LLVM 22.0.0git
LiveVariables.h
Go to the documentation of this file.
1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveVariables analysis pass. For each machine
10// instruction in the function, this pass calculates the set of registers that
11// are immediately dead after the instruction (i.e., the instruction calculates
12// the value, but it is never used) and the set of registers that are used by
13// the instruction, but are never used after the instruction (i.e., they are
14// killed).
15//
16// This class computes live variables using a sparse implementation based on
17// the machine code SSA form. This class computes live variable information for
18// each virtual and _register allocatable_ physical register in a function. It
19// uses the dominance properties of SSA form to efficiently compute live
20// variables for virtual registers, and assumes that physical registers are only
21// live within a single basic block (allowing it to do a single local analysis
22// to resolve physical register lifetimes in each basic block). If a physical
23// register is not register allocatable, it is not tracked. This is useful for
24// things like the stack pointer and condition codes.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29#define LLVM_CODEGEN_LIVEVARIABLES_H
30
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/IndexedMap.h"
33#include "llvm/ADT/SmallSet.h"
41#include "llvm/PassRegistry.h"
43
44namespace llvm {
45
46class MachineBasicBlock;
47class MachineRegisterInfo;
48
51
52public:
53 /// VarInfo - This represents the regions where a virtual register is live in
54 /// the program. We represent this with three different pieces of
55 /// information: the set of blocks in which the instruction is live
56 /// throughout, the set of blocks in which the instruction is actually used,
57 /// and the set of non-phi instructions that are the last users of the value.
58 ///
59 /// In the common case where a value is defined and killed in the same block,
60 /// There is one killing instruction, and AliveBlocks is empty.
61 ///
62 /// Otherwise, the value is live out of the block. If the value is live
63 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
64 /// where the liveness range ends are not included in AliveBlocks, instead
65 /// being captured by the Kills set. In these blocks, the value is live into
66 /// the block (unless the value is defined and killed in the same block) and
67 /// lives until the specified instruction. Note that there cannot ever be a
68 /// value whose Kills set contains two instructions from the same basic block.
69 ///
70 /// PHI nodes complicate things a bit. If a PHI node is the last user of a
71 /// value in one of its predecessor blocks, it is not listed in the kills set,
72 /// but does include the predecessor block in the AliveBlocks set (unless that
73 /// block also defines the value). This leads to the (perfectly sensical)
74 /// situation where a value is defined in a block, and the last use is a phi
75 /// node in the successor. In this case, AliveBlocks is empty (the value is
76 /// not live across any blocks) and Kills is empty (phi nodes are not
77 /// included). This is sensical because the value must be live to the end of
78 /// the block, but is not live in any successor blocks.
79 struct VarInfo {
80 /// AliveBlocks - Set of blocks in which this value is alive completely
81 /// through. This is a bit set which uses the basic block number as an
82 /// index.
83 ///
85
86 /// Kills - List of MachineInstruction's which are the last use of this
87 /// virtual register (kill it) in their basic block.
88 ///
89 std::vector<MachineInstr*> Kills;
90
91 /// removeKill - Delete a kill corresponding to the specified
92 /// machine instruction. Returns true if there was a kill
93 /// corresponding to this instruction, false otherwise.
95 std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96 if (I == Kills.end())
97 return false;
98 Kills.erase(I);
99 return true;
100 }
101
102 /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
104
105 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107 /// MBB, it is not considered live in.
110
111 LLVM_ABI void print(raw_ostream &OS) const;
112
113 LLVM_ABI void dump() const;
114 };
115
116private:
117 /// VirtRegInfo - This list is a mapping from virtual register number to
118 /// variable information.
119 ///
121
122private: // Intermediate data structures
123 MachineFunction *MF = nullptr;
124
125 MachineRegisterInfo *MRI = nullptr;
126
127 const TargetRegisterInfo *TRI = nullptr;
128
129 // PhysRegInfo - Keep track of which instruction was the last def of a
130 // physical register. This is a purely local property, because all physical
131 // register references are presumed dead across basic blocks.
132 std::vector<MachineInstr *> PhysRegDef;
133
134 // PhysRegInfo - Keep track of which instruction was the last use of a
135 // physical register. This is a purely local property, because all physical
136 // register references are presumed dead across basic blocks.
137 std::vector<MachineInstr *> PhysRegUse;
138
139 std::vector<SmallVector<Register, 4>> PHIVarInfo;
140
141 // DistanceMap - Keep track the distance of a MI from the start of the
142 // current basic block.
144
145 // For legacy pass.
146 LiveVariables() = default;
147
148 LLVM_ABI void analyze(MachineFunction &MF);
149
150 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
151 /// uses. Pay special attention to the sub-register uses which may come below
152 /// the last use of the whole register.
153 bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
154
155 /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
156 void HandleRegMask(const MachineOperand &, unsigned);
157
158 void HandlePhysRegUse(Register Reg, MachineInstr &MI);
159 void HandlePhysRegDef(Register Reg, MachineInstr *MI,
161 void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<Register> &Defs);
162
163 /// FindLastRefOrPartRef - Return the last reference or partial reference of
164 /// the specified register.
165 MachineInstr *FindLastRefOrPartRef(Register Reg);
166
167 /// FindLastPartialDef - Return the last partial def of the specified
168 /// register.
169 MachineInstr *FindLastPartialDef(Register Reg);
170
171 /// analyzePHINodes - Gather information about the PHI nodes in here. In
172 /// particular, we want to map the variable information of a virtual
173 /// register which is used in a PHI node. We map that to the BB the vreg
174 /// is coming from.
175 void analyzePHINodes(const MachineFunction& Fn);
176
177 void runOnInstr(MachineInstr &MI, SmallVectorImpl<Register> &Defs,
178 unsigned NumRegs);
179
180 void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181
182public:
184
185 LLVM_ABI void print(raw_ostream &OS) const;
186
187 //===--------------------------------------------------------------------===//
188 // API to update live variable information
189
190 /// Recompute liveness from scratch for a virtual register \p Reg that is
191 /// known to have a single def that dominates all uses. This can be useful
192 /// after removing some uses of \p Reg. It is not necessary for the whole
193 /// machine function to be in SSA form.
195
196 /// replaceKillInstruction - Update register kill info by replacing a kill
197 /// instruction with a new one.
199 MachineInstr &NewMI);
200
201 /// addVirtualRegisterKilled - Add information about the fact that the
202 /// specified register is killed after being used by the specified
203 /// instruction. If AddIfNotFound is true, add a implicit operand if it's
204 /// not found.
206 bool AddIfNotFound = false) {
207 if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
208 getVarInfo(IncomingReg).Kills.push_back(&MI);
209 }
210
211 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
212 /// register from the live variable information. Returns true if the
213 /// variable was marked as killed by the specified instruction,
214 /// false otherwise.
216 if (!getVarInfo(Reg).removeKill(MI))
217 return false;
218
219 bool Removed = false;
220 for (MachineOperand &MO : MI.operands()) {
221 if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
222 MO.setIsKill(false);
223 Removed = true;
224 break;
225 }
226 }
227
228 assert(Removed && "Register is not used by this instruction!");
229 (void)Removed;
230 return true;
231 }
232
233 /// removeVirtualRegistersKilled - Remove all killed info for the specified
234 /// instruction.
236
237 /// addVirtualRegisterDead - Add information about the fact that the specified
238 /// register is dead after being used by the specified instruction. If
239 /// AddIfNotFound is true, add a implicit operand if it's not found.
241 bool AddIfNotFound = false) {
242 if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
243 getVarInfo(IncomingReg).Kills.push_back(&MI);
244 }
245
246 /// removeVirtualRegisterDead - Remove the specified kill of the virtual
247 /// register from the live variable information. Returns true if the
248 /// variable was marked dead at the specified instruction, false
249 /// otherwise.
251 if (!getVarInfo(Reg).removeKill(MI))
252 return false;
253
254 bool Removed = false;
255 for (MachineOperand &MO : MI.all_defs()) {
256 if (MO.getReg() == Reg) {
257 MO.setIsDead(false);
258 Removed = true;
259 break;
260 }
261 }
262 assert(Removed && "Register is not defined by this instruction!");
263 (void)Removed;
264 return true;
265 }
266
267 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
268 /// register.
270
271 LLVM_ABI void MarkVirtRegAliveInBlock(VarInfo &VRInfo,
272 MachineBasicBlock *DefBlock,
274 LLVM_ABI void
275 MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
278
282
284 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285 }
286
287 /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288 /// PHI nodes. This means that Reg is either killed by a successor block or
289 /// passed through one.
291
292 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293 /// variables that are live out of DomBB and live into SuccBB will be marked
294 /// as passing live through BB. This method assumes that the machine code is
295 /// still in SSA form.
297 MachineBasicBlock *SuccBB);
298
300 MachineBasicBlock *SuccBB,
301 std::vector<SparseBitVector<>> &LiveInSets);
302};
303
304class LiveVariablesAnalysis : public AnalysisInfoMixin<LiveVariablesAnalysis> {
306 LLVM_ABI static AnalysisKey Key;
307
308public:
311};
312
314 : public PassInfoMixin<LiveVariablesPrinterPass> {
315 raw_ostream &OS;
316
317public:
321 static bool isRequired() { return true; }
322};
323
325 LiveVariables LV;
326
327public:
328 static char ID; // Pass identification, replacement for typeid
329
331 initializeLiveVariablesWrapperPassPass(*PassRegistry::getPassRegistry());
332 }
333
335 LV.analyze(MF);
336 return false;
337 }
338
339 void getAnalysisUsage(AnalysisUsage &AU) const override;
340
341 void releaseMemory() override { LV.VirtRegInfo.clear(); }
342
343 LiveVariables &getLV() { return LV; }
344};
345
346} // End llvm namespace
347
348#endif
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
#define LLVM_ABI
Definition: Compiler.h:213
This file defines the DenseMap class.
IRTranslator LLVM IR MI
This file implements an indexed map.
#define I(x, y, z)
Definition: MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
raw_pwrite_stream & OS
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the SparseBitVector class.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
Represent the analysis usage information of a pass.
LLVM_ABI Result run(MachineFunction &MF, MachineFunctionAnalysisManager &)
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
LiveVariablesPrinterPass(raw_ostream &OS)
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
LLVM_ABI void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
LLVM_ABI void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *BB)
bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI)
removeVirtualRegisterDead - Remove the specified kill of the virtual register from the live variable ...
bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI)
removeVirtualRegisterKilled - Remove the specified kill of the virtual register from the live variabl...
LLVM_ABI void removeVirtualRegistersKilled(MachineInstr &MI)
removeVirtualRegistersKilled - Remove all killed info for the specified instruction.
void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterDead - Add information about the fact that the specified register is dead after bei...
LLVM_ABI bool isLiveOut(Register Reg, const MachineBasicBlock &MBB)
isLiveOut - Determine if Reg is live out from MBB, when not considering PHI nodes.
LLVM_ABI void HandleVirtRegDef(Register reg, MachineInstr &MI)
LLVM_ABI void print(raw_ostream &OS) const
bool isLiveIn(Register Reg, const MachineBasicBlock &MBB)
LLVM_ABI void recomputeForSingleDefVirtReg(Register Reg)
Recompute liveness from scratch for a virtual register Reg that is known to have a single def that do...
LLVM_ABI void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI)
void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI, bool AddIfNotFound=false)
addVirtualRegisterKilled - Add information about the fact that the specified register is killed after...
LLVM_ABI VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
LLVM_ABI void addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB, MachineBasicBlock *SuccBB)
addNewBlock - Add a new basic block BB between DomBB and SuccBB.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Representation of each machine instruction.
Definition: MachineInstr.h:72
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1770
LLVM_ABI void initializeLiveVariablesWrapperPassPass(PassRegistry &)
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition: PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:29
VarInfo - This represents the regions where a virtual register is live in the program.
Definition: LiveVariables.h:79
bool removeKill(MachineInstr &MI)
removeKill - Delete a kill corresponding to the specified machine instruction.
Definition: LiveVariables.h:94
LLVM_ABI void dump() const
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction's which are the last use of this virtual register (kill it) in the...
Definition: LiveVariables.h:89
SparseBitVector AliveBlocks
AliveBlocks - Set of blocks in which this value is alive completely through.
Definition: LiveVariables.h:84
LLVM_ABI MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI bool isLiveIn(const MachineBasicBlock &MBB, Register Reg, MachineRegisterInfo &MRI)
isLiveIn - Is Reg live in to MBB? This means that Reg is live through MBB, or it is killed in MBB.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:70
VirtRegInfo - Information about a virtual register used by a set of operands.