31#include "llvm/IR/IntrinsicsLoongArch.h"
41#define DEBUG_TYPE "loongarch-isel-lowering"
56 cl::desc(
"Maximum number of instructions used (including code sequence "
57 "to generate the value and moving the value to FPR) when "
58 "materializing floating-point immediates (default = 3)"),
62 "Materialize FP immediate within 2 instructions"),
64 "Materialize FP immediate within 3 instructions"),
66 "Materialize FP immediate within 4 instructions"),
68 "Materialize FP immediate within 5 instructions"),
70 "Materialize FP immediate within 6 instructions "
71 "(behaves same as 5 on loongarch64)")));
74 cl::desc(
"Trap on integer division by zero."),
81 MVT GRLenVT = Subtarget.getGRLenVT();
86 if (Subtarget.hasBasicF())
88 if (Subtarget.hasBasicD())
92 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
94 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
96 if (Subtarget.hasExtLSX())
100 if (Subtarget.hasExtLASX())
101 for (
MVT VT : LASXVTs)
169 if (Subtarget.is64Bit()) {
197 if (!Subtarget.is64Bit()) {
203 if (Subtarget.hasBasicD())
215 if (Subtarget.hasBasicF()) {
247 if (Subtarget.is64Bit())
250 if (!Subtarget.hasBasicD()) {
252 if (Subtarget.is64Bit()) {
261 if (Subtarget.hasBasicD()) {
294 if (Subtarget.is64Bit())
300 if (Subtarget.hasExtLSX()) {
315 for (
MVT VT : LSXVTs) {
329 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
351 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
353 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
355 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
359 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
377 {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16,
378 MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) {
393 if (Subtarget.hasExtLASX()) {
394 for (
MVT VT : LASXVTs) {
409 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
432 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
434 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
436 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
440 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
462 if (Subtarget.hasExtLSX()) {
469 if (Subtarget.hasExtLASX())
492 if (Subtarget.hasLAMCAS())
495 if (Subtarget.hasSCQ()) {
512 switch (
Op.getOpcode()) {
513 case ISD::ATOMIC_FENCE:
514 return lowerATOMIC_FENCE(
Op, DAG);
516 return lowerEH_DWARF_CFA(
Op, DAG);
518 return lowerGlobalAddress(
Op, DAG);
520 return lowerGlobalTLSAddress(
Op, DAG);
522 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
524 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
526 return lowerINTRINSIC_VOID(
Op, DAG);
528 return lowerBlockAddress(
Op, DAG);
530 return lowerJumpTable(
Op, DAG);
532 return lowerShiftLeftParts(
Op, DAG);
534 return lowerShiftRightParts(
Op, DAG,
true);
536 return lowerShiftRightParts(
Op, DAG,
false);
538 return lowerConstantPool(
Op, DAG);
540 return lowerFP_TO_SINT(
Op, DAG);
542 return lowerBITCAST(
Op, DAG);
544 return lowerUINT_TO_FP(
Op, DAG);
546 return lowerSINT_TO_FP(
Op, DAG);
548 return lowerVASTART(
Op, DAG);
550 return lowerFRAMEADDR(
Op, DAG);
552 return lowerRETURNADDR(
Op, DAG);
554 return lowerWRITE_REGISTER(
Op, DAG);
556 return lowerINSERT_VECTOR_ELT(
Op, DAG);
558 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
560 return lowerBUILD_VECTOR(
Op, DAG);
562 return lowerCONCAT_VECTORS(
Op, DAG);
564 return lowerVECTOR_SHUFFLE(
Op, DAG);
566 return lowerBITREVERSE(
Op, DAG);
568 return lowerSCALAR_TO_VECTOR(
Op, DAG);
570 return lowerPREFETCH(
Op, DAG);
572 return lowerSELECT(
Op, DAG);
574 return lowerBRCOND(
Op, DAG);
575 case ISD::FP_TO_FP16:
576 return lowerFP_TO_FP16(
Op, DAG);
577 case ISD::FP16_TO_FP:
578 return lowerFP16_TO_FP(
Op, DAG);
579 case ISD::FP_TO_BF16:
580 return lowerFP_TO_BF16(
Op, DAG);
581 case ISD::BF16_TO_FP:
582 return lowerBF16_TO_FP(
Op, DAG);
583 case ISD::VECREDUCE_ADD:
584 return lowerVECREDUCE_ADD(
Op, DAG);
585 case ISD::VECREDUCE_AND:
586 case ISD::VECREDUCE_OR:
587 case ISD::VECREDUCE_XOR:
588 case ISD::VECREDUCE_SMAX:
589 case ISD::VECREDUCE_SMIN:
590 case ISD::VECREDUCE_UMAX:
591 case ISD::VECREDUCE_UMIN:
592 return lowerVECREDUCE(
Op, DAG);
594 return lowerConstantFP(
Op, DAG);
601 EVT VT =
Op.getValueType();
606 assert((VT == MVT::f32 && Subtarget.hasBasicF()) ||
607 (VT == MVT::f64 && Subtarget.hasBasicD()));
624 int InsNum = Seq.size() + ((VT == MVT::f64 && !Subtarget.
is64Bit()) ? 2 : 1);
666 MVT OpVT =
Op.getSimpleValueType();
673 unsigned LegalVecSize = 128;
674 bool isLASX256Vector =
684 if (isLASX256Vector) {
689 for (
unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) {
695 if (isLASX256Vector) {
721 MVT OpVT =
Op.getSimpleValueType();
734 MVT GRLenVT = Subtarget.getGRLenVT();
736 for (
int i = NumEles; i > 1; i /= 2) {
739 Val = DAG.
getNode(Opcode,
DL, VecTy, Tmp, Val);
748 unsigned IsData =
Op.getConstantOperandVal(4);
753 return Op.getOperand(0);
768 if (
LHS == LHS2 &&
RHS == RHS2) {
773 }
else if (
LHS == RHS2 &&
RHS == LHS2) {
789 MVT VT =
N->getSimpleValueType(0);
820 if (~TrueVal == FalseVal) {
860 unsigned SelOpNo = 0;
870 unsigned ConstSelOpNo = 1;
871 unsigned OtherSelOpNo = 2;
878 if (!ConstSelOpNode || ConstSelOpNode->
isOpaque())
883 if (!ConstBinOpNode || ConstBinOpNode->
isOpaque())
889 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
891 std::swap(NewConstOps[0], NewConstOps[1]);
903 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
905 std::swap(NewNonConstOps[0], NewNonConstOps[1]);
908 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
909 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
929 ShAmt =
LHS.getValueSizeInBits() - 1 -
Log2_64(Mask);
943 int64_t
C = RHSC->getSExtValue();
986 MVT VT =
Op.getSimpleValueType();
987 MVT GRLenVT = Subtarget.getGRLenVT();
992 if (
Op.hasOneUse()) {
993 unsigned UseOpc =
Op->user_begin()->getOpcode();
995 SDNode *BinOp = *
Op->user_begin();
1002 return lowerSELECT(NewSel, DAG);
1042 if (TrueVal - 1 == FalseVal)
1044 if (TrueVal + 1 == FalseVal)
1051 RHS == TrueV &&
LHS == FalseV) {
1083 MVT GRLenVT = Subtarget.getGRLenVT();
1095 Op.getOperand(0),
LHS,
RHS, TargetCC,
1099 Op.getOperand(0), CondV,
Op.getOperand(2));
1109LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
1112 MVT OpVT =
Op.getSimpleValueType();
1123 EVT ResTy =
Op->getValueType(0);
1128 if (!Subtarget.is64Bit() && (ResTy == MVT::v16i8 || ResTy == MVT::v32i8))
1138 for (
unsigned int i = 0; i < NewEltNum; i++) {
1141 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
1160 for (
unsigned int i = 0; i < NewEltNum; i++)
1161 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
1162 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
1180 if (EltBits > 32 || EltBits == 1)
1208 int MaskOffset,
const APInt &Zeroable) {
1209 int Size = Mask.size();
1210 unsigned SizeInBits =
Size * ScalarSizeInBits;
1212 auto CheckZeros = [&](
int Shift,
int Scale,
bool Left) {
1213 for (
int i = 0; i <
Size; i += Scale)
1214 for (
int j = 0; j < Shift; ++j)
1215 if (!Zeroable[i + j + (
Left ? 0 : (Scale - Shift))])
1223 for (
unsigned i = Pos, e = Pos +
Size; i != e; ++i,
Low += Step)
1224 if (!(Mask[i] == -1 || Mask[i] ==
Low))
1229 auto MatchShift = [&](
int Shift,
int Scale,
bool Left) {
1230 for (
int i = 0; i !=
Size; i += Scale) {
1231 unsigned Pos =
Left ? i + Shift : i;
1232 unsigned Low =
Left ? i : i + Shift;
1233 unsigned Len = Scale - Shift;
1238 int ShiftEltBits = ScalarSizeInBits * Scale;
1239 bool ByteShift = ShiftEltBits > 64;
1242 int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
1246 Scale = ByteShift ? Scale / 2 : Scale;
1252 return (
int)ShiftAmt;
1255 unsigned MaxWidth = 128;
1256 for (
int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
1257 for (
int Shift = 1; Shift != Scale; ++Shift)
1258 for (
bool Left : {
true,
false})
1259 if (CheckZeros(Shift, Scale,
Left)) {
1260 int ShiftAmt = MatchShift(Shift, Scale,
Left);
1285 const APInt &Zeroable) {
1286 int Size = Mask.size();
1300 Mask,
Size, Zeroable);
1308 "Illegal integer vector type");
1317template <
typename ValType>
1320 unsigned CheckStride,
1322 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
1326 if (*
I != -1 && *
I != ExpectedIndex)
1328 ExpectedIndex += ExpectedIndexStride;
1332 for (
unsigned n = 0; n < CheckStride &&
I != End; ++n, ++
I)
1344 int Size = Mask.size();
1354 int ScalarSizeInBits = VectorSizeInBits /
Size;
1355 assert(!(VectorSizeInBits % ScalarSizeInBits) &&
"Illegal shuffle mask size");
1356 (void)ScalarSizeInBits;
1358 for (
int i = 0; i <
Size; ++i) {
1364 if ((M >= 0 && M <
Size && V1IsZero) || (M >=
Size && V2IsZero)) {
1381 RepeatedMask.
assign(LaneSize, -1);
1382 int Size = Mask.size();
1383 for (
int i = 0; i <
Size; ++i) {
1384 assert(Mask[i] == -1 || Mask[i] >= 0);
1387 if ((Mask[i] %
Size) / LaneSize != i / LaneSize)
1394 Mask[i] <
Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
1395 if (RepeatedMask[i % LaneSize] < 0)
1397 RepeatedMask[i % LaneSize] = LocalM;
1398 else if (RepeatedMask[i % LaneSize] != LocalM)
1415 int NumElts = RepeatedMask.
size();
1417 int Scale = 16 / NumElts;
1419 for (
int i = 0; i < NumElts; ++i) {
1420 int M = RepeatedMask[i];
1421 assert((M == -1 || (0 <= M && M < (2 * NumElts))) &&
1422 "Unexpected mask index.");
1427 int StartIdx = i - (M % NumElts);
1434 int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
1437 Rotation = CandidateRotation;
1438 else if (Rotation != CandidateRotation)
1442 SDValue MaskV = M < NumElts ? V1 : V2;
1453 else if (TargetV != MaskV)
1458 assert(Rotation != 0 &&
"Failed to locate a viable rotation!");
1459 assert((
Lo ||
Hi) &&
"Failed to find a rotated input vector!");
1468 return Rotation * Scale;
1487 if (ByteRotation <= 0)
1494 int LoByteShift = 16 - ByteRotation;
1495 int HiByteShift = ByteRotation;
1518 const APInt &Zeroable) {
1532 for (
int i = 0; i < NumElements; i++) {
1536 if (i % Scale != 0) {
1547 SDValue V = M < NumElements ? V1 : V2;
1548 M = M % NumElements;
1551 Offset = M - (i / Scale);
1554 if (
Offset % (NumElements / Scale))
1556 }
else if (InputV != V)
1559 if (M != (
Offset + (i / Scale)))
1570 if (
Offset >= (NumElements / 2)) {
1572 Offset -= (NumElements / 2);
1579 InputV = DAG.
getNode(VilVLoHi,
DL, InputVT, Ext, InputV);
1583 }
while (Scale > 1);
1589 for (
int NumExtElements = Bits / 64; NumExtElements < NumElements;
1590 NumExtElements *= 2) {
1610 int SplatIndex = -1;
1611 for (
const auto &M : Mask) {
1618 if (SplatIndex == -1)
1621 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1653 unsigned SubVecSize = 4;
1654 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1657 int SubMask[4] = {-1, -1, -1, -1};
1658 for (
unsigned i = 0; i < SubVecSize; ++i) {
1659 for (
unsigned j = i; j < Mask.size(); j += SubVecSize) {
1665 M -= 4 * (j / SubVecSize);
1666 if (M < 0 || M >= 4)
1672 if (SubMask[i] == -1)
1676 else if (M != -1 && M != SubMask[i])
1683 for (
int i = SubVecSize - 1; i >= 0; --i) {
1696 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1723 const auto &Begin = Mask.begin();
1724 const auto &End = Mask.end();
1725 SDValue OriV1 = V1, OriV2 = V2;
1763 const auto &Begin = Mask.begin();
1764 const auto &End = Mask.end();
1765 SDValue OriV1 = V1, OriV2 = V2;
1804 const auto &Begin = Mask.begin();
1805 const auto &End = Mask.end();
1806 unsigned HalfSize = Mask.size() / 2;
1807 SDValue OriV1 = V1, OriV2 = V2;
1847 const auto &Begin = Mask.begin();
1848 const auto &End = Mask.end();
1849 SDValue OriV1 = V1, OriV2 = V2;
1887 const auto &Begin = Mask.begin();
1888 const auto &Mid = Mask.begin() + Mask.size() / 2;
1889 const auto &End = Mask.end();
1890 SDValue OriV1 = V1, OriV2 = V2;
1929 const auto &Begin = Mask.begin();
1930 const auto &Mid = Mask.begin() + Mask.size() / 2;
1931 const auto &End = Mask.end();
1932 SDValue OriV1 = V1, OriV2 = V2;
1987 "Vector type is unsupported for lsx!");
1989 "Two operands have different types!");
1991 "Unexpected mask size for shuffle!");
1992 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1994 APInt KnownUndef, KnownZero;
1996 APInt Zeroable = KnownUndef | KnownZero;
2060 int SplatIndex = -1;
2061 for (
const auto &M : Mask) {
2068 if (SplatIndex == -1)
2071 const auto &Begin = Mask.begin();
2072 const auto &End = Mask.end();
2073 int HalfSize = Mask.size() / 2;
2075 if (SplatIndex >= HalfSize)
2078 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
2096 if (Mask.size() <= 4)
2107 if (Mask.size() != 4 || (VT != MVT::v4i64 && VT != MVT::v4f64))
2110 unsigned MaskImm = 0;
2111 for (
unsigned i = 0; i < Mask.size(); ++i) {
2114 MaskImm |= Mask[i] << (i * 2);
2126 if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32))
2130 unsigned HalfSize = NumElts / 2;
2131 bool FrontLo =
true, FrontHi =
true;
2132 bool BackLo =
true, BackHi =
true;
2134 auto inRange = [](
int val,
int low,
int high) {
2135 return (val == -1) || (val >= low && val < high);
2138 for (
unsigned i = 0; i < HalfSize; ++i) {
2139 int Fronti = Mask[i];
2140 int Backi = Mask[i + HalfSize];
2142 FrontLo &=
inRange(Fronti, 0, HalfSize);
2143 FrontHi &=
inRange(Fronti, HalfSize, NumElts);
2144 BackLo &=
inRange(Backi, 0, HalfSize);
2145 BackHi &=
inRange(Backi, HalfSize, NumElts);
2151 if ((FrontLo || FrontHi) && (BackLo || BackHi))
2156 for (
unsigned i = 0; i < NumElts; ++i)
2183 const auto &Begin = Mask.begin();
2184 const auto &End = Mask.end();
2185 unsigned HalfSize = Mask.size() / 2;
2186 unsigned LeftSize = HalfSize / 2;
2187 SDValue OriV1 = V1, OriV2 = V2;
2194 Mask.size() + HalfSize - LeftSize, 1) &&
2196 Mask.size() + HalfSize + LeftSize, 1))
2207 Mask.size() + HalfSize - LeftSize, 1) &&
2209 Mask.size() + HalfSize + LeftSize, 1))
2222 const auto &Begin = Mask.begin();
2223 const auto &End = Mask.end();
2224 unsigned HalfSize = Mask.size() / 2;
2225 SDValue OriV1 = V1, OriV2 = V2;
2232 Mask.size() + HalfSize, 1))
2243 Mask.size() + HalfSize, 1))
2256 const auto &Begin = Mask.begin();
2257 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2258 const auto &Mid = Mask.begin() + Mask.size() / 2;
2259 const auto &RightMid = Mask.end() - Mask.size() / 4;
2260 const auto &End = Mask.end();
2261 unsigned HalfSize = Mask.size() / 2;
2262 SDValue OriV1 = V1, OriV2 = V2;
2291 const auto &Begin = Mask.begin();
2292 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2293 const auto &Mid = Mask.begin() + Mask.size() / 2;
2294 const auto &RightMid = Mask.end() - Mask.size() / 4;
2295 const auto &End = Mask.end();
2296 unsigned HalfSize = Mask.size() / 2;
2297 SDValue OriV1 = V1, OriV2 = V2;
2327 int MaskSize = Mask.size();
2328 int HalfSize = Mask.size() / 2;
2329 const auto &Begin = Mask.begin();
2330 const auto &Mid = Mask.begin() + HalfSize;
2331 const auto &End = Mask.end();
2343 for (
auto it = Begin; it < Mid; it++) {
2346 else if ((*it >= 0 && *it < HalfSize) ||
2347 (*it >= MaskSize && *it < MaskSize + HalfSize)) {
2348 int M = *it < HalfSize ? *it : *it - HalfSize;
2353 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
2355 for (
auto it = Mid; it < End; it++) {
2358 else if ((*it >= HalfSize && *it < MaskSize) ||
2359 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
2360 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
2365 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
2397 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
2399 int MaskSize = Mask.size();
2400 int HalfSize = Mask.size() / 2;
2403 HalfMaskType preMask =
None, postMask =
None;
2405 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2406 return M < 0 || (M >= 0 && M < HalfSize) ||
2407 (M >= MaskSize && M < MaskSize + HalfSize);
2409 preMask = HighLaneTy;
2410 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2411 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2412 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2414 preMask = LowLaneTy;
2416 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2417 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2418 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2420 postMask = LowLaneTy;
2421 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2422 return M < 0 || (M >= 0 && M < HalfSize) ||
2423 (M >= MaskSize && M < MaskSize + HalfSize);
2425 postMask = HighLaneTy;
2433 if (preMask == HighLaneTy && postMask == LowLaneTy) {
2436 if (preMask == LowLaneTy && postMask == HighLaneTy) {
2449 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2450 *it = *it < 0 ? *it : *it - HalfSize;
2452 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2453 *it = *it < 0 ? *it : *it + HalfSize;
2455 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
2468 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2469 *it = *it < 0 ? *it : *it - HalfSize;
2471 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
2484 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2485 *it = *it < 0 ? *it : *it + HalfSize;
2510 int Size = Mask.size();
2511 int LaneSize =
Size / 2;
2513 bool LaneCrossing[2] = {
false,
false};
2514 for (
int i = 0; i <
Size; ++i)
2515 if (Mask[i] >= 0 && ((Mask[i] %
Size) / LaneSize) != (i / LaneSize))
2516 LaneCrossing[(Mask[i] %
Size) / LaneSize] =
true;
2519 if (!LaneCrossing[0] && !LaneCrossing[1])
2523 InLaneMask.
assign(Mask.begin(), Mask.end());
2524 for (
int i = 0; i <
Size; ++i) {
2525 int &M = InLaneMask[i];
2528 if (((M %
Size) / LaneSize) != (i / LaneSize))
2529 M = (M % LaneSize) + ((i / LaneSize) * LaneSize) +
Size;
2534 DAG.
getUNDEF(MVT::v4i64), {2, 3, 0, 1});
2549 "Vector type is unsupported for lasx!");
2551 "Two operands have different types!");
2553 "Unexpected mask size for shuffle!");
2554 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2555 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
2557 APInt KnownUndef, KnownZero;
2559 APInt Zeroable = KnownUndef | KnownZero;
2627 ArrayRef<int> OrigMask = SVOp->
getMask();
2630 MVT VT =
Op.getSimpleValueType();
2634 bool V1IsUndef = V1.
isUndef();
2635 bool V2IsUndef = V2.
isUndef();
2636 if (V1IsUndef && V2IsUndef)
2649 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
2650 SmallVector<int, 8> NewMask(OrigMask);
2651 for (
int &M : NewMask)
2652 if (M >= NumElements)
2658 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
2659 (void)MaskUpperLimit;
2661 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
2662 "Out of bounds shuffle index");
2684 std::tie(Res, Chain) =
2685 makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions,
DL, Chain);
2686 if (Subtarget.is64Bit())
2703 std::tie(Res, Chain) =
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
2704 CallOptions,
DL, Chain);
2710 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2716 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
2717 if (Subtarget.is64Bit())
2724 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2725 MVT VT =
Op.getSimpleValueType();
2734 return DAG.
getNode(ISD::FP_EXTEND,
DL, VT, Res);
2751 "Unsupported vector type for broadcast.");
2754 bool IsIdeneity =
true;
2756 for (
int i = 0; i !=
NumOps; i++) {
2758 if (
Op.getOpcode() != ISD::LOAD || (IdentitySrc &&
Op != IdentitySrc)) {
2770 auto ExtType = LN->getExtensionType();
2776 ? DAG.
getVTList(VT, LN->getBasePtr().getValueType(), MVT::Other)
2778 SDValue Ops[] = {LN->getChain(), LN->getBasePtr(), LN->getOffset()};
2796 for (
unsigned i = 1; i <
Ops.size(); ++i) {
2810 EVT ResTy,
unsigned first) {
2814 first + NumElts <= Node->getSimpleValueType(0).getVectorNumElements());
2817 Node->op_begin() + first + NumElts);
2826 MVT VT =
Node->getSimpleValueType(0);
2827 EVT ResTy =
Op->getValueType(0);
2830 APInt SplatValue, SplatUndef;
2831 unsigned SplatBitSize;
2834 bool UseSameConstant =
true;
2839 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
2840 (!Subtarget.hasExtLASX() || !Is256Vec))
2846 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
2848 SplatBitSize <= 64) {
2850 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2854 if (SplatBitSize == 64 && !Subtarget.is64Bit()) {
2861 if ((Is128Vec && ResTy == MVT::v4i32) ||
2862 (Is256Vec && ResTy == MVT::v8i32))
2868 switch (SplatBitSize) {
2872 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
2875 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
2878 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
2881 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
2889 if (ViaVecTy != ResTy)
2890 Result = DAG.
getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2898 for (
unsigned i = 0; i < NumElts; ++i) {
2903 ConstantValue = Opi;
2904 else if (ConstantValue != Opi)
2905 UseSameConstant =
false;
2910 if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) {
2912 for (
unsigned i = 0; i < NumElts; ++i) {
2930 BitVector UndefElements;
2931 if (
Node->getRepeatedSequence(Sequence, &UndefElements) &&
2932 UndefElements.
count() == 0) {
2936 EVT FillTy = Is256Vec
2942 fillVector(Sequence, DAG,
DL, Subtarget, FillVec, FillTy);
2945 unsigned SplatLen = NumElts / SeqLen;
2951 if (SplatEltTy == MVT::i128)
2952 SplatTy = MVT::v4i64;
2962 DL, SplatTy, SrcVec);
2977 if (ResTy == MVT::v8i32 || ResTy == MVT::v8f32 || ResTy == MVT::v4i64 ||
2978 ResTy == MVT::v4f64) {
2979 unsigned NonUndefCount = 0;
2980 for (
unsigned i = NumElts / 2; i < NumElts; ++i) {
2981 if (!
Node->getOperand(i).isUndef()) {
2983 if (NonUndefCount > 1)
2987 if (NonUndefCount == 1)
3000 VecTy, NumElts / 2);
3011 MVT ResVT =
Op.getSimpleValueType();
3015 unsigned NumFreezeUndef = 0;
3016 unsigned NumZero = 0;
3017 unsigned NumNonZero = 0;
3018 unsigned NonZeros = 0;
3019 SmallSet<SDValue, 4> Undefs;
3020 for (
unsigned i = 0; i != NumOperands; ++i) {
3035 assert(i <
sizeof(NonZeros) * CHAR_BIT);
3042 if (NumNonZero > 2) {
3046 Ops.slice(0, NumOperands / 2));
3048 Ops.slice(NumOperands / 2));
3061 MVT SubVT =
Op.getOperand(0).getSimpleValueType();
3063 for (
unsigned i = 0; i != NumOperands; ++i) {
3064 if ((NonZeros & (1 << i)) == 0)
3075LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
3077 MVT EltVT =
Op.getSimpleValueType();
3082 MVT GRLenVT = Subtarget.getGRLenVT();
3114 DAG.
getBitcast((VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, IdxVec);
3134LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
3136 MVT VT =
Op.getSimpleValueType();
3159 if (!Subtarget.is64Bit() && IdxTy == MVT::i64) {
3161 for (
unsigned i = 0; i < NumElts; ++i) {
3169 for (
unsigned i = 0; i < NumElts; ++i) {
3178 for (
unsigned i = 0; i < NumElts; ++i)
3202 return DAG.
getNode(ISD::MEMBARRIER,
DL, MVT::Other,
Op.getOperand(0));
3210 if (Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
3212 "On LA64, only 64-bit registers can be written.");
3213 return Op.getOperand(0);
3216 if (!Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
3218 "On LA32, only 32-bit registers can be written.");
3219 return Op.getOperand(0);
3229 "be a constant integer");
3235 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
3236 EVT VT =
Op.getValueType();
3239 unsigned Depth =
Op.getConstantOperandVal(0);
3240 int GRLenInBytes = Subtarget.getGRLen() / 8;
3243 int Offset = -(GRLenInBytes * 2);
3255 if (
Op.getConstantOperandVal(0) != 0) {
3257 "return address can only be determined for the current frame");
3263 MVT GRLenVT = Subtarget.getGRLenVT();
3275 auto Size = Subtarget.getGRLen() / 8;
3283 auto *FuncInfo = MF.
getInfo<LoongArchMachineFunctionInfo>();
3293 MachinePointerInfo(SV));
3298 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3299 !Subtarget.hasBasicD() &&
"unexpected target features");
3305 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
3319 EVT RetVT =
Op.getValueType();
3325 std::tie(Result, Chain) =
3332 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3333 !Subtarget.hasBasicD() &&
"unexpected target features");
3344 EVT RetVT =
Op.getValueType();
3350 std::tie(Result, Chain) =
3359 EVT VT =
Op.getValueType();
3363 if (
Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 &&
3364 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
3368 if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) {
3383 Op0 = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Op0);
3385 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
3386 !Subtarget.hasBasicD()) {
3393 return DAG.
getNode(ISD::BITCAST,
DL,
Op.getValueType(), Trunc);
3410 N->getOffset(), Flags);
3418template <
class NodeTy>
3421 bool IsLocal)
const {
3432 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
3503 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3505 const GlobalValue *GV =
N->getGlobal();
3517 unsigned Opc,
bool UseGOT,
3521 MVT GRLenVT = Subtarget.getGRLenVT();
3535 if (
Opc == LoongArch::PseudoLA_TLS_LE && !Large)
3573 Args.emplace_back(Load, CallTy);
3576 TargetLowering::CallLoweringInfo CLI(DAG);
3591 const GlobalValue *GV =
N->getGlobal();
3605LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
3612 assert((!Large || Subtarget.is64Bit()) &&
"Large code model requires LA64");
3615 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3628 return getDynamicTLSAddr(
N, DAG,
3629 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
3630 : LoongArch::PseudoLA_TLS_GD,
3637 return getDynamicTLSAddr(
N, DAG,
3638 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
3639 : LoongArch::PseudoLA_TLS_LD,
3644 return getStaticTLSAddr(
N, DAG,
3645 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
3646 : LoongArch::PseudoLA_TLS_IE,
3653 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
3657 return getTLSDescAddr(
N, DAG,
3658 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
3659 : LoongArch::PseudoLA_TLS_DESC,
3663template <
unsigned N>
3668 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
3669 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
3671 ": argument out of range.");
3678LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
3680 switch (
Op.getConstantOperandVal(0)) {
3683 case Intrinsic::thread_pointer: {
3687 case Intrinsic::loongarch_lsx_vpickve2gr_d:
3688 case Intrinsic::loongarch_lsx_vpickve2gr_du:
3689 case Intrinsic::loongarch_lsx_vreplvei_d:
3690 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
3692 case Intrinsic::loongarch_lsx_vreplvei_w:
3693 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
3694 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
3695 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
3696 case Intrinsic::loongarch_lasx_xvpickve_d:
3697 case Intrinsic::loongarch_lasx_xvpickve_d_f:
3699 case Intrinsic::loongarch_lasx_xvinsve0_d:
3701 case Intrinsic::loongarch_lsx_vsat_b:
3702 case Intrinsic::loongarch_lsx_vsat_bu:
3703 case Intrinsic::loongarch_lsx_vrotri_b:
3704 case Intrinsic::loongarch_lsx_vsllwil_h_b:
3705 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
3706 case Intrinsic::loongarch_lsx_vsrlri_b:
3707 case Intrinsic::loongarch_lsx_vsrari_b:
3708 case Intrinsic::loongarch_lsx_vreplvei_h:
3709 case Intrinsic::loongarch_lasx_xvsat_b:
3710 case Intrinsic::loongarch_lasx_xvsat_bu:
3711 case Intrinsic::loongarch_lasx_xvrotri_b:
3712 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
3713 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
3714 case Intrinsic::loongarch_lasx_xvsrlri_b:
3715 case Intrinsic::loongarch_lasx_xvsrari_b:
3716 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
3717 case Intrinsic::loongarch_lasx_xvpickve_w:
3718 case Intrinsic::loongarch_lasx_xvpickve_w_f:
3720 case Intrinsic::loongarch_lasx_xvinsve0_w:
3722 case Intrinsic::loongarch_lsx_vsat_h:
3723 case Intrinsic::loongarch_lsx_vsat_hu:
3724 case Intrinsic::loongarch_lsx_vrotri_h:
3725 case Intrinsic::loongarch_lsx_vsllwil_w_h:
3726 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
3727 case Intrinsic::loongarch_lsx_vsrlri_h:
3728 case Intrinsic::loongarch_lsx_vsrari_h:
3729 case Intrinsic::loongarch_lsx_vreplvei_b:
3730 case Intrinsic::loongarch_lasx_xvsat_h:
3731 case Intrinsic::loongarch_lasx_xvsat_hu:
3732 case Intrinsic::loongarch_lasx_xvrotri_h:
3733 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
3734 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
3735 case Intrinsic::loongarch_lasx_xvsrlri_h:
3736 case Intrinsic::loongarch_lasx_xvsrari_h:
3737 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
3739 case Intrinsic::loongarch_lsx_vsrlni_b_h:
3740 case Intrinsic::loongarch_lsx_vsrani_b_h:
3741 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
3742 case Intrinsic::loongarch_lsx_vsrarni_b_h:
3743 case Intrinsic::loongarch_lsx_vssrlni_b_h:
3744 case Intrinsic::loongarch_lsx_vssrani_b_h:
3745 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
3746 case Intrinsic::loongarch_lsx_vssrani_bu_h:
3747 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
3748 case Intrinsic::loongarch_lsx_vssrarni_b_h:
3749 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
3750 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
3751 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
3752 case Intrinsic::loongarch_lasx_xvsrani_b_h:
3753 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
3754 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
3755 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
3756 case Intrinsic::loongarch_lasx_xvssrani_b_h:
3757 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
3758 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
3759 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
3760 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
3761 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
3762 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
3764 case Intrinsic::loongarch_lsx_vsat_w:
3765 case Intrinsic::loongarch_lsx_vsat_wu:
3766 case Intrinsic::loongarch_lsx_vrotri_w:
3767 case Intrinsic::loongarch_lsx_vsllwil_d_w:
3768 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
3769 case Intrinsic::loongarch_lsx_vsrlri_w:
3770 case Intrinsic::loongarch_lsx_vsrari_w:
3771 case Intrinsic::loongarch_lsx_vslei_bu:
3772 case Intrinsic::loongarch_lsx_vslei_hu:
3773 case Intrinsic::loongarch_lsx_vslei_wu:
3774 case Intrinsic::loongarch_lsx_vslei_du:
3775 case Intrinsic::loongarch_lsx_vslti_bu:
3776 case Intrinsic::loongarch_lsx_vslti_hu:
3777 case Intrinsic::loongarch_lsx_vslti_wu:
3778 case Intrinsic::loongarch_lsx_vslti_du:
3779 case Intrinsic::loongarch_lsx_vbsll_v:
3780 case Intrinsic::loongarch_lsx_vbsrl_v:
3781 case Intrinsic::loongarch_lasx_xvsat_w:
3782 case Intrinsic::loongarch_lasx_xvsat_wu:
3783 case Intrinsic::loongarch_lasx_xvrotri_w:
3784 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
3785 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
3786 case Intrinsic::loongarch_lasx_xvsrlri_w:
3787 case Intrinsic::loongarch_lasx_xvsrari_w:
3788 case Intrinsic::loongarch_lasx_xvslei_bu:
3789 case Intrinsic::loongarch_lasx_xvslei_hu:
3790 case Intrinsic::loongarch_lasx_xvslei_wu:
3791 case Intrinsic::loongarch_lasx_xvslei_du:
3792 case Intrinsic::loongarch_lasx_xvslti_bu:
3793 case Intrinsic::loongarch_lasx_xvslti_hu:
3794 case Intrinsic::loongarch_lasx_xvslti_wu:
3795 case Intrinsic::loongarch_lasx_xvslti_du:
3796 case Intrinsic::loongarch_lasx_xvbsll_v:
3797 case Intrinsic::loongarch_lasx_xvbsrl_v:
3799 case Intrinsic::loongarch_lsx_vseqi_b:
3800 case Intrinsic::loongarch_lsx_vseqi_h:
3801 case Intrinsic::loongarch_lsx_vseqi_w:
3802 case Intrinsic::loongarch_lsx_vseqi_d:
3803 case Intrinsic::loongarch_lsx_vslei_b:
3804 case Intrinsic::loongarch_lsx_vslei_h:
3805 case Intrinsic::loongarch_lsx_vslei_w:
3806 case Intrinsic::loongarch_lsx_vslei_d:
3807 case Intrinsic::loongarch_lsx_vslti_b:
3808 case Intrinsic::loongarch_lsx_vslti_h:
3809 case Intrinsic::loongarch_lsx_vslti_w:
3810 case Intrinsic::loongarch_lsx_vslti_d:
3811 case Intrinsic::loongarch_lasx_xvseqi_b:
3812 case Intrinsic::loongarch_lasx_xvseqi_h:
3813 case Intrinsic::loongarch_lasx_xvseqi_w:
3814 case Intrinsic::loongarch_lasx_xvseqi_d:
3815 case Intrinsic::loongarch_lasx_xvslei_b:
3816 case Intrinsic::loongarch_lasx_xvslei_h:
3817 case Intrinsic::loongarch_lasx_xvslei_w:
3818 case Intrinsic::loongarch_lasx_xvslei_d:
3819 case Intrinsic::loongarch_lasx_xvslti_b:
3820 case Intrinsic::loongarch_lasx_xvslti_h:
3821 case Intrinsic::loongarch_lasx_xvslti_w:
3822 case Intrinsic::loongarch_lasx_xvslti_d:
3824 case Intrinsic::loongarch_lsx_vsrlni_h_w:
3825 case Intrinsic::loongarch_lsx_vsrani_h_w:
3826 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
3827 case Intrinsic::loongarch_lsx_vsrarni_h_w:
3828 case Intrinsic::loongarch_lsx_vssrlni_h_w:
3829 case Intrinsic::loongarch_lsx_vssrani_h_w:
3830 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
3831 case Intrinsic::loongarch_lsx_vssrani_hu_w:
3832 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
3833 case Intrinsic::loongarch_lsx_vssrarni_h_w:
3834 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
3835 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
3836 case Intrinsic::loongarch_lsx_vfrstpi_b:
3837 case Intrinsic::loongarch_lsx_vfrstpi_h:
3838 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
3839 case Intrinsic::loongarch_lasx_xvsrani_h_w:
3840 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
3841 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
3842 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
3843 case Intrinsic::loongarch_lasx_xvssrani_h_w:
3844 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
3845 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
3846 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
3847 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
3848 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
3849 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
3850 case Intrinsic::loongarch_lasx_xvfrstpi_b:
3851 case Intrinsic::loongarch_lasx_xvfrstpi_h:
3853 case Intrinsic::loongarch_lsx_vsat_d:
3854 case Intrinsic::loongarch_lsx_vsat_du:
3855 case Intrinsic::loongarch_lsx_vrotri_d:
3856 case Intrinsic::loongarch_lsx_vsrlri_d:
3857 case Intrinsic::loongarch_lsx_vsrari_d:
3858 case Intrinsic::loongarch_lasx_xvsat_d:
3859 case Intrinsic::loongarch_lasx_xvsat_du:
3860 case Intrinsic::loongarch_lasx_xvrotri_d:
3861 case Intrinsic::loongarch_lasx_xvsrlri_d:
3862 case Intrinsic::loongarch_lasx_xvsrari_d:
3864 case Intrinsic::loongarch_lsx_vsrlni_w_d:
3865 case Intrinsic::loongarch_lsx_vsrani_w_d:
3866 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
3867 case Intrinsic::loongarch_lsx_vsrarni_w_d:
3868 case Intrinsic::loongarch_lsx_vssrlni_w_d:
3869 case Intrinsic::loongarch_lsx_vssrani_w_d:
3870 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
3871 case Intrinsic::loongarch_lsx_vssrani_wu_d:
3872 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
3873 case Intrinsic::loongarch_lsx_vssrarni_w_d:
3874 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
3875 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
3876 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
3877 case Intrinsic::loongarch_lasx_xvsrani_w_d:
3878 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
3879 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
3880 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
3881 case Intrinsic::loongarch_lasx_xvssrani_w_d:
3882 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
3883 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
3884 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
3885 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
3886 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
3887 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
3889 case Intrinsic::loongarch_lsx_vsrlni_d_q:
3890 case Intrinsic::loongarch_lsx_vsrani_d_q:
3891 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
3892 case Intrinsic::loongarch_lsx_vsrarni_d_q:
3893 case Intrinsic::loongarch_lsx_vssrlni_d_q:
3894 case Intrinsic::loongarch_lsx_vssrani_d_q:
3895 case Intrinsic::loongarch_lsx_vssrlni_du_q:
3896 case Intrinsic::loongarch_lsx_vssrani_du_q:
3897 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
3898 case Intrinsic::loongarch_lsx_vssrarni_d_q:
3899 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
3900 case Intrinsic::loongarch_lsx_vssrarni_du_q:
3901 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
3902 case Intrinsic::loongarch_lasx_xvsrani_d_q:
3903 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
3904 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
3905 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
3906 case Intrinsic::loongarch_lasx_xvssrani_d_q:
3907 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
3908 case Intrinsic::loongarch_lasx_xvssrani_du_q:
3909 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
3910 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
3911 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
3912 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
3914 case Intrinsic::loongarch_lsx_vnori_b:
3915 case Intrinsic::loongarch_lsx_vshuf4i_b:
3916 case Intrinsic::loongarch_lsx_vshuf4i_h:
3917 case Intrinsic::loongarch_lsx_vshuf4i_w:
3918 case Intrinsic::loongarch_lasx_xvnori_b:
3919 case Intrinsic::loongarch_lasx_xvshuf4i_b:
3920 case Intrinsic::loongarch_lasx_xvshuf4i_h:
3921 case Intrinsic::loongarch_lasx_xvshuf4i_w:
3922 case Intrinsic::loongarch_lasx_xvpermi_d:
3924 case Intrinsic::loongarch_lsx_vshuf4i_d:
3925 case Intrinsic::loongarch_lsx_vpermi_w:
3926 case Intrinsic::loongarch_lsx_vbitseli_b:
3927 case Intrinsic::loongarch_lsx_vextrins_b:
3928 case Intrinsic::loongarch_lsx_vextrins_h:
3929 case Intrinsic::loongarch_lsx_vextrins_w:
3930 case Intrinsic::loongarch_lsx_vextrins_d:
3931 case Intrinsic::loongarch_lasx_xvshuf4i_d:
3932 case Intrinsic::loongarch_lasx_xvpermi_w:
3933 case Intrinsic::loongarch_lasx_xvpermi_q:
3934 case Intrinsic::loongarch_lasx_xvbitseli_b:
3935 case Intrinsic::loongarch_lasx_xvextrins_b:
3936 case Intrinsic::loongarch_lasx_xvextrins_h:
3937 case Intrinsic::loongarch_lasx_xvextrins_w:
3938 case Intrinsic::loongarch_lasx_xvextrins_d:
3940 case Intrinsic::loongarch_lsx_vrepli_b:
3941 case Intrinsic::loongarch_lsx_vrepli_h:
3942 case Intrinsic::loongarch_lsx_vrepli_w:
3943 case Intrinsic::loongarch_lsx_vrepli_d:
3944 case Intrinsic::loongarch_lasx_xvrepli_b:
3945 case Intrinsic::loongarch_lasx_xvrepli_h:
3946 case Intrinsic::loongarch_lasx_xvrepli_w:
3947 case Intrinsic::loongarch_lasx_xvrepli_d:
3949 case Intrinsic::loongarch_lsx_vldi:
3950 case Intrinsic::loongarch_lasx_xvldi:
3966LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
3969 MVT GRLenVT = Subtarget.getGRLenVT();
3970 EVT VT =
Op.getValueType();
3972 const StringRef ErrorMsgOOR =
"argument out of range";
3973 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
3974 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
3976 switch (
Op.getConstantOperandVal(1)) {
3979 case Intrinsic::loongarch_crc_w_b_w:
3980 case Intrinsic::loongarch_crc_w_h_w:
3981 case Intrinsic::loongarch_crc_w_w_w:
3982 case Intrinsic::loongarch_crc_w_d_w:
3983 case Intrinsic::loongarch_crcc_w_b_w:
3984 case Intrinsic::loongarch_crcc_w_h_w:
3985 case Intrinsic::loongarch_crcc_w_w_w:
3986 case Intrinsic::loongarch_crcc_w_d_w:
3988 case Intrinsic::loongarch_csrrd_w:
3989 case Intrinsic::loongarch_csrrd_d: {
3990 unsigned Imm =
Op.getConstantOperandVal(2);
3996 case Intrinsic::loongarch_csrwr_w:
3997 case Intrinsic::loongarch_csrwr_d: {
3998 unsigned Imm =
Op.getConstantOperandVal(3);
4002 {Chain,
Op.getOperand(2),
4005 case Intrinsic::loongarch_csrxchg_w:
4006 case Intrinsic::loongarch_csrxchg_d: {
4007 unsigned Imm =
Op.getConstantOperandVal(4);
4011 {Chain,
Op.getOperand(2),
Op.getOperand(3),
4014 case Intrinsic::loongarch_iocsrrd_d: {
4019#define IOCSRRD_CASE(NAME, NODE) \
4020 case Intrinsic::loongarch_##NAME: { \
4021 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
4022 {Chain, Op.getOperand(2)}); \
4028 case Intrinsic::loongarch_cpucfg: {
4030 {Chain,
Op.getOperand(2)});
4032 case Intrinsic::loongarch_lddir_d: {
4033 unsigned Imm =
Op.getConstantOperandVal(3);
4038 case Intrinsic::loongarch_movfcsr2gr: {
4039 if (!Subtarget.hasBasicF())
4041 unsigned Imm =
Op.getConstantOperandVal(2);
4047 case Intrinsic::loongarch_lsx_vld:
4048 case Intrinsic::loongarch_lsx_vldrepl_b:
4049 case Intrinsic::loongarch_lasx_xvld:
4050 case Intrinsic::loongarch_lasx_xvldrepl_b:
4054 case Intrinsic::loongarch_lsx_vldrepl_h:
4055 case Intrinsic::loongarch_lasx_xvldrepl_h:
4059 Op,
"argument out of range or not a multiple of 2", DAG)
4061 case Intrinsic::loongarch_lsx_vldrepl_w:
4062 case Intrinsic::loongarch_lasx_xvldrepl_w:
4066 Op,
"argument out of range or not a multiple of 4", DAG)
4068 case Intrinsic::loongarch_lsx_vldrepl_d:
4069 case Intrinsic::loongarch_lasx_xvldrepl_d:
4073 Op,
"argument out of range or not a multiple of 8", DAG)
4084 return Op.getOperand(0);
4090 MVT GRLenVT = Subtarget.getGRLenVT();
4092 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
4094 const StringRef ErrorMsgOOR =
"argument out of range";
4095 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4096 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
4097 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4099 switch (IntrinsicEnum) {
4103 case Intrinsic::loongarch_cacop_d:
4104 case Intrinsic::loongarch_cacop_w: {
4105 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
4107 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
4116 case Intrinsic::loongarch_dbar: {
4123 case Intrinsic::loongarch_ibar: {
4130 case Intrinsic::loongarch_break: {
4137 case Intrinsic::loongarch_movgr2fcsr: {
4138 if (!Subtarget.hasBasicF())
4148 case Intrinsic::loongarch_syscall: {
4155#define IOCSRWR_CASE(NAME, NODE) \
4156 case Intrinsic::loongarch_##NAME: { \
4157 SDValue Op3 = Op.getOperand(3); \
4158 return Subtarget.is64Bit() \
4159 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
4160 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4161 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
4162 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
4169 case Intrinsic::loongarch_iocsrwr_d: {
4170 return !Subtarget.is64Bit()
4177#define ASRT_LE_GT_CASE(NAME) \
4178 case Intrinsic::loongarch_##NAME: { \
4179 return !Subtarget.is64Bit() \
4180 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
4185#undef ASRT_LE_GT_CASE
4186 case Intrinsic::loongarch_ldpte_d: {
4187 unsigned Imm =
Op.getConstantOperandVal(3);
4188 return !Subtarget.is64Bit()
4193 case Intrinsic::loongarch_lsx_vst:
4194 case Intrinsic::loongarch_lasx_xvst:
4198 case Intrinsic::loongarch_lasx_xvstelm_b:
4203 case Intrinsic::loongarch_lsx_vstelm_b:
4208 case Intrinsic::loongarch_lasx_xvstelm_h:
4213 Op,
"argument out of range or not a multiple of 2", DAG)
4215 case Intrinsic::loongarch_lsx_vstelm_h:
4220 Op,
"argument out of range or not a multiple of 2", DAG)
4222 case Intrinsic::loongarch_lasx_xvstelm_w:
4227 Op,
"argument out of range or not a multiple of 4", DAG)
4229 case Intrinsic::loongarch_lsx_vstelm_w:
4234 Op,
"argument out of range or not a multiple of 4", DAG)
4236 case Intrinsic::loongarch_lasx_xvstelm_d:
4241 Op,
"argument out of range or not a multiple of 8", DAG)
4243 case Intrinsic::loongarch_lsx_vstelm_d:
4248 Op,
"argument out of range or not a multiple of 8", DAG)
4259 EVT VT =
Lo.getValueType();
4300 EVT VT =
Lo.getValueType();
4392 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4393 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
4397 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4403 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
4430 StringRef ErrorMsg,
bool WithChain =
true) {
4435 Results.push_back(
N->getOperand(0));
4438template <
unsigned N>
4443 const StringRef ErrorMsgOOR =
"argument out of range";
4444 unsigned Imm =
Node->getConstantOperandVal(2);
4478 switch (
N->getConstantOperandVal(0)) {
4481 case Intrinsic::loongarch_lsx_vpickve2gr_b:
4485 case Intrinsic::loongarch_lsx_vpickve2gr_h:
4486 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
4490 case Intrinsic::loongarch_lsx_vpickve2gr_w:
4494 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
4498 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
4499 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
4503 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
4507 case Intrinsic::loongarch_lsx_bz_b:
4508 case Intrinsic::loongarch_lsx_bz_h:
4509 case Intrinsic::loongarch_lsx_bz_w:
4510 case Intrinsic::loongarch_lsx_bz_d:
4511 case Intrinsic::loongarch_lasx_xbz_b:
4512 case Intrinsic::loongarch_lasx_xbz_h:
4513 case Intrinsic::loongarch_lasx_xbz_w:
4514 case Intrinsic::loongarch_lasx_xbz_d:
4518 case Intrinsic::loongarch_lsx_bz_v:
4519 case Intrinsic::loongarch_lasx_xbz_v:
4523 case Intrinsic::loongarch_lsx_bnz_b:
4524 case Intrinsic::loongarch_lsx_bnz_h:
4525 case Intrinsic::loongarch_lsx_bnz_w:
4526 case Intrinsic::loongarch_lsx_bnz_d:
4527 case Intrinsic::loongarch_lasx_xbnz_b:
4528 case Intrinsic::loongarch_lasx_xbnz_h:
4529 case Intrinsic::loongarch_lasx_xbnz_w:
4530 case Intrinsic::loongarch_lasx_xbnz_d:
4534 case Intrinsic::loongarch_lsx_bnz_v:
4535 case Intrinsic::loongarch_lasx_xbnz_v:
4545 assert(
N->getValueType(0) == MVT::i128 &&
4546 "AtomicCmpSwap on types less than 128 should be legal");
4550 switch (
MemOp->getMergedOrdering()) {
4554 Opcode = LoongArch::PseudoCmpXchg128Acquire;
4558 Opcode = LoongArch::PseudoCmpXchg128;
4565 auto CmpVal = DAG.
SplitScalar(
N->getOperand(2),
DL, MVT::i64, MVT::i64);
4566 auto NewVal = DAG.
SplitScalar(
N->getOperand(3),
DL, MVT::i64, MVT::i64);
4567 SDValue Ops[] = {
N->getOperand(1), CmpVal.first, CmpVal.second,
4568 NewVal.first, NewVal.second,
N->getOperand(0)};
4571 Opcode,
SDLoc(
N), DAG.
getVTList(MVT::i64, MVT::i64, MVT::i64, MVT::Other),
4582 EVT VT =
N->getValueType(0);
4583 switch (
N->getOpcode()) {
4588 assert(
N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4589 "Unexpected custom legalisation");
4596 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4597 "Unexpected custom legalisation");
4599 Subtarget.hasDiv32() && VT == MVT::i32
4606 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4607 "Unexpected custom legalisation");
4615 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4616 "Unexpected custom legalisation");
4620 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4621 "Unexpected custom legalisation");
4628 if (Src.getValueType() == MVT::f16)
4629 Src = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Src);
4639 EVT OpVT = Src.getValueType();
4643 std::tie(Result, Chain) =
4648 case ISD::BITCAST: {
4650 EVT SrcVT = Src.getValueType();
4651 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
4652 Subtarget.hasBasicF()) {
4656 }
else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) {
4658 DAG.
getVTList(MVT::i32, MVT::i32), Src);
4666 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4667 "Unexpected custom legalisation");
4670 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
4676 assert((VT == MVT::i16 || VT == MVT::i32) &&
4677 "Unexpected custom legalization");
4678 MVT GRLenVT = Subtarget.getGRLenVT();
4698 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
4699 "Unexpected custom legalization");
4700 MVT GRLenVT = Subtarget.getGRLenVT();
4718 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4719 "Unexpected custom legalisation");
4726 MVT GRLenVT = Subtarget.getGRLenVT();
4727 const StringRef ErrorMsgOOR =
"argument out of range";
4728 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4729 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4731 switch (
N->getConstantOperandVal(1)) {
4734 case Intrinsic::loongarch_movfcsr2gr: {
4735 if (!Subtarget.hasBasicF()) {
4752#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
4753 case Intrinsic::loongarch_##NAME: { \
4754 SDValue NODE = DAG.getNode( \
4755 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4756 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4757 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4758 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4759 Results.push_back(NODE.getValue(1)); \
4768#undef CRC_CASE_EXT_BINARYOP
4770#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
4771 case Intrinsic::loongarch_##NAME: { \
4772 SDValue NODE = DAG.getNode( \
4773 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4775 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4776 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4777 Results.push_back(NODE.getValue(1)); \
4782#undef CRC_CASE_EXT_UNARYOP
4783#define CSR_CASE(ID) \
4784 case Intrinsic::loongarch_##ID: { \
4785 if (!Subtarget.is64Bit()) \
4786 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
4794 case Intrinsic::loongarch_csrrd_w: {
4808 case Intrinsic::loongarch_csrwr_w: {
4809 unsigned Imm =
N->getConstantOperandVal(3);
4823 case Intrinsic::loongarch_csrxchg_w: {
4824 unsigned Imm =
N->getConstantOperandVal(4);
4839#define IOCSRRD_CASE(NAME, NODE) \
4840 case Intrinsic::loongarch_##NAME: { \
4841 SDValue IOCSRRDResults = \
4842 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4843 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
4844 Results.push_back( \
4845 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
4846 Results.push_back(IOCSRRDResults.getValue(1)); \
4853 case Intrinsic::loongarch_cpucfg: {
4862 case Intrinsic::loongarch_lddir_d: {
4863 if (!Subtarget.is64Bit()) {
4873 if (Subtarget.is64Bit())
4875 "On LA64, only 64-bit registers can be read.");
4878 "On LA32, only 32-bit registers can be read.");
4880 Results.push_back(
N->getOperand(0));
4891 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
4899 case ISD::ATOMIC_CMP_SWAP: {
4904 MVT VT =
N->getSimpleValueType(0);
4910 EVT InVT = In.getValueType();
4921 for (
unsigned I = 0;
I < MinElts; ++
I)
4922 TruncMask[
I] = Scale *
I;
4924 unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits();
4925 MVT SVT = In.getSimpleValueType().getScalarType();
4931 "Illegal vector type in truncation");
4950 SDValue FirstOperand =
N->getOperand(0);
4951 SDValue SecondOperand =
N->getOperand(1);
4952 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
4953 EVT ValTy =
N->getValueType(0);
4956 unsigned SMIdx, SMLen;
4962 if (!Subtarget.has32S())
4984 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
4999 if (SMIdx + SMLen > ValTy.getSizeInBits())
5018 NewOperand = FirstOperand;
5021 msb = lsb + SMLen - 1;
5025 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
5038 if (!Subtarget.has32S())
5050 SDValue FirstOperand =
N->getOperand(0);
5052 EVT ValTy =
N->getValueType(0);
5055 unsigned MaskIdx, MaskLen;
5070 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
5086 switch (Src.getOpcode()) {
5089 return Src.getOperand(0).getValueSizeInBits() ==
Size;
5099 return Src.getOperand(0).getScalarValueSizeInBits() == 1 &&
5112 switch (Src.getOpcode()) {
5122 Src.getOpcode(),
DL, SExtVT,
5128 DL, SExtVT, Src.getOperand(0),
5140 EVT VT =
N->getValueType(0);
5142 EVT SrcVT = Src.getValueType();
5144 if (Src.getOpcode() !=
ISD::SETCC || !Src.hasOneUse())
5149 EVT CmpVT = Src.getOperand(0).getValueType();
5154 else if (Subtarget.has32S() && Subtarget.hasExtLASX() &&
5182 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5189 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5213 EVT VT =
N->getValueType(0);
5215 EVT SrcVT = Src.getValueType();
5232 bool UseLASX =
false;
5233 bool PropagateSExt =
false;
5235 if (Src.getOpcode() ==
ISD::SETCC && Src.hasOneUse()) {
5236 EVT CmpVT = Src.getOperand(0).getValueType();
5245 SExtVT = MVT::v2i64;
5248 SExtVT = MVT::v4i32;
5250 SExtVT = MVT::v4i64;
5252 PropagateSExt =
true;
5256 SExtVT = MVT::v8i16;
5258 SExtVT = MVT::v8i32;
5260 PropagateSExt =
true;
5264 SExtVT = MVT::v16i8;
5266 SExtVT = MVT::v16i16;
5268 PropagateSExt =
true;
5272 SExtVT = MVT::v32i8;
5280 if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) {
5281 if (Src.getSimpleValueType() == MVT::v32i8) {
5289 }
else if (UseLASX) {
5308 EVT ValTy =
N->getValueType(0);
5309 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
5312 unsigned ValBits = ValTy.getSizeInBits();
5313 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
5315 bool SwapAndRetried =
false;
5318 if (!Subtarget.has32S())
5324 if (ValBits != 32 && ValBits != 64)
5339 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
5342 (MaskIdx0 + MaskLen0 <= ValBits)) {
5363 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
5364 (MaskIdx0 + MaskLen0 <= ValBits)) {
5381 (MaskIdx0 + MaskLen0 <= 64) &&
5389 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5390 : (MaskIdx0 + MaskLen0 - 1),
5406 (MaskIdx0 + MaskLen0 <= ValBits)) {
5429 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5430 : (MaskIdx0 + MaskLen0 - 1),
5445 unsigned MaskIdx, MaskLen;
5446 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
5473 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
5487 if (!SwapAndRetried) {
5489 SwapAndRetried =
true;
5493 SwapAndRetried =
false;
5519 if (!SwapAndRetried) {
5521 SwapAndRetried =
true;
5531 switch (V.getNode()->getOpcode()) {
5543 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5551 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5628 SDNode *AndNode =
N->getOperand(0).getNode();
5636 SDValue CmpInputValue =
N->getOperand(1);
5647 AndInputValue1 = AndInputValue1.
getOperand(0);
5651 if (AndInputValue2 != CmpInputValue)
5684 TruncInputValue1, TruncInputValue2);
5686 DAG.
getSetCC(
SDLoc(
N),
N->getValueType(0), NewAnd, TruncInputValue2, CC);
5727 LHS.getOperand(0).getValueType() == Subtarget.
getGRLenVT()) {
5755 ShAmt =
LHS.getValueSizeInBits() - 1 - ShAmt;
5789 N->getOperand(0),
LHS,
RHS, CC,
N->getOperand(4));
5805 EVT VT =
N->getValueType(0);
5808 if (TrueV == FalseV)
5840 {LHS, RHS, CC, TrueV, FalseV});
5845template <
unsigned N>
5849 bool IsSigned =
false) {
5853 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5854 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5856 ": argument out of range.");
5862template <
unsigned N>
5866 EVT ResTy =
Node->getValueType(0);
5870 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5871 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5873 ": argument out of range.");
5878 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
5884 EVT ResTy =
Node->getValueType(0);
5892 EVT ResTy =
Node->getValueType(0);
5901template <
unsigned N>
5904 EVT ResTy =
Node->getValueType(0);
5909 ": argument out of range.");
5919template <
unsigned N>
5922 EVT ResTy =
Node->getValueType(0);
5927 ": argument out of range.");
5936template <
unsigned N>
5939 EVT ResTy =
Node->getValueType(0);
5944 ": argument out of range.");
5953template <
unsigned W>
5956 unsigned Imm =
N->getConstantOperandVal(2);
5958 const StringRef ErrorMsg =
"argument out of range";
5960 return DAG.
getUNDEF(
N->getValueType(0));
5966 return DAG.
getNode(ResOp,
DL,
N->getValueType(0), Vec, Idx, EltVT);
5974 switch (
N->getConstantOperandVal(0)) {
5977 case Intrinsic::loongarch_lsx_vadd_b:
5978 case Intrinsic::loongarch_lsx_vadd_h:
5979 case Intrinsic::loongarch_lsx_vadd_w:
5980 case Intrinsic::loongarch_lsx_vadd_d:
5981 case Intrinsic::loongarch_lasx_xvadd_b:
5982 case Intrinsic::loongarch_lasx_xvadd_h:
5983 case Intrinsic::loongarch_lasx_xvadd_w:
5984 case Intrinsic::loongarch_lasx_xvadd_d:
5987 case Intrinsic::loongarch_lsx_vaddi_bu:
5988 case Intrinsic::loongarch_lsx_vaddi_hu:
5989 case Intrinsic::loongarch_lsx_vaddi_wu:
5990 case Intrinsic::loongarch_lsx_vaddi_du:
5991 case Intrinsic::loongarch_lasx_xvaddi_bu:
5992 case Intrinsic::loongarch_lasx_xvaddi_hu:
5993 case Intrinsic::loongarch_lasx_xvaddi_wu:
5994 case Intrinsic::loongarch_lasx_xvaddi_du:
5997 case Intrinsic::loongarch_lsx_vsub_b:
5998 case Intrinsic::loongarch_lsx_vsub_h:
5999 case Intrinsic::loongarch_lsx_vsub_w:
6000 case Intrinsic::loongarch_lsx_vsub_d:
6001 case Intrinsic::loongarch_lasx_xvsub_b:
6002 case Intrinsic::loongarch_lasx_xvsub_h:
6003 case Intrinsic::loongarch_lasx_xvsub_w:
6004 case Intrinsic::loongarch_lasx_xvsub_d:
6007 case Intrinsic::loongarch_lsx_vsubi_bu:
6008 case Intrinsic::loongarch_lsx_vsubi_hu:
6009 case Intrinsic::loongarch_lsx_vsubi_wu:
6010 case Intrinsic::loongarch_lsx_vsubi_du:
6011 case Intrinsic::loongarch_lasx_xvsubi_bu:
6012 case Intrinsic::loongarch_lasx_xvsubi_hu:
6013 case Intrinsic::loongarch_lasx_xvsubi_wu:
6014 case Intrinsic::loongarch_lasx_xvsubi_du:
6017 case Intrinsic::loongarch_lsx_vneg_b:
6018 case Intrinsic::loongarch_lsx_vneg_h:
6019 case Intrinsic::loongarch_lsx_vneg_w:
6020 case Intrinsic::loongarch_lsx_vneg_d:
6021 case Intrinsic::loongarch_lasx_xvneg_b:
6022 case Intrinsic::loongarch_lasx_xvneg_h:
6023 case Intrinsic::loongarch_lasx_xvneg_w:
6024 case Intrinsic::loongarch_lasx_xvneg_d:
6028 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
6030 SDLoc(
N),
N->getValueType(0)),
6032 case Intrinsic::loongarch_lsx_vmax_b:
6033 case Intrinsic::loongarch_lsx_vmax_h:
6034 case Intrinsic::loongarch_lsx_vmax_w:
6035 case Intrinsic::loongarch_lsx_vmax_d:
6036 case Intrinsic::loongarch_lasx_xvmax_b:
6037 case Intrinsic::loongarch_lasx_xvmax_h:
6038 case Intrinsic::loongarch_lasx_xvmax_w:
6039 case Intrinsic::loongarch_lasx_xvmax_d:
6042 case Intrinsic::loongarch_lsx_vmax_bu:
6043 case Intrinsic::loongarch_lsx_vmax_hu:
6044 case Intrinsic::loongarch_lsx_vmax_wu:
6045 case Intrinsic::loongarch_lsx_vmax_du:
6046 case Intrinsic::loongarch_lasx_xvmax_bu:
6047 case Intrinsic::loongarch_lasx_xvmax_hu:
6048 case Intrinsic::loongarch_lasx_xvmax_wu:
6049 case Intrinsic::loongarch_lasx_xvmax_du:
6052 case Intrinsic::loongarch_lsx_vmaxi_b:
6053 case Intrinsic::loongarch_lsx_vmaxi_h:
6054 case Intrinsic::loongarch_lsx_vmaxi_w:
6055 case Intrinsic::loongarch_lsx_vmaxi_d:
6056 case Intrinsic::loongarch_lasx_xvmaxi_b:
6057 case Intrinsic::loongarch_lasx_xvmaxi_h:
6058 case Intrinsic::loongarch_lasx_xvmaxi_w:
6059 case Intrinsic::loongarch_lasx_xvmaxi_d:
6062 case Intrinsic::loongarch_lsx_vmaxi_bu:
6063 case Intrinsic::loongarch_lsx_vmaxi_hu:
6064 case Intrinsic::loongarch_lsx_vmaxi_wu:
6065 case Intrinsic::loongarch_lsx_vmaxi_du:
6066 case Intrinsic::loongarch_lasx_xvmaxi_bu:
6067 case Intrinsic::loongarch_lasx_xvmaxi_hu:
6068 case Intrinsic::loongarch_lasx_xvmaxi_wu:
6069 case Intrinsic::loongarch_lasx_xvmaxi_du:
6072 case Intrinsic::loongarch_lsx_vmin_b:
6073 case Intrinsic::loongarch_lsx_vmin_h:
6074 case Intrinsic::loongarch_lsx_vmin_w:
6075 case Intrinsic::loongarch_lsx_vmin_d:
6076 case Intrinsic::loongarch_lasx_xvmin_b:
6077 case Intrinsic::loongarch_lasx_xvmin_h:
6078 case Intrinsic::loongarch_lasx_xvmin_w:
6079 case Intrinsic::loongarch_lasx_xvmin_d:
6082 case Intrinsic::loongarch_lsx_vmin_bu:
6083 case Intrinsic::loongarch_lsx_vmin_hu:
6084 case Intrinsic::loongarch_lsx_vmin_wu:
6085 case Intrinsic::loongarch_lsx_vmin_du:
6086 case Intrinsic::loongarch_lasx_xvmin_bu:
6087 case Intrinsic::loongarch_lasx_xvmin_hu:
6088 case Intrinsic::loongarch_lasx_xvmin_wu:
6089 case Intrinsic::loongarch_lasx_xvmin_du:
6092 case Intrinsic::loongarch_lsx_vmini_b:
6093 case Intrinsic::loongarch_lsx_vmini_h:
6094 case Intrinsic::loongarch_lsx_vmini_w:
6095 case Intrinsic::loongarch_lsx_vmini_d:
6096 case Intrinsic::loongarch_lasx_xvmini_b:
6097 case Intrinsic::loongarch_lasx_xvmini_h:
6098 case Intrinsic::loongarch_lasx_xvmini_w:
6099 case Intrinsic::loongarch_lasx_xvmini_d:
6102 case Intrinsic::loongarch_lsx_vmini_bu:
6103 case Intrinsic::loongarch_lsx_vmini_hu:
6104 case Intrinsic::loongarch_lsx_vmini_wu:
6105 case Intrinsic::loongarch_lsx_vmini_du:
6106 case Intrinsic::loongarch_lasx_xvmini_bu:
6107 case Intrinsic::loongarch_lasx_xvmini_hu:
6108 case Intrinsic::loongarch_lasx_xvmini_wu:
6109 case Intrinsic::loongarch_lasx_xvmini_du:
6112 case Intrinsic::loongarch_lsx_vmul_b:
6113 case Intrinsic::loongarch_lsx_vmul_h:
6114 case Intrinsic::loongarch_lsx_vmul_w:
6115 case Intrinsic::loongarch_lsx_vmul_d:
6116 case Intrinsic::loongarch_lasx_xvmul_b:
6117 case Intrinsic::loongarch_lasx_xvmul_h:
6118 case Intrinsic::loongarch_lasx_xvmul_w:
6119 case Intrinsic::loongarch_lasx_xvmul_d:
6122 case Intrinsic::loongarch_lsx_vmadd_b:
6123 case Intrinsic::loongarch_lsx_vmadd_h:
6124 case Intrinsic::loongarch_lsx_vmadd_w:
6125 case Intrinsic::loongarch_lsx_vmadd_d:
6126 case Intrinsic::loongarch_lasx_xvmadd_b:
6127 case Intrinsic::loongarch_lasx_xvmadd_h:
6128 case Intrinsic::loongarch_lasx_xvmadd_w:
6129 case Intrinsic::loongarch_lasx_xvmadd_d: {
6130 EVT ResTy =
N->getValueType(0);
6135 case Intrinsic::loongarch_lsx_vmsub_b:
6136 case Intrinsic::loongarch_lsx_vmsub_h:
6137 case Intrinsic::loongarch_lsx_vmsub_w:
6138 case Intrinsic::loongarch_lsx_vmsub_d:
6139 case Intrinsic::loongarch_lasx_xvmsub_b:
6140 case Intrinsic::loongarch_lasx_xvmsub_h:
6141 case Intrinsic::loongarch_lasx_xvmsub_w:
6142 case Intrinsic::loongarch_lasx_xvmsub_d: {
6143 EVT ResTy =
N->getValueType(0);
6148 case Intrinsic::loongarch_lsx_vdiv_b:
6149 case Intrinsic::loongarch_lsx_vdiv_h:
6150 case Intrinsic::loongarch_lsx_vdiv_w:
6151 case Intrinsic::loongarch_lsx_vdiv_d:
6152 case Intrinsic::loongarch_lasx_xvdiv_b:
6153 case Intrinsic::loongarch_lasx_xvdiv_h:
6154 case Intrinsic::loongarch_lasx_xvdiv_w:
6155 case Intrinsic::loongarch_lasx_xvdiv_d:
6158 case Intrinsic::loongarch_lsx_vdiv_bu:
6159 case Intrinsic::loongarch_lsx_vdiv_hu:
6160 case Intrinsic::loongarch_lsx_vdiv_wu:
6161 case Intrinsic::loongarch_lsx_vdiv_du:
6162 case Intrinsic::loongarch_lasx_xvdiv_bu:
6163 case Intrinsic::loongarch_lasx_xvdiv_hu:
6164 case Intrinsic::loongarch_lasx_xvdiv_wu:
6165 case Intrinsic::loongarch_lasx_xvdiv_du:
6168 case Intrinsic::loongarch_lsx_vmod_b:
6169 case Intrinsic::loongarch_lsx_vmod_h:
6170 case Intrinsic::loongarch_lsx_vmod_w:
6171 case Intrinsic::loongarch_lsx_vmod_d:
6172 case Intrinsic::loongarch_lasx_xvmod_b:
6173 case Intrinsic::loongarch_lasx_xvmod_h:
6174 case Intrinsic::loongarch_lasx_xvmod_w:
6175 case Intrinsic::loongarch_lasx_xvmod_d:
6178 case Intrinsic::loongarch_lsx_vmod_bu:
6179 case Intrinsic::loongarch_lsx_vmod_hu:
6180 case Intrinsic::loongarch_lsx_vmod_wu:
6181 case Intrinsic::loongarch_lsx_vmod_du:
6182 case Intrinsic::loongarch_lasx_xvmod_bu:
6183 case Intrinsic::loongarch_lasx_xvmod_hu:
6184 case Intrinsic::loongarch_lasx_xvmod_wu:
6185 case Intrinsic::loongarch_lasx_xvmod_du:
6188 case Intrinsic::loongarch_lsx_vand_v:
6189 case Intrinsic::loongarch_lasx_xvand_v:
6192 case Intrinsic::loongarch_lsx_vor_v:
6193 case Intrinsic::loongarch_lasx_xvor_v:
6196 case Intrinsic::loongarch_lsx_vxor_v:
6197 case Intrinsic::loongarch_lasx_xvxor_v:
6200 case Intrinsic::loongarch_lsx_vnor_v:
6201 case Intrinsic::loongarch_lasx_xvnor_v: {
6206 case Intrinsic::loongarch_lsx_vandi_b:
6207 case Intrinsic::loongarch_lasx_xvandi_b:
6210 case Intrinsic::loongarch_lsx_vori_b:
6211 case Intrinsic::loongarch_lasx_xvori_b:
6214 case Intrinsic::loongarch_lsx_vxori_b:
6215 case Intrinsic::loongarch_lasx_xvxori_b:
6218 case Intrinsic::loongarch_lsx_vsll_b:
6219 case Intrinsic::loongarch_lsx_vsll_h:
6220 case Intrinsic::loongarch_lsx_vsll_w:
6221 case Intrinsic::loongarch_lsx_vsll_d:
6222 case Intrinsic::loongarch_lasx_xvsll_b:
6223 case Intrinsic::loongarch_lasx_xvsll_h:
6224 case Intrinsic::loongarch_lasx_xvsll_w:
6225 case Intrinsic::loongarch_lasx_xvsll_d:
6228 case Intrinsic::loongarch_lsx_vslli_b:
6229 case Intrinsic::loongarch_lasx_xvslli_b:
6232 case Intrinsic::loongarch_lsx_vslli_h:
6233 case Intrinsic::loongarch_lasx_xvslli_h:
6236 case Intrinsic::loongarch_lsx_vslli_w:
6237 case Intrinsic::loongarch_lasx_xvslli_w:
6240 case Intrinsic::loongarch_lsx_vslli_d:
6241 case Intrinsic::loongarch_lasx_xvslli_d:
6244 case Intrinsic::loongarch_lsx_vsrl_b:
6245 case Intrinsic::loongarch_lsx_vsrl_h:
6246 case Intrinsic::loongarch_lsx_vsrl_w:
6247 case Intrinsic::loongarch_lsx_vsrl_d:
6248 case Intrinsic::loongarch_lasx_xvsrl_b:
6249 case Intrinsic::loongarch_lasx_xvsrl_h:
6250 case Intrinsic::loongarch_lasx_xvsrl_w:
6251 case Intrinsic::loongarch_lasx_xvsrl_d:
6254 case Intrinsic::loongarch_lsx_vsrli_b:
6255 case Intrinsic::loongarch_lasx_xvsrli_b:
6258 case Intrinsic::loongarch_lsx_vsrli_h:
6259 case Intrinsic::loongarch_lasx_xvsrli_h:
6262 case Intrinsic::loongarch_lsx_vsrli_w:
6263 case Intrinsic::loongarch_lasx_xvsrli_w:
6266 case Intrinsic::loongarch_lsx_vsrli_d:
6267 case Intrinsic::loongarch_lasx_xvsrli_d:
6270 case Intrinsic::loongarch_lsx_vsra_b:
6271 case Intrinsic::loongarch_lsx_vsra_h:
6272 case Intrinsic::loongarch_lsx_vsra_w:
6273 case Intrinsic::loongarch_lsx_vsra_d:
6274 case Intrinsic::loongarch_lasx_xvsra_b:
6275 case Intrinsic::loongarch_lasx_xvsra_h:
6276 case Intrinsic::loongarch_lasx_xvsra_w:
6277 case Intrinsic::loongarch_lasx_xvsra_d:
6280 case Intrinsic::loongarch_lsx_vsrai_b:
6281 case Intrinsic::loongarch_lasx_xvsrai_b:
6284 case Intrinsic::loongarch_lsx_vsrai_h:
6285 case Intrinsic::loongarch_lasx_xvsrai_h:
6288 case Intrinsic::loongarch_lsx_vsrai_w:
6289 case Intrinsic::loongarch_lasx_xvsrai_w:
6292 case Intrinsic::loongarch_lsx_vsrai_d:
6293 case Intrinsic::loongarch_lasx_xvsrai_d:
6296 case Intrinsic::loongarch_lsx_vclz_b:
6297 case Intrinsic::loongarch_lsx_vclz_h:
6298 case Intrinsic::loongarch_lsx_vclz_w:
6299 case Intrinsic::loongarch_lsx_vclz_d:
6300 case Intrinsic::loongarch_lasx_xvclz_b:
6301 case Intrinsic::loongarch_lasx_xvclz_h:
6302 case Intrinsic::loongarch_lasx_xvclz_w:
6303 case Intrinsic::loongarch_lasx_xvclz_d:
6305 case Intrinsic::loongarch_lsx_vpcnt_b:
6306 case Intrinsic::loongarch_lsx_vpcnt_h:
6307 case Intrinsic::loongarch_lsx_vpcnt_w:
6308 case Intrinsic::loongarch_lsx_vpcnt_d:
6309 case Intrinsic::loongarch_lasx_xvpcnt_b:
6310 case Intrinsic::loongarch_lasx_xvpcnt_h:
6311 case Intrinsic::loongarch_lasx_xvpcnt_w:
6312 case Intrinsic::loongarch_lasx_xvpcnt_d:
6314 case Intrinsic::loongarch_lsx_vbitclr_b:
6315 case Intrinsic::loongarch_lsx_vbitclr_h:
6316 case Intrinsic::loongarch_lsx_vbitclr_w:
6317 case Intrinsic::loongarch_lsx_vbitclr_d:
6318 case Intrinsic::loongarch_lasx_xvbitclr_b:
6319 case Intrinsic::loongarch_lasx_xvbitclr_h:
6320 case Intrinsic::loongarch_lasx_xvbitclr_w:
6321 case Intrinsic::loongarch_lasx_xvbitclr_d:
6323 case Intrinsic::loongarch_lsx_vbitclri_b:
6324 case Intrinsic::loongarch_lasx_xvbitclri_b:
6326 case Intrinsic::loongarch_lsx_vbitclri_h:
6327 case Intrinsic::loongarch_lasx_xvbitclri_h:
6329 case Intrinsic::loongarch_lsx_vbitclri_w:
6330 case Intrinsic::loongarch_lasx_xvbitclri_w:
6332 case Intrinsic::loongarch_lsx_vbitclri_d:
6333 case Intrinsic::loongarch_lasx_xvbitclri_d:
6335 case Intrinsic::loongarch_lsx_vbitset_b:
6336 case Intrinsic::loongarch_lsx_vbitset_h:
6337 case Intrinsic::loongarch_lsx_vbitset_w:
6338 case Intrinsic::loongarch_lsx_vbitset_d:
6339 case Intrinsic::loongarch_lasx_xvbitset_b:
6340 case Intrinsic::loongarch_lasx_xvbitset_h:
6341 case Intrinsic::loongarch_lasx_xvbitset_w:
6342 case Intrinsic::loongarch_lasx_xvbitset_d: {
6343 EVT VecTy =
N->getValueType(0);
6349 case Intrinsic::loongarch_lsx_vbitseti_b:
6350 case Intrinsic::loongarch_lasx_xvbitseti_b:
6352 case Intrinsic::loongarch_lsx_vbitseti_h:
6353 case Intrinsic::loongarch_lasx_xvbitseti_h:
6355 case Intrinsic::loongarch_lsx_vbitseti_w:
6356 case Intrinsic::loongarch_lasx_xvbitseti_w:
6358 case Intrinsic::loongarch_lsx_vbitseti_d:
6359 case Intrinsic::loongarch_lasx_xvbitseti_d:
6361 case Intrinsic::loongarch_lsx_vbitrev_b:
6362 case Intrinsic::loongarch_lsx_vbitrev_h:
6363 case Intrinsic::loongarch_lsx_vbitrev_w:
6364 case Intrinsic::loongarch_lsx_vbitrev_d:
6365 case Intrinsic::loongarch_lasx_xvbitrev_b:
6366 case Intrinsic::loongarch_lasx_xvbitrev_h:
6367 case Intrinsic::loongarch_lasx_xvbitrev_w:
6368 case Intrinsic::loongarch_lasx_xvbitrev_d: {
6369 EVT VecTy =
N->getValueType(0);
6375 case Intrinsic::loongarch_lsx_vbitrevi_b:
6376 case Intrinsic::loongarch_lasx_xvbitrevi_b:
6378 case Intrinsic::loongarch_lsx_vbitrevi_h:
6379 case Intrinsic::loongarch_lasx_xvbitrevi_h:
6381 case Intrinsic::loongarch_lsx_vbitrevi_w:
6382 case Intrinsic::loongarch_lasx_xvbitrevi_w:
6384 case Intrinsic::loongarch_lsx_vbitrevi_d:
6385 case Intrinsic::loongarch_lasx_xvbitrevi_d:
6387 case Intrinsic::loongarch_lsx_vfadd_s:
6388 case Intrinsic::loongarch_lsx_vfadd_d:
6389 case Intrinsic::loongarch_lasx_xvfadd_s:
6390 case Intrinsic::loongarch_lasx_xvfadd_d:
6393 case Intrinsic::loongarch_lsx_vfsub_s:
6394 case Intrinsic::loongarch_lsx_vfsub_d:
6395 case Intrinsic::loongarch_lasx_xvfsub_s:
6396 case Intrinsic::loongarch_lasx_xvfsub_d:
6399 case Intrinsic::loongarch_lsx_vfmul_s:
6400 case Intrinsic::loongarch_lsx_vfmul_d:
6401 case Intrinsic::loongarch_lasx_xvfmul_s:
6402 case Intrinsic::loongarch_lasx_xvfmul_d:
6405 case Intrinsic::loongarch_lsx_vfdiv_s:
6406 case Intrinsic::loongarch_lsx_vfdiv_d:
6407 case Intrinsic::loongarch_lasx_xvfdiv_s:
6408 case Intrinsic::loongarch_lasx_xvfdiv_d:
6411 case Intrinsic::loongarch_lsx_vfmadd_s:
6412 case Intrinsic::loongarch_lsx_vfmadd_d:
6413 case Intrinsic::loongarch_lasx_xvfmadd_s:
6414 case Intrinsic::loongarch_lasx_xvfmadd_d:
6416 N->getOperand(2),
N->getOperand(3));
6417 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
6419 N->getOperand(1),
N->getOperand(2),
6421 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
6422 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
6424 N->getOperand(1),
N->getOperand(2),
6426 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
6427 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
6429 N->getOperand(1),
N->getOperand(2),
6431 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
6433 N->getOperand(1),
N->getOperand(2),
6435 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
6436 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
6437 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
6438 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
6439 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
6440 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
6441 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
6442 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
6446 case Intrinsic::loongarch_lsx_vreplve_b:
6447 case Intrinsic::loongarch_lsx_vreplve_h:
6448 case Intrinsic::loongarch_lsx_vreplve_w:
6449 case Intrinsic::loongarch_lsx_vreplve_d:
6450 case Intrinsic::loongarch_lasx_xvreplve_b:
6451 case Intrinsic::loongarch_lasx_xvreplve_h:
6452 case Intrinsic::loongarch_lasx_xvreplve_w:
6453 case Intrinsic::loongarch_lasx_xvreplve_d:
6458 case Intrinsic::loongarch_lsx_vpickve2gr_b:
6462 case Intrinsic::loongarch_lsx_vpickve2gr_h:
6463 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
6467 case Intrinsic::loongarch_lsx_vpickve2gr_w:
6471 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
6475 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
6476 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
6480 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
6484 case Intrinsic::loongarch_lsx_bz_b:
6485 case Intrinsic::loongarch_lsx_bz_h:
6486 case Intrinsic::loongarch_lsx_bz_w:
6487 case Intrinsic::loongarch_lsx_bz_d:
6488 case Intrinsic::loongarch_lasx_xbz_b:
6489 case Intrinsic::loongarch_lasx_xbz_h:
6490 case Intrinsic::loongarch_lasx_xbz_w:
6491 case Intrinsic::loongarch_lasx_xbz_d:
6496 case Intrinsic::loongarch_lsx_bz_v:
6497 case Intrinsic::loongarch_lasx_xbz_v:
6502 case Intrinsic::loongarch_lsx_bnz_b:
6503 case Intrinsic::loongarch_lsx_bnz_h:
6504 case Intrinsic::loongarch_lsx_bnz_w:
6505 case Intrinsic::loongarch_lsx_bnz_d:
6506 case Intrinsic::loongarch_lasx_xbnz_b:
6507 case Intrinsic::loongarch_lasx_xbnz_h:
6508 case Intrinsic::loongarch_lasx_xbnz_w:
6509 case Intrinsic::loongarch_lasx_xbnz_d:
6514 case Intrinsic::loongarch_lsx_bnz_v:
6515 case Intrinsic::loongarch_lasx_xbnz_v:
6545 "Unexpected value type!");
6554 MVT VT =
N->getSimpleValueType(0);
6588 APInt V =
C->getValueAPF().bitcastToAPInt();
6604 MVT EltVT =
N->getSimpleValueType(0);
6636 switch (
N->getOpcode()) {
6690 MF->
insert(It, BreakMBB);
6694 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->end());
6695 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
6707 MBB->addSuccessor(BreakMBB);
6708 MBB->addSuccessor(SinkMBB);
6714 BreakMBB->addSuccessor(SinkMBB);
6726 switch (
MI.getOpcode()) {
6729 case LoongArch::PseudoVBZ:
6730 CondOpc = LoongArch::VSETEQZ_V;
6732 case LoongArch::PseudoVBZ_B:
6733 CondOpc = LoongArch::VSETANYEQZ_B;
6735 case LoongArch::PseudoVBZ_H:
6736 CondOpc = LoongArch::VSETANYEQZ_H;
6738 case LoongArch::PseudoVBZ_W:
6739 CondOpc = LoongArch::VSETANYEQZ_W;
6741 case LoongArch::PseudoVBZ_D:
6742 CondOpc = LoongArch::VSETANYEQZ_D;
6744 case LoongArch::PseudoVBNZ:
6745 CondOpc = LoongArch::VSETNEZ_V;
6747 case LoongArch::PseudoVBNZ_B:
6748 CondOpc = LoongArch::VSETALLNEZ_B;
6750 case LoongArch::PseudoVBNZ_H:
6751 CondOpc = LoongArch::VSETALLNEZ_H;
6753 case LoongArch::PseudoVBNZ_W:
6754 CondOpc = LoongArch::VSETALLNEZ_W;
6756 case LoongArch::PseudoVBNZ_D:
6757 CondOpc = LoongArch::VSETALLNEZ_D;
6759 case LoongArch::PseudoXVBZ:
6760 CondOpc = LoongArch::XVSETEQZ_V;
6762 case LoongArch::PseudoXVBZ_B:
6763 CondOpc = LoongArch::XVSETANYEQZ_B;
6765 case LoongArch::PseudoXVBZ_H:
6766 CondOpc = LoongArch::XVSETANYEQZ_H;
6768 case LoongArch::PseudoXVBZ_W:
6769 CondOpc = LoongArch::XVSETANYEQZ_W;
6771 case LoongArch::PseudoXVBZ_D:
6772 CondOpc = LoongArch::XVSETANYEQZ_D;
6774 case LoongArch::PseudoXVBNZ:
6775 CondOpc = LoongArch::XVSETNEZ_V;
6777 case LoongArch::PseudoXVBNZ_B:
6778 CondOpc = LoongArch::XVSETALLNEZ_B;
6780 case LoongArch::PseudoXVBNZ_H:
6781 CondOpc = LoongArch::XVSETALLNEZ_H;
6783 case LoongArch::PseudoXVBNZ_W:
6784 CondOpc = LoongArch::XVSETALLNEZ_W;
6786 case LoongArch::PseudoXVBNZ_D:
6787 CondOpc = LoongArch::XVSETALLNEZ_D;
6802 F->insert(It, FalseBB);
6803 F->insert(It, TrueBB);
6804 F->insert(It, SinkBB);
6807 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
6811 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
6820 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6828 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6836 MI.getOperand(0).getReg())
6843 MI.eraseFromParent();
6851 unsigned BroadcastOp;
6853 switch (
MI.getOpcode()) {
6856 case LoongArch::PseudoXVINSGR2VR_B:
6858 BroadcastOp = LoongArch::XVREPLGR2VR_B;
6859 InsOp = LoongArch::XVEXTRINS_B;
6861 case LoongArch::PseudoXVINSGR2VR_H:
6863 BroadcastOp = LoongArch::XVREPLGR2VR_H;
6864 InsOp = LoongArch::XVEXTRINS_H;
6876 unsigned Idx =
MI.getOperand(3).getImm();
6878 if (XSrc.
isVirtual() &&
MRI.getVRegDef(XSrc)->isImplicitDef() &&
6880 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
6881 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
6884 .
addReg(XSrc, 0, LoongArch::sub_128);
6886 TII->get(HalfSize == 8 ? LoongArch::VINSGR2VR_H
6887 : LoongArch::VINSGR2VR_B),
6896 .
addImm(LoongArch::sub_128);
6898 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6899 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6903 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg2)
6906 .
addImm(Idx >= HalfSize ? 48 : 18);
6911 .
addImm((Idx >= HalfSize ? Idx - HalfSize : Idx) * 17);
6914 MI.eraseFromParent();
6921 assert(Subtarget.hasExtLSX());
6928 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6929 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6930 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
6934 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
6935 : LoongArch::VINSGR2VR_W),
6942 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
6946 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
6947 : LoongArch::VPICKVE2GR_W),
6952 MI.eraseFromParent();
6966 unsigned EleBits = 8;
6967 unsigned NotOpc = 0;
6970 switch (
MI.getOpcode()) {
6973 case LoongArch::PseudoVMSKLTZ_B:
6974 MskOpc = LoongArch::VMSKLTZ_B;
6976 case LoongArch::PseudoVMSKLTZ_H:
6977 MskOpc = LoongArch::VMSKLTZ_H;
6980 case LoongArch::PseudoVMSKLTZ_W:
6981 MskOpc = LoongArch::VMSKLTZ_W;
6984 case LoongArch::PseudoVMSKLTZ_D:
6985 MskOpc = LoongArch::VMSKLTZ_D;
6988 case LoongArch::PseudoVMSKGEZ_B:
6989 MskOpc = LoongArch::VMSKGEZ_B;
6991 case LoongArch::PseudoVMSKEQZ_B:
6992 MskOpc = LoongArch::VMSKNZ_B;
6993 NotOpc = LoongArch::VNOR_V;
6995 case LoongArch::PseudoVMSKNEZ_B:
6996 MskOpc = LoongArch::VMSKNZ_B;
6998 case LoongArch::PseudoXVMSKLTZ_B:
6999 MskOpc = LoongArch::XVMSKLTZ_B;
7000 RC = &LoongArch::LASX256RegClass;
7002 case LoongArch::PseudoXVMSKLTZ_H:
7003 MskOpc = LoongArch::XVMSKLTZ_H;
7004 RC = &LoongArch::LASX256RegClass;
7007 case LoongArch::PseudoXVMSKLTZ_W:
7008 MskOpc = LoongArch::XVMSKLTZ_W;
7009 RC = &LoongArch::LASX256RegClass;
7012 case LoongArch::PseudoXVMSKLTZ_D:
7013 MskOpc = LoongArch::XVMSKLTZ_D;
7014 RC = &LoongArch::LASX256RegClass;
7017 case LoongArch::PseudoXVMSKGEZ_B:
7018 MskOpc = LoongArch::XVMSKGEZ_B;
7019 RC = &LoongArch::LASX256RegClass;
7021 case LoongArch::PseudoXVMSKEQZ_B:
7022 MskOpc = LoongArch::XVMSKNZ_B;
7023 NotOpc = LoongArch::XVNOR_V;
7024 RC = &LoongArch::LASX256RegClass;
7026 case LoongArch::PseudoXVMSKNEZ_B:
7027 MskOpc = LoongArch::XVMSKNZ_B;
7028 RC = &LoongArch::LASX256RegClass;
7043 if (
TRI->getRegSizeInBits(*RC) > 128) {
7044 Register Lo =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7045 Register Hi =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7053 TII->get(Subtarget.
is64Bit() ? LoongArch::BSTRINS_D
7054 : LoongArch::BSTRINS_W),
7058 .
addImm(256 / EleBits - 1)
7066 MI.eraseFromParent();
7073 assert(
MI.getOpcode() == LoongArch::SplitPairF64Pseudo &&
7074 "Unexpected instruction");
7086 MI.eraseFromParent();
7093 assert(
MI.getOpcode() == LoongArch::BuildPairF64Pseudo &&
7094 "Unexpected instruction");
7100 Register TmpReg =
MRI.createVirtualRegister(&LoongArch::FPR64RegClass);
7110 MI.eraseFromParent();
7115 switch (
MI.getOpcode()) {
7118 case LoongArch::Select_GPR_Using_CC_GPR:
7154 if (
MI.getOperand(2).isReg())
7155 RHS =
MI.getOperand(2).getReg();
7156 auto CC =
static_cast<unsigned>(
MI.getOperand(3).
getImm());
7160 SelectDests.
insert(
MI.getOperand(0).getReg());
7164 SequenceMBBI !=
E; ++SequenceMBBI) {
7165 if (SequenceMBBI->isDebugInstr())
7168 if (SequenceMBBI->getOperand(1).getReg() !=
LHS ||
7169 !SequenceMBBI->getOperand(2).isReg() ||
7170 SequenceMBBI->getOperand(2).getReg() !=
RHS ||
7171 SequenceMBBI->getOperand(3).getImm() != CC ||
7172 SelectDests.
count(SequenceMBBI->getOperand(4).getReg()) ||
7173 SelectDests.
count(SequenceMBBI->getOperand(5).getReg()))
7175 LastSelectPseudo = &*SequenceMBBI;
7177 SelectDests.
insert(SequenceMBBI->getOperand(0).getReg());
7180 if (SequenceMBBI->hasUnmodeledSideEffects() ||
7181 SequenceMBBI->mayLoadOrStore() ||
7182 SequenceMBBI->usesCustomInsertionHook())
7185 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7200 F->insert(
I, IfFalseMBB);
7201 F->insert(
I, TailMBB);
7204 unsigned CallFrameSize =
TII.getCallFrameSizeAt(*LastSelectPseudo);
7210 TailMBB->
push_back(DebugInstr->removeFromParent());
7214 TailMBB->
splice(TailMBB->
end(), HeadMBB,
7224 if (
MI.getOperand(2).isImm())
7236 auto SelectMBBI =
MI.getIterator();
7237 auto SelectEnd = std::next(LastSelectPseudo->
getIterator());
7239 while (SelectMBBI != SelectEnd) {
7240 auto Next = std::next(SelectMBBI);
7244 TII.get(LoongArch::PHI), SelectMBBI->getOperand(0).getReg())
7245 .
addReg(SelectMBBI->getOperand(4).getReg())
7247 .
addReg(SelectMBBI->getOperand(5).getReg())
7254 F->getProperties().resetNoPHIs();
7260 const TargetInstrInfo *
TII = Subtarget.getInstrInfo();
7263 switch (
MI.getOpcode()) {
7266 case LoongArch::DIV_W:
7267 case LoongArch::DIV_WU:
7268 case LoongArch::MOD_W:
7269 case LoongArch::MOD_WU:
7270 case LoongArch::DIV_D:
7271 case LoongArch::DIV_DU:
7272 case LoongArch::MOD_D:
7273 case LoongArch::MOD_DU:
7276 case LoongArch::WRFCSR: {
7278 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
7279 .
addReg(
MI.getOperand(1).getReg());
7280 MI.eraseFromParent();
7283 case LoongArch::RDFCSR: {
7284 MachineInstr *ReadFCSR =
7286 MI.getOperand(0).getReg())
7287 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
7289 MI.eraseFromParent();
7292 case LoongArch::Select_GPR_Using_CC_GPR:
7294 case LoongArch::BuildPairF64Pseudo:
7296 case LoongArch::SplitPairF64Pseudo:
7298 case LoongArch::PseudoVBZ:
7299 case LoongArch::PseudoVBZ_B:
7300 case LoongArch::PseudoVBZ_H:
7301 case LoongArch::PseudoVBZ_W:
7302 case LoongArch::PseudoVBZ_D:
7303 case LoongArch::PseudoVBNZ:
7304 case LoongArch::PseudoVBNZ_B:
7305 case LoongArch::PseudoVBNZ_H:
7306 case LoongArch::PseudoVBNZ_W:
7307 case LoongArch::PseudoVBNZ_D:
7308 case LoongArch::PseudoXVBZ:
7309 case LoongArch::PseudoXVBZ_B:
7310 case LoongArch::PseudoXVBZ_H:
7311 case LoongArch::PseudoXVBZ_W:
7312 case LoongArch::PseudoXVBZ_D:
7313 case LoongArch::PseudoXVBNZ:
7314 case LoongArch::PseudoXVBNZ_B:
7315 case LoongArch::PseudoXVBNZ_H:
7316 case LoongArch::PseudoXVBNZ_W:
7317 case LoongArch::PseudoXVBNZ_D:
7319 case LoongArch::PseudoXVINSGR2VR_B:
7320 case LoongArch::PseudoXVINSGR2VR_H:
7322 case LoongArch::PseudoCTPOP:
7324 case LoongArch::PseudoVMSKLTZ_B:
7325 case LoongArch::PseudoVMSKLTZ_H:
7326 case LoongArch::PseudoVMSKLTZ_W:
7327 case LoongArch::PseudoVMSKLTZ_D:
7328 case LoongArch::PseudoVMSKGEZ_B:
7329 case LoongArch::PseudoVMSKEQZ_B:
7330 case LoongArch::PseudoVMSKNEZ_B:
7331 case LoongArch::PseudoXVMSKLTZ_B:
7332 case LoongArch::PseudoXVMSKLTZ_H:
7333 case LoongArch::PseudoXVMSKLTZ_W:
7334 case LoongArch::PseudoXVMSKLTZ_D:
7335 case LoongArch::PseudoXVMSKGEZ_B:
7336 case LoongArch::PseudoXVMSKEQZ_B:
7337 case LoongArch::PseudoXVMSKNEZ_B:
7339 case TargetOpcode::STATEPOINT:
7345 MI.addOperand(*
MI.getMF(),
7347 LoongArch::R1,
true,
7350 if (!Subtarget.is64Bit())
7358 unsigned *
Fast)
const {
7359 if (!Subtarget.hasUAL())
7373#define NODE_NAME_CASE(node) \
7374 case LoongArchISD::node: \
7375 return "LoongArchISD::" #node;
7480#undef NODE_NAME_CASE
7493 LoongArch::R7, LoongArch::R8, LoongArch::R9,
7494 LoongArch::R10, LoongArch::R11};
7498 LoongArch::F3, LoongArch::F4, LoongArch::F5,
7499 LoongArch::F6, LoongArch::F7};
7502 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
7503 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
7506 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
7507 LoongArch::VR6, LoongArch::VR7};
7510 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
7511 LoongArch::XR6, LoongArch::XR7};
7517 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
7519 unsigned GRLenInBytes = GRLen / 8;
7530 State.AllocateStack(GRLenInBytes, StackAlign),
7533 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7544 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7552 unsigned ValNo,
MVT ValVT,
7555 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
7556 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
7557 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
7562 if (IsRet && ValNo > 1)
7566 bool UseGPRForFloat =
true;
7576 UseGPRForFloat = ArgFlags.
isVarArg();
7589 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
7592 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
7593 unsigned RegIdx = State.getFirstUnallocated(
ArgGPRs);
7595 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
7601 State.getPendingArgFlags();
7604 "PendingLocs and PendingArgFlags out of sync");
7608 UseGPRForFloat =
true;
7610 if (UseGPRForFloat && ValVT == MVT::f32) {
7613 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
7616 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
7619 assert(PendingLocs.
empty() &&
"Can't lower f64 if it is split");
7661 PendingLocs.
size() <= 2) {
7662 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
7667 PendingLocs.
clear();
7668 PendingArgFlags.
clear();
7675 unsigned StoreSizeBytes = GRLen / 8;
7678 if (ValVT == MVT::f32 && !UseGPRForFloat) {
7680 }
else if (ValVT == MVT::f64 && !UseGPRForFloat) {
7684 UseGPRForFloat =
false;
7685 StoreSizeBytes = 16;
7686 StackAlign =
Align(16);
7689 UseGPRForFloat =
false;
7690 StoreSizeBytes = 32;
7691 StackAlign =
Align(32);
7697 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7701 if (!PendingLocs.
empty()) {
7703 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
7704 for (
auto &It : PendingLocs) {
7706 It.convertToReg(
Reg);
7711 PendingLocs.clear();
7712 PendingArgFlags.
clear();
7715 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
7716 "Expected an GRLenVT at this stage");
7733void LoongArchTargetLowering::analyzeInputArgs(
7736 LoongArchCCAssignFn Fn)
const {
7738 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
7739 MVT ArgVT =
Ins[i].VT;
7740 Type *ArgTy =
nullptr;
7742 ArgTy = FType->getReturnType();
7743 else if (Ins[i].isOrigArg())
7744 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7748 CCInfo, IsRet, ArgTy)) {
7749 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
7756void LoongArchTargetLowering::analyzeOutputArgs(
7759 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
7760 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
7761 MVT ArgVT = Outs[i].VT;
7762 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
7766 CCInfo, IsRet, OrigTy)) {
7767 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
7808 if (In.isOrigArg()) {
7813 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
7814 (
BitWidth < 32 && In.Flags.isZExt())) {
7864 Register LoVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7877 Register HiVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7897 Val = DAG.
getNode(ISD::BITCAST,
DL, LocVT, Val);
7907 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7911 LoongArch::R23, LoongArch::R24, LoongArch::R25,
7912 LoongArch::R26, LoongArch::R27, LoongArch::R28,
7913 LoongArch::R29, LoongArch::R30, LoongArch::R31};
7920 if (LocVT == MVT::f32) {
7923 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
7924 LoongArch::F26, LoongArch::F27};
7931 if (LocVT == MVT::f64) {
7934 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
7935 LoongArch::F30_64, LoongArch::F31_64};
7965 "GHC calling convention requires the F and D extensions");
7969 MVT GRLenVT = Subtarget.getGRLenVT();
7970 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
7972 std::vector<SDValue> OutChains;
7981 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
7983 for (
unsigned i = 0, e = ArgLocs.
size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
8000 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
8001 unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
8002 assert(ArgPartOffset == 0);
8003 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
8005 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
8029 int VaArgOffset, VarArgsSaveSize;
8033 if (ArgRegs.
size() == Idx) {
8035 VarArgsSaveSize = 0;
8037 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() - Idx);
8038 VaArgOffset = -VarArgsSaveSize;
8044 LoongArchFI->setVarArgsFrameIndex(FI);
8052 VarArgsSaveSize += GRLenInBytes;
8057 for (
unsigned I = Idx;
I < ArgRegs.
size();
8058 ++
I, VaArgOffset += GRLenInBytes) {
8059 const Register Reg = RegInfo.createVirtualRegister(RC);
8060 RegInfo.addLiveIn(ArgRegs[
I], Reg);
8068 ->setValue((
Value *)
nullptr);
8069 OutChains.push_back(Store);
8071 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
8076 if (!OutChains.empty()) {
8077 OutChains.push_back(Chain);
8092 if (
N->getNumValues() != 1)
8094 if (!
N->hasNUsesOfValue(1, 0))
8097 SDNode *Copy = *
N->user_begin();
8103 if (Copy->getGluedNode())
8107 bool HasRet =
false;
8117 Chain = Copy->getOperand(0);
8122bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
8126 auto CalleeCC = CLI.CallConv;
8127 auto &Outs = CLI.Outs;
8129 auto CallerCC = Caller.getCallingConv();
8136 for (
auto &VA : ArgLocs)
8142 auto IsCallerStructRet = Caller.hasStructRetAttr();
8143 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
8144 if (IsCallerStructRet || IsCalleeStructRet)
8148 for (
auto &Arg : Outs)
8149 if (Arg.Flags.isByVal())
8154 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
8155 if (CalleeCC != CallerCC) {
8156 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
8157 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8183 MVT GRLenVT = Subtarget.getGRLenVT();
8195 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
8199 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8205 "site marked musttail");
8212 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8214 if (!Flags.isByVal())
8218 unsigned Size = Flags.getByValSize();
8219 Align Alignment = Flags.getNonZeroByValAlign();
8226 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
8228 false,
nullptr, std::nullopt,
8240 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(), OutIdx = 0; i != e;
8243 SDValue ArgValue = OutVals[OutIdx];
8252 DAG.
getVTList(MVT::i32, MVT::i32), ArgValue);
8264 if (!StackPtr.getNode())
8276 RegsToPass.
push_back(std::make_pair(RegHigh,
Hi));
8291 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
8292 unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
8293 assert(ArgPartOffset == 0);
8298 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
8299 SDValue PartValue = OutVals[OutIdx + 1];
8300 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
8315 for (
const auto &Part : Parts) {
8316 SDValue PartValue = Part.first;
8317 SDValue PartOffset = Part.second;
8324 ArgValue = SpillSlot;
8330 if (Flags.isByVal())
8331 ArgValue = ByValArgs[j++];
8338 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
8339 "for passing parameters");
8342 if (!StackPtr.getNode())
8355 if (!MemOpChains.
empty())
8361 for (
auto &Reg : RegsToPass) {
8362 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
8384 Ops.push_back(Chain);
8385 Ops.push_back(Callee);
8389 for (
auto &Reg : RegsToPass)
8390 Ops.push_back(DAG.
getRegister(Reg.first, Reg.second.getValueType()));
8395 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
8396 assert(Mask &&
"Missing call preserved mask for calling convention");
8402 Ops.push_back(Glue);
8414 assert(Subtarget.is64Bit() &&
"Medium code model requires LA64");
8418 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
8441 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
8444 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
8445 auto &VA = RVLocs[i];
8453 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8454 assert(VA.needsCustom());
8460 RetValue, RetValue2);
8473 const Type *RetTy)
const {
8475 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8477 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8481 Outs[i].Flags, CCInfo,
true,
nullptr))
8507 for (
unsigned i = 0, e = RVLocs.
size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
8508 SDValue Val = OutVals[OutIdx];
8517 DAG.
getVTList(MVT::i32, MVT::i32), Val);
8521 Register RegHi = RVLocs[++i].getLocReg();
8554 const APInt &SplatValue,
const unsigned SplatBitSize)
const {
8557 if (SplatBitSize == 16 && !(V & 0x00FF)) {
8559 RequiredImm = (0b10101 << 8) | (V >> 8);
8560 return {
true, RequiredImm};
8561 }
else if (SplatBitSize == 32) {
8563 if (!(V & 0xFFFF00FF)) {
8564 RequiredImm = (0b10001 << 8) | (V >> 8);
8565 return {
true, RequiredImm};
8568 if (!(V & 0xFF00FFFF)) {
8569 RequiredImm = (0b10010 << 8) | (V >> 16);
8570 return {
true, RequiredImm};
8573 if (!(V & 0x00FFFFFF)) {
8574 RequiredImm = (0b10011 << 8) | (V >> 24);
8575 return {
true, RequiredImm};
8578 if ((V & 0xFFFF00FF) == 0xFF) {
8579 RequiredImm = (0b10110 << 8) | (V >> 8);
8580 return {
true, RequiredImm};
8583 if ((V & 0xFF00FFFF) == 0xFFFF) {
8584 RequiredImm = (0b10111 << 8) | (V >> 16);
8585 return {
true, RequiredImm};
8588 if ((V & 0x7E07FFFF) == 0x3E000000 || (V & 0x7E07FFFF) == 0x40000000) {
8590 (0b11010 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8591 return {
true, RequiredImm};
8593 }
else if (SplatBitSize == 64) {
8595 if ((V & 0xFFFFFFFF7E07FFFFULL) == 0x3E000000ULL ||
8596 (V & 0xFFFFFFFF7E07FFFFULL) == 0x40000000ULL) {
8598 (0b11011 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8599 return {
true, RequiredImm};
8602 if ((V & 0x7FC0FFFFFFFFFFFFULL) == 0x4000000000000000ULL ||
8603 (V & 0x7FC0FFFFFFFFFFFFULL) == 0x3FC0000000000000ULL) {
8605 (0b11100 << 8) | (((V >> 56) & 0xC0) ^ 0x40) | ((V >> 48) & 0x3F);
8606 return {
true, RequiredImm};
8609 auto sameBitsPreByte = [](
uint64_t x) -> std::pair<bool, uint8_t> {
8611 for (
int i = 0; i < 8; ++i) {
8613 if (
byte == 0 ||
byte == 0xFF)
8614 res |= ((
byte & 1) << i);
8621 auto [IsSame, Suffix] = sameBitsPreByte(V);
8623 RequiredImm = (0b11001 << 8) | Suffix;
8624 return {
true, RequiredImm};
8627 return {
false, RequiredImm};
8632 if (!Subtarget.hasExtLSX())
8635 if (VT == MVT::f32) {
8636 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
8637 return (masked == 0x3e000000 || masked == 0x40000000);
8640 if (VT == MVT::f64) {
8641 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
8642 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
8648bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
8649 bool ForCodeSize)
const {
8651 if (VT == MVT::f32 && !Subtarget.hasBasicF())
8653 if (VT == MVT::f64 && !Subtarget.hasBasicD())
8655 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
8666bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
8676 Type *Ty =
I->getOperand(0)->getType();
8678 unsigned Size = Ty->getIntegerBitWidth();
8694 EVT VT =
Y.getValueType();
8697 return Subtarget.hasExtLSX() && VT.
isInteger();
8709 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
8710 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
8711 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
8712 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
8714 Info.memVT = MVT::i32;
8715 Info.ptrVal =
I.getArgOperand(0);
8717 Info.align =
Align(4);
8734 "Unable to expand");
8735 unsigned MinWordSize = 4;
8747 Value *AlignedAddr = Builder.CreateIntrinsic(
8748 Intrinsic::ptrmask, {PtrTy, IntTy},
8749 {Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
8752 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
8753 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
8754 Value *ShiftAmt = Builder.CreateShl(PtrLSB, 3);
8755 ShiftAmt = Builder.CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
8756 Value *Mask = Builder.CreateShl(
8757 ConstantInt::get(WordType,
8760 Value *Inv_Mask = Builder.CreateNot(Mask,
"Inv_Mask");
8761 Value *ValOperand_Shifted =
8762 Builder.CreateShl(Builder.CreateZExt(AI->
getValOperand(), WordType),
8763 ShiftAmt,
"ValOperand_Shifted");
8766 NewOperand = Builder.CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
8768 NewOperand = ValOperand_Shifted;
8771 Builder.CreateAtomicRMW(
Op, AlignedAddr, NewOperand,
Align(MinWordSize),
8774 Value *Shift = Builder.CreateLShr(NewAI, ShiftAmt,
"shifted");
8775 Value *Trunc = Builder.CreateTrunc(Shift,
ValueType,
"extracted");
8794 if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() &&
8802 if (Subtarget.hasLAMCAS()) {
8824 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
8826 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
8828 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
8830 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
8832 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
8834 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
8836 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
8838 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
8848 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
8850 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
8852 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
8854 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
8856 return Intrinsic::loongarch_masked_atomicrmw_umax_i32;
8858 return Intrinsic::loongarch_masked_atomicrmw_umin_i32;
8860 return Intrinsic::loongarch_masked_atomicrmw_max_i32;
8862 return Intrinsic::loongarch_masked_atomicrmw_min_i32;
8874 if (Subtarget.hasLAMCAS())
8886 unsigned GRLen = Subtarget.getGRLen();
8888 Value *FailureOrdering =
8889 Builder.getIntN(Subtarget.getGRLen(),
static_cast<uint64_t>(FailOrd));
8890 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32;
8892 CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
8893 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8894 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8895 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8898 Value *Result = Builder.CreateIntrinsic(
8899 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
8901 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8917 Builder.CreateNot(Mask,
"Inv_Mask"),
8924 unsigned GRLen = Subtarget.getGRLen();
8933 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8934 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8935 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8951 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
8952 Result = Builder.CreateCall(LlwOpScwLoop,
8953 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8956 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8960 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8983 const Constant *PersonalityFn)
const {
8984 return LoongArch::R4;
8988 const Constant *PersonalityFn)
const {
8989 return LoongArch::R5;
9000 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
9001 return RefinementSteps;
9006 int &RefinementSteps,
9007 bool &UseOneConstNR,
9008 bool Reciprocal)
const {
9009 if (Subtarget.hasFrecipe()) {
9013 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9014 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9015 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9016 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9017 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9036 int &RefinementSteps)
const {
9037 if (Subtarget.hasFrecipe()) {
9041 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9042 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9043 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9044 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9045 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9062LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
9082 if (Constraint.
size() == 1) {
9083 switch (Constraint[0]) {
9099 if (Constraint ==
"ZC" || Constraint ==
"ZB")
9108 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
9115std::pair<unsigned, const TargetRegisterClass *>
9116LoongArchTargetLowering::getRegForInlineAsmConstraint(
9120 if (Constraint.
size() == 1) {
9121 switch (Constraint[0]) {
9126 return std::make_pair(0U, &LoongArch::GPRRegClass);
9128 return std::make_pair(0U, &LoongArch::GPRNoR0R1RegClass);
9130 if (Subtarget.hasBasicF() && VT == MVT::f32)
9131 return std::make_pair(0U, &LoongArch::FPR32RegClass);
9132 if (Subtarget.hasBasicD() && VT == MVT::f64)
9133 return std::make_pair(0U, &LoongArch::FPR64RegClass);
9134 if (Subtarget.hasExtLSX() &&
9135 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
9136 return std::make_pair(0U, &LoongArch::LSX128RegClass);
9137 if (Subtarget.hasExtLASX() &&
9138 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
9139 return std::make_pair(0U, &LoongArch::LASX256RegClass);
9159 bool IsFP = Constraint[2] ==
'f';
9160 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
9161 std::pair<unsigned, const TargetRegisterClass *>
R;
9166 unsigned RegNo =
R.first;
9167 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
9168 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
9169 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
9170 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
9180void LoongArchTargetLowering::LowerAsmOperandForConstraint(
9184 if (Constraint.
size() == 1) {
9185 switch (Constraint[0]) {
9189 uint64_t CVal =
C->getSExtValue();
9192 Subtarget.getGRLenVT()));
9198 uint64_t CVal =
C->getSExtValue();
9201 Subtarget.getGRLenVT()));
9207 if (
C->getZExtValue() == 0)
9214 uint64_t CVal =
C->getZExtValue();
9227#define GET_REGISTER_MATCHER
9228#include "LoongArchGenAsmMatcher.inc"
9234 std::string NewRegName = Name.second.str();
9240 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9241 if (!ReservedRegs.
test(Reg))
9258 const APInt &Imm = ConstNode->getAPIntValue();
9260 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9261 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9264 if (ConstNode->hasOneUse() &&
9265 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9266 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
9272 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
9273 unsigned Shifts = Imm.countr_zero();
9279 APInt ImmPop = Imm.ashr(Shifts);
9280 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
9284 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
9285 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
9286 (ImmSmall - Imm).isPowerOf2())
9296 Type *Ty,
unsigned AS,
9351 EVT MemVT = LD->getMemoryVT();
9352 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
9363 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
9372 if (
Y.getValueType().isVector())
9384 Type *Ty,
bool IsSigned)
const {
9385 if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
9394 if (Subtarget.isSoftFPABI() && (
Type.isFloatingPoint() && !
Type.isVector() &&
9395 Type.getSizeInBits() < Subtarget.getGRLen()))
9405 Align &PrefAlign)
const {
9409 if (Subtarget.is64Bit()) {
9411 PrefAlign =
Align(8);
9414 PrefAlign =
Align(4);
9429bool LoongArchTargetLowering::splitValueIntoRegisterParts(
9431 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
9432 bool IsABIRegCopy = CC.has_value();
9435 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9436 PartVT == MVT::f32) {
9439 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i16, Val);
9443 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Val);
9451SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue(
9453 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
9454 bool IsABIRegCopy = CC.has_value();
9456 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9457 PartVT == MVT::f32) {
9461 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i32, Val);
9463 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
9474 if (VT == MVT::f16 && Subtarget.hasBasicF())
9480unsigned LoongArchTargetLowering::getNumRegistersForCallingConv(
9483 if (VT == MVT::f16 && Subtarget.hasBasicF())
9492 unsigned Depth)
const {
9493 EVT VT =
Op.getValueType();
9495 unsigned Opc =
Op.getOpcode();
9502 MVT SrcVT = Src.getSimpleValueType();
9507 if (OriginalDemandedBits.
countr_zero() >= NumElts)
9511 APInt KnownUndef, KnownZero;
9527 if (KnownSrc.
One[SrcBits - 1])
9529 else if (KnownSrc.
Zero[SrcBits - 1])
9534 Src, DemandedSrcBits, DemandedElts, TLO.
DAG,
Depth + 1))
9541 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static MachineBasicBlock * emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
const HexagonInstrInfo * TII
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
const MCPhysReg ArgFPR32s[]
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL)
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE as byte rotate (if possible).
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsRet, Type *OrigTy)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static SDValue performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static MachineBasicBlock * emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
static std::optional< bool > matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val)
static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, const SDLoc &DL, SelectionDAG &DAG)
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, unsigned Depth)
static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as shift (if possible).
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static MachineBasicBlock * emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible).
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static cl::opt< MaterializeFPImm > MaterializeFPImmInsNum("loongarch-materialize-float-imm", cl::Hidden, cl::desc("Maximum number of instructions used (including code sequence " "to generate the value and moving the value to FPR) when " "materializing floating-point immediates (default = 3)"), cl::init(MaterializeFPImm3Ins), cl::values(clEnumValN(NoMaterializeFPImm, "0", "Use constant pool"), clEnumValN(MaterializeFPImm2Ins, "2", "Materialize FP immediate within 2 instructions"), clEnumValN(MaterializeFPImm3Ins, "3", "Materialize FP immediate within 3 instructions"), clEnumValN(MaterializeFPImm4Ins, "4", "Materialize FP immediate within 4 instructions"), clEnumValN(MaterializeFPImm5Ins, "5", "Materialize FP immediate within 5 instructions"), clEnumValN(MaterializeFPImm6Ins, "6", "Materialize FP immediate within 6 instructions " "(behaves same as 5 on loongarch64)")))
static SDValue lowerVECTOR_SHUFFLE_XVPERMI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERMI (if possible).
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, SDValue Src, const SDLoc &DL)
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static void fillVector(ArrayRef< SDValue > Ops, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, SDValue &Vector, EVT ResTy)
static SDValue performEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue fillSubVectorFromBuildVector(BuildVectorSDNode *Node, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, EVT ResTy, unsigned first)
static bool isSelectPseudo(MachineInstr &MI)
static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERM (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void computeZeroableShuffleElements(ArrayRef< int > Mask, SDValue V1, SDValue V2, APInt &KnownUndef, APInt &KnownZero)
Compute whether each element of a shuffle is zeroable.
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static bool canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static void replaceCMP_XCHG_128Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static SDValue lowerVectorPickVE2GR(SDNode *N, SelectionDAG &DAG, unsigned ResOp)
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, ArrayRef< int > Mask)
Attempts to match vector shuffle as byte rotation.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, unsigned ScalarSizeInBits, ArrayRef< int > Mask, int MaskOffset, const APInt &Zeroable)
Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI instruction.
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible).
static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG)
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, ArrayRef< int > Mask, SmallVectorImpl< int > &RepeatedMask)
Test whether a shuffle mask is equivalent within each sub-lane.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static bool isSequentialOrUndefInRange(ArrayRef< int > Mask, unsigned Pos, unsigned Size, int Low, int Step=1)
Return true if every element in Mask, beginning from position Pos and ending in Pos + Size,...
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
int64_t getSExtValue() const
Get sign extended value.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
size_type count() const
count - Returns the number of bits which are set.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getGRLen() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< bool, uint64_t > isImmVLDILegalForMode1(const APInt &SplatValue, const unsigned SplatBitSize) const
Check if a constant splat can be generated using [x]vldi, where imm[12] is 1.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool shouldScalarizeBinop(SDValue VecOp) const override
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
static MVT getFloatingPointVT(unsigned BitWidth)
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getHalfNumVectorElementsVT() const
Return a VT for a vector type with the same element type but half the number of elements.
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void push_back(MachineInstr *MI)
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
size_t use_size() const
Return the number of uses of this node.
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
ArrayRef< int > getMask() const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
InstSeq generateInstSeq(int64_t Val)
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
std::string join_items(Sep Separator, Args &&... Items)
Joins the strings in the parameter pack Items, adding Separator between the elements....
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
Align getNonZeroOrigAlign() const
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)