode(),
19226 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad,
19227 DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)),
19228 ExtLoad.getValue(1));
19229 return SDValue(N, 0); // Return N so it doesn't get rechecked!
19230 }
19231
19232 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
19233 return NewVSel;
19234
19235 if (SDValue CastEliminated = eliminateFPCastPair(N))
19236 return CastEliminated;
19237
19238 return SDValue();
19239}
19240
19241SDValue DAGCombiner::visitFCEIL(SDNode *N) {
19242 SDValue N0 = N->getOperand(0);
19243 EVT VT = N->getValueType(0);
19244
19245 // fold (fceil c1) -> fceil(c1)
19246 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCEIL, SDLoc(N), VT, {N0}))
19247 return C;
19248
19249 return SDValue();
19250}
19251
19252SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
19253 SDValue N0 = N->getOperand(0);
19254 EVT VT = N->getValueType(0);
19255
19256 // fold (ftrunc c1) -> ftrunc(c1)
19257 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FTRUNC, SDLoc(N), VT, {N0}))
19258 return C;
19259
19260 // fold ftrunc (known rounded int x) -> x
19261 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
19262 // likely to be generated to extract integer from a rounded floating value.
19263 switch (N0.getOpcode()) {
19264 default: break;
19265 case ISD::FRINT:
19266 case ISD::FTRUNC:
19267 case ISD::FNEARBYINT:
19268 case ISD::FROUNDEVEN:
19269 case ISD::FFLOOR:
19270 case ISD::FCEIL:
19271 return N0;
19272 }
19273
19274 return SDValue();
19275}
19276
19277SDValue DAGCombiner::visitFFREXP(SDNode *N) {
19278 SDValue N0 = N->getOperand(0);
19279
19280 // fold (ffrexp c1) -> ffrexp(c1)
19282 return DAG.getNode(ISD::FFREXP, SDLoc(N), N->getVTList(), N0);
19283 return SDValue();
19284}
19285
19286SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
19287 SDValue N0 = N->getOperand(0);
19288 EVT VT = N->getValueType(0);
19289
19290 // fold (ffloor c1) -> ffloor(c1)
19291 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FFLOOR, SDLoc(N), VT, {N0}))
19292 return C;
19293
19294 return SDValue();
19295}
19296
19297SDValue DAGCombiner::visitFNEG(SDNode *N) {
19298 SDValue N0 = N->getOperand(0);
19299 EVT VT = N->getValueType(0);
19300 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19301
19302 // Constant fold FNEG.
19303 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FNEG, SDLoc(N), VT, {N0}))
19304 return C;
19305
19306 if (SDValue NegN0 =
19307 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
19308 return NegN0;
19309
19310 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
19311 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
19312 // know it was called from a context with a nsz flag if the input fsub does
19313 // not.
19314 if (N0.getOpcode() == ISD::FSUB &&
19316 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
19317 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
19318 N0.getOperand(0));
19319 }
19320
19322 return SDValue(N, 0);
19323
19324 if (SDValue Cast = foldSignChangeInBitcast(N))
19325 return Cast;
19326
19327 return SDValue();
19328}
19329
19330SDValue DAGCombiner::visitFMinMax(SDNode *N) {
19331 SDValue N0 = N->getOperand(0);
19332 SDValue N1 = N->getOperand(1);
19333 EVT VT = N->getValueType(0);
19334 const SDNodeFlags Flags = N->getFlags();
19335 unsigned Opc = N->getOpcode();
19336 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
19337 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
19338 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19339
19340 // Constant fold.
19341 if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1}))
19342 return C;
19343
19344 // Canonicalize to constant on RHS.
19347 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
19348
19349 if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) {
19350 const APFloat &AF = N1CFP->getValueAPF();
19351
19352 // minnum(X, nan) -> X
19353 // maxnum(X, nan) -> X
19354 // minimum(X, nan) -> nan
19355 // maximum(X, nan) -> nan
19356 if (AF.isNaN())
19357 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
19358
19359 // In the following folds, inf can be replaced with the largest finite
19360 // float, if the ninf flag is set.
19361 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
19362 // minnum(X, -inf) -> -inf
19363 // maxnum(X, +inf) -> +inf
19364 // minimum(X, -inf) -> -inf if nnan
19365 // maximum(X, +inf) -> +inf if nnan
19366 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
19367 return N->getOperand(1);
19368
19369 // minnum(X, +inf) -> X if nnan
19370 // maxnum(X, -inf) -> X if nnan
19371 // minimum(X, +inf) -> X
19372 // maximum(X, -inf) -> X
19373 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
19374 return N->getOperand(0);
19375 }
19376 }
19377
19378 if (SDValue SD = reassociateReduction(
19379 PropagatesNaN
19380 ? (IsMin ? ISD::VECREDUCE_FMINIMUM : ISD::VECREDUCE_FMAXIMUM)
19381 : (IsMin ? ISD::VECREDUCE_FMIN : ISD::VECREDUCE_FMAX),
19382 Opc, SDLoc(N), VT, N0, N1, Flags))
19383 return SD;
19384
19385 return SDValue();
19386}
19387
19388SDValue DAGCombiner::visitFABS(SDNode *N) {
19389 SDValue N0 = N->getOperand(0);
19390 EVT VT = N->getValueType(0);
19391 SDLoc DL(N);
19392
19393 // fold (fabs c1) -> fabs(c1)
19394 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FABS, DL, VT, {N0}))
19395 return C;
19396
19398 return SDValue(N, 0);
19399
19400 if (SDValue Cast = foldSignChangeInBitcast(N))
19401 return Cast;
19402
19403 return SDValue();
19404}
19405
19406SDValue DAGCombiner::visitBRCOND(SDNode *N) {
19407 SDValue Chain = N->getOperand(0);
19408 SDValue N1 = N->getOperand(1);
19409 SDValue N2 = N->getOperand(2);
19410
19411 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
19412 // nondeterministic jumps).
19413 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
19414 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
19415 N1->getOperand(0), N2, N->getFlags());
19416 }
19417
19418 // Variant of the previous fold where there is a SETCC in between:
19419 // BRCOND(SETCC(FREEZE(X), CONST, Cond))
19420 // =>
19421 // BRCOND(FREEZE(SETCC(X, CONST, Cond)))
19422 // =>
19423 // BRCOND(SETCC(X, CONST, Cond))
19424 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
19425 // isn't equivalent to true or false.
19426 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
19427 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
19428 if (N1->getOpcode() == ISD::SETCC && N1.hasOneUse()) {
19429 SDValue S0 = N1->getOperand(0), S1 = N1->getOperand(1);
19431 ConstantSDNode *S0C = dyn_cast<ConstantSDNode>(S0);
19432 ConstantSDNode *S1C = dyn_cast<ConstantSDNode>(S1);
19433 bool Updated = false;
19434
19435 // Is 'X Cond C' always true or false?
19436 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) {
19437 bool False = (Cond == ISD::SETULT && C->isZero()) ||
19438 (Cond == ISD::SETLT && C->isMinSignedValue()) ||
19439 (Cond == ISD::SETUGT && C->isAllOnes()) ||
19440 (Cond == ISD::SETGT && C->isMaxSignedValue());
19441 bool True = (Cond == ISD::SETULE && C->isAllOnes()) ||
19442 (Cond == ISD::SETLE && C->isMaxSignedValue()) ||
19443 (Cond == ISD::SETUGE && C->isZero()) ||
19444 (Cond == ISD::SETGE && C->isMinSignedValue());
19445 return True || False;
19446 };
19447
19448 if (S0->getOpcode() == ISD::FREEZE && S0.hasOneUse() && S1C) {
19449 if (!IsAlwaysTrueOrFalse(Cond, S1C)) {
19450 S0 = S0->getOperand(0);
19451 Updated = true;
19452 }
19453 }
19454 if (S1->getOpcode() == ISD::FREEZE && S1.hasOneUse() && S0C) {
19455 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), S0C)) {
19456 S1 = S1->getOperand(0);
19457 Updated = true;
19458 }
19459 }
19460
19461 if (Updated)
19462 return DAG.getNode(
19463 ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
19464 DAG.getSetCC(SDLoc(N1), N1->getValueType(0), S0, S1, Cond), N2,
19465 N->getFlags());
19466 }
19467
19468 // If N is a constant we could fold this into a fallthrough or unconditional
19469 // branch. However that doesn't happen very often in normal code, because
19470 // Instcombine/SimplifyCFG should have handled the available opportunities.
19471 // If we did this folding here, it would be necessary to update the
19472 // MachineBasicBlock CFG, which is awkward.
19473
19474 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
19475 // on the target, also copy fast math flags.
19476 if (N1.getOpcode() == ISD::SETCC &&
19477 TLI.isOperationLegalOrCustom(ISD::BR_CC,
19478 N1.getOperand(0).getValueType())) {
19479 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, Chain,
19480 N1.getOperand(2), N1.getOperand(0), N1.getOperand(1), N2,
19481 N1->getFlags());
19482 }
19483
19484 if (N1.hasOneUse()) {
19485 // rebuildSetCC calls visitXor which may change the Chain when there is a
19486 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
19487 HandleSDNode ChainHandle(Chain);
19488 if (SDValue NewN1 = rebuildSetCC(N1))
19489 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
19490 ChainHandle.getValue(), NewN1, N2, N->getFlags());
19491 }
19492
19493 return SDValue();
19494}
19495
19496SDValue DAGCombiner::rebuildSetCC(SDValue N) {
19497 if (N.getOpcode() == ISD::SRL ||
19498 (N.getOpcode() == ISD::TRUNCATE &&
19499 (N.getOperand(0).hasOneUse() &&
19500 N.getOperand(0).getOpcode() == ISD::SRL))) {
19501 // Look pass the truncate.
19502 if (N.getOpcode() == ISD::TRUNCATE)
19503 N = N.getOperand(0);
19504
19505 // Match this pattern so that we can generate simpler code:
19506 //
19507 // %a = ...
19508 // %b = and i32 %a, 2
19509 // %c = srl i32 %b, 1
19510 // brcond i32 %c ...
19511 //
19512 // into
19513 //
19514 // %a = ...
19515 // %b = and i32 %a, 2
19516 // %c = setcc eq %b, 0
19517 // brcond %c ...
19518 //
19519 // This applies only when the AND constant value has one bit set and the
19520 // SRL constant is equal to the log2 of the AND constant. The back-end is
19521 // smart enough to convert the result into a TEST/JMP sequence.
19522 SDValue Op0 = N.getOperand(0);
19523 SDValue Op1 = N.getOperand(1);
19524
19525 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
19526 SDValue AndOp1 = Op0.getOperand(1);
19527
19528 if (AndOp1.getOpcode() == ISD::Constant) {
19529 const APInt &AndConst = AndOp1->getAsAPIntVal();
19530
19531 if (AndConst.isPowerOf2() &&
19532 Op1->getAsAPIntVal() == AndConst.logBase2()) {
19533 SDLoc DL(N);
19534 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
19535 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
19536 ISD::SETNE);
19537 }
19538 }
19539 }
19540 }
19541
19542 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
19543 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
19544 if (N.getOpcode() == ISD::XOR) {
19545 // Because we may call this on a speculatively constructed
19546 // SimplifiedSetCC Node, we need to simplify this node first.
19547 // Ideally this should be folded into SimplifySetCC and not
19548 // here. For now, grab a handle to N so we don't lose it from
19549 // replacements interal to the visit.
19550 HandleSDNode XORHandle(N);
19551 while (N.getOpcode() == ISD::XOR) {
19552 SDValue Tmp = visitXOR(N.getNode());
19553 // No simplification done.
19554 if (!Tmp.getNode())
19555 break;
19556 // Returning N is form in-visit replacement that may invalidated
19557 // N. Grab value from Handle.
19558 if (Tmp.getNode() == N.getNode())
19559 N = XORHandle.getValue();
19560 else // Node simplified. Try simplifying again.
19561 N = Tmp;
19562 }
19563
19564 if (N.getOpcode() != ISD::XOR)
19565 return N;
19566
19567 SDValue Op0 = N->getOperand(0);
19568 SDValue Op1 = N->getOperand(1);
19569
19570 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
19571 bool Equal = false;
19572 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
19573 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
19574 Op0.getValueType() == MVT::i1) {
19575 N = Op0;
19576 Op0 = N->getOperand(0);
19577 Op1 = N->getOperand(1);
19578 Equal = true;
19579 }
19580
19581 EVT SetCCVT = N.getValueType();
19582 if (LegalTypes)
19583 SetCCVT = getSetCCResultType(SetCCVT);
19584 // Replace the uses of XOR with SETCC. Note, avoid this transformation if
19585 // it would introduce illegal operations post-legalization as this can
19586 // result in infinite looping between converting xor->setcc here, and
19587 // expanding setcc->xor in LegalizeSetCCCondCode if requested.
19589 if (!LegalOperations || TLI.isCondCodeLegal(CC, Op0.getSimpleValueType()))
19590 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, CC);
19591 }
19592 }
19593
19594 return SDValue();
19595}
19596
19597// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
19598//
19599SDValue DAGCombiner::visitBR_CC(SDNode *N) {
19600 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
19601 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
19602
19603 // If N is a constant we could fold this into a fallthrough or unconditional
19604 // branch. However that doesn't happen very often in normal code, because
19605 // Instcombine/SimplifyCFG should have handled the available opportunities.
19606 // If we did this folding here, it would be necessary to update the
19607 // MachineBasicBlock CFG, which is awkward.
19608
19609 // Use SimplifySetCC to simplify SETCC's.
19611 CondLHS, CondRHS, CC->get(), SDLoc(N),
19612 false);
19613 if (Simp.getNode()) AddToWorklist(Simp.getNode());
19614
19615 // fold to a simpler setcc
19616 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
19617 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
19618 N->getOperand(0), Simp.getOperand(2),
19619 Simp.getOperand(0), Simp.getOperand(1),
19620 N->getOperand(4));
19621
19622 return SDValue();
19623}
19624
19625static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
19626 bool &IsLoad, bool &IsMasked, SDValue &Ptr,
19627 const TargetLowering &TLI) {
19628 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19629 if (LD->isIndexed())
19630 return false;
19631 EVT VT = LD->getMemoryVT();
19632 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
19633 return false;
19634 Ptr = LD->getBasePtr();
19635 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19636 if (ST->isIndexed())
19637 return false;
19638 EVT VT = ST->getMemoryVT();
19639 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
19640 return false;
19641 Ptr = ST->getBasePtr();
19642 IsLoad = false;
19643 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19644 if (LD->isIndexed())
19645 return false;
19646 EVT VT = LD->getMemoryVT();
19647 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
19648 !TLI.isIndexedMaskedLoadLegal(Dec, VT))
19649 return false;
19650 Ptr = LD->getBasePtr();
19651 IsMasked = true;
19653 if (ST->isIndexed())
19654 return false;
19655 EVT VT = ST->getMemoryVT();
19656 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
19657 !TLI.isIndexedMaskedStoreLegal(Dec, VT))
19658 return false;
19659 Ptr = ST->getBasePtr();
19660 IsLoad = false;
19661 IsMasked = true;
19662 } else {
19663 return false;
19664 }
19665 return true;
19666}
19667
19668/// Try turning a load/store into a pre-indexed load/store when the base
19669/// pointer is an add or subtract and it has other uses besides the load/store.
19670/// After the transformation, the new indexed load/store has effectively folded
19671/// the add/subtract in and all of its other uses are redirected to the
19672/// new load/store.
19673bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
19674 if (Level < AfterLegalizeDAG)
19675 return false;
19676
19677 bool IsLoad = true;
19678 bool IsMasked = false;
19679 SDValue Ptr;
19680 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
19681 Ptr, TLI))
19682 return false;
19683
19684 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
19685 // out. There is no reason to make this a preinc/predec.
19686 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
19687 Ptr->hasOneUse())
19688 return false;
19689
19690 // Ask the target to do addressing mode selection.
19694 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
19695 return false;
19696
19697 // Backends without true r+i pre-indexed forms may need to pass a
19698 // constant base with a variable offset so that constant coercion
19699 // will work with the patterns in canonical form.
19700 bool Swapped = false;
19701 if (isa<ConstantSDNode>(BasePtr)) {
19702 std::swap(BasePtr, Offset);
19703 Swapped = true;
19704 }
19705
19706 // Don't create a indexed load / store with zero offset.
19708 return false;
19709
19710 // Try turning it into a pre-indexed load / store except when:
19711 // 1) The new base ptr is a frame index.
19712 // 2) If N is a store and the new base ptr is either the same as or is a
19713 // predecessor of the value being stored.
19714 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
19715 // that would create a cycle.
19716 // 4) All uses are load / store ops that use it as old base ptr.
19717
19718 // Check #1. Preinc'ing a frame index would require copying the stack pointer
19719 // (plus the implicit offset) to a register to preinc anyway.
19720 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
19721 return false;
19722
19723 // Check #2.
19724 if (!IsLoad) {
19725 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
19726 : cast<StoreSDNode>(N)->getValue();
19727
19728 // Would require a copy.
19729 if (Val == BasePtr)
19730 return false;
19731
19732 // Would create a cycle.
19733 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
19734 return false;
19735 }
19736
19737 // Caches for hasPredecessorHelper.
19738 SmallPtrSet<const SDNode *, 32> Visited;
19740 Worklist.push_back(N);
19741
19742 // If the offset is a constant, there may be other adds of constants that
19743 // can be folded with this one. We should do this to avoid having to keep
19744 // a copy of the original base pointer.
19745 SmallVector<SDNode *, 16> OtherUses;
19748 for (SDUse &Use : BasePtr->uses()) {
19749 // Skip the use that is Ptr and uses of other results from BasePtr's
19750 // node (important for nodes that return multiple results).
19751 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
19752 continue;
19753
19754 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist,
19755 MaxSteps))
19756 continue;
19757
19758 if (Use.getUser()->getOpcode() != ISD::ADD &&
19759 Use.getUser()->getOpcode() != ISD::SUB) {
19760 OtherUses.clear();
19761 break;
19762 }
19763
19764 SDValue Op1 = Use.getUser()->getOperand((Use.getOperandNo() + 1) & 1);
19765 if (!isa<ConstantSDNode>(Op1)) {
19766 OtherUses.clear();
19767 break;
19768 }
19769
19770 // FIXME: In some cases, we can be smarter about this.
19771 if (Op1.getValueType() != Offset.getValueType()) {
19772 OtherUses.clear();
19773 break;
19774 }
19775
19776 OtherUses.push_back(Use.getUser());
19777 }
19778
19779 if (Swapped)
19780 std::swap(BasePtr, Offset);
19781
19782 // Now check for #3 and #4.
19783 bool RealUse = false;
19784
19785 for (SDNode *User : Ptr->users()) {
19786 if (User == N)
19787 continue;
19788 if (SDNode::hasPredecessorHelper(User, Visited, Worklist, MaxSteps))
19789 return false;
19790
19791 // If Ptr may be folded in addressing mode of other use, then it's
19792 // not profitable to do this transformation.
19793 if (!canFoldInAddressingMode(Ptr.getNode(), User, DAG, TLI))
19794 RealUse = true;
19795 }
19796
19797 if (!RealUse)
19798 return false;
19799
19801 if (!IsMasked) {
19802 if (IsLoad)
19803 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
19804 else
19805 Result =
19806 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
19807 } else {
19808 if (IsLoad)
19809 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
19810 Offset, AM);
19811 else
19812 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
19813 Offset, AM);
19814 }
19815 ++PreIndexedNodes;
19816 ++NodesCombined;
19817 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
19818 Result.dump(&DAG); dbgs() << '\n');
19819 WorklistRemover DeadNodes(*this);
19820 if (IsLoad) {
19821 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
19822 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
19823 } else {
19824 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
19825 }
19826
19827 // Finally, since the node is now dead, remove it from the graph.
19828 deleteAndRecombine(N);
19829
19830 if (Swapped)
19831 std::swap(BasePtr, Offset);
19832
19833 // Replace other uses of BasePtr that can be updated to use Ptr
19834 for (SDNode *OtherUse : OtherUses) {
19835 unsigned OffsetIdx = 1;
19836 if (OtherUse->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
19837 OffsetIdx = 0;
19838 assert(OtherUse->getOperand(!OffsetIdx).getNode() == BasePtr.getNode() &&
19839 "Expected BasePtr operand");
19840
19841 // We need to replace ptr0 in the following expression:
19842 // x0 * offset0 + y0 * ptr0 = t0
19843 // knowing that
19844 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
19845 //
19846 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
19847 // indexed load/store and the expression that needs to be re-written.
19848 //
19849 // Therefore, we have:
19850 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
19851
19852 auto *CN = cast<ConstantSDNode>(OtherUse->getOperand(OffsetIdx));
19853 const APInt &Offset0 = CN->getAPIntValue();
19854 const APInt &Offset1 = Offset->getAsAPIntVal();
19855 int X0 = (OtherUse->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
19856 int Y0 = (OtherUse->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
19857 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
19858 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
19859
19860 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
19861
19862 APInt CNV = Offset0;
19863 if (X0 < 0) CNV = -CNV;
19864 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
19865 else CNV = CNV - Offset1;
19866
19867 SDLoc DL(OtherUse);
19868
19869 // We can now generate the new expression.
19870 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
19871 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
19872
19873 SDValue NewUse =
19874 DAG.getNode(Opcode, DL, OtherUse->getValueType(0), NewOp1, NewOp2);
19875 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUse, 0), NewUse);
19876 deleteAndRecombine(OtherUse);
19877 }
19878
19879 // Replace the uses of Ptr with uses of the updated base value.
19880 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
19881 deleteAndRecombine(Ptr.getNode());
19882 AddToWorklist(Result.getNode());
19883
19884 return true;
19885}
19886
19888 SDValue &BasePtr, SDValue &Offset,
19890 SelectionDAG &DAG,
19891 const TargetLowering &TLI) {
19892 if (PtrUse == N ||
19893 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
19894 return false;
19895
19896 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
19897 return false;
19898
19899 // Don't create a indexed load / store with zero offset.
19901 return false;
19902
19903 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
19904 return false;
19905
19908 for (SDNode *User : BasePtr->users()) {
19909 if (User == Ptr.getNode())
19910 continue;
19911
19912 // No if there's a later user which could perform the index instead.
19913 if (isa<MemSDNode>(User)) {
19914 bool IsLoad = true;
19915 bool IsMasked = false;
19916 SDValue OtherPtr;
19918 IsMasked, OtherPtr, TLI)) {
19920 Worklist.push_back(User);
19921 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps))
19922 return false;
19923 }
19924 }
19925
19926 // If all the uses are load / store addresses, then don't do the
19927 // transformation.
19928 if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SUB) {
19929 for (SDNode *UserUser : User->users())
19930 if (canFoldInAddressingMode(User, UserUser, DAG, TLI))
19931 return false;
19932 }
19933 }
19934 return true;
19935}
19936
19938 bool &IsMasked, SDValue &Ptr,
19939 SDValue &BasePtr, SDValue &Offset,
19941 SelectionDAG &DAG,
19942 const TargetLowering &TLI) {
19944 IsMasked, Ptr, TLI) ||
19945 Ptr->hasOneUse())
19946 return nullptr;
19947
19948 // Try turning it into a post-indexed load / store except when
19949 // 1) All uses are load / store ops that use it as base ptr (and
19950 // it may be folded as addressing mmode).
19951 // 2) Op must be independent of N, i.e. Op is neither a predecessor
19952 // nor a successor of N. Otherwise, if Op is folded that would
19953 // create a cycle.
19955 for (SDNode *Op : Ptr->users()) {
19956 // Check for #1.
19957 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
19958 continue;
19959
19960 // Check for #2.
19963 // Ptr is predecessor to both N and Op.
19964 Visited.insert(Ptr.getNode());
19965 Worklist.push_back(N);
19966 Worklist.push_back(Op);
19967 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps) &&
19968 !SDNode::hasPredecessorHelper(Op, Visited, Worklist, MaxSteps))
19969 return Op;
19970 }
19971 return nullptr;
19972}
19973
19974/// Try to combine a load/store with a add/sub of the base pointer node into a
19975/// post-indexed load/store. The transformation folded the add/subtract into the
19976/// new indexed load/store effectively and all of its uses are redirected to the
19977/// new load/store.
19978bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
19979 if (Level < AfterLegalizeDAG)
19980 return false;
19981
19982 bool IsLoad = true;
19983 bool IsMasked = false;
19984 SDValue Ptr;
19988 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
19989 Offset, AM, DAG, TLI);
19990 if (!Op)
19991 return false;
19992
19994 if (!IsMasked)
19995 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
19996 Offset, AM)
19997 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
19998 BasePtr, Offset, AM);
19999 else
20000 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
20001 BasePtr, Offset, AM)
20002 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
20003 BasePtr, Offset, AM);
20004 ++PostIndexedNodes;
20005 ++NodesCombined;
20006 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: ";
20007 Result.dump(&DAG); dbgs() << '\n');
20008 WorklistRemover DeadNodes(*this);
20009 if (IsLoad) {
20010 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
20011 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
20012 } else {
20013 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
20014 }
20015
20016 // Finally, since the node is now dead, remove it from the graph.
20017 deleteAndRecombine(N);
20018
20019 // Replace the uses of Use with uses of the updated base value.
20021 Result.getValue(IsLoad ? 1 : 0));
20022 deleteAndRecombine(Op);
20023 return true;
20024}
20025
20026/// Return the base-pointer arithmetic from an indexed \p LD.
20027SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
20028 ISD::MemIndexedMode AM = LD->getAddressingMode();
20029 assert(AM != ISD::UNINDEXED);
20030 SDValue BP = LD->getOperand(1);
20031 SDValue Inc = LD->getOperand(2);
20032
20033 // Some backends use TargetConstants for load offsets, but don't expect
20034 // TargetConstants in general ADD nodes. We can convert these constants into
20035 // regular Constants (if the constant is not opaque).
20037 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
20038 "Cannot split out indexing using opaque target constants");
20039 if (Inc.getOpcode() == ISD::TargetConstant) {
20040 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
20041 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
20042 ConstInc->getValueType(0));
20043 }
20044
20045 unsigned Opc =
20046 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
20047 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
20048}
20049
20051 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
20052}
20053
20054bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
20055 EVT STType = Val.getValueType();
20056 EVT STMemType = ST->getMemoryVT();
20057 if (STType == STMemType)
20058 return true;
20059 if (isTypeLegal(STMemType))
20060 return false; // fail.
20061 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
20062 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
20063 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
20064 return true;
20065 }
20066 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
20067 STType.isInteger() && STMemType.isInteger()) {
20068 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
20069 return true;
20070 }
20071 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
20072 Val = DAG.getBitcast(STMemType, Val);
20073 return true;
20074 }
20075 return false; // fail.
20076}
20077
20078bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
20079 EVT LDMemType = LD->getMemoryVT();
20080 EVT LDType = LD->getValueType(0);
20081 assert(Val.getValueType() == LDMemType &&
20082 "Attempting to extend value of non-matching type");
20083 if (LDType == LDMemType)
20084 return true;
20085 if (LDMemType.isInteger() && LDType.isInteger()) {
20086 switch (LD->getExtensionType()) {
20087 case ISD::NON_EXTLOAD:
20088 Val = DAG.getBitcast(LDType, Val);
20089 return true;
20090 case ISD::EXTLOAD:
20091 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
20092 return true;
20093 case ISD::SEXTLOAD:
20094 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
20095 return true;
20096 case ISD::ZEXTLOAD:
20097 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
20098 return true;
20099 }
20100 }
20101 return false;
20102}
20103
20104StoreSDNode *DAGCombiner::getUniqueStoreFeeding(LoadSDNode *LD,
20105 int64_t &Offset) {
20106 SDValue Chain = LD->getOperand(0);
20107
20108 // Look through CALLSEQ_START.
20109 if (Chain.getOpcode() == ISD::CALLSEQ_START)
20110 Chain = Chain->getOperand(0);
20111
20112 StoreSDNode *ST = nullptr;
20114 if (Chain.getOpcode() == ISD::TokenFactor) {
20115 // Look for unique store within the TokenFactor.
20116 for (SDValue Op : Chain->ops()) {
20117 StoreSDNode *Store = dyn_cast<StoreSDNode>(Op.getNode());
20118 if (!Store)
20119 continue;
20120 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
20121 BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG);
20122 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
20123 continue;
20124 // Make sure the store is not aliased with any nodes in TokenFactor.
20125 GatherAllAliases(Store, Chain, Aliases);
20126 if (Aliases.empty() ||
20127 (Aliases.size() == 1 && Aliases.front().getNode() == Store))
20128 ST = Store;
20129 break;
20130 }
20131 } else {
20132 StoreSDNode *Store = dyn_cast<StoreSDNode>(Chain.getNode());
20133 if (Store) {
20134 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
20135 BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG);
20136 if (BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
20137 ST = Store;
20138 }
20139 }
20140
20141 return ST;
20142}
20143
20144SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
20145 if (OptLevel == CodeGenOptLevel::None || !LD->isSimple())
20146 return SDValue();
20147 SDValue Chain = LD->getOperand(0);
20148 int64_t Offset;
20149
20150 StoreSDNode *ST = getUniqueStoreFeeding(LD, Offset);
20151 // TODO: Relax this restriction for unordered atomics (see D66309)
20152 if (!ST || !ST->isSimple() || ST->getAddressSpace() != LD->getAddressSpace())
20153 return SDValue();
20154
20155 EVT LDType = LD->getValueType(0);
20156 EVT LDMemType = LD->getMemoryVT();
20157 EVT STMemType = ST->getMemoryVT();
20158 EVT STType = ST->getValue().getValueType();
20159
20160 // There are two cases to consider here:
20161 // 1. The store is fixed width and the load is scalable. In this case we
20162 // don't know at compile time if the store completely envelops the load
20163 // so we abandon the optimisation.
20164 // 2. The store is scalable and the load is fixed width. We could
20165 // potentially support a limited number of cases here, but there has been
20166 // no cost-benefit analysis to prove it's worth it.
20167 bool LdStScalable = LDMemType.isScalableVT();
20168 if (LdStScalable != STMemType.isScalableVT())
20169 return SDValue();
20170
20171 // If we are dealing with scalable vectors on a big endian platform the
20172 // calculation of offsets below becomes trickier, since we do not know at
20173 // compile time the absolute size of the vector. Until we've done more
20174 // analysis on big-endian platforms it seems better to bail out for now.
20175 if (LdStScalable && DAG.getDataLayout().isBigEndian())
20176 return SDValue();
20177
20178 // Normalize for Endianness. After this Offset=0 will denote that the least
20179 // significant bit in the loaded value maps to the least significant bit in
20180 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
20181 // n:th least significant byte of the stored value.
20182 int64_t OrigOffset = Offset;
20183 if (DAG.getDataLayout().isBigEndian())
20184 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedValue() -
20185 (int64_t)LDMemType.getStoreSizeInBits().getFixedValue()) /
20186 8 -
20187 Offset;
20188
20189 // Check that the stored value cover all bits that are loaded.
20190 bool STCoversLD;
20191
20192 TypeSize LdMemSize = LDMemType.getSizeInBits();
20193 TypeSize StMemSize = STMemType.getSizeInBits();
20194 if (LdStScalable)
20195 STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
20196 else
20197 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedValue() <=
20198 StMemSize.getFixedValue());
20199
20200 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
20201 if (LD->isIndexed()) {
20202 // Cannot handle opaque target constants and we must respect the user's
20203 // request not to split indexes from loads.
20204 if (!canSplitIdx(LD))
20205 return SDValue();
20206 SDValue Idx = SplitIndexingFromLoad(LD);
20207 SDValue Ops[] = {Val, Idx, Chain};
20208 return CombineTo(LD, Ops, 3);
20209 }
20210 return CombineTo(LD, Val, Chain);
20211 };
20212
20213 if (!STCoversLD)
20214 return SDValue();
20215
20216 // Memory as copy space (potentially masked).
20217 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
20218 // Simple case: Direct non-truncating forwarding
20219 if (LDType.getSizeInBits() == LdMemSize)
20220 return ReplaceLd(LD, ST->getValue(), Chain);
20221 // Can we model the truncate and extension with an and mask?
20222 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
20223 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
20224 // Mask to size of LDMemType
20225 auto Mask =
20227 StMemSize.getFixedValue()),
20228 SDLoc(ST), STType);
20229 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
20230 return ReplaceLd(LD, Val, Chain);
20231 }
20232 }
20233
20234 // Handle some cases for big-endian that would be Offset 0 and handled for
20235 // little-endian.
20236 SDValue Val = ST->getValue();
20237 if (DAG.getDataLayout().isBigEndian() && Offset > 0 && OrigOffset == 0) {
20238 if (STType.isInteger() && !STType.isVector() && LDType.isInteger() &&
20239 !LDType.isVector() && isTypeLegal(STType) &&
20240 TLI.isOperationLegal(ISD::SRL, STType)) {
20241 Val = DAG.getNode(ISD::SRL, SDLoc(LD), STType, Val,
20242 DAG.getConstant(Offset * 8, SDLoc(LD), STType));
20243 Offset = 0;
20244 }
20245 }
20246
20247 // TODO: Deal with nonzero offset.
20248 if (LD->getBasePtr().isUndef() || Offset != 0)
20249 return SDValue();
20250 // Model necessary truncations / extenstions.
20251 // Truncate Value To Stored Memory Size.
20252 do {
20253 if (!getTruncatedStoreValue(ST, Val))
20254 break;
20255 if (!isTypeLegal(LDMemType))
20256 break;
20257 if (STMemType != LDMemType) {
20258 // TODO: Support vectors? This requires extract_subvector/bitcast.
20259 if (!STMemType.isVector() && !LDMemType.isVector() &&
20260 STMemType.isInteger() && LDMemType.isInteger())
20261 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
20262 else
20263 break;
20264 }
20265 if (!extendLoadedValueToExtension(LD, Val))
20266 break;
20267 return ReplaceLd(LD, Val, Chain);
20268 } while (false);
20269
20270 // On failure, cleanup dead nodes we may have created.
20271 if (Val->use_empty())
20272 deleteAndRecombine(Val.getNode());
20273 return SDValue();
20274}
20275
20276SDValue DAGCombiner::visitLOAD(SDNode *N) {
20277 LoadSDNode *LD = cast<LoadSDNode>(N);
20278 SDValue Chain = LD->getChain();
20279 SDValue Ptr = LD->getBasePtr();
20280
20281 // If load is not volatile and there are no uses of the loaded value (and
20282 // the updated indexed value in case of indexed loads), change uses of the
20283 // chain value into uses of the chain input (i.e. delete the dead load).
20284 // TODO: Allow this for unordered atomics (see D66309)
20285 if (LD->isSimple()) {
20286 if (N->getValueType(1) == MVT::Other) {
20287 // Unindexed loads.
20288 if (!N->hasAnyUseOfValue(0)) {
20289 // It's not safe to use the two value CombineTo variant here. e.g.
20290 // v1, chain2 = load chain1, loc
20291 // v2, chain3 = load chain2, loc
20292 // v3 = add v2, c
20293 // Now we replace use of chain2 with chain1. This makes the second load
20294 // isomorphic to the one we are deleting, and thus makes this load live.
20295 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
20296 dbgs() << "\nWith chain: "; Chain.dump(&DAG);
20297 dbgs() << "\n");
20298 WorklistRemover DeadNodes(*this);
20299 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
20300 AddUsersToWorklist(Chain.getNode());
20301 if (N->use_empty())
20302 deleteAndRecombine(N);
20303
20304 return SDValue(N, 0); // Return N so it doesn't get rechecked!
20305 }
20306 } else {
20307 // Indexed loads.
20308 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
20309
20310 // If this load has an opaque TargetConstant offset, then we cannot split
20311 // the indexing into an add/sub directly (that TargetConstant may not be
20312 // valid for a different type of node, and we cannot convert an opaque
20313 // target constant into a regular constant).
20314 bool CanSplitIdx = canSplitIdx(LD);
20315
20316 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
20317 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
20318 SDValue Index;
20319 if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
20320 Index = SplitIndexingFromLoad(LD);
20321 // Try to fold the base pointer arithmetic into subsequent loads and
20322 // stores.
20323 AddUsersToWorklist(N);
20324 } else
20325 Index = DAG.getUNDEF(N->getValueType(1));
20326 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
20327 dbgs() << "\nWith: "; Undef.dump(&DAG);
20328 dbgs() << " and 2 other values\n");
20329 WorklistRemover DeadNodes(*this);
20330 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
20331 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
20332 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
20333 deleteAndRecombine(N);
20334 return SDValue(N, 0); // Return N so it doesn't get rechecked!
20335 }
20336 }
20337 }
20338
20339 // If this load is directly stored, replace the load value with the stored
20340 // value.
20341 if (auto V = ForwardStoreValueToDirectLoad(LD))
20342 return V;
20343
20344 // Try to infer better alignment information than the load already has.
20345 if (OptLevel != CodeGenOptLevel::None && LD->isUnindexed() &&
20346 !LD->isAtomic()) {
20347 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
20348 if (*Alignment > LD->getAlign() &&
20349 isAligned(*Alignment, LD->getSrcValueOffset())) {
20350 SDValue NewLoad = DAG.getExtLoad(
20351 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
20352 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
20353 LD->getMemOperand()->getFlags(), LD->getAAInfo());
20354 // NewLoad will always be N as we are only refining the alignment
20355 assert(NewLoad.getNode() == N);
20356 (void)NewLoad;
20357 }
20358 }
20359 }
20360
20361 if (LD->isUnindexed()) {
20362 // Walk up chain skipping non-aliasing memory nodes.
20363 SDValue BetterChain = FindBetterChain(LD, Chain);
20364
20365 // If there is a better chain.
20366 if (Chain != BetterChain) {
20367 SDValue ReplLoad;
20368
20369 // Replace the chain to void dependency.
20370 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
20371 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
20372 BetterChain, Ptr, LD->getMemOperand());
20373 } else {
20374 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
20375 LD->getValueType(0),
20376 BetterChain, Ptr, LD->getMemoryVT(),
20377 LD->getMemOperand());
20378 }
20379
20380 // Create token factor to keep old chain connected.
20381 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
20382 MVT::Other, Chain, ReplLoad.getValue(1));
20383
20384 // Replace uses with load result and token factor
20385 return CombineTo(N, ReplLoad.getValue(0), Token);
20386 }
20387 }
20388
20389 // Try transforming N to an indexed load.
20390 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
20391 return SDValue(N, 0);
20392
20393 // Try to slice up N to more direct loads if the slices are mapped to
20394 // different register banks or pairing can take place.
20395 if (SliceUpLoad(N))
20396 return SDValue(N, 0);
20397
20398 return SDValue();
20399}
20400
20401namespace {
20402
20403/// Helper structure used to slice a load in smaller loads.
20404/// Basically a slice is obtained from the following sequence:
20405/// Origin = load Ty1, Base
20406/// Shift = srl Ty1 Origin, CstTy Amount
20407/// Inst = trunc Shift to Ty2
20408///
20409/// Then, it will be rewritten into:
20410/// Slice = load SliceTy, Base + SliceOffset
20411/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
20412///
20413/// SliceTy is deduced from the number of bits that are actually used to
20414/// build Inst.
20415struct LoadedSlice {
20416 /// Helper structure used to compute the cost of a slice.
20417 struct Cost {
20418 /// Are we optimizing for code size.
20419 bool ForCodeSize = false;
20420
20421 /// Various cost.
20422 unsigned Loads = 0;
20423 unsigned Truncates = 0;
20424 unsigned CrossRegisterBanksCopies = 0;
20425 unsigned ZExts = 0;
20426 unsigned Shift = 0;
20427
20428 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
20429
20430 /// Get the cost of one isolated slice.
20431 Cost(const LoadedSlice &LS, bool ForCodeSize)
20432 : ForCodeSize(ForCodeSize), Loads(1) {
20433 EVT TruncType = LS.Inst->getValueType(0);
20434 EVT LoadedType = LS.getLoadedType();
20435 if (TruncType != LoadedType &&
20436 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
20437 ZExts = 1;
20438 }
20439
20440 /// Account for slicing gain in the current cost.
20441 /// Slicing provide a few gains like removing a shift or a
20442 /// truncate. This method allows to grow the cost of the original
20443 /// load with the gain from this slice.
20444 void addSliceGain(const LoadedSlice &LS) {
20445 // Each slice saves a truncate.
20446 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
20447 if (!TLI.isTruncateFree(LS.Inst->getOperand(0), LS.Inst->getValueType(0)))
20448 ++Truncates;
20449 // If there is a shift amount, this slice gets rid of it.
20450 if (LS.Shift)
20451 ++Shift;
20452 // If this slice can merge a cross register bank copy, account for it.
20453 if (LS.canMergeExpensiveCrossRegisterBankCopy())
20454 ++CrossRegisterBanksCopies;
20455 }
20456
20457 Cost &operator+=(const Cost &RHS) {
20458 Loads += RHS.Loads;
20459 Truncates += RHS.Truncates;
20460 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
20461 ZExts += RHS.ZExts;
20462 Shift += RHS.Shift;
20463 return *this;
20464 }
20465
20466 bool operator==(const Cost &RHS) const {
20467 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
20468 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
20469 ZExts == RHS.ZExts && Shift == RHS.Shift;
20470 }
20471
20472 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
20473
20474 bool operator<(const Cost &RHS) const {
20475 // Assume cross register banks copies are as expensive as loads.
20476 // FIXME: Do we want some more target hooks?
20477 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
20478 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
20479 // Unless we are optimizing for code size, consider the
20480 // expensive operation first.
20481 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
20482 return ExpensiveOpsLHS < ExpensiveOpsRHS;
20483 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
20484 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
20485 }
20486
20487 bool operator>(const Cost &RHS) const { return RHS < *this; }
20488
20489 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
20490
20491 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
20492 };
20493
20494 // The last instruction that represent the slice. This should be a
20495 // truncate instruction.
20496 SDNode *Inst;
20497
20498 // The original load instruction.
20499 LoadSDNode *Origin;
20500
20501 // The right shift amount in bits from the original load.
20502 unsigned Shift;
20503
20504 // The DAG from which Origin came from.
20505 // This is used to get some contextual information about legal types, etc.
20506 SelectionDAG *DAG;
20507
20508 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
20509 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
20510 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
20511
20512 /// Get the bits used in a chunk of bits \p BitWidth large.
20513 /// \return Result is \p BitWidth and has used bits set to 1 and
20514 /// not used bits set to 0.
20515 APInt getUsedBits() const {
20516 // Reproduce the trunc(lshr) sequence:
20517 // - Start from the truncated value.
20518 // - Zero extend to the desired bit width.
20519 // - Shift left.
20520 assert(Origin && "No original load to compare against.");
20521 unsigned BitWidth = Origin->getValueSizeInBits(0);
20522 assert(Inst && "This slice is not bound to an instruction");
20523 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
20524 "Extracted slice is bigger than the whole type!");
20525 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
20526 UsedBits.setAllBits();
20527 UsedBits = UsedBits.zext(BitWidth);
20528 UsedBits <<= Shift;
20529 return UsedBits;
20530 }
20531
20532 /// Get the size of the slice to be loaded in bytes.
20533 unsigned getLoadedSize() const {
20534 unsigned SliceSize = getUsedBits().popcount();
20535 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
20536 return SliceSize / 8;
20537 }
20538
20539 /// Get the type that will be loaded for this slice.
20540 /// Note: This may not be the final type for the slice.
20541 EVT getLoadedType() const {
20542 assert(DAG && "Missing context");
20543 LLVMContext &Ctxt = *DAG->getContext();
20544 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
20545 }
20546
20547 /// Get the alignment of the load used for this slice.
20548 Align getAlign() const {
20549 Align Alignment = Origin->getAlign();
20550 uint64_t Offset = getOffsetFromBase();
20551 if (Offset != 0)
20552 Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
20553 return Alignment;
20554 }
20555
20556 /// Check if this slice can be rewritten with legal operations.
20557 bool isLegal() const {
20558 // An invalid slice is not legal.
20559 if (!Origin || !Inst || !DAG)
20560 return false;
20561
20562 // Offsets are for indexed load only, we do not handle that.
20563 if (!Origin->getOffset().isUndef())
20564 return false;
20565
20566 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
20567
20568 // Check that the type is legal.
20569 EVT SliceType = getLoadedType();
20570 if (!TLI.isTypeLegal(SliceType))
20571 return false;
20572
20573 // Check that the load is legal for this type.
20574 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
20575 return false;
20576
20577 // Check that the offset can be computed.
20578 // 1. Check its type.
20579 EVT PtrType = Origin->getBasePtr().getValueType();
20580 if (PtrType == MVT::Untyped || PtrType.isExtended())
20581 return false;
20582
20583 // 2. Check that it fits in the immediate.
20584 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
20585 return false;
20586
20587 // 3. Check that the computation is legal.
20588 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
20589 return false;
20590
20591 // Check that the zext is legal if it needs one.
20592 EVT TruncateType = Inst->getValueType(0);
20593 if (TruncateType != SliceType &&
20594 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
20595 return false;
20596
20597 return true;
20598 }
20599
20600 /// Get the offset in bytes of this slice in the original chunk of
20601 /// bits.
20602 /// \pre DAG != nullptr.
20603 uint64_t getOffsetFromBase() const {
20604 assert(DAG && "Missing context.");
20605 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
20606 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
20607 uint64_t Offset = Shift / 8;
20608 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
20609 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
20610 "The size of the original loaded type is not a multiple of a"
20611 " byte.");
20612 // If Offset is bigger than TySizeInBytes, it means we are loading all
20613 // zeros. This should have been optimized before in the process.
20614 assert(TySizeInBytes > Offset &&
20615 "Invalid shift amount for given loaded size");
20616 if (IsBigEndian)
20617 Offset = TySizeInBytes - Offset - getLoadedSize();
20618 return Offset;
20619 }
20620
20621 /// Generate the sequence of instructions to load the slice
20622 /// represented by this object and redirect the uses of this slice to
20623 /// this new sequence of instructions.
20624 /// \pre this->Inst && this->Origin are valid Instructions and this
20625 /// object passed the legal check: LoadedSlice::isLegal returned true.
20626 /// \return The last instruction of the sequence used to load the slice.
20627 SDValue loadSlice() const {
20628 assert(Inst && Origin && "Unable to replace a non-existing slice.");
20629 const SDValue &OldBaseAddr = Origin->getBasePtr();
20630 SDValue BaseAddr = OldBaseAddr;
20631 // Get the offset in that chunk of bytes w.r.t. the endianness.
20632 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
20633 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
20634 if (Offset) {
20635 // BaseAddr = BaseAddr + Offset.
20636 EVT ArithType = BaseAddr.getValueType();
20637 SDLoc DL(Origin);
20638 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
20639 DAG->getConstant(Offset, DL, ArithType));
20640 }
20641
20642 // Create the type of the loaded slice according to its size.
20643 EVT SliceType = getLoadedType();
20644
20645 // Create the load for the slice.
20646 SDValue LastInst =
20647 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
20649 Origin->getMemOperand()->getFlags());
20650 // If the final type is not the same as the loaded type, this means that
20651 // we have to pad with zero. Create a zero extend for that.
20652 EVT FinalType = Inst->getValueType(0);
20653 if (SliceType != FinalType)
20654 LastInst =
20655 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
20656 return LastInst;
20657 }
20658
20659 /// Check if this slice can be merged with an expensive cross register
20660 /// bank copy. E.g.,
20661 /// i = load i32
20662 /// f = bitcast i32 i to float
20663 bool canMergeExpensiveCrossRegisterBankCopy() const {
20664 if (!Inst || !Inst->hasOneUse())
20665 return false;
20666 SDNode *User = *Inst->user_begin();
20667 if (User->getOpcode() != ISD::BITCAST)
20668 return false;
20669 assert(DAG && "Missing context");
20670 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
20671 EVT ResVT = User->getValueType(0);
20672 const TargetRegisterClass *ResRC =
20673 TLI.getRegClassFor(ResVT.getSimpleVT(), User->isDivergent());
20674 const TargetRegisterClass *ArgRC =
20675 TLI.getRegClassFor(User->getOperand(0).getValueType().getSimpleVT(),
20676 User->getOperand(0)->isDivergent());
20677 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
20678 return false;
20679
20680 // At this point, we know that we perform a cross-register-bank copy.
20681 // Check if it is expensive.
20682 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
20683 // Assume bitcasts are cheap, unless both register classes do not
20684 // explicitly share a common sub class.
20685 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
20686 return false;
20687
20688 // Check if it will be merged with the load.
20689 // 1. Check the alignment / fast memory access constraint.
20690 unsigned IsFast = 0;
20691 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT,
20692 Origin->getAddressSpace(), getAlign(),
20693 Origin->getMemOperand()->getFlags(), &IsFast) ||
20694 !IsFast)
20695 return false;
20696
20697 // 2. Check that the load is a legal operation for that type.
20698 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
20699 return false;
20700
20701 // 3. Check that we do not have a zext in the way.
20702 if (Inst->getValueType(0) != getLoadedType())
20703 return false;
20704
20705 return true;
20706 }
20707};
20708
20709} // end anonymous namespace
20710
20711/// Check that all bits set in \p UsedBits form a dense region, i.e.,
20712/// \p UsedBits looks like 0..0 1..1 0..0.
20713static bool areUsedBitsDense(const APInt &UsedBits) {
20714 // If all the bits are one, this is dense!
20715 if (UsedBits.isAllOnes())
20716 return true;
20717
20718 // Get rid of the unused bits on the right.
20719 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countr_zero());
20720 // Get rid of the unused bits on the left.
20721 if (NarrowedUsedBits.countl_zero())
20722 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
20723 // Check that the chunk of bits is completely used.
20724 return NarrowedUsedBits.isAllOnes();
20725}
20726
20727/// Check whether or not \p First and \p Second are next to each other
20728/// in memory. This means that there is no hole between the bits loaded
20729/// by \p First and the bits loaded by \p Second.
20730static bool areSlicesNextToEachOther(const LoadedSlice &First,
20731 const LoadedSlice &Second) {
20732 assert(First.Origin == Second.Origin && First.Origin &&
20733 "Unable to match different memory origins.");
20734 APInt UsedBits = First.getUsedBits();
20735 assert((UsedBits & Second.getUsedBits()) == 0 &&
20736 "Slices are not supposed to overlap.");
20737 UsedBits |= Second.getUsedBits();
20738 return areUsedBitsDense(UsedBits);
20739}
20740
20741/// Adjust the \p GlobalLSCost according to the target
20742/// paring capabilities and the layout of the slices.
20743/// \pre \p GlobalLSCost should account for at least as many loads as
20744/// there is in the slices in \p LoadedSlices.
20746 LoadedSlice::Cost &GlobalLSCost) {
20747 unsigned NumberOfSlices = LoadedSlices.size();
20748 // If there is less than 2 elements, no pairing is possible.
20749 if (NumberOfSlices < 2)
20750 return;
20751
20752 // Sort the slices so that elements that are likely to be next to each
20753 // other in memory are next to each other in the list.
20754 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
20755 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
20756 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
20757 });
20758 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
20759 // First (resp. Second) is the first (resp. Second) potentially candidate
20760 // to be placed in a paired load.
20761 const LoadedSlice *First = nullptr;
20762 const LoadedSlice *Second = nullptr;
20763 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
20764 // Set the beginning of the pair.
20765 First = Second) {
20766 Second = &LoadedSlices[CurrSlice];
20767
20768 // If First is NULL, it means we start a new pair.
20769 // Get to the next slice.
20770 if (!First)
20771 continue;
20772
20773 EVT LoadedType = First->getLoadedType();
20774
20775 // If the types of the slices are different, we cannot pair them.
20776 if (LoadedType != Second->getLoadedType())
20777 continue;
20778
20779 // Check if the target supplies paired loads for this type.
20780 Align RequiredAlignment;
20781 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
20782 // move to the next pair, this type is hopeless.
20783 Second = nullptr;
20784 continue;
20785 }
20786 // Check if we meet the alignment requirement.
20787 if (First->getAlign() < RequiredAlignment)
20788 continue;
20789
20790 // Check that both loads are next to each other in memory.
20791 if (!areSlicesNextToEachOther(*First, *Second))
20792 continue;
20793
20794 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
20795 --GlobalLSCost.Loads;
20796 // Move to the next pair.
20797 Second = nullptr;
20798 }
20799}
20800
20801/// Check the profitability of all involved LoadedSlice.
20802/// Currently, it is considered profitable if there is exactly two
20803/// involved slices (1) which are (2) next to each other in memory, and
20804/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
20805///
20806/// Note: The order of the elements in \p LoadedSlices may be modified, but not
20807/// the elements themselves.
20808///
20809/// FIXME: When the cost model will be mature enough, we can relax
20810/// constraints (1) and (2).
20812 const APInt &UsedBits, bool ForCodeSize) {
20813 unsigned NumberOfSlices = LoadedSlices.size();
20815 return NumberOfSlices > 1;
20816
20817 // Check (1).
20818 if (NumberOfSlices != 2)
20819 return false;
20820
20821 // Check (2).
20822 if (!areUsedBitsDense(UsedBits))
20823 return false;
20824
20825 // Check (3).
20826 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
20827 // The original code has one big load.
20828 OrigCost.Loads = 1;
20829 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
20830 const LoadedSlice &LS = LoadedSlices[CurrSlice];
20831 // Accumulate the cost of all the slices.
20832 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
20833 GlobalSlicingCost += SliceCost;
20834
20835 // Account as cost in the original configuration the gain obtained
20836 // with the current slices.
20837 OrigCost.addSliceGain(LS);
20838 }
20839
20840 // If the target supports paired load, adjust the cost accordingly.
20841 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
20842 return OrigCost > GlobalSlicingCost;
20843}
20844
20845/// If the given load, \p LI, is used only by trunc or trunc(lshr)
20846/// operations, split it in the various pieces being extracted.
20847///
20848/// This sort of thing is introduced by SROA.
20849/// This slicing takes care not to insert overlapping loads.
20850/// \pre LI is a simple load (i.e., not an atomic or volatile load).
20851bool DAGCombiner::SliceUpLoad(SDNode *N) {
20852 if (Level < AfterLegalizeDAG)
20853 return false;
20854
20855 LoadSDNode *LD = cast<LoadSDNode>(N);
20856 if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
20857 !LD->getValueType(0).isInteger())
20858 return false;
20859
20860 // The algorithm to split up a load of a scalable vector into individual
20861 // elements currently requires knowing the length of the loaded type,
20862 // so will need adjusting to work on scalable vectors.
20863 if (LD->getValueType(0).isScalableVector())
20864 return false;
20865
20866 // Keep track of already used bits to detect overlapping values.
20867 // In that case, we will just abort the transformation.
20868 APInt UsedBits(LD->getValueSizeInBits(0), 0);
20869
20870 SmallVector<LoadedSlice, 4> LoadedSlices;
20871
20872 // Check if this load is used as several smaller chunks of bits.
20873 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
20874 // of computation for each trunc.
20875 for (SDUse &U : LD->uses()) {
20876 // Skip the uses of the chain.
20877 if (U.getResNo() != 0)
20878 continue;
20879
20880 SDNode *User = U.getUser();
20881 unsigned Shift = 0;
20882
20883 // Check if this is a trunc(lshr).
20884 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
20885 isa<ConstantSDNode>(User->getOperand(1))) {
20886 Shift = User->getConstantOperandVal(1);
20887 User = *User->user_begin();
20888 }
20889
20890 // At this point, User is a Truncate, iff we encountered, trunc or
20891 // trunc(lshr).
20892 if (User->getOpcode() != ISD::TRUNCATE)
20893 return false;
20894
20895 // The width of the type must be a power of 2 and greater than 8-bits.
20896 // Otherwise the load cannot be represented in LLVM IR.
20897 // Moreover, if we shifted with a non-8-bits multiple, the slice
20898 // will be across several bytes. We do not support that.
20899 unsigned Width = User->getValueSizeInBits(0);
20900 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
20901 return false;
20902
20903 // Build the slice for this chain of computations.
20904 LoadedSlice LS(User, LD, Shift, &DAG);
20905 APInt CurrentUsedBits = LS.getUsedBits();
20906
20907 // Check if this slice overlaps with another.
20908 if ((CurrentUsedBits & UsedBits) != 0)
20909 return false;
20910 // Update the bits used globally.
20911 UsedBits |= CurrentUsedBits;
20912
20913 // Check if the new slice would be legal.
20914 if (!LS.isLegal())
20915 return false;
20916
20917 // Record the slice.
20918 LoadedSlices.push_back(LS);
20919 }
20920
20921 // Abort slicing if it does not seem to be profitable.
20922 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
20923 return false;
20924
20925 ++SlicedLoads;
20926
20927 // Rewrite each chain to use an independent load.
20928 // By construction, each chain can be represented by a unique load.
20929
20930 // Prepare the argument for the new token factor for all the slices.
20931 SmallVector<SDValue, 8> ArgChains;
20932 for (const LoadedSlice &LS : LoadedSlices) {
20933 SDValue SliceInst = LS.loadSlice();
20934 CombineTo(LS.Inst, SliceInst, true);
20935 if (SliceInst.getOpcode() != ISD::LOAD)
20936 SliceInst = SliceInst.getOperand(0);
20937 assert(SliceInst->getOpcode() == ISD::LOAD &&
20938 "It takes more than a zext to get to the loaded slice!!");
20939 ArgChains.push_back(SliceInst.getValue(1));
20940 }
20941
20942 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
20943 ArgChains);
20944 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
20945 AddToWorklist(Chain.getNode());
20946 return true;
20947}
20948
20949/// Check to see if V is (and load (ptr), imm), where the load is having
20950/// specific bytes cleared out. If so, return the byte size being masked out
20951/// and the shift amount.
20952static std::pair<unsigned, unsigned>
20954 std::pair<unsigned, unsigned> Result(0, 0);
20955
20956 // Check for the structure we're looking for.
20957 if (V->getOpcode() != ISD::AND ||
20958 !isa<ConstantSDNode>(V->getOperand(1)) ||
20959 !ISD::isNormalLoad(V->getOperand(0).getNode()))
20960 return Result;
20961
20962 // Check the chain and pointer.
20963 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
20964 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
20965
20966 // This only handles simple types.
20967 if (V.getValueType() != MVT::i16 &&
20968 V.getValueType() != MVT::i32 &&
20969 V.getValueType() != MVT::i64)
20970 return Result;
20971
20972 // Check the constant mask. Invert it so that the bits being masked out are
20973 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
20974 // follow the sign bit for uniformity.
20975 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
20976 unsigned NotMaskLZ = llvm::countl_zero(NotMask);
20977 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
20978 unsigned NotMaskTZ = llvm::countr_zero(NotMask);
20979 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
20980 if (NotMaskLZ == 64) return Result; // All zero mask.
20981
20982 // See if we have a continuous run of bits. If so, we have 0*1+0*
20983 if (llvm::countr_one(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
20984 return Result;
20985
20986 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
20987 if (V.getValueType() != MVT::i64 && NotMaskLZ)
20988 NotMaskLZ -= 64-V.getValueSizeInBits();
20989
20990 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
20991 switch (MaskedBytes) {
20992 case 1:
20993 case 2:
20994 case 4: break;
20995 default: return Result; // All one mask, or 5-byte mask.
20996 }
20997
20998 // Verify that the first bit starts at a multiple of mask so that the access
20999 // is aligned the same as the access width.
21000 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
21001
21002 // For narrowing to be valid, it must be the case that the load the
21003 // immediately preceding memory operation before the store.
21004 if (LD == Chain.getNode())
21005 ; // ok.
21006 else if (Chain->getOpcode() == ISD::TokenFactor &&
21007 SDValue(LD, 1).hasOneUse()) {
21008 // LD has only 1 chain use so they are no indirect dependencies.
21009 if (!LD->isOperandOf(Chain.getNode()))
21010 return Result;
21011 } else
21012 return Result; // Fail.
21013
21014 Result.first = MaskedBytes;
21015 Result.second = NotMaskTZ/8;
21016 return Result;
21017}
21018
21019/// Check to see if IVal is something that provides a value as specified by
21020/// MaskInfo. If so, replace the specified store with a narrower store of
21021/// truncated IVal.
21022static SDValue
21023ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
21024 SDValue IVal, StoreSDNode *St,
21025 DAGCombiner *DC) {
21026 unsigned NumBytes = MaskInfo.first;
21027 unsigned ByteShift = MaskInfo.second;
21028 SelectionDAG &DAG = DC->getDAG();
21029
21030 // Check to see if IVal is all zeros in the part being masked in by the 'or'
21031 // that uses this. If not, this is not a replacement.
21032 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
21033 ByteShift*8, (ByteShift+NumBytes)*8);
21034 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
21035
21036 // Check that it is legal on the target to do this. It is legal if the new
21037 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
21038 // legalization. If the source type is legal, but the store type isn't, see
21039 // if we can use a truncating store.
21040 MVT VT = MVT::getIntegerVT(NumBytes * 8);
21041 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21042 bool UseTruncStore;
21043 if (DC->isTypeLegal(VT))
21044 UseTruncStore = false;
21045 else if (TLI.isTypeLegal(IVal.getValueType()) &&
21046 TLI.isTruncStoreLegal(IVal.getValueType(), VT))
21047 UseTruncStore = true;
21048 else
21049 return SDValue();
21050
21051 // Can't do this for indexed stores.
21052 if (St->isIndexed())
21053 return SDValue();
21054
21055 // Check that the target doesn't think this is a bad idea.
21056 if (St->getMemOperand() &&
21057 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
21058 *St->getMemOperand()))
21059 return SDValue();
21060
21061 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
21062 // shifted by ByteShift and truncated down to NumBytes.
21063 if (ByteShift) {
21064 SDLoc DL(IVal);
21065 IVal = DAG.getNode(
21066 ISD::SRL, DL, IVal.getValueType(), IVal,
21067 DAG.getShiftAmountConstant(ByteShift * 8, IVal.getValueType(), DL));
21068 }
21069
21070 // Figure out the offset for the store and the alignment of the access.
21071 unsigned StOffset;
21072 if (DAG.getDataLayout().isLittleEndian())
21073 StOffset = ByteShift;
21074 else
21075 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
21076
21077 SDValue Ptr = St->getBasePtr();
21078 if (StOffset) {
21079 SDLoc DL(IVal);
21081 }
21082
21083 ++OpsNarrowed;
21084 if (UseTruncStore)
21085 return DAG.getTruncStore(St->getChain(), SDLoc(St), IVal, Ptr,
21086 St->getPointerInfo().getWithOffset(StOffset), VT,
21087 St->getBaseAlign());
21088
21089 // Truncate down to the new size.
21090 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
21091
21092 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
21093 St->getPointerInfo().getWithOffset(StOffset),
21094 St->getBaseAlign());
21095}
21096
21097/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
21098/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
21099/// narrowing the load and store if it would end up being a win for performance
21100/// or code size.
21101SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
21102 StoreSDNode *ST = cast<StoreSDNode>(N);
21103 if (!ST->isSimple())
21104 return SDValue();
21105
21106 SDValue Chain = ST->getChain();
21107 SDValue Value = ST->getValue();
21108 SDValue Ptr = ST->getBasePtr();
21109 EVT VT = Value.getValueType();
21110
21111 if (ST->isTruncatingStore() || VT.isVector())
21112 return SDValue();
21113
21114 unsigned Opc = Value.getOpcode();
21115
21116 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
21117 !Value.hasOneUse())
21118 return SDValue();
21119
21120 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
21121 // is a byte mask indicating a consecutive number of bytes, check to see if
21122 // Y is known to provide just those bytes. If so, we try to replace the
21123 // load + replace + store sequence with a single (narrower) store, which makes
21124 // the load dead.
21126 std::pair<unsigned, unsigned> MaskedLoad;
21127 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
21128 if (MaskedLoad.first)
21129 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
21130 Value.getOperand(1), ST,this))
21131 return NewST;
21132
21133 // Or is commutative, so try swapping X and Y.
21134 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
21135 if (MaskedLoad.first)
21136 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
21137 Value.getOperand(0), ST,this))
21138 return NewST;
21139 }
21140
21142 return SDValue();
21143
21144 if (Value.getOperand(1).getOpcode() != ISD::Constant)
21145 return SDValue();
21146
21147 SDValue N0 = Value.getOperand(0);
21148 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
21149 Chain == SDValue(N0.getNode(), 1)) {
21150 LoadSDNode *LD = cast<LoadSDNode>(N0);
21151 if (LD->getBasePtr() != Ptr ||
21152 LD->getPointerInfo().getAddrSpace() !=
21153 ST->getPointerInfo().getAddrSpace())
21154 return SDValue();
21155
21156 // Find the type NewVT to narrow the load / op / store to.
21157 SDValue N1 = Value.getOperand(1);
21158 unsigned BitWidth = N1.getValueSizeInBits();
21159 APInt Imm = N1->getAsAPIntVal();
21160 if (Opc == ISD::AND)
21161 Imm.flipAllBits();
21162 if (Imm == 0 || Imm.isAllOnes())
21163 return SDValue();
21164 // Find least/most significant bit that need to be part of the narrowed
21165 // operation. We assume target will need to address/access full bytes, so
21166 // we make sure to align LSB and MSB at byte boundaries.
21167 unsigned BitsPerByteMask = 7u;
21168 unsigned LSB = Imm.countr_zero() & ~BitsPerByteMask;
21169 unsigned MSB = (Imm.getActiveBits() - 1) | BitsPerByteMask;
21170 unsigned NewBW = NextPowerOf2(MSB - LSB);
21171 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
21172 // The narrowing should be profitable, the load/store operation should be
21173 // legal (or custom) and the store size should be equal to the NewVT width.
21174 while (NewBW < BitWidth &&
21175 (NewVT.getStoreSizeInBits() != NewBW ||
21176 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
21178 !TLI.isNarrowingProfitable(N, VT, NewVT)))) {
21179 NewBW = NextPowerOf2(NewBW);
21180 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
21181 }
21182 if (NewBW >= BitWidth)
21183 return SDValue();
21184
21185 // If we come this far NewVT/NewBW reflect a power-of-2 sized type that is
21186 // large enough to cover all bits that should be modified. This type might
21187 // however be larger than really needed (such as i32 while we actually only
21188 // need to modify one byte). Now we need to find our how to align the memory
21189 // accesses to satisfy preferred alignments as well as avoiding to access
21190 // memory outside the store size of the orignal access.
21191
21192 unsigned VTStoreSize = VT.getStoreSizeInBits().getFixedValue();
21193
21194 // Let ShAmt denote amount of bits to skip, counted from the least
21195 // significant bits of Imm. And let PtrOff how much the pointer needs to be
21196 // offsetted (in bytes) for the new access.
21197 unsigned ShAmt = 0;
21198 uint64_t PtrOff = 0;
21199 for (; ShAmt + NewBW <= VTStoreSize; ShAmt += 8) {
21200 // Make sure the range [ShAmt, ShAmt+NewBW) cover both LSB and MSB.
21201 if (ShAmt > LSB)
21202 return SDValue();
21203 if (ShAmt + NewBW < MSB)
21204 continue;
21205
21206 // Calculate PtrOff.
21207 unsigned PtrAdjustmentInBits = DAG.getDataLayout().isBigEndian()
21208 ? VTStoreSize - NewBW - ShAmt
21209 : ShAmt;
21210 PtrOff = PtrAdjustmentInBits / 8;
21211
21212 // Now check if narrow access is allowed and fast, considering alignments.
21213 unsigned IsFast = 0;
21214 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
21215 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT,
21216 LD->getAddressSpace(), NewAlign,
21217 LD->getMemOperand()->getFlags(), &IsFast) &&
21218 IsFast)
21219 break;
21220 }
21221 // If loop above did not find any accepted ShAmt we need to exit here.
21222 if (ShAmt + NewBW > VTStoreSize)
21223 return SDValue();
21224
21225 APInt NewImm = Imm.lshr(ShAmt).trunc(NewBW);
21226 if (Opc == ISD::AND)
21227 NewImm.flipAllBits();
21228 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
21229 SDValue NewPtr =
21230 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(PtrOff), SDLoc(LD));
21231 SDValue NewLD =
21232 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
21233 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
21234 LD->getMemOperand()->getFlags(), LD->getAAInfo());
21235 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
21236 DAG.getConstant(NewImm, SDLoc(Value), NewVT));
21237 SDValue NewST =
21238 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
21239 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
21240
21241 AddToWorklist(NewPtr.getNode());
21242 AddToWorklist(NewLD.getNode());
21243 AddToWorklist(NewVal.getNode());
21244 WorklistRemover DeadNodes(*this);
21245 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
21246 ++OpsNarrowed;
21247 return NewST;
21248 }
21249
21250 return SDValue();
21251}
21252
21253/// For a given floating point load / store pair, if the load value isn't used
21254/// by any other operations, then consider transforming the pair to integer
21255/// load / store operations if the target deems the transformation profitable.
21256SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
21257 StoreSDNode *ST = cast<StoreSDNode>(N);
21258 SDValue Value = ST->getValue();
21259 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
21260 Value.hasOneUse()) {
21261 LoadSDNode *LD = cast<LoadSDNode>(Value);
21262 EVT VT = LD->getMemoryVT();
21263 if (!VT.isSimple() || !VT.isFloatingPoint() || VT != ST->getMemoryVT() ||
21264 LD->isNonTemporal() || ST->isNonTemporal() ||
21265 LD->getPointerInfo().getAddrSpace() != 0 ||
21266 ST->getPointerInfo().getAddrSpace() != 0)
21267 return SDValue();
21268
21269 TypeSize VTSize = VT.getSizeInBits();
21270
21271 // We don't know the size of scalable types at compile time so we cannot
21272 // create an integer of the equivalent size.
21273 if (VTSize.isScalable())
21274 return SDValue();
21275
21276 unsigned FastLD = 0, FastST = 0;
21277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedValue());
21278 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
21279 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
21280 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
21281 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) ||
21282 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
21283 *LD->getMemOperand(), &FastLD) ||
21284 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
21285 *ST->getMemOperand(), &FastST) ||
21286 !FastLD || !FastST)
21287 return SDValue();
21288
21289 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(),
21290 LD->getBasePtr(), LD->getMemOperand());
21291
21292 SDValue NewST = DAG.getStore(ST->getChain(), SDLoc(N), NewLD,
21293 ST->getBasePtr(), ST->getMemOperand());
21294
21295 AddToWorklist(NewLD.getNode());
21296 AddToWorklist(NewST.getNode());
21297 WorklistRemover DeadNodes(*this);
21298 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
21299 ++LdStFP2Int;
21300 return NewST;
21301 }
21302
21303 return SDValue();
21304}
21305
21306// This is a helper function for visitMUL to check the profitability
21307// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
21308// MulNode is the original multiply, AddNode is (add x, c1),
21309// and ConstNode is c2.
21310//
21311// If the (add x, c1) has multiple uses, we could increase
21312// the number of adds if we make this transformation.
21313// It would only be worth doing this if we can remove a
21314// multiply in the process. Check for that here.
21315// To illustrate:
21316// (A + c1) * c3
21317// (A + c2) * c3
21318// We're checking for cases where we have common "c3 * A" expressions.
21319bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
21320 SDValue ConstNode) {
21321 // If the add only has one use, and the target thinks the folding is
21322 // profitable or does not lead to worse code, this would be OK to do.
21323 if (AddNode->hasOneUse() &&
21324 TLI.isMulAddWithConstProfitable(AddNode, ConstNode))
21325 return true;
21326
21327 // Walk all the users of the constant with which we're multiplying.
21328 for (SDNode *User : ConstNode->users()) {
21329 if (User == MulNode) // This use is the one we're on right now. Skip it.
21330 continue;
21331
21332 if (User->getOpcode() == ISD::MUL) { // We have another multiply use.
21333 SDNode *OtherOp;
21334 SDNode *MulVar = AddNode.getOperand(0).getNode();
21335
21336 // OtherOp is what we're multiplying against the constant.
21337 if (User->getOperand(0) == ConstNode)
21338 OtherOp = User->getOperand(1).getNode();
21339 else
21340 OtherOp = User->getOperand(0).getNode();
21341
21342 // Check to see if multiply is with the same operand of our "add".
21343 //
21344 // ConstNode = CONST
21345 // User = ConstNode * A <-- visiting User. OtherOp is A.
21346 // ...
21347 // AddNode = (A + c1) <-- MulVar is A.
21348 // = AddNode * ConstNode <-- current visiting instruction.
21349 //
21350 // If we make this transformation, we will have a common
21351 // multiply (ConstNode * A) that we can save.
21352 if (OtherOp == MulVar)
21353 return true;
21354
21355 // Now check to see if a future expansion will give us a common
21356 // multiply.
21357 //
21358 // ConstNode = CONST
21359 // AddNode = (A + c1)
21360 // ... = AddNode * ConstNode <-- current visiting instruction.
21361 // ...
21362 // OtherOp = (A + c2)
21363 // User = OtherOp * ConstNode <-- visiting User.
21364 //
21365 // If we make this transformation, we will have a common
21366 // multiply (CONST * A) after we also do the same transformation
21367 // to the "t2" instruction.
21368 if (OtherOp->getOpcode() == ISD::ADD &&
21370 OtherOp->getOperand(0).getNode() == MulVar)
21371 return true;
21372 }
21373 }
21374
21375 // Didn't find a case where this would be profitable.
21376 return false;
21377}
21378
21379SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
21380 unsigned NumStores) {
21382 SmallPtrSet<const SDNode *, 8> Visited;
21383 SDLoc StoreDL(StoreNodes[0].MemNode);
21384
21385 for (unsigned i = 0; i < NumStores; ++i) {
21386 Visited.insert(StoreNodes[i].MemNode);
21387 }
21388
21389 // don't include nodes that are children or repeated nodes.
21390 for (unsigned i = 0; i < NumStores; ++i) {
21391 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
21392 Chains.push_back(StoreNodes[i].MemNode->getChain());
21393 }
21394
21395 assert(!Chains.empty() && "Chain should have generated a chain");
21396 return DAG.getTokenFactor(StoreDL, Chains);
21397}
21398
21399bool DAGCombiner::hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes) {
21400 const Value *UnderlyingObj = nullptr;
21401 for (const auto &MemOp : StoreNodes) {
21402 const MachineMemOperand *MMO = MemOp.MemNode->getMemOperand();
21403 // Pseudo value like stack frame has its own frame index and size, should
21404 // not use the first store's frame index for other frames.
21405 if (MMO->getPseudoValue())
21406 return false;
21407
21408 if (!MMO->getValue())
21409 return false;
21410
21411 const Value *Obj = getUnderlyingObject(MMO->getValue());
21412
21413 if (UnderlyingObj && UnderlyingObj != Obj)
21414 return false;
21415
21416 if (!UnderlyingObj)
21417 UnderlyingObj = Obj;
21418 }
21419
21420 return true;
21421}
21422
21423bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
21424 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
21425 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
21426 // Make sure we have something to merge.
21427 if (NumStores < 2)
21428 return false;
21429
21430 assert((!UseTrunc || !UseVector) &&
21431 "This optimization cannot emit a vector truncating store");
21432
21433 // The latest Node in the DAG.
21434 SDLoc DL(StoreNodes[0].MemNode);
21435
21436 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
21437 unsigned SizeInBits = NumStores * ElementSizeBits;
21438 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
21439
21440 std::optional<MachineMemOperand::Flags> Flags;
21441 AAMDNodes AAInfo;
21442 for (unsigned I = 0; I != NumStores; ++I) {
21443 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
21444 if (!Flags) {
21445 Flags = St->getMemOperand()->getFlags();
21446 AAInfo = St->getAAInfo();
21447 continue;
21448 }
21449 // Skip merging if there's an inconsistent flag.
21450 if (Flags != St->getMemOperand()->getFlags())
21451 return false;
21452 // Concatenate AA metadata.
21453 AAInfo = AAInfo.concat(St->getAAInfo());
21454 }
21455
21456 EVT StoreTy;
21457 if (UseVector) {
21458 unsigned Elts = NumStores * NumMemElts;
21459 // Get the type for the merged vector store.
21460 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
21461 } else
21462 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
21463
21464 SDValue StoredVal;
21465 if (UseVector) {
21466 if (IsConstantSrc) {
21467 SmallVector<SDValue, 8> BuildVector;
21468 for (unsigned I = 0; I != NumStores; ++I) {
21469 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
21470 SDValue Val = St->getValue();
21471 // If constant is of the wrong type, convert it now. This comes up
21472 // when one of our stores was truncating.
21473 if (MemVT != Val.getValueType()) {
21474 Val = peekThroughBitcasts(Val);
21475 // Deal with constants of wrong size.
21476 if (ElementSizeBits != Val.getValueSizeInBits()) {
21477 auto *C = dyn_cast<ConstantSDNode>(Val);
21478 if (!C)
21479 // Not clear how to truncate FP values.
21480 // TODO: Handle truncation of build_vector constants
21481 return false;
21482
21483 EVT IntMemVT =
21485 Val = DAG.getConstant(C->getAPIntValue()
21486 .zextOrTrunc(Val.getValueSizeInBits())
21487 .zextOrTrunc(ElementSizeBits),
21488 SDLoc(C), IntMemVT);
21489 }
21490 // Make sure correctly size type is the correct type.
21491 Val = DAG.getBitcast(MemVT, Val);
21492 }
21493 BuildVector.push_back(Val);
21494 }
21495 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
21497 DL, StoreTy, BuildVector);
21498 } else {
21500 for (unsigned i = 0; i < NumStores; ++i) {
21501 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
21503 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
21504 // type MemVT. If the underlying value is not the correct
21505 // type, but it is an extraction of an appropriate vector we
21506 // can recast Val to be of the correct type. This may require
21507 // converting between EXTRACT_VECTOR_ELT and
21508 // EXTRACT_SUBVECTOR.
21509 if ((MemVT != Val.getValueType()) &&
21512 EVT MemVTScalarTy = MemVT.getScalarType();
21513 // We may need to add a bitcast here to get types to line up.
21514 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
21515 Val = DAG.getBitcast(MemVT, Val);
21516 } else if (MemVT.isVector() &&
21518 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, MemVT, Val);
21519 } else {
21520 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
21522 SDValue Vec = Val.getOperand(0);
21523 SDValue Idx = Val.getOperand(1);
21524 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
21525 }
21526 }
21527 Ops.push_back(Val);
21528 }
21529
21530 // Build the extracted vector elements back into a vector.
21531 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
21533 DL, StoreTy, Ops);
21534 }
21535 } else {
21536 // We should always use a vector store when merging extracted vector
21537 // elements, so this path implies a store of constants.
21538 assert(IsConstantSrc && "Merged vector elements should use vector store");
21539
21540 APInt StoreInt(SizeInBits, 0);
21541
21542 // Construct a single integer constant which is made of the smaller
21543 // constant inputs.
21544 bool IsLE = DAG.getDataLayout().isLittleEndian();
21545 for (unsigned i = 0; i < NumStores; ++i) {
21546 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
21547 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
21548
21549 SDValue Val = St->getValue();
21550 Val = peekThroughBitcasts(Val);
21551 StoreInt <<= ElementSizeBits;
21552 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
21553 StoreInt |= C->getAPIntValue()
21554 .zextOrTrunc(ElementSizeBits)
21555 .zextOrTrunc(SizeInBits);
21556 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
21557 StoreInt |= C->getValueAPF()
21558 .bitcastToAPInt()
21559 .zextOrTrunc(ElementSizeBits)
21560 .zextOrTrunc(SizeInBits);
21561 // If fp truncation is necessary give up for now.
21562 if (MemVT.getSizeInBits() != ElementSizeBits)
21563 return false;
21564 } else if (ISD::isBuildVectorOfConstantSDNodes(Val.getNode()) ||
21566 // Not yet handled
21567 return false;
21568 } else {
21569 llvm_unreachable("Invalid constant element type");
21570 }
21571 }
21572
21573 // Create the new Load and Store operations.
21574 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
21575 }
21576
21577 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
21578 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
21579 bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes);
21580
21581 // make sure we use trunc store if it's necessary to be legal.
21582 // When generate the new widen store, if the first store's pointer info can
21583 // not be reused, discard the pointer info except the address space because
21584 // now the widen store can not be represented by the original pointer info
21585 // which is for the narrow memory object.
21586 SDValue NewStore;
21587 if (!UseTrunc) {
21588 NewStore = DAG.getStore(
21589 NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
21590 CanReusePtrInfo
21591 ? FirstInChain->getPointerInfo()
21592 : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()),
21593 FirstInChain->getAlign(), *Flags, AAInfo);
21594 } else { // Must be realized as a trunc store
21595 EVT LegalizedStoredValTy =
21596 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
21597 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
21598 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
21599 SDValue ExtendedStoreVal =
21600 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
21601 LegalizedStoredValTy);
21602 NewStore = DAG.getTruncStore(
21603 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
21604 CanReusePtrInfo
21605 ? FirstInChain->getPointerInfo()
21606 : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()),
21607 StoredVal.getValueType() /*TVT*/, FirstInChain->getAlign(), *Flags,
21608 AAInfo);
21609 }
21610
21611 // Replace all merged stores with the new store.
21612 for (unsigned i = 0; i < NumStores; ++i)
21613 CombineTo(StoreNodes[i].MemNode, NewStore);
21614
21615 AddToWorklist(NewChain.getNode());
21616 return true;
21617}
21618
21619SDNode *
21620DAGCombiner::getStoreMergeCandidates(StoreSDNode *St,
21621 SmallVectorImpl<MemOpLink> &StoreNodes) {
21622 // This holds the base pointer, index, and the offset in bytes from the base
21623 // pointer. We must have a base and an offset. Do not handle stores to undef
21624 // base pointers.
21625 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
21626 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
21627 return nullptr;
21628
21630 StoreSource StoreSrc = getStoreSource(Val);
21631 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");
21632
21633 // Match on loadbaseptr if relevant.
21634 EVT MemVT = St->getMemoryVT();
21635 BaseIndexOffset LBasePtr;
21636 EVT LoadVT;
21637 if (StoreSrc == StoreSource::Load) {
21638 auto *Ld = cast<LoadSDNode>(Val);
21639 LBasePtr = BaseIndexOffset::match(Ld, DAG);
21640 LoadVT = Ld->getMemoryVT();
21641 // Load and store should be the same type.
21642 if (MemVT != LoadVT)
21643 return nullptr;
21644 // Loads must only have one use.
21645 if (!Ld->hasNUsesOfValue(1, 0))
21646 return nullptr;
21647 // The memory operands must not be volatile/indexed/atomic.
21648 // TODO: May be able to relax for unordered atomics (see D66309)
21649 if (!Ld->isSimple() || Ld->isIndexed())
21650 return nullptr;
21651 }
21652 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
21653 int64_t &Offset) -> bool {
21654 // The memory operands must not be volatile/indexed/atomic.
21655 // TODO: May be able to relax for unordered atomics (see D66309)
21656 if (!Other->isSimple() || Other->isIndexed())
21657 return false;
21658 // Don't mix temporal stores with non-temporal stores.
21659 if (St->isNonTemporal() != Other->isNonTemporal())
21660 return false;
21662 return false;
21663 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
21664 // Allow merging constants of different types as integers.
21665 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
21666 : Other->getMemoryVT() != MemVT;
21667 switch (StoreSrc) {
21668 case StoreSource::Load: {
21669 if (NoTypeMatch)
21670 return false;
21671 // The Load's Base Ptr must also match.
21672 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
21673 if (!OtherLd)
21674 return false;
21675 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
21676 if (LoadVT != OtherLd->getMemoryVT())
21677 return false;
21678 // Loads must only have one use.
21679 if (!OtherLd->hasNUsesOfValue(1, 0))
21680 return false;
21681 // The memory operands must not be volatile/indexed/atomic.
21682 // TODO: May be able to relax for unordered atomics (see D66309)
21683 if (!OtherLd->isSimple() || OtherLd->isIndexed())
21684 return false;
21685 // Don't mix temporal loads with non-temporal loads.
21686 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
21687 return false;
21689 *OtherLd))
21690 return false;
21691 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
21692 return false;
21693 break;
21694 }
21695 case StoreSource::Constant:
21696 if (NoTypeMatch)
21697 return false;
21698 if (getStoreSource(OtherBC) != StoreSource::Constant)
21699 return false;
21700 break;
21701 case StoreSource::Extract:
21702 // Do not merge truncated stores here.
21703 if (Other->isTruncatingStore())
21704 return false;
21705 if (!MemVT.bitsEq(OtherBC.getValueType()))
21706 return false;
21707 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
21708 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
21709 return false;
21710 break;
21711 default:
21712 llvm_unreachable("Unhandled store source for merging");
21713 }
21715 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
21716 };
21717
21718 // We are looking for a root node which is an ancestor to all mergable
21719 // stores. We search up through a load, to our root and then down
21720 // through all children. For instance we will find Store{1,2,3} if
21721 // St is Store1, Store2. or Store3 where the root is not a load
21722 // which always true for nonvolatile ops. TODO: Expand
21723 // the search to find all valid candidates through multiple layers of loads.
21724 //
21725 // Root
21726 // |-------|-------|
21727 // Load Load Store3
21728 // | |
21729 // Store1 Store2
21730 //
21731 // FIXME: We should be able to climb and
21732 // descend TokenFactors to find candidates as well.
21733
21734 SDNode *RootNode = St->getChain().getNode();
21735 // Bail out if we already analyzed this root node and found nothing.
21736 if (ChainsWithoutMergeableStores.contains(RootNode))
21737 return nullptr;
21738
21739 // Check if the pair of StoreNode and the RootNode already bail out many
21740 // times which is over the limit in dependence check.
21741 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
21742 SDNode *RootNode) -> bool {
21743 auto RootCount = StoreRootCountMap.find(StoreNode);
21744 return RootCount != StoreRootCountMap.end() &&
21745 RootCount->second.first == RootNode &&
21746 RootCount->second.second > StoreMergeDependenceLimit;
21747 };
21748
21749 auto TryToAddCandidate = [&](SDUse &Use) {
21750 // This must be a chain use.
21751 if (Use.getOperandNo() != 0)
21752 return;
21753 if (auto *OtherStore = dyn_cast<StoreSDNode>(Use.getUser())) {
21754 BaseIndexOffset Ptr;
21755 int64_t PtrDiff;
21756 if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
21757 !OverLimitInDependenceCheck(OtherStore, RootNode))
21758 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
21759 }
21760 };
21761
21762 unsigned NumNodesExplored = 0;
21763 const unsigned MaxSearchNodes = 1024;
21764 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
21765 RootNode = Ldn->getChain().getNode();
21766 // Bail out if we already analyzed this root node and found nothing.
21767 if (ChainsWithoutMergeableStores.contains(RootNode))
21768 return nullptr;
21769 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
21770 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
21771 SDNode *User = I->getUser();
21772 if (I->getOperandNo() == 0 && isa<LoadSDNode>(User)) { // walk down chain
21773 for (SDUse &U2 : User->uses())
21774 TryToAddCandidate(U2);
21775 }
21776 // Check stores that depend on the root (e.g. Store 3 in the chart above).
21777 if (I->getOperandNo() == 0 && isa<StoreSDNode>(User)) {
21778 TryToAddCandidate(*I);
21779 }
21780 }
21781 } else {
21782 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
21783 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
21784 TryToAddCandidate(*I);
21785 }
21786
21787 return RootNode;
21788}
21789
21790// We need to check that merging these stores does not cause a loop in the
21791// DAG. Any store candidate may depend on another candidate indirectly through
21792// its operands. Check in parallel by searching up from operands of candidates.
21793bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
21794 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
21795 SDNode *RootNode) {
21796 // FIXME: We should be able to truncate a full search of
21797 // predecessors by doing a BFS and keeping tabs the originating
21798 // stores from which worklist nodes come from in a similar way to
21799 // TokenFactor simplfication.
21800
21801 SmallPtrSet<const SDNode *, 32> Visited;
21803
21804 // RootNode is a predecessor to all candidates so we need not search
21805 // past it. Add RootNode (peeking through TokenFactors). Do not count
21806 // these towards size check.
21807
21808 Worklist.push_back(RootNode);
21809 while (!Worklist.empty()) {
21810 auto N = Worklist.pop_back_val();
21811 if (!Visited.insert(N).second)
21812 continue; // Already present in Visited.
21813 if (N->getOpcode() == ISD::TokenFactor) {
21814 for (SDValue Op : N->ops())
21815 Worklist.push_back(Op.getNode());
21816 }
21817 }
21818
21819 // Don't count pruning nodes towards max.
21820 unsigned int Max = 1024 + Visited.size();
21821 // Search Ops of store candidates.
21822 for (unsigned i = 0; i < NumStores; ++i) {
21823 SDNode *N = StoreNodes[i].MemNode;
21824 // Of the 4 Store Operands:
21825 // * Chain (Op 0) -> We have already considered these
21826 // in candidate selection, but only by following the
21827 // chain dependencies. We could still have a chain
21828 // dependency to a load, that has a non-chain dep to
21829 // another load, that depends on a store, etc. So it is
21830 // possible to have dependencies that consist of a mix
21831 // of chain and non-chain deps, and we need to include
21832 // chain operands in the analysis here..
21833 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
21834 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
21835 // but aren't necessarily fromt the same base node, so
21836 // cycles possible (e.g. via indexed store).
21837 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
21838 // non-indexed stores). Not constant on all targets (e.g. ARM)
21839 // and so can participate in a cycle.
21840 for (const SDValue &Op : N->op_values())
21841 Worklist.push_back(Op.getNode());
21842 }
21843 // Search through DAG. We can stop early if we find a store node.
21844 for (unsigned i = 0; i < NumStores; ++i)
21845 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
21846 Max)) {
21847 // If the searching bail out, record the StoreNode and RootNode in the
21848 // StoreRootCountMap. If we have seen the pair many times over a limit,
21849 // we won't add the StoreNode into StoreNodes set again.
21850 if (Visited.size() >= Max) {
21851 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
21852 if (RootCount.first == RootNode)
21853 RootCount.second++;
21854 else
21855 RootCount = {RootNode, 1};
21856 }
21857 return false;
21858 }
21859 return true;
21860}
21861
21862bool DAGCombiner::hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld) {
21863 SmallPtrSet<const SDNode *, 32> Visited;
21865 Worklist.emplace_back(St->getChain().getNode(), false);
21866
21867 while (!Worklist.empty()) {
21868 auto [Node, FoundCall] = Worklist.pop_back_val();
21869 if (!Visited.insert(Node).second || Node->getNumOperands() == 0)
21870 continue;
21871
21872 switch (Node->getOpcode()) {
21873 case ISD::CALLSEQ_END:
21874 Worklist.emplace_back(Node->getOperand(0).getNode(), true);
21875 break;
21876 case ISD::TokenFactor:
21877 for (SDValue Op : Node->ops())
21878 Worklist.emplace_back(Op.getNode(), FoundCall);
21879 break;
21880 case ISD::LOAD:
21881 if (Node == Ld)
21882 return FoundCall;
21883 [[fallthrough]];
21884 default:
21885 assert(Node->getOperand(0).getValueType() == MVT::Other &&
21886 "Invalid chain type");
21887 Worklist.emplace_back(Node->getOperand(0).getNode(), FoundCall);
21888 break;
21889 }
21890 }
21891 return false;
21892}
21893
21894unsigned
21895DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
21896 int64_t ElementSizeBytes) const {
21897 while (true) {
21898 // Find a store past the width of the first store.
21899 size_t StartIdx = 0;
21900 while ((StartIdx + 1 < StoreNodes.size()) &&
21901 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
21902 StoreNodes[StartIdx + 1].OffsetFromBase)
21903 ++StartIdx;
21904
21905 // Bail if we don't have enough candidates to merge.
21906 if (StartIdx + 1 >= StoreNodes.size())
21907 return 0;
21908
21909 // Trim stores that overlapped with the first store.
21910 if (StartIdx)
21911 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
21912
21913 // Scan the memory operations on the chain and find the first
21914 // non-consecutive store memory address.
21915 unsigned NumConsecutiveStores = 1;
21916 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
21917 // Check that the addresses are consecutive starting from the second
21918 // element in the list of stores.
21919 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
21920 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
21921 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
21922 break;
21923 NumConsecutiveStores = i + 1;
21924 }
21925 if (NumConsecutiveStores > 1)
21926 return NumConsecutiveStores;
21927
21928 // There are no consecutive stores at the start of the list.
21929 // Remove the first store and try again.
21930 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
21931 }
21932}
21933
21934bool DAGCombiner::tryStoreMergeOfConstants(
21935 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
21936 EVT MemVT, SDNode *RootNode, bool AllowVectors) {
21937 LLVMContext &Context = *DAG.getContext();
21938 const DataLayout &DL = DAG.getDataLayout();
21939 int64_t ElementSizeBytes = MemVT.getStoreSize();
21940 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
21941 bool MadeChange = false;
21942
21943 // Store the constants into memory as one consecutive store.
21944 while (NumConsecutiveStores >= 2) {
21945 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
21946 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
21947 Align FirstStoreAlign = FirstInChain->getAlign();
21948 unsigned LastLegalType = 1;
21949 unsigned LastLegalVectorType = 1;
21950 bool LastIntegerTrunc = false;
21951 bool NonZero = false;
21952 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
21953 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
21954 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
21955 SDValue StoredVal = ST->getValue();
21956 bool IsElementZero = false;
21957 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
21958 IsElementZero = C->isZero();
21959 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
21960 IsElementZero = C->getConstantFPValue()->isNullValue();
21961 else if (ISD::isBuildVectorAllZeros(StoredVal.getNode()))
21962 IsElementZero = true;
21963 if (IsElementZero) {
21964 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
21965 FirstZeroAfterNonZero = i;
21966 }
21967 NonZero |= !IsElementZero;
21968
21969 // Find a legal type for the constant store.
21970 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
21971 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
21972 unsigned IsFast = 0;
21973
21974 // Break early when size is too large to be legal.
21975 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
21976 break;
21977
21978 if (TLI.isTypeLegal(StoreTy) &&
21979 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
21980 DAG.getMachineFunction()) &&
21981 TLI.allowsMemoryAccess(Context, DL, StoreTy,
21982 *FirstInChain->getMemOperand(), &IsFast) &&
21983 IsFast) {
21984 LastIntegerTrunc = false;
21985 LastLegalType = i + 1;
21986 // Or check whether a truncstore is legal.
21987 } else if (TLI.getTypeAction(Context, StoreTy) ==
21989 EVT LegalizedStoredValTy =
21990 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
21991 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
21992 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
21993 DAG.getMachineFunction()) &&
21994 TLI.allowsMemoryAccess(Context, DL, StoreTy,
21995 *FirstInChain->getMemOperand(), &IsFast) &&
21996 IsFast) {
21997 LastIntegerTrunc = true;
21998 LastLegalType = i + 1;
21999 }
22000 }
22001
22002 // We only use vectors if the target allows it and the function is not
22003 // marked with the noimplicitfloat attribute.
22004 if (TLI.storeOfVectorConstantIsCheap(!NonZero, MemVT, i + 1, FirstStoreAS) &&
22005 AllowVectors) {
22006 // Find a legal type for the vector store.
22007 unsigned Elts = (i + 1) * NumMemElts;
22008 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
22009 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
22010 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
22011 TLI.allowsMemoryAccess(Context, DL, Ty,
22012 *FirstInChain->getMemOperand(), &IsFast) &&
22013 IsFast)
22014 LastLegalVectorType = i + 1;
22015 }
22016 }
22017
22018 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
22019 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
22020 bool UseTrunc = LastIntegerTrunc && !UseVector;
22021
22022 // Check if we found a legal integer type that creates a meaningful
22023 // merge.
22024 if (NumElem < 2) {
22025 // We know that candidate stores are in order and of correct
22026 // shape. While there is no mergeable sequence from the
22027 // beginning one may start later in the sequence. The only
22028 // reason a merge of size N could have failed where another of
22029 // the same size would not have, is if the alignment has
22030 // improved or we've dropped a non-zero value. Drop as many
22031 // candidates as we can here.
22032 unsigned NumSkip = 1;
22033 while ((NumSkip < NumConsecutiveStores) &&
22034 (NumSkip < FirstZeroAfterNonZero) &&
22035 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22036 NumSkip++;
22037
22038 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22039 NumConsecutiveStores -= NumSkip;
22040 continue;
22041 }
22042
22043 // Check that we can merge these candidates without causing a cycle.
22044 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
22045 RootNode)) {
22046 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22047 NumConsecutiveStores -= NumElem;
22048 continue;
22049 }
22050
22051 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
22052 /*IsConstantSrc*/ true,
22053 UseVector, UseTrunc);
22054
22055 // Remove merged stores for next iteration.
22056 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22057 NumConsecutiveStores -= NumElem;
22058 }
22059 return MadeChange;
22060}
22061
22062bool DAGCombiner::tryStoreMergeOfExtracts(
22063 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
22064 EVT MemVT, SDNode *RootNode) {
22065 LLVMContext &Context = *DAG.getContext();
22066 const DataLayout &DL = DAG.getDataLayout();
22067 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
22068 bool MadeChange = false;
22069
22070 // Loop on Consecutive Stores on success.
22071 while (NumConsecutiveStores >= 2) {
22072 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
22073 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
22074 Align FirstStoreAlign = FirstInChain->getAlign();
22075 unsigned NumStoresToMerge = 1;
22076 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
22077 // Find a legal type for the vector store.
22078 unsigned Elts = (i + 1) * NumMemElts;
22079 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
22080 unsigned IsFast = 0;
22081
22082 // Break early when size is too large to be legal.
22083 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
22084 break;
22085
22086 if (TLI.isTypeLegal(Ty) &&
22087 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
22088 TLI.allowsMemoryAccess(Context, DL, Ty,
22089 *FirstInChain->getMemOperand(), &IsFast) &&
22090 IsFast)
22091 NumStoresToMerge = i + 1;
22092 }
22093
22094 // Check if we found a legal integer type creating a meaningful
22095 // merge.
22096 if (NumStoresToMerge < 2) {
22097 // We know that candidate stores are in order and of correct
22098 // shape. While there is no mergeable sequence from the
22099 // beginning one may start later in the sequence. The only
22100 // reason a merge of size N could have failed where another of
22101 // the same size would not have, is if the alignment has
22102 // improved. Drop as many candidates as we can here.
22103 unsigned NumSkip = 1;
22104 while ((NumSkip < NumConsecutiveStores) &&
22105 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22106 NumSkip++;
22107
22108 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22109 NumConsecutiveStores -= NumSkip;
22110 continue;
22111 }
22112
22113 // Check that we can merge these candidates without causing a cycle.
22114 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
22115 RootNode)) {
22116 StoreNodes.erase(StoreNodes.begin(),
22117 StoreNodes.begin() + NumStoresToMerge);
22118 NumConsecutiveStores -= NumStoresToMerge;
22119 continue;
22120 }
22121
22122 MadeChange |= mergeStoresOfConstantsOrVecElts(
22123 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false,
22124 /*UseVector*/ true, /*UseTrunc*/ false);
22125
22126 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
22127 NumConsecutiveStores -= NumStoresToMerge;
22128 }
22129 return MadeChange;
22130}
22131
22132bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
22133 unsigned NumConsecutiveStores, EVT MemVT,
22134 SDNode *RootNode, bool AllowVectors,
22135 bool IsNonTemporalStore,
22136 bool IsNonTemporalLoad) {
22137 LLVMContext &Context = *DAG.getContext();
22138 const DataLayout &DL = DAG.getDataLayout();
22139 int64_t ElementSizeBytes = MemVT.getStoreSize();
22140 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
22141 bool MadeChange = false;
22142
22143 // Look for load nodes which are used by the stored values.
22144 SmallVector<MemOpLink, 8> LoadNodes;
22145
22146 // Find acceptable loads. Loads need to have the same chain (token factor),
22147 // must not be zext, volatile, indexed, and they must be consecutive.
22148 BaseIndexOffset LdBasePtr;
22149
22150 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
22151 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
22153 LoadSDNode *Ld = cast<LoadSDNode>(Val);
22154
22155 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
22156 // If this is not the first ptr that we check.
22157 int64_t LdOffset = 0;
22158 if (LdBasePtr.getBase().getNode()) {
22159 // The base ptr must be the same.
22160 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
22161 break;
22162 } else {
22163 // Check that all other base pointers are the same as this one.
22164 LdBasePtr = LdPtr;
22165 }
22166
22167 // We found a potential memory operand to merge.
22168 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
22169 }
22170
22171 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
22172 Align RequiredAlignment;
22173 bool NeedRotate = false;
22174 if (LoadNodes.size() == 2) {
22175 // If we have load/store pair instructions and we only have two values,
22176 // don't bother merging.
22177 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
22178 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
22179 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
22180 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
22181 break;
22182 }
22183 // If the loads are reversed, see if we can rotate the halves into place.
22184 int64_t Offset0 = LoadNodes[0].OffsetFromBase;
22185 int64_t Offset1 = LoadNodes[1].OffsetFromBase;
22186 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
22187 if (Offset0 - Offset1 == ElementSizeBytes &&
22188 (hasOperation(ISD::ROTL, PairVT) ||
22189 hasOperation(ISD::ROTR, PairVT))) {
22190 std::swap(LoadNodes[0], LoadNodes[1]);
22191 NeedRotate = true;
22192 }
22193 }
22194 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
22195 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
22196 Align FirstStoreAlign = FirstInChain->getAlign();
22197 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
22198
22199 // Scan the memory operations on the chain and find the first
22200 // non-consecutive load memory address. These variables hold the index in
22201 // the store node array.
22202
22203 unsigned LastConsecutiveLoad = 1;
22204
22205 // This variable refers to the size and not index in the array.
22206 unsigned LastLegalVectorType = 1;
22207 unsigned LastLegalIntegerType = 1;
22208 bool isDereferenceable = true;
22209 bool DoIntegerTruncate = false;
22210 int64_t StartAddress = LoadNodes[0].OffsetFromBase;
22211 SDValue LoadChain = FirstLoad->getChain();
22212 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
22213 // All loads must share the same chain.
22214 if (LoadNodes[i].MemNode->getChain() != LoadChain)
22215 break;
22216
22217 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
22218 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
22219 break;
22220 LastConsecutiveLoad = i;
22221
22222 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
22223 isDereferenceable = false;
22224
22225 // Find a legal type for the vector store.
22226 unsigned Elts = (i + 1) * NumMemElts;
22227 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
22228
22229 // Break early when size is too large to be legal.
22230 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
22231 break;
22232
22233 unsigned IsFastSt = 0;
22234 unsigned IsFastLd = 0;
22235 // Don't try vector types if we need a rotate. We may still fail the
22236 // legality checks for the integer type, but we can't handle the rotate
22237 // case with vectors.
22238 // FIXME: We could use a shuffle in place of the rotate.
22239 if (!NeedRotate && TLI.isTypeLegal(StoreTy) &&
22240 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
22241 DAG.getMachineFunction()) &&
22242 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22243 *FirstInChain->getMemOperand(), &IsFastSt) &&
22244 IsFastSt &&
22245 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22246 *FirstLoad->getMemOperand(), &IsFastLd) &&
22247 IsFastLd) {
22248 LastLegalVectorType = i + 1;
22249 }
22250
22251 // Find a legal type for the integer store.
22252 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
22253 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
22254 if (TLI.isTypeLegal(StoreTy) &&
22255 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
22256 DAG.getMachineFunction()) &&
22257 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22258 *FirstInChain->getMemOperand(), &IsFastSt) &&
22259 IsFastSt &&
22260 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22261 *FirstLoad->getMemOperand(), &IsFastLd) &&
22262 IsFastLd) {
22263 LastLegalIntegerType = i + 1;
22264 DoIntegerTruncate = false;
22265 // Or check whether a truncstore and extload is legal.
22266 } else if (TLI.getTypeAction(Context, StoreTy) ==
22268 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
22269 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
22270 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
22271 DAG.getMachineFunction()) &&
22272 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
22273 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
22274 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
22275 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22276 *FirstInChain->getMemOperand(), &IsFastSt) &&
22277 IsFastSt &&
22278 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22279 *FirstLoad->getMemOperand(), &IsFastLd) &&
22280 IsFastLd) {
22281 LastLegalIntegerType = i + 1;
22282 DoIntegerTruncate = true;
22283 }
22284 }
22285 }
22286
22287 // Only use vector types if the vector type is larger than the integer
22288 // type. If they are the same, use integers.
22289 bool UseVectorTy =
22290 LastLegalVectorType > LastLegalIntegerType && AllowVectors;
22291 unsigned LastLegalType =
22292 std::max(LastLegalVectorType, LastLegalIntegerType);
22293
22294 // We add +1 here because the LastXXX variables refer to location while
22295 // the NumElem refers to array/index size.
22296 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
22297 NumElem = std::min(LastLegalType, NumElem);
22298 Align FirstLoadAlign = FirstLoad->getAlign();
22299
22300 if (NumElem < 2) {
22301 // We know that candidate stores are in order and of correct
22302 // shape. While there is no mergeable sequence from the
22303 // beginning one may start later in the sequence. The only
22304 // reason a merge of size N could have failed where another of
22305 // the same size would not have is if the alignment or either
22306 // the load or store has improved. Drop as many candidates as we
22307 // can here.
22308 unsigned NumSkip = 1;
22309 while ((NumSkip < LoadNodes.size()) &&
22310 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
22311 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22312 NumSkip++;
22313 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22314 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
22315 NumConsecutiveStores -= NumSkip;
22316 continue;
22317 }
22318
22319 // Check that we can merge these candidates without causing a cycle.
22320 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
22321 RootNode)) {
22322 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22323 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22324 NumConsecutiveStores -= NumElem;
22325 continue;
22326 }
22327
22328 // Find if it is better to use vectors or integers to load and store
22329 // to memory.
22330 EVT JointMemOpVT;
22331 if (UseVectorTy) {
22332 // Find a legal type for the vector store.
22333 unsigned Elts = NumElem * NumMemElts;
22334 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
22335 } else {
22336 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
22337 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
22338 }
22339
22340 // Check if there is a call in the load/store chain.
22341 if (!TLI.shouldMergeStoreOfLoadsOverCall(MemVT, JointMemOpVT) &&
22342 hasCallInLdStChain(cast<StoreSDNode>(StoreNodes[0].MemNode),
22343 cast<LoadSDNode>(LoadNodes[0].MemNode))) {
22344 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22345 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22346 NumConsecutiveStores -= NumElem;
22347 continue;
22348 }
22349
22350 SDLoc LoadDL(LoadNodes[0].MemNode);
22351 SDLoc StoreDL(StoreNodes[0].MemNode);
22352
22353 // The merged loads are required to have the same incoming chain, so
22354 // using the first's chain is acceptable.
22355
22356 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
22357 bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes);
22358 AddToWorklist(NewStoreChain.getNode());
22359
22360 MachineMemOperand::Flags LdMMOFlags =
22361 isDereferenceable ? MachineMemOperand::MODereferenceable
22363 if (IsNonTemporalLoad)
22365
22366 LdMMOFlags |= TLI.getTargetMMOFlags(*FirstLoad);
22367
22368 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
22371
22372 StMMOFlags |= TLI.getTargetMMOFlags(*StoreNodes[0].MemNode);
22373
22374 SDValue NewLoad, NewStore;
22375 if (UseVectorTy || !DoIntegerTruncate) {
22376 NewLoad = DAG.getLoad(
22377 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
22378 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
22379 SDValue StoreOp = NewLoad;
22380 if (NeedRotate) {
22381 unsigned LoadWidth = ElementSizeBytes * 8 * 2;
22382 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
22383 "Unexpected type for rotate-able load pair");
22384 SDValue RotAmt =
22385 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
22386 // Target can convert to the identical ROTR if it does not have ROTL.
22387 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
22388 }
22389 NewStore = DAG.getStore(
22390 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
22391 CanReusePtrInfo ? FirstInChain->getPointerInfo()
22392 : MachinePointerInfo(FirstStoreAS),
22393 FirstStoreAlign, StMMOFlags);
22394 } else { // This must be the truncstore/extload case
22395 EVT ExtendedTy =
22396 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
22397 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
22398 FirstLoad->getChain(), FirstLoad->getBasePtr(),
22399 FirstLoad->getPointerInfo(), JointMemOpVT,
22400 FirstLoadAlign, LdMMOFlags);
22401 NewStore = DAG.getTruncStore(
22402 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
22403 CanReusePtrInfo ? FirstInChain->getPointerInfo()
22404 : MachinePointerInfo(FirstStoreAS),
22405 JointMemOpVT, FirstInChain->getAlign(),
22406 FirstInChain->getMemOperand()->getFlags());
22407 }
22408
22409 // Transfer chain users from old loads to the new load.
22410 for (unsigned i = 0; i < NumElem; ++i) {
22411 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
22413 SDValue(NewLoad.getNode(), 1));
22414 }
22415
22416 // Replace all stores with the new store. Recursively remove corresponding
22417 // values if they are no longer used.
22418 for (unsigned i = 0; i < NumElem; ++i) {
22419 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
22420 CombineTo(StoreNodes[i].MemNode, NewStore);
22421 if (Val->use_empty())
22422 recursivelyDeleteUnusedNodes(Val.getNode());
22423 }
22424
22425 MadeChange = true;
22426 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22427 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22428 NumConsecutiveStores -= NumElem;
22429 }
22430 return MadeChange;
22431}
22432
22433bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
22434 if (OptLevel == CodeGenOptLevel::None || !EnableStoreMerging)
22435 return false;
22436
22437 // TODO: Extend this function to merge stores of scalable vectors.
22438 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
22439 // store since we know <vscale x 16 x i8> is exactly twice as large as
22440 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
22441 EVT MemVT = St->getMemoryVT();
22442 if (MemVT.isScalableVT())
22443 return false;
22444 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
22445 return false;
22446
22447 // This function cannot currently deal with non-byte-sized memory sizes.
22448 int64_t ElementSizeBytes = MemVT.getStoreSize();
22449 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
22450 return false;
22451
22452 // Do not bother looking at stored values that are not constants, loads, or
22453 // extracted vector elements.
22454 SDValue StoredVal = peekThroughBitcasts(St->getValue());
22455 const StoreSource StoreSrc = getStoreSource(StoredVal);
22456 if (StoreSrc == StoreSource::Unknown)
22457 return false;
22458
22459 SmallVector<MemOpLink, 8> StoreNodes;
22460 // Find potential store merge candidates by searching through chain sub-DAG
22461 SDNode *RootNode = getStoreMergeCandidates(St, StoreNodes);
22462
22463 // Check if there is anything to merge.
22464 if (StoreNodes.size() < 2)
22465 return false;
22466
22467 // Sort the memory operands according to their distance from the
22468 // base pointer.
22469 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
22470 return LHS.OffsetFromBase < RHS.OffsetFromBase;
22471 });
22472
22473 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
22474 Attribute::NoImplicitFloat);
22475 bool IsNonTemporalStore = St->isNonTemporal();
22476 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
22477 cast<LoadSDNode>(StoredVal)->isNonTemporal();
22478
22479 // Store Merge attempts to merge the lowest stores. This generally
22480 // works out as if successful, as the remaining stores are checked
22481 // after the first collection of stores is merged. However, in the
22482 // case that a non-mergeable store is found first, e.g., {p[-2],
22483 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
22484 // mergeable cases. To prevent this, we prune such stores from the
22485 // front of StoreNodes here.
22486 bool MadeChange = false;
22487 while (StoreNodes.size() > 1) {
22488 unsigned NumConsecutiveStores =
22489 getConsecutiveStores(StoreNodes, ElementSizeBytes);
22490 // There are no more stores in the list to examine.
22491 if (NumConsecutiveStores == 0)
22492 return MadeChange;
22493
22494 // We have at least 2 consecutive stores. Try to merge them.
22495 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
22496 switch (StoreSrc) {
22497 case StoreSource::Constant:
22498 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
22499 MemVT, RootNode, AllowVectors);
22500 break;
22501
22502 case StoreSource::Extract:
22503 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
22504 MemVT, RootNode);
22505 break;
22506
22507 case StoreSource::Load:
22508 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
22509 MemVT, RootNode, AllowVectors,
22510 IsNonTemporalStore, IsNonTemporalLoad);
22511 break;
22512
22513 default:
22514 llvm_unreachable("Unhandled store source type");
22515 }
22516 }
22517
22518 // Remember if we failed to optimize, to save compile time.
22519 if (!MadeChange)
22520 ChainsWithoutMergeableStores.insert(RootNode);
22521
22522 return MadeChange;
22523}
22524
22525SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
22526 SDLoc SL(ST);
22527 SDValue ReplStore;
22528
22529 // Replace the chain to avoid dependency.
22530 if (ST->isTruncatingStore()) {
22531 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
22532 ST->getBasePtr(), ST->getMemoryVT(),
22533 ST->getMemOperand());
22534 } else {
22535 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
22536 ST->getMemOperand());
22537 }
22538
22539 // Create token to keep both nodes around.
22540 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
22541 MVT::Other, ST->getChain(), ReplStore);
22542
22543 // Make sure the new and old chains are cleaned up.
22544 AddToWorklist(Token.getNode());
22545
22546 // Don't add users to work list.
22547 return CombineTo(ST, Token, false);
22548}
22549
22550SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
22551 SDValue Value = ST->getValue();
22552 if (Value.getOpcode() == ISD::TargetConstantFP)
22553 return SDValue();
22554
22555 if (!ISD::isNormalStore(ST))
22556 return SDValue();
22557
22558 SDLoc DL(ST);
22559
22560 SDValue Chain = ST->getChain();
22561 SDValue Ptr = ST->getBasePtr();
22562
22563 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
22564
22565 // NOTE: If the original store is volatile, this transform must not increase
22566 // the number of stores. For example, on x86-32 an f64 can be stored in one
22567 // processor operation but an i64 (which is not legal) requires two. So the
22568 // transform should not be done in this case.
22569
22570 SDValue Tmp;
22571 switch (CFP->getSimpleValueType(0).SimpleTy) {
22572 default:
22573 llvm_unreachable("Unknown FP type");
22574 case MVT::f16: // We don't do this for these yet.
22575 case MVT::bf16:
22576 case MVT::f80:
22577 case MVT::f128:
22578 case MVT::ppcf128:
22579 return SDValue();
22580 case MVT::f32:
22581 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
22582 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
22583 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
22584 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
22585 MVT::i32);
22586 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
22587 }
22588
22589 return SDValue();
22590 case MVT::f64:
22591 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
22592 ST->isSimple()) ||
22593 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
22594 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
22595 getZExtValue(), SDLoc(CFP), MVT::i64);
22596 return DAG.getStore(Chain, DL, Tmp,
22597 Ptr, ST->getMemOperand());
22598 }
22599
22600 if (ST->isSimple() && TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32) &&
22601 !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) {
22602 // Many FP stores are not made apparent until after legalize, e.g. for
22603 // argument passing. Since this is so common, custom legalize the
22604 // 64-bit integer store into two 32-bit stores.
22605 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
22606 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
22607 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
22608 if (DAG.getDataLayout().isBigEndian())
22609 std::swap(Lo, Hi);
22610
22611 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
22612 AAMDNodes AAInfo = ST->getAAInfo();
22613
22614 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
22615 ST->getBaseAlign(), MMOFlags, AAInfo);
22617 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
22618 ST->getPointerInfo().getWithOffset(4),
22619 ST->getBaseAlign(), MMOFlags, AAInfo);
22620 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
22621 St0, St1);
22622 }
22623
22624 return SDValue();
22625 }
22626}
22627
22628// (store (insert_vector_elt (load p), x, i), p) -> (store x, p+offset)
22629//
22630// If a store of a load with an element inserted into it has no other
22631// uses in between the chain, then we can consider the vector store
22632// dead and replace it with just the single scalar element store.
22633SDValue DAGCombiner::replaceStoreOfInsertLoad(StoreSDNode *ST) {
22634 SDLoc DL(ST);
22635 SDValue Value = ST->getValue();
22636 SDValue Ptr = ST->getBasePtr();
22637 SDValue Chain = ST->getChain();
22638 if (Value.getOpcode() != ISD::INSERT_VECTOR_ELT || !Value.hasOneUse())
22639 return SDValue();
22640
22641 SDValue Elt = Value.getOperand(1);
22642 SDValue Idx = Value.getOperand(2);
22643
22644 // If the element isn't byte sized or is implicitly truncated then we can't
22645 // compute an offset.
22646 EVT EltVT = Elt.getValueType();
22647 if (!EltVT.isByteSized() ||
22648 EltVT != Value.getOperand(0).getValueType().getVectorElementType())
22649 return SDValue();
22650
22651 auto *Ld = dyn_cast<LoadSDNode>(Value.getOperand(0));
22652 if (!Ld || Ld->getBasePtr() != Ptr ||
22653 ST->getMemoryVT() != Ld->getMemoryVT() || !ST->isSimple() ||
22654 !ISD::isNormalStore(ST) ||
22655 Ld->getAddressSpace() != ST->getAddressSpace() ||
22657 return SDValue();
22658
22659 unsigned IsFast;
22660 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
22661 Elt.getValueType(), ST->getAddressSpace(),
22662 ST->getAlign(), ST->getMemOperand()->getFlags(),
22663 &IsFast) ||
22664 !IsFast)
22665 return SDValue();
22666
22667 MachinePointerInfo PointerInfo(ST->getAddressSpace());
22668
22669 // If the offset is a known constant then try to recover the pointer
22670 // info
22671 SDValue NewPtr;
22672 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
22673 unsigned COffset = CIdx->getSExtValue() * EltVT.getSizeInBits() / 8;
22674 NewPtr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(COffset), DL);
22675 PointerInfo = ST->getPointerInfo().getWithOffset(COffset);
22676 } else {
22677 NewPtr = TLI.getVectorElementPointer(DAG, Ptr, Value.getValueType(), Idx);
22678 }
22679
22680 return DAG.getStore(Chain, DL, Elt, NewPtr, PointerInfo, ST->getAlign(),
22681 ST->getMemOperand()->getFlags());
22682}
22683
22684SDValue DAGCombiner::visitATOMIC_STORE(SDNode *N) {
22685 AtomicSDNode *ST = cast<AtomicSDNode>(N);
22686 SDValue Val = ST->getVal();
22687 EVT VT = Val.getValueType();
22688 EVT MemVT = ST->getMemoryVT();
22689
22690 if (MemVT.bitsLT(VT)) { // Is truncating store
22691 APInt TruncDemandedBits = APInt::getLowBitsSet(VT.getScalarSizeInBits(),
22692 MemVT.getScalarSizeInBits());
22693 // See if we can simplify the operation with SimplifyDemandedBits, which
22694 // only works if the value has a single use.
22695 if (SimplifyDemandedBits(Val, TruncDemandedBits))
22696 return SDValue(N, 0);
22697 }
22698
22699 return SDValue();
22700}
22701
22703 const SDLoc &Dl) {
22704 if (!Store->isSimple() || !ISD::isNormalStore(Store))
22705 return SDValue();
22706
22707 SDValue StoredVal = Store->getValue();
22708 SDValue StorePtr = Store->getBasePtr();
22709 SDValue StoreOffset = Store->getOffset();
22710 EVT VT = Store->getMemoryVT();
22711
22712 // Skip this combine for non-vector types and for <1 x ty> vectors, as they
22713 // will be scalarized later.
22714 if (!VT.isVector() || VT.isScalableVector() || VT.getVectorNumElements() == 1)
22715 return SDValue();
22716
22717 unsigned AddrSpace = Store->getAddressSpace();
22718 Align Alignment = Store->getAlign();
22719 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22720
22721 if (!TLI.isOperationLegalOrCustom(ISD::MSTORE, VT) ||
22722 !TLI.allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment))
22723 return SDValue();
22724
22725 SDValue Mask, OtherVec, LoadCh;
22726 unsigned LoadPos;
22727 if (sd_match(StoredVal,
22728 m_VSelect(m_Value(Mask), m_Value(OtherVec),
22729 m_Load(m_Value(LoadCh), m_Specific(StorePtr),
22730 m_Specific(StoreOffset))))) {
22731 LoadPos = 2;
22732 } else if (sd_match(StoredVal,
22733 m_VSelect(m_Value(Mask),
22734 m_Load(m_Value(LoadCh), m_Specific(StorePtr),
22735 m_Specific(StoreOffset)),
22736 m_Value(OtherVec)))) {
22737 LoadPos = 1;
22738 } else {
22739 return SDValue();
22740 }
22741
22742 auto *Load = cast<LoadSDNode>(StoredVal.getOperand(LoadPos));
22743 if (!Load->isSimple() || !ISD::isNormalLoad(Load) ||
22744 Load->getAddressSpace() != AddrSpace)
22745 return SDValue();
22746
22747 if (!Store->getChain().reachesChainWithoutSideEffects(LoadCh))
22748 return SDValue();
22749
22750 if (LoadPos == 1)
22751 Mask = DAG.getNOT(Dl, Mask, Mask.getValueType());
22752
22753 return DAG.getMaskedStore(Store->getChain(), Dl, OtherVec, StorePtr,
22754 StoreOffset, Mask, VT, Store->getMemOperand(),
22755 Store->getAddressingMode());
22756}
22757
22758SDValue DAGCombiner::visitSTORE(SDNode *N) {
22759 StoreSDNode *ST = cast<StoreSDNode>(N);
22760 SDValue Chain = ST->getChain();
22761 SDValue Value = ST->getValue();
22762 SDValue Ptr = ST->getBasePtr();
22763
22764 // If this is a store of a bit convert, store the input value if the
22765 // resultant store does not need a higher alignment than the original.
22766 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
22767 ST->isUnindexed()) {
22768 EVT SVT = Value.getOperand(0).getValueType();
22769 // If the store is volatile, we only want to change the store type if the
22770 // resulting store is legal. Otherwise we might increase the number of
22771 // memory accesses. We don't care if the original type was legal or not
22772 // as we assume software couldn't rely on the number of accesses of an
22773 // illegal type.
22774 // TODO: May be able to relax for unordered atomics (see D66309)
22775 if (((!LegalOperations && ST->isSimple()) ||
22776 TLI.isOperationLegal(ISD::STORE, SVT)) &&
22777 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
22778 DAG, *ST->getMemOperand())) {
22779 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
22780 ST->getMemOperand());
22781 }
22782 }
22783
22784 // Turn 'store undef, Ptr' -> nothing.
22785 if (Value.isUndef() && ST->isUnindexed() && !ST->isVolatile())
22786 return Chain;
22787
22788 // Try to infer better alignment information than the store already has.
22789 if (OptLevel != CodeGenOptLevel::None && ST->isUnindexed() &&
22790 !ST->isAtomic()) {
22791 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
22792 if (*Alignment > ST->getAlign() &&
22793 isAligned(*Alignment, ST->getSrcValueOffset())) {
22794 SDValue NewStore =
22795 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
22796 ST->getMemoryVT(), *Alignment,
22797 ST->getMemOperand()->getFlags(), ST->getAAInfo());
22798 // NewStore will always be N as we are only refining the alignment
22799 assert(NewStore.getNode() == N);
22800 (void)NewStore;
22801 }
22802 }
22803 }
22804
22805 // Try transforming a pair floating point load / store ops to integer
22806 // load / store ops.
22807 if (SDValue NewST = TransformFPLoadStorePair(N))
22808 return NewST;
22809
22810 // Try transforming several stores into STORE (BSWAP).
22811 if (SDValue Store = mergeTruncStores(ST))
22812 return Store;
22813
22814 if (ST->isUnindexed()) {
22815 // Walk up chain skipping non-aliasing memory nodes, on this store and any
22816 // adjacent stores.
22817 if (findBetterNeighborChains(ST)) {
22818 // replaceStoreChain uses CombineTo, which handled all of the worklist
22819 // manipulation. Return the original node to not do anything else.
22820 return SDValue(ST, 0);
22821 }
22822 Chain = ST->getChain();
22823 }
22824
22825 // FIXME: is there such a thing as a truncating indexed store?
22826 if (ST->isTruncatingStore() && ST->isUnindexed() &&
22827 Value.getValueType().isInteger() &&
22829 !cast<ConstantSDNode>(Value)->isOpaque())) {
22830 // Convert a truncating store of a extension into a standard store.
22831 if ((Value.getOpcode() == ISD::ZERO_EXTEND ||
22832 Value.getOpcode() == ISD::SIGN_EXTEND ||
22833 Value.getOpcode() == ISD::ANY_EXTEND) &&
22834 Value.getOperand(0).getValueType() == ST->getMemoryVT() &&
22835 TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT()))
22836 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
22837 ST->getMemOperand());
22838
22839 APInt TruncDemandedBits =
22840 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
22841 ST->getMemoryVT().getScalarSizeInBits());
22842
22843 // See if we can simplify the operation with SimplifyDemandedBits, which
22844 // only works if the value has a single use.
22845 AddToWorklist(Value.getNode());
22846 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
22847 // Re-visit the store if anything changed and the store hasn't been merged
22848 // with another node (N is deleted) SimplifyDemandedBits will add Value's
22849 // node back to the worklist if necessary, but we also need to re-visit
22850 // the Store node itself.
22851 if (N->getOpcode() != ISD::DELETED_NODE)
22852 AddToWorklist(N);
22853 return SDValue(N, 0);
22854 }
22855
22856 // Otherwise, see if we can simplify the input to this truncstore with
22857 // knowledge that only the low bits are being used. For example:
22858 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
22859 if (SDValue Shorter =
22860 TLI.SimplifyMultipleUseDemandedBits(Value, TruncDemandedBits, DAG))
22861 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
22862 ST->getMemOperand());
22863
22864 // If we're storing a truncated constant, see if we can simplify it.
22865 // TODO: Move this to targetShrinkDemandedConstant?
22866 if (auto *Cst = dyn_cast<ConstantSDNode>(Value))
22867 if (!Cst->isOpaque()) {
22868 const APInt &CValue = Cst->getAPIntValue();
22869 APInt NewVal = CValue & TruncDemandedBits;
22870 if (NewVal != CValue) {
22871 SDValue Shorter =
22872 DAG.getConstant(NewVal, SDLoc(N), Value.getValueType());
22873 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr,
22874 ST->getMemoryVT(), ST->getMemOperand());
22875 }
22876 }
22877 }
22878
22879 // If this is a load followed by a store to the same location, then the store
22880 // is dead/noop. Peek through any truncates if canCombineTruncStore failed.
22881 // TODO: Add big-endian truncate support with test coverage.
22882 // TODO: Can relax for unordered atomics (see D66309)
22883 SDValue TruncVal = DAG.getDataLayout().isLittleEndian()
22885 : Value;
22886 if (auto *Ld = dyn_cast<LoadSDNode>(TruncVal)) {
22887 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
22888 ST->isUnindexed() && ST->isSimple() &&
22889 Ld->getAddressSpace() == ST->getAddressSpace() &&
22890 // There can't be any side effects between the load and store, such as
22891 // a call or store.
22893 // The store is dead, remove it.
22894 return Chain;
22895 }
22896 }
22897
22898 // Try scalarizing vector stores of loads where we only change one element
22899 if (SDValue NewST = replaceStoreOfInsertLoad(ST))
22900 return NewST;
22901
22902 // TODO: Can relax for unordered atomics (see D66309)
22903 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
22904 if (ST->isUnindexed() && ST->isSimple() &&
22905 ST1->isUnindexed() && ST1->isSimple()) {
22906 if (OptLevel != CodeGenOptLevel::None && ST1->getBasePtr() == Ptr &&
22907 ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() &&
22908 ST->getAddressSpace() == ST1->getAddressSpace()) {
22909 // If this is a store followed by a store with the same value to the
22910 // same location, then the store is dead/noop.
22911 return Chain;
22912 }
22913
22914 if (OptLevel != CodeGenOptLevel::None && ST1->hasOneUse() &&
22915 !ST1->getBasePtr().isUndef() &&
22916 ST->getAddressSpace() == ST1->getAddressSpace()) {
22917 // If we consider two stores and one smaller in size is a scalable
22918 // vector type and another one a bigger size store with a fixed type,
22919 // then we could not allow the scalable store removal because we don't
22920 // know its final size in the end.
22921 if (ST->getMemoryVT().isScalableVector() ||
22922 ST1->getMemoryVT().isScalableVector()) {
22923 if (ST1->getBasePtr() == Ptr &&
22924 TypeSize::isKnownLE(ST1->getMemoryVT().getStoreSize(),
22925 ST->getMemoryVT().getStoreSize())) {
22926 CombineTo(ST1, ST1->getChain());
22927 return SDValue(N, 0);
22928 }
22929 } else {
22930 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
22931 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
22932 // If this is a store who's preceding store to a subset of the current
22933 // location and no one other node is chained to that store we can
22934 // effectively drop the store. Do not remove stores to undef as they
22935 // may be used as data sinks.
22936 if (STBase.contains(DAG, ST->getMemoryVT().getFixedSizeInBits(),
22937 ChainBase,
22938 ST1->getMemoryVT().getFixedSizeInBits())) {
22939 CombineTo(ST1, ST1->getChain());
22940 return SDValue(N, 0);
22941 }
22942 }
22943 }
22944 }
22945 }
22946
22947 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
22948 // truncating store. We can do this even if this is already a truncstore.
22949 if ((Value.getOpcode() == ISD::FP_ROUND ||
22950 Value.getOpcode() == ISD::TRUNCATE) &&
22951 Value->hasOneUse() && ST->isUnindexed() &&
22952 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
22953 ST->getMemoryVT(), LegalOperations)) {
22954 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
22955 Ptr, ST->getMemoryVT(), ST->getMemOperand());
22956 }
22957
22958 // Always perform this optimization before types are legal. If the target
22959 // prefers, also try this after legalization to catch stores that were created
22960 // by intrinsics or other nodes.
22961 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
22962 while (true) {
22963 // There can be multiple store sequences on the same chain.
22964 // Keep trying to merge store sequences until we are unable to do so
22965 // or until we merge the last store on the chain.
22966 bool Changed = mergeConsecutiveStores(ST);
22967 if (!Changed) break;
22968 // Return N as merge only uses CombineTo and no worklist clean
22969 // up is necessary.
22970 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
22971 return SDValue(N, 0);
22972 }
22973 }
22974
22975 // Try transforming N to an indexed store.
22976 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
22977 return SDValue(N, 0);
22978
22979 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
22980 //
22981 // Make sure to do this only after attempting to merge stores in order to
22982 // avoid changing the types of some subset of stores due to visit order,
22983 // preventing their merging.
22984 if (isa<ConstantFPSDNode>(ST->getValue())) {
22985 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
22986 return NewSt;
22987 }
22988
22989 if (SDValue NewSt = splitMergedValStore(ST))
22990 return NewSt;
22991
22992 if (SDValue MaskedStore = foldToMaskedStore(ST, DAG, SDLoc(N)))
22993 return MaskedStore;
22994
22995 return ReduceLoadOpStoreWidth(N);
22996}
22997
22998SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
22999 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
23000 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 0, false);
23001
23002 // We walk up the chains to find stores.
23003 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
23004 while (!Chains.empty()) {
23005 SDValue Chain = Chains.pop_back_val();
23006 if (!Chain.hasOneUse())
23007 continue;
23008 switch (Chain.getOpcode()) {
23009 case ISD::TokenFactor:
23010 for (unsigned Nops = Chain.getNumOperands(); Nops;)
23011 Chains.push_back(Chain.getOperand(--Nops));
23012 break;
23013 case ISD::LIFETIME_START:
23014 case ISD::LIFETIME_END:
23015 // We can forward past any lifetime start/end that can be proven not to
23016 // alias the node.
23017 if (!mayAlias(Chain.getNode(), N))
23018 Chains.push_back(Chain.getOperand(0));
23019 break;
23020 case ISD::STORE: {
23021 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
23022 // TODO: Can relax for unordered atomics (see D66309)
23023 if (!ST->isSimple() || ST->isIndexed())
23024 continue;
23025 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
23026 // The bounds of a scalable store are not known until runtime, so this
23027 // store cannot be elided.
23028 if (StoreSize.isScalable())
23029 continue;
23030 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
23031 // If we store purely within object bounds just before its lifetime ends,
23032 // we can remove the store.
23033 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
23034 if (LifetimeEndBase.contains(
23035 DAG, MFI.getObjectSize(LifetimeEnd->getFrameIndex()) * 8,
23036 StoreBase, StoreSize.getFixedValue() * 8)) {
23037 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
23038 dbgs() << "\nwithin LIFETIME_END of : ";
23039 LifetimeEndBase.dump(); dbgs() << "\n");
23040 CombineTo(ST, ST->getChain());
23041 return SDValue(N, 0);
23042 }
23043 }
23044 }
23045 }
23046 return SDValue();
23047}
23048
23049/// For the instruction sequence of store below, F and I values
23050/// are bundled together as an i64 value before being stored into memory.
23051/// Sometimes it is more efficent to generate separate stores for F and I,
23052/// which can remove the bitwise instructions or sink them to colder places.
23053///
23054/// (store (or (zext (bitcast F to i32) to i64),
23055/// (shl (zext I to i64), 32)), addr) -->
23056/// (store F, addr) and (store I, addr+4)
23057///
23058/// Similarly, splitting for other merged store can also be beneficial, like:
23059/// For pair of {i32, i32}, i64 store --> two i32 stores.
23060/// For pair of {i32, i16}, i64 store --> two i32 stores.
23061/// For pair of {i16, i16}, i32 store --> two i16 stores.
23062/// For pair of {i16, i8}, i32 store --> two i16 stores.
23063/// For pair of {i8, i8}, i16 store --> two i8 stores.
23064///
23065/// We allow each target to determine specifically which kind of splitting is
23066/// supported.
23067///
23068/// The store patterns are commonly seen from the simple code snippet below
23069/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
23070/// void goo(const std::pair<int, float> &);
23071/// hoo() {
23072/// ...
23073/// goo(std::make_pair(tmp, ftmp));
23074/// ...
23075/// }
23076///
23077SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
23078 if (OptLevel == CodeGenOptLevel::None)
23079 return SDValue();
23080
23081 // Can't change the number of memory accesses for a volatile store or break
23082 // atomicity for an atomic one.
23083 if (!ST->isSimple())
23084 return SDValue();
23085
23086 SDValue Val = ST->getValue();
23087 SDLoc DL(ST);
23088
23089 // Match OR operand.
23090 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
23091 return SDValue();
23092
23093 // Match SHL operand and get Lower and Higher parts of Val.
23094 SDValue Op1 = Val.getOperand(0);
23095 SDValue Op2 = Val.getOperand(1);
23096 SDValue Lo, Hi;
23097 if (Op1.getOpcode() != ISD::SHL) {
23098 std::swap(Op1, Op2);
23099 if (Op1.getOpcode() != ISD::SHL)
23100 return SDValue();
23101 }
23102 Lo = Op2;
23103 Hi = Op1.getOperand(0);
23104 if (!Op1.hasOneUse())
23105 return SDValue();
23106
23107 // Match shift amount to HalfValBitSize.
23108 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
23109 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
23110 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
23111 return SDValue();
23112
23113 // Lo and Hi are zero-extended from int with size less equal than 32
23114 // to i64.
23115 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
23116 !Lo.getOperand(0).getValueType().isScalarInteger() ||
23117 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
23118 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
23119 !Hi.getOperand(0).getValueType().isScalarInteger() ||
23120 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
23121 return SDValue();
23122
23123 // Use the EVT of low and high parts before bitcast as the input
23124 // of target query.
23125 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
23126 ? Lo.getOperand(0).getValueType()
23127 : Lo.getValueType();
23128 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
23129 ? Hi.getOperand(0).getValueType()
23130 : Hi.getValueType();
23131 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
23132 return SDValue();
23133
23134 // Start to split store.
23135 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
23136 AAMDNodes AAInfo = ST->getAAInfo();
23137
23138 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
23139 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
23140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
23141 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
23142
23143 SDValue Chain = ST->getChain();
23144 SDValue Ptr = ST->getBasePtr();
23145 // Lower value store.
23146 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
23147 ST->getBaseAlign(), MMOFlags, AAInfo);
23148 Ptr =
23149 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(HalfValBitSize / 8), DL);
23150 // Higher value store.
23151 SDValue St1 = DAG.getStore(
23152 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
23153 ST->getBaseAlign(), MMOFlags, AAInfo);
23154 return St1;
23155}
23156
23157// Merge an insertion into an existing shuffle:
23158// (insert_vector_elt (vector_shuffle X, Y, Mask),
23159// .(extract_vector_elt X, N), InsIndex)
23160// --> (vector_shuffle X, Y, NewMask)
23161// and variations where shuffle operands may be CONCAT_VECTORS.
23163 SmallVectorImpl<int> &NewMask, SDValue Elt,
23164 unsigned InsIndex) {
23165 if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
23167 return false;
23168
23169 // Vec's operand 0 is using indices from 0 to N-1 and
23170 // operand 1 from N to 2N - 1, where N is the number of
23171 // elements in the vectors.
23172 SDValue InsertVal0 = Elt.getOperand(0);
23173 int ElementOffset = -1;
23174
23175 // We explore the inputs of the shuffle in order to see if we find the
23176 // source of the extract_vector_elt. If so, we can use it to modify the
23177 // shuffle rather than perform an insert_vector_elt.
23179 ArgWorkList.emplace_back(Mask.size(), Y);
23180 ArgWorkList.emplace_back(0, X);
23181
23182 while (!ArgWorkList.empty()) {
23183 int ArgOffset;
23184 SDValue ArgVal;
23185 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
23186
23187 if (ArgVal == InsertVal0) {
23188 ElementOffset = ArgOffset;
23189 break;
23190 }
23191
23192 // Peek through concat_vector.
23193 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
23194 int CurrentArgOffset =
23195 ArgOffset + ArgVal.getValueType().getVectorNumElements();
23196 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
23197 for (SDValue Op : reverse(ArgVal->ops())) {
23198 CurrentArgOffset -= Step;
23199 ArgWorkList.emplace_back(CurrentArgOffset, Op);
23200 }
23201
23202 // Make sure we went through all the elements and did not screw up index
23203 // computation.
23204 assert(CurrentArgOffset == ArgOffset);
23205 }
23206 }
23207
23208 // If we failed to find a match, see if we can replace an UNDEF shuffle
23209 // operand.
23210 if (ElementOffset == -1) {
23211 if (!Y.isUndef() || InsertVal0.getValueType() != Y.getValueType())
23212 return false;
23213 ElementOffset = Mask.size();
23214 Y = InsertVal0;
23215 }
23216
23217 NewMask.assign(Mask.begin(), Mask.end());
23218 NewMask[InsIndex] = ElementOffset + Elt.getConstantOperandVal(1);
23219 assert(NewMask[InsIndex] < (int)(2 * Mask.size()) && NewMask[InsIndex] >= 0 &&
23220 "NewMask[InsIndex] is out of bound");
23221 return true;
23222}
23223
23224// Merge an insertion into an existing shuffle:
23225// (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
23226// InsIndex)
23227// --> (vector_shuffle X, Y) and variations where shuffle operands may be
23228// CONCAT_VECTORS.
23229SDValue DAGCombiner::mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex) {
23230 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
23231 "Expected extract_vector_elt");
23232 SDValue InsertVal = N->getOperand(1);
23233 SDValue Vec = N->getOperand(0);
23234
23235 auto *SVN = dyn_cast<ShuffleVectorSDNode>(Vec);
23236 if (!SVN || !Vec.hasOneUse())
23237 return SDValue();
23238
23239 ArrayRef<int> Mask = SVN->getMask();
23240 SDValue X = Vec.getOperand(0);
23241 SDValue Y = Vec.getOperand(1);
23242
23243 SmallVector<int, 16> NewMask(Mask);
23244 if (mergeEltWithShuffle(X, Y, Mask, NewMask, InsertVal, InsIndex)) {
23245 SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
23246 Vec.getValueType(), SDLoc(N), X, Y, NewMask, DAG);
23247 if (LegalShuffle)
23248 return LegalShuffle;
23249 }
23250
23251 return SDValue();
23252}
23253
23254// Convert a disguised subvector insertion into a shuffle:
23255// insert_vector_elt V, (bitcast X from vector type), IdxC -->
23256// bitcast(shuffle (bitcast V), (extended X), Mask)
23257// Note: We do not use an insert_subvector node because that requires a
23258// legal subvector type.
23259SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
23260 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
23261 "Expected extract_vector_elt");
23262 SDValue InsertVal = N->getOperand(1);
23263
23264 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
23265 !InsertVal.getOperand(0).getValueType().isVector())
23266 return SDValue();
23267
23268 SDValue SubVec = InsertVal.getOperand(0);
23269 SDValue DestVec = N->getOperand(0);
23270 EVT SubVecVT = SubVec.getValueType();
23271 EVT VT = DestVec.getValueType();
23272 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
23273 // If the source only has a single vector element, the cost of creating adding
23274 // it to a vector is likely to exceed the cost of a insert_vector_elt.
23275 if (NumSrcElts == 1)
23276 return SDValue();
23277 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
23278 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
23279
23280 // Step 1: Create a shuffle mask that implements this insert operation. The
23281 // vector that we are inserting into will be operand 0 of the shuffle, so
23282 // those elements are just 'i'. The inserted subvector is in the first
23283 // positions of operand 1 of the shuffle. Example:
23284 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
23285 SmallVector<int, 16> Mask(NumMaskVals);
23286 for (unsigned i = 0; i != NumMaskVals; ++i) {
23287 if (i / NumSrcElts == InsIndex)
23288 Mask[i] = (i % NumSrcElts) + NumMaskVals;
23289 else
23290 Mask[i] = i;
23291 }
23292
23293 // Bail out if the target can not handle the shuffle we want to create.
23294 EVT SubVecEltVT = SubVecVT.getVectorElementType();
23295 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
23296 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
23297 return SDValue();
23298
23299 // Step 2: Create a wide vector from the inserted source vector by appending
23300 // undefined elements. This is the same size as our destination vector.
23301 SDLoc DL(N);
23302 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
23303 ConcatOps[0] = SubVec;
23304 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
23305
23306 // Step 3: Shuffle in the padded subvector.
23307 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
23308 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
23309 AddToWorklist(PaddedSubV.getNode());
23310 AddToWorklist(DestVecBC.getNode());
23311 AddToWorklist(Shuf.getNode());
23312 return DAG.getBitcast(VT, Shuf);
23313}
23314
23315// Combine insert(shuffle(load, <u,0,1,2>), load, 0) into a single load if
23316// possible and the new load will be quick. We use more loads but less shuffles
23317// and inserts.
23318SDValue DAGCombiner::combineInsertEltToLoad(SDNode *N, unsigned InsIndex) {
23319 EVT VT = N->getValueType(0);
23320
23321 // InsIndex is expected to be the first of last lane.
23322 if (!VT.isFixedLengthVector() ||
23323 (InsIndex != 0 && InsIndex != VT.getVectorNumElements() - 1))
23324 return SDValue();
23325
23326 // Look for a shuffle with the mask u,0,1,2,3,4,5,6 or 1,2,3,4,5,6,7,u
23327 // depending on the InsIndex.
23328 auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0));
23329 SDValue Scalar = N->getOperand(1);
23330 if (!Shuffle || !all_of(enumerate(Shuffle->getMask()), [&](auto P) {
23331 return InsIndex == P.index() || P.value() < 0 ||
23332 (InsIndex == 0 && P.value() == (int)P.index() - 1) ||
23333 (InsIndex == VT.getVectorNumElements() - 1 &&
23334 P.value() == (int)P.index() + 1);
23335 }))
23336 return SDValue();
23337
23338 // We optionally skip over an extend so long as both loads are extended in the
23339 // same way from the same type.
23340 unsigned Extend = 0;
23341 if (Scalar.getOpcode() == ISD::ZERO_EXTEND ||
23342 Scalar.getOpcode() == ISD::SIGN_EXTEND ||
23343 Scalar.getOpcode() == ISD::ANY_EXTEND) {
23344 Extend = Scalar.getOpcode();
23345 Scalar = Scalar.getOperand(0);
23346 }
23347
23348 auto *ScalarLoad = dyn_cast<LoadSDNode>(Scalar);
23349 if (!ScalarLoad)
23350 return SDValue();
23351
23352 SDValue Vec = Shuffle->getOperand(0);
23353 if (Extend) {
23354 if (Vec.getOpcode() != Extend)
23355 return SDValue();
23356 Vec = Vec.getOperand(0);
23357 }
23358 auto *VecLoad = dyn_cast<LoadSDNode>(Vec);
23359 if (!VecLoad || Vec.getValueType().getScalarType() != Scalar.getValueType())
23360 return SDValue();
23361
23362 int EltSize = ScalarLoad->getValueType(0).getScalarSizeInBits();
23363 if (EltSize == 0 || EltSize % 8 != 0 || !ScalarLoad->isSimple() ||
23364 !VecLoad->isSimple() || VecLoad->getExtensionType() != ISD::NON_EXTLOAD ||
23365 ScalarLoad->getExtensionType() != ISD::NON_EXTLOAD ||
23366 ScalarLoad->getAddressSpace() != VecLoad->getAddressSpace())
23367 return SDValue();
23368
23369 // Check that the offset between the pointers to produce a single continuous
23370 // load.
23371 if (InsIndex == 0) {
23372 if (!DAG.areNonVolatileConsecutiveLoads(ScalarLoad, VecLoad, EltSize / 8,
23373 -1))
23374 return SDValue();
23375 } else {
23377 VecLoad, ScalarLoad, VT.getVectorNumElements() * EltSize / 8, -1))
23378 return SDValue();
23379 }
23380
23381 // And that the new unaligned load will be fast.
23382 unsigned IsFast = 0;
23383 Align NewAlign = commonAlignment(VecLoad->getAlign(), EltSize / 8);
23384 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
23385 Vec.getValueType(), VecLoad->getAddressSpace(),
23386 NewAlign, VecLoad->getMemOperand()->getFlags(),
23387 &IsFast) ||
23388 !IsFast)
23389 return SDValue();
23390
23391 // Calculate the new Ptr and create the new load.
23392 SDLoc DL(N);
23393 SDValue Ptr = ScalarLoad->getBasePtr();
23394 if (InsIndex != 0)
23395 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), VecLoad->getBasePtr(),
23396 DAG.getConstant(EltSize / 8, DL, Ptr.getValueType()));
23397 MachinePointerInfo PtrInfo =
23398 InsIndex == 0 ? ScalarLoad->getPointerInfo()
23399 : VecLoad->getPointerInfo().getWithOffset(EltSize / 8);
23400
23401 SDValue Load = DAG.getLoad(VecLoad->getValueType(0), DL,
23402 ScalarLoad->getChain(), Ptr, PtrInfo, NewAlign);
23403 DAG.makeEquivalentMemoryOrdering(ScalarLoad, Load.getValue(1));
23404 DAG.makeEquivalentMemoryOrdering(VecLoad, Load.getValue(1));
23405 return Extend ? DAG.getNode(Extend, DL, VT, Load) : Load;
23406}
23407
23408SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
23409 SDValue InVec = N->getOperand(0);
23410 SDValue InVal = N->getOperand(1);
23411 SDValue EltNo = N->getOperand(2);
23412 SDLoc DL(N);
23413
23414 EVT VT = InVec.getValueType();
23415 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
23416
23417 // Insert into out-of-bounds element is undefined.
23418 if (IndexC && VT.isFixedLengthVector() &&
23419 IndexC->getZExtValue() >= VT.getVectorNumElements())
23420 return DAG.getUNDEF(VT);
23421
23422 // Remove redundant insertions:
23423 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
23424 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23425 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
23426 return InVec;
23427
23428 // Remove insert of UNDEF/POISON elements.
23429 if (InVal.isUndef()) {
23430 if (InVal.getOpcode() == ISD::POISON || InVec.getOpcode() == ISD::UNDEF)
23431 return InVec;
23432 return DAG.getFreeze(InVec);
23433 }
23434
23435 if (!IndexC) {
23436 // If this is variable insert to undef vector, it might be better to splat:
23437 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
23438 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT))
23439 return DAG.getSplat(VT, DL, InVal);
23440 return SDValue();
23441 }
23442
23443 if (VT.isScalableVector())
23444 return SDValue();
23445
23446 unsigned NumElts = VT.getVectorNumElements();
23447
23448 // We must know which element is being inserted for folds below here.
23449 unsigned Elt = IndexC->getZExtValue();
23450
23451 // Handle <1 x ???> vector insertion special cases.
23452 if (NumElts == 1) {
23453 // insert_vector_elt(x, extract_vector_elt(y, 0), 0) -> y
23454 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23455 InVal.getOperand(0).getValueType() == VT &&
23456 isNullConstant(InVal.getOperand(1)))
23457 return InVal.getOperand(0);
23458 }
23459
23460 // Canonicalize insert_vector_elt dag nodes.
23461 // Example:
23462 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
23463 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
23464 //
23465 // Do this only if the child insert_vector node has one use; also
23466 // do this only if indices are both constants and Idx1 < Idx0.
23467 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
23468 && isa<ConstantSDNode>(InVec.getOperand(2))) {
23469 unsigned OtherElt = InVec.getConstantOperandVal(2);
23470 if (Elt < OtherElt) {
23471 // Swap nodes.
23472 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
23473 InVec.getOperand(0), InVal, EltNo);
23474 AddToWorklist(NewOp.getNode());
23475 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
23476 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
23477 }
23478 }
23479
23480 if (SDValue Shuf = mergeInsertEltWithShuffle(N, Elt))
23481 return Shuf;
23482
23483 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
23484 return Shuf;
23485
23486 if (SDValue Shuf = combineInsertEltToLoad(N, Elt))
23487 return Shuf;
23488
23489 // Attempt to convert an insert_vector_elt chain into a legal build_vector.
23490 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
23491 // vXi1 vector - we don't need to recurse.
23492 if (NumElts == 1)
23493 return DAG.getBuildVector(VT, DL, {InVal});
23494
23495 // If we haven't already collected the element, insert into the op list.
23496 EVT MaxEltVT = InVal.getValueType();
23497 auto AddBuildVectorOp = [&](SmallVectorImpl<SDValue> &Ops, SDValue Elt,
23498 unsigned Idx) {
23499 if (!Ops[Idx]) {
23500 Ops[Idx] = Elt;
23501 if (VT.isInteger()) {
23502 EVT EltVT = Elt.getValueType();
23503 MaxEltVT = MaxEltVT.bitsGE(EltVT) ? MaxEltVT : EltVT;
23504 }
23505 }
23506 };
23507
23508 // Ensure all the operands are the same value type, fill any missing
23509 // operands with UNDEF and create the BUILD_VECTOR.
23510 auto CanonicalizeBuildVector = [&](SmallVectorImpl<SDValue> &Ops,
23511 bool FreezeUndef = false) {
23512 assert(Ops.size() == NumElts && "Unexpected vector size");
23513 SDValue UndefOp = FreezeUndef ? DAG.getFreeze(DAG.getUNDEF(MaxEltVT))
23514 : DAG.getUNDEF(MaxEltVT);
23515 for (SDValue &Op : Ops) {
23516 if (Op)
23517 Op = VT.isInteger() ? DAG.getAnyExtOrTrunc(Op, DL, MaxEltVT) : Op;
23518 else
23519 Op = UndefOp;
23520 }
23521 return DAG.getBuildVector(VT, DL, Ops);
23522 };
23523
23525 Ops[Elt] = InVal;
23526
23527 // Recurse up a INSERT_VECTOR_ELT chain to build a BUILD_VECTOR.
23528 for (SDValue CurVec = InVec; CurVec;) {
23529 // UNDEF - build new BUILD_VECTOR from already inserted operands.
23530 if (CurVec.isUndef())
23531 return CanonicalizeBuildVector(Ops);
23532
23533 // FREEZE(UNDEF) - build new BUILD_VECTOR from already inserted operands.
23534 if (ISD::isFreezeUndef(CurVec.getNode()) && CurVec.hasOneUse())
23535 return CanonicalizeBuildVector(Ops, /*FreezeUndef=*/true);
23536
23537 // BUILD_VECTOR - insert unused operands and build new BUILD_VECTOR.
23538 if (CurVec.getOpcode() == ISD::BUILD_VECTOR && CurVec.hasOneUse()) {
23539 for (unsigned I = 0; I != NumElts; ++I)
23540 AddBuildVectorOp(Ops, CurVec.getOperand(I), I);
23541 return CanonicalizeBuildVector(Ops);
23542 }
23543
23544 // SCALAR_TO_VECTOR - insert unused scalar and build new BUILD_VECTOR.
23545 if (CurVec.getOpcode() == ISD::SCALAR_TO_VECTOR && CurVec.hasOneUse()) {
23546 AddBuildVectorOp(Ops, CurVec.getOperand(0), 0);
23547 return CanonicalizeBuildVector(Ops);
23548 }
23549
23550 // INSERT_VECTOR_ELT - insert operand and continue up the chain.
23551 if (CurVec.getOpcode() == ISD::INSERT_VECTOR_ELT && CurVec.hasOneUse())
23552 if (auto *CurIdx = dyn_cast<ConstantSDNode>(CurVec.getOperand(2)))
23553 if (CurIdx->getAPIntValue().ult(NumElts)) {
23554 unsigned Idx = CurIdx->getZExtValue();
23555 AddBuildVectorOp(Ops, CurVec.getOperand(1), Idx);
23556
23557 // Found entire BUILD_VECTOR.
23558 if (all_of(Ops, [](SDValue Op) { return !!Op; }))
23559 return CanonicalizeBuildVector(Ops);
23560
23561 CurVec = CurVec->getOperand(0);
23562 continue;
23563 }
23564
23565 // VECTOR_SHUFFLE - if all the operands match the shuffle's sources,
23566 // update the shuffle mask (and second operand if we started with unary
23567 // shuffle) and create a new legal shuffle.
23568 if (CurVec.getOpcode() == ISD::VECTOR_SHUFFLE && CurVec.hasOneUse()) {
23569 auto *SVN = cast<ShuffleVectorSDNode>(CurVec);
23570 SDValue LHS = SVN->getOperand(0);
23571 SDValue RHS = SVN->getOperand(1);
23572 SmallVector<int, 16> Mask(SVN->getMask());
23573 bool Merged = true;
23574 for (auto I : enumerate(Ops)) {
23575 SDValue &Op = I.value();
23576 if (Op) {
23577 SmallVector<int, 16> NewMask;
23578 if (!mergeEltWithShuffle(LHS, RHS, Mask, NewMask, Op, I.index())) {
23579 Merged = false;
23580 break;
23581 }
23582 Mask = std::move(NewMask);
23583 }
23584 }
23585 if (Merged)
23586 if (SDValue NewShuffle =
23587 TLI.buildLegalVectorShuffle(VT, DL, LHS, RHS, Mask, DAG))
23588 return NewShuffle;
23589 }
23590
23591 if (!LegalOperations) {
23592 bool IsNull = llvm::isNullConstant(InVal);
23593 // We can convert to AND/OR mask if all insertions are zero or -1
23594 // respectively.
23595 if ((IsNull || llvm::isAllOnesConstant(InVal)) &&
23596 all_of(Ops, [InVal](SDValue Op) { return !Op || Op == InVal; }) &&
23597 count_if(Ops, [InVal](SDValue Op) { return Op == InVal; }) >= 2) {
23598 SDValue Zero = DAG.getConstant(0, DL, MaxEltVT);
23599 SDValue AllOnes = DAG.getAllOnesConstant(DL, MaxEltVT);
23601
23602 // Build the mask and return the corresponding DAG node.
23603 auto BuildMaskAndNode = [&](SDValue TrueVal, SDValue FalseVal,
23604 unsigned MaskOpcode) {
23605 for (unsigned I = 0; I != NumElts; ++I)
23606 Mask[I] = Ops[I] ? TrueVal : FalseVal;
23607 return DAG.getNode(MaskOpcode, DL, VT, CurVec,
23608 DAG.getBuildVector(VT, DL, Mask));
23609 };
23610
23611 // If all elements are zero, we can use AND with all ones.
23612 if (IsNull)
23613 return BuildMaskAndNode(Zero, AllOnes, ISD::AND);
23614
23615 // If all elements are -1, we can use OR with zero.
23616 return BuildMaskAndNode(AllOnes, Zero, ISD::OR);
23617 }
23618 }
23619
23620 // Failed to find a match in the chain - bail.
23621 break;
23622 }
23623
23624 // See if we can fill in the missing constant elements as zeros.
23625 // TODO: Should we do this for any constant?
23626 APInt DemandedZeroElts = APInt::getZero(NumElts);
23627 for (unsigned I = 0; I != NumElts; ++I)
23628 if (!Ops[I])
23629 DemandedZeroElts.setBit(I);
23630
23631 if (DAG.MaskedVectorIsZero(InVec, DemandedZeroElts)) {
23632 SDValue Zero = VT.isInteger() ? DAG.getConstant(0, DL, MaxEltVT)
23633 : DAG.getConstantFP(0, DL, MaxEltVT);
23634 for (unsigned I = 0; I != NumElts; ++I)
23635 if (!Ops[I])
23636 Ops[I] = Zero;
23637
23638 return CanonicalizeBuildVector(Ops);
23639 }
23640 }
23641
23642 return SDValue();
23643}
23644
23645/// Transform a vector binary operation into a scalar binary operation by moving
23646/// the math/logic after an extract element of a vector.
23648 const SDLoc &DL, bool LegalTypes) {
23649 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23650 SDValue Vec = ExtElt->getOperand(0);
23651 SDValue Index = ExtElt->getOperand(1);
23652 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
23653 unsigned Opc = Vec.getOpcode();
23654 if (!IndexC || !Vec.hasOneUse() || (!TLI.isBinOp(Opc) && Opc != ISD::SETCC) ||
23655 Vec->getNumValues() != 1)
23656 return SDValue();
23657
23658 // Targets may want to avoid this to prevent an expensive register transfer.
23659 if (!TLI.shouldScalarizeBinop(Vec))
23660 return SDValue();
23661
23662 EVT ResVT = ExtElt->getValueType(0);
23663 if (Opc == ISD::SETCC &&
23664 (ResVT != Vec.getValueType().getVectorElementType() || LegalTypes))
23665 return SDValue();
23666
23667 // Extracting an element of a vector constant is constant-folded, so this
23668 // transform is just replacing a vector op with a scalar op while moving the
23669 // extract.
23670 SDValue Op0 = Vec.getOperand(0);
23671 SDValue Op1 = Vec.getOperand(1);
23672 APInt SplatVal;
23673 if (!isAnyConstantBuildVector(Op0, true) &&
23674 !ISD::isConstantSplatVector(Op0.getNode(), SplatVal) &&
23675 !isAnyConstantBuildVector(Op1, true) &&
23676 !ISD::isConstantSplatVector(Op1.getNode(), SplatVal))
23677 return SDValue();
23678
23679 // extractelt (op X, C), IndexC --> op (extractelt X, IndexC), C'
23680 // extractelt (op C, X), IndexC --> op C', (extractelt X, IndexC)
23681 if (Opc == ISD::SETCC) {
23682 EVT OpVT = Op0.getValueType().getVectorElementType();
23683 Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op0, Index);
23684 Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op1, Index);
23685 SDValue NewVal = DAG.getSetCC(
23686 DL, ResVT, Op0, Op1, cast<CondCodeSDNode>(Vec->getOperand(2))->get());
23687 // We may need to sign- or zero-extend the result to match the same
23688 // behaviour as the vector version of SETCC.
23689 unsigned VecBoolContents = TLI.getBooleanContents(Vec.getValueType());
23690 if (ResVT != MVT::i1 &&
23691 VecBoolContents != TargetLowering::UndefinedBooleanContent &&
23692 VecBoolContents != TLI.getBooleanContents(ResVT)) {
23694 NewVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ResVT, NewVal,
23695 DAG.getValueType(MVT::i1));
23696 else
23697 NewVal = DAG.getZeroExtendInReg(NewVal, DL, MVT::i1);
23698 }
23699 return NewVal;
23700 }
23701 Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op0, Index);
23702 Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op1, Index);
23703 return DAG.getNode(Opc, DL, ResVT, Op0, Op1);
23704}
23705
23706// Given a ISD::EXTRACT_VECTOR_ELT, which is a glorified bit sequence extract,
23707// recursively analyse all of it's users. and try to model themselves as
23708// bit sequence extractions. If all of them agree on the new, narrower element
23709// type, and all of them can be modelled as ISD::EXTRACT_VECTOR_ELT's of that
23710// new element type, do so now.
23711// This is mainly useful to recover from legalization that scalarized
23712// the vector as wide elements, but tries to rebuild it with narrower elements.
23713//
23714// Some more nodes could be modelled if that helps cover interesting patterns.
23715bool DAGCombiner::refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(
23716 SDNode *N) {
23717 // We perform this optimization post type-legalization because
23718 // the type-legalizer often scalarizes integer-promoted vectors.
23719 // Performing this optimization before may cause legalizaton cycles.
23720 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
23721 return false;
23722
23723 // TODO: Add support for big-endian.
23724 if (DAG.getDataLayout().isBigEndian())
23725 return false;
23726
23727 SDValue VecOp = N->getOperand(0);
23728 EVT VecVT = VecOp.getValueType();
23729 assert(!VecVT.isScalableVector() && "Only for fixed vectors.");
23730
23731 // We must start with a constant extraction index.
23732 auto *IndexC = dyn_cast<ConstantSDNode>(N->getOperand(1));
23733 if (!IndexC)
23734 return false;
23735
23736 assert(IndexC->getZExtValue() < VecVT.getVectorNumElements() &&
23737 "Original ISD::EXTRACT_VECTOR_ELT is undefinend?");
23738
23739 // TODO: deal with the case of implicit anyext of the extraction.
23740 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
23741 EVT ScalarVT = N->getValueType(0);
23742 if (VecVT.getScalarType() != ScalarVT)
23743 return false;
23744
23745 // TODO: deal with the cases other than everything being integer-typed.
23746 if (!ScalarVT.isScalarInteger())
23747 return false;
23748
23749 struct Entry {
23750 SDNode *Producer;
23751
23752 // Which bits of VecOp does it contain?
23753 unsigned BitPos;
23754 int NumBits;
23755 // NOTE: the actual width of \p Producer may be wider than NumBits!
23756
23757 Entry(Entry &&) = default;
23758 Entry(SDNode *Producer_, unsigned BitPos_, int NumBits_)
23759 : Producer(Producer_), BitPos(BitPos_), NumBits(NumBits_) {}
23760
23761 Entry() = delete;
23762 Entry(const Entry &) = delete;
23763 Entry &operator=(const Entry &) = delete;
23764 Entry &operator=(Entry &&) = delete;
23765 };
23766 SmallVector<Entry, 32> Worklist;
23768
23769 // We start at the "root" ISD::EXTRACT_VECTOR_ELT.
23770 Worklist.emplace_back(N, /*BitPos=*/VecEltBitWidth * IndexC->getZExtValue(),
23771 /*NumBits=*/VecEltBitWidth);
23772
23773 while (!Worklist.empty()) {
23774 Entry E = Worklist.pop_back_val();
23775 // Does the node not even use any of the VecOp bits?
23776 if (!(E.NumBits > 0 && E.BitPos < VecVT.getSizeInBits() &&
23777 E.BitPos + E.NumBits <= VecVT.getSizeInBits()))
23778 return false; // Let's allow the other combines clean this up first.
23779 // Did we fail to model any of the users of the Producer?
23780 bool ProducerIsLeaf = false;
23781 // Look at each user of this Producer.
23782 for (SDNode *User : E.Producer->users()) {
23783 switch (User->getOpcode()) {
23784 // TODO: support ISD::BITCAST
23785 // TODO: support ISD::ANY_EXTEND
23786 // TODO: support ISD::ZERO_EXTEND
23787 // TODO: support ISD::SIGN_EXTEND
23788 case ISD::TRUNCATE:
23789 // Truncation simply means we keep position, but extract less bits.
23790 Worklist.emplace_back(User, E.BitPos,
23791 /*NumBits=*/User->getValueSizeInBits(0));
23792 break;
23793 // TODO: support ISD::SRA
23794 // TODO: support ISD::SHL
23795 case ISD::SRL:
23796 // We should be shifting the Producer by a constant amount.
23797 if (auto *ShAmtC = dyn_cast<ConstantSDNode>(User->getOperand(1));
23798 User->getOperand(0).getNode() == E.Producer && ShAmtC) {
23799 // Logical right-shift means that we start extraction later,
23800 // but stop it at the same position we did previously.
23801 unsigned ShAmt = ShAmtC->getZExtValue();
23802 Worklist.emplace_back(User, E.BitPos + ShAmt, E.NumBits - ShAmt);
23803 break;
23804 }
23805 [[fallthrough]];
23806 default:
23807 // We can not model this user of the Producer.
23808 // Which means the current Producer will be a ISD::EXTRACT_VECTOR_ELT.
23809 ProducerIsLeaf = true;
23810 // Profitability check: all users that we can not model
23811 // must be ISD::BUILD_VECTOR's.
23812 if (User->getOpcode() != ISD::BUILD_VECTOR)
23813 return false;
23814 break;
23815 }
23816 }
23817 if (ProducerIsLeaf)
23818 Leafs.emplace_back(std::move(E));
23819 }
23820
23821 unsigned NewVecEltBitWidth = Leafs.front().NumBits;
23822
23823 // If we are still at the same element granularity, give up,
23824 if (NewVecEltBitWidth == VecEltBitWidth)
23825 return false;
23826
23827 // The vector width must be a multiple of the new element width.
23828 if (VecVT.getSizeInBits() % NewVecEltBitWidth != 0)
23829 return false;
23830
23831 // All leafs must agree on the new element width.
23832 // All leafs must not expect any "padding" bits ontop of that width.
23833 // All leafs must start extraction from multiple of that width.
23834 if (!all_of(Leafs, [NewVecEltBitWidth](const Entry &E) {
23835 return (unsigned)E.NumBits == NewVecEltBitWidth &&
23836 E.Producer->getValueSizeInBits(0) == NewVecEltBitWidth &&
23837 E.BitPos % NewVecEltBitWidth == 0;
23838 }))
23839 return false;
23840
23841 EVT NewScalarVT = EVT::getIntegerVT(*DAG.getContext(), NewVecEltBitWidth);
23842 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewScalarVT,
23843 VecVT.getSizeInBits() / NewVecEltBitWidth);
23844
23845 if (LegalTypes &&
23846 !(TLI.isTypeLegal(NewScalarVT) && TLI.isTypeLegal(NewVecVT)))
23847 return false;
23848
23849 if (LegalOperations &&
23850 !(TLI.isOperationLegalOrCustom(ISD::BITCAST, NewVecVT) &&
23852 return false;
23853
23854 SDValue NewVecOp = DAG.getBitcast(NewVecVT, VecOp);
23855 for (const Entry &E : Leafs) {
23856 SDLoc DL(E.Producer);
23857 unsigned NewIndex = E.BitPos / NewVecEltBitWidth;
23858 assert(NewIndex < NewVecVT.getVectorNumElements() &&
23859 "Creating out-of-bounds ISD::EXTRACT_VECTOR_ELT?");
23860 SDValue V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, NewScalarVT, NewVecOp,
23861 DAG.getVectorIdxConstant(NewIndex, DL));
23862 CombineTo(E.Producer, V);
23863 }
23864
23865 return true;
23866}
23867
23868SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
23869 SDValue VecOp = N->getOperand(0);
23870 SDValue Index = N->getOperand(1);
23871 EVT ScalarVT = N->getValueType(0);
23872 EVT VecVT = VecOp.getValueType();
23873 if (VecOp.isUndef())
23874 return DAG.getUNDEF(ScalarVT);
23875
23876 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
23877 //
23878 // This only really matters if the index is non-constant since other combines
23879 // on the constant elements already work.
23880 SDLoc DL(N);
23881 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
23882 Index == VecOp.getOperand(2)) {
23883 SDValue Elt = VecOp.getOperand(1);
23884 AddUsersToWorklist(VecOp.getNode());
23885 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
23886 }
23887
23888 // (vextract (scalar_to_vector val, 0) -> val
23889 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
23890 // Only 0'th element of SCALAR_TO_VECTOR is defined.
23891 if (DAG.isKnownNeverZero(Index))
23892 return DAG.getUNDEF(ScalarVT);
23893
23894 // Check if the result type doesn't match the inserted element type.
23895 // The inserted element and extracted element may have mismatched bitwidth.
23896 // As a result, EXTRACT_VECTOR_ELT may extend or truncate the extracted vector.
23897 SDValue InOp = VecOp.getOperand(0);
23898 if (InOp.getValueType() != ScalarVT) {
23899 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
23900 if (InOp.getValueType().bitsGT(ScalarVT))
23901 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, InOp);
23902 return DAG.getNode(ISD::ANY_EXTEND, DL, ScalarVT, InOp);
23903 }
23904 return InOp;
23905 }
23906
23907 // extract_vector_elt of out-of-bounds element -> UNDEF
23908 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
23909 if (IndexC && VecVT.isFixedLengthVector() &&
23910 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
23911 return DAG.getUNDEF(ScalarVT);
23912
23913 // extract_vector_elt (build_vector x, y), 1 -> y
23914 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
23915 VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
23916 TLI.isTypeLegal(VecVT)) {
23917 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
23918 VecVT.isFixedLengthVector()) &&
23919 "BUILD_VECTOR used for scalable vectors");
23920 unsigned IndexVal =
23921 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
23922 SDValue Elt = VecOp.getOperand(IndexVal);
23923 EVT InEltVT = Elt.getValueType();
23924
23925 if (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT) ||
23926 isNullConstant(Elt)) {
23927 // Sometimes build_vector's scalar input types do not match result type.
23928 if (ScalarVT == InEltVT)
23929 return Elt;
23930
23931 // TODO: It may be useful to truncate if free if the build_vector
23932 // implicitly converts.
23933 }
23934 }
23935
23936 if (SDValue BO = scalarizeExtractedBinOp(N, DAG, DL, LegalTypes))
23937 return BO;
23938
23939 if (VecVT.isScalableVector())
23940 return SDValue();
23941
23942 // All the code from this point onwards assumes fixed width vectors, but it's
23943 // possible that some of the combinations could be made to work for scalable
23944 // vectors too.
23945 unsigned NumElts = VecVT.getVectorNumElements();
23946 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
23947
23948 // See if the extracted element is constant, in which case fold it if its
23949 // a legal fp immediate.
23950 if (IndexC && ScalarVT.isFloatingPoint()) {
23951 APInt EltMask = APInt::getOneBitSet(NumElts, IndexC->getZExtValue());
23952 KnownBits KnownElt = DAG.computeKnownBits(VecOp, EltMask);
23953 if (KnownElt.isConstant()) {
23954 APFloat CstFP =
23955 APFloat(ScalarVT.getFltSemantics(), KnownElt.getConstant());
23956 if (TLI.isFPImmLegal(CstFP, ScalarVT))
23957 return DAG.getConstantFP(CstFP, DL, ScalarVT);
23958 }
23959 }
23960
23961 // TODO: These transforms should not require the 'hasOneUse' restriction, but
23962 // there are regressions on multiple targets without it. We can end up with a
23963 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
23964 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
23965 VecOp.hasOneUse()) {
23966 // The vector index of the LSBs of the source depend on the endian-ness.
23967 bool IsLE = DAG.getDataLayout().isLittleEndian();
23968 unsigned ExtractIndex = IndexC->getZExtValue();
23969 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
23970 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
23971 SDValue BCSrc = VecOp.getOperand(0);
23972 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
23973 return DAG.getAnyExtOrTrunc(BCSrc, DL, ScalarVT);
23974
23975 // TODO: Add support for SCALAR_TO_VECTOR implicit truncation.
23976 if (LegalTypes && BCSrc.getValueType().isInteger() &&
23977 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR &&
23978 BCSrc.getScalarValueSizeInBits() ==
23980 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
23981 // trunc i64 X to i32
23982 SDValue X = BCSrc.getOperand(0);
23983 EVT XVT = X.getValueType();
23984 assert(XVT.isScalarInteger() && ScalarVT.isScalarInteger() &&
23985 "Extract element and scalar to vector can't change element type "
23986 "from FP to integer.");
23987 unsigned XBitWidth = X.getValueSizeInBits();
23988 unsigned Scale = XBitWidth / VecEltBitWidth;
23989 BCTruncElt = IsLE ? 0 : Scale - 1;
23990
23991 // An extract element return value type can be wider than its vector
23992 // operand element type. In that case, the high bits are undefined, so
23993 // it's possible that we may need to extend rather than truncate.
23994 if (ExtractIndex < Scale && XBitWidth > VecEltBitWidth) {
23995 assert(XBitWidth % VecEltBitWidth == 0 &&
23996 "Scalar bitwidth must be a multiple of vector element bitwidth");
23997
23998 if (ExtractIndex != BCTruncElt) {
23999 unsigned ShiftIndex =
24000 IsLE ? ExtractIndex : (Scale - 1) - ExtractIndex;
24001 X = DAG.getNode(
24002 ISD::SRL, DL, XVT, X,
24003 DAG.getShiftAmountConstant(ShiftIndex * VecEltBitWidth, XVT, DL));
24004 }
24005
24006 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
24007 }
24008 }
24009 }
24010
24011 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
24012 // We only perform this optimization before the op legalization phase because
24013 // we may introduce new vector instructions which are not backed by TD
24014 // patterns. For example on AVX, extracting elements from a wide vector
24015 // without using extract_subvector. However, if we can find an underlying
24016 // scalar value, then we can always use that.
24017 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
24018 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
24019 // Find the new index to extract from.
24020 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
24021
24022 // Extracting an undef index is undef.
24023 if (OrigElt == -1)
24024 return DAG.getUNDEF(ScalarVT);
24025
24026 // Select the right vector half to extract from.
24027 SDValue SVInVec;
24028 if (OrigElt < (int)NumElts) {
24029 SVInVec = VecOp.getOperand(0);
24030 } else {
24031 SVInVec = VecOp.getOperand(1);
24032 OrigElt -= NumElts;
24033 }
24034
24035 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
24036 // TODO: Check if shuffle mask is legal?
24037 if (LegalOperations && TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VecVT) &&
24038 !VecOp.hasOneUse())
24039 return SDValue();
24040
24041 SDValue InOp = SVInVec.getOperand(OrigElt);
24042 if (InOp.getValueType() != ScalarVT) {
24043 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
24044 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
24045 }
24046
24047 return InOp;
24048 }
24049
24050 // FIXME: We should handle recursing on other vector shuffles and
24051 // scalar_to_vector here as well.
24052
24053 if (!LegalOperations ||
24054 // FIXME: Should really be just isOperationLegalOrCustom.
24057 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
24058 DAG.getVectorIdxConstant(OrigElt, DL));
24059 }
24060 }
24061
24062 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
24063 // simplify it based on the (valid) extraction indices.
24064 if (llvm::all_of(VecOp->users(), [&](SDNode *Use) {
24065 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
24066 Use->getOperand(0) == VecOp &&
24067 isa<ConstantSDNode>(Use->getOperand(1));
24068 })) {
24069 APInt DemandedElts = APInt::getZero(NumElts);
24070 for (SDNode *User : VecOp->users()) {
24071 auto *CstElt = cast<ConstantSDNode>(User->getOperand(1));
24072 if (CstElt->getAPIntValue().ult(NumElts))
24073 DemandedElts.setBit(CstElt->getZExtValue());
24074 }
24075 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
24076 // We simplified the vector operand of this extract element. If this
24077 // extract is not dead, visit it again so it is folded properly.
24078 if (N->getOpcode() != ISD::DELETED_NODE)
24079 AddToWorklist(N);
24080 return SDValue(N, 0);
24081 }
24082 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth);
24083 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
24084 // We simplified the vector operand of this extract element. If this
24085 // extract is not dead, visit it again so it is folded properly.
24086 if (N->getOpcode() != ISD::DELETED_NODE)
24087 AddToWorklist(N);
24088 return SDValue(N, 0);
24089 }
24090 }
24091
24092 if (refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(N))
24093 return SDValue(N, 0);
24094
24095 // Everything under here is trying to match an extract of a loaded value.
24096 // If the result of load has to be truncated, then it's not necessarily
24097 // profitable.
24098 bool BCNumEltsChanged = false;
24099 EVT ExtVT = VecVT.getVectorElementType();
24100 EVT LVT = ExtVT;
24101 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
24102 return SDValue();
24103
24104 if (VecOp.getOpcode() == ISD::BITCAST) {
24105 // Don't duplicate a load with other uses.
24106 if (!VecOp.hasOneUse())
24107 return SDValue();
24108
24109 EVT BCVT = VecOp.getOperand(0).getValueType();
24110 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
24111 return SDValue();
24112 if (NumElts != BCVT.getVectorNumElements())
24113 BCNumEltsChanged = true;
24114 VecOp = VecOp.getOperand(0);
24115 ExtVT = BCVT.getVectorElementType();
24116 }
24117
24118 // extract (vector load $addr), i --> load $addr + i * size
24119 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
24120 ISD::isNormalLoad(VecOp.getNode()) &&
24121 !Index->hasPredecessor(VecOp.getNode())) {
24122 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
24123 if (VecLoad && VecLoad->isSimple()) {
24124 if (SDValue Scalarized = TLI.scalarizeExtractedVectorLoad(
24125 ScalarVT, SDLoc(N), VecVT, Index, VecLoad, DAG)) {
24126 ++OpsNarrowed;
24127 return Scalarized;
24128 }
24129 }
24130 }
24131
24132 // Perform only after legalization to ensure build_vector / vector_shuffle
24133 // optimizations have already been done.
24134 if (!LegalOperations || !IndexC)
24135 return SDValue();
24136
24137 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
24138 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
24139 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
24140 int Elt = IndexC->getZExtValue();
24141 LoadSDNode *LN0 = nullptr;
24142 if (ISD::isNormalLoad(VecOp.getNode())) {
24143 LN0 = cast<LoadSDNode>(VecOp);
24144 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
24145 VecOp.getOperand(0).getValueType() == ExtVT &&
24146 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
24147 // Don't duplicate a load with other uses.
24148 if (!VecOp.hasOneUse())
24149 return SDValue();
24150
24151 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
24152 }
24153 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
24154 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
24155 // =>
24156 // (load $addr+1*size)
24157
24158 // Don't duplicate a load with other uses.
24159 if (!VecOp.hasOneUse())
24160 return SDValue();
24161
24162 // If the bit convert changed the number of elements, it is unsafe
24163 // to examine the mask.
24164 if (BCNumEltsChanged)
24165 return SDValue();
24166
24167 // Select the input vector, guarding against out of range extract vector.
24168 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
24169 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
24170
24171 if (VecOp.getOpcode() == ISD::BITCAST) {
24172 // Don't duplicate a load with other uses.
24173 if (!VecOp.hasOneUse())
24174 return SDValue();
24175
24176 VecOp = VecOp.getOperand(0);
24177 }
24178 if (ISD::isNormalLoad(VecOp.getNode())) {
24179 LN0 = cast<LoadSDNode>(VecOp);
24180 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
24181 Index = DAG.getConstant(Elt, DL, Index.getValueType());
24182 }
24183 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
24184 VecVT.getVectorElementType() == ScalarVT &&
24185 (!LegalTypes ||
24186 TLI.isTypeLegal(
24188 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
24189 // -> extract_vector_elt a, 0
24190 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
24191 // -> extract_vector_elt a, 1
24192 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
24193 // -> extract_vector_elt b, 0
24194 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
24195 // -> extract_vector_elt b, 1
24196 EVT ConcatVT = VecOp.getOperand(0).getValueType();
24197 unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
24198 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, DL,
24199 Index.getValueType());
24200
24201 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
24203 ConcatVT.getVectorElementType(),
24204 ConcatOp, NewIdx);
24205 return DAG.getNode(ISD::BITCAST, DL, ScalarVT, Elt);
24206 }
24207
24208 // Make sure we found a non-volatile load and the extractelement is
24209 // the only use.
24210 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
24211 return SDValue();
24212
24213 // If Idx was -1 above, Elt is going to be -1, so just return undef.
24214 if (Elt == -1)
24215 return DAG.getUNDEF(LVT);
24216
24217 if (SDValue Scalarized =
24218 TLI.scalarizeExtractedVectorLoad(LVT, DL, VecVT, Index, LN0, DAG)) {
24219 ++OpsNarrowed;
24220 return Scalarized;
24221 }
24222
24223 return SDValue();
24224}
24225
24226// Simplify (build_vec (ext )) to (bitcast (build_vec ))
24227SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
24228 // We perform this optimization post type-legalization because
24229 // the type-legalizer often scalarizes integer-promoted vectors.
24230 // Performing this optimization before may create bit-casts which
24231 // will be type-legalized to complex code sequences.
24232 // We perform this optimization only before the operation legalizer because we
24233 // may introduce illegal operations.
24234 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
24235 return SDValue();
24236
24237 unsigned NumInScalars = N->getNumOperands();
24238 SDLoc DL(N);
24239 EVT VT = N->getValueType(0);
24240
24241 // Check to see if this is a BUILD_VECTOR of a bunch of values
24242 // which come from any_extend or zero_extend nodes. If so, we can create
24243 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
24244 // optimizations. We do not handle sign-extend because we can't fill the sign
24245 // using shuffles.
24246 EVT SourceType = MVT::Other;
24247 bool AllAnyExt = true;
24248
24249 for (unsigned i = 0; i != NumInScalars; ++i) {
24250 SDValue In = N->getOperand(i);
24251 // Ignore undef inputs.
24252 if (In.isUndef()) continue;
24253
24254 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
24255 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
24256
24257 // Abort if the element is not an extension.
24258 if (!ZeroExt && !AnyExt) {
24259 SourceType = MVT::Other;
24260 break;
24261 }
24262
24263 // The input is a ZeroExt or AnyExt. Check the original type.
24264 EVT InTy = In.getOperand(0).getValueType();
24265
24266 // Check that all of the widened source types are the same.
24267 if (SourceType == MVT::Other)
24268 // First time.
24269 SourceType = InTy;
24270 else if (InTy != SourceType) {
24271 // Multiple income types. Abort.
24272 SourceType = MVT::Other;
24273 break;
24274 }
24275
24276 // Check if all of the extends are ANY_EXTENDs.
24277 AllAnyExt &= AnyExt;
24278 }
24279
24280 // In order to have valid types, all of the inputs must be extended from the
24281 // same source type and all of the inputs must be any or zero extend.
24282 // Scalar sizes must be a power of two.
24283 EVT OutScalarTy = VT.getScalarType();
24284 bool ValidTypes =
24285 SourceType != MVT::Other &&
24288
24289 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
24290 // turn into a single shuffle instruction.
24291 if (!ValidTypes)
24292 return SDValue();
24293
24294 // If we already have a splat buildvector, then don't fold it if it means
24295 // introducing zeros.
24296 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
24297 return SDValue();
24298
24299 bool isLE = DAG.getDataLayout().isLittleEndian();
24300 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
24301 assert(ElemRatio > 1 && "Invalid element size ratio");
24302 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
24303 DAG.getConstant(0, DL, SourceType);
24304
24305 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
24306 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
24307
24308 // Populate the new build_vector
24309 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
24310 SDValue Cast = N->getOperand(i);
24311 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
24312 Cast.getOpcode() == ISD::ZERO_EXTEND ||
24313 Cast.isUndef()) && "Invalid cast opcode");
24314 SDValue In;
24315 if (Cast.isUndef())
24316 In = DAG.getUNDEF(SourceType);
24317 else
24318 In = Cast->getOperand(0);
24319 unsigned Index = isLE ? (i * ElemRatio) :
24320 (i * ElemRatio + (ElemRatio - 1));
24321
24322 assert(Index < Ops.size() && "Invalid index");
24323 Ops[Index] = In;
24324 }
24325
24326 // The type of the new BUILD_VECTOR node.
24327 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
24328 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
24329 "Invalid vector size");
24330 // Check if the new vector type is legal.
24331 if (!isTypeLegal(VecVT) ||
24332 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
24334 return SDValue();
24335
24336 // Make the new BUILD_VECTOR.
24337 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
24338
24339 // The new BUILD_VECTOR node has the potential to be further optimized.
24340 AddToWorklist(BV.getNode());
24341 // Bitcast to the desired type.
24342 return DAG.getBitcast(VT, BV);
24343}
24344
24345// Simplify (build_vec (trunc $1)
24346// (trunc (srl $1 half-width))
24347// (trunc (srl $1 (2 * half-width))))
24348// to (bitcast $1)
24349SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
24350 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
24351
24352 EVT VT = N->getValueType(0);
24353
24354 // Don't run this before LegalizeTypes if VT is legal.
24355 // Targets may have other preferences.
24356 if (Level < AfterLegalizeTypes && TLI.isTypeLegal(VT))
24357 return SDValue();
24358
24359 // Only for little endian
24360 if (!DAG.getDataLayout().isLittleEndian())
24361 return SDValue();
24362
24363 EVT OutScalarTy = VT.getScalarType();
24364 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
24365
24366 // Only for power of two types to be sure that bitcast works well
24367 if (!isPowerOf2_64(ScalarTypeBitsize))
24368 return SDValue();
24369
24370 unsigned NumInScalars = N->getNumOperands();
24371
24372 // Look through bitcasts
24373 auto PeekThroughBitcast = [](SDValue Op) {
24374 if (Op.getOpcode() == ISD::BITCAST)
24375 return Op.getOperand(0);
24376 return Op;
24377 };
24378
24379 // The source value where all the parts are extracted.
24380 SDValue Src;
24381 for (unsigned i = 0; i != NumInScalars; ++i) {
24382 SDValue In = PeekThroughBitcast(N->getOperand(i));
24383 // Ignore undef inputs.
24384 if (In.isUndef()) continue;
24385
24386 if (In.getOpcode() != ISD::TRUNCATE)
24387 return SDValue();
24388
24389 In = PeekThroughBitcast(In.getOperand(0));
24390
24391 if (In.getOpcode() != ISD::SRL) {
24392 // For now only build_vec without shuffling, handle shifts here in the
24393 // future.
24394 if (i != 0)
24395 return SDValue();
24396
24397 Src = In;
24398 } else {
24399 // In is SRL
24400 SDValue part = PeekThroughBitcast(In.getOperand(0));
24401
24402 if (!Src) {
24403 Src = part;
24404 } else if (Src != part) {
24405 // Vector parts do not stem from the same variable
24406 return SDValue();
24407 }
24408
24409 SDValue ShiftAmtVal = In.getOperand(1);
24410 if (!isa<ConstantSDNode>(ShiftAmtVal))
24411 return SDValue();
24412
24413 uint64_t ShiftAmt = In.getConstantOperandVal(1);
24414
24415 // The extracted value is not extracted at the right position
24416 if (ShiftAmt != i * ScalarTypeBitsize)
24417 return SDValue();
24418 }
24419 }
24420
24421 // Only cast if the size is the same
24422 if (!Src || Src.getValueType().getSizeInBits() != VT.getSizeInBits())
24423 return SDValue();
24424
24425 return DAG.getBitcast(VT, Src);
24426}
24427
24428SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
24429 ArrayRef<int> VectorMask,
24430 SDValue VecIn1, SDValue VecIn2,
24431 unsigned LeftIdx, bool DidSplitVec) {
24432 EVT VT = N->getValueType(0);
24433 EVT InVT1 = VecIn1.getValueType();
24434 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
24435
24436 unsigned NumElems = VT.getVectorNumElements();
24437 unsigned ShuffleNumElems = NumElems;
24438
24439 // If we artificially split a vector in two already, then the offsets in the
24440 // operands will all be based off of VecIn1, even those in VecIn2.
24441 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
24442
24443 uint64_t VTSize = VT.getFixedSizeInBits();
24444 uint64_t InVT1Size = InVT1.getFixedSizeInBits();
24445 uint64_t InVT2Size = InVT2.getFixedSizeInBits();
24446
24447 assert(InVT2Size <= InVT1Size &&
24448 "Inputs must be sorted to be in non-increasing vector size order.");
24449
24450 // We can't generate a shuffle node with mismatched input and output types.
24451 // Try to make the types match the type of the output.
24452 if (InVT1 != VT || InVT2 != VT) {
24453 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
24454 // If the output vector length is a multiple of both input lengths,
24455 // we can concatenate them and pad the rest with undefs.
24456 unsigned NumConcats = VTSize / InVT1Size;
24457 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
24458 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
24459 ConcatOps[0] = VecIn1;
24460 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
24461 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
24462 VecIn2 = SDValue();
24463 } else if (InVT1Size == VTSize * 2) {
24464 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
24465 return SDValue();
24466
24467 if (!VecIn2.getNode()) {
24468 // If we only have one input vector, and it's twice the size of the
24469 // output, split it in two.
24470 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
24471 DAG.getVectorIdxConstant(NumElems, DL));
24472 VecIn1 = DAG.getExtractSubvector(DL, VT, VecIn1, 0);
24473 // Since we now have shorter input vectors, adjust the offset of the
24474 // second vector's start.
24475 Vec2Offset = NumElems;
24476 } else {
24477 assert(InVT2Size <= InVT1Size &&
24478 "Second input is not going to be larger than the first one.");
24479
24480 // VecIn1 is wider than the output, and we have another, possibly
24481 // smaller input. Pad the smaller input with undefs, shuffle at the
24482 // input vector width, and extract the output.
24483 // The shuffle type is different than VT, so check legality again.
24484 if (LegalOperations &&
24486 return SDValue();
24487
24488 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
24489 // lower it back into a BUILD_VECTOR. So if the inserted type is
24490 // illegal, don't even try.
24491 if (InVT1 != InVT2) {
24492 if (!TLI.isTypeLegal(InVT2))
24493 return SDValue();
24494 VecIn2 = DAG.getInsertSubvector(DL, DAG.getUNDEF(InVT1), VecIn2, 0);
24495 }
24496 ShuffleNumElems = NumElems * 2;
24497 }
24498 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
24499 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
24500 ConcatOps[0] = VecIn2;
24501 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
24502 } else if (InVT1Size / VTSize > 1 && InVT1Size % VTSize == 0) {
24503 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems) ||
24504 !TLI.isTypeLegal(InVT1) || !TLI.isTypeLegal(InVT2))
24505 return SDValue();
24506 // If dest vector has less than two elements, then use shuffle and extract
24507 // from larger regs will cost even more.
24508 if (VT.getVectorNumElements() <= 2 || !VecIn2.getNode())
24509 return SDValue();
24510 assert(InVT2Size <= InVT1Size &&
24511 "Second input is not going to be larger than the first one.");
24512
24513 // VecIn1 is wider than the output, and we have another, possibly
24514 // smaller input. Pad the smaller input with undefs, shuffle at the
24515 // input vector width, and extract the output.
24516 // The shuffle type is different than VT, so check legality again.
24517 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
24518 return SDValue();
24519
24520 if (InVT1 != InVT2) {
24521 VecIn2 = DAG.getInsertSubvector(DL, DAG.getUNDEF(InVT1), VecIn2, 0);
24522 }
24523 ShuffleNumElems = InVT1Size / VTSize * NumElems;
24524 } else {
24525 // TODO: Support cases where the length mismatch isn't exactly by a
24526 // factor of 2.
24527 // TODO: Move this check upwards, so that if we have bad type
24528 // mismatches, we don't create any DAG nodes.
24529 return SDValue();
24530 }
24531 }
24532
24533 // Initialize mask to undef.
24534 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
24535
24536 // Only need to run up to the number of elements actually used, not the
24537 // total number of elements in the shuffle - if we are shuffling a wider
24538 // vector, the high lanes should be set to undef.
24539 for (unsigned i = 0; i != NumElems; ++i) {
24540 if (VectorMask[i] <= 0)
24541 continue;
24542
24543 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
24544 if (VectorMask[i] == (int)LeftIdx) {
24545 Mask[i] = ExtIndex;
24546 } else if (VectorMask[i] == (int)LeftIdx + 1) {
24547 Mask[i] = Vec2Offset + ExtIndex;
24548 }
24549 }
24550
24551 // The type the input vectors may have changed above.
24552 InVT1 = VecIn1.getValueType();
24553
24554 // If we already have a VecIn2, it should have the same type as VecIn1.
24555 // If we don't, get an undef/zero vector of the appropriate type.
24556 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
24557 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
24558
24559 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
24560 if (ShuffleNumElems > NumElems)
24561 Shuffle = DAG.getExtractSubvector(DL, VT, Shuffle, 0);
24562
24563 return Shuffle;
24564}
24565
24567 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
24568
24569 // First, determine where the build vector is not undef.
24570 // TODO: We could extend this to handle zero elements as well as undefs.
24571 int NumBVOps = BV->getNumOperands();
24572 int ZextElt = -1;
24573 for (int i = 0; i != NumBVOps; ++i) {
24574 SDValue Op = BV->getOperand(i);
24575 if (Op.isUndef())
24576 continue;
24577 if (ZextElt == -1)
24578 ZextElt = i;
24579 else
24580 return SDValue();
24581 }
24582 // Bail out if there's no non-undef element.
24583 if (ZextElt == -1)
24584 return SDValue();
24585
24586 // The build vector contains some number of undef elements and exactly
24587 // one other element. That other element must be a zero-extended scalar
24588 // extracted from a vector at a constant index to turn this into a shuffle.
24589 // Also, require that the build vector does not implicitly truncate/extend
24590 // its elements.
24591 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
24592 EVT VT = BV->getValueType(0);
24593 SDValue Zext = BV->getOperand(ZextElt);
24594 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
24598 return SDValue();
24599
24600 // The zero-extend must be a multiple of the source size, and we must be
24601 // building a vector of the same size as the source of the extract element.
24602 SDValue Extract = Zext.getOperand(0);
24603 unsigned DestSize = Zext.getValueSizeInBits();
24604 unsigned SrcSize = Extract.getValueSizeInBits();
24605 if (DestSize % SrcSize != 0 ||
24606 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
24607 return SDValue();
24608
24609 // Create a shuffle mask that will combine the extracted element with zeros
24610 // and undefs.
24611 int ZextRatio = DestSize / SrcSize;
24612 int NumMaskElts = NumBVOps * ZextRatio;
24613 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
24614 for (int i = 0; i != NumMaskElts; ++i) {
24615 if (i / ZextRatio == ZextElt) {
24616 // The low bits of the (potentially translated) extracted element map to
24617 // the source vector. The high bits map to zero. We will use a zero vector
24618 // as the 2nd source operand of the shuffle, so use the 1st element of
24619 // that vector (mask value is number-of-elements) for the high bits.
24620 int Low = DAG.getDataLayout().isBigEndian() ? (ZextRatio - 1) : 0;
24621 ShufMask[i] = (i % ZextRatio == Low) ? Extract.getConstantOperandVal(1)
24622 : NumMaskElts;
24623 }
24624
24625 // Undef elements of the build vector remain undef because we initialize
24626 // the shuffle mask with -1.
24627 }
24628
24629 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
24630 // bitcast (shuffle V, ZeroVec, VectorMask)
24631 SDLoc DL(BV);
24632 EVT VecVT = Extract.getOperand(0).getValueType();
24633 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
24634 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24635 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
24636 ZeroVec, ShufMask, DAG);
24637 if (!Shuf)
24638 return SDValue();
24639 return DAG.getBitcast(VT, Shuf);
24640}
24641
24642// FIXME: promote to STLExtras.
24643template <typename R, typename T>
24644static auto getFirstIndexOf(R &&Range, const T &Val) {
24645 auto I = find(Range, Val);
24646 if (I == Range.end())
24647 return static_cast<decltype(std::distance(Range.begin(), I))>(-1);
24648 return std::distance(Range.begin(), I);
24649}
24650
24651// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
24652// operations. If the types of the vectors we're extracting from allow it,
24653// turn this into a vector_shuffle node.
24654SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
24655 SDLoc DL(N);
24656 EVT VT = N->getValueType(0);
24657
24658 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
24659 if (!isTypeLegal(VT))
24660 return SDValue();
24661
24663 return V;
24664
24665 // May only combine to shuffle after legalize if shuffle is legal.
24666 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
24667 return SDValue();
24668
24669 bool UsesZeroVector = false;
24670 unsigned NumElems = N->getNumOperands();
24671
24672 // Record, for each element of the newly built vector, which input vector
24673 // that element comes from. -1 stands for undef, 0 for the zero vector,
24674 // and positive values for the input vectors.
24675 // VectorMask maps each element to its vector number, and VecIn maps vector
24676 // numbers to their initial SDValues.
24677
24678 SmallVector<int, 8> VectorMask(NumElems, -1);
24680 VecIn.push_back(SDValue());
24681
24682 // If we have a single extract_element with a constant index, track the index
24683 // value.
24684 unsigned OneConstExtractIndex = ~0u;
24685
24686 // Count the number of extract_vector_elt sources (i.e. non-constant or undef)
24687 unsigned NumExtracts = 0;
24688
24689 for (unsigned i = 0; i != NumElems; ++i) {
24690 SDValue Op = N->getOperand(i);
24691
24692 if (Op.isUndef())
24693 continue;
24694
24695 // See if we can use a blend with a zero vector.
24696 // TODO: Should we generalize this to a blend with an arbitrary constant
24697 // vector?
24699 UsesZeroVector = true;
24700 VectorMask[i] = 0;
24701 continue;
24702 }
24703
24704 // Not an undef or zero. If the input is something other than an
24705 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
24706 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
24707 return SDValue();
24708
24709 SDValue ExtractedFromVec = Op.getOperand(0);
24710 if (ExtractedFromVec.getValueType().isScalableVector())
24711 return SDValue();
24712 auto *ExtractIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
24713 if (!ExtractIdx)
24714 return SDValue();
24715
24716 if (ExtractIdx->getAsAPIntVal().uge(
24717 ExtractedFromVec.getValueType().getVectorNumElements()))
24718 return SDValue();
24719
24720 // All inputs must have the same element type as the output.
24721 if (VT.getVectorElementType() !=
24722 ExtractedFromVec.getValueType().getVectorElementType())
24723 return SDValue();
24724
24725 OneConstExtractIndex = ExtractIdx->getZExtValue();
24726 ++NumExtracts;
24727
24728 // Have we seen this input vector before?
24729 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
24730 // a map back from SDValues to numbers isn't worth it.
24731 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec);
24732 if (Idx == -1) { // A new source vector?
24733 Idx = VecIn.size();
24734 VecIn.push_back(ExtractedFromVec);
24735 }
24736
24737 VectorMask[i] = Idx;
24738 }
24739
24740 // If we didn't find at least one input vector, bail out.
24741 if (VecIn.size() < 2)
24742 return SDValue();
24743
24744 // If all the Operands of BUILD_VECTOR extract from same
24745 // vector, then split the vector efficiently based on the maximum
24746 // vector access index and adjust the VectorMask and
24747 // VecIn accordingly.
24748 bool DidSplitVec = false;
24749 if (VecIn.size() == 2) {
24750 // If we only found a single constant indexed extract_vector_elt feeding the
24751 // build_vector, do not produce a more complicated shuffle if the extract is
24752 // cheap with other constant/undef elements. Skip broadcast patterns with
24753 // multiple uses in the build_vector.
24754
24755 // TODO: This should be more aggressive about skipping the shuffle
24756 // formation, particularly if VecIn[1].hasOneUse(), and regardless of the
24757 // index.
24758 if (NumExtracts == 1 &&
24761 TLI.isExtractVecEltCheap(VT, OneConstExtractIndex))
24762 return SDValue();
24763
24764 unsigned MaxIndex = 0;
24765 unsigned NearestPow2 = 0;
24766 SDValue Vec = VecIn.back();
24767 EVT InVT = Vec.getValueType();
24768 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
24769
24770 for (unsigned i = 0; i < NumElems; i++) {
24771 if (VectorMask[i] <= 0)
24772 continue;
24773 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
24774 IndexVec[i] = Index;
24775 MaxIndex = std::max(MaxIndex, Index);
24776 }
24777
24778 NearestPow2 = PowerOf2Ceil(MaxIndex);
24779 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
24780 NumElems * 2 < NearestPow2) {
24781 unsigned SplitSize = NearestPow2 / 2;
24782 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
24783 InVT.getVectorElementType(), SplitSize);
24784 if (TLI.isTypeLegal(SplitVT) &&
24785 SplitSize + SplitVT.getVectorNumElements() <=
24786 InVT.getVectorNumElements()) {
24787 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
24788 DAG.getVectorIdxConstant(SplitSize, DL));
24789 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
24790 DAG.getVectorIdxConstant(0, DL));
24791 VecIn.pop_back();
24792 VecIn.push_back(VecIn1);
24793 VecIn.push_back(VecIn2);
24794 DidSplitVec = true;
24795
24796 for (unsigned i = 0; i < NumElems; i++) {
24797 if (VectorMask[i] <= 0)
24798 continue;
24799 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
24800 }
24801 }
24802 }
24803 }
24804
24805 // Sort input vectors by decreasing vector element count,
24806 // while preserving the relative order of equally-sized vectors.
24807 // Note that we keep the first "implicit zero vector as-is.
24808 SmallVector<SDValue, 8> SortedVecIn(VecIn);
24809 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(),
24810 [](const SDValue &a, const SDValue &b) {
24811 return a.getValueType().getVectorNumElements() >
24812 b.getValueType().getVectorNumElements();
24813 });
24814
24815 // We now also need to rebuild the VectorMask, because it referenced element
24816 // order in VecIn, and we just sorted them.
24817 for (int &SourceVectorIndex : VectorMask) {
24818 if (SourceVectorIndex <= 0)
24819 continue;
24820 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]);
24821 assert(Idx > 0 && Idx < SortedVecIn.size() &&
24822 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure");
24823 SourceVectorIndex = Idx;
24824 }
24825
24826 VecIn = std::move(SortedVecIn);
24827
24828 // TODO: Should this fire if some of the input vectors has illegal type (like
24829 // it does now), or should we let legalization run its course first?
24830
24831 // Shuffle phase:
24832 // Take pairs of vectors, and shuffle them so that the result has elements
24833 // from these vectors in the correct places.
24834 // For example, given:
24835 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
24836 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
24837 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
24838 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
24839 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
24840 // We will generate:
24841 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
24842 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
24843 SmallVector<SDValue, 4> Shuffles;
24844 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
24845 unsigned LeftIdx = 2 * In + 1;
24846 SDValue VecLeft = VecIn[LeftIdx];
24847 SDValue VecRight =
24848 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
24849
24850 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
24851 VecRight, LeftIdx, DidSplitVec))
24852 Shuffles.push_back(Shuffle);
24853 else
24854 return SDValue();
24855 }
24856
24857 // If we need the zero vector as an "ingredient" in the blend tree, add it
24858 // to the list of shuffles.
24859 if (UsesZeroVector)
24860 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
24861 : DAG.getConstantFP(0.0, DL, VT));
24862
24863 // If we only have one shuffle, we're done.
24864 if (Shuffles.size() == 1)
24865 return Shuffles[0];
24866
24867 // Update the vector mask to point to the post-shuffle vectors.
24868 for (int &Vec : VectorMask)
24869 if (Vec == 0)
24870 Vec = Shuffles.size() - 1;
24871 else
24872 Vec = (Vec - 1) / 2;
24873
24874 // More than one shuffle. Generate a binary tree of blends, e.g. if from
24875 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
24876 // generate:
24877 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
24878 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
24879 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
24880 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
24881 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
24882 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
24883 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
24884
24885 // Make sure the initial size of the shuffle list is even.
24886 if (Shuffles.size() % 2)
24887 Shuffles.push_back(DAG.getUNDEF(VT));
24888
24889 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
24890 if (CurSize % 2) {
24891 Shuffles[CurSize] = DAG.getUNDEF(VT);
24892 CurSize++;
24893 }
24894 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
24895 int Left = 2 * In;
24896 int Right = 2 * In + 1;
24897 SmallVector<int, 8> Mask(NumElems, -1);
24898 SDValue L = Shuffles[Left];
24899 ArrayRef<int> LMask;
24900 bool IsLeftShuffle = L.getOpcode() == ISD::VECTOR_SHUFFLE &&
24901 L.use_empty() && L.getOperand(1).isUndef() &&
24902 L.getOperand(0).getValueType() == L.getValueType();
24903 if (IsLeftShuffle) {
24904 LMask = cast<ShuffleVectorSDNode>(L.getNode())->getMask();
24905 L = L.getOperand(0);
24906 }
24907 SDValue R = Shuffles[Right];
24908 ArrayRef<int> RMask;
24909 bool IsRightShuffle = R.getOpcode() == ISD::VECTOR_SHUFFLE &&
24910 R.use_empty() && R.getOperand(1).isUndef() &&
24911 R.getOperand(0).getValueType() == R.getValueType();
24912 if (IsRightShuffle) {
24913 RMask = cast<ShuffleVectorSDNode>(R.getNode())->getMask();
24914 R = R.getOperand(0);
24915 }
24916 for (unsigned I = 0; I != NumElems; ++I) {
24917 if (VectorMask[I] == Left) {
24918 Mask[I] = I;
24919 if (IsLeftShuffle)
24920 Mask[I] = LMask[I];
24921 VectorMask[I] = In;
24922 } else if (VectorMask[I] == Right) {
24923 Mask[I] = I + NumElems;
24924 if (IsRightShuffle)
24925 Mask[I] = RMask[I] + NumElems;
24926 VectorMask[I] = In;
24927 }
24928 }
24929
24930 Shuffles[In] = DAG.getVectorShuffle(VT, DL, L, R, Mask);
24931 }
24932 }
24933 return Shuffles[0];
24934}
24935
24936// Try to turn a build vector of zero extends of extract vector elts into a
24937// a vector zero extend and possibly an extract subvector.
24938// TODO: Support sign extend?
24939// TODO: Allow undef elements?
24940SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
24941 if (LegalOperations)
24942 return SDValue();
24943
24944 EVT VT = N->getValueType(0);
24945
24946 bool FoundZeroExtend = false;
24947 SDValue Op0 = N->getOperand(0);
24948 auto checkElem = [&](SDValue Op) -> int64_t {
24949 unsigned Opc = Op.getOpcode();
24950 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
24951 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
24952 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
24953 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
24954 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
24955 return C->getZExtValue();
24956 return -1;
24957 };
24958
24959 // Make sure the first element matches
24960 // (zext (extract_vector_elt X, C))
24961 // Offset must be a constant multiple of the
24962 // known-minimum vector length of the result type.
24963 int64_t Offset = checkElem(Op0);
24964 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0)
24965 return SDValue();
24966
24967 unsigned NumElems = N->getNumOperands();
24968 SDValue In = Op0.getOperand(0).getOperand(0);
24969 EVT InSVT = In.getValueType().getScalarType();
24970 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
24971
24972 // Don't create an illegal input type after type legalization.
24973 if (LegalTypes && !TLI.isTypeLegal(InVT))
24974 return SDValue();
24975
24976 // Ensure all the elements come from the same vector and are adjacent.
24977 for (unsigned i = 1; i != NumElems; ++i) {
24978 if ((Offset + i) != checkElem(N->getOperand(i)))
24979 return SDValue();
24980 }
24981
24982 SDLoc DL(N);
24983 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
24984 Op0.getOperand(0).getOperand(1));
24985 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
24986 VT, In);
24987}
24988
24989// If this is a very simple BUILD_VECTOR with first element being a ZERO_EXTEND,
24990// and all other elements being constant zero's, granularize the BUILD_VECTOR's
24991// element width, absorbing the ZERO_EXTEND, turning it into a constant zero op.
24992// This patten can appear during legalization.
24993//
24994// NOTE: This can be generalized to allow more than a single
24995// non-constant-zero op, UNDEF's, and to be KnownBits-based,
24996SDValue DAGCombiner::convertBuildVecZextToBuildVecWithZeros(SDNode *N) {
24997 // Don't run this after legalization. Targets may have other preferences.
24998 if (Level >= AfterLegalizeDAG)
24999 return SDValue();
25000
25001 // FIXME: support big-endian.
25002 if (DAG.getDataLayout().isBigEndian())
25003 return SDValue();
25004
25005 EVT VT = N->getValueType(0);
25006 EVT OpVT = N->getOperand(0).getValueType();
25007 assert(!VT.isScalableVector() && "Encountered scalable BUILD_VECTOR?");
25008
25009 EVT OpIntVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
25010
25011 if (!TLI.isTypeLegal(OpIntVT) ||
25012 (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::BITCAST, OpIntVT)))
25013 return SDValue();
25014
25015 unsigned EltBitwidth = VT.getScalarSizeInBits();
25016 // NOTE: the actual width of operands may be wider than that!
25017
25018 // Analyze all operands of this BUILD_VECTOR. What is the largest number of
25019 // active bits they all have? We'll want to truncate them all to that width.
25020 unsigned ActiveBits = 0;
25021 APInt KnownZeroOps(VT.getVectorNumElements(), 0);
25022 for (auto I : enumerate(N->ops())) {
25023 SDValue Op = I.value();
25024 // FIXME: support UNDEF elements?
25025 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
25026 unsigned OpActiveBits =
25027 Cst->getAPIntValue().trunc(EltBitwidth).getActiveBits();
25028 if (OpActiveBits == 0) {
25029 KnownZeroOps.setBit(I.index());
25030 continue;
25031 }
25032 // Profitability check: don't allow non-zero constant operands.
25033 return SDValue();
25034 }
25035 // Profitability check: there must only be a single non-zero operand,
25036 // and it must be the first operand of the BUILD_VECTOR.
25037 if (I.index() != 0)
25038 return SDValue();
25039 // The operand must be a zero-extension itself.
25040 // FIXME: this could be generalized to known leading zeros check.
25041 if (Op.getOpcode() != ISD::ZERO_EXTEND)
25042 return SDValue();
25043 unsigned CurrActiveBits =
25044 Op.getOperand(0).getValueSizeInBits().getFixedValue();
25045 assert(!ActiveBits && "Already encountered non-constant-zero operand?");
25046 ActiveBits = CurrActiveBits;
25047 // We want to at least halve the element size.
25048 if (2 * ActiveBits > EltBitwidth)
25049 return SDValue();
25050 }
25051
25052 // This BUILD_VECTOR must have at least one non-constant-zero operand.
25053 if (ActiveBits == 0)
25054 return SDValue();
25055
25056 // We have EltBitwidth bits, the *minimal* chunk size is ActiveBits,
25057 // into how many chunks can we split our element width?
25058 EVT NewScalarIntVT, NewIntVT;
25059 std::optional<unsigned> Factor;
25060 // We can split the element into at least two chunks, but not into more
25061 // than |_ EltBitwidth / ActiveBits _| chunks. Find a largest split factor
25062 // for which the element width is a multiple of it,
25063 // and the resulting types/operations on that chunk width are legal.
25064 assert(2 * ActiveBits <= EltBitwidth &&
25065 "We know that half or less bits of the element are active.");
25066 for (unsigned Scale = EltBitwidth / ActiveBits; Scale >= 2; --Scale) {
25067 if (EltBitwidth % Scale != 0)
25068 continue;
25069 unsigned ChunkBitwidth = EltBitwidth / Scale;
25070 assert(ChunkBitwidth >= ActiveBits && "As per starting point.");
25071 NewScalarIntVT = EVT::getIntegerVT(*DAG.getContext(), ChunkBitwidth);
25072 NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewScalarIntVT,
25073 Scale * N->getNumOperands());
25074 if (!TLI.isTypeLegal(NewScalarIntVT) || !TLI.isTypeLegal(NewIntVT) ||
25075 (LegalOperations &&
25076 !(TLI.isOperationLegalOrCustom(ISD::TRUNCATE, NewScalarIntVT) &&
25078 continue;
25079 Factor = Scale;
25080 break;
25081 }
25082 if (!Factor)
25083 return SDValue();
25084
25085 SDLoc DL(N);
25086 SDValue ZeroOp = DAG.getConstant(0, DL, NewScalarIntVT);
25087
25088 // Recreate the BUILD_VECTOR, with elements now being Factor times smaller.
25090 NewOps.reserve(NewIntVT.getVectorNumElements());
25091 for (auto I : enumerate(N->ops())) {
25092 SDValue Op = I.value();
25093 assert(!Op.isUndef() && "FIXME: after allowing UNDEF's, handle them here.");
25094 unsigned SrcOpIdx = I.index();
25095 if (KnownZeroOps[SrcOpIdx]) {
25096 NewOps.append(*Factor, ZeroOp);
25097 continue;
25098 }
25099 Op = DAG.getBitcast(OpIntVT, Op);
25100 Op = DAG.getNode(ISD::TRUNCATE, DL, NewScalarIntVT, Op);
25101 NewOps.emplace_back(Op);
25102 NewOps.append(*Factor - 1, ZeroOp);
25103 }
25104 assert(NewOps.size() == NewIntVT.getVectorNumElements());
25105 SDValue NewBV = DAG.getBuildVector(NewIntVT, DL, NewOps);
25106 NewBV = DAG.getBitcast(VT, NewBV);
25107 return NewBV;
25108}
25109
25110SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
25111 EVT VT = N->getValueType(0);
25112
25113 // A vector built entirely of undefs is undef.
25115 return DAG.getUNDEF(VT);
25116
25117 // If this is a splat of a bitcast from another vector, change to a
25118 // concat_vector.
25119 // For example:
25120 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
25121 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
25122 //
25123 // If X is a build_vector itself, the concat can become a larger build_vector.
25124 // TODO: Maybe this is useful for non-splat too?
25125 if (!LegalOperations) {
25126 SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue();
25127 // Only change build_vector to a concat_vector if the splat value type is
25128 // same as the vector element type.
25129 if (Splat && Splat.getValueType() == VT.getVectorElementType()) {
25131 EVT SrcVT = Splat.getValueType();
25132 if (SrcVT.isVector()) {
25133 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
25134 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
25135 SrcVT.getVectorElementType(), NumElts);
25136 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
25137 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
25138 SDValue Concat =
25139 DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), NewVT, Ops);
25140 return DAG.getBitcast(VT, Concat);
25141 }
25142 }
25143 }
25144 }
25145
25146 // Check if we can express BUILD VECTOR via subvector extract.
25147 if (!LegalTypes && (N->getNumOperands() > 1)) {
25148 SDValue Op0 = N->getOperand(0);
25149 auto checkElem = [&](SDValue Op) -> uint64_t {
25150 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
25151 (Op0.getOperand(0) == Op.getOperand(0)))
25152 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
25153 return CNode->getZExtValue();
25154 return -1;
25155 };
25156
25157 int Offset = checkElem(Op0);
25158 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
25159 if (Offset + i != checkElem(N->getOperand(i))) {
25160 Offset = -1;
25161 break;
25162 }
25163 }
25164
25165 if ((Offset == 0) &&
25166 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
25167 return Op0.getOperand(0);
25168 if ((Offset != -1) &&
25169 ((Offset % N->getValueType(0).getVectorNumElements()) ==
25170 0)) // IDX must be multiple of output size.
25171 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
25172 Op0.getOperand(0), Op0.getOperand(1));
25173 }
25174
25175 if (SDValue V = convertBuildVecZextToZext(N))
25176 return V;
25177
25178 if (SDValue V = convertBuildVecZextToBuildVecWithZeros(N))
25179 return V;
25180
25181 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
25182 return V;
25183
25184 if (SDValue V = reduceBuildVecTruncToBitCast(N))
25185 return V;
25186
25187 if (SDValue V = reduceBuildVecToShuffle(N))
25188 return V;
25189
25190 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
25191 // Do this late as some of the above may replace the splat.
25194 assert(!V.isUndef() && "Splat of undef should have been handled earlier");
25195 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
25196 }
25197
25198 return SDValue();
25199}
25200
25202 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25203 EVT OpVT = N->getOperand(0).getValueType();
25204
25205 // If the operands are legal vectors, leave them alone.
25206 if (TLI.isTypeLegal(OpVT) || OpVT.isScalableVector())
25207 return SDValue();
25208
25209 SDLoc DL(N);
25210 EVT VT = N->getValueType(0);
25212 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
25213
25214 // Keep track of what we encounter.
25215 EVT AnyFPVT;
25216
25217 for (const SDValue &Op : N->ops()) {
25218 if (ISD::BITCAST == Op.getOpcode() &&
25219 !Op.getOperand(0).getValueType().isVector())
25220 Ops.push_back(Op.getOperand(0));
25221 else if (Op.isUndef())
25222 Ops.push_back(DAG.getNode(ISD::UNDEF, DL, SVT));
25223 else
25224 return SDValue();
25225
25226 // Note whether we encounter an integer or floating point scalar.
25227 // If it's neither, bail out, it could be something weird like x86mmx.
25228 EVT LastOpVT = Ops.back().getValueType();
25229 if (LastOpVT.isFloatingPoint())
25230 AnyFPVT = LastOpVT;
25231 else if (!LastOpVT.isInteger())
25232 return SDValue();
25233 }
25234
25235 // If any of the operands is a floating point scalar bitcast to a vector,
25236 // use floating point types throughout, and bitcast everything.
25237 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
25238 if (AnyFPVT != EVT()) {
25239 SVT = AnyFPVT;
25240 for (SDValue &Op : Ops) {
25241 if (Op.getValueType() == SVT)
25242 continue;
25243 if (Op.isUndef())
25244 Op = DAG.getNode(ISD::UNDEF, DL, SVT);
25245 else
25246 Op = DAG.getBitcast(SVT, Op);
25247 }
25248 }
25249
25250 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
25251 VT.getSizeInBits() / SVT.getSizeInBits());
25252 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
25253}
25254
25255// Attempt to merge nested concat_vectors/undefs.
25256// Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
25257// --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
25259 SelectionDAG &DAG) {
25260 EVT VT = N->getValueType(0);
25261
25262 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
25263 EVT SubVT;
25264 SDValue FirstConcat;
25265 for (const SDValue &Op : N->ops()) {
25266 if (Op.isUndef())
25267 continue;
25268 if (Op.getOpcode() != ISD::CONCAT_VECTORS)
25269 return SDValue();
25270 if (!FirstConcat) {
25271 SubVT = Op.getOperand(0).getValueType();
25272 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
25273 return SDValue();
25274 FirstConcat = Op;
25275 continue;
25276 }
25277 if (SubVT != Op.getOperand(0).getValueType())
25278 return SDValue();
25279 }
25280 assert(FirstConcat && "Concat of all-undefs found");
25281
25282 SmallVector<SDValue> ConcatOps;
25283 for (const SDValue &Op : N->ops()) {
25284 if (Op.isUndef()) {
25285 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT));
25286 continue;
25287 }
25288 ConcatOps.append(Op->op_begin(), Op->op_end());
25289 }
25290 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps);
25291}
25292
25293// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
25294// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
25295// most two distinct vectors the same size as the result, attempt to turn this
25296// into a legal shuffle.
25298 EVT VT = N->getValueType(0);
25299 EVT OpVT = N->getOperand(0).getValueType();
25300
25301 // We currently can't generate an appropriate shuffle for a scalable vector.
25302 if (VT.isScalableVector())
25303 return SDValue();
25304
25305 int NumElts = VT.getVectorNumElements();
25306 int NumOpElts = OpVT.getVectorNumElements();
25307
25308 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
25310
25311 for (SDValue Op : N->ops()) {
25313
25314 // UNDEF nodes convert to UNDEF shuffle mask values.
25315 if (Op.isUndef()) {
25316 Mask.append((unsigned)NumOpElts, -1);
25317 continue;
25318 }
25319
25320 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
25321 return SDValue();
25322
25323 // What vector are we extracting the subvector from and at what index?
25324 SDValue ExtVec = Op.getOperand(0);
25325 int ExtIdx = Op.getConstantOperandVal(1);
25326
25327 // We want the EVT of the original extraction to correctly scale the
25328 // extraction index.
25329 EVT ExtVT = ExtVec.getValueType();
25330 ExtVec = peekThroughBitcasts(ExtVec);
25331
25332 // UNDEF nodes convert to UNDEF shuffle mask values.
25333 if (ExtVec.isUndef()) {
25334 Mask.append((unsigned)NumOpElts, -1);
25335 continue;
25336 }
25337
25338 // Ensure that we are extracting a subvector from a vector the same
25339 // size as the result.
25340 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
25341 return SDValue();
25342
25343 // Scale the subvector index to account for any bitcast.
25344 int NumExtElts = ExtVT.getVectorNumElements();
25345 if (0 == (NumExtElts % NumElts))
25346 ExtIdx /= (NumExtElts / NumElts);
25347 else if (0 == (NumElts % NumExtElts))
25348 ExtIdx *= (NumElts / NumExtElts);
25349 else
25350 return SDValue();
25351
25352 // At most we can reference 2 inputs in the final shuffle.
25353 if (SV0.isUndef() || SV0 == ExtVec) {
25354 SV0 = ExtVec;
25355 for (int i = 0; i != NumOpElts; ++i)
25356 Mask.push_back(i + ExtIdx);
25357 } else if (SV1.isUndef() || SV1 == ExtVec) {
25358 SV1 = ExtVec;
25359 for (int i = 0; i != NumOpElts; ++i)
25360 Mask.push_back(i + ExtIdx + NumElts);
25361 } else {
25362 return SDValue();
25363 }
25364 }
25365
25366 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25367 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
25368 DAG.getBitcast(VT, SV1), Mask, DAG);
25369}
25370
25372 unsigned CastOpcode = N->getOperand(0).getOpcode();
25373 switch (CastOpcode) {
25374 case ISD::SINT_TO_FP:
25375 case ISD::UINT_TO_FP:
25376 case ISD::FP_TO_SINT:
25377 case ISD::FP_TO_UINT:
25378 // TODO: Allow more opcodes?
25379 // case ISD::BITCAST:
25380 // case ISD::TRUNCATE:
25381 // case ISD::ZERO_EXTEND:
25382 // case ISD::SIGN_EXTEND:
25383 // case ISD::FP_EXTEND:
25384 break;
25385 default:
25386 return SDValue();
25387 }
25388
25389 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
25390 if (!SrcVT.isVector())
25391 return SDValue();
25392
25393 // All operands of the concat must be the same kind of cast from the same
25394 // source type.
25396 for (SDValue Op : N->ops()) {
25397 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
25398 Op.getOperand(0).getValueType() != SrcVT)
25399 return SDValue();
25400 SrcOps.push_back(Op.getOperand(0));
25401 }
25402
25403 // The wider cast must be supported by the target. This is unusual because
25404 // the operation support type parameter depends on the opcode. In addition,
25405 // check the other type in the cast to make sure this is really legal.
25406 EVT VT = N->getValueType(0);
25407 EVT SrcEltVT = SrcVT.getVectorElementType();
25408 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
25409 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
25410 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25411 switch (CastOpcode) {
25412 case ISD::SINT_TO_FP:
25413 case ISD::UINT_TO_FP:
25414 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
25415 !TLI.isTypeLegal(VT))
25416 return SDValue();
25417 break;
25418 case ISD::FP_TO_SINT:
25419 case ISD::FP_TO_UINT:
25420 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
25421 !TLI.isTypeLegal(ConcatSrcVT))
25422 return SDValue();
25423 break;
25424 default:
25425 llvm_unreachable("Unexpected cast opcode");
25426 }
25427
25428 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
25429 SDLoc DL(N);
25430 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
25431 return DAG.getNode(CastOpcode, DL, VT, NewConcat);
25432}
25433
25434// See if this is a simple CONCAT_VECTORS with no UNDEF operands, and if one of
25435// the operands is a SHUFFLE_VECTOR, and all other operands are also operands
25436// to that SHUFFLE_VECTOR, create wider SHUFFLE_VECTOR.
25438 SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
25439 bool LegalOperations) {
25440 EVT VT = N->getValueType(0);
25441 EVT OpVT = N->getOperand(0).getValueType();
25442 if (VT.isScalableVector())
25443 return SDValue();
25444
25445 // For now, only allow simple 2-operand concatenations.
25446 if (N->getNumOperands() != 2)
25447 return SDValue();
25448
25449 // Don't create illegal types/shuffles when not allowed to.
25450 if ((LegalTypes && !TLI.isTypeLegal(VT)) ||
25451 (LegalOperations &&
25453 return SDValue();
25454
25455 // Analyze all of the operands of the CONCAT_VECTORS. Out of all of them,
25456 // we want to find one that is: (1) a SHUFFLE_VECTOR (2) only used by us,
25457 // and (3) all operands of CONCAT_VECTORS must be either that SHUFFLE_VECTOR,
25458 // or one of the operands of that SHUFFLE_VECTOR (but not UNDEF!).
25459 // (4) and for now, the SHUFFLE_VECTOR must be unary.
25460 ShuffleVectorSDNode *SVN = nullptr;
25461 for (SDValue Op : N->ops()) {
25462 if (auto *CurSVN = dyn_cast<ShuffleVectorSDNode>(Op);
25463 CurSVN && CurSVN->getOperand(1).isUndef() && N->isOnlyUserOf(CurSVN) &&
25464 all_of(N->ops(), [CurSVN](SDValue Op) {
25465 // FIXME: can we allow UNDEF operands?
25466 return !Op.isUndef() &&
25467 (Op.getNode() == CurSVN || is_contained(CurSVN->ops(), Op));
25468 })) {
25469 SVN = CurSVN;
25470 break;
25471 }
25472 }
25473 if (!SVN)
25474 return SDValue();
25475
25476 // We are going to pad the shuffle operands, so any indice, that was picking
25477 // from the second operand, must be adjusted.
25478 SmallVector<int, 16> AdjustedMask(SVN->getMask());
25479 assert(SVN->getOperand(1).isUndef() && "Expected unary shuffle!");
25480
25481 // Identity masks for the operands of the (padded) shuffle.
25482 SmallVector<int, 32> IdentityMask(2 * OpVT.getVectorNumElements());
25483 MutableArrayRef<int> FirstShufOpIdentityMask =
25484 MutableArrayRef<int>(IdentityMask)
25486 MutableArrayRef<int> SecondShufOpIdentityMask =
25488 std::iota(FirstShufOpIdentityMask.begin(), FirstShufOpIdentityMask.end(), 0);
25489 std::iota(SecondShufOpIdentityMask.begin(), SecondShufOpIdentityMask.end(),
25491
25492 // New combined shuffle mask.
25494 Mask.reserve(VT.getVectorNumElements());
25495 for (SDValue Op : N->ops()) {
25496 assert(!Op.isUndef() && "Not expecting to concatenate UNDEF.");
25497 if (Op.getNode() == SVN) {
25498 append_range(Mask, AdjustedMask);
25499 continue;
25500 }
25501 if (Op == SVN->getOperand(0)) {
25502 append_range(Mask, FirstShufOpIdentityMask);
25503 continue;
25504 }
25505 if (Op == SVN->getOperand(1)) {
25506 append_range(Mask, SecondShufOpIdentityMask);
25507 continue;
25508 }
25509 llvm_unreachable("Unexpected operand!");
25510 }
25511
25512 // Don't create illegal shuffle masks.
25513 if (!TLI.isShuffleMaskLegal(Mask, VT))
25514 return SDValue();
25515
25516 // Pad the shuffle operands with UNDEF.
25517 SDLoc dl(N);
25518 std::array<SDValue, 2> ShufOps;
25519 for (auto I : zip(SVN->ops(), ShufOps)) {
25520 SDValue ShufOp = std::get<0>(I);
25521 SDValue &NewShufOp = std::get<1>(I);
25522 if (ShufOp.isUndef())
25523 NewShufOp = DAG.getUNDEF(VT);
25524 else {
25525 SmallVector<SDValue, 2> ShufOpParts(N->getNumOperands(),
25526 DAG.getUNDEF(OpVT));
25527 ShufOpParts[0] = ShufOp;
25528 NewShufOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, ShufOpParts);
25529 }
25530 }
25531 // Finally, create the new wide shuffle.
25532 return DAG.getVectorShuffle(VT, dl, ShufOps[0], ShufOps[1], Mask);
25533}
25534
25536 const TargetLowering &TLI,
25537 bool LegalTypes,
25538 bool LegalOperations) {
25539 EVT VT = N->getValueType(0);
25540
25541 // Post-legalization we can only create wider SPLAT_VECTOR operations if both
25542 // the type and operation is legal. The Hexagon target has custom
25543 // legalization for SPLAT_VECTOR that splits the operation into two parts and
25544 // concatenates them. Therefore, custom lowering must also be rejected in
25545 // order to avoid an infinite loop.
25546 if ((LegalTypes && !TLI.isTypeLegal(VT)) ||
25547 (LegalOperations && !TLI.isOperationLegal(ISD::SPLAT_VECTOR, VT)))
25548 return SDValue();
25549
25550 SDValue Op0 = N->getOperand(0);
25551 if (!llvm::all_equal(N->op_values()) || Op0.getOpcode() != ISD::SPLAT_VECTOR)
25552 return SDValue();
25553
25554 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, Op0.getOperand(0));
25555}
25556
25557SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
25558 // If we only have one input vector, we don't need to do any concatenation.
25559 if (N->getNumOperands() == 1)
25560 return N->getOperand(0);
25561
25562 // Check if all of the operands are undefs.
25563 EVT VT = N->getValueType(0);
25565 return DAG.getUNDEF(VT);
25566
25567 // Optimize concat_vectors where all but the first of the vectors are undef.
25568 if (all_of(drop_begin(N->ops()),
25569 [](const SDValue &Op) { return Op.isUndef(); })) {
25570 SDValue In = N->getOperand(0);
25571 assert(In.getValueType().isVector() && "Must concat vectors");
25572
25573 // If the input is a concat_vectors, just make a larger concat by padding
25574 // with smaller undefs.
25575 //
25576 // Legalizing in AArch64TargetLowering::LowerCONCAT_VECTORS() and combining
25577 // here could cause an infinite loop. That legalizing happens when LegalDAG
25578 // is true and input of AArch64TargetLowering::LowerCONCAT_VECTORS() is
25579 // scalable.
25580 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse() &&
25581 !(LegalDAG && In.getValueType().isScalableVector())) {
25582 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
25584 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
25585 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
25586 }
25587
25589
25590 // concat_vectors(scalar_to_vector(scalar), undef) ->
25591 // scalar_to_vector(scalar)
25592 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
25593 Scalar.hasOneUse()) {
25594 EVT SVT = Scalar.getValueType().getVectorElementType();
25595 if (SVT == Scalar.getOperand(0).getValueType())
25596 Scalar = Scalar.getOperand(0);
25597 }
25598
25599 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
25600 if (!Scalar.getValueType().isVector() && In.hasOneUse()) {
25601 // If the bitcast type isn't legal, it might be a trunc of a legal type;
25602 // look through the trunc so we can still do the transform:
25603 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
25604 if (Scalar->getOpcode() == ISD::TRUNCATE &&
25605 !TLI.isTypeLegal(Scalar.getValueType()) &&
25606 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
25607 Scalar = Scalar->getOperand(0);
25608
25609 EVT SclTy = Scalar.getValueType();
25610
25611 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
25612 return SDValue();
25613
25614 // Bail out if the vector size is not a multiple of the scalar size.
25615 if (VT.getSizeInBits() % SclTy.getSizeInBits())
25616 return SDValue();
25617
25618 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
25619 if (VNTNumElms < 2)
25620 return SDValue();
25621
25622 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
25623 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
25624 return SDValue();
25625
25626 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
25627 return DAG.getBitcast(VT, Res);
25628 }
25629 }
25630
25631 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
25632 // We have already tested above for an UNDEF only concatenation.
25633 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
25634 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
25635 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
25636 return Op.isUndef() || ISD::BUILD_VECTOR == Op.getOpcode();
25637 };
25638 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
25640 EVT SVT = VT.getScalarType();
25641
25642 EVT MinVT = SVT;
25643 if (!SVT.isFloatingPoint()) {
25644 // If BUILD_VECTOR are from built from integer, they may have different
25645 // operand types. Get the smallest type and truncate all operands to it.
25646 bool FoundMinVT = false;
25647 for (const SDValue &Op : N->ops())
25648 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
25649 EVT OpSVT = Op.getOperand(0).getValueType();
25650 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
25651 FoundMinVT = true;
25652 }
25653 assert(FoundMinVT && "Concat vector type mismatch");
25654 }
25655
25656 for (const SDValue &Op : N->ops()) {
25657 EVT OpVT = Op.getValueType();
25658 unsigned NumElts = OpVT.getVectorNumElements();
25659
25660 if (Op.isUndef())
25661 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
25662
25663 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
25664 if (SVT.isFloatingPoint()) {
25665 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
25666 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
25667 } else {
25668 for (unsigned i = 0; i != NumElts; ++i)
25669 Opnds.push_back(
25670 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
25671 }
25672 }
25673 }
25674
25675 assert(VT.getVectorNumElements() == Opnds.size() &&
25676 "Concat vector type mismatch");
25677 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
25678 }
25679
25680 if (SDValue V =
25681 combineConcatVectorOfSplats(N, DAG, TLI, LegalTypes, LegalOperations))
25682 return V;
25683
25684 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
25685 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
25687 return V;
25688
25689 if (Level <= AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
25690 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
25692 return V;
25693
25694 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
25696 return V;
25697 }
25698
25699 if (SDValue V = combineConcatVectorOfCasts(N, DAG))
25700 return V;
25701
25703 N, DAG, TLI, LegalTypes, LegalOperations))
25704 return V;
25705
25706 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
25707 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
25708 // operands and look for a CONCAT operations that place the incoming vectors
25709 // at the exact same location.
25710 //
25711 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
25712 SDValue SingleSource = SDValue();
25713 unsigned PartNumElem =
25714 N->getOperand(0).getValueType().getVectorMinNumElements();
25715
25716 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
25717 SDValue Op = N->getOperand(i);
25718
25719 if (Op.isUndef())
25720 continue;
25721
25722 // Check if this is the identity extract:
25723 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
25724 return SDValue();
25725
25726 // Find the single incoming vector for the extract_subvector.
25727 if (SingleSource.getNode()) {
25728 if (Op.getOperand(0) != SingleSource)
25729 return SDValue();
25730 } else {
25731 SingleSource = Op.getOperand(0);
25732
25733 // Check the source type is the same as the type of the result.
25734 // If not, this concat may extend the vector, so we can not
25735 // optimize it away.
25736 if (SingleSource.getValueType() != N->getValueType(0))
25737 return SDValue();
25738 }
25739
25740 // Check that we are reading from the identity index.
25741 unsigned IdentityIndex = i * PartNumElem;
25742 if (Op.getConstantOperandAPInt(1) != IdentityIndex)
25743 return SDValue();
25744 }
25745
25746 if (SingleSource.getNode())
25747 return SingleSource;
25748
25749 return SDValue();
25750}
25751
25752SDValue DAGCombiner::visitVECTOR_INTERLEAVE(SDNode *N) {
25753 // Check to see if all operands are identical.
25754 if (!llvm::all_equal(N->op_values()))
25755 return SDValue();
25756
25757 // Check to see if the identical operand is a splat.
25758 if (!DAG.isSplatValue(N->getOperand(0)))
25759 return SDValue();
25760
25761 // interleave splat(X), splat(X).... --> splat(X), splat(X)....
25763 Ops.append(N->op_values().begin(), N->op_values().end());
25764 return CombineTo(N, &Ops);
25765}
25766
25767// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
25768// if the subvector can be sourced for free.
25769static SDValue getSubVectorSrc(SDValue V, unsigned Index, EVT SubVT) {
25770 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
25771 V.getOperand(1).getValueType() == SubVT &&
25772 V.getConstantOperandAPInt(2) == Index) {
25773 return V.getOperand(1);
25774 }
25775 if (V.getOpcode() == ISD::CONCAT_VECTORS &&
25776 V.getOperand(0).getValueType() == SubVT &&
25777 (Index % SubVT.getVectorMinNumElements()) == 0) {
25778 uint64_t SubIdx = Index / SubVT.getVectorMinNumElements();
25779 return V.getOperand(SubIdx);
25780 }
25781 return SDValue();
25782}
25783
25785 unsigned Index, const SDLoc &DL,
25786 SelectionDAG &DAG,
25787 bool LegalOperations) {
25788 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25789 unsigned BinOpcode = BinOp.getOpcode();
25790 if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1)
25791 return SDValue();
25792
25793 EVT VecVT = BinOp.getValueType();
25794 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
25795 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
25796 return SDValue();
25797 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
25798 return SDValue();
25799
25800 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
25801 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
25802
25803 // TODO: We could handle the case where only 1 operand is being inserted by
25804 // creating an extract of the other operand, but that requires checking
25805 // number of uses and/or costs.
25806 if (!Sub0 || !Sub1)
25807 return SDValue();
25808
25809 // We are inserting both operands of the wide binop only to extract back
25810 // to the narrow vector size. Eliminate all of the insert/extract:
25811 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
25812 return DAG.getNode(BinOpcode, DL, SubVT, Sub0, Sub1, BinOp->getFlags());
25813}
25814
25815/// If we are extracting a subvector produced by a wide binary operator try
25816/// to use a narrow binary operator and/or avoid concatenation and extraction.
25817static SDValue narrowExtractedVectorBinOp(EVT VT, SDValue Src, unsigned Index,
25818 const SDLoc &DL, SelectionDAG &DAG,
25819 bool LegalOperations) {
25820 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
25821 // some of these bailouts with other transforms.
25822
25823 if (SDValue V = narrowInsertExtractVectorBinOp(VT, Src, Index, DL, DAG,
25824 LegalOperations))
25825 return V;
25826
25827 // We are looking for an optionally bitcasted wide vector binary operator
25828 // feeding an extract subvector.
25829 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25830 SDValue BinOp = peekThroughBitcasts(Src);
25831 unsigned BOpcode = BinOp.getOpcode();
25832 if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1)
25833 return SDValue();
25834
25835 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
25836 // reduced to the unary fneg when it is visited, and we probably want to deal
25837 // with fneg in a target-specific way.
25838 if (BOpcode == ISD::FSUB) {
25839 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
25840 if (C && C->getValueAPF().isNegZero())
25841 return SDValue();
25842 }
25843
25844 // The binop must be a vector type, so we can extract some fraction of it.
25845 EVT WideBVT = BinOp.getValueType();
25846 // The optimisations below currently assume we are dealing with fixed length
25847 // vectors. It is possible to add support for scalable vectors, but at the
25848 // moment we've done no analysis to prove whether they are profitable or not.
25849 if (!WideBVT.isFixedLengthVector())
25850 return SDValue();
25851
25852 assert((Index % VT.getVectorNumElements()) == 0 &&
25853 "Extract index is not a multiple of the vector length.");
25854
25855 // Bail out if this is not a proper multiple width extraction.
25856 unsigned WideWidth = WideBVT.getSizeInBits();
25857 unsigned NarrowWidth = VT.getSizeInBits();
25858 if (WideWidth % NarrowWidth != 0)
25859 return SDValue();
25860
25861 // Bail out if we are extracting a fraction of a single operation. This can
25862 // occur because we potentially looked through a bitcast of the binop.
25863 unsigned NarrowingRatio = WideWidth / NarrowWidth;
25864 unsigned WideNumElts = WideBVT.getVectorNumElements();
25865 if (WideNumElts % NarrowingRatio != 0)
25866 return SDValue();
25867
25868 // Bail out if the target does not support a narrower version of the binop.
25869 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
25870 WideNumElts / NarrowingRatio);
25871 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT,
25872 LegalOperations))
25873 return SDValue();
25874
25875 // If extraction is cheap, we don't need to look at the binop operands
25876 // for concat ops. The narrow binop alone makes this transform profitable.
25877 // We can't just reuse the original extract index operand because we may have
25878 // bitcasted.
25879 unsigned ConcatOpNum = Index / VT.getVectorNumElements();
25880 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
25881 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
25882 BinOp.hasOneUse() && Src->hasOneUse()) {
25883 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
25884 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
25885 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25886 BinOp.getOperand(0), NewExtIndex);
25887 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25888 BinOp.getOperand(1), NewExtIndex);
25889 SDValue NarrowBinOp =
25890 DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags());
25891 return DAG.getBitcast(VT, NarrowBinOp);
25892 }
25893
25894 // Only handle the case where we are doubling and then halving. A larger ratio
25895 // may require more than two narrow binops to replace the wide binop.
25896 if (NarrowingRatio != 2)
25897 return SDValue();
25898
25899 // TODO: The motivating case for this transform is an x86 AVX1 target. That
25900 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
25901 // flavors, but no other 256-bit integer support. This could be extended to
25902 // handle any binop, but that may require fixing/adding other folds to avoid
25903 // codegen regressions.
25904 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
25905 return SDValue();
25906
25907 // We need at least one concatenation operation of a binop operand to make
25908 // this transform worthwhile. The concat must double the input vector sizes.
25909 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
25910 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
25911 return V.getOperand(ConcatOpNum);
25912 return SDValue();
25913 };
25914 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
25915 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
25916
25917 if (SubVecL || SubVecR) {
25918 // If a binop operand was not the result of a concat, we must extract a
25919 // half-sized operand for our new narrow binop:
25920 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
25921 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
25922 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
25923 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
25924 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
25925 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25926 BinOp.getOperand(0), IndexC);
25927
25928 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
25929 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25930 BinOp.getOperand(1), IndexC);
25931
25932 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
25933 return DAG.getBitcast(VT, NarrowBinOp);
25934 }
25935
25936 return SDValue();
25937}
25938
25939/// If we are extracting a subvector from a wide vector load, convert to a
25940/// narrow load to eliminate the extraction:
25941/// (extract_subvector (load wide vector)) --> (load narrow vector)
25942static SDValue narrowExtractedVectorLoad(EVT VT, SDValue Src, unsigned Index,
25943 const SDLoc &DL, SelectionDAG &DAG) {
25944 // TODO: Add support for big-endian. The offset calculation must be adjusted.
25945 if (DAG.getDataLayout().isBigEndian())
25946 return SDValue();
25947
25948 auto *Ld = dyn_cast<LoadSDNode>(Src);
25949 if (!Ld || !ISD::isNormalLoad(Ld) || !Ld->isSimple())
25950 return SDValue();
25951
25952 // We can only create byte sized loads.
25953 if (!VT.isByteSized())
25954 return SDValue();
25955
25956 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25957 if (!TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, VT))
25958 return SDValue();
25959
25960 unsigned NumElts = VT.getVectorMinNumElements();
25961 // A fixed length vector being extracted from a scalable vector
25962 // may not be any *smaller* than the scalable one.
25963 if (Index == 0 && NumElts >= Ld->getValueType(0).getVectorMinNumElements())
25964 return SDValue();
25965
25966 // The definition of EXTRACT_SUBVECTOR states that the index must be a
25967 // multiple of the minimum number of elements in the result type.
25968 assert(Index % NumElts == 0 && "The extract subvector index is not a "
25969 "multiple of the result's element count");
25970
25971 // It's fine to use TypeSize here as we know the offset will not be negative.
25972 TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
25973 std::optional<unsigned> ByteOffset;
25974 if (Offset.isFixed())
25975 ByteOffset = Offset.getFixedValue();
25976
25977 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT, ByteOffset))
25978 return SDValue();
25979
25980 // The narrow load will be offset from the base address of the old load if
25981 // we are extracting from something besides index 0 (little-endian).
25982 // TODO: Use "BaseIndexOffset" to make this more effective.
25983 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
25984
25986 MachineMemOperand *MMO;
25987 if (Offset.isScalable()) {
25988 MachinePointerInfo MPI =
25990 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, VT.getStoreSize());
25991 } else
25992 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedValue(),
25993 VT.getStoreSize());
25994
25995 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
25996 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
25997 return NewLd;
25998}
25999
26000/// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)),
26001/// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?),
26002/// EXTRACT_SUBVECTOR(Op?, ?),
26003/// Mask'))
26004/// iff it is legal and profitable to do so. Notably, the trimmed mask
26005/// (containing only the elements that are extracted)
26006/// must reference at most two subvectors.
26008 unsigned Index,
26009 const SDLoc &DL,
26010 SelectionDAG &DAG,
26011 bool LegalOperations) {
26012 // Only deal with non-scalable vectors.
26013 EVT WideVT = Src.getValueType();
26014 if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector())
26015 return SDValue();
26016
26017 // The operand must be a shufflevector.
26018 auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(Src);
26019 if (!WideShuffleVector)
26020 return SDValue();
26021
26022 // The old shuffleneeds to go away.
26023 if (!WideShuffleVector->hasOneUse())
26024 return SDValue();
26025
26026 // And the narrow shufflevector that we'll form must be legal.
26027 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26028 if (LegalOperations &&
26030 return SDValue();
26031
26032 int NumEltsExtracted = NarrowVT.getVectorNumElements();
26033 assert((Index % NumEltsExtracted) == 0 &&
26034 "Extract index is not a multiple of the output vector length.");
26035
26036 int WideNumElts = WideVT.getVectorNumElements();
26037
26038 SmallVector<int, 16> NewMask;
26039 NewMask.reserve(NumEltsExtracted);
26040 SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2>
26041 DemandedSubvectors;
26042
26043 // Try to decode the wide mask into narrow mask from at most two subvectors.
26044 for (int M : WideShuffleVector->getMask().slice(Index, NumEltsExtracted)) {
26045 assert((M >= -1) && (M < (2 * WideNumElts)) &&
26046 "Out-of-bounds shuffle mask?");
26047
26048 if (M < 0) {
26049 // Does not depend on operands, does not require adjustment.
26050 NewMask.emplace_back(M);
26051 continue;
26052 }
26053
26054 // From which operand of the shuffle does this shuffle mask element pick?
26055 int WideShufOpIdx = M / WideNumElts;
26056 // Which element of that operand is picked?
26057 int OpEltIdx = M % WideNumElts;
26058
26059 assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M &&
26060 "Shuffle mask vector decomposition failure.");
26061
26062 // And which NumEltsExtracted-sized subvector of that operand is that?
26063 int OpSubvecIdx = OpEltIdx / NumEltsExtracted;
26064 // And which element within that subvector of that operand is that?
26065 int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted;
26066
26067 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx &&
26068 "Shuffle mask subvector decomposition failure.");
26069
26070 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted +
26071 WideShufOpIdx * WideNumElts) == M &&
26072 "Shuffle mask full decomposition failure.");
26073
26074 SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx);
26075
26076 if (Op.isUndef()) {
26077 // Picking from an undef operand. Let's adjust mask instead.
26078 NewMask.emplace_back(-1);
26079 continue;
26080 }
26081
26082 const std::pair<SDValue, int> DemandedSubvector =
26083 std::make_pair(Op, OpSubvecIdx);
26084
26085 if (DemandedSubvectors.insert(DemandedSubvector)) {
26086 if (DemandedSubvectors.size() > 2)
26087 return SDValue(); // We can't handle more than two subvectors.
26088 // How many elements into the WideVT does this subvector start?
26089 int Index = NumEltsExtracted * OpSubvecIdx;
26090 // Bail out if the extraction isn't going to be cheap.
26091 if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index))
26092 return SDValue();
26093 }
26094
26095 // Ok, but from which operand of the new shuffle will this element pick?
26096 int NewOpIdx =
26097 getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector);
26098 assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index.");
26099
26100 int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted;
26101 NewMask.emplace_back(AdjM);
26102 }
26103 assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask.");
26104 assert(DemandedSubvectors.size() <= 2 &&
26105 "Should have ended up demanding at most two subvectors.");
26106
26107 // Did we discover that the shuffle does not actually depend on operands?
26108 if (DemandedSubvectors.empty())
26109 return DAG.getUNDEF(NarrowVT);
26110
26111 // Profitability check: only deal with extractions from the first subvector
26112 // unless the mask becomes an identity mask.
26113 if (!ShuffleVectorInst::isIdentityMask(NewMask, NewMask.size()) ||
26114 any_of(NewMask, [](int M) { return M < 0; }))
26115 for (auto &DemandedSubvector : DemandedSubvectors)
26116 if (DemandedSubvector.second != 0)
26117 return SDValue();
26118
26119 // We still perform the exact same EXTRACT_SUBVECTOR, just on different
26120 // operand[s]/index[es], so there is no point in checking for it's legality.
26121
26122 // Do not turn a legal shuffle into an illegal one.
26123 if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) &&
26124 !TLI.isShuffleMaskLegal(NewMask, NarrowVT))
26125 return SDValue();
26126
26128 for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>
26129 &DemandedSubvector : DemandedSubvectors) {
26130 // How many elements into the WideVT does this subvector start?
26131 int Index = NumEltsExtracted * DemandedSubvector.second;
26132 SDValue IndexC = DAG.getVectorIdxConstant(Index, DL);
26133 NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT,
26134 DemandedSubvector.first, IndexC));
26135 }
26136 assert((NewOps.size() == 1 || NewOps.size() == 2) &&
26137 "Should end up with either one or two ops");
26138
26139 // If we ended up with only one operand, pad with an undef.
26140 if (NewOps.size() == 1)
26141 NewOps.emplace_back(DAG.getUNDEF(NarrowVT));
26142
26143 return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask);
26144}
26145
26146SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
26147 EVT NVT = N->getValueType(0);
26148 SDValue V = N->getOperand(0);
26149 uint64_t ExtIdx = N->getConstantOperandVal(1);
26150 SDLoc DL(N);
26151
26152 // Extract from UNDEF is UNDEF.
26153 if (V.isUndef())
26154 return DAG.getUNDEF(NVT);
26155
26156 if (SDValue NarrowLoad = narrowExtractedVectorLoad(NVT, V, ExtIdx, DL, DAG))
26157 return NarrowLoad;
26158
26159 // Combine an extract of an extract into a single extract_subvector.
26160 // ext (ext X, C), 0 --> ext X, C
26161 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
26162 // The index has to be a multiple of the new result type's known minimum
26163 // vector length.
26164 if (V.getConstantOperandVal(1) % NVT.getVectorMinNumElements() == 0 &&
26165 TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
26166 V.getConstantOperandVal(1)) &&
26168 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, V.getOperand(0),
26169 V.getOperand(1));
26170 }
26171 }
26172
26173 // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V)
26174 if (V.getOpcode() == ISD::SPLAT_VECTOR)
26175 if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse())
26176 if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT))
26177 return DAG.getSplatVector(NVT, DL, V.getOperand(0));
26178
26179 // extract_subvector(insert_subvector(x,y,c1),c2)
26180 // --> extract_subvector(y,c2-c1)
26181 // iff we're just extracting from the inserted subvector.
26182 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
26183 SDValue InsSub = V.getOperand(1);
26184 EVT InsSubVT = InsSub.getValueType();
26185 unsigned NumInsElts = InsSubVT.getVectorMinNumElements();
26186 unsigned InsIdx = V.getConstantOperandVal(2);
26187 unsigned NumSubElts = NVT.getVectorMinNumElements();
26188 if (InsIdx <= ExtIdx && (ExtIdx + NumSubElts) <= (InsIdx + NumInsElts) &&
26189 TLI.isExtractSubvectorCheap(NVT, InsSubVT, ExtIdx - InsIdx) &&
26190 InsSubVT.isFixedLengthVector() && NVT.isFixedLengthVector() &&
26191 V.getValueType().isFixedLengthVector())
26192 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, InsSub,
26193 DAG.getVectorIdxConstant(ExtIdx - InsIdx, DL));
26194 }
26195
26196 // Try to move vector bitcast after extract_subv by scaling extraction index:
26197 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
26198 if (V.getOpcode() == ISD::BITCAST &&
26199 V.getOperand(0).getValueType().isVector() &&
26200 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) {
26201 SDValue SrcOp = V.getOperand(0);
26202 EVT SrcVT = SrcOp.getValueType();
26203 unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
26204 unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
26205 if ((SrcNumElts % DestNumElts) == 0) {
26206 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
26207 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
26208 EVT NewExtVT =
26209 EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), NewExtEC);
26211 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
26212 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
26213 V.getOperand(0), NewIndex);
26214 return DAG.getBitcast(NVT, NewExtract);
26215 }
26216 }
26217 if ((DestNumElts % SrcNumElts) == 0) {
26218 unsigned DestSrcRatio = DestNumElts / SrcNumElts;
26219 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
26220 ElementCount NewExtEC =
26221 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
26222 EVT ScalarVT = SrcVT.getScalarType();
26223 if ((ExtIdx % DestSrcRatio) == 0) {
26224 unsigned IndexValScaled = ExtIdx / DestSrcRatio;
26225 EVT NewExtVT =
26226 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
26228 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
26229 SDValue NewExtract =
26230 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
26231 V.getOperand(0), NewIndex);
26232 return DAG.getBitcast(NVT, NewExtract);
26233 }
26234 if (NewExtEC.isScalar() &&
26236 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
26237 SDValue NewExtract =
26238 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
26239 V.getOperand(0), NewIndex);
26240 return DAG.getBitcast(NVT, NewExtract);
26241 }
26242 }
26243 }
26244 }
26245 }
26246
26247 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
26248 unsigned ExtNumElts = NVT.getVectorMinNumElements();
26249 EVT ConcatSrcVT = V.getOperand(0).getValueType();
26250 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
26251 "Concat and extract subvector do not change element type");
26252
26253 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
26254 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
26255
26256 // If the concatenated source types match this extract, it's a direct
26257 // simplification:
26258 // extract_subvec (concat V1, V2, ...), i --> Vi
26259 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount())
26260 return V.getOperand(ConcatOpIdx);
26261
26262 // If the concatenated source vectors are a multiple length of this extract,
26263 // then extract a fraction of one of those source vectors directly from a
26264 // concat operand. Example:
26265 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
26266 // v2i8 extract_subvec v8i8 Y, 6
26267 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() &&
26268 ConcatSrcNumElts % ExtNumElts == 0) {
26269 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
26270 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
26271 "Trying to extract from >1 concat operand?");
26272 assert(NewExtIdx % ExtNumElts == 0 &&
26273 "Extract index is not a multiple of the input vector length.");
26274 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
26275 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
26276 V.getOperand(ConcatOpIdx), NewIndexC);
26277 }
26278 }
26279
26281 NVT, V, ExtIdx, DL, DAG, LegalOperations))
26282 return Shuffle;
26283
26284 if (SDValue NarrowBOp =
26285 narrowExtractedVectorBinOp(NVT, V, ExtIdx, DL, DAG, LegalOperations))
26286 return NarrowBOp;
26287
26289
26290 // If the input is a build vector. Try to make a smaller build vector.
26291 if (V.getOpcode() == ISD::BUILD_VECTOR) {
26292 EVT InVT = V.getValueType();
26293 unsigned ExtractSize = NVT.getSizeInBits();
26294 unsigned EltSize = InVT.getScalarSizeInBits();
26295 // Only do this if we won't split any elements.
26296 if (ExtractSize % EltSize == 0) {
26297 unsigned NumElems = ExtractSize / EltSize;
26298 EVT EltVT = InVT.getVectorElementType();
26299 EVT ExtractVT =
26300 NumElems == 1 ? EltVT
26301 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
26302 if ((Level < AfterLegalizeDAG ||
26303 (NumElems == 1 ||
26304 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
26305 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
26306 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
26307
26308 if (NumElems == 1) {
26309 SDValue Src = V->getOperand(IdxVal);
26310 if (EltVT != Src.getValueType())
26311 Src = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Src);
26312 return DAG.getBitcast(NVT, Src);
26313 }
26314
26315 // Extract the pieces from the original build_vector.
26316 SDValue BuildVec =
26317 DAG.getBuildVector(ExtractVT, DL, V->ops().slice(IdxVal, NumElems));
26318 return DAG.getBitcast(NVT, BuildVec);
26319 }
26320 }
26321 }
26322
26323 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
26324 // Handle only simple case where vector being inserted and vector
26325 // being extracted are of same size.
26326 EVT SmallVT = V.getOperand(1).getValueType();
26327 if (NVT.bitsEq(SmallVT)) {
26328 // Combine:
26329 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
26330 // Into:
26331 // indices are equal or bit offsets are equal => V1
26332 // otherwise => (extract_subvec V1, ExtIdx)
26333 uint64_t InsIdx = V.getConstantOperandVal(2);
26334 if (InsIdx * SmallVT.getScalarSizeInBits() ==
26335 ExtIdx * NVT.getScalarSizeInBits()) {
26336 if (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))
26337 return DAG.getBitcast(NVT, V.getOperand(1));
26338 } else {
26339 return DAG.getNode(
26341 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
26342 N->getOperand(1));
26343 }
26344 }
26345 }
26346
26347 // If only EXTRACT_SUBVECTOR nodes use the source vector we can
26348 // simplify it based on the (valid) extractions.
26349 if (!V.getValueType().isScalableVector() &&
26350 llvm::all_of(V->users(), [&](SDNode *Use) {
26351 return Use->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
26352 Use->getOperand(0) == V;
26353 })) {
26354 unsigned NumElts = V.getValueType().getVectorNumElements();
26355 APInt DemandedElts = APInt::getZero(NumElts);
26356 for (SDNode *User : V->users()) {
26357 unsigned ExtIdx = User->getConstantOperandVal(1);
26358 unsigned NumSubElts = User->getValueType(0).getVectorNumElements();
26359 DemandedElts.setBits(ExtIdx, ExtIdx + NumSubElts);
26360 }
26361 if (SimplifyDemandedVectorElts(V, DemandedElts, /*AssumeSingleUse=*/true)) {
26362 // We simplified the vector operand of this extract subvector. If this
26363 // extract is not dead, visit it again so it is folded properly.
26364 if (N->getOpcode() != ISD::DELETED_NODE)
26365 AddToWorklist(N);
26366 return SDValue(N, 0);
26367 }
26368 } else {
26370 return SDValue(N, 0);
26371 }
26372
26373 return SDValue();
26374}
26375
26376/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
26377/// followed by concatenation. Narrow vector ops may have better performance
26378/// than wide ops, and this can unlock further narrowing of other vector ops.
26379/// Targets can invert this transform later if it is not profitable.
26381 SelectionDAG &DAG) {
26382 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
26383 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
26384 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
26385 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
26386 return SDValue();
26387
26388 // Split the wide shuffle mask into halves. Any mask element that is accessing
26389 // operand 1 is offset down to account for narrowing of the vectors.
26390 ArrayRef<int> Mask = Shuf->getMask();
26391 EVT VT = Shuf->getValueType(0);
26392 unsigned NumElts = VT.getVectorNumElements();
26393 unsigned HalfNumElts = NumElts / 2;
26394 SmallVector<int, 16> Mask0(HalfNumElts, -1);
26395 SmallVector<int, 16> Mask1(HalfNumElts, -1);
26396 for (unsigned i = 0; i != NumElts; ++i) {
26397 if (Mask[i] == -1)
26398 continue;
26399 // If we reference the upper (undef) subvector then the element is undef.
26400 if ((Mask[i] % NumElts) >= HalfNumElts)
26401 continue;
26402 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
26403 if (i < HalfNumElts)
26404 Mask0[i] = M;
26405 else
26406 Mask1[i - HalfNumElts] = M;
26407 }
26408
26409 // Ask the target if this is a valid transform.
26410 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26411 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
26412 HalfNumElts);
26413 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
26414 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
26415 return SDValue();
26416
26417 // shuffle (concat X, undef), (concat Y, undef), Mask -->
26418 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
26419 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
26420 SDLoc DL(Shuf);
26421 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
26422 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
26423 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
26424}
26425
26426// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
26427// or turn a shuffle of a single concat into simpler shuffle then concat.
26429 EVT VT = N->getValueType(0);
26430 unsigned NumElts = VT.getVectorNumElements();
26431
26432 SDValue N0 = N->getOperand(0);
26433 SDValue N1 = N->getOperand(1);
26435 ArrayRef<int> Mask = SVN->getMask();
26436
26438 EVT ConcatVT = N0.getOperand(0).getValueType();
26439 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
26440 unsigned NumConcats = NumElts / NumElemsPerConcat;
26441
26442 auto IsUndefMaskElt = [](int i) { return i == -1; };
26443
26444 // Special case: shuffle(concat(A,B)) can be more efficiently represented
26445 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
26446 // half vector elements.
26447 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
26448 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
26449 IsUndefMaskElt)) {
26450 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
26451 N0.getOperand(1),
26452 Mask.slice(0, NumElemsPerConcat));
26453 N1 = DAG.getUNDEF(ConcatVT);
26454 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
26455 }
26456
26457 // Look at every vector that's inserted. We're looking for exact
26458 // subvector-sized copies from a concatenated vector
26459 for (unsigned I = 0; I != NumConcats; ++I) {
26460 unsigned Begin = I * NumElemsPerConcat;
26461 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
26462
26463 // Make sure we're dealing with a copy.
26464 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
26465 Ops.push_back(DAG.getUNDEF(ConcatVT));
26466 continue;
26467 }
26468
26469 int OpIdx = -1;
26470 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
26471 if (IsUndefMaskElt(SubMask[i]))
26472 continue;
26473 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
26474 return SDValue();
26475 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
26476 if (0 <= OpIdx && EltOpIdx != OpIdx)
26477 return SDValue();
26478 OpIdx = EltOpIdx;
26479 }
26480 assert(0 <= OpIdx && "Unknown concat_vectors op");
26481
26482 if (OpIdx < (int)N0.getNumOperands())
26483 Ops.push_back(N0.getOperand(OpIdx));
26484 else
26485 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
26486 }
26487
26488 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
26489}
26490
26491// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
26492// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
26493//
26494// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
26495// a simplification in some sense, but it isn't appropriate in general: some
26496// BUILD_VECTORs are substantially cheaper than others. The general case
26497// of a BUILD_VECTOR requires inserting each element individually (or
26498// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
26499// all constants is a single constant pool load. A BUILD_VECTOR where each
26500// element is identical is a splat. A BUILD_VECTOR where most of the operands
26501// are undef lowers to a small number of element insertions.
26502//
26503// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
26504// We don't fold shuffles where one side is a non-zero constant, and we don't
26505// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
26506// non-constant operands. This seems to work out reasonably well in practice.
26508 SelectionDAG &DAG,
26509 const TargetLowering &TLI) {
26510 EVT VT = SVN->getValueType(0);
26511 unsigned NumElts = VT.getVectorNumElements();
26512 SDValue N0 = SVN->getOperand(0);
26513 SDValue N1 = SVN->getOperand(1);
26514
26515 if (!N0->hasOneUse())
26516 return SDValue();
26517
26518 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
26519 // discussed above.
26520 if (!N1.isUndef()) {
26521 if (!N1->hasOneUse())
26522 return SDValue();
26523
26524 bool N0AnyConst = isAnyConstantBuildVector(N0);
26525 bool N1AnyConst = isAnyConstantBuildVector(N1);
26526 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
26527 return SDValue();
26528 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
26529 return SDValue();
26530 }
26531
26532 // If both inputs are splats of the same value then we can safely merge this
26533 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
26534 bool IsSplat = false;
26535 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
26536 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
26537 if (BV0 && BV1)
26538 if (SDValue Splat0 = BV0->getSplatValue())
26539 IsSplat = (Splat0 == BV1->getSplatValue());
26540
26542 SmallSet<SDValue, 16> DuplicateOps;
26543 for (int M : SVN->getMask()) {
26544 SDValue Op = DAG.getUNDEF(VT.getScalarType());
26545 if (M >= 0) {
26546 int Idx = M < (int)NumElts ? M : M - NumElts;
26547 SDValue &S = (M < (int)NumElts ? N0 : N1);
26548 if (S.getOpcode() == ISD::BUILD_VECTOR) {
26549 Op = S.getOperand(Idx);
26550 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
26551 SDValue Op0 = S.getOperand(0);
26552 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
26553 } else {
26554 // Operand can't be combined - bail out.
26555 return SDValue();
26556 }
26557 }
26558
26559 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
26560 // generating a splat; semantically, this is fine, but it's likely to
26561 // generate low-quality code if the target can't reconstruct an appropriate
26562 // shuffle.
26563 if (!Op.isUndef() && !isIntOrFPConstant(Op))
26564 if (!IsSplat && !DuplicateOps.insert(Op).second)
26565 return SDValue();
26566
26567 Ops.push_back(Op);
26568 }
26569
26570 // BUILD_VECTOR requires all inputs to be of the same type, find the
26571 // maximum type and extend them all.
26572 EVT SVT = VT.getScalarType();
26573 if (SVT.isInteger())
26574 for (SDValue &Op : Ops)
26575 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
26576 if (SVT != VT.getScalarType())
26577 for (SDValue &Op : Ops)
26578 Op = Op.isUndef() ? DAG.getUNDEF(SVT)
26579 : (TLI.isZExtFree(Op.getValueType(), SVT)
26580 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
26581 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT));
26582 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
26583}
26584
26585// Match shuffles that can be converted to *_vector_extend_in_reg.
26586// This is often generated during legalization.
26587// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)),
26588// and returns the EVT to which the extension should be performed.
26589// NOTE: this assumes that the src is the first operand of the shuffle.
26591 unsigned Opcode, EVT VT, std::function<bool(unsigned)> Match,
26592 SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
26593 bool LegalOperations) {
26594 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26595
26596 // TODO Add support for big-endian when we have a test case.
26597 if (!VT.isInteger() || IsBigEndian)
26598 return std::nullopt;
26599
26600 unsigned NumElts = VT.getVectorNumElements();
26601 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26602
26603 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
26604 // power-of-2 extensions as they are the most likely.
26605 // FIXME: should try Scale == NumElts case too,
26606 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
26607 // The vector width must be a multiple of Scale.
26608 if (NumElts % Scale != 0)
26609 continue;
26610
26611 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
26612 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
26613
26614 if ((LegalTypes && !TLI.isTypeLegal(OutVT)) ||
26615 (LegalOperations && !TLI.isOperationLegalOrCustom(Opcode, OutVT)))
26616 continue;
26617
26618 if (Match(Scale))
26619 return OutVT;
26620 }
26621
26622 return std::nullopt;
26623}
26624
26625// Match shuffles that can be converted to any_vector_extend_in_reg.
26626// This is often generated during legalization.
26627// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
26629 SelectionDAG &DAG,
26630 const TargetLowering &TLI,
26631 bool LegalOperations) {
26632 EVT VT = SVN->getValueType(0);
26633 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26634
26635 // TODO Add support for big-endian when we have a test case.
26636 if (!VT.isInteger() || IsBigEndian)
26637 return SDValue();
26638
26639 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
26640 auto isAnyExtend = [NumElts = VT.getVectorNumElements(),
26641 Mask = SVN->getMask()](unsigned Scale) {
26642 for (unsigned i = 0; i != NumElts; ++i) {
26643 if (Mask[i] < 0)
26644 continue;
26645 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
26646 continue;
26647 return false;
26648 }
26649 return true;
26650 };
26651
26652 unsigned Opcode = ISD::ANY_EXTEND_VECTOR_INREG;
26653 SDValue N0 = SVN->getOperand(0);
26654 // Never create an illegal type. Only create unsupported operations if we
26655 // are pre-legalization.
26656 std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
26657 Opcode, VT, isAnyExtend, DAG, TLI, /*LegalTypes=*/true, LegalOperations);
26658 if (!OutVT)
26659 return SDValue();
26660 return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, N0));
26661}
26662
26663// Match shuffles that can be converted to zero_extend_vector_inreg.
26664// This is often generated during legalization.
26665// e.g. v4i32 <0,z,1,u> -> (v2i64 zero_extend_vector_inreg(v4i32 src))
26667 SelectionDAG &DAG,
26668 const TargetLowering &TLI,
26669 bool LegalOperations) {
26670 bool LegalTypes = true;
26671 EVT VT = SVN->getValueType(0);
26672 assert(!VT.isScalableVector() && "Encountered scalable shuffle?");
26673 unsigned NumElts = VT.getVectorNumElements();
26674 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26675
26676 // TODO: add support for big-endian when we have a test case.
26677 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26678 if (!VT.isInteger() || IsBigEndian)
26679 return SDValue();
26680
26681 SmallVector<int, 16> Mask(SVN->getMask());
26682 auto ForEachDecomposedIndice = [NumElts, &Mask](auto Fn) {
26683 for (int &Indice : Mask) {
26684 if (Indice < 0)
26685 continue;
26686 int OpIdx = (unsigned)Indice < NumElts ? 0 : 1;
26687 int OpEltIdx = (unsigned)Indice < NumElts ? Indice : Indice - NumElts;
26688 Fn(Indice, OpIdx, OpEltIdx);
26689 }
26690 };
26691
26692 // Which elements of which operand does this shuffle demand?
26693 std::array<APInt, 2> OpsDemandedElts;
26694 for (APInt &OpDemandedElts : OpsDemandedElts)
26695 OpDemandedElts = APInt::getZero(NumElts);
26696 ForEachDecomposedIndice(
26697 [&OpsDemandedElts](int &Indice, int OpIdx, int OpEltIdx) {
26698 OpsDemandedElts[OpIdx].setBit(OpEltIdx);
26699 });
26700
26701 // Element-wise(!), which of these demanded elements are know to be zero?
26702 std::array<APInt, 2> OpsKnownZeroElts;
26703 for (auto I : zip(SVN->ops(), OpsDemandedElts, OpsKnownZeroElts))
26704 std::get<2>(I) =
26705 DAG.computeVectorKnownZeroElements(std::get<0>(I), std::get<1>(I));
26706
26707 // Manifest zeroable element knowledge in the shuffle mask.
26708 // NOTE: we don't have 'zeroable' sentinel value in generic DAG,
26709 // this is a local invention, but it won't leak into DAG.
26710 // FIXME: should we not manifest them, but just check when matching?
26711 bool HadZeroableElts = false;
26712 ForEachDecomposedIndice([&OpsKnownZeroElts, &HadZeroableElts](
26713 int &Indice, int OpIdx, int OpEltIdx) {
26714 if (OpsKnownZeroElts[OpIdx][OpEltIdx]) {
26715 Indice = -2; // Zeroable element.
26716 HadZeroableElts = true;
26717 }
26718 });
26719
26720 // Don't proceed unless we've refined at least one zeroable mask indice.
26721 // If we didn't, then we are still trying to match the same shuffle mask
26722 // we previously tried to match as ISD::ANY_EXTEND_VECTOR_INREG,
26723 // and evidently failed. Proceeding will lead to endless combine loops.
26724 if (!HadZeroableElts)
26725 return SDValue();
26726
26727 // The shuffle may be more fine-grained than we want. Widen elements first.
26728 // FIXME: should we do this before manifesting zeroable shuffle mask indices?
26729 SmallVector<int, 16> ScaledMask;
26730 getShuffleMaskWithWidestElts(Mask, ScaledMask);
26731 assert(Mask.size() >= ScaledMask.size() &&
26732 Mask.size() % ScaledMask.size() == 0 && "Unexpected mask widening.");
26733 int Prescale = Mask.size() / ScaledMask.size();
26734
26735 NumElts = ScaledMask.size();
26736 EltSizeInBits *= Prescale;
26737
26738 EVT PrescaledVT = EVT::getVectorVT(
26739 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits),
26740 NumElts);
26741
26742 if (LegalTypes && !TLI.isTypeLegal(PrescaledVT) && TLI.isTypeLegal(VT))
26743 return SDValue();
26744
26745 // For example,
26746 // shuffle<0,z,1,-1> == (v2i64 zero_extend_vector_inreg(v4i32))
26747 // But not shuffle<z,z,1,-1> and not shuffle<0,z,z,-1> ! (for same types)
26748 auto isZeroExtend = [NumElts, &ScaledMask](unsigned Scale) {
26749 assert(Scale >= 2 && Scale <= NumElts && NumElts % Scale == 0 &&
26750 "Unexpected mask scaling factor.");
26751 ArrayRef<int> Mask = ScaledMask;
26752 for (unsigned SrcElt = 0, NumSrcElts = NumElts / Scale;
26753 SrcElt != NumSrcElts; ++SrcElt) {
26754 // Analyze the shuffle mask in Scale-sized chunks.
26755 ArrayRef<int> MaskChunk = Mask.take_front(Scale);
26756 assert(MaskChunk.size() == Scale && "Unexpected mask size.");
26757 Mask = Mask.drop_front(MaskChunk.size());
26758 // The first indice in this chunk must be SrcElt, but not zero!
26759 // FIXME: undef should be fine, but that results in more-defined result.
26760 if (int FirstIndice = MaskChunk[0]; (unsigned)FirstIndice != SrcElt)
26761 return false;
26762 // The rest of the indices in this chunk must be zeros.
26763 // FIXME: undef should be fine, but that results in more-defined result.
26764 if (!all_of(MaskChunk.drop_front(1),
26765 [](int Indice) { return Indice == -2; }))
26766 return false;
26767 }
26768 assert(Mask.empty() && "Did not process the whole mask?");
26769 return true;
26770 };
26771
26772 unsigned Opcode = ISD::ZERO_EXTEND_VECTOR_INREG;
26773 for (bool Commuted : {false, true}) {
26774 SDValue Op = SVN->getOperand(!Commuted ? 0 : 1);
26775 if (Commuted)
26777 std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
26778 Opcode, PrescaledVT, isZeroExtend, DAG, TLI, LegalTypes,
26779 LegalOperations);
26780 if (OutVT)
26781 return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT,
26782 DAG.getBitcast(PrescaledVT, Op)));
26783 }
26784 return SDValue();
26785}
26786
26787// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
26788// each source element of a large type into the lowest elements of a smaller
26789// destination type. This is often generated during legalization.
26790// If the source node itself was a '*_extend_vector_inreg' node then we should
26791// then be able to remove it.
26793 SelectionDAG &DAG) {
26794 EVT VT = SVN->getValueType(0);
26795 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26796
26797 // TODO Add support for big-endian when we have a test case.
26798 if (!VT.isInteger() || IsBigEndian)
26799 return SDValue();
26800
26802
26803 unsigned Opcode = N0.getOpcode();
26804 if (!ISD::isExtVecInRegOpcode(Opcode))
26805 return SDValue();
26806
26807 SDValue N00 = N0.getOperand(0);
26808 ArrayRef<int> Mask = SVN->getMask();
26809 unsigned NumElts = VT.getVectorNumElements();
26810 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26811 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
26812 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
26813
26814 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
26815 return SDValue();
26816 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
26817
26818 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
26819 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
26820 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
26821 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
26822 for (unsigned i = 0; i != NumElts; ++i) {
26823 if (Mask[i] < 0)
26824 continue;
26825 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
26826 continue;
26827 return false;
26828 }
26829 return true;
26830 };
26831
26832 // At the moment we just handle the case where we've truncated back to the
26833 // same size as before the extension.
26834 // TODO: handle more extension/truncation cases as cases arise.
26835 if (EltSizeInBits != ExtSrcSizeInBits)
26836 return SDValue();
26837
26838 // We can remove *extend_vector_inreg only if the truncation happens at
26839 // the same scale as the extension.
26840 if (isTruncate(ExtScale))
26841 return DAG.getBitcast(VT, N00);
26842
26843 return SDValue();
26844}
26845
26846// Combine shuffles of splat-shuffles of the form:
26847// shuffle (shuffle V, undef, splat-mask), undef, M
26848// If splat-mask contains undef elements, we need to be careful about
26849// introducing undef's in the folded mask which are not the result of composing
26850// the masks of the shuffles.
26852 SelectionDAG &DAG) {
26853 EVT VT = Shuf->getValueType(0);
26854 unsigned NumElts = VT.getVectorNumElements();
26855
26856 if (!Shuf->getOperand(1).isUndef())
26857 return SDValue();
26858
26859 // See if this unary non-splat shuffle actually *is* a splat shuffle,
26860 // in disguise, with all demanded elements being identical.
26861 // FIXME: this can be done per-operand.
26862 if (!Shuf->isSplat()) {
26863 APInt DemandedElts(NumElts, 0);
26864 for (int Idx : Shuf->getMask()) {
26865 if (Idx < 0)
26866 continue; // Ignore sentinel indices.
26867 assert((unsigned)Idx < NumElts && "Out-of-bounds shuffle indice?");
26868 DemandedElts.setBit(Idx);
26869 }
26870 assert(DemandedElts.popcount() > 1 && "Is a splat shuffle already?");
26871 APInt UndefElts;
26872 if (DAG.isSplatValue(Shuf->getOperand(0), DemandedElts, UndefElts)) {
26873 // Even if all demanded elements are splat, some of them could be undef.
26874 // Which lowest demanded element is *not* known-undef?
26875 std::optional<unsigned> MinNonUndefIdx;
26876 for (int Idx : Shuf->getMask()) {
26877 if (Idx < 0 || UndefElts[Idx])
26878 continue; // Ignore sentinel indices, and undef elements.
26879 MinNonUndefIdx = std::min<unsigned>(Idx, MinNonUndefIdx.value_or(~0U));
26880 }
26881 if (!MinNonUndefIdx)
26882 return DAG.getUNDEF(VT); // All undef - result is undef.
26883 assert(*MinNonUndefIdx < NumElts && "Expected valid element index.");
26884 SmallVector<int, 8> SplatMask(Shuf->getMask());
26885 for (int &Idx : SplatMask) {
26886 if (Idx < 0)
26887 continue; // Passthrough sentinel indices.
26888 // Otherwise, just pick the lowest demanded non-undef element.
26889 // Or sentinel undef, if we know we'd pick a known-undef element.
26890 Idx = UndefElts[Idx] ? -1 : *MinNonUndefIdx;
26891 }
26892 assert(SplatMask != Shuf->getMask() && "Expected mask to change!");
26893 return DAG.getVectorShuffle(VT, SDLoc(Shuf), Shuf->getOperand(0),
26894 Shuf->getOperand(1), SplatMask);
26895 }
26896 }
26897
26898 // If the inner operand is a known splat with no undefs, just return that directly.
26899 // TODO: Create DemandedElts mask from Shuf's mask.
26900 // TODO: Allow undef elements and merge with the shuffle code below.
26901 if (DAG.isSplatValue(Shuf->getOperand(0), /*AllowUndefs*/ false))
26902 return Shuf->getOperand(0);
26903
26905 if (!Splat || !Splat->isSplat())
26906 return SDValue();
26907
26908 ArrayRef<int> ShufMask = Shuf->getMask();
26909 ArrayRef<int> SplatMask = Splat->getMask();
26910 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
26911
26912 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
26913 // every undef mask element in the splat-shuffle has a corresponding undef
26914 // element in the user-shuffle's mask or if the composition of mask elements
26915 // would result in undef.
26916 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
26917 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
26918 // In this case it is not legal to simplify to the splat-shuffle because we
26919 // may be exposing the users of the shuffle an undef element at index 1
26920 // which was not there before the combine.
26921 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
26922 // In this case the composition of masks yields SplatMask, so it's ok to
26923 // simplify to the splat-shuffle.
26924 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
26925 // In this case the composed mask includes all undef elements of SplatMask
26926 // and in addition sets element zero to undef. It is safe to simplify to
26927 // the splat-shuffle.
26928 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
26929 ArrayRef<int> SplatMask) {
26930 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
26931 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
26932 SplatMask[UserMask[i]] != -1)
26933 return false;
26934 return true;
26935 };
26936 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
26937 return Shuf->getOperand(0);
26938
26939 // Create a new shuffle with a mask that is composed of the two shuffles'
26940 // masks.
26941 SmallVector<int, 32> NewMask;
26942 for (int Idx : ShufMask)
26943 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
26944
26945 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
26946 Splat->getOperand(0), Splat->getOperand(1),
26947 NewMask);
26948}
26949
26950// Combine shuffles of bitcasts into a shuffle of the bitcast type, providing
26951// the mask can be treated as a larger type.
26953 SelectionDAG &DAG,
26954 const TargetLowering &TLI,
26955 bool LegalOperations) {
26956 SDValue Op0 = SVN->getOperand(0);
26957 SDValue Op1 = SVN->getOperand(1);
26958 EVT VT = SVN->getValueType(0);
26959 if (Op0.getOpcode() != ISD::BITCAST)
26960 return SDValue();
26961 EVT InVT = Op0.getOperand(0).getValueType();
26962 if (!InVT.isVector() ||
26963 (!Op1.isUndef() && (Op1.getOpcode() != ISD::BITCAST ||
26964 Op1.getOperand(0).getValueType() != InVT)))
26965 return SDValue();
26967 (Op1.isUndef() || isAnyConstantBuildVector(Op1.getOperand(0))))
26968 return SDValue();
26969
26970 int VTLanes = VT.getVectorNumElements();
26971 int InLanes = InVT.getVectorNumElements();
26972 if (VTLanes <= InLanes || VTLanes % InLanes != 0 ||
26973 (LegalOperations &&
26975 return SDValue();
26976 int Factor = VTLanes / InLanes;
26977
26978 // Check that each group of lanes in the mask are either undef or make a valid
26979 // mask for the wider lane type.
26980 ArrayRef<int> Mask = SVN->getMask();
26981 SmallVector<int> NewMask;
26982 if (!widenShuffleMaskElts(Factor, Mask, NewMask))
26983 return SDValue();
26984
26985 if (!TLI.isShuffleMaskLegal(NewMask, InVT))
26986 return SDValue();
26987
26988 // Create the new shuffle with the new mask and bitcast it back to the
26989 // original type.
26990 SDLoc DL(SVN);
26991 Op0 = Op0.getOperand(0);
26992 Op1 = Op1.isUndef() ? DAG.getUNDEF(InVT) : Op1.getOperand(0);
26993 SDValue NewShuf = DAG.getVectorShuffle(InVT, DL, Op0, Op1, NewMask);
26994 return DAG.getBitcast(VT, NewShuf);
26995}
26996
26997/// Combine shuffle of shuffle of the form:
26998/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
27000 SelectionDAG &DAG) {
27001 if (!OuterShuf->getOperand(1).isUndef())
27002 return SDValue();
27003 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
27004 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
27005 return SDValue();
27006
27007 ArrayRef<int> OuterMask = OuterShuf->getMask();
27008 ArrayRef<int> InnerMask = InnerShuf->getMask();
27009 unsigned NumElts = OuterMask.size();
27010 assert(NumElts == InnerMask.size() && "Mask length mismatch");
27011 SmallVector<int, 32> CombinedMask(NumElts, -1);
27012 int SplatIndex = -1;
27013 for (unsigned i = 0; i != NumElts; ++i) {
27014 // Undef lanes remain undef.
27015 int OuterMaskElt = OuterMask[i];
27016 if (OuterMaskElt == -1)
27017 continue;
27018
27019 // Peek through the shuffle masks to get the underlying source element.
27020 int InnerMaskElt = InnerMask[OuterMaskElt];
27021 if (InnerMaskElt == -1)
27022 continue;
27023
27024 // Initialize the splatted element.
27025 if (SplatIndex == -1)
27026 SplatIndex = InnerMaskElt;
27027
27028 // Non-matching index - this is not a splat.
27029 if (SplatIndex != InnerMaskElt)
27030 return SDValue();
27031
27032 CombinedMask[i] = InnerMaskElt;
27033 }
27034 assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
27035 getSplatIndex(CombinedMask) != -1) &&
27036 "Expected a splat mask");
27037
27038 // TODO: The transform may be a win even if the mask is not legal.
27039 EVT VT = OuterShuf->getValueType(0);
27040 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
27041 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
27042 return SDValue();
27043
27044 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
27045 InnerShuf->getOperand(1), CombinedMask);
27046}
27047
27048/// If the shuffle mask is taking exactly one element from the first vector
27049/// operand and passing through all other elements from the second vector
27050/// operand, return the index of the mask element that is choosing an element
27051/// from the first operand. Otherwise, return -1.
27053 int MaskSize = Mask.size();
27054 int EltFromOp0 = -1;
27055 // TODO: This does not match if there are undef elements in the shuffle mask.
27056 // Should we ignore undefs in the shuffle mask instead? The trade-off is
27057 // removing an instruction (a shuffle), but losing the knowledge that some
27058 // vector lanes are not needed.
27059 for (int i = 0; i != MaskSize; ++i) {
27060 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
27061 // We're looking for a shuffle of exactly one element from operand 0.
27062 if (EltFromOp0 != -1)
27063 return -1;
27064 EltFromOp0 = i;
27065 } else if (Mask[i] != i + MaskSize) {
27066 // Nothing from operand 1 can change lanes.
27067 return -1;
27068 }
27069 }
27070 return EltFromOp0;
27071}
27072
27073/// If a shuffle inserts exactly one element from a source vector operand into
27074/// another vector operand and we can access the specified element as a scalar,
27075/// then we can eliminate the shuffle.
27076SDValue DAGCombiner::replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf) {
27077 // First, check if we are taking one element of a vector and shuffling that
27078 // element into another vector.
27079 ArrayRef<int> Mask = Shuf->getMask();
27080 SmallVector<int, 16> CommutedMask(Mask);
27081 SDValue Op0 = Shuf->getOperand(0);
27082 SDValue Op1 = Shuf->getOperand(1);
27083 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
27084 if (ShufOp0Index == -1) {
27085 // Commute mask and check again.
27087 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
27088 if (ShufOp0Index == -1)
27089 return SDValue();
27090 // Commute operands to match the commuted shuffle mask.
27091 std::swap(Op0, Op1);
27092 Mask = CommutedMask;
27093 }
27094
27095 // The shuffle inserts exactly one element from operand 0 into operand 1.
27096 // Now see if we can access that element as a scalar via a real insert element
27097 // instruction.
27098 // TODO: We can try harder to locate the element as a scalar. Examples: it
27099 // could be an operand of BUILD_VECTOR, or a constant.
27100 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
27101 "Shuffle mask value must be from operand 0");
27102
27103 SDValue Elt;
27104 if (sd_match(Op0, m_InsertElt(m_Value(), m_Value(Elt),
27105 m_SpecificInt(Mask[ShufOp0Index])))) {
27106 // There's an existing insertelement with constant insertion index, so we
27107 // don't need to check the legality/profitability of a replacement operation
27108 // that differs at most in the constant value. The target should be able to
27109 // lower any of those in a similar way. If not, legalization will expand
27110 // this to a scalar-to-vector plus shuffle.
27111 //
27112 // Note that the shuffle may move the scalar from the position that the
27113 // insert element used. Therefore, our new insert element occurs at the
27114 // shuffle's mask index value, not the insert's index value.
27115 //
27116 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
27117 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
27118 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
27119 Op1, Elt, NewInsIndex);
27120 }
27121
27122 if (!hasOperation(ISD::INSERT_VECTOR_ELT, Op0.getValueType()))
27123 return SDValue();
27124
27126 Mask[ShufOp0Index] == 0) {
27127 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
27128 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
27129 Op1, Elt, NewInsIndex);
27130 }
27131
27132 return SDValue();
27133}
27134
27135/// If we have a unary shuffle of a shuffle, see if it can be folded away
27136/// completely. This has the potential to lose undef knowledge because the first
27137/// shuffle may not have an undef mask element where the second one does. So
27138/// only call this after doing simplifications based on demanded elements.
27140 // shuf (shuf0 X, Y, Mask0), undef, Mask
27141 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
27142 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
27143 return SDValue();
27144
27145 ArrayRef<int> Mask = Shuf->getMask();
27146 ArrayRef<int> Mask0 = Shuf0->getMask();
27147 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
27148 // Ignore undef elements.
27149 if (Mask[i] == -1)
27150 continue;
27151 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
27152
27153 // Is the element of the shuffle operand chosen by this shuffle the same as
27154 // the element chosen by the shuffle operand itself?
27155 if (Mask0[Mask[i]] != Mask0[i])
27156 return SDValue();
27157 }
27158 // Every element of this shuffle is identical to the result of the previous
27159 // shuffle, so we can replace this value.
27160 return Shuf->getOperand(0);
27161}
27162
27163SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
27164 EVT VT = N->getValueType(0);
27165 unsigned NumElts = VT.getVectorNumElements();
27166
27167 SDValue N0 = N->getOperand(0);
27168 SDValue N1 = N->getOperand(1);
27169
27170 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
27171
27172 // Canonicalize shuffle undef, undef -> undef
27173 if (N0.isUndef() && N1.isUndef())
27174 return DAG.getUNDEF(VT);
27175
27176 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
27177
27178 // Canonicalize shuffle v, v -> v, undef
27179 if (N0 == N1)
27180 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
27181 createUnaryMask(SVN->getMask(), NumElts));
27182
27183 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
27184 if (N0.isUndef())
27185 return DAG.getCommutedVectorShuffle(*SVN);
27186
27187 // Remove references to rhs if it is undef
27188 if (N1.isUndef()) {
27189 bool Changed = false;
27190 SmallVector<int, 8> NewMask;
27191 for (unsigned i = 0; i != NumElts; ++i) {
27192 int Idx = SVN->getMaskElt(i);
27193 if (Idx >= (int)NumElts) {
27194 Idx = -1;
27195 Changed = true;
27196 }
27197 NewMask.push_back(Idx);
27198 }
27199 if (Changed)
27200 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
27201 }
27202
27203 if (SDValue InsElt = replaceShuffleOfInsert(SVN))
27204 return InsElt;
27205
27206 // A shuffle of a single vector that is a splatted value can always be folded.
27207 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
27208 return V;
27209
27210 if (SDValue V = formSplatFromShuffles(SVN, DAG))
27211 return V;
27212
27213 // If it is a splat, check if the argument vector is another splat or a
27214 // build_vector.
27215 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
27216 int SplatIndex = SVN->getSplatIndex();
27217 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
27218 TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) {
27219 // splat (vector_bo L, R), Index -->
27220 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
27221 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
27222 SDLoc DL(N);
27223 EVT EltVT = VT.getScalarType();
27224 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
27225 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
27226 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
27227 SDValue NewBO =
27228 DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags());
27229 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
27230 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
27231 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
27232 }
27233
27234 // splat(scalar_to_vector(x), 0) -> build_vector(x,...,x)
27235 // splat(insert_vector_elt(v, x, c), c) -> build_vector(x,...,x)
27236 if ((!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) &&
27237 N0.hasOneUse()) {
27238 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && SplatIndex == 0)
27239 return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(0));
27240
27242 if (auto *Idx = dyn_cast<ConstantSDNode>(N0.getOperand(2)))
27243 if (Idx->getAPIntValue() == SplatIndex)
27244 return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(1));
27245
27246 // Look through a bitcast if LE and splatting lane 0, through to a
27247 // scalar_to_vector or a build_vector.
27248 if (N0.getOpcode() == ISD::BITCAST && N0.getOperand(0).hasOneUse() &&
27249 SplatIndex == 0 && DAG.getDataLayout().isLittleEndian() &&
27252 EVT N00VT = N0.getOperand(0).getValueType();
27253 if (VT.getScalarSizeInBits() <= N00VT.getScalarSizeInBits() &&
27254 VT.isInteger() && N00VT.isInteger()) {
27255 EVT InVT =
27258 SDLoc(N), InVT);
27259 return DAG.getSplatBuildVector(VT, SDLoc(N), Op);
27260 }
27261 }
27262 }
27263
27264 // If this is a bit convert that changes the element type of the vector but
27265 // not the number of vector elements, look through it. Be careful not to
27266 // look though conversions that change things like v4f32 to v2f64.
27267 SDNode *V = N0.getNode();
27268 if (V->getOpcode() == ISD::BITCAST) {
27269 SDValue ConvInput = V->getOperand(0);
27270 if (ConvInput.getValueType().isVector() &&
27271 ConvInput.getValueType().getVectorNumElements() == NumElts)
27272 V = ConvInput.getNode();
27273 }
27274
27275 if (V->getOpcode() == ISD::BUILD_VECTOR) {
27276 assert(V->getNumOperands() == NumElts &&
27277 "BUILD_VECTOR has wrong number of operands");
27278 SDValue Base;
27279 bool AllSame = true;
27280 for (unsigned i = 0; i != NumElts; ++i) {
27281 if (!V->getOperand(i).isUndef()) {
27282 Base = V->getOperand(i);
27283 break;
27284 }
27285 }
27286 // Splat of <u, u, u, u>, return <u, u, u, u>
27287 if (!Base.getNode())
27288 return N0;
27289 for (unsigned i = 0; i != NumElts; ++i) {
27290 if (V->getOperand(i) != Base) {
27291 AllSame = false;
27292 break;
27293 }
27294 }
27295 // Splat of <x, x, x, x>, return <x, x, x, x>
27296 if (AllSame)
27297 return N0;
27298
27299 // Canonicalize any other splat as a build_vector, but avoid defining any
27300 // undefined elements in the mask.
27301 SDValue Splatted = V->getOperand(SplatIndex);
27302 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
27303 EVT EltVT = Splatted.getValueType();
27304
27305 for (unsigned i = 0; i != NumElts; ++i) {
27306 if (SVN->getMaskElt(i) < 0)
27307 Ops[i] = DAG.getUNDEF(EltVT);
27308 }
27309
27310 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
27311
27312 // We may have jumped through bitcasts, so the type of the
27313 // BUILD_VECTOR may not match the type of the shuffle.
27314 if (V->getValueType(0) != VT)
27315 NewBV = DAG.getBitcast(VT, NewBV);
27316 return NewBV;
27317 }
27318 }
27319
27320 // Simplify source operands based on shuffle mask.
27322 return SDValue(N, 0);
27323
27324 // This is intentionally placed after demanded elements simplification because
27325 // it could eliminate knowledge of undef elements created by this shuffle.
27326 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
27327 return ShufOp;
27328
27329 // Match shuffles that can be converted to any_vector_extend_in_reg.
27330 if (SDValue V =
27331 combineShuffleToAnyExtendVectorInreg(SVN, DAG, TLI, LegalOperations))
27332 return V;
27333
27334 // Combine "truncate_vector_in_reg" style shuffles.
27335 if (SDValue V = combineTruncationShuffle(SVN, DAG))
27336 return V;
27337
27338 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
27339 Level < AfterLegalizeVectorOps &&
27340 (N1.isUndef() ||
27341 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
27342 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
27343 if (SDValue V = partitionShuffleOfConcats(N, DAG))
27344 return V;
27345 }
27346
27347 // A shuffle of a concat of the same narrow vector can be reduced to use
27348 // only low-half elements of a concat with undef:
27349 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
27350 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
27351 N0.getNumOperands() == 2 &&
27352 N0.getOperand(0) == N0.getOperand(1)) {
27353 int HalfNumElts = (int)NumElts / 2;
27354 SmallVector<int, 8> NewMask;
27355 for (unsigned i = 0; i != NumElts; ++i) {
27356 int Idx = SVN->getMaskElt(i);
27357 if (Idx >= HalfNumElts) {
27358 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
27359 Idx -= HalfNumElts;
27360 }
27361 NewMask.push_back(Idx);
27362 }
27363 if (TLI.isShuffleMaskLegal(NewMask, VT)) {
27364 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
27365 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
27366 N0.getOperand(0), UndefVec);
27367 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
27368 }
27369 }
27370
27371 // See if we can replace a shuffle with an insert_subvector.
27372 // e.g. v2i32 into v8i32:
27373 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
27374 // --> insert_subvector(lhs,rhs1,4).
27375 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) &&
27377 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) {
27378 // Ensure RHS subvectors are legal.
27379 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors");
27380 EVT SubVT = RHS.getOperand(0).getValueType();
27381 int NumSubVecs = RHS.getNumOperands();
27382 int NumSubElts = SubVT.getVectorNumElements();
27383 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch");
27384 if (!TLI.isTypeLegal(SubVT))
27385 return SDValue();
27386
27387 // Don't bother if we have an unary shuffle (matches undef + LHS elts).
27388 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; }))
27389 return SDValue();
27390
27391 // Search [NumSubElts] spans for RHS sequence.
27392 // TODO: Can we avoid nested loops to increase performance?
27393 SmallVector<int> InsertionMask(NumElts);
27394 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) {
27395 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) {
27396 // Reset mask to identity.
27397 std::iota(InsertionMask.begin(), InsertionMask.end(), 0);
27398
27399 // Add subvector insertion.
27400 std::iota(InsertionMask.begin() + SubIdx,
27401 InsertionMask.begin() + SubIdx + NumSubElts,
27402 NumElts + (SubVec * NumSubElts));
27403
27404 // See if the shuffle mask matches the reference insertion mask.
27405 bool MatchingShuffle = true;
27406 for (int i = 0; i != (int)NumElts; ++i) {
27407 int ExpectIdx = InsertionMask[i];
27408 int ActualIdx = Mask[i];
27409 if (0 <= ActualIdx && ExpectIdx != ActualIdx) {
27410 MatchingShuffle = false;
27411 break;
27412 }
27413 }
27414
27415 if (MatchingShuffle)
27416 return DAG.getInsertSubvector(SDLoc(N), LHS, RHS.getOperand(SubVec),
27417 SubIdx);
27418 }
27419 }
27420 return SDValue();
27421 };
27422 ArrayRef<int> Mask = SVN->getMask();
27423 if (N1.getOpcode() == ISD::CONCAT_VECTORS)
27424 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask))
27425 return InsertN1;
27426 if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
27427 SmallVector<int> CommuteMask(Mask);
27429 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask))
27430 return InsertN0;
27431 }
27432 }
27433
27434 // If we're not performing a select/blend shuffle, see if we can convert the
27435 // shuffle into a AND node, with all the out-of-lane elements are known zero.
27436 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
27437 bool IsInLaneMask = true;
27438 ArrayRef<int> Mask = SVN->getMask();
27439 SmallVector<int, 16> ClearMask(NumElts, -1);
27440 APInt DemandedLHS = APInt::getZero(NumElts);
27441 APInt DemandedRHS = APInt::getZero(NumElts);
27442 for (int I = 0; I != (int)NumElts; ++I) {
27443 int M = Mask[I];
27444 if (M < 0)
27445 continue;
27446 ClearMask[I] = M == I ? I : (I + NumElts);
27447 IsInLaneMask &= (M == I) || (M == (int)(I + NumElts));
27448 if (M != I) {
27449 APInt &Demanded = M < (int)NumElts ? DemandedLHS : DemandedRHS;
27450 Demanded.setBit(M % NumElts);
27451 }
27452 }
27453 // TODO: Should we try to mask with N1 as well?
27454 if (!IsInLaneMask && (!DemandedLHS.isZero() || !DemandedRHS.isZero()) &&
27455 (DemandedLHS.isZero() || DAG.MaskedVectorIsZero(N0, DemandedLHS)) &&
27456 (DemandedRHS.isZero() || DAG.MaskedVectorIsZero(N1, DemandedRHS))) {
27457 SDLoc DL(N);
27458 EVT IntVT = VT.changeVectorElementTypeToInteger();
27459 EVT IntSVT = VT.getVectorElementType().changeTypeToInteger();
27460 // Transform the type to a legal type so that the buildvector constant
27461 // elements are not illegal. Make sure that the result is larger than the
27462 // original type, incase the value is split into two (eg i64->i32).
27463 if (!TLI.isTypeLegal(IntSVT) && LegalTypes)
27464 IntSVT = TLI.getTypeToTransformTo(*DAG.getContext(), IntSVT);
27465 if (IntSVT.getSizeInBits() >= IntVT.getScalarSizeInBits()) {
27466 SDValue ZeroElt = DAG.getConstant(0, DL, IntSVT);
27467 SDValue AllOnesElt = DAG.getAllOnesConstant(DL, IntSVT);
27468 SmallVector<SDValue, 16> AndMask(NumElts, DAG.getUNDEF(IntSVT));
27469 for (int I = 0; I != (int)NumElts; ++I)
27470 if (0 <= Mask[I])
27471 AndMask[I] = Mask[I] == I ? AllOnesElt : ZeroElt;
27472
27473 // See if a clear mask is legal instead of going via
27474 // XformToShuffleWithZero which loses UNDEF mask elements.
27475 if (TLI.isVectorClearMaskLegal(ClearMask, IntVT))
27476 return DAG.getBitcast(
27477 VT, DAG.getVectorShuffle(IntVT, DL, DAG.getBitcast(IntVT, N0),
27478 DAG.getConstant(0, DL, IntVT), ClearMask));
27479
27480 if (TLI.isOperationLegalOrCustom(ISD::AND, IntVT))
27481 return DAG.getBitcast(
27482 VT, DAG.getNode(ISD::AND, DL, IntVT, DAG.getBitcast(IntVT, N0),
27483 DAG.getBuildVector(IntVT, DL, AndMask)));
27484 }
27485 }
27486 }
27487
27488 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
27489 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
27490 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
27491 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
27492 return Res;
27493
27494 // If this shuffle only has a single input that is a bitcasted shuffle,
27495 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
27496 // back to their original types.
27497 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
27498 N1.isUndef() && Level < AfterLegalizeVectorOps &&
27499 TLI.isTypeLegal(VT)) {
27500
27502 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
27503 EVT SVT = VT.getScalarType();
27504 EVT InnerVT = BC0->getValueType(0);
27505 EVT InnerSVT = InnerVT.getScalarType();
27506
27507 // Determine which shuffle works with the smaller scalar type.
27508 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
27509 EVT ScaleSVT = ScaleVT.getScalarType();
27510
27511 if (TLI.isTypeLegal(ScaleVT) &&
27512 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
27513 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
27514 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
27515 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
27516
27517 // Scale the shuffle masks to the smaller scalar type.
27518 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
27519 SmallVector<int, 8> InnerMask;
27520 SmallVector<int, 8> OuterMask;
27521 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
27522 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
27523
27524 // Merge the shuffle masks.
27525 SmallVector<int, 8> NewMask;
27526 for (int M : OuterMask)
27527 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
27528
27529 // Test for shuffle mask legality over both commutations.
27530 SDValue SV0 = BC0->getOperand(0);
27531 SDValue SV1 = BC0->getOperand(1);
27532 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
27533 if (!LegalMask) {
27534 std::swap(SV0, SV1);
27536 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
27537 }
27538
27539 if (LegalMask) {
27540 SV0 = DAG.getBitcast(ScaleVT, SV0);
27541 SV1 = DAG.getBitcast(ScaleVT, SV1);
27542 return DAG.getBitcast(
27543 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
27544 }
27545 }
27546 }
27547 }
27548
27549 // Match shuffles of bitcasts, so long as the mask can be treated as the
27550 // larger type.
27551 if (SDValue V = combineShuffleOfBitcast(SVN, DAG, TLI, LegalOperations))
27552 return V;
27553
27554 // Compute the combined shuffle mask for a shuffle with SV0 as the first
27555 // operand, and SV1 as the second operand.
27556 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
27557 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
27558 auto MergeInnerShuffle =
27559 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
27560 ShuffleVectorSDNode *OtherSVN, SDValue N1,
27561 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
27562 SmallVectorImpl<int> &Mask) -> bool {
27563 // Don't try to fold splats; they're likely to simplify somehow, or they
27564 // might be free.
27565 if (OtherSVN->isSplat())
27566 return false;
27567
27568 SV0 = SV1 = SDValue();
27569 Mask.clear();
27570
27571 for (unsigned i = 0; i != NumElts; ++i) {
27572 int Idx = SVN->getMaskElt(i);
27573 if (Idx < 0) {
27574 // Propagate Undef.
27575 Mask.push_back(Idx);
27576 continue;
27577 }
27578
27579 if (Commute)
27580 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
27581
27582 SDValue CurrentVec;
27583 if (Idx < (int)NumElts) {
27584 // This shuffle index refers to the inner shuffle N0. Lookup the inner
27585 // shuffle mask to identify which vector is actually referenced.
27586 Idx = OtherSVN->getMaskElt(Idx);
27587 if (Idx < 0) {
27588 // Propagate Undef.
27589 Mask.push_back(Idx);
27590 continue;
27591 }
27592 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
27593 : OtherSVN->getOperand(1);
27594 } else {
27595 // This shuffle index references an element within N1.
27596 CurrentVec = N1;
27597 }
27598
27599 // Simple case where 'CurrentVec' is UNDEF.
27600 if (CurrentVec.isUndef()) {
27601 Mask.push_back(-1);
27602 continue;
27603 }
27604
27605 // Canonicalize the shuffle index. We don't know yet if CurrentVec
27606 // will be the first or second operand of the combined shuffle.
27607 Idx = Idx % NumElts;
27608 if (!SV0.getNode() || SV0 == CurrentVec) {
27609 // Ok. CurrentVec is the left hand side.
27610 // Update the mask accordingly.
27611 SV0 = CurrentVec;
27612 Mask.push_back(Idx);
27613 continue;
27614 }
27615 if (!SV1.getNode() || SV1 == CurrentVec) {
27616 // Ok. CurrentVec is the right hand side.
27617 // Update the mask accordingly.
27618 SV1 = CurrentVec;
27619 Mask.push_back(Idx + NumElts);
27620 continue;
27621 }
27622
27623 // Last chance - see if the vector is another shuffle and if it
27624 // uses one of the existing candidate shuffle ops.
27625 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
27626 int InnerIdx = CurrentSVN->getMaskElt(Idx);
27627 if (InnerIdx < 0) {
27628 Mask.push_back(-1);
27629 continue;
27630 }
27631 SDValue InnerVec = (InnerIdx < (int)NumElts)
27632 ? CurrentSVN->getOperand(0)
27633 : CurrentSVN->getOperand(1);
27634 if (InnerVec.isUndef()) {
27635 Mask.push_back(-1);
27636 continue;
27637 }
27638 InnerIdx %= NumElts;
27639 if (InnerVec == SV0) {
27640 Mask.push_back(InnerIdx);
27641 continue;
27642 }
27643 if (InnerVec == SV1) {
27644 Mask.push_back(InnerIdx + NumElts);
27645 continue;
27646 }
27647 }
27648
27649 // Bail out if we cannot convert the shuffle pair into a single shuffle.
27650 return false;
27651 }
27652
27653 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
27654 return true;
27655
27656 // Avoid introducing shuffles with illegal mask.
27657 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
27658 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
27659 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
27660 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
27661 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
27662 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
27663 if (TLI.isShuffleMaskLegal(Mask, VT))
27664 return true;
27665
27666 std::swap(SV0, SV1);
27668 return TLI.isShuffleMaskLegal(Mask, VT);
27669 };
27670
27671 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
27672 // Canonicalize shuffles according to rules:
27673 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
27674 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
27675 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
27676 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
27678 // The incoming shuffle must be of the same type as the result of the
27679 // current shuffle.
27680 assert(N1->getOperand(0).getValueType() == VT &&
27681 "Shuffle types don't match");
27682
27683 SDValue SV0 = N1->getOperand(0);
27684 SDValue SV1 = N1->getOperand(1);
27685 bool HasSameOp0 = N0 == SV0;
27686 bool IsSV1Undef = SV1.isUndef();
27687 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
27688 // Commute the operands of this shuffle so merging below will trigger.
27689 return DAG.getCommutedVectorShuffle(*SVN);
27690 }
27691
27692 // Canonicalize splat shuffles to the RHS to improve merging below.
27693 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
27694 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
27695 N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
27696 cast<ShuffleVectorSDNode>(N0)->isSplat() &&
27697 !cast<ShuffleVectorSDNode>(N1)->isSplat()) {
27698 return DAG.getCommutedVectorShuffle(*SVN);
27699 }
27700
27701 // Try to fold according to rules:
27702 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
27703 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
27704 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
27705 // Don't try to fold shuffles with illegal type.
27706 // Only fold if this shuffle is the only user of the other shuffle.
27707 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
27708 for (int i = 0; i != 2; ++i) {
27709 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
27710 N->isOnlyUserOf(N->getOperand(i).getNode())) {
27711 // The incoming shuffle must be of the same type as the result of the
27712 // current shuffle.
27713 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
27714 assert(OtherSV->getOperand(0).getValueType() == VT &&
27715 "Shuffle types don't match");
27716
27717 SDValue SV0, SV1;
27718 SmallVector<int, 4> Mask;
27719 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
27720 SV0, SV1, Mask)) {
27721 // Check if all indices in Mask are Undef. In case, propagate Undef.
27722 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
27723 return DAG.getUNDEF(VT);
27724
27725 return DAG.getVectorShuffle(VT, SDLoc(N),
27726 SV0 ? SV0 : DAG.getUNDEF(VT),
27727 SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
27728 }
27729 }
27730 }
27731
27732 // Merge shuffles through binops if we are able to merge it with at least
27733 // one other shuffles.
27734 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
27735 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
27736 unsigned SrcOpcode = N0.getOpcode();
27737 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
27738 (N1.isUndef() ||
27739 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
27740 // Get binop source ops, or just pass on the undef.
27741 SDValue Op00 = N0.getOperand(0);
27742 SDValue Op01 = N0.getOperand(1);
27743 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
27744 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
27745 // TODO: We might be able to relax the VT check but we don't currently
27746 // have any isBinOp() that has different result/ops VTs so play safe until
27747 // we have test coverage.
27748 if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
27749 Op01.getValueType() == VT && Op11.getValueType() == VT &&
27750 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
27751 Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
27752 Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
27753 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
27754 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
27755 SmallVectorImpl<int> &Mask, bool LeftOp,
27756 bool Commute) {
27757 SDValue InnerN = Commute ? N1 : N0;
27758 SDValue Op0 = LeftOp ? Op00 : Op01;
27759 SDValue Op1 = LeftOp ? Op10 : Op11;
27760 if (Commute)
27761 std::swap(Op0, Op1);
27762 // Only accept the merged shuffle if we don't introduce undef elements,
27763 // or the inner shuffle already contained undef elements.
27764 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
27765 return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
27766 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
27767 Mask) &&
27768 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
27769 llvm::none_of(Mask, [](int M) { return M < 0; }));
27770 };
27771
27772 // Ensure we don't increase the number of shuffles - we must merge a
27773 // shuffle from at least one of the LHS and RHS ops.
27774 bool MergedLeft = false;
27775 SDValue LeftSV0, LeftSV1;
27776 SmallVector<int, 4> LeftMask;
27777 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
27778 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
27779 MergedLeft = true;
27780 } else {
27781 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
27782 LeftSV0 = Op00, LeftSV1 = Op10;
27783 }
27784
27785 bool MergedRight = false;
27786 SDValue RightSV0, RightSV1;
27787 SmallVector<int, 4> RightMask;
27788 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
27789 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
27790 MergedRight = true;
27791 } else {
27792 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
27793 RightSV0 = Op01, RightSV1 = Op11;
27794 }
27795
27796 if (MergedLeft || MergedRight) {
27797 SDLoc DL(N);
27799 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
27800 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
27802 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
27803 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
27804 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
27805 }
27806 }
27807 }
27808 }
27809
27810 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
27811 return V;
27812
27813 // Match shuffles that can be converted to ISD::ZERO_EXTEND_VECTOR_INREG.
27814 // Perform this really late, because it could eliminate knowledge
27815 // of undef elements created by this shuffle.
27816 if (Level < AfterLegalizeTypes)
27817 if (SDValue V = combineShuffleToZeroExtendVectorInReg(SVN, DAG, TLI,
27818 LegalOperations))
27819 return V;
27820
27821 return SDValue();
27822}
27823
27824SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
27825 EVT VT = N->getValueType(0);
27826 if (!VT.isFixedLengthVector())
27827 return SDValue();
27828
27829 // Try to convert a scalar binop with an extracted vector element to a vector
27830 // binop. This is intended to reduce potentially expensive register moves.
27831 // TODO: Check if both operands are extracted.
27832 // TODO: How to prefer scalar/vector ops with multiple uses of the extact?
27833 // TODO: Generalize this, so it can be called from visitINSERT_VECTOR_ELT().
27834 SDValue Scalar = N->getOperand(0);
27835 unsigned Opcode = Scalar.getOpcode();
27836 EVT VecEltVT = VT.getScalarType();
27837 if (Scalar.hasOneUse() && Scalar->getNumValues() == 1 &&
27838 TLI.isBinOp(Opcode) && Scalar.getValueType() == VecEltVT &&
27839 Scalar.getOperand(0).getValueType() == VecEltVT &&
27840 Scalar.getOperand(1).getValueType() == VecEltVT &&
27841 Scalar->isOnlyUserOf(Scalar.getOperand(0).getNode()) &&
27842 Scalar->isOnlyUserOf(Scalar.getOperand(1).getNode()) &&
27843 DAG.isSafeToSpeculativelyExecute(Opcode) && hasOperation(Opcode, VT)) {
27844 // Match an extract element and get a shuffle mask equivalent.
27845 SmallVector<int, 8> ShufMask(VT.getVectorNumElements(), -1);
27846
27847 for (int i : {0, 1}) {
27848 // s2v (bo (extelt V, Idx), C) --> shuffle (bo V, C'), {Idx, -1, -1...}
27849 // s2v (bo C, (extelt V, Idx)) --> shuffle (bo C', V), {Idx, -1, -1...}
27850 SDValue EE = Scalar.getOperand(i);
27851 auto *C = dyn_cast<ConstantSDNode>(Scalar.getOperand(i ? 0 : 1));
27852 if (C && EE.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
27853 EE.getOperand(0).getValueType() == VT &&
27855 // Mask = {ExtractIndex, undef, undef....}
27856 ShufMask[0] = EE.getConstantOperandVal(1);
27857 // Make sure the shuffle is legal if we are crossing lanes.
27858 if (TLI.isShuffleMaskLegal(ShufMask, VT)) {
27859 SDLoc DL(N);
27860 SDValue V[] = {EE.getOperand(0),
27861 DAG.getConstant(C->getAPIntValue(), DL, VT)};
27862 SDValue VecBO = DAG.getNode(Opcode, DL, VT, V[i], V[1 - i]);
27863 return DAG.getVectorShuffle(VT, DL, VecBO, DAG.getUNDEF(VT),
27864 ShufMask);
27865 }
27866 }
27867 }
27868 }
27869
27870 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
27871 // with a VECTOR_SHUFFLE and possible truncate.
27872 if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
27873 !Scalar.getOperand(0).getValueType().isFixedLengthVector())
27874 return SDValue();
27875
27876 // If we have an implicit truncate, truncate here if it is legal.
27877 if (VecEltVT != Scalar.getValueType() &&
27878 Scalar.getValueType().isScalarInteger() && isTypeLegal(VecEltVT)) {
27879 SDValue Val = DAG.getNode(ISD::TRUNCATE, SDLoc(Scalar), VecEltVT, Scalar);
27880 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
27881 }
27882
27883 auto *ExtIndexC = dyn_cast<ConstantSDNode>(Scalar.getOperand(1));
27884 if (!ExtIndexC)
27885 return SDValue();
27886
27887 SDValue SrcVec = Scalar.getOperand(0);
27888 EVT SrcVT = SrcVec.getValueType();
27889 unsigned SrcNumElts = SrcVT.getVectorNumElements();
27890 unsigned VTNumElts = VT.getVectorNumElements();
27891 if (VecEltVT == SrcVT.getScalarType() && VTNumElts <= SrcNumElts) {
27892 // Create a shuffle equivalent for scalar-to-vector: {ExtIndex, -1, -1, ...}
27893 SmallVector<int, 8> Mask(SrcNumElts, -1);
27894 Mask[0] = ExtIndexC->getZExtValue();
27895 SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
27896 SrcVT, SDLoc(N), SrcVec, DAG.getUNDEF(SrcVT), Mask, DAG);
27897 if (!LegalShuffle)
27898 return SDValue();
27899
27900 // If the initial vector is the same size, the shuffle is the result.
27901 if (VT == SrcVT)
27902 return LegalShuffle;
27903
27904 // If not, shorten the shuffled vector.
27905 if (VTNumElts != SrcNumElts) {
27906 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
27907 EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
27908 SrcVT.getVectorElementType(), VTNumElts);
27909 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, LegalShuffle,
27910 ZeroIdx);
27911 }
27912 }
27913
27914 return SDValue();
27915}
27916
27917SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
27918 EVT VT = N->getValueType(0);
27919 SDValue N0 = N->getOperand(0);
27920 SDValue N1 = N->getOperand(1);
27921 SDValue N2 = N->getOperand(2);
27922 uint64_t InsIdx = N->getConstantOperandVal(2);
27923
27924 // Remove insert of UNDEF/POISON.
27925 if (N1.isUndef()) {
27926 if (N1.getOpcode() == ISD::POISON || N0.getOpcode() == ISD::UNDEF)
27927 return N0;
27928 return DAG.getFreeze(N0);
27929 }
27930
27931 // If this is an insert of an extracted vector into an undef/poison vector, we
27932 // can just use the input to the extract if the types match, and can simplify
27933 // in some cases even if they don't.
27934 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
27935 N1.getOperand(1) == N2) {
27936 EVT N1VT = N1.getValueType();
27937 EVT SrcVT = N1.getOperand(0).getValueType();
27938 if (SrcVT == VT) {
27939 // Need to ensure that result isn't more poisonous if skipping both the
27940 // extract+insert.
27941 if (N0.getOpcode() == ISD::POISON)
27942 return N1.getOperand(0);
27943 if (VT.isFixedLengthVector() && N1VT.isFixedLengthVector()) {
27944 unsigned SubVecNumElts = N1VT.getVectorNumElements();
27945 APInt EltMask = APInt::getBitsSet(VT.getVectorNumElements(), InsIdx,
27946 InsIdx + SubVecNumElts);
27947 if (DAG.isGuaranteedNotToBePoison(N1.getOperand(0), ~EltMask))
27948 return N1.getOperand(0);
27949 } else if (DAG.isGuaranteedNotToBePoison(N1.getOperand(0)))
27950 return N1.getOperand(0);
27951 }
27952 // TODO: To remove the zero check, need to adjust the offset to
27953 // a multiple of the new src type.
27954 if (isNullConstant(N2)) {
27955 if (VT.knownBitsGE(SrcVT) &&
27956 !(VT.isFixedLengthVector() && SrcVT.isScalableVector()))
27957 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
27958 VT, N0, N1.getOperand(0), N2);
27959 else if (VT.knownBitsLE(SrcVT) &&
27960 !(VT.isScalableVector() && SrcVT.isFixedLengthVector()))
27961 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
27962 VT, N1.getOperand(0), N2);
27963 }
27964 }
27965
27966 // Handle case where we've ended up inserting back into the source vector
27967 // we extracted the subvector from.
27968 // insert_subvector(N0, extract_subvector(N0, N2), N2) --> N0
27969 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && N1.getOperand(0) == N0 &&
27970 N1.getOperand(1) == N2)
27971 return N0;
27972
27973 // Simplify scalar inserts into an undef vector:
27974 // insert_subvector undef, (splat X), N2 -> splat X
27975 if (N0.isUndef() && N1.getOpcode() == ISD::SPLAT_VECTOR)
27976 if (DAG.isConstantValueOfAnyType(N1.getOperand(0)) || N1.hasOneUse())
27977 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, N1.getOperand(0));
27978
27979 // insert_subvector (splat X), (splat X), N2 -> splat X
27980 if (N0.getOpcode() == ISD::SPLAT_VECTOR && N0.getOpcode() == N1.getOpcode() &&
27981 N0.getOperand(0) == N1.getOperand(0))
27982 return N0;
27983
27984 // If we are inserting a bitcast value into an undef, with the same
27985 // number of elements, just use the bitcast input of the extract.
27986 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
27987 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
27988 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
27990 N1.getOperand(0).getOperand(1) == N2 &&
27992 VT.getVectorElementCount() &&
27994 VT.getSizeInBits()) {
27995 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
27996 }
27997
27998 // If both N1 and N2 are bitcast values on which insert_subvector
27999 // would makes sense, pull the bitcast through.
28000 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
28001 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
28002 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
28003 SDValue CN0 = N0.getOperand(0);
28004 SDValue CN1 = N1.getOperand(0);
28005 EVT CN0VT = CN0.getValueType();
28006 EVT CN1VT = CN1.getValueType();
28007 if (CN0VT.isVector() && CN1VT.isVector() &&
28008 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
28010 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
28011 CN0.getValueType(), CN0, CN1, N2);
28012 return DAG.getBitcast(VT, NewINSERT);
28013 }
28014 }
28015
28016 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
28017 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
28018 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
28019 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
28020 N0.getOperand(1).getValueType() == N1.getValueType() &&
28021 N0.getOperand(2) == N2)
28022 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
28023 N1, N2);
28024
28025 // Eliminate an intermediate insert into an undef vector:
28026 // insert_subvector undef, (insert_subvector undef, X, 0), 0 -->
28027 // insert_subvector undef, X, 0
28028 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
28029 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)) &&
28030 isNullConstant(N2))
28031 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
28032 N1.getOperand(1), N2);
28033
28034 // Push subvector bitcasts to the output, adjusting the index as we go.
28035 // insert_subvector(bitcast(v), bitcast(s), c1)
28036 // -> bitcast(insert_subvector(v, s, c2))
28037 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
28038 N1.getOpcode() == ISD::BITCAST) {
28039 SDValue N0Src = peekThroughBitcasts(N0);
28040 SDValue N1Src = peekThroughBitcasts(N1);
28041 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
28042 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
28043 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
28044 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
28045 EVT NewVT;
28046 SDLoc DL(N);
28047 SDValue NewIdx;
28048 LLVMContext &Ctx = *DAG.getContext();
28049 ElementCount NumElts = VT.getVectorElementCount();
28050 unsigned EltSizeInBits = VT.getScalarSizeInBits();
28051 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
28052 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
28053 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
28054 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
28055 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
28056 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
28057 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
28058 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
28059 NumElts.divideCoefficientBy(Scale));
28060 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
28061 }
28062 }
28063 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
28064 SDValue Res = DAG.getBitcast(NewVT, N0Src);
28065 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
28066 return DAG.getBitcast(VT, Res);
28067 }
28068 }
28069 }
28070
28071 // Canonicalize insert_subvector dag nodes.
28072 // Example:
28073 // (insert_subvector (insert_subvector A, Idx0), Idx1)
28074 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
28075 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
28076 N1.getValueType() == N0.getOperand(1).getValueType()) {
28077 unsigned OtherIdx = N0.getConstantOperandVal(2);
28078 if (InsIdx < OtherIdx) {
28079 // Swap nodes.
28080 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
28081 N0.getOperand(0), N1, N2);
28082 AddToWorklist(NewOp.getNode());
28083 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
28084 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
28085 }
28086 }
28087
28088 // If the input vector is a concatenation, and the insert replaces
28089 // one of the pieces, we can optimize into a single concat_vectors.
28090 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
28091 N0.getOperand(0).getValueType() == N1.getValueType() &&
28094 unsigned Factor = N1.getValueType().getVectorMinNumElements();
28096 Ops[InsIdx / Factor] = N1;
28097 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
28098 }
28099
28100 // Simplify source operands based on insertion.
28102 return SDValue(N, 0);
28103
28104 return SDValue();
28105}
28106
28107SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
28108 SDValue N0 = N->getOperand(0);
28109
28110 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
28111 if (N0->getOpcode() == ISD::FP16_TO_FP)
28112 return N0->getOperand(0);
28113
28114 return SDValue();
28115}
28116
28117SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
28118 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
28119 auto Op = N->getOpcode();
28120 assert((Op == ISD::FP16_TO_FP || Op == ISD::BF16_TO_FP) &&
28121 "opcode should be FP16_TO_FP or BF16_TO_FP.");
28122 SDValue N0 = N->getOperand(0);
28123
28124 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) or
28125 // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op)
28126 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
28127 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
28128 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
28129 return DAG.getNode(Op, SDLoc(N), N->getValueType(0), N0.getOperand(0));
28130 }
28131 }
28132
28133 if (SDValue CastEliminated = eliminateFPCastPair(N))
28134 return CastEliminated;
28135
28136 // Sometimes constants manage to survive very late in the pipeline, e.g.,
28137 // because they are wrapped inside the <1 x f16> type. Try one last time to
28138 // get rid of them.
28139 SDValue Folded = DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N),
28140 N->getValueType(0), {N0});
28141 return Folded;
28142}
28143
28144SDValue DAGCombiner::visitFP_TO_BF16(SDNode *N) {
28145 SDValue N0 = N->getOperand(0);
28146
28147 // fold (fp_to_bf16 (bf16_to_fp op)) -> op
28148 if (N0->getOpcode() == ISD::BF16_TO_FP)
28149 return N0->getOperand(0);
28150
28151 return SDValue();
28152}
28153
28154SDValue DAGCombiner::visitBF16_TO_FP(SDNode *N) {
28155 // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op)
28156 return visitFP16_TO_FP(N);
28157}
28158
28159SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
28160 SDValue N0 = N->getOperand(0);
28161 EVT VT = N0.getValueType();
28162 unsigned Opcode = N->getOpcode();
28163
28164 // VECREDUCE over 1-element vector is just an extract.
28165 if (VT.getVectorElementCount().isScalar()) {
28166 SDLoc dl(N);
28167 SDValue Res =
28169 DAG.getVectorIdxConstant(0, dl));
28170 if (Res.getValueType() != N->getValueType(0))
28171 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
28172 return Res;
28173 }
28174
28175 // On an boolean vector an and/or reduction is the same as a umin/umax
28176 // reduction. Convert them if the latter is legal while the former isn't.
28177 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
28178 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
28179 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
28180 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
28181 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
28183 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
28184 }
28185
28186 // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val)
28187 // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val)
28188 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
28189 TLI.isTypeLegal(N0.getOperand(1).getValueType())) {
28190 SDValue Vec = N0.getOperand(0);
28191 SDValue Subvec = N0.getOperand(1);
28192 if ((Opcode == ISD::VECREDUCE_OR &&
28193 (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) ||
28194 (Opcode == ISD::VECREDUCE_AND &&
28195 (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec))))
28196 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec);
28197 }
28198
28199 // vecreduce_or(sext(x)) -> sext(vecreduce_or(x))
28200 // Same for zext and anyext, and for and/or/xor reductions.
28201 if ((Opcode == ISD::VECREDUCE_OR || Opcode == ISD::VECREDUCE_AND ||
28202 Opcode == ISD::VECREDUCE_XOR) &&
28203 (N0.getOpcode() == ISD::SIGN_EXTEND ||
28204 N0.getOpcode() == ISD::ZERO_EXTEND ||
28205 N0.getOpcode() == ISD::ANY_EXTEND) &&
28206 TLI.isOperationLegalOrCustom(Opcode, N0.getOperand(0).getValueType())) {
28207 SDValue Red = DAG.getNode(Opcode, SDLoc(N),
28209 N0.getOperand(0));
28210 return DAG.getNode(N0.getOpcode(), SDLoc(N), N->getValueType(0), Red);
28211 }
28212 return SDValue();
28213}
28214
28215SDValue DAGCombiner::visitVP_FSUB(SDNode *N) {
28216 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
28217
28218 // FSUB -> FMA combines:
28219 if (SDValue Fused = visitFSUBForFMACombine<VPMatchContext>(N)) {
28220 AddToWorklist(Fused.getNode());
28221 return Fused;
28222 }
28223 return SDValue();
28224}
28225
28226SDValue DAGCombiner::visitVPOp(SDNode *N) {
28227
28228 if (N->getOpcode() == ISD::VP_GATHER)
28229 if (SDValue SD = visitVPGATHER(N))
28230 return SD;
28231
28232 if (N->getOpcode() == ISD::VP_SCATTER)
28233 if (SDValue SD = visitVPSCATTER(N))
28234 return SD;
28235
28236 if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD)
28237 if (SDValue SD = visitVP_STRIDED_LOAD(N))
28238 return SD;
28239
28240 if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE)
28241 if (SDValue SD = visitVP_STRIDED_STORE(N))
28242 return SD;
28243
28244 // VP operations in which all vector elements are disabled - either by
28245 // determining that the mask is all false or that the EVL is 0 - can be
28246 // eliminated.
28247 bool AreAllEltsDisabled = false;
28248 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode()))
28249 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx));
28250 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode()))
28251 AreAllEltsDisabled |=
28252 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode());
28253
28254 // This is the only generic VP combine we support for now.
28255 if (!AreAllEltsDisabled) {
28256 switch (N->getOpcode()) {
28257 case ISD::VP_FADD:
28258 return visitVP_FADD(N);
28259 case ISD::VP_FSUB:
28260 return visitVP_FSUB(N);
28261 case ISD::VP_FMA:
28262 return visitFMA<VPMatchContext>(N);
28263 case ISD::VP_SELECT:
28264 return visitVP_SELECT(N);
28265 case ISD::VP_MUL:
28266 return visitMUL<VPMatchContext>(N);
28267 case ISD::VP_SUB:
28268 return foldSubCtlzNot<VPMatchContext>(N, DAG);
28269 default:
28270 break;
28271 }
28272 return SDValue();
28273 }
28274
28275 // Binary operations can be replaced by UNDEF.
28276 if (ISD::isVPBinaryOp(N->getOpcode()))
28277 return DAG.getUNDEF(N->getValueType(0));
28278
28279 // VP Memory operations can be replaced by either the chain (stores) or the
28280 // chain + undef (loads).
28281 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) {
28282 if (MemSD->writeMem())
28283 return MemSD->getChain();
28284 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain());
28285 }
28286
28287 // Reduction operations return the start operand when no elements are active.
28288 if (ISD::isVPReduction(N->getOpcode()))
28289 return N->getOperand(0);
28290
28291 return SDValue();
28292}
28293
28294SDValue DAGCombiner::visitGET_FPENV_MEM(SDNode *N) {
28295 SDValue Chain = N->getOperand(0);
28296 SDValue Ptr = N->getOperand(1);
28297 EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT();
28298
28299 // Check if the memory, where FP state is written to, is used only in a single
28300 // load operation.
28301 LoadSDNode *LdNode = nullptr;
28302 for (auto *U : Ptr->users()) {
28303 if (U == N)
28304 continue;
28305 if (auto *Ld = dyn_cast<LoadSDNode>(U)) {
28306 if (LdNode && LdNode != Ld)
28307 return SDValue();
28308 LdNode = Ld;
28309 continue;
28310 }
28311 return SDValue();
28312 }
28313 if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() ||
28314 !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT ||
28316 return SDValue();
28317
28318 // Check if the loaded value is used only in a store operation.
28319 StoreSDNode *StNode = nullptr;
28320 for (SDUse &U : LdNode->uses()) {
28321 if (U.getResNo() == 0) {
28322 if (auto *St = dyn_cast<StoreSDNode>(U.getUser())) {
28323 if (StNode)
28324 return SDValue();
28325 StNode = St;
28326 } else {
28327 return SDValue();
28328 }
28329 }
28330 }
28331 if (!StNode || !StNode->isSimple() || StNode->isIndexed() ||
28332 !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT ||
28333 !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1)))
28334 return SDValue();
28335
28336 // Create new node GET_FPENV_MEM, which uses the store address to write FP
28337 // environment.
28338 SDValue Res = DAG.getGetFPEnv(Chain, SDLoc(N), StNode->getBasePtr(), MemVT,
28339 StNode->getMemOperand());
28340 CombineTo(StNode, Res, false);
28341 return Res;
28342}
28343
28344SDValue DAGCombiner::visitSET_FPENV_MEM(SDNode *N) {
28345 SDValue Chain = N->getOperand(0);
28346 SDValue Ptr = N->getOperand(1);
28347 EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT();
28348
28349 // Check if the address of FP state is used also in a store operation only.
28350 StoreSDNode *StNode = nullptr;
28351 for (auto *U : Ptr->users()) {
28352 if (U == N)
28353 continue;
28354 if (auto *St = dyn_cast<StoreSDNode>(U)) {
28355 if (StNode && StNode != St)
28356 return SDValue();
28357 StNode = St;
28358 continue;
28359 }
28360 return SDValue();
28361 }
28362 if (!StNode || !StNode->isSimple() || StNode->isIndexed() ||
28363 !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT ||
28364 !Chain.reachesChainWithoutSideEffects(SDValue(StNode, 0)))
28365 return SDValue();
28366
28367 // Check if the stored value is loaded from some location and the loaded
28368 // value is used only in the store operation.
28369 SDValue StValue = StNode->getValue();
28370 auto *LdNode = dyn_cast<LoadSDNode>(StValue);
28371 if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() ||
28372 !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT ||
28373 !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1)))
28374 return SDValue();
28375
28376 // Create new node SET_FPENV_MEM, which uses the load address to read FP
28377 // environment.
28378 SDValue Res =
28379 DAG.getSetFPEnv(LdNode->getChain(), SDLoc(N), LdNode->getBasePtr(), MemVT,
28380 LdNode->getMemOperand());
28381 return Res;
28382}
28383
28384/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
28385/// with the destination vector and a zero vector.
28386/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
28387/// vector_shuffle V, Zero, <0, 4, 2, 4>
28388SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
28389 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
28390
28391 EVT VT = N->getValueType(0);
28392 SDValue LHS = N->getOperand(0);
28393 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
28394 SDLoc DL(N);
28395
28396 // Make sure we're not running after operation legalization where it
28397 // may have custom lowered the vector shuffles.
28398 if (LegalOperations)
28399 return SDValue();
28400
28401 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
28402 return SDValue();
28403
28404 EVT RVT = RHS.getValueType();
28405 unsigned NumElts = RHS.getNumOperands();
28406
28407 // Attempt to create a valid clear mask, splitting the mask into
28408 // sub elements and checking to see if each is
28409 // all zeros or all ones - suitable for shuffle masking.
28410 auto BuildClearMask = [&](int Split) {
28411 int NumSubElts = NumElts * Split;
28412 int NumSubBits = RVT.getScalarSizeInBits() / Split;
28413
28414 SmallVector<int, 8> Indices;
28415 for (int i = 0; i != NumSubElts; ++i) {
28416 int EltIdx = i / Split;
28417 int SubIdx = i % Split;
28418 SDValue Elt = RHS.getOperand(EltIdx);
28419 // X & undef --> 0 (not undef). So this lane must be converted to choose
28420 // from the zero constant vector (same as if the element had all 0-bits).
28421 if (Elt.isUndef()) {
28422 Indices.push_back(i + NumSubElts);
28423 continue;
28424 }
28425
28426 std::optional<APInt> Bits = Elt->bitcastToAPInt();
28427 if (!Bits)
28428 return SDValue();
28429
28430 // Extract the sub element from the constant bit mask.
28431 if (DAG.getDataLayout().isBigEndian())
28432 *Bits =
28433 Bits->extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
28434 else
28435 *Bits = Bits->extractBits(NumSubBits, SubIdx * NumSubBits);
28436
28437 if (Bits->isAllOnes())
28438 Indices.push_back(i);
28439 else if (*Bits == 0)
28440 Indices.push_back(i + NumSubElts);
28441 else
28442 return SDValue();
28443 }
28444
28445 // Let's see if the target supports this vector_shuffle.
28446 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
28447 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
28448 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
28449 return SDValue();
28450
28451 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
28452 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
28453 DAG.getBitcast(ClearVT, LHS),
28454 Zero, Indices));
28455 };
28456
28457 // Determine maximum split level (byte level masking).
28458 int MaxSplit = 1;
28459 if (RVT.getScalarSizeInBits() % 8 == 0)
28460 MaxSplit = RVT.getScalarSizeInBits() / 8;
28461
28462 for (int Split = 1; Split <= MaxSplit; ++Split)
28463 if (RVT.getScalarSizeInBits() % Split == 0)
28464 if (SDValue S = BuildClearMask(Split))
28465 return S;
28466
28467 return SDValue();
28468}
28469
28470/// If a vector binop is performed on splat values, it may be profitable to
28471/// extract, scalarize, and insert/splat.
28473 const SDLoc &DL, bool LegalTypes) {
28474 SDValue N0 = N->getOperand(0);
28475 SDValue N1 = N->getOperand(1);
28476 unsigned Opcode = N->getOpcode();
28477 EVT VT = N->getValueType(0);
28478 EVT EltVT = VT.getVectorElementType();
28479 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28480
28481 // TODO: Remove/replace the extract cost check? If the elements are available
28482 // as scalars, then there may be no extract cost. Should we ask if
28483 // inserting a scalar back into a vector is cheap instead?
28484 int Index0, Index1;
28485 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
28486 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
28487 // Extract element from splat_vector should be free.
28488 // TODO: use DAG.isSplatValue instead?
28489 bool IsBothSplatVector = N0.getOpcode() == ISD::SPLAT_VECTOR &&
28491 if (!Src0 || !Src1 || Index0 != Index1 ||
28492 Src0.getValueType().getVectorElementType() != EltVT ||
28493 Src1.getValueType().getVectorElementType() != EltVT ||
28494 !(IsBothSplatVector || TLI.isExtractVecEltCheap(VT, Index0)) ||
28495 // If before type legalization, allow scalar types that will eventually be
28496 // made legal.
28498 Opcode, LegalTypes
28499 ? EltVT
28500 : TLI.getTypeToTransformTo(*DAG.getContext(), EltVT)))
28501 return SDValue();
28502
28503 // FIXME: Type legalization can't handle illegal MULHS/MULHU.
28504 if ((Opcode == ISD::MULHS || Opcode == ISD::MULHU) && !TLI.isTypeLegal(EltVT))
28505 return SDValue();
28506
28507 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode()) {
28508 // All but one element should have an undef input, which will fold to a
28509 // constant or undef. Avoid splatting which would over-define potentially
28510 // undefined elements.
28511
28512 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
28513 // build_vec ..undef, (bo X, Y), undef...
28514 SmallVector<SDValue, 16> EltsX, EltsY, EltsResult;
28515 DAG.ExtractVectorElements(Src0, EltsX);
28516 DAG.ExtractVectorElements(Src1, EltsY);
28517
28518 for (auto [X, Y] : zip(EltsX, EltsY))
28519 EltsResult.push_back(DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()));
28520 return DAG.getBuildVector(VT, DL, EltsResult);
28521 }
28522
28523 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
28524 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
28525 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
28526 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
28527
28528 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
28529 return DAG.getSplat(VT, DL, ScalarBO);
28530}
28531
28532/// Visit a vector cast operation, like FP_EXTEND.
28533SDValue DAGCombiner::SimplifyVCastOp(SDNode *N, const SDLoc &DL) {
28534 EVT VT = N->getValueType(0);
28535 assert(VT.isVector() && "SimplifyVCastOp only works on vectors!");
28536 EVT EltVT = VT.getVectorElementType();
28537 unsigned Opcode = N->getOpcode();
28538
28539 SDValue N0 = N->getOperand(0);
28540 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28541
28542 // TODO: promote operation might be also good here?
28543 int Index0;
28544 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
28545 if (Src0 &&
28546 (N0.getOpcode() == ISD::SPLAT_VECTOR ||
28547 TLI.isExtractVecEltCheap(VT, Index0)) &&
28548 TLI.isOperationLegalOrCustom(Opcode, EltVT) &&
28549 TLI.preferScalarizeSplat(N)) {
28550 EVT SrcVT = N0.getValueType();
28551 EVT SrcEltVT = SrcVT.getVectorElementType();
28552 if (!LegalTypes || TLI.isTypeLegal(SrcEltVT)) {
28553 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
28554 SDValue Elt =
28555 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcEltVT, Src0, IndexC);
28556 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, Elt, N->getFlags());
28557 if (VT.isScalableVector())
28558 return DAG.getSplatVector(VT, DL, ScalarBO);
28560 return DAG.getBuildVector(VT, DL, Ops);
28561 }
28562 }
28563
28564 return SDValue();
28565}
28566
28567/// Visit a binary vector operation, like ADD.
28568SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) {
28569 EVT VT = N->getValueType(0);
28570 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
28571
28572 SDValue LHS = N->getOperand(0);
28573 SDValue RHS = N->getOperand(1);
28574 unsigned Opcode = N->getOpcode();
28575 SDNodeFlags Flags = N->getFlags();
28576
28577 // Move unary shuffles with identical masks after a vector binop:
28578 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
28579 // --> shuffle (VBinOp A, B), Undef, Mask
28580 // This does not require type legality checks because we are creating the
28581 // same types of operations that are in the original sequence. We do have to
28582 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
28583 // though. This code is adapted from the identical transform in instcombine.
28584 if (DAG.isSafeToSpeculativelyExecute(Opcode)) {
28585 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
28586 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
28587 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
28588 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
28589 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
28590 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
28591 RHS.getOperand(0), Flags);
28592 SDValue UndefV = LHS.getOperand(1);
28593 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
28594 }
28595
28596 // Try to sink a splat shuffle after a binop with a uniform constant.
28597 // This is limited to cases where neither the shuffle nor the constant have
28598 // undefined elements because that could be poison-unsafe or inhibit
28599 // demanded elements analysis. It is further limited to not change a splat
28600 // of an inserted scalar because that may be optimized better by
28601 // load-folding or other target-specific behaviors.
28602 if (isConstOrConstSplat(RHS) && Shuf0 && all_equal(Shuf0->getMask()) &&
28603 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
28604 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
28605 // binop (splat X), (splat C) --> splat (binop X, C)
28606 SDValue X = Shuf0->getOperand(0);
28607 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
28608 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
28609 Shuf0->getMask());
28610 }
28611 if (isConstOrConstSplat(LHS) && Shuf1 && all_equal(Shuf1->getMask()) &&
28612 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
28613 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
28614 // binop (splat C), (splat X) --> splat (binop C, X)
28615 SDValue X = Shuf1->getOperand(0);
28616 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
28617 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
28618 Shuf1->getMask());
28619 }
28620 }
28621
28622 // The following pattern is likely to emerge with vector reduction ops. Moving
28623 // the binary operation ahead of insertion may allow using a narrower vector
28624 // instruction that has better performance than the wide version of the op:
28625 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
28626 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
28627 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
28628 LHS.getOperand(2) == RHS.getOperand(2) &&
28629 (LHS.hasOneUse() || RHS.hasOneUse())) {
28630 SDValue X = LHS.getOperand(1);
28631 SDValue Y = RHS.getOperand(1);
28632 SDValue Z = LHS.getOperand(2);
28633 EVT NarrowVT = X.getValueType();
28634 if (NarrowVT == Y.getValueType() &&
28635 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
28636 LegalOperations)) {
28637 // (binop undef, undef) may not return undef, so compute that result.
28638 SDValue VecC =
28639 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
28640 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
28641 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
28642 }
28643 }
28644
28645 // Make sure all but the first op are undef or constant.
28646 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
28647 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
28648 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
28649 return Op.isUndef() ||
28650 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
28651 });
28652 };
28653
28654 // The following pattern is likely to emerge with vector reduction ops. Moving
28655 // the binary operation ahead of the concat may allow using a narrower vector
28656 // instruction that has better performance than the wide version of the op:
28657 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
28658 // concat (VBinOp X, Y), VecC
28659 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
28660 (LHS.hasOneUse() || RHS.hasOneUse())) {
28661 EVT NarrowVT = LHS.getOperand(0).getValueType();
28662 if (NarrowVT == RHS.getOperand(0).getValueType() &&
28663 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
28664 unsigned NumOperands = LHS.getNumOperands();
28665 SmallVector<SDValue, 4> ConcatOps;
28666 for (unsigned i = 0; i != NumOperands; ++i) {
28667 // This constant fold for operands 1 and up.
28668 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
28669 RHS.getOperand(i)));
28670 }
28671
28672 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
28673 }
28674 }
28675
28676 if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL, LegalTypes))
28677 return V;
28678
28679 return SDValue();
28680}
28681
28682SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
28683 SDValue N2) {
28684 assert(N0.getOpcode() == ISD::SETCC &&
28685 "First argument must be a SetCC node!");
28686
28687 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
28688 cast<CondCodeSDNode>(N0.getOperand(2))->get());
28689
28690 // If we got a simplified select_cc node back from SimplifySelectCC, then
28691 // break it down into a new SETCC node, and a new SELECT node, and then return
28692 // the SELECT node, since we were called with a SELECT node.
28693 if (SCC.getNode()) {
28694 // Check to see if we got a select_cc back (to turn into setcc/select).
28695 // Otherwise, just return whatever node we got back, like fabs.
28696 if (SCC.getOpcode() == ISD::SELECT_CC) {
28697 const SDNodeFlags Flags = N0->getFlags();
28698 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
28699 N0.getValueType(),
28700 SCC.getOperand(0), SCC.getOperand(1),
28701 SCC.getOperand(4), Flags);
28702 AddToWorklist(SETCC.getNode());
28703 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
28704 SCC.getOperand(2), SCC.getOperand(3), Flags);
28705 }
28706
28707 return SCC;
28708 }
28709 return SDValue();
28710}
28711
28712/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
28713/// being selected between, see if we can simplify the select. Callers of this
28714/// should assume that TheSelect is deleted if this returns true. As such, they
28715/// should return the appropriate thing (e.g. the node) back to the top-level of
28716/// the DAG combiner loop to avoid it being looked at.
28717bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
28718 SDValue RHS) {
28719 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
28720 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
28721 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
28722 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
28723 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
28724 SDValue Sqrt = RHS;
28725 ISD::CondCode CC;
28726 SDValue CmpLHS;
28727 const ConstantFPSDNode *Zero = nullptr;
28728
28729 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
28730 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
28731 CmpLHS = TheSelect->getOperand(0);
28732 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
28733 } else {
28734 // SELECT or VSELECT
28735 SDValue Cmp = TheSelect->getOperand(0);
28736 if (Cmp.getOpcode() == ISD::SETCC) {
28737 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
28738 CmpLHS = Cmp.getOperand(0);
28739 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
28740 }
28741 }
28742 if (Zero && Zero->isZero() &&
28743 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
28744 CC == ISD::SETULT || CC == ISD::SETLT)) {
28745 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
28746 CombineTo(TheSelect, Sqrt);
28747 return true;
28748 }
28749 }
28750 }
28751 // Cannot simplify select with vector condition
28752 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
28753
28754 // If this is a select from two identical things, try to pull the operation
28755 // through the select.
28756 if (LHS.getOpcode() != RHS.getOpcode() ||
28757 !LHS.hasOneUse() || !RHS.hasOneUse())
28758 return false;
28759
28760 // If this is a load and the token chain is identical, replace the select
28761 // of two loads with a load through a select of the address to load from.
28762 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
28763 // constants have been dropped into the constant pool.
28764 if (LHS.getOpcode() == ISD::LOAD) {
28765 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
28766 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
28767
28768 // Token chains must be identical.
28769 if (LHS.getOperand(0) != RHS.getOperand(0) ||
28770 // Do not let this transformation reduce the number of volatile loads.
28771 // Be conservative for atomics for the moment
28772 // TODO: This does appear to be legal for unordered atomics (see D66309)
28773 !LLD->isSimple() || !RLD->isSimple() ||
28774 // FIXME: If either is a pre/post inc/dec load,
28775 // we'd need to split out the address adjustment.
28776 LLD->isIndexed() || RLD->isIndexed() ||
28777 // If this is an EXTLOAD, the VT's must match.
28778 LLD->getMemoryVT() != RLD->getMemoryVT() ||
28779 // If this is an EXTLOAD, the kind of extension must match.
28780 (LLD->getExtensionType() != RLD->getExtensionType() &&
28781 // The only exception is if one of the extensions is anyext.
28782 LLD->getExtensionType() != ISD::EXTLOAD &&
28783 RLD->getExtensionType() != ISD::EXTLOAD) ||
28784 // FIXME: this discards src value information. This is
28785 // over-conservative. It would be beneficial to be able to remember
28786 // both potential memory locations. Since we are discarding
28787 // src value info, don't do the transformation if the memory
28788 // locations are not in the default address space.
28789 LLD->getPointerInfo().getAddrSpace() != 0 ||
28790 RLD->getPointerInfo().getAddrSpace() != 0 ||
28791 // We can't produce a CMOV of a TargetFrameIndex since we won't
28792 // generate the address generation required.
28795 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
28796 LLD->getBasePtr().getValueType()))
28797 return false;
28798
28799 // The loads must not depend on one another.
28800 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
28801 return false;
28802
28803 // Check that the select condition doesn't reach either load. If so,
28804 // folding this will induce a cycle into the DAG. If not, this is safe to
28805 // xform, so create a select of the addresses.
28806
28807 SmallPtrSet<const SDNode *, 32> Visited;
28809
28810 // Always fail if LLD and RLD are not independent. TheSelect is a
28811 // predecessor to all Nodes in question so we need not search past it.
28812
28813 Visited.insert(TheSelect);
28814 Worklist.push_back(LLD);
28815 Worklist.push_back(RLD);
28816
28817 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
28818 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
28819 return false;
28820
28821 SDValue Addr;
28822 if (TheSelect->getOpcode() == ISD::SELECT) {
28823 // We cannot do this optimization if any pair of {RLD, LLD} is a
28824 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
28825 // Loads, we only need to check if CondNode is a successor to one of the
28826 // loads. We can further avoid this if there's no use of their chain
28827 // value.
28828 SDNode *CondNode = TheSelect->getOperand(0).getNode();
28829 Worklist.push_back(CondNode);
28830
28831 if ((LLD->hasAnyUseOfValue(1) &&
28832 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
28833 (RLD->hasAnyUseOfValue(1) &&
28834 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
28835 return false;
28836
28837 Addr = DAG.getSelect(SDLoc(TheSelect),
28838 LLD->getBasePtr().getValueType(),
28839 TheSelect->getOperand(0), LLD->getBasePtr(),
28840 RLD->getBasePtr());
28841 } else { // Otherwise SELECT_CC
28842 // We cannot do this optimization if any pair of {RLD, LLD} is a
28843 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
28844 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
28845 // one of the loads. We can further avoid this if there's no use of their
28846 // chain value.
28847
28848 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
28849 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
28850 Worklist.push_back(CondLHS);
28851 Worklist.push_back(CondRHS);
28852
28853 if ((LLD->hasAnyUseOfValue(1) &&
28854 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
28855 (RLD->hasAnyUseOfValue(1) &&
28856 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
28857 return false;
28858
28859 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
28860 LLD->getBasePtr().getValueType(),
28861 TheSelect->getOperand(0),
28862 TheSelect->getOperand(1),
28863 LLD->getBasePtr(), RLD->getBasePtr(),
28864 TheSelect->getOperand(4));
28865 }
28866
28867 SDValue Load;
28868 // It is safe to replace the two loads if they have different alignments,
28869 // but the new load must be the minimum (most restrictive) alignment of the
28870 // inputs.
28871 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
28872 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
28873 if (!RLD->isInvariant())
28874 MMOFlags &= ~MachineMemOperand::MOInvariant;
28875 if (!RLD->isDereferenceable())
28876 MMOFlags &= ~MachineMemOperand::MODereferenceable;
28877 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
28878 // FIXME: Discards pointer and AA info.
28879 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
28880 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
28881 MMOFlags);
28882 } else {
28883 // FIXME: Discards pointer and AA info.
28884 Load = DAG.getExtLoad(
28886 : LLD->getExtensionType(),
28887 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
28888 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
28889 }
28890
28891 // Users of the select now use the result of the load.
28892 CombineTo(TheSelect, Load);
28893
28894 // Users of the old loads now use the new load's chain. We know the
28895 // old-load value is dead now.
28896 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
28897 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
28898 return true;
28899 }
28900
28901 return false;
28902}
28903
28904/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
28905/// bitwise 'and'.
28906SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
28907 SDValue N1, SDValue N2, SDValue N3,
28908 ISD::CondCode CC) {
28909 // If this is a select where the false operand is zero and the compare is a
28910 // check of the sign bit, see if we can perform the "gzip trick":
28911 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
28912 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
28913 EVT XType = N0.getValueType();
28914 EVT AType = N2.getValueType();
28915 if (!isNullConstant(N3) || !XType.bitsGE(AType))
28916 return SDValue();
28917
28918 // If the comparison is testing for a positive value, we have to invert
28919 // the sign bit mask, so only do that transform if the target has a bitwise
28920 // 'and not' instruction (the invert is free).
28921 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
28922 // (X > -1) ? A : 0
28923 // (X > 0) ? X : 0 <-- This is canonical signed max.
28924 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
28925 return SDValue();
28926 } else if (CC == ISD::SETLT) {
28927 // (X < 0) ? A : 0
28928 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
28929 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
28930 return SDValue();
28931 } else {
28932 return SDValue();
28933 }
28934
28935 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
28936 // constant.
28937 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
28938 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
28939 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
28940 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
28941 SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL);
28942 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
28943 AddToWorklist(Shift.getNode());
28944
28945 if (XType.bitsGT(AType)) {
28946 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
28947 AddToWorklist(Shift.getNode());
28948 }
28949
28950 if (CC == ISD::SETGT)
28951 Shift = DAG.getNOT(DL, Shift, AType);
28952
28953 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
28954 }
28955 }
28956
28957 unsigned ShCt = XType.getSizeInBits() - 1;
28958 if (TLI.shouldAvoidTransformToShift(XType, ShCt))
28959 return SDValue();
28960
28961 SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL);
28962 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
28963 AddToWorklist(Shift.getNode());
28964
28965 if (XType.bitsGT(AType)) {
28966 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
28967 AddToWorklist(Shift.getNode());
28968 }
28969
28970 if (CC == ISD::SETGT)
28971 Shift = DAG.getNOT(DL, Shift, AType);
28972
28973 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
28974}
28975
28976// Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
28977SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) {
28978 SDValue N0 = N->getOperand(0);
28979 SDValue N1 = N->getOperand(1);
28980 SDValue N2 = N->getOperand(2);
28981 SDLoc DL(N);
28982
28983 unsigned BinOpc = N1.getOpcode();
28984 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc) ||
28985 (N1.getResNo() != N2.getResNo()))
28986 return SDValue();
28987
28988 // The use checks are intentionally on SDNode because we may be dealing
28989 // with opcodes that produce more than one SDValue.
28990 // TODO: Do we really need to check N0 (the condition operand of the select)?
28991 // But removing that clause could cause an infinite loop...
28992 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse())
28993 return SDValue();
28994
28995 // Binops may include opcodes that return multiple values, so all values
28996 // must be created/propagated from the newly created binops below.
28997 SDVTList OpVTs = N1->getVTList();
28998
28999 // Fold select(cond, binop(x, y), binop(z, y))
29000 // --> binop(select(cond, x, z), y)
29001 if (N1.getOperand(1) == N2.getOperand(1)) {
29002 SDValue N10 = N1.getOperand(0);
29003 SDValue N20 = N2.getOperand(0);
29004 SDValue NewSel = DAG.getSelect(DL, N10.getValueType(), N0, N10, N20);
29005 SDNodeFlags Flags = N1->getFlags() & N2->getFlags();
29006 SDValue NewBinOp =
29007 DAG.getNode(BinOpc, DL, OpVTs, {NewSel, N1.getOperand(1)}, Flags);
29008 return SDValue(NewBinOp.getNode(), N1.getResNo());
29009 }
29010
29011 // Fold select(cond, binop(x, y), binop(x, z))
29012 // --> binop(x, select(cond, y, z))
29013 if (N1.getOperand(0) == N2.getOperand(0)) {
29014 SDValue N11 = N1.getOperand(1);
29015 SDValue N21 = N2.getOperand(1);
29016 // Second op VT might be different (e.g. shift amount type)
29017 if (N11.getValueType() == N21.getValueType()) {
29018 SDValue NewSel = DAG.getSelect(DL, N11.getValueType(), N0, N11, N21);
29019 SDNodeFlags Flags = N1->getFlags() & N2->getFlags();
29020 SDValue NewBinOp =
29021 DAG.getNode(BinOpc, DL, OpVTs, {N1.getOperand(0), NewSel}, Flags);
29022 return SDValue(NewBinOp.getNode(), N1.getResNo());
29023 }
29024 }
29025
29026 // TODO: Handle isCommutativeBinOp patterns as well?
29027 return SDValue();
29028}
29029
29030// Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
29031SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
29032 SDValue N0 = N->getOperand(0);
29033 EVT VT = N->getValueType(0);
29034 bool IsFabs = N->getOpcode() == ISD::FABS;
29035 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
29036
29037 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
29038 return SDValue();
29039
29040 SDValue Int = N0.getOperand(0);
29041 EVT IntVT = Int.getValueType();
29042
29043 // The operand to cast should be integer.
29044 if (!IntVT.isInteger() || IntVT.isVector())
29045 return SDValue();
29046
29047 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
29048 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
29049 APInt SignMask;
29050 if (N0.getValueType().isVector()) {
29051 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
29052 // 0x7f...) per element and splat it.
29054 if (IsFabs)
29055 SignMask = ~SignMask;
29056 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
29057 } else {
29058 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
29059 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
29060 if (IsFabs)
29061 SignMask = ~SignMask;
29062 }
29063 SDLoc DL(N0);
29064 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
29065 DAG.getConstant(SignMask, DL, IntVT));
29066 AddToWorklist(Int.getNode());
29067 return DAG.getBitcast(VT, Int);
29068}
29069
29070/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
29071/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
29072/// in it. This may be a win when the constant is not otherwise available
29073/// because it replaces two constant pool loads with one.
29074SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
29075 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
29076 ISD::CondCode CC) {
29078 return SDValue();
29079
29080 // If we are before legalize types, we want the other legalization to happen
29081 // first (for example, to avoid messing with soft float).
29082 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
29083 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
29084 EVT VT = N2.getValueType();
29085 if (!TV || !FV || !TLI.isTypeLegal(VT))
29086 return SDValue();
29087
29088 // If a constant can be materialized without loads, this does not make sense.
29090 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
29091 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
29092 return SDValue();
29093
29094 // If both constants have multiple uses, then we won't need to do an extra
29095 // load. The values are likely around in registers for other users.
29096 if (!TV->hasOneUse() && !FV->hasOneUse())
29097 return SDValue();
29098
29099 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
29100 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
29101 Type *FPTy = Elts[0]->getType();
29102 const DataLayout &TD = DAG.getDataLayout();
29103
29104 // Create a ConstantArray of the two constants.
29105 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
29106 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
29107 TD.getPrefTypeAlign(FPTy));
29108 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
29109
29110 // Get offsets to the 0 and 1 elements of the array, so we can select between
29111 // them.
29112 SDValue Zero = DAG.getIntPtrConstant(0, DL);
29113 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
29114 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
29115 SDValue Cond =
29116 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
29117 AddToWorklist(Cond.getNode());
29118 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
29119 AddToWorklist(CstOffset.getNode());
29120 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
29121 AddToWorklist(CPIdx.getNode());
29122 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
29124 DAG.getMachineFunction()), Alignment);
29125}
29126
29127/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
29128/// where 'cond' is the comparison specified by CC.
29129SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
29130 SDValue N2, SDValue N3, ISD::CondCode CC,
29131 bool NotExtCompare) {
29132 // (x ? y : y) -> y.
29133 if (N2 == N3) return N2;
29134
29135 EVT CmpOpVT = N0.getValueType();
29136 EVT CmpResVT = getSetCCResultType(CmpOpVT);
29137 EVT VT = N2.getValueType();
29138 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
29139 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
29140 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
29141
29142 // Determine if the condition we're dealing with is constant.
29143 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
29144 AddToWorklist(SCC.getNode());
29145 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
29146 // fold select_cc true, x, y -> x
29147 // fold select_cc false, x, y -> y
29148 return !(SCCC->isZero()) ? N2 : N3;
29149 }
29150 }
29151
29152 if (SDValue V =
29153 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
29154 return V;
29155
29156 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
29157 return V;
29158
29159 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
29160 // where y is has a single bit set.
29161 // A plaintext description would be, we can turn the SELECT_CC into an AND
29162 // when the condition can be materialized as an all-ones register. Any
29163 // single bit-test can be materialized as an all-ones register with
29164 // shift-left and shift-right-arith.
29165 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
29166 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
29167 SDValue AndLHS = N0->getOperand(0);
29168 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
29169 if (ConstAndRHS && ConstAndRHS->getAPIntValue().popcount() == 1) {
29170 // Shift the tested bit over the sign bit.
29171 const APInt &AndMask = ConstAndRHS->getAPIntValue();
29172 if (TLI.shouldFoldSelectWithSingleBitTest(VT, AndMask)) {
29173 unsigned ShCt = AndMask.getBitWidth() - 1;
29174 SDValue ShlAmt = DAG.getShiftAmountConstant(AndMask.countl_zero(), VT,
29175 SDLoc(AndLHS));
29176 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
29177
29178 // Now arithmetic right shift it all the way over, so the result is
29179 // either all-ones, or zero.
29180 SDValue ShrAmt = DAG.getShiftAmountConstant(ShCt, VT, SDLoc(Shl));
29181 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
29182
29183 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
29184 }
29185 }
29186 }
29187
29188 // fold select C, 16, 0 -> shl C, 4
29189 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
29190 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
29191
29192 if ((Fold || Swap) &&
29193 TLI.getBooleanContents(CmpOpVT) ==
29195 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT)) &&
29197
29198 if (Swap) {
29199 CC = ISD::getSetCCInverse(CC, CmpOpVT);
29200 std::swap(N2C, N3C);
29201 }
29202
29203 // If the caller doesn't want us to simplify this into a zext of a compare,
29204 // don't do it.
29205 if (NotExtCompare && N2C->isOne())
29206 return SDValue();
29207
29208 SDValue Temp, SCC;
29209 // zext (setcc n0, n1)
29210 if (LegalTypes) {
29211 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
29212 Temp = DAG.getZExtOrTrunc(SCC, SDLoc(N2), VT);
29213 } else {
29214 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
29215 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
29216 }
29217
29218 AddToWorklist(SCC.getNode());
29219 AddToWorklist(Temp.getNode());
29220
29221 if (N2C->isOne())
29222 return Temp;
29223
29224 unsigned ShCt = N2C->getAPIntValue().logBase2();
29225 if (TLI.shouldAvoidTransformToShift(VT, ShCt))
29226 return SDValue();
29227
29228 // shl setcc result by log2 n2c
29229 return DAG.getNode(
29230 ISD::SHL, DL, N2.getValueType(), Temp,
29231 DAG.getShiftAmountConstant(ShCt, N2.getValueType(), SDLoc(Temp)));
29232 }
29233
29234 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
29235 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
29236 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
29237 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
29238 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
29239 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
29240 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
29241 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
29242 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
29243 SDValue ValueOnZero = N2;
29244 SDValue Count = N3;
29245 // If the condition is NE instead of E, swap the operands.
29246 if (CC == ISD::SETNE)
29247 std::swap(ValueOnZero, Count);
29248 // Check if the value on zero is a constant equal to the bits in the type.
29249 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
29250 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
29251 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
29252 // legal, combine to just cttz.
29253 if ((Count.getOpcode() == ISD::CTTZ ||
29254 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
29255 N0 == Count.getOperand(0) &&
29256 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
29257 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
29258 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
29259 // legal, combine to just ctlz.
29260 if ((Count.getOpcode() == ISD::CTLZ ||
29261 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
29262 N0 == Count.getOperand(0) &&
29263 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
29264 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
29265 }
29266 }
29267 }
29268
29269 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C
29270 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C
29271 if (!NotExtCompare && N1C && N2C && N3C &&
29272 N2C->getAPIntValue() == ~N3C->getAPIntValue() &&
29273 ((N1C->isAllOnes() && CC == ISD::SETGT) ||
29274 (N1C->isZero() && CC == ISD::SETLT)) &&
29275 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) {
29276 SDValue ASHR =
29277 DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
29279 CmpOpVT.getScalarSizeInBits() - 1, CmpOpVT, DL));
29280 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASHR, DL, VT),
29281 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT));
29282 }
29283
29284 // Fold sign pattern select_cc setgt X, -1, 1, -1 -> or (ashr X, BW-1), 1
29285 if (CC == ISD::SETGT && N1C && N2C && N3C && N1C->isAllOnes() &&
29286 N2C->isOne() && N3C->isAllOnes() &&
29287 !TLI.shouldAvoidTransformToShift(CmpOpVT,
29288 CmpOpVT.getScalarSizeInBits() - 1)) {
29289 SDValue ASHR =
29290 DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
29292 CmpOpVT.getScalarSizeInBits() - 1, CmpOpVT, DL));
29293 return DAG.getNode(ISD::OR, DL, VT, DAG.getSExtOrTrunc(ASHR, DL, VT),
29294 DAG.getConstant(1, DL, VT));
29295 }
29296
29297 if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG))
29298 return S;
29299 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG))
29300 return S;
29301 if (SDValue ABD = foldSelectToABD(N0, N1, N2, N3, CC, DL))
29302 return ABD;
29303
29304 return SDValue();
29305}
29306
29308 const TargetLowering &TLI) {
29309 // Match a pattern such as:
29310 // (X | (X >> C0) | (X >> C1) | ...) & Mask
29311 // This extracts contiguous parts of X and ORs them together before comparing.
29312 // We can optimize this so that we directly check (X & SomeMask) instead,
29313 // eliminating the shifts.
29314
29315 EVT VT = Root.getValueType();
29316
29317 // TODO: Support vectors?
29318 if (!VT.isScalarInteger() || Root.getOpcode() != ISD::AND)
29319 return SDValue();
29320
29321 SDValue N0 = Root.getOperand(0);
29322 SDValue N1 = Root.getOperand(1);
29323
29324 if (N0.getOpcode() != ISD::OR || !isa<ConstantSDNode>(N1))
29325 return SDValue();
29326
29327 APInt RootMask = cast<ConstantSDNode>(N1)->getAsAPIntVal();
29328
29329 SDValue Src;
29330 const auto IsSrc = [&](SDValue V) {
29331 if (!Src) {
29332 Src = V;
29333 return true;
29334 }
29335
29336 return Src == V;
29337 };
29338
29339 SmallVector<SDValue> Worklist = {N0};
29340 APInt PartsMask(VT.getSizeInBits(), 0);
29341 while (!Worklist.empty()) {
29342 SDValue V = Worklist.pop_back_val();
29343 if (!V.hasOneUse() && (Src && Src != V))
29344 return SDValue();
29345
29346 if (V.getOpcode() == ISD::OR) {
29347 Worklist.push_back(V.getOperand(0));
29348 Worklist.push_back(V.getOperand(1));
29349 continue;
29350 }
29351
29352 if (V.getOpcode() == ISD::SRL) {
29353 SDValue ShiftSrc = V.getOperand(0);
29354 SDValue ShiftAmt = V.getOperand(1);
29355
29356 if (!IsSrc(ShiftSrc) || !isa<ConstantSDNode>(ShiftAmt))
29357 return SDValue();
29358
29359 auto ShiftAmtVal = cast<ConstantSDNode>(ShiftAmt)->getAsZExtVal();
29360 if (ShiftAmtVal > RootMask.getBitWidth())
29361 return SDValue();
29362
29363 PartsMask |= (RootMask << ShiftAmtVal);
29364 continue;
29365 }
29366
29367 if (IsSrc(V)) {
29368 PartsMask |= RootMask;
29369 continue;
29370 }
29371
29372 return SDValue();
29373 }
29374
29375 if (!Src)
29376 return SDValue();
29377
29378 SDLoc DL(Root);
29379 return DAG.getNode(ISD::AND, DL, VT,
29380 {Src, DAG.getConstant(PartsMask, DL, VT)});
29381}
29382
29383/// This is a stub for TargetLowering::SimplifySetCC.
29384SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
29385 ISD::CondCode Cond, const SDLoc &DL,
29386 bool foldBooleans) {
29387 TargetLowering::DAGCombinerInfo
29388 DagCombineInfo(DAG, Level, false, this);
29389 if (SDValue C =
29390 TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL))
29391 return C;
29392
29394 isNullConstant(N1)) {
29395
29396 if (SDValue Res = matchMergedBFX(N0, DAG, TLI))
29397 return DAG.getSetCC(DL, VT, Res, N1, Cond);
29398 }
29399
29400 return SDValue();
29401}
29402
29403/// Given an ISD::SDIV node expressing a divide by constant, return
29404/// a DAG expression to select that will generate the same value by multiplying
29405/// by a magic number.
29406/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
29407SDValue DAGCombiner::BuildSDIV(SDNode *N) {
29408 // when optimising for minimum size, we don't want to expand a div to a mul
29409 // and a shift.
29411 return SDValue();
29412
29414 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, LegalTypes, Built)) {
29415 for (SDNode *N : Built)
29416 AddToWorklist(N);
29417 return S;
29418 }
29419
29420 return SDValue();
29421}
29422
29423/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
29424/// DAG expression that will generate the same value by right shifting.
29425SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
29426 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
29427 if (!C)
29428 return SDValue();
29429
29430 // Avoid division by zero.
29431 if (C->isZero())
29432 return SDValue();
29433
29435 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
29436 for (SDNode *N : Built)
29437 AddToWorklist(N);
29438 return S;
29439 }
29440
29441 return SDValue();
29442}
29443
29444/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
29445/// expression that will generate the same value by multiplying by a magic
29446/// number.
29447/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
29448SDValue DAGCombiner::BuildUDIV(SDNode *N) {
29449 // when optimising for minimum size, we don't want to expand a div to a mul
29450 // and a shift.
29452 return SDValue();
29453
29455 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, LegalTypes, Built)) {
29456 for (SDNode *N : Built)
29457 AddToWorklist(N);
29458 return S;
29459 }
29460
29461 return SDValue();
29462}
29463
29464/// Given an ISD::SREM node expressing a remainder by constant power of 2,
29465/// return a DAG expression that will generate the same value.
29466SDValue DAGCombiner::BuildSREMPow2(SDNode *N) {
29467 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
29468 if (!C)
29469 return SDValue();
29470
29471 // Avoid division by zero.
29472 if (C->isZero())
29473 return SDValue();
29474
29476 if (SDValue S = TLI.BuildSREMPow2(N, C->getAPIntValue(), DAG, Built)) {
29477 for (SDNode *N : Built)
29478 AddToWorklist(N);
29479 return S;
29480 }
29481
29482 return SDValue();
29483}
29484
29485// This is basically just a port of takeLog2 from InstCombineMulDivRem.cpp
29486//
29487// Returns the node that represents `Log2(Op)`. This may create a new node. If
29488// we are unable to compute `Log2(Op)` its return `SDValue()`.
29489//
29490// All nodes will be created at `DL` and the output will be of type `VT`.
29491//
29492// This will only return `Log2(Op)` if we can prove `Op` is non-zero. Set
29493// `AssumeNonZero` if this function should simply assume (not require proving
29494// `Op` is non-zero).
29496 SDValue Op, unsigned Depth,
29497 bool AssumeNonZero) {
29498 assert(VT.isInteger() && "Only integer types are supported!");
29499
29500 auto PeekThroughCastsAndTrunc = [](SDValue V) {
29501 while (true) {
29502 switch (V.getOpcode()) {
29503 case ISD::TRUNCATE:
29504 case ISD::ZERO_EXTEND:
29505 V = V.getOperand(0);
29506 break;
29507 default:
29508 return V;
29509 }
29510 }
29511 };
29512
29513 if (VT.isScalableVector())
29514 return SDValue();
29515
29516 Op = PeekThroughCastsAndTrunc(Op);
29517
29518 // Helper for determining whether a value is a power-2 constant scalar or a
29519 // vector of such elements.
29520 SmallVector<APInt> Pow2Constants;
29521 auto IsPowerOfTwo = [&Pow2Constants](ConstantSDNode *C) {
29522 if (C->isZero() || C->isOpaque())
29523 return false;
29524 // TODO: We may also be able to support negative powers of 2 here.
29525 if (C->getAPIntValue().isPowerOf2()) {
29526 Pow2Constants.emplace_back(C->getAPIntValue());
29527 return true;
29528 }
29529 return false;
29530 };
29531
29532 if (ISD::matchUnaryPredicate(Op, IsPowerOfTwo)) {
29533 if (!VT.isVector())
29534 return DAG.getConstant(Pow2Constants.back().logBase2(), DL, VT);
29535 // We need to create a build vector
29536 if (Op.getOpcode() == ISD::SPLAT_VECTOR)
29537 return DAG.getSplat(VT, DL,
29538 DAG.getConstant(Pow2Constants.back().logBase2(), DL,
29539 VT.getScalarType()));
29540 SmallVector<SDValue> Log2Ops;
29541 for (const APInt &Pow2 : Pow2Constants)
29542 Log2Ops.emplace_back(
29543 DAG.getConstant(Pow2.logBase2(), DL, VT.getScalarType()));
29544 return DAG.getBuildVector(VT, DL, Log2Ops);
29545 }
29546
29547 if (Depth >= DAG.MaxRecursionDepth)
29548 return SDValue();
29549
29550 auto CastToVT = [&](EVT NewVT, SDValue ToCast) {
29551 // Peek through zero extend. We can't peek through truncates since this
29552 // function is called on a shift amount. We must ensure that all of the bits
29553 // above the original shift amount are zeroed by this function.
29554 while (ToCast.getOpcode() == ISD::ZERO_EXTEND)
29555 ToCast = ToCast.getOperand(0);
29556 EVT CurVT = ToCast.getValueType();
29557 if (NewVT == CurVT)
29558 return ToCast;
29559
29560 if (NewVT.getSizeInBits() == CurVT.getSizeInBits())
29561 return DAG.getBitcast(NewVT, ToCast);
29562
29563 return DAG.getZExtOrTrunc(ToCast, DL, NewVT);
29564 };
29565
29566 // log2(X << Y) -> log2(X) + Y
29567 if (Op.getOpcode() == ISD::SHL) {
29568 // 1 << Y and X nuw/nsw << Y are all non-zero.
29569 if (AssumeNonZero || Op->getFlags().hasNoUnsignedWrap() ||
29570 Op->getFlags().hasNoSignedWrap() || isOneConstant(Op.getOperand(0)))
29571 if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0),
29572 Depth + 1, AssumeNonZero))
29573 return DAG.getNode(ISD::ADD, DL, VT, LogX,
29574 CastToVT(VT, Op.getOperand(1)));
29575 }
29576
29577 // c ? X : Y -> c ? Log2(X) : Log2(Y)
29578 if ((Op.getOpcode() == ISD::SELECT || Op.getOpcode() == ISD::VSELECT) &&
29579 Op.hasOneUse()) {
29580 if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1),
29581 Depth + 1, AssumeNonZero))
29582 if (SDValue LogY = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(2),
29583 Depth + 1, AssumeNonZero))
29584 return DAG.getSelect(DL, VT, Op.getOperand(0), LogX, LogY);
29585 }
29586
29587 // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
29588 // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
29589 if ((Op.getOpcode() == ISD::UMIN || Op.getOpcode() == ISD::UMAX) &&
29590 Op.hasOneUse()) {
29591 // Use AssumeNonZero as false here. Otherwise we can hit case where
29592 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
29593 if (SDValue LogX =
29594 takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0), Depth + 1,
29595 /*AssumeNonZero*/ false))
29596 if (SDValue LogY =
29597 takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1), Depth + 1,
29598 /*AssumeNonZero*/ false))
29599 return DAG.getNode(Op.getOpcode(), DL, VT, LogX, LogY);
29600 }
29601
29602 return SDValue();
29603}
29604
29605/// Determines the LogBase2 value for a non-null input value using the
29606/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
29607SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL,
29608 bool KnownNonZero, bool InexpensiveOnly,
29609 std::optional<EVT> OutVT) {
29610 EVT VT = OutVT ? *OutVT : V.getValueType();
29611 SDValue InexpensiveLogBase2 =
29612 takeInexpensiveLog2(DAG, DL, VT, V, /*Depth*/ 0, KnownNonZero);
29613 if (InexpensiveLogBase2 || InexpensiveOnly || !DAG.isKnownToBeAPowerOfTwo(V))
29614 return InexpensiveLogBase2;
29615
29616 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
29617 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
29618 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
29619 return LogBase2;
29620}
29621
29622/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29623/// For the reciprocal, we need to find the zero of the function:
29624/// F(X) = 1/X - A [which has a zero at X = 1/A]
29625/// =>
29626/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
29627/// does not require additional intermediate precision]
29628/// For the last iteration, put numerator N into it to gain more precision:
29629/// Result = N X_i + X_i (N - N A X_i)
29630SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
29631 SDNodeFlags Flags) {
29632 if (LegalDAG)
29633 return SDValue();
29634
29635 // TODO: Handle extended types?
29636 EVT VT = Op.getValueType();
29637 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
29638 VT.getScalarType() != MVT::f64)
29639 return SDValue();
29640
29641 // If estimates are explicitly disabled for this function, we're done.
29642 MachineFunction &MF = DAG.getMachineFunction();
29643 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
29644 if (Enabled == TLI.ReciprocalEstimate::Disabled)
29645 return SDValue();
29646
29647 // Estimates may be explicitly enabled for this type with a custom number of
29648 // refinement steps.
29649 int Iterations = TLI.getDivRefinementSteps(VT, MF);
29650 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
29651 AddToWorklist(Est.getNode());
29652
29653 SDLoc DL(Op);
29654 if (Iterations) {
29655 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
29656
29657 // Newton iterations: Est = Est + Est (N - Arg * Est)
29658 // If this is the last iteration, also multiply by the numerator.
29659 for (int i = 0; i < Iterations; ++i) {
29660 SDValue MulEst = Est;
29661
29662 if (i == Iterations - 1) {
29663 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
29664 AddToWorklist(MulEst.getNode());
29665 }
29666
29667 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
29668 AddToWorklist(NewEst.getNode());
29669
29670 NewEst = DAG.getNode(ISD::FSUB, DL, VT,
29671 (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
29672 AddToWorklist(NewEst.getNode());
29673
29674 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
29675 AddToWorklist(NewEst.getNode());
29676
29677 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
29678 AddToWorklist(Est.getNode());
29679 }
29680 } else {
29681 // If no iterations are available, multiply with N.
29682 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
29683 AddToWorklist(Est.getNode());
29684 }
29685
29686 return Est;
29687 }
29688
29689 return SDValue();
29690}
29691
29692/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29693/// For the reciprocal sqrt, we need to find the zero of the function:
29694/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
29695/// =>
29696/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
29697/// As a result, we precompute A/2 prior to the iteration loop.
29698SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
29699 unsigned Iterations,
29700 SDNodeFlags Flags, bool Reciprocal) {
29701 EVT VT = Arg.getValueType();
29702 SDLoc DL(Arg);
29703 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
29704
29705 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
29706 // this entire sequence requires only one FP constant.
29707 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
29708 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
29709
29710 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
29711 for (unsigned i = 0; i < Iterations; ++i) {
29712 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
29713 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
29714 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
29715 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
29716 }
29717
29718 // If non-reciprocal square root is requested, multiply the result by Arg.
29719 if (!Reciprocal)
29720 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
29721
29722 return Est;
29723}
29724
29725/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29726/// For the reciprocal sqrt, we need to find the zero of the function:
29727/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
29728/// =>
29729/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
29730SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
29731 unsigned Iterations,
29732 SDNodeFlags Flags, bool Reciprocal) {
29733 EVT VT = Arg.getValueType();
29734 SDLoc DL(Arg);
29735 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
29736 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
29737
29738 // This routine must enter the loop below to work correctly
29739 // when (Reciprocal == false).
29740 assert(Iterations > 0);
29741
29742 // Newton iterations for reciprocal square root:
29743 // E = (E * -0.5) * ((A * E) * E + -3.0)
29744 for (unsigned i = 0; i < Iterations; ++i) {
29745 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
29746 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
29747 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
29748
29749 // When calculating a square root at the last iteration build:
29750 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
29751 // (notice a common subexpression)
29752 SDValue LHS;
29753 if (Reciprocal || (i + 1) < Iterations) {
29754 // RSQRT: LHS = (E * -0.5)
29755 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
29756 } else {
29757 // SQRT: LHS = (A * E) * -0.5
29758 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
29759 }
29760
29761 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
29762 }
29763
29764 return Est;
29765}
29766
29767/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
29768/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
29769/// Op can be zero.
29770SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
29771 bool Reciprocal) {
29772 if (LegalDAG)
29773 return SDValue();
29774
29775 // TODO: Handle extended types?
29776 EVT VT = Op.getValueType();
29777 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
29778 VT.getScalarType() != MVT::f64)
29779 return SDValue();
29780
29781 // If estimates are explicitly disabled for this function, we're done.
29782 MachineFunction &MF = DAG.getMachineFunction();
29783 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
29784 if (Enabled == TLI.ReciprocalEstimate::Disabled)
29785 return SDValue();
29786
29787 // Estimates may be explicitly enabled for this type with a custom number of
29788 // refinement steps.
29789 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
29790
29791 bool UseOneConstNR = false;
29792 if (SDValue Est =
29793 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
29794 Reciprocal)) {
29795 AddToWorklist(Est.getNode());
29796
29797 if (Iterations > 0)
29798 Est = UseOneConstNR
29799 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
29800 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
29801 if (!Reciprocal) {
29802 SDLoc DL(Op);
29803 // Try the target specific test first.
29804 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
29805
29806 // The estimate is now completely wrong if the input was exactly 0.0 or
29807 // possibly a denormal. Force the answer to 0.0 or value provided by
29808 // target for those cases.
29809 Est = DAG.getSelect(DL, VT, Test,
29810 TLI.getSqrtResultForDenormInput(Op, DAG), Est);
29811 }
29812 return Est;
29813 }
29814
29815 return SDValue();
29816}
29817
29818SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
29819 return buildSqrtEstimateImpl(Op, Flags, true);
29820}
29821
29822SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
29823 return buildSqrtEstimateImpl(Op, Flags, false);
29824}
29825
29826/// Return true if there is any possibility that the two addresses overlap.
29827bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const {
29828
29829 struct MemUseCharacteristics {
29830 bool IsVolatile;
29831 bool IsAtomic;
29833 int64_t Offset;
29834 LocationSize NumBytes;
29835 MachineMemOperand *MMO;
29836 };
29837
29838 auto getCharacteristics = [this](SDNode *N) -> MemUseCharacteristics {
29839 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
29840 int64_t Offset = 0;
29841 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
29842 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) ? C->getSExtValue()
29843 : (LSN->getAddressingMode() == ISD::PRE_DEC)
29844 ? -1 * C->getSExtValue()
29845 : 0;
29846 TypeSize Size = LSN->getMemoryVT().getStoreSize();
29847 return {LSN->isVolatile(), LSN->isAtomic(),
29848 LSN->getBasePtr(), Offset /*base offset*/,
29849 LocationSize::precise(Size), LSN->getMemOperand()};
29850 }
29851 if (const auto *LN = cast<LifetimeSDNode>(N)) {
29852 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
29853 return {false /*isVolatile*/,
29854 /*isAtomic*/ false,
29855 LN->getOperand(1),
29856 0,
29857 LocationSize::precise(MFI.getObjectSize(LN->getFrameIndex())),
29858 (MachineMemOperand *)nullptr};
29859 }
29860 // Default.
29861 return {false /*isvolatile*/,
29862 /*isAtomic*/ false,
29863 SDValue(),
29864 (int64_t)0 /*offset*/,
29866 (MachineMemOperand *)nullptr};
29867 };
29868
29869 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
29870 MUC1 = getCharacteristics(Op1);
29871
29872 // If they are to the same address, then they must be aliases.
29873 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
29874 MUC0.Offset == MUC1.Offset)
29875 return true;
29876
29877 // If they are both volatile then they cannot be reordered.
29878 if (MUC0.IsVolatile && MUC1.IsVolatile)
29879 return true;
29880
29881 // Be conservative about atomics for the moment
29882 // TODO: This is way overconservative for unordered atomics (see D66309)
29883 if (MUC0.IsAtomic && MUC1.IsAtomic)
29884 return true;
29885
29886 if (MUC0.MMO && MUC1.MMO) {
29887 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
29888 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
29889 return false;
29890 }
29891
29892 // If NumBytes is scalable and offset is not 0, conservatively return may
29893 // alias
29894 if ((MUC0.NumBytes.hasValue() && MUC0.NumBytes.isScalable() &&
29895 MUC0.Offset != 0) ||
29896 (MUC1.NumBytes.hasValue() && MUC1.NumBytes.isScalable() &&
29897 MUC1.Offset != 0))
29898 return true;
29899 // Try to prove that there is aliasing, or that there is no aliasing. Either
29900 // way, we can return now. If nothing can be proved, proceed with more tests.
29901 bool IsAlias;
29902 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
29903 DAG, IsAlias))
29904 return IsAlias;
29905
29906 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
29907 // either are not known.
29908 if (!MUC0.MMO || !MUC1.MMO)
29909 return true;
29910
29911 // If one operation reads from invariant memory, and the other may store, they
29912 // cannot alias. These should really be checking the equivalent of mayWrite,
29913 // but it only matters for memory nodes other than load /store.
29914 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
29915 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
29916 return false;
29917
29918 // If we know required SrcValue1 and SrcValue2 have relatively large
29919 // alignment compared to the size and offset of the access, we may be able
29920 // to prove they do not alias. This check is conservative for now to catch
29921 // cases created by splitting vector types, it only works when the offsets are
29922 // multiples of the size of the data.
29923 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
29924 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
29925 Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
29926 Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
29927 LocationSize Size0 = MUC0.NumBytes;
29928 LocationSize Size1 = MUC1.NumBytes;
29929
29930 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
29931 Size0.hasValue() && Size1.hasValue() && !Size0.isScalable() &&
29932 !Size1.isScalable() && Size0 == Size1 &&
29933 OrigAlignment0 > Size0.getValue().getKnownMinValue() &&
29934 SrcValOffset0 % Size0.getValue().getKnownMinValue() == 0 &&
29935 SrcValOffset1 % Size1.getValue().getKnownMinValue() == 0) {
29936 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
29937 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
29938
29939 // There is no overlap between these relatively aligned accesses of
29940 // similar size. Return no alias.
29941 if ((OffAlign0 + static_cast<int64_t>(
29942 Size0.getValue().getKnownMinValue())) <= OffAlign1 ||
29943 (OffAlign1 + static_cast<int64_t>(
29944 Size1.getValue().getKnownMinValue())) <= OffAlign0)
29945 return false;
29946 }
29947
29950 : DAG.getSubtarget().useAA();
29951#ifndef NDEBUG
29952 if (CombinerAAOnlyFunc.getNumOccurrences() &&
29954 UseAA = false;
29955#endif
29956
29957 if (UseAA && BatchAA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
29958 Size0.hasValue() && Size1.hasValue() &&
29959 // Can't represent a scalable size + fixed offset in LocationSize
29960 (!Size0.isScalable() || SrcValOffset0 == 0) &&
29961 (!Size1.isScalable() || SrcValOffset1 == 0)) {
29962 // Use alias analysis information.
29963 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
29964 int64_t Overlap0 =
29965 Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset;
29966 int64_t Overlap1 =
29967 Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset;
29968 LocationSize Loc0 =
29969 Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0);
29970 LocationSize Loc1 =
29971 Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1);
29972 if (BatchAA->isNoAlias(
29973 MemoryLocation(MUC0.MMO->getValue(), Loc0,
29974 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
29975 MemoryLocation(MUC1.MMO->getValue(), Loc1,
29976 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
29977 return false;
29978 }
29979
29980 // Otherwise we have to assume they alias.
29981 return true;
29982}
29983
29984/// Walk up chain skipping non-aliasing memory nodes,
29985/// looking for aliasing nodes and adding them to the Aliases vector.
29986void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
29987 SmallVectorImpl<SDValue> &Aliases) {
29988 SmallVector<SDValue, 8> Chains; // List of chains to visit.
29989 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
29990
29991 // Get alias information for node.
29992 // TODO: relax aliasing for unordered atomics (see D66309)
29993 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
29994
29995 // Starting off.
29996 Chains.push_back(OriginalChain);
29997 unsigned Depth = 0;
29998
29999 // Attempt to improve chain by a single step
30000 auto ImproveChain = [&](SDValue &C) -> bool {
30001 switch (C.getOpcode()) {
30002 case ISD::EntryToken:
30003 // No need to mark EntryToken.
30004 C = SDValue();
30005 return true;
30006 case ISD::LOAD:
30007 case ISD::STORE: {
30008 // Get alias information for C.
30009 // TODO: Relax aliasing for unordered atomics (see D66309)
30010 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
30011 cast<LSBaseSDNode>(C.getNode())->isSimple();
30012 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) {
30013 // Look further up the chain.
30014 C = C.getOperand(0);
30015 return true;
30016 }
30017 // Alias, so stop here.
30018 return false;
30019 }
30020
30021 case ISD::CopyFromReg:
30022 // Always forward past CopyFromReg.
30023 C = C.getOperand(0);
30024 return true;
30025
30026 case ISD::LIFETIME_START:
30027 case ISD::LIFETIME_END: {
30028 // We can forward past any lifetime start/end that can be proven not to
30029 // alias the memory access.
30030 if (!mayAlias(N, C.getNode())) {
30031 // Look further up the chain.
30032 C = C.getOperand(0);
30033 return true;
30034 }
30035 return false;
30036 }
30037 default:
30038 return false;
30039 }
30040 };
30041
30042 // Look at each chain and determine if it is an alias. If so, add it to the
30043 // aliases list. If not, then continue up the chain looking for the next
30044 // candidate.
30045 while (!Chains.empty()) {
30046 SDValue Chain = Chains.pop_back_val();
30047
30048 // Don't bother if we've seen Chain before.
30049 if (!Visited.insert(Chain.getNode()).second)
30050 continue;
30051
30052 // For TokenFactor nodes, look at each operand and only continue up the
30053 // chain until we reach the depth limit.
30054 //
30055 // FIXME: The depth check could be made to return the last non-aliasing
30056 // chain we found before we hit a tokenfactor rather than the original
30057 // chain.
30058 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
30059 Aliases.clear();
30060 Aliases.push_back(OriginalChain);
30061 return;
30062 }
30063
30064 if (Chain.getOpcode() == ISD::TokenFactor) {
30065 // We have to check each of the operands of the token factor for "small"
30066 // token factors, so we queue them up. Adding the operands to the queue
30067 // (stack) in reverse order maintains the original order and increases the
30068 // likelihood that getNode will find a matching token factor (CSE.)
30069 if (Chain.getNumOperands() > 16) {
30070 Aliases.push_back(Chain);
30071 continue;
30072 }
30073 for (unsigned n = Chain.getNumOperands(); n;)
30074 Chains.push_back(Chain.getOperand(--n));
30075 ++Depth;
30076 continue;
30077 }
30078 // Everything else
30079 if (ImproveChain(Chain)) {
30080 // Updated Chain Found, Consider new chain if one exists.
30081 if (Chain.getNode())
30082 Chains.push_back(Chain);
30083 ++Depth;
30084 continue;
30085 }
30086 // No Improved Chain Possible, treat as Alias.
30087 Aliases.push_back(Chain);
30088 }
30089}
30090
30091/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
30092/// (aliasing node.)
30093SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
30094 if (OptLevel == CodeGenOptLevel::None)
30095 return OldChain;
30096
30097 // Ops for replacing token factor.
30099
30100 // Accumulate all the aliases to this node.
30101 GatherAllAliases(N, OldChain, Aliases);
30102
30103 // If no operands then chain to entry token.
30104 if (Aliases.empty())
30105 return DAG.getEntryNode();
30106
30107 // If a single operand then chain to it. We don't need to revisit it.
30108 if (Aliases.size() == 1)
30109 return Aliases[0];
30110
30111 // Construct a custom tailored token factor.
30112 return DAG.getTokenFactor(SDLoc(N), Aliases);
30113}
30114
30115// This function tries to collect a bunch of potentially interesting
30116// nodes to improve the chains of, all at once. This might seem
30117// redundant, as this function gets called when visiting every store
30118// node, so why not let the work be done on each store as it's visited?
30119//
30120// I believe this is mainly important because mergeConsecutiveStores
30121// is unable to deal with merging stores of different sizes, so unless
30122// we improve the chains of all the potential candidates up-front
30123// before running mergeConsecutiveStores, it might only see some of
30124// the nodes that will eventually be candidates, and then not be able
30125// to go from a partially-merged state to the desired final
30126// fully-merged state.
30127
30128bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
30129 SmallVector<StoreSDNode *, 8> ChainedStores;
30130 StoreSDNode *STChain = St;
30131 // Intervals records which offsets from BaseIndex have been covered. In
30132 // the common case, every store writes to the immediately previous address
30133 // space and thus merged with the previous interval at insertion time.
30134
30135 using IMap = llvm::IntervalMap<int64_t, std::monostate, 8,
30136 IntervalMapHalfOpenInfo<int64_t>>;
30137 IMap::Allocator A;
30138 IMap Intervals(A);
30139
30140 // This holds the base pointer, index, and the offset in bytes from the base
30141 // pointer.
30142 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
30143
30144 // We must have a base and an offset.
30145 if (!BasePtr.getBase().getNode())
30146 return false;
30147
30148 // Do not handle stores to undef base pointers.
30149 if (BasePtr.getBase().isUndef())
30150 return false;
30151
30152 // Do not handle stores to opaque types
30153 if (St->getMemoryVT().isZeroSized())
30154 return false;
30155
30156 // BaseIndexOffset assumes that offsets are fixed-size, which
30157 // is not valid for scalable vectors where the offsets are
30158 // scaled by `vscale`, so bail out early.
30159 if (St->getMemoryVT().isScalableVT())
30160 return false;
30161
30162 // Add ST's interval.
30163 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8,
30164 std::monostate{});
30165
30166 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
30167 if (Chain->getMemoryVT().isScalableVector())
30168 return false;
30169
30170 // If the chain has more than one use, then we can't reorder the mem ops.
30171 if (!SDValue(Chain, 0)->hasOneUse())
30172 break;
30173 // TODO: Relax for unordered atomics (see D66309)
30174 if (!Chain->isSimple() || Chain->isIndexed())
30175 break;
30176
30177 // Find the base pointer and offset for this memory node.
30178 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
30179 // Check that the base pointer is the same as the original one.
30180 int64_t Offset;
30181 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
30182 break;
30183 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
30184 // Make sure we don't overlap with other intervals by checking the ones to
30185 // the left or right before inserting.
30186 auto I = Intervals.find(Offset);
30187 // If there's a next interval, we should end before it.
30188 if (I != Intervals.end() && I.start() < (Offset + Length))
30189 break;
30190 // If there's a previous interval, we should start after it.
30191 if (I != Intervals.begin() && (--I).stop() <= Offset)
30192 break;
30193 Intervals.insert(Offset, Offset + Length, std::monostate{});
30194
30195 ChainedStores.push_back(Chain);
30196 STChain = Chain;
30197 }
30198
30199 // If we didn't find a chained store, exit.
30200 if (ChainedStores.empty())
30201 return false;
30202
30203 // Improve all chained stores (St and ChainedStores members) starting from
30204 // where the store chain ended and return single TokenFactor.
30205 SDValue NewChain = STChain->getChain();
30207 for (unsigned I = ChainedStores.size(); I;) {
30208 StoreSDNode *S = ChainedStores[--I];
30209 SDValue BetterChain = FindBetterChain(S, NewChain);
30211 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
30212 TFOps.push_back(SDValue(S, 0));
30213 ChainedStores[I] = S;
30214 }
30215
30216 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
30217 SDValue BetterChain = FindBetterChain(St, NewChain);
30218 SDValue NewST;
30219 if (St->isTruncatingStore())
30220 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
30221 St->getBasePtr(), St->getMemoryVT(),
30222 St->getMemOperand());
30223 else
30224 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
30225 St->getBasePtr(), St->getMemOperand());
30226
30227 TFOps.push_back(NewST);
30228
30229 // If we improved every element of TFOps, then we've lost the dependence on
30230 // NewChain to successors of St and we need to add it back to TFOps. Do so at
30231 // the beginning to keep relative order consistent with FindBetterChains.
30232 auto hasImprovedChain = [&](SDValue ST) -> bool {
30233 return ST->getOperand(0) != NewChain;
30234 };
30235 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
30236 if (AddNewChain)
30237 TFOps.insert(TFOps.begin(), NewChain);
30238
30239 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
30240 CombineTo(St, TF);
30241
30242 // Add TF and its operands to the worklist.
30243 AddToWorklist(TF.getNode());
30244 for (const SDValue &Op : TF->ops())
30245 AddToWorklist(Op.getNode());
30246 AddToWorklist(STChain);
30247 return true;
30248}
30249
30250bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
30251 if (OptLevel == CodeGenOptLevel::None)
30252 return false;
30253
30254 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
30255
30256 // We must have a base and an offset.
30257 if (!BasePtr.getBase().getNode())
30258 return false;
30259
30260 // Do not handle stores to undef base pointers.
30261 if (BasePtr.getBase().isUndef())
30262 return false;
30263
30264 // Directly improve a chain of disjoint stores starting at St.
30265 if (parallelizeChainedStores(St))
30266 return true;
30267
30268 // Improve St's Chain..
30269 SDValue BetterChain = FindBetterChain(St, St->getChain());
30270 if (St->getChain() != BetterChain) {
30271 replaceStoreChain(St, BetterChain);
30272 return true;
30273 }
30274 return false;
30275}
30276
30277/// This is the entry point for the file.
30279 CodeGenOptLevel OptLevel) {
30280 /// This is the main entry point to this class.
30281 DAGCombiner(*this, BatchAA, OptLevel).Run(Level);
30282}
return SDValue()
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static cl::opt< bool > UseAA("aarch64-use-aa", cl::init(true), cl::desc("Enable the use of AA during codegen."))
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
constexpr LLT S1
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, const TargetLowering &TLI)
For the instruction sequence of store below, F and I values are bundled together as an i64 value befo...
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I)
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI, MachineRegisterInfo &MRI)
Return true if 'MI' is a load or a store that may be fold it's address operand into the load / store ...
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I)
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques=false)
static cl::opt< bool > EnableShrinkLoadReplaceStoreWithStore("combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable load/<replace bytes>/store with " "a narrower store"))
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, unsigned ExtOpc, SmallVectorImpl< SDNode * > &ExtendNodes, const TargetLowering &TLI)
static cl::opt< unsigned > TokenFactorInlineLimit("combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), cl::desc("Limit the number of operands to inline for Token Factors"))
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc, bool NonNegZExt=false)
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG)
static SDNode * getBuildPairElt(SDNode *N, unsigned i)
static SDValue foldExtractSubvectorFromShuffleVector(EVT NarrowVT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), try to produce VECTOR_SHUFFLE(EXTRACT_SUBVEC...
static SDValue foldToMaskedStore(StoreSDNode *Store, SelectionDAG &DAG, const SDLoc &Dl)
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
static SDValue tryToFoldExtendOfConstant(SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG, bool LegalTypes)
Try to fold a sext/zext/aext dag node into a ConstantSDNode or a build_vector of constants.
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, SDValue ExtractFrom, SDValue &Mask, const SDLoc &DL)
Helper function for visitOR to extract the needed side of a rotate idiom from a shl/srl/mul/udiv.
static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, bool &IsLoad, bool &IsMasked, SDValue &Ptr, const TargetLowering &TLI)
bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled, SelectionDAG &DAG, const SDLoc &DL)
static SDValue narrowExtractedVectorLoad(EVT VT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG)
If we are extracting a subvector from a wide vector load, convert to a narrow load to eliminate the e...
static SDValue scalarizeExtractedBinOp(SDNode *ExtElt, SelectionDAG &DAG, const SDLoc &DL, bool LegalTypes)
Transform a vector binary operation into a scalar binary operation by moving the math/logic after an ...
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, const TargetLowering &TLI)
Return true if divmod libcall is available.
static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG)
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, SelectionDAG &DAG, const SDLoc &DL)
Given the operands of an add/sub operation, see if the 2nd operand is a masked 0/1 whose source opera...
static bool mergeEltWithShuffle(SDValue &X, SDValue &Y, ArrayRef< int > Mask, SmallVectorImpl< int > &NewMask, SDValue Elt, unsigned InsIndex)
static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf)
If we have a unary shuffle of a shuffle, see if it can be folded away completely.
static bool canSplitIdx(LoadSDNode *LD)
static SDValue ShrinkLoadReplaceStoreWithStore(const std::pair< unsigned, unsigned > &MaskInfo, SDValue IVal, StoreSDNode *St, DAGCombiner *DC)
Check to see if IVal is something that provides a value as specified by MaskInfo.
static cl::opt< bool > StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, cl::desc("Bypass the profitability model of load slicing"), cl::init(false))
Hidden option to stress test load slicing, i.e., when this option is enabled, load slicing bypasses m...
static cl::opt< bool > UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), cl::desc("Enable DAG combiner's use of TBAA"))
static void adjustCostForPairing(SmallVectorImpl< LoadedSlice > &LoadedSlices, LoadedSlice::Cost &GlobalLSCost)
Adjust the GlobalLSCost according to the target paring capabilities and the layout of the slices.
static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, SDValue N0, SDValue N1, SDNode *N)
static cl::opt< bool > DisableCombines("combiner-disabled", cl::Hidden, cl::init(false), cl::desc("Disable the DAG combiner"))
static SDValue foldExtendVectorInregToExtendOfSubvector(SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG, bool LegalOperations)
static SDValue narrowExtractedVectorBinOp(EVT VT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
If we are extracting a subvector produced by a wide binary operator try to use a narrow binary operat...
static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode)
Check if N satisfies: N is used once.
static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG, const SDLoc &DL)
Given an extending node with a pop-count operand, if the target does not support a pop-count in the n...
static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand, SDValue RightHand, SelectionDAG &DAG)
Given a tree of logic operations with shape like (LOGIC (LOGIC (X, Y), LOGIC (Z, Y))) try to match an...
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG)
static SDValue takeInexpensiveLog2(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned Depth, bool AssumeNonZero)
static SDValue combineSelectAsExtAnd(SDValue Cond, SDValue T, SDValue F, const SDLoc &DL, SelectionDAG &DAG)
static bool areUsedBitsDense(const APInt &UsedBits)
Check that all bits set in UsedBits form a dense region, i.e., UsedBits looks like 0....
static SDValue foldMaskedMerge(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, const SDLoc &DL)
Fold "masked merge" expressions like (m & x) | (~m & y) and its DeMorgan variant (~m | x) & (m | y) i...
static SDValue getInputChainForNode(SDNode *N)
Given a node, return its input chain if it has one, otherwise return a null sd operand.
static ElementCount numVectorEltsOrZero(EVT T)
static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, bool ShouldCommuteOperands)
This inverts a canonicalization in IR that replaces a variable select arm with an identity constant.
static SDValue foldAndOrOfSETCC(SDNode *LogicOp, SelectionDAG &DAG)
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType)
static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG, const SDLoc &DL)
For targets that support usubsat, match a bit-hack form of that operation that ends in 'and' and conv...
static cl::opt< bool > CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, cl::desc("Enable DAG combiner's use of IR alias analysis"))
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy)
static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, SelectionDAG &DAG)
Combine shuffle of shuffle of the form: shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X...
static bool isDivisorPowerOfTwo(SDValue Divisor)
static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift, SDValue &Mask)
Match "(X shl/srl V1) & V2" where V2 may not be present.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG)
static bool hasNoInfs(const TargetOptions &Options, SDValue N)
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, SDValue RHS, const SDNodeFlags Flags, const TargetLowering &TLI)
static SDValue combineShuffleOfBitcast(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static std::optional< EVT > canCombineShuffleToExtendVectorInreg(unsigned Opcode, EVT VT, std::function< bool(unsigned)> Match, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, SelectionDAG &DAG)
static SDValue combineShuffleToAnyExtendVectorInreg(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static SDValue foldAddSubOfSignBit(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
Try to fold a 'not' shifted sign-bit with add/sub with constant operand into a shift and add with a d...
static SDValue stripTruncAndExt(SDValue Value)
static SDValue combineUADDO_CARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, SDValue X, SDValue Carry0, SDValue Carry1, SDNode *N)
If we are facing some sort of diamond carry propagation pattern try to break it up to generate someth...
static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG)
Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles followed by concatenatio...
static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG)
static auto getFirstIndexOf(R &&Range, const T &Val)
static SDValue getSubVectorSrc(SDValue V, unsigned Index, EVT SubVT)
static std::pair< unsigned, unsigned > CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain)
Check to see if V is (and load (ptr), imm), where the load is having specific bytes cleared out.
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef< int > Mask)
If the shuffle mask is taking exactly one element from the first vector operand and passing through a...
static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT, const TargetLowering &TLI)
static cl::opt< bool > EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable merging multiple stores " "into a wider store"))
static bool isContractableFMUL(const TargetOptions &Options, SDValue N)
static cl::opt< bool > MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), cl::desc("DAG combiner may split indexing from loads"))
static bool areSlicesNextToEachOther(const LoadedSlice &First, const LoadedSlice &Second)
Check whether or not First and Second are next to each other in memory.
static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op, SDValue &Mask)
static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2, SelectionDAG &DAG)
static bool isBSwapHWordPair(SDValue N, MutableArrayRef< SDNode * > Parts)
static SDValue foldFPToIntToFP(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, const TargetLowering &TLI)
static bool CanCombineFCOPYSIGN_EXTEND_ROUND(EVT XTy, EVT YTy)
copysign(x, fp_extend(y)) -> copysign(x, y) copysign(x, fp_round(y)) -> copysign(x,...
static cl::opt< bool > ReduceLoadOpStoreWidthForceNarrowingProfitable("combiner-reduce-load-op-store-width-force-narrowing-profitable", cl::Hidden, cl::init(false), cl::desc("DAG combiner force override the narrowing profitable check when " "reducing the width of load/op/store sequences"))
static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2, ISD::CondCode CC, unsigned OrAndOpcode, SelectionDAG &DAG, bool isFMAXNUMFMINNUM_IEEE, bool isFMAXNUMFMINNUM)
static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &DL)
static SDValue foldToSaturated(SDNode *N, EVT &VT, SDValue &Src, EVT &SrcVT, SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG)
static SDValue FoldIntToFPToInt(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static SDValue foldSubCtlzNot(SDNode *N, SelectionDAG &DAG)
static SDNode * getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, bool &IsMasked, SDValue &Ptr, SDValue &BasePtr, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, const TargetLowering &TLI, bool Force)
Flips a boolean if it is cheaper to compute.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, KnownBits &Known)
static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc)
static SDValue combineConcatVectorOfShuffleAndItsOperands(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT, SelectionDAG &DAG)
static SDValue foldRemainderIdiom(SDNode *N, SelectionDAG &DAG, const SDLoc &DL)
static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode CC, const TargetLowering &TLI, SelectionDAG &DAG)
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG)
If we have a shift-by-constant of a bitwise logic op that itself has a shift-by-constant operand with...
static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG)
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset=0)
static SDValue combineShiftToMULH(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, const TargetLowering &TLI)
static ConstantSDNode * getAsNonOpaqueConstant(SDValue N)
If N is a ConstantSDNode with isOpaque() == false return it casted to a ConstantSDNode pointer else n...
static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2, SelectionDAG &DAG)
static SDValue detectUSatUPattern(SDValue In, EVT VT)
Detect patterns of truncation with unsigned saturation:
static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, SelectionDAG &DAG)
static SDValue combineConcatVectorOfSplats(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N)
OR combines for which the commuted variant will be tried as well.
static SDValue detectSSatUPattern(SDValue In, EVT VT, SelectionDAG &DAG, const SDLoc &DL)
Detect patterns of truncation with unsigned saturation:
static SDValue combineShuffleToZeroExtendVectorInReg(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static cl::opt< bool > EnableReduceLoadOpStoreWidth("combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable reducing the width of load/op/store " "sequence"))
static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, SDValue &BasePtr, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue combineVSelectWithAllOnesOrZeros(SDValue Cond, SDValue TVal, SDValue FVal, const TargetLowering &TLI, SelectionDAG &DAG, const SDLoc &DL)
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, SelectionDAG &DAG, bool IsRotate, bool FromAdd)
static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, bool LegalOperations)
static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG)
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG)
Try to replace shift/logic that tests if a bit is clear with mask + setcc.
static bool areBitwiseNotOfEachother(SDValue Op0, SDValue Op1)
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG)
static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, bool LegalTypes)
If a vector binop is performed on splat values, it may be profitable to extract, scalarize,...
static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG)
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static SDValue combineConcatVectorOfConcatVectors(SDNode *N, SelectionDAG &DAG)
static SDValue tryToFoldExtOfAtomicLoad(SelectionDAG &DAG, const TargetLowering &TLI, EVT VT, SDValue N0, ISD::LoadExtType ExtLoadType)
static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, SelectionDAG &DAG, SDNode *N, SDValue N0, SDValue N1, EVT VT)
static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, SelectionDAG &DAG, const SDLoc &DL, CombineLevel Level)
Fold (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) (zext (select c,...
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V, bool ForceCarryReconstruction=false)
static SDValue matchMergedBFX(SDValue Root, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
If a (v)select has a condition value that is a sign-bit test, try to smear the condition operand sign...
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG)
static SDValue detectSSatSPattern(SDValue In, EVT VT)
Detect patterns of truncation with signed saturation: (truncate (smin (smax (x, signed_min_of_dest_ty...
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG)
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, SelectionDAG &DAG, bool LegalOperations)
static cl::opt< unsigned > StoreMergeDependenceLimit("combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), cl::desc("Limit the number of times for the same StoreNode and RootNode " "to bail out in store merging dependence check"))
static SDValue eliminateFPCastPair(SDNode *N)
static cl::opt< std::string > CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, cl::desc("Only use DAG-combiner alias analysis in this" " function"))
static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp, SelectionDAG &DAG)
Given a bitwise logic operation N with a matching bitwise logic operand, fold a pattern where 2 of th...
ByteProvider< SDNode * > SDByteProvider
Recursively traverses the expression calculating the origin of the requested byte of the given value.
static bool isSlicingProfitable(SmallVectorImpl< LoadedSlice > &LoadedSlices, const APInt &UsedBits, bool ForCodeSize)
Check the profitability of all involved LoadedSlice.
static SDValue narrowInsertExtractVectorBinOp(EVT SubVT, SDValue BinOp, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef< SDNode * > Parts)
Return true if the specified node is an element that makes up a 32-bit packed halfword byteswap.
static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, unsigned &BW, bool &Unsigned, SelectionDAG &DAG)
static SDValue foldBoolSelectToLogic(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
dxil translate DXIL Translate Metadata
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
static MaybeAlign getAlign(Value *Ptr)
iv Induction Variable Users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
This file implements a coalescing interval map for small objects.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
#define T1
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static bool isSimple(Instruction *I)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
This file contains some templates that are useful if you are working with the STL at all.
static cl::opt< bool > UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"))
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file implements a set that has insertion order iteration characteristics.
This file implements the SmallBitVector class.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static constexpr int Concat[]
Value * RHS
Value * LHS
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
bool isNegative() const
Definition APFloat.h:1449
bool isNormal() const
Definition APFloat.h:1453
bool isDenormal() const
Definition APFloat.h:1450
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
const fltSemantics & getSemantics() const
Definition APFloat.h:1457
bool isNaN() const
Definition APFloat.h:1447
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
APInt bitcastToAPInt() const
Definition APFloat.h:1353
bool isLargest() const
Definition APFloat.h:1465
bool isInfinity() const
Definition APFloat.h:1446
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition APInt.cpp:644
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:449
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:206
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1249
int32_t exactLogBase2() const
Definition APInt.h:1783
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1531
unsigned countLeadingZeros() const
Definition APInt.h:1606
void flipAllBits()
Toggle every bit to its opposite value.
Definition APInt.h:1452
unsigned logBase2() const
Definition APInt.h:1761
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition APInt.h:510
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:475
bool getBoolValue() const
Convert APInt to a boolean value.
Definition APInt.h:471
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isMask(unsigned numBits) const
Definition APInt.h:488
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:296
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:858
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
unsigned countr_one() const
Count the number of trailing one bits.
Definition APInt.h:1656
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:200
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
static LLVM_ABI bool computeAliasing(const SDNode *Op0, const LocationSize NumBytes0, const SDNode *Op1, const LocationSize NumBytes1, const SelectionDAG &DAG, bool &IsAlias)
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
LLVM_ABI bool isConstant() const
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< SDNode * > Val, int64_t ByteOffset, int64_t VectorOffset)
Combiner implementation.
Definition Combiner.h:34
ISD::CondCode get() const
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:535
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isZero() const
Return true if the value is positive or negative zero.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI ConstantRange truncate(uint32_t BitWidth, unsigned NoWrapKind=0) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
const APInt & getUpper() const
Return the upper value for this range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
const ConstantInt * getConstantIntValue() const
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
bool isBigEndian() const
Definition DataLayout.h:199
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
static bool shouldExecute(unsigned CounterName)
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:165
iterator end()
Definition DenseMap.h:81
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
const_iterator find(KeyT x) const
find - Return an iterator pointing to the first interval ending at or after x, or end().
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
bool hasValue() const
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
bool isScalable() const
TypeSize getValue() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1561
Machine Value Type.
SimpleValueType SimpleTy
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
A description of a memory reference used in the backend.
const PseudoSourceValue * getPseudoValue() const
void clearRanges()
Unset the tracked range metadata.
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MONonTemporal
The memory access is non-temporal.
Flags getFlags() const
Return the raw flags of the source value,.
const Value * getValue() const
Return the base address of the memory access.
const SDValue & getPassThru() const
ISD::LoadExtType getExtensionType() const
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getInc() const
const SDValue & getScale() const
const SDValue & getMask() const
const SDValue & getIntID() const
const SDValue & getIndex() const
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
This class is used to represent an MLOAD node.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
const SDValue & getPassThru() const
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
This class is used to represent an MSTORE node.
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
const SDValue & getOffset() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getBaseAlign() const
Returns alignment and volatility of the memory access.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getBasePtr() const
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
bool isNonTemporal() const
bool isInvariant() const
bool isDereferenceable() const
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
MutableArrayRef< T > take_back(size_t N=1) const
Return a copy of *this with only the last N elements.
Definition ArrayRef.h:424
iterator end() const
Definition ArrayRef.h:348
iterator begin() const
Definition ArrayRef.h:347
MutableArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:417
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
iterator_range< use_iterator > uses()
SDNodeFlags getFlags() const
size_t use_size() const
Return the number of uses of this node.
TypeSize getValueSizeInBits(unsigned ResNo) const
Returns MVT::getSizeInBits(getValueType(ResNo)).
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
iterator_range< user_iterator > users()
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
static use_iterator use_end()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isAnyAdd() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
unsigned getNumOperands() const
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
LLVM_ABI void Combine(CombineLevel Level, BatchAAResults *BatchAA, CodeGenOptLevel OptLevel)
This iterates over the nodes in the SelectionDAG, folding certain types of nodes together,...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool LegalizeOp(SDNode *N, SmallSetVector< SDNode *, 16 > &UpdatedNodes)
Transforms a SelectionDAG node and any operands to it into a node that is compatible with the target ...
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the mul of 2 nodes can never overflow.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
bool isConstantValueOfAnyType(SDValue N) const
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
bool isSafeToSpeculativelyExecuteNode(const SDNode *N) const
Check if the provided node is save to speculatively executed given its current arguments.
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
DenormalMode getDenormalMode(EVT VT) const
Return the current function's default denormal handling kind for the given floating point type.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
static unsigned getOpcode_EXTEND(unsigned Opcode)
Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
bool empty() const
Determine if the SetVector is empty or not.
Definition SetVector.h:99
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
value_type pop_back_val()
Definition SetVector.h:296
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
void push_back(bool Val)
void reserve(unsigned N)
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
bool empty() const
Definition SmallSet.h:168
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:181
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
bool has(LibFunc F) const
Tests whether a library function is available.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
virtual bool preferScalarizeSplat(SDNode *N) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
bool isPartialReduceMLALegalOrCustom(unsigned Opc, EVT AccVT, EVT InputVT) const
Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is legal or custom for this targ...
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to fold a pair of shifts into a mask.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const
Returns true if it's profitable to allow merging store of loads when there are functions calls betwee...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned getGatherAllAliasesMaxDepth() const
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
virtual bool preferABDSToABSWithNSW(EVT VT) const
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
virtual bool isTargetCanonicalSelect(SDNode *N) const
Return true if the given select/vselect should be considered canonical and not be transformed.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
TargetLowering(const TargetLowering &)=delete
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
TargetOptions Options
unsigned NoSignedZerosFPMath
NoSignedZerosFPMath - This flag is enabled when the -enable-no-signed-zeros-fp-math is specified on t...
virtual bool useAA() const
Enable use of alias analysis during code generation (during MI scheduling, DAGCombine,...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
Value * getOperand(unsigned i) const
Definition User.h:232
const SDValue & getScale() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getVectorLength() const
const SDValue & getIndex() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
int getNumOccurrences() const
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
Definition TypeSize.h:181
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
Changed
#define INT64_MAX
Definition DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsVolatile[]
Key for Kernel::Arg::Metadata::mIsVolatile.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2248
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2253
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2263
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:855
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:622
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ CARRY_FALSE
CARRY_FALSE - This node is used when folding other nodes, like ADDC/SUBC, which indicate the carry re...
Definition ISDOpcodes.h:280
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:420
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:853
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:857
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
bool isIndexTypeSigned(MemIndexType IndexType)
bool isExtVecInRegOpcode(unsigned Opcode)
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isFPEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with floati...
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isBitwiseLogicOp(unsigned Opcode)
Whether this is bitwise logic opcode.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
bool isUNINDEXEDLoad(const SDNode *N)
Returns true if the specified node is an unindexed load.
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
CastInst_match< OpTy, FPToUIInst > m_FPToUI(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
@ Undef
Value of the register doesn't matter.
Opcode_match m_Opc(unsigned Opcode)
auto m_SelectCCLike(const LTy &L, const RTy &R, const TTy &T, const FTy &F, const CCTy &CC)
BinaryOpc_match< LHS, RHS > m_Srl(const LHS &L, const RHS &R)
auto m_SpecificVT(EVT RefVT, const Pattern &P)
Match a specific ValueType.
BinaryOpc_match< LHS, RHS > m_Sra(const LHS &L, const RHS &R)
auto m_UMinLike(const LHS &L, const RHS &R)
auto m_UMaxLike(const LHS &L, const RHS &R)
UnaryOpc_match< Opnd > m_Abs(const Opnd &Op)
Or< Preds... > m_AnyOf(const Preds &...preds)
And< Preds... > m_AllOf(const Preds &...preds)
TernaryOpc_match< T0_P, T1_P, T2_P > m_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
UnaryOpc_match< Opnd > m_AnyExt(const Opnd &Op)
auto m_SMaxLike(const LHS &L, const RHS &R)
UnaryOpc_match< Opnd > m_Ctlz(const Opnd &Op)
TernaryOpc_match< T0_P, T1_P, T2_P > m_VSelect(const T0_P &Cond, const T1_P &T, const T2_P &F)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
UnaryOpc_match< Opnd > m_UnaryOp(unsigned Opc, const Opnd &Op)
auto m_SMinLike(const LHS &L, const RHS &R)
CondCode_match m_SpecificCondCode(ISD::CondCode CC)
Match a conditional code SDNode with a specific ISD::CondCode.
NUses_match< 1, Value_match > m_OneUse()
CondCode_match m_CondCode()
Match any conditional code SDNode.
Not(const Pred &P) -> Not< Pred >
TernaryOpc_match< T0_P, T1_P, T2_P, true, false > m_c_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
bool sd_context_match(SDValue N, const MatchContext &Ctx, Pattern &&P)
ConstantInt_match m_ConstInt()
Match any integer constants or splat of an integer constant.
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
constexpr double e
Definition MathExtras.h:47
@ User
could "use" a pointer
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2038
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1731
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
InstructionCost Cost
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:145
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
bool operator!=(uint64_t V1, const APInt &V2)
Definition APInt.h:2113
bool operator>=(int64_t V1, const APSInt &V2)
Definition APSInt.h:361
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1534
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:186
unsigned M1(unsigned Val)
Definition VE.h:377
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isConstantOrConstantVector(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP=true, bool AllowOpaqueConstants=true)
Return true if the specified instruction is known to be a constant, or a vector of constants.
Definition Utils.cpp:1545
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition bit.h:222
bool operator>(int64_t V1, const APSInt &V2)
Definition APSInt.h:363
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
detail::ValueMatchesPoly< M > HasValue(M Matcher)
Definition Error.h:221
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Other
Any other memory.
Definition ModRef.h:68
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
CombineLevel
Definition DAGCombine.h:15
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ BeforeLegalizeTypes
Definition DAGCombine.h:16
@ AfterLegalizeTypes
Definition DAGCombine.h:17
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
Definition VE.h:376
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1941
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
LLVM_ABI void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2088
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
bool operator<=(int64_t V1, const APSInt &V2)
Definition APSInt.h:360
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
LLVM_ABI AAMDNodes concat(const AAMDNodes &Other) const
Determine the best AAMDNodes after concatenating two different locations together.
static LLVM_ABI ExponentType semanticsMinExponent(const fltSemantics &)
Definition APFloat.cpp:332
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static LLVM_ABI ExponentType semanticsMaxExponent(const fltSemantics &)
Definition APFloat.cpp:328
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:324
static LLVM_ABI bool isIEEELikeFP(const fltSemantics &)
Definition APFloat.cpp:365
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
static LLVM_ABI unsigned int semanticsIntSizeInBits(const fltSemantics &, bool)
Definition APFloat.cpp:338
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:85
static constexpr DenormalMode getIEEE()
Extended Value Type.
Definition ValueTypes.h:35
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition ValueTypes.h:94
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
bool knownBitsLE(EVT VT) const
Return true if we know at compile time this has fewer than or the same bits as VT.
Definition ValueTypes.h:279
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isScalableVT() const
Return true if the type is a scalable type.
Definition ValueTypes.h:187
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isRound() const
Return true if the size is a power-of-two number of bytes.
Definition ValueTypes.h:248
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
bool knownBitsGE(EVT VT) const
Return true if we know at compile time this has more than or the same bits as VT.
Definition ValueTypes.h:268
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
Definition KnownBits.h:296
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
bool isAllOnes() const
Returns true if value is all one bits.
Definition KnownBits.h:83
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
These are IR-level optimization flags that may be propagated to SDNodes.
void setAllowContract(bool b)
bool hasNoUnsignedWrap() const
void setAllowReassociation(bool b)
void setAllowReciprocal(bool b)
bool hasAllowContract() const
bool hasApproximateFuncs() const
void setApproximateFuncs(bool b)
bool hasNoSignedWrap() const
bool hasAllowReciprocal() const
bool hasAllowReassociation() const
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
LLVM_ABI void AddToWorklist(SDNode *N)
LLVM_ABI bool recursivelyDeleteUnusedNodes(SDNode *N)
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...