161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
709 EPI.EpilogueVF,
EPI.EpilogueUF) {
719 assert(AdditionalBypassBlock &&
720 "Trying to access AdditionalBypassBlock but it has not been set");
721 return AdditionalBypassBlock;
742 if (
I->getDebugLoc() !=
Empty)
743 return I->getDebugLoc();
745 for (
Use &
Op :
I->operands()) {
747 if (OpInst->getDebugLoc() !=
Empty)
748 return OpInst->getDebugLoc();
751 return I->getDebugLoc();
760 dbgs() <<
"LV: " << Prefix << DebugMsg;
782 if (
I &&
I->getDebugLoc())
783 DL =
I->getDebugLoc();
795 assert(Ty->isIntegerTy() &&
"Expected an integer step");
803 return B.CreateElementCount(Ty, VFxStep);
808 return B.CreateElementCount(Ty, VF);
819 <<
"loop not vectorized: " << OREMsg);
842 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
848 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
850 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
906 initializeVScaleForTuning();
987 "Profitable to scalarize relevant only for VF > 1.");
990 "cost-model should not be used for outer loops (in VPlan-native path)");
992 auto Scalars = InstsToScalarize.find(VF);
993 assert(Scalars != InstsToScalarize.end() &&
994 "VF not yet analyzed for scalarization profitability");
995 return Scalars->second.contains(
I);
1002 "cost-model should not be used for outer loops (in VPlan-native path)");
1012 auto UniformsPerVF = Uniforms.find(VF);
1013 assert(UniformsPerVF != Uniforms.end() &&
1014 "VF not yet analyzed for uniformity");
1015 return UniformsPerVF->second.count(
I);
1022 "cost-model should not be used for outer loops (in VPlan-native path)");
1026 auto ScalarsPerVF = Scalars.find(VF);
1027 assert(ScalarsPerVF != Scalars.end() &&
1028 "Scalar values are not calculated for VF");
1029 return ScalarsPerVF->second.count(
I);
1035 return VF.
isVector() && MinBWs.contains(
I) &&
1057 WideningDecisions[{
I, VF}] = {W,
Cost};
1076 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1079 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1081 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1093 "cost-model should not be used for outer loops (in VPlan-native path)");
1095 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1096 auto Itr = WideningDecisions.find(InstOnVF);
1097 if (Itr == WideningDecisions.end())
1099 return Itr->second.first;
1106 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1107 assert(WideningDecisions.contains(InstOnVF) &&
1108 "The cost is not calculated");
1109 return WideningDecisions[InstOnVF].second;
1122 std::optional<unsigned> MaskPos,
1125 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1131 auto I = CallWideningDecisions.find({CI, VF});
1132 if (
I == CallWideningDecisions.end())
1155 Value *
Op = Trunc->getOperand(0);
1156 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1160 return Legal->isInductionPhi(
Op);
1176 if (VF.
isScalar() || Uniforms.contains(VF))
1179 collectLoopUniforms(VF);
1181 collectLoopScalars(VF);
1189 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1197 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1212 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1219 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1220 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1221 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1232 return ScalarCost < SafeDivisorCost;
1256 std::pair<InstructionCost, InstructionCost>
1284 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1292 "from latch block\n");
1297 "interleaved group requires scalar epilogue\n");
1300 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1394 return InLoopReductions.contains(Phi);
1405 TTI.preferPredicatedReductionSelect();
1420 WideningDecisions.clear();
1421 CallWideningDecisions.clear();
1440 const unsigned IC)
const;
1450 Type *VectorTy)
const;
1460 unsigned NumPredStores = 0;
1464 std::optional<unsigned> VScaleForTuning;
1469 void initializeVScaleForTuning() {
1474 auto Max = Attr.getVScaleRangeMax();
1475 if (Max && Min == Max) {
1476 VScaleForTuning = Max;
1481 VScaleForTuning =
TTI.getVScaleForTuning();
1489 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1490 ElementCount UserVF,
1491 bool FoldTailByMasking);
1495 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1496 bool FoldTailByMasking)
const;
1501 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1502 unsigned SmallestType,
1503 unsigned WidestType,
1504 ElementCount MaxSafeVF,
1505 bool FoldTailByMasking);
1509 bool isScalableVectorizationAllowed();
1513 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1519 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1540 ElementCount VF)
const;
1544 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1549 MapVector<Instruction *, uint64_t> MinBWs;
1554 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1558 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1559 PredicatedBBsAfterVectorization;
1572 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1573 ChosenTailFoldingStyle;
1576 std::optional<bool> IsScalableVectorizationAllowed;
1582 std::optional<unsigned> MaxSafeElements;
1588 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1592 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1596 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1600 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1603 SmallPtrSet<PHINode *, 4> InLoopReductions;
1608 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1616 ScalarCostsTy &ScalarCosts,
1628 void collectLoopUniforms(ElementCount VF);
1637 void collectLoopScalars(ElementCount VF);
1641 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1642 std::pair<InstWidening, InstructionCost>>;
1644 DecisionList WideningDecisions;
1646 using CallDecisionList =
1649 CallDecisionList CallWideningDecisions;
1653 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 ElementCount VF)
const {
1675 SmallPtrSet<const Value *, 4> UniqueOperands;
1679 !needsExtract(
Op, VF))
1751class GeneratedRTChecks {
1757 Value *SCEVCheckCond =
nullptr;
1764 Value *MemRuntimeCheckCond =
nullptr;
1773 bool CostTooHigh =
false;
1775 Loop *OuterLoop =
nullptr;
1786 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1787 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1795 void create(Loop *L,
const LoopAccessInfo &LAI,
1796 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1816 nullptr,
"vector.scevcheck");
1823 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1824 SCEVCleaner.cleanup();
1829 if (RtPtrChecking.Need) {
1830 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1831 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1834 auto DiffChecks = RtPtrChecking.getDiffChecks();
1836 Value *RuntimeVF =
nullptr;
1839 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1841 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1847 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1850 assert(MemRuntimeCheckCond &&
1851 "no RT checks generated although RtPtrChecking "
1852 "claimed checks are required");
1857 if (!MemCheckBlock && !SCEVCheckBlock)
1867 if (SCEVCheckBlock) {
1870 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1874 if (MemCheckBlock) {
1877 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1883 if (MemCheckBlock) {
1887 if (SCEVCheckBlock) {
1893 OuterLoop =
L->getParentLoop();
1897 if (SCEVCheckBlock || MemCheckBlock)
1909 for (Instruction &
I : *SCEVCheckBlock) {
1910 if (SCEVCheckBlock->getTerminator() == &
I)
1916 if (MemCheckBlock) {
1918 for (Instruction &
I : *MemCheckBlock) {
1919 if (MemCheckBlock->getTerminator() == &
I)
1931 ScalarEvolution *SE = MemCheckExp.
getSE();
1936 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1941 unsigned BestTripCount = 2;
1945 PSE, OuterLoop,
false))
1946 if (EstimatedTC->isFixed())
1947 BestTripCount = EstimatedTC->getFixedValue();
1952 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1953 (InstructionCost::CostType)1);
1955 if (BestTripCount > 1)
1957 <<
"We expect runtime memory checks to be hoisted "
1958 <<
"out of the outer loop. Cost reduced from "
1959 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1961 MemCheckCost = NewMemCheckCost;
1965 RTCheckCost += MemCheckCost;
1968 if (SCEVCheckBlock || MemCheckBlock)
1969 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1977 ~GeneratedRTChecks() {
1978 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1979 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1980 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1981 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1983 SCEVCleaner.markResultUsed();
1985 if (MemChecksUsed) {
1986 MemCheckCleaner.markResultUsed();
1988 auto &SE = *MemCheckExp.
getSE();
1995 I.eraseFromParent();
1998 MemCheckCleaner.cleanup();
1999 SCEVCleaner.cleanup();
2001 if (!SCEVChecksUsed)
2002 SCEVCheckBlock->eraseFromParent();
2004 MemCheckBlock->eraseFromParent();
2009 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2010 using namespace llvm::PatternMatch;
2012 return {
nullptr,
nullptr};
2014 return {SCEVCheckCond, SCEVCheckBlock};
2019 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2020 using namespace llvm::PatternMatch;
2021 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2022 return {
nullptr,
nullptr};
2023 return {MemRuntimeCheckCond, MemCheckBlock};
2027 bool hasChecks()
const {
2028 return getSCEVChecks().first || getMemRuntimeChecks().first;
2071 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2077 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2107 for (
Loop *InnerL : L)
2130 ?
B.CreateSExtOrTrunc(Index, StepTy)
2131 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2132 if (CastedIndex != Index) {
2134 Index = CastedIndex;
2144 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2149 return B.CreateAdd(
X,
Y);
2155 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2156 "Types don't match!");
2163 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2164 return B.CreateMul(
X,
Y);
2167 switch (InductionKind) {
2170 "Vector indices not supported for integer inductions yet");
2172 "Index type does not match StartValue type");
2174 return B.CreateSub(StartValue, Index);
2179 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2182 "Vector indices not supported for FP inductions yet");
2185 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2186 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2187 "Original bin op should be defined for FP induction");
2189 Value *MulExp =
B.CreateFMul(Step, Index);
2190 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2201 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2204 if (
F.hasFnAttribute(Attribute::VScaleRange))
2205 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2207 return std::nullopt;
2216 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2218 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2220 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2226 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2229 std::optional<unsigned> MaxVScale =
2233 MaxVF *= *MaxVScale;
2236 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2250 return TTI.enableMaskedInterleavedAccessVectorization();
2263 PreVectorPH = CheckVPIRBB;
2273 "must have incoming values for all operands");
2274 R.addOperand(R.getOperand(NumPredecessors - 2));
2300 auto CreateStep = [&]() ->
Value * {
2307 if (!
VF.isScalable())
2309 return Builder.CreateBinaryIntrinsic(
2315 Value *Step = CreateStep();
2324 CheckMinIters =
Builder.getTrue();
2326 TripCountSCEV, SE.
getSCEV(Step))) {
2329 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2331 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2339 Value *MaxUIntTripCount =
2346 return CheckMinIters;
2356 auto IP = IRVPBB->
begin();
2358 R.moveBefore(*IRVPBB, IP);
2362 R.moveBefore(*IRVPBB, IRVPBB->
end());
2371 assert(VectorPH &&
"Invalid loop structure");
2373 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2374 "loops not exiting via the latch without required epilogue?");
2381 Twine(Prefix) +
"scalar.ph");
2387 const SCEV2ValueTy &ExpandedSCEVs) {
2388 const SCEV *Step =
ID.getStep();
2390 return C->getValue();
2392 return U->getValue();
2393 Value *V = ExpandedSCEVs.lookup(Step);
2394 assert(V &&
"SCEV must be expanded at this point");
2404 auto *Cmp = L->getLatchCmpInst();
2406 InstsToIgnore.
insert(Cmp);
2407 for (
const auto &KV : IL) {
2416 [&](
const User *U) { return U == IV || U == Cmp; }))
2417 InstsToIgnore.
insert(IVInst);
2429struct CSEDenseMapInfo {
2440 return DenseMapInfo<Instruction *>::getTombstoneKey();
2443 static unsigned getHashValue(
const Instruction *
I) {
2444 assert(canHandle(
I) &&
"Unknown instruction!");
2449 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2450 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2451 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2453 return LHS->isIdenticalTo(
RHS);
2464 if (!CSEDenseMapInfo::canHandle(&In))
2470 In.replaceAllUsesWith(V);
2471 In.eraseFromParent();
2484 std::optional<unsigned> VScale) {
2488 EstimatedVF *= *VScale;
2489 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2507 for (
auto &ArgOp : CI->
args())
2518 return ScalarCallCost;
2531 assert(
ID &&
"Expected intrinsic call!");
2535 FMF = FPMO->getFastMathFlags();
2541 std::back_inserter(ParamTys),
2542 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2547 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2561 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2576 Builder.SetInsertPoint(NewPhi);
2578 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2583void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2588 "This function should not be visited twice for the same VF");
2613 "Widening decision should be ready at this moment");
2615 if (
Ptr == Store->getValueOperand())
2618 "Ptr is neither a value or pointer operand");
2624 auto IsLoopVaryingGEP = [&](
Value *
V) {
2635 if (!IsLoopVaryingGEP(
Ptr))
2647 if (IsScalarUse(MemAccess,
Ptr) &&
2651 PossibleNonScalarPtrs.
insert(
I);
2667 for (
auto *BB :
TheLoop->blocks())
2668 for (
auto &
I : *BB) {
2670 EvaluatePtrUse(Load,
Load->getPointerOperand());
2672 EvaluatePtrUse(Store,
Store->getPointerOperand());
2673 EvaluatePtrUse(Store,
Store->getValueOperand());
2676 for (
auto *
I : ScalarPtrs)
2677 if (!PossibleNonScalarPtrs.
count(
I)) {
2685 auto ForcedScalar = ForcedScalars.find(VF);
2686 if (ForcedScalar != ForcedScalars.end())
2687 for (
auto *
I : ForcedScalar->second) {
2688 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2697 while (Idx != Worklist.
size()) {
2699 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2703 auto *J = cast<Instruction>(U);
2704 return !TheLoop->contains(J) || Worklist.count(J) ||
2705 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2706 IsScalarUse(J, Src));
2709 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2715 for (
const auto &Induction :
Legal->getInductionVars()) {
2716 auto *Ind = Induction.first;
2726 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2728 return Induction.second.getKind() ==
2736 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2737 auto *I = cast<Instruction>(U);
2738 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2739 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2748 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2753 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2754 auto *I = cast<Instruction>(U);
2755 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2756 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2758 if (!ScalarIndUpdate)
2763 Worklist.
insert(IndUpdate);
2764 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2765 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2769 Scalars[VF].insert_range(Worklist);
2779 switch(
I->getOpcode()) {
2782 case Instruction::Call:
2786 case Instruction::Load:
2787 case Instruction::Store: {
2796 TTI.isLegalMaskedGather(VTy, Alignment))
2798 TTI.isLegalMaskedScatter(VTy, Alignment));
2800 case Instruction::UDiv:
2801 case Instruction::SDiv:
2802 case Instruction::SRem:
2803 case Instruction::URem: {
2824 if (
Legal->blockNeedsPredication(
I->getParent()))
2836 switch(
I->getOpcode()) {
2839 "instruction should have been considered by earlier checks");
2840 case Instruction::Call:
2844 "should have returned earlier for calls not needing a mask");
2846 case Instruction::Load:
2849 case Instruction::Store: {
2857 case Instruction::UDiv:
2858 case Instruction::SDiv:
2859 case Instruction::SRem:
2860 case Instruction::URem:
2862 return !
Legal->isInvariant(
I->getOperand(1));
2866std::pair<InstructionCost, InstructionCost>
2869 assert(
I->getOpcode() == Instruction::UDiv ||
2870 I->getOpcode() == Instruction::SDiv ||
2871 I->getOpcode() == Instruction::SRem ||
2872 I->getOpcode() == Instruction::URem);
2881 ScalarizationCost = 0;
2887 ScalarizationCost +=
2891 ScalarizationCost +=
2893 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2897 ScalarizationCost += getScalarizationOverhead(
I, VF);
2911 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2916 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2918 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2919 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2921 return {ScalarizationCost, SafeDivisorCost};
2928 "Decision should not be set yet.");
2930 assert(Group &&
"Must have a group.");
2931 unsigned InterleaveFactor = Group->getFactor();
2935 auto &
DL =
I->getDataLayout();
2947 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2948 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2953 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2955 if (MemberNI != ScalarNI)
2958 if (MemberNI && ScalarNI &&
2959 ScalarTy->getPointerAddressSpace() !=
2960 MemberTy->getPointerAddressSpace())
2969 bool PredicatedAccessRequiresMasking =
2971 Legal->isMaskRequired(
I);
2972 bool LoadAccessWithGapsRequiresEpilogMasking =
2975 bool StoreAccessWithGapsRequiresMasking =
2977 if (!PredicatedAccessRequiresMasking &&
2978 !LoadAccessWithGapsRequiresEpilogMasking &&
2979 !StoreAccessWithGapsRequiresMasking)
2986 "Masked interleave-groups for predicated accesses are not enabled.");
2988 if (Group->isReverse())
2992 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2993 StoreAccessWithGapsRequiresMasking;
3001 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3013 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3023 auto &
DL =
I->getDataLayout();
3030void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3037 "This function should not be visited twice for the same VF");
3041 Uniforms[VF].
clear();
3049 auto IsOutOfScope = [&](
Value *V) ->
bool {
3061 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3062 if (IsOutOfScope(
I)) {
3069 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3073 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3082 TheLoop->getExitingBlocks(Exiting);
3083 for (BasicBlock *
E : Exiting) {
3084 if (
Legal->hasUncountableEarlyExit() &&
TheLoop->getLoopLatch() !=
E)
3087 if (Cmp &&
TheLoop->contains(Cmp) &&
Cmp->hasOneUse())
3088 AddToWorklistIfAllowed(Cmp);
3097 if (PrevVF.isVector()) {
3098 auto Iter = Uniforms.find(PrevVF);
3099 if (Iter != Uniforms.end() && !Iter->second.contains(
I))
3102 if (!
Legal->isUniformMemOp(*
I, VF))
3112 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3115 "Widening decision should be ready at this moment");
3117 if (IsUniformMemOpUse(
I))
3120 return (WideningDecision ==
CM_Widen ||
3132 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3140 SetVector<Value *> HasUniformUse;
3144 for (
auto *BB :
TheLoop->blocks())
3145 for (
auto &
I : *BB) {
3147 switch (
II->getIntrinsicID()) {
3148 case Intrinsic::sideeffect:
3149 case Intrinsic::experimental_noalias_scope_decl:
3150 case Intrinsic::assume:
3151 case Intrinsic::lifetime_start:
3152 case Intrinsic::lifetime_end:
3153 if (
TheLoop->hasLoopInvariantOperands(&
I))
3154 AddToWorklistIfAllowed(&
I);
3162 if (IsOutOfScope(EVI->getAggregateOperand())) {
3163 AddToWorklistIfAllowed(EVI);
3169 "Expected aggregate value to be call return value");
3177 if (IsUniformMemOpUse(&
I))
3178 AddToWorklistIfAllowed(&
I);
3180 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3187 for (
auto *V : HasUniformUse) {
3188 if (IsOutOfScope(V))
3191 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3192 auto *UI = cast<Instruction>(U);
3193 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3195 if (UsersAreMemAccesses)
3196 AddToWorklistIfAllowed(
I);
3203 while (Idx != Worklist.
size()) {
3206 for (
auto *OV :
I->operand_values()) {
3208 if (IsOutOfScope(OV))
3213 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3219 auto *J = cast<Instruction>(U);
3220 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3222 AddToWorklistIfAllowed(OI);
3233 for (
const auto &Induction :
Legal->getInductionVars()) {
3234 auto *Ind = Induction.first;
3239 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3240 auto *I = cast<Instruction>(U);
3241 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3242 IsVectorizedMemAccessUse(I, Ind);
3249 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3250 auto *I = cast<Instruction>(U);
3251 return I == Ind || Worklist.count(I) ||
3252 IsVectorizedMemAccessUse(I, IndUpdate);
3254 if (!UniformIndUpdate)
3258 AddToWorklistIfAllowed(Ind);
3259 AddToWorklistIfAllowed(IndUpdate);
3262 Uniforms[VF].insert_range(Worklist);
3268 if (
Legal->getRuntimePointerChecking()->Need) {
3270 "runtime pointer checks needed. Enable vectorization of this "
3271 "loop with '#pragma clang loop vectorize(enable)' when "
3272 "compiling with -Os/-Oz",
3273 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3277 if (!
PSE.getPredicate().isAlwaysTrue()) {
3279 "runtime SCEV checks needed. Enable vectorization of this "
3280 "loop with '#pragma clang loop vectorize(enable)' when "
3281 "compiling with -Os/-Oz",
3282 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3287 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3289 "runtime stride == 1 checks needed. Enable vectorization of "
3290 "this loop without such check by compiling with -Os/-Oz",
3291 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3298bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3299 if (IsScalableVectorizationAllowed)
3300 return *IsScalableVectorizationAllowed;
3302 IsScalableVectorizationAllowed =
false;
3308 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3312 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3315 std::numeric_limits<ElementCount::ScalarTy>::max());
3326 "Scalable vectorization not supported for the reduction "
3327 "operations found in this loop.",
3336 !this->
TTI.isElementTypeLegalForScalableVector(Ty);
3339 "for all element types found in this loop.",
3346 "for safe distance analysis.",
3351 IsScalableVectorizationAllowed =
true;
3356LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3357 if (!isScalableVectorizationAllowed())
3361 std::numeric_limits<ElementCount::ScalarTy>::max());
3362 if (
Legal->isSafeForAnyVectorWidth())
3363 return MaxScalableVF;
3371 "Max legal vector width too small, scalable vectorization "
3375 return MaxScalableVF;
3379 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3381 unsigned SmallestType, WidestType;
3388 unsigned MaxSafeElementsPowerOf2 =
3390 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3391 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3392 MaxSafeElementsPowerOf2 =
3393 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3396 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3398 if (!
Legal->isSafeForAnyVectorWidth())
3399 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3401 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3403 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3408 auto MaxSafeUserVF =
3409 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3414 return FixedScalableVFPair(
3426 <<
" is unsafe, clamping to max safe VF="
3427 << MaxSafeFixedVF <<
".\n");
3429 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3432 <<
"User-specified vectorization factor "
3433 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3434 <<
" is unsafe, clamping to maximum safe vectorization factor "
3435 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3437 return MaxSafeFixedVF;
3442 <<
" is ignored because scalable vectors are not "
3445 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3448 <<
"User-specified vectorization factor "
3449 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3450 <<
" is ignored because the target does not support scalable "
3451 "vectors. The compiler will pick a more suitable value.";
3455 <<
" is unsafe. Ignoring scalable UserVF.\n");
3457 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3460 <<
"User-specified vectorization factor "
3461 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3462 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3463 "more suitable value.";
3468 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3469 <<
" / " << WidestType <<
" bits.\n");
3474 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3475 MaxSafeFixedVF, FoldTailByMasking))
3479 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3480 MaxSafeScalableVF, FoldTailByMasking))
3481 if (MaxVF.isScalable()) {
3482 Result.ScalableVF = MaxVF;
3483 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3492 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3496 "Not inserting runtime ptr check for divergent target",
3497 "runtime pointer checks needed. Not enabled for divergent target",
3498 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3504 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3507 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3510 "loop trip count is one, irrelevant for vectorization",
3521 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3525 "Trip count computation wrapped",
3526 "backedge-taken count is -1, loop trip count wrapped to 0",
3531 switch (ScalarEpilogueStatus) {
3533 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3538 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3539 <<
"LV: Not allowing scalar epilogue, creating predicated "
3540 <<
"vector loop.\n");
3547 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3549 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3565 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3566 "No decisions should have been taken at this point");
3576 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3580 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3581 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3582 *MaxPowerOf2RuntimeVF,
3585 MaxPowerOf2RuntimeVF = std::nullopt;
3588 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3592 !
Legal->hasUncountableEarlyExit())
3594 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3599 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3601 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3602 "Invalid loop count");
3604 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3611 if (MaxPowerOf2RuntimeVF > 0u) {
3613 "MaxFixedVF must be a power of 2");
3614 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3616 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3622 if (ExpectedTC && ExpectedTC->isFixed() &&
3623 ExpectedTC->getFixedValue() <=
3624 TTI.getMinTripCountTailFoldingThreshold()) {
3625 if (MaxPowerOf2RuntimeVF > 0u) {
3631 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3632 "remain for any chosen VF.\n");
3639 "The trip count is below the minial threshold value.",
3640 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3655 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3656 "try to generate VP Intrinsics with scalable vector "
3661 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3671 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3672 "scalar epilogue instead.\n");
3678 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3684 "unable to calculate the loop count due to complex control flow",
3690 "Cannot optimize for size and vectorize at the same time.",
3691 "cannot optimize for size and vectorize at the same time. "
3692 "Enable vectorization of this loop with '#pragma clang loop "
3693 "vectorize(enable)' when compiling with -Os/-Oz",
3705 if (
TTI.shouldConsiderVectorizationRegPressure())
3721 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3723 Legal->hasVectorCallVariants())));
3726ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3727 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3741 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3749 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3750 "exceeding the constant trip count: "
3751 << ClampedUpperTripCount <<
"\n");
3753 FoldTailByMasking ? VF.
isScalable() :
false);
3758ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3759 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3761 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3762 const TypeSize WidestRegister =
TTI.getRegisterBitWidth(
3767 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3769 "Scalable flags must match");
3777 ComputeScalableMaxVF);
3778 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3780 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3782 if (!MaxVectorElementCount) {
3784 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3785 <<
" vector registers.\n");
3789 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3790 MaxTripCount, FoldTailByMasking);
3793 if (MaxVF != MaxVectorElementCount)
3808 ComputeScalableMaxVF);
3809 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3811 if (ElementCount MinVF =
3812 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3815 <<
") with target's minimum: " << MinVF <<
'\n');
3820 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3822 if (MaxVectorElementCount != MaxVF) {
3834 const unsigned MaxTripCount,
3836 bool IsEpilogue)
const {
3842 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3843 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3844 if (
A.Width.isScalable())
3845 EstimatedWidthA *= *VScale;
3846 if (
B.Width.isScalable())
3847 EstimatedWidthB *= *VScale;
3854 return CostA < CostB ||
3855 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3860 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3861 A.Width.isScalable() && !
B.Width.isScalable();
3872 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3874 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3886 return VectorCost * (MaxTripCount / VF) +
3887 ScalarCost * (MaxTripCount % VF);
3888 return VectorCost *
divideCeil(MaxTripCount, VF);
3891 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3892 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3893 return CmpFn(RTCostA, RTCostB);
3899 bool IsEpilogue)
const {
3900 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3901 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3907 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3909 for (
const auto &Plan : VPlans) {
3918 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3919 precomputeCosts(*Plan, VF, CostCtx);
3922 for (
auto &R : *VPBB) {
3923 if (!R.cost(VF, CostCtx).isValid())
3929 if (InvalidCosts.
empty())
3937 for (
auto &Pair : InvalidCosts)
3942 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3943 unsigned NA = Numbering[
A.first];
3944 unsigned NB = Numbering[
B.first];
3959 Subset =
Tail.take_front(1);
3966 [](
const auto *R) {
return Instruction::PHI; })
3967 .Case<VPWidenSelectRecipe>(
3968 [](
const auto *R) {
return Instruction::Select; })
3969 .Case<VPWidenStoreRecipe>(
3970 [](
const auto *R) {
return Instruction::Store; })
3971 .Case<VPWidenLoadRecipe>(
3972 [](
const auto *R) {
return Instruction::Load; })
3973 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3974 [](
const auto *R) {
return Instruction::Call; })
3977 [](
const auto *R) {
return R->getOpcode(); })
3979 return R->getStoredValues().empty() ? Instruction::Load
3980 : Instruction::Store;
3988 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3989 std::string OutString;
3991 assert(!Subset.empty() &&
"Unexpected empty range");
3992 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3993 for (
const auto &Pair : Subset)
3994 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3996 if (Opcode == Instruction::Call) {
3999 Name =
Int->getIntrinsicName();
4003 WidenCall ? WidenCall->getCalledScalarFunction()
4005 ->getLiveInIRValue());
4008 OS <<
" call to " << Name;
4013 Tail =
Tail.drop_front(Subset.size());
4017 Subset =
Tail.take_front(Subset.size() + 1);
4018 }
while (!
Tail.empty());
4040 switch (R.getVPDefID()) {
4041 case VPDef::VPDerivedIVSC:
4042 case VPDef::VPScalarIVStepsSC:
4043 case VPDef::VPReplicateSC:
4044 case VPDef::VPInstructionSC:
4045 case VPDef::VPCanonicalIVPHISC:
4046 case VPDef::VPVectorPointerSC:
4047 case VPDef::VPVectorEndPointerSC:
4048 case VPDef::VPExpandSCEVSC:
4049 case VPDef::VPEVLBasedIVPHISC:
4050 case VPDef::VPPredInstPHISC:
4051 case VPDef::VPBranchOnMaskSC:
4053 case VPDef::VPReductionSC:
4054 case VPDef::VPActiveLaneMaskPHISC:
4055 case VPDef::VPWidenCallSC:
4056 case VPDef::VPWidenCanonicalIVSC:
4057 case VPDef::VPWidenCastSC:
4058 case VPDef::VPWidenGEPSC:
4059 case VPDef::VPWidenIntrinsicSC:
4060 case VPDef::VPWidenSC:
4061 case VPDef::VPWidenSelectSC:
4062 case VPDef::VPBlendSC:
4063 case VPDef::VPFirstOrderRecurrencePHISC:
4064 case VPDef::VPHistogramSC:
4065 case VPDef::VPWidenPHISC:
4066 case VPDef::VPWidenIntOrFpInductionSC:
4067 case VPDef::VPWidenPointerInductionSC:
4068 case VPDef::VPReductionPHISC:
4069 case VPDef::VPInterleaveEVLSC:
4070 case VPDef::VPInterleaveSC:
4071 case VPDef::VPWidenLoadEVLSC:
4072 case VPDef::VPWidenLoadSC:
4073 case VPDef::VPWidenStoreEVLSC:
4074 case VPDef::VPWidenStoreSC:
4080 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4081 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4097 if (R.getNumDefinedValues() == 0 &&
4106 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4108 if (!Visited.
insert({ScalarTy}).second)
4122 [](
auto *VPRB) { return VPRB->isReplicator(); });
4128 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4129 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4132 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4133 "Expected Scalar VF to be a candidate");
4140 if (ForceVectorization &&
4141 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4148 for (
auto &
P : VPlans) {
4150 P->vectorFactors().end());
4153 if (
any_of(VFs, [
this](ElementCount VF) {
4154 return CM.shouldConsiderRegPressureForVF(VF);
4158 for (
unsigned I = 0;
I < VFs.size();
I++) {
4159 ElementCount VF = VFs[
I];
4167 if (CM.shouldConsiderRegPressureForVF(VF) &&
4175 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind);
4176 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4177 assert(VectorRegion &&
"Expected to have a vector region!");
4180 for (VPRecipeBase &R : *VPBB) {
4184 switch (VPI->getOpcode()) {
4187 case Instruction::Select: {
4188 VPValue *VPV = VPI->getVPSingleValue();
4191 switch (WR->getOpcode()) {
4192 case Instruction::UDiv:
4193 case Instruction::SDiv:
4194 case Instruction::URem:
4195 case Instruction::SRem:
4202 C += VPI->cost(VF, CostCtx);
4206 unsigned Multiplier =
4209 C += VPI->cost(VF * Multiplier, CostCtx);
4213 C += VPI->cost(VF, CostCtx);
4225 <<
" costs: " << (Candidate.Cost / Width));
4228 << CM.getVScaleForTuning().value_or(1) <<
")");
4234 <<
"LV: Not considering vector loop of width " << VF
4235 <<
" because it will not generate any vector instructions.\n");
4242 <<
"LV: Not considering vector loop of width " << VF
4243 <<
" because it would cause replicated blocks to be generated,"
4244 <<
" which isn't allowed when optimizing for size.\n");
4248 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4249 ChosenFactor = Candidate;
4255 "There are conditional stores.",
4256 "store that is conditionally executed prevents vectorization",
4257 "ConditionalStore", ORE, OrigLoop);
4258 ChosenFactor = ScalarCost;
4262 !isMoreProfitable(ChosenFactor, ScalarCost,
4263 !CM.foldTailByMasking()))
dbgs()
4264 <<
"LV: Vectorization seems to be not beneficial, "
4265 <<
"but was forced by a user.\n");
4266 return ChosenFactor;
4270bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4274 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4275 if (!Legal->isReductionVariable(&Phi))
4276 return Legal->isFixedOrderRecurrence(&Phi);
4277 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4278 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4284 for (
const auto &Entry : Legal->getInductionVars()) {
4287 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4288 for (User *U :
PostInc->users())
4292 for (User *U :
Entry.first->users())
4301 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4315 if (!
TTI.preferEpilogueVectorization())
4320 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4327 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4330 :
TTI.getEpilogueVectorizationMinVF();
4339 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4343 if (!CM.isScalarEpilogueAllowed()) {
4344 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4345 "epilogue is allowed.\n");
4351 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4352 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4353 "is not a supported candidate.\n");
4358 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4361 return {ForcedEC, 0, 0};
4363 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4368 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4370 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4374 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4375 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4387 Type *TCType = Legal->getWidestInductionType();
4388 const SCEV *RemainingIterations =
nullptr;
4389 unsigned MaxTripCount = 0;
4393 RemainingIterations =
4397 if (RemainingIterations->
isZero())
4407 << MaxTripCount <<
"\n");
4410 for (
auto &NextVF : ProfitableVFs) {
4417 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4419 (NextVF.Width.isScalable() &&
4421 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4427 if (RemainingIterations && !NextVF.Width.isScalable()) {
4430 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4431 RemainingIterations))
4435 if (Result.Width.isScalar() ||
4436 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4443 << Result.Width <<
"\n");
4447std::pair<unsigned, unsigned>
4449 unsigned MinWidth = -1U;
4450 unsigned MaxWidth = 8;
4456 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4460 MinWidth = std::min(
4464 MaxWidth = std::max(MaxWidth,
4469 MinWidth = std::min<unsigned>(
4470 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4471 MaxWidth = std::max<unsigned>(
4472 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4475 return {MinWidth, MaxWidth};
4483 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4497 if (!
Legal->isReductionVariable(PN))
4500 Legal->getRecurrenceDescriptor(PN);
4510 T = ST->getValueOperand()->getType();
4513 "Expected the load/store/recurrence type to be sized");
4537 if (!CM.isScalarEpilogueAllowed())
4542 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4543 "Unroll factor forced to be 1.\n");
4548 if (!Legal->isSafeForAnyVectorWidth())
4557 const bool HasReductions =
4563 if (LoopCost == 0) {
4565 LoopCost = CM.expectedCost(VF);
4567 LoopCost = cost(Plan, VF);
4568 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4579 for (
auto &Pair : R.MaxLocalUsers) {
4580 Pair.second = std::max(Pair.second, 1U);
4594 unsigned IC = UINT_MAX;
4596 for (
const auto &Pair : R.MaxLocalUsers) {
4597 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4600 << TTI.getRegisterClassName(Pair.first)
4601 <<
" register class\n");
4609 unsigned MaxLocalUsers = Pair.second;
4610 unsigned LoopInvariantRegs = 0;
4611 if (R.LoopInvariantRegs.contains(Pair.first))
4612 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4614 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4618 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4619 std::max(1U, (MaxLocalUsers - 1)));
4622 IC = std::min(IC, TmpIC);
4626 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4642 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4644 unsigned AvailableTC =
4650 if (CM.requiresScalarEpilogue(VF.
isVector()))
4653 unsigned InterleaveCountLB =
bit_floor(std::max(
4654 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4668 unsigned InterleaveCountUB =
bit_floor(std::max(
4669 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4670 MaxInterleaveCount = InterleaveCountLB;
4672 if (InterleaveCountUB != InterleaveCountLB) {
4673 unsigned TailTripCountUB =
4674 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4675 unsigned TailTripCountLB =
4676 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4679 if (TailTripCountUB == TailTripCountLB)
4680 MaxInterleaveCount = InterleaveCountUB;
4688 MaxInterleaveCount = InterleaveCountLB;
4692 assert(MaxInterleaveCount > 0 &&
4693 "Maximum interleave count must be greater than 0");
4697 if (IC > MaxInterleaveCount)
4698 IC = MaxInterleaveCount;
4701 IC = std::max(1u, IC);
4703 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4707 if (VF.
isVector() && HasReductions) {
4708 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4716 bool ScalarInterleavingRequiresPredication =
4718 return Legal->blockNeedsPredication(BB);
4720 bool ScalarInterleavingRequiresRuntimePointerCheck =
4721 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4726 <<
"LV: IC is " << IC <<
'\n'
4727 <<
"LV: VF is " << VF <<
'\n');
4728 const bool AggressivelyInterleaveReductions =
4729 TTI.enableAggressiveInterleaving(HasReductions);
4730 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4731 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4740 unsigned NumStores = 0;
4741 unsigned NumLoads = 0;
4755 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4756 NumStores += StoreOps;
4758 NumLoads += InterleaveR->getNumDefinedValues();
4773 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4774 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4780 bool HasSelectCmpReductions =
4784 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4785 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4786 RedR->getRecurrenceKind()) ||
4787 RecurrenceDescriptor::isFindIVRecurrenceKind(
4788 RedR->getRecurrenceKind()));
4790 if (HasSelectCmpReductions) {
4791 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4800 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4801 bool HasOrderedReductions =
4804 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4806 return RedR && RedR->isOrdered();
4808 if (HasOrderedReductions) {
4810 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4815 SmallIC = std::min(SmallIC,
F);
4816 StoresIC = std::min(StoresIC,
F);
4817 LoadsIC = std::min(LoadsIC,
F);
4821 std::max(StoresIC, LoadsIC) > SmallIC) {
4823 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4824 return std::max(StoresIC, LoadsIC);
4829 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4833 return std::max(IC / 2, SmallIC);
4836 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4842 if (AggressivelyInterleaveReductions) {
4851bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4862 "Expecting a scalar emulated instruction");
4875 if (InstsToScalarize.contains(VF) ||
4876 PredicatedBBsAfterVectorization.contains(VF))
4882 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4892 ScalarCostsTy ScalarCosts;
4899 !useEmulatedMaskMemRefHack(&
I, VF) &&
4900 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4901 for (
const auto &[
I, IC] : ScalarCosts)
4902 ScalarCostsVF.
insert({
I, IC});
4905 for (
const auto &[
I,
Cost] : ScalarCosts) {
4907 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4910 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4914 PredicatedBBsAfterVectorization[VF].insert(BB);
4916 if (Pred->getSingleSuccessor() == BB)
4917 PredicatedBBsAfterVectorization[VF].insert(Pred);
4926 "Instruction marked uniform-after-vectorization will be predicated");
4944 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4963 for (
Use &U :
I->operands())
4976 while (!Worklist.
empty()) {
4980 if (ScalarCosts.contains(
I))
5003 ScalarCost +=
TTI.getScalarizationOverhead(
5016 for (Use &U :
I->operands())
5019 "Instruction has non-scalar type");
5020 if (CanBeScalarized(J))
5022 else if (needsExtract(J, VF)) {
5025 ScalarCost +=
TTI.getScalarizationOverhead(
5038 Discount += VectorCost - ScalarCost;
5039 ScalarCosts[
I] = ScalarCost;
5055 ValuesToIgnoreForVF);
5062 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5075 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5076 << VF <<
" For instruction: " <<
I <<
'\n');
5104 const Loop *TheLoop) {
5112 auto *SE = PSE.
getSE();
5113 unsigned NumOperands = Gep->getNumOperands();
5114 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5115 Value *Opd = Gep->getOperand(Idx);
5117 !
Legal->isInductionVariable(Opd))
5126LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5129 "Scalarization cost of instruction implies vectorization.");
5134 auto *SE =
PSE.getSE();
5159 Cost += getScalarizationOverhead(
I, VF);
5170 Cost +=
TTI.getScalarizationOverhead(
5175 if (useEmulatedMaskMemRefHack(
I, VF))
5185LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5191 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5193 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5194 "Stride should be 1 or -1 for consecutive memory access");
5197 if (
Legal->isMaskRequired(
I)) {
5198 Cost +=
TTI.getMaskedMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5202 Cost +=
TTI.getMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5206 bool Reverse = ConsecutiveStride < 0;
5214LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5224 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5225 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5232 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5238 TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5239 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind);
5240 if (!IsLoopInvariantStoreValue)
5241 Cost +=
TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5247LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5258 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5259 TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy,
Ptr,
5260 Legal->isMaskRequired(
I), Alignment,
5265LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5268 assert(Group &&
"Fail to get an interleaved access group.");
5275 unsigned InterleaveFactor = Group->getFactor();
5279 SmallVector<unsigned, 4> Indices;
5280 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5281 if (Group->getMember(IF))
5285 bool UseMaskForGaps =
5289 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5293 if (Group->isReverse()) {
5296 "Reverse masked interleaved access not supported.");
5297 Cost += Group->getNumMembers() *
5304std::optional<InstructionCost>
5311 return std::nullopt;
5329 return std::nullopt;
5340 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5342 return std::nullopt;
5348 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5357 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5360 BaseCost =
TTI.getArithmeticReductionCost(
5368 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5385 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5391 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5403 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5406 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5408 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5416 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5417 return I == RetI ? RedCost : 0;
5419 !
TheLoop->isLoopInvariant(RedOp)) {
5428 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5430 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5431 return I == RetI ? RedCost : 0;
5432 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5436 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5455 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5461 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5462 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5463 ExtraExtCost =
TTI.getCastInstrCost(
5470 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5471 return I == RetI ? RedCost : 0;
5475 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5481 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5482 return I == RetI ? RedCost : 0;
5486 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5490LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5501 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5502 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5509LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5526 Cost +=
TTI.getScalarizationOverhead(
5548 for (
auto *V : filterExtractingOperands(
Ops, VF))
5571 if (
Legal->isUniformMemOp(
I, VF)) {
5572 auto IsLegalToScalarize = [&]() {
5592 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5604 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5610 if (GatherScatterCost < ScalarizationCost)
5620 int ConsecutiveStride =
Legal->isConsecutivePtr(
5622 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5623 "Expected consecutive stride.");
5632 unsigned NumAccesses = 1;
5635 assert(Group &&
"Fail to get an interleaved access group.");
5641 NumAccesses = Group->getNumMembers();
5643 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5648 ? getGatherScatterCost(&
I, VF) * NumAccesses
5652 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5658 if (InterleaveCost <= GatherScatterCost &&
5659 InterleaveCost < ScalarizationCost) {
5661 Cost = InterleaveCost;
5662 }
else if (GatherScatterCost < ScalarizationCost) {
5664 Cost = GatherScatterCost;
5667 Cost = ScalarizationCost;
5684 if (
TTI.prefersVectorizedAddressing())
5693 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5701 while (!Worklist.
empty()) {
5703 for (
auto &
Op :
I->operands())
5705 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5706 AddrDefs.
insert(InstOp).second)
5710 for (
auto *
I : AddrDefs) {
5725 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5740 ForcedScalars[VF].insert(
I);
5747 "Trying to set a vectorization decision for a scalar VF");
5749 auto ForcedScalar = ForcedScalars.find(VF);
5764 for (
auto &ArgOp : CI->
args())
5773 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5783 "Unexpected valid cost for scalarizing scalable vectors");
5790 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5791 ForcedScalar->second.contains(CI)) ||
5799 bool MaskRequired =
Legal->isMaskRequired(CI);
5802 for (
Type *ScalarTy : ScalarTys)
5811 std::nullopt, *RedCost);
5822 if (Info.Shape.VF != VF)
5826 if (MaskRequired && !Info.isMasked())
5830 bool ParamsOk =
true;
5832 switch (Param.ParamKind) {
5838 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5875 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5886 if (VectorCost <=
Cost) {
5908 return !OpI || !
TheLoop->contains(OpI) ||
5912 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5924 return InstsToScalarize[VF][
I];
5927 auto ForcedScalar = ForcedScalars.find(VF);
5928 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5929 auto InstSet = ForcedScalar->second;
5930 if (InstSet.count(
I))
5935 Type *RetTy =
I->getType();
5938 auto *SE =
PSE.getSE();
5942 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5947 auto Scalarized = InstsToScalarize.find(VF);
5948 assert(Scalarized != InstsToScalarize.end() &&
5949 "VF not yet analyzed for scalarization profitability");
5950 return !Scalarized->second.count(
I) &&
5952 auto *UI = cast<Instruction>(U);
5953 return !Scalarized->second.count(UI);
5962 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5963 I->getOpcode() == Instruction::PHI ||
5964 (
I->getOpcode() == Instruction::BitCast &&
5965 I->getType()->isPointerTy()) ||
5966 HasSingleCopyAfterVectorization(
I, VF));
5972 !
TTI.getNumberOfParts(VectorTy))
5976 switch (
I->getOpcode()) {
5977 case Instruction::GetElementPtr:
5983 case Instruction::Br: {
5990 bool ScalarPredicatedBB =
false;
5993 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5994 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5996 ScalarPredicatedBB =
true;
5998 if (ScalarPredicatedBB) {
6006 TTI.getScalarizationOverhead(
6014 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6022 case Instruction::Switch: {
6024 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6026 return Switch->getNumCases() *
6027 TTI.getCmpSelInstrCost(
6029 toVectorTy(Switch->getCondition()->getType(), VF),
6033 case Instruction::PHI: {
6050 Type *ResultTy = Phi->getType();
6056 auto *Phi = dyn_cast<PHINode>(U);
6057 if (Phi && Phi->getParent() == TheLoop->getHeader())
6062 auto &ReductionVars =
Legal->getReductionVars();
6063 auto Iter = ReductionVars.find(HeaderUser);
6064 if (Iter != ReductionVars.end() &&
6066 Iter->second.getRecurrenceKind()))
6069 return (Phi->getNumIncomingValues() - 1) *
6070 TTI.getCmpSelInstrCost(
6071 Instruction::Select,
toVectorTy(ResultTy, VF),
6081 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6082 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6086 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6088 case Instruction::UDiv:
6089 case Instruction::SDiv:
6090 case Instruction::URem:
6091 case Instruction::SRem:
6095 ScalarCost : SafeDivisorCost;
6099 case Instruction::Add:
6100 case Instruction::Sub: {
6101 auto Info =
Legal->getHistogramInfo(
I);
6108 if (!RHS || RHS->getZExtValue() != 1)
6110 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6114 Type *ScalarTy =
I->getType();
6118 {PtrTy, ScalarTy, MaskTy});
6121 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6122 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6126 case Instruction::FAdd:
6127 case Instruction::FSub:
6128 case Instruction::Mul:
6129 case Instruction::FMul:
6130 case Instruction::FDiv:
6131 case Instruction::FRem:
6132 case Instruction::Shl:
6133 case Instruction::LShr:
6134 case Instruction::AShr:
6135 case Instruction::And:
6136 case Instruction::Or:
6137 case Instruction::Xor: {
6141 if (
I->getOpcode() == Instruction::Mul &&
6142 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6143 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6144 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6145 PSE.getSCEV(
I->getOperand(1))->isOne())))
6154 Value *Op2 =
I->getOperand(1);
6160 auto Op2Info =
TTI.getOperandInfo(Op2);
6166 return TTI.getArithmeticInstrCost(
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6171 case Instruction::FNeg: {
6172 return TTI.getArithmeticInstrCost(
6174 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6175 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6176 I->getOperand(0),
I);
6178 case Instruction::Select: {
6183 const Value *Op0, *Op1;
6194 return TTI.getArithmeticInstrCost(
6196 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6199 Type *CondTy =
SI->getCondition()->getType();
6205 Pred = Cmp->getPredicate();
6206 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6207 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6208 {TTI::OK_AnyValue, TTI::OP_None},
I);
6210 case Instruction::ICmp:
6211 case Instruction::FCmp: {
6212 Type *ValTy =
I->getOperand(0)->getType();
6218 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6219 "if both the operand and the compare are marked for "
6220 "truncation, they must have the same bitwidth");
6225 return TTI.getCmpSelInstrCost(
6228 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6230 case Instruction::Store:
6231 case Instruction::Load: {
6236 "CM decision should be taken at this point");
6243 return getMemoryInstructionCost(
I, VF);
6245 case Instruction::BitCast:
6246 if (
I->getType()->isPointerTy())
6249 case Instruction::ZExt:
6250 case Instruction::SExt:
6251 case Instruction::FPToUI:
6252 case Instruction::FPToSI:
6253 case Instruction::FPExt:
6254 case Instruction::PtrToInt:
6255 case Instruction::IntToPtr:
6256 case Instruction::SIToFP:
6257 case Instruction::UIToFP:
6258 case Instruction::Trunc:
6259 case Instruction::FPTrunc: {
6263 "Expected a load or a store!");
6289 unsigned Opcode =
I->getOpcode();
6292 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6295 CCH = ComputeCCH(Store);
6298 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6299 Opcode == Instruction::FPExt) {
6301 CCH = ComputeCCH(Load);
6309 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6310 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6317 Type *SrcScalarTy =
I->getOperand(0)->getType();
6329 (
I->getOpcode() == Instruction::ZExt ||
6330 I->getOpcode() == Instruction::SExt))
6334 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6336 case Instruction::Call:
6338 case Instruction::ExtractValue:
6340 case Instruction::Alloca:
6348 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6363 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6364 return RequiresScalarEpilogue &&
6377 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
6379 DeadInvariantStoreOps[
SI->getPointerOperand()].push_back(
6380 SI->getValueOperand());
6389 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6390 return VecValuesToIgnore.contains(U) ||
6391 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6400 if (Group->getInsertPos() == &
I)
6403 DeadInterleavePointerOps.
push_back(PointerOp);
6409 if (Br->isConditional())
6416 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6419 Instruction *UI = cast<Instruction>(U);
6420 return !VecValuesToIgnore.contains(U) &&
6421 (!isAccessInterleaved(UI) ||
6422 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6429 for (
const auto &[
_,
Ops] : DeadInvariantStoreOps)
6445 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6457 if ((ThenEmpty && ElseEmpty) ||
6459 ElseBB->
phis().empty()) ||
6461 ThenBB->
phis().empty())) {
6473 return !VecValuesToIgnore.contains(U) &&
6474 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6482 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6491 for (
const auto &Reduction :
Legal->getReductionVars()) {
6498 for (
const auto &Induction :
Legal->getInductionVars()) {
6507 if (!InLoopReductions.empty())
6510 for (
const auto &Reduction :
Legal->getReductionVars()) {
6511 PHINode *Phi = Reduction.first;
6522 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6530 bool InLoop = !ReductionOperations.
empty();
6533 InLoopReductions.insert(Phi);
6536 for (
auto *
I : ReductionOperations) {
6537 InLoopReductionImmediateChains[
I] = LastChain;
6541 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6542 <<
" reduction for phi: " << *Phi <<
"\n");
6555 unsigned WidestType;
6559 TTI.enableScalableVectorization()
6564 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6575 if (!OrigLoop->isInnermost()) {
6585 <<
"overriding computed VF.\n");
6588 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6590 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6591 <<
"not supported by the target.\n");
6593 "Scalable vectorization requested but not supported by the target",
6594 "the scalable user-specified vectorization width for outer-loop "
6595 "vectorization cannot be used because the target does not support "
6596 "scalable vectors.",
6597 "ScalableVFUnfeasible", ORE, OrigLoop);
6602 "VF needs to be a power of two");
6604 <<
"VF " << VF <<
" to build VPlans.\n");
6614 return {VF, 0 , 0 };
6618 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6619 "VPlan-native path.\n");
6624 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6625 CM.collectValuesToIgnore();
6626 CM.collectElementTypesForWidening();
6633 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6637 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6638 "which requires masked-interleaved support.\n");
6639 if (CM.InterleaveInfo.invalidateGroups())
6643 CM.invalidateCostModelingDecisions();
6646 if (CM.foldTailByMasking())
6647 Legal->prepareToFoldTailByMasking();
6654 "UserVF ignored because it may be larger than the maximal safe VF",
6655 "InvalidUserVF", ORE, OrigLoop);
6658 "VF needs to be a power of two");
6661 CM.collectInLoopReductions();
6662 if (CM.selectUserVectorizationFactor(UserVF)) {
6664 buildVPlansWithVPRecipes(UserVF, UserVF);
6669 "InvalidCost", ORE, OrigLoop);
6682 CM.collectInLoopReductions();
6683 for (
const auto &VF : VFCandidates) {
6685 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6704 return CM.isUniformAfterVectorization(
I, VF);
6708 return CM.ValuesToIgnore.contains(UI) ||
6709 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6729 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6733 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6734 for (
Value *
Op : IVInsts[
I]->operands()) {
6736 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
6742 for (User *U :
IV->users()) {
6755 if (TC == VF && !CM.foldTailByMasking())
6759 for (Instruction *IVInst : IVInsts) {
6764 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6765 <<
": induction instruction " << *IVInst <<
"\n";
6767 Cost += InductionCost;
6777 CM.TheLoop->getExitingBlocks(Exiting);
6778 SetVector<Instruction *> ExitInstrs;
6780 for (BasicBlock *EB : Exiting) {
6785 ExitInstrs.
insert(CondI);
6789 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6791 if (!OrigLoop->contains(CondI) ||
6796 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6797 <<
": exit condition instruction " << *CondI <<
"\n";
6803 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6804 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6805 !ExitInstrs.contains(cast<Instruction>(U));
6817 for (BasicBlock *BB : OrigLoop->blocks()) {
6821 if (BB == OrigLoop->getLoopLatch())
6823 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6830 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6836 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6837 <<
": forced scalar " << *ForcedScalar <<
"\n";
6841 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6846 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6847 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6857 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6865 <<
" (Estimated cost per lane: ");
6867 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6890 return &WidenMem->getIngredient();
6899 auto *IG =
IR->getInterleaveGroup();
6900 unsigned NumMembers = IG->getNumMembers();
6901 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6911 auto *VPI = dyn_cast<VPInstruction>(U);
6912 return VPI && VPI->getOpcode() ==
6913 VPInstruction::FirstOrderRecurrenceSplice;
6936 if (RepR->isSingleScalar() &&
6938 RepR->getUnderlyingInstr(), VF))
6941 if (
Instruction *UI = GetInstructionForCost(&R)) {
6946 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6958 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6960 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6963 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6964 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6966 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6976 VPlan &FirstPlan = *VPlans[0];
6982 ?
"Reciprocal Throughput\n"
6984 ?
"Instruction Latency\n"
6987 ?
"Code Size and Latency\n"
6992 "More than a single plan/VF w/o any plan having scalar VF");
6996 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7001 if (ForceVectorization) {
7008 for (
auto &
P : VPlans) {
7010 P->vectorFactors().end());
7014 return CM.shouldConsiderRegPressureForVF(VF);
7018 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7025 <<
"LV: Not considering vector loop of width " << VF
7026 <<
" because it will not generate any vector instructions.\n");
7032 <<
"LV: Not considering vector loop of width " << VF
7033 <<
" because it would cause replicated blocks to be generated,"
7034 <<
" which isn't allowed when optimizing for size.\n");
7041 if (CM.shouldConsiderRegPressureForVF(VF) &&
7043 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7044 << VF <<
" because it uses too many registers\n");
7048 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7049 BestFactor = CurrentFactor;
7052 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7053 ProfitableVFs.push_back(CurrentFactor);
7069 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7070 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7077 BestFactor.
Width) ||
7080 " VPlan cost model and legacy cost model disagreed");
7082 "when vectorizing, the scalar cost must be computed.");
7092 "RdxResult must be ComputeFindIVResult");
7110 if (!EpiRedResult ||
7116 auto *EpiRedHeaderPhi =
7118 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7119 Value *MainResumeValue;
7123 "unexpected start recipe");
7124 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7126 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7128 [[maybe_unused]]
Value *StartV =
7129 EpiRedResult->getOperand(1)->getLiveInIRValue();
7132 "AnyOf expected to start with ICMP_NE");
7133 assert(Cmp->getOperand(1) == StartV &&
7134 "AnyOf expected to start by comparing main resume value to original "
7136 MainResumeValue = Cmp->getOperand(0);
7139 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7141 Value *Cmp, *OrigResumeV, *CmpOp;
7142 [[maybe_unused]]
bool IsExpectedPattern =
7143 match(MainResumeValue,
7149 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7150 MainResumeValue = OrigResumeV;
7165 "Trying to execute plan with unsupported VF");
7167 "Trying to execute plan with unsupported UF");
7169 ++LoopsEarlyExitVectorized;
7176 bool HasBranchWeights =
7178 if (HasBranchWeights) {
7179 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7181 BestVPlan, BestVF, VScale);
7186 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7208 BestVPlan, VectorPH, CM.foldTailByMasking(),
7209 CM.requiresScalarEpilogue(BestVF.
isVector()));
7220 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7221 "count during epilogue vectorization");
7225 OrigLoop->getParentLoop(),
7226 Legal->getWidestInductionType());
7228#ifdef EXPENSIVE_CHECKS
7229 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7240 "final VPlan is invalid");
7247 if (!Exit->hasPredecessors())
7276 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7278 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7280 HeaderVPBB, VectorizingEpilogue,
7282 DisableRuntimeUnroll);
7290 return ExpandedSCEVs;
7305 EPI.EpilogueIterationCountCheck =
7307 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7317 EPI.MainLoopIterationCountCheck =
7326 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7327 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7328 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7329 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7330 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7336 dbgs() <<
"intermediate fn:\n"
7337 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7343 assert(Bypass &&
"Expected valid bypass basic block.");
7347 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7348 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7352 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7378 return TCCheckBlock;
7392 VectorPH->
setName(
"vec.epilog.ph");
7395 "vec.epilog.iter.check",
true);
7399 VecEpilogueIterationCountCheck);
7400 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7404 assert(
EPI.MainLoopIterationCountCheck &&
EPI.EpilogueIterationCountCheck &&
7405 "expected this to be saved from the previous pass.");
7406 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7407 VecEpilogueIterationCountCheck, VectorPH);
7409 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7410 VecEpilogueIterationCountCheck, ScalarPH);
7417 VecEpilogueIterationCountCheck, ScalarPH);
7420 VecEpilogueIterationCountCheck, ScalarPH);
7422 DT->changeImmediateDominator(ScalarPH,
EPI.EpilogueIterationCountCheck);
7430 for (
PHINode *Phi : PhisInBlock) {
7432 Phi->replaceIncomingBlockWith(
7434 VecEpilogueIterationCountCheck);
7441 return EPI.EpilogueIterationCountCheck == IncB;
7444 Phi->removeIncomingValue(
EPI.EpilogueIterationCountCheck);
7446 Phi->removeIncomingValue(SCEVCheckBlock);
7448 Phi->removeIncomingValue(MemCheckBlock);
7459 "Expected trip count to have been saved in the first pass.");
7466 auto P =
Cost->requiresScalarEpilogue(
EPI.EpilogueVF.isVector())
7470 Value *CheckMinIters =
7473 EPI.EpilogueVF,
EPI.EpilogueUF),
7474 "min.epilog.iters.check");
7477 auto VScale =
Cost->getVScaleForTuning();
7478 unsigned MainLoopStep =
7480 unsigned EpilogueLoopStep =
7488 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7489 const uint32_t Weights[] = {EstimatedSkipCount,
7490 MainLoopStep - EstimatedSkipCount};
7499 Plan.setEntry(NewEntry);
7507 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7508 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7509 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7515 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7523 "Must be called with either a load or store");
7529 "CM decision should be taken at this point.");
7542 if (
Legal->isMaskRequired(
I))
7556 Ptr->getUnderlyingValue()->stripPointerCasts());
7568 -1, Flags,
I->getDebugLoc());
7571 GEP ?
GEP->getNoWrapFlags()
7575 Builder.insert(VectorPtr);
7579 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7580 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7583 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7584 Reverse, VPIRMetadata(*Store, LVer),
7597 "step must be loop invariant");
7604 TruncI->getDebugLoc());
7608 IndDesc, Phi->getDebugLoc());
7616 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7618 *PSE.getSE(), *OrigLoop);
7621 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7623 return new VPWidenPointerInductionRecipe(
7624 Phi,
Operands[0], Step, &Plan.getVFxUF(), *
II,
7626 [&](ElementCount VF) {
7627 return CM.isScalarAfterVectorization(Phi, VF);
7630 Phi->getDebugLoc());
7644 auto IsOptimizableIVTruncate =
7645 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7646 return [=](ElementCount VF) ->
bool {
7647 return CM.isOptimizableIVTruncate(K, VF);
7652 IsOptimizableIVTruncate(
I),
Range)) {
7655 const InductionDescriptor &
II = *Legal->getIntOrFpInductionDescriptor(Phi);
7656 VPValue *
Start = Plan.getOrAddLiveIn(
II.getStartValue());
7667 [
this, CI](ElementCount VF) {
7668 return CM.isScalarWithPredication(CI, VF);
7676 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7677 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7678 ID == Intrinsic::pseudoprobe ||
7679 ID == Intrinsic::experimental_noalias_scope_decl))
7685 bool ShouldUseVectorIntrinsic =
7687 [&](ElementCount VF) ->
bool {
7688 return CM.getCallWideningDecision(CI, VF).Kind ==
7692 if (ShouldUseVectorIntrinsic)
7693 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7697 std::optional<unsigned> MaskPos;
7701 [&](ElementCount VF) ->
bool {
7716 LoopVectorizationCostModel::CallWideningDecision Decision =
7717 CM.getCallWideningDecision(CI, VF);
7727 if (ShouldUseVectorCall) {
7728 if (MaskPos.has_value()) {
7736 VPValue *
Mask =
nullptr;
7737 if (Legal->isMaskRequired(CI))
7740 Mask = Plan.getOrAddLiveIn(
7743 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7747 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7755 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7758 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7759 return CM.isScalarAfterVectorization(
I, VF) ||
7760 CM.isProfitableToScalarize(
I, VF) ||
7761 CM.isScalarWithPredication(
I, VF);
7769 switch (
I->getOpcode()) {
7772 case Instruction::SDiv:
7773 case Instruction::UDiv:
7774 case Instruction::SRem:
7775 case Instruction::URem: {
7778 if (CM.isPredicatedInst(
I)) {
7782 Plan.getOrAddLiveIn(ConstantInt::get(
I->getType(), 1u,
false));
7783 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7785 return new VPWidenRecipe(*
I,
Ops);
7789 case Instruction::Add:
7790 case Instruction::And:
7791 case Instruction::AShr:
7792 case Instruction::FAdd:
7793 case Instruction::FCmp:
7794 case Instruction::FDiv:
7795 case Instruction::FMul:
7796 case Instruction::FNeg:
7797 case Instruction::FRem:
7798 case Instruction::FSub:
7799 case Instruction::ICmp:
7800 case Instruction::LShr:
7801 case Instruction::Mul:
7802 case Instruction::Or:
7803 case Instruction::Select:
7804 case Instruction::Shl:
7805 case Instruction::Sub:
7806 case Instruction::Xor:
7807 case Instruction::Freeze: {
7813 ScalarEvolution &SE = *PSE.getSE();
7814 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7815 if (!
Op->isLiveIn())
7817 Value *
V =
Op->getUnderlyingValue();
7823 return Plan.getOrAddLiveIn(
C->getValue());
7826 if (
I->getOpcode() == Instruction::Mul)
7827 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7829 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7831 return new VPWidenRecipe(*
I, NewOps);
7833 case Instruction::ExtractValue: {
7837 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7838 unsigned Idx = EVI->getIndices()[0];
7839 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7840 return new VPWidenRecipe(*
I, NewOps);
7846VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7849 unsigned Opcode =
HI->Update->getOpcode();
7850 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7851 "Histogram update operation must be an Add or Sub");
7861 if (Legal->isMaskRequired(
HI->Store))
7864 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7871 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7874 bool IsPredicated = CM.isPredicatedInst(
I);
7882 case Intrinsic::assume:
7883 case Intrinsic::lifetime_start:
7884 case Intrinsic::lifetime_end:
7906 VPValue *BlockInMask =
nullptr;
7907 if (!IsPredicated) {
7911 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7922 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7924 "Should not predicate a uniform recipe");
7935 PartialReductionChains;
7936 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7937 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7938 PartialReductionChains);
7947 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7948 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7950 auto ExtendIsOnlyUsedByPartialReductions =
7952 return all_of(Extend->users(), [&](
const User *U) {
7953 return PartialReductionOps.contains(U);
7959 for (
auto Pair : PartialReductionChains) {
7961 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7962 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7963 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7967bool VPRecipeBuilder::getScaledReductions(
7969 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7977 Value *
Op = Update->getOperand(0);
7978 Value *PhiOp = Update->getOperand(1);
7986 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7987 PHI = Chains.rbegin()->first.Reduction;
7989 Op = Update->getOperand(0);
7990 PhiOp = Update->getOperand(1);
7998 using namespace llvm::PatternMatch;
8005 std::optional<unsigned> BinOpc;
8006 Type *ExtOpTypes[2] = {
nullptr};
8008 auto CollectExtInfo = [
this, &Exts,
8009 &ExtOpTypes](SmallVectorImpl<Value *> &
Ops) ->
bool {
8018 if (!CM.TheLoop->contains(Exts[
I]))
8036 if (!CollectExtInfo(
Ops))
8039 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8043 if (!CollectExtInfo(
Ops))
8046 ExtendUser = Update;
8047 BinOpc = std::nullopt;
8055 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8057 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8064 [&](ElementCount VF) {
8066 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8067 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8071 Chains.emplace_back(Chain, TargetScaleFactor);
8090 "Non-header phis should have been handled during predication");
8092 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8093 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8097 assert((Legal->isReductionVariable(Phi) ||
8098 Legal->isFixedOrderRecurrence(Phi)) &&
8099 "can only widen reductions and fixed-order recurrences here");
8101 if (Legal->isReductionVariable(Phi)) {
8104 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8107 unsigned ScaleFactor =
8111 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8123 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8125 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8138 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8139 return tryToWidenHistogram(*HistInfo,
Operands);
8147 if (!shouldWiden(Instr,
Range))
8162 return tryToWiden(Instr,
Operands);
8168 unsigned ScaleFactor) {
8170 "Unexpected number of operands for partial reduction");
8179 unsigned ReductionOpcode = Reduction->getOpcode();
8180 if (ReductionOpcode == Instruction::Sub) {
8181 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8183 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8184 Ops.push_back(BinOp);
8187 ReductionOpcode = Instruction::Add;
8191 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8192 assert((ReductionOpcode == Instruction::Add ||
8193 ReductionOpcode == Instruction::Sub) &&
8194 "Expected an ADD or SUB operation for predicated partial "
8195 "reductions (because the neutral element in the mask is zero)!");
8198 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8199 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8202 ScaleFactor, Reduction);
8205void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8214 OrigLoop, LI, DT, PSE.
getSE());
8219 LVer.prepareNoAliasMetadata();
8225 OrigLoop, *LI,
Legal->getWidestInductionType(),
8228 auto MaxVFTimes2 = MaxVF * 2;
8230 VFRange SubRange = {VF, MaxVFTimes2};
8231 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8232 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8237 *Plan, CM.getMinimalBitwidths());
8240 if (CM.foldTailWithEVL() && !HasScalarVF)
8242 *Plan, CM.getMaxSafeElements());
8244 VPlans.push_back(std::move(Plan));
8259 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8266 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8269 Start, VectorTC, Step);
8282 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8283 return ResumePhiRecipe;
8298 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8309 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8312 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8313 ScalarPhiIRI->addOperand(ResumePhi);
8320 "should only skip truncated wide inductions");
8328 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8330 "Cannot handle loops with uncountable early exits");
8334 "vector.recur.extract");
8335 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8337 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8350 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8351 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8363 "Cannot handle loops with uncountable early exits");
8435 for (
VPUser *U : FOR->users()) {
8449 {},
"vector.recur.extract.for.phi");
8455VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8458 using namespace llvm::VPlanPatternMatch;
8459 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8466 bool RequiresScalarEpilogueCheck =
8468 [
this](ElementCount VF) {
8469 return !CM.requiresScalarEpilogue(VF.
isVector());
8474 CM.foldTailByMasking());
8482 bool IVUpdateMayOverflow =
false;
8483 for (ElementCount VF :
Range)
8493 auto *IVInc = Plan->getVectorLoopRegion()
8494 ->getExitingBasicBlock()
8497 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8499 "Did not find the canonical IV increment");
8512 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8513 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8515 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8520 "Unsupported interleave factor for scalable vectors");
8525 InterleaveGroups.
insert(IG);
8532 *Plan, CM.foldTailByMasking());
8538 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8539 Builder, BlockMaskCache, LVer);
8540 RecipeBuilder.collectScaledReductions(
Range);
8544 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8546 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8549 auto *MiddleVPBB = Plan->getMiddleBlock();
8553 DenseMap<VPValue *, VPValue *> Old2New;
8558 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8572 UnderlyingValue &&
"unsupported recipe");
8577 Builder.setInsertPoint(SingleDef);
8584 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8586 if (Legal->isInvariantStoreOfReduction(SI)) {
8588 new VPReplicateRecipe(SI,
R.operands(),
true ,
8589 nullptr , VPIRMetadata(*SI, LVer));
8590 Recipe->insertBefore(*MiddleVPBB, MBIP);
8592 R.eraseFromParent();
8596 VPRecipeBase *Recipe =
8597 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8599 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8601 RecipeBuilder.setRecipe(Instr, Recipe);
8607 Builder.insert(Recipe);
8614 "Unexpected multidef recipe");
8615 R.eraseFromParent();
8624 RecipeBuilder.updateBlockMaskCache(Old2New);
8625 for (VPValue *Old : Old2New.
keys())
8626 Old->getDefiningRecipe()->eraseFromParent();
8629 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8630 "entry block must be set to a VPRegionBlock having a non-empty entry "
8636 for (
const auto &[Phi,
ID] : Legal->getInductionVars()) {
8638 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8641 VPWidenInductionRecipe *WideIV =
8643 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8648 DenseMap<VPValue *, VPValue *> IVEndValues;
8657 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8669 if (!CM.foldTailWithEVL()) {
8670 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8675 for (ElementCount VF :
Range)
8677 Plan->setName(
"Initial VPlan");
8683 InterleaveGroups, RecipeBuilder,
8684 CM.isScalarEpilogueAllowed());
8688 Legal->getLAI()->getSymbolicStrides());
8690 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8691 return Legal->blockNeedsPredication(BB);
8694 BlockNeedsPredication);
8706 bool WithoutRuntimeCheck =
8709 WithoutRuntimeCheck);
8722 assert(!OrigLoop->isInnermost());
8726 OrigLoop, *LI, Legal->getWidestInductionType(),
8735 for (ElementCount VF :
Range)
8740 [
this](PHINode *
P) {
8741 return Legal->getIntOrFpInductionDescriptor(
P);
8748 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8749 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8750 Builder, BlockMaskCache,
nullptr );
8751 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8755 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8757 DenseMap<VPValue *, VPValue *> IVEndValues;
8779void LoopVectorizationPlanner::adjustRecipesForReductions(
8781 using namespace VPlanPatternMatch;
8782 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8784 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8787 for (VPRecipeBase &R : Header->phis()) {
8789 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8796 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8799 SetVector<VPSingleDefRecipe *> Worklist;
8801 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8802 VPSingleDefRecipe *Cur = Worklist[
I];
8803 for (VPUser *U : Cur->
users()) {
8805 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8806 assert((UserRecipe->getParent() == MiddleVPBB ||
8807 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8808 "U must be either in the loop region, the middle block or the "
8809 "scalar preheader.");
8812 Worklist.
insert(UserRecipe);
8823 VPSingleDefRecipe *PreviousLink = PhiR;
8824 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8826 assert(Blend->getNumIncomingValues() == 2 &&
8827 "Blend must have 2 incoming values");
8828 if (Blend->getIncomingValue(0) == PhiR) {
8829 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8831 assert(Blend->getIncomingValue(1) == PhiR &&
8832 "PhiR must be an operand of the blend");
8833 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8838 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8841 unsigned IndexOfFirstOperand;
8845 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8849 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8852 CurrentLink->getOperand(2) == PreviousLink &&
8853 "expected a call where the previous link is the added operand");
8859 VPInstruction *FMulRecipe =
new VPInstruction(
8861 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8863 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8866 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8867 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8868 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8869 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8870 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8872 Sub->setUnderlyingValue(CurrentLinkI);
8873 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8879 "need to have the compare of the select");
8883 "must be a select recipe");
8884 IndexOfFirstOperand = 1;
8887 "Expected to replace a VPWidenSC");
8888 IndexOfFirstOperand = 0;
8893 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8894 ? IndexOfFirstOperand + 1
8895 : IndexOfFirstOperand;
8896 VecOp = CurrentLink->getOperand(VecOpId);
8897 assert(VecOp != PreviousLink &&
8898 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8899 (VecOpId - IndexOfFirstOperand)) ==
8901 "PreviousLink must be the operand other than VecOp");
8904 VPValue *CondOp =
nullptr;
8905 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8909 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8915 auto *RedRecipe =
new VPReductionRecipe(
8916 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8923 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8927 CurrentLink->replaceAllUsesWith(RedRecipe);
8929 PreviousLink = RedRecipe;
8933 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8935 for (VPRecipeBase &R :
8936 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8941 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8952 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8955 std::optional<FastMathFlags> FMFs =
8960 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8961 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8970 if (CM.usePredicatedReductionSelect())
8981 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8987 VPInstruction *FinalReductionResult;
8988 VPBuilder::InsertPointGuard Guard(Builder);
8989 Builder.setInsertPoint(MiddleVPBB, IP);
8994 FinalReductionResult =
8999 FinalReductionResult =
9001 {PhiR,
Start, NewExitingVPV}, ExitDL);
9007 FinalReductionResult =
9009 {PhiR, NewExitingVPV},
Flags, ExitDL);
9016 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9018 "Unexpected truncated min-max recurrence!");
9021 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9023 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9024 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
9025 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9026 Extnd->insertAfter(Trunc);
9028 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9033 FinalReductionResult =
9034 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9039 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9041 if (FinalReductionResult == U || Parent->getParent())
9043 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9054 return isa<VPWidenSelectRecipe>(U) ||
9055 (isa<VPReplicateRecipe>(U) &&
9056 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9057 Instruction::Select);
9062 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9064 Builder.setInsertPoint(
Select);
9068 if (
Select->getOperand(1) == PhiR)
9069 Cmp = Builder.createNot(Cmp);
9070 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9071 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9077 OrigLoop->getHeader()->getContext())));
9092 VPBuilder PHBuilder(Plan->getVectorPreheader());
9093 VPValue *Iden = Plan->getOrAddLiveIn(
9096 unsigned ScaleFactor =
9100 auto *ScaleFactorVPV =
9101 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9102 VPValue *StartV = PHBuilder.createNaryOp(
9110 for (VPRecipeBase *R : ToDelete)
9111 R->eraseFromParent();
9116void LoopVectorizationPlanner::attachRuntimeChecks(
9117 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9118 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9119 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9120 assert((!CM.OptForSize ||
9122 "Cannot SCEV check stride or overflow when optimizing for size");
9126 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9127 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9131 "Runtime checks are not supported for outer loops yet");
9133 if (CM.OptForSize) {
9136 "Cannot emit memory checks when optimizing for size, unless forced "
9139 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9140 OrigLoop->getStartLoc(),
9141 OrigLoop->getHeader())
9142 <<
"Code-size may be reduced by not forcing "
9143 "vectorization, or by source-code modifications "
9144 "eliminating the need for runtime checks "
9145 "(e.g., adding 'restrict').";
9159 bool IsIndvarOverflowCheckNeededForVF =
9160 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9162 CM.getTailFoldingStyle() !=
9169 Plan, VF, UF, MinProfitableTripCount,
9170 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9171 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9172 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9177 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9182 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9190 State.set(
this, DerivedIV,
VPLane(0));
9236 if (
TTI->preferPredicateOverEpilogue(&TFI))
9255 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9259 Function *
F = L->getHeader()->getParent();
9265 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9266 &Hints, IAI, PSI, BFI);
9270 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9290 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9292 BFI, PSI, Checks, BestPlan);
9294 << L->getHeader()->getParent()->getName() <<
"\"\n");
9316 if (S->getValueOperand()->getType()->isFloatTy())
9326 while (!Worklist.
empty()) {
9328 if (!L->contains(
I))
9330 if (!Visited.
insert(
I).second)
9340 I->getDebugLoc(), L->getHeader())
9341 <<
"floating point conversion changes vector width. "
9342 <<
"Mixed floating point precision requires an up/down "
9343 <<
"cast that will negatively impact performance.";
9346 for (
Use &
Op :
I->operands())
9362 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9368 << PredVPBB->getName() <<
":\n");
9369 Cost += PredVPBB->cost(VF, CostCtx);
9388 std::optional<unsigned> VScale) {
9404 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9463 uint64_t MinTC = std::max(MinTC1, MinTC2);
9465 MinTC =
alignTo(MinTC, IntVF);
9469 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9476 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9477 "trip count < minimum profitable VF ("
9488 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9490 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9511 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9530 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9531 bool UpdateResumePhis) {
9537 VPValue *OrigStart = VPI->getOperand(1);
9541 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9543 if (UpdateResumePhis)
9549 AddFreezeForFindLastIVReductions(MainPlan,
true);
9550 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9557 auto ResumePhiIter =
9559 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9562 VPPhi *ResumePhi =
nullptr;
9563 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9567 "vec.epilog.resume.val");
9570 if (MainScalarPH->
begin() == MainScalarPH->
end())
9572 else if (&*MainScalarPH->
begin() != ResumePhi)
9584 const SCEV2ValueTy &ExpandedSCEVs,
9588 Header->
setName(
"vec.epilog.vector.body");
9602 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9607 "Must only have a single non-zero incoming value");
9619 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9620 "all incoming values must be 0");
9626 return isa<VPScalarIVStepsRecipe>(U) ||
9627 isa<VPDerivedIVRecipe>(U) ||
9628 cast<VPRecipeBase>(U)->isScalarCast() ||
9629 cast<VPInstruction>(U)->getOpcode() ==
9632 "the canonical IV should only be used by its increment or "
9633 "ScalarIVSteps when resetting the start value");
9634 IV->setOperand(0, VPV);
9638 Value *ResumeV =
nullptr;
9643 auto *VPI = dyn_cast<VPInstruction>(U);
9645 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9646 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9647 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9650 ->getIncomingValueForBlock(L->getLoopPreheader());
9651 RecurKind RK = ReductionPhi->getRecurrenceKind();
9659 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9662 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9673 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9674 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9675 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9681 "unexpected start value");
9682 VPI->setOperand(0, StartVal);
9694 assert(ResumeV &&
"Must have a resume value");
9708 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9710 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9725 ExpandR->eraseFromParent();
9735 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9740 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9741 if (OrigPhi != OldInduction) {
9742 auto *BinOp =
II.getInductionBinOp();
9748 EndValueFromAdditionalBypass =
9750 II.getStartValue(), Step,
II.getKind(), BinOp);
9751 EndValueFromAdditionalBypass->
setName(
"ind.end");
9753 return EndValueFromAdditionalBypass;
9759 const SCEV2ValueTy &ExpandedSCEVs,
9760 Value *MainVectorTripCount) {
9765 if (Phi.getBasicBlockIndex(Pred) != -1)
9767 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9771 if (ScalarPH->hasPredecessors()) {
9774 for (
const auto &[R, IRPhi] :
9775 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9784 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9786 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9789 Inc->setIncomingValueForBlock(BypassBlock, V);
9795 "VPlan-native path is not enabled. Only process inner loops.");
9798 << L->getHeader()->getParent()->getName() <<
"' from "
9799 << L->getLocStr() <<
"\n");
9804 dbgs() <<
"LV: Loop hints:"
9815 Function *
F = L->getHeader()->getParent();
9837 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9844 "early exit is not enabled",
9845 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9851 "faulting load is not supported",
9852 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9861 if (!L->isInnermost())
9865 assert(L->isInnermost() &&
"Inner loop expected.");
9868 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9882 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9884 "requiring a scalar epilogue is unsupported",
9885 "UncountableEarlyExitUnsupported",
ORE, L);
9898 if (ExpectedTC && ExpectedTC->isFixed() &&
9900 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9901 <<
"This loop is worth vectorizing only if no scalar "
9902 <<
"iteration overheads are incurred.");
9904 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9920 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9922 "Can't vectorize when the NoImplicitFloat attribute is used",
9923 "loop not vectorized due to NoImplicitFloat attribute",
9924 "NoImplicitFloat",
ORE, L);
9934 TTI->isFPVectorizationPotentiallyUnsafe()) {
9936 "Potentially unsafe FP op prevents vectorization",
9937 "loop not vectorized due to unsafe FP support.",
9938 "UnsafeFP",
ORE, L);
9943 bool AllowOrderedReductions;
9948 AllowOrderedReductions =
TTI->enableOrderedReductions();
9953 ExactFPMathInst->getDebugLoc(),
9954 ExactFPMathInst->getParent())
9955 <<
"loop not vectorized: cannot prove it is safe to reorder "
9956 "floating-point operations";
9958 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9959 "reorder floating-point operations\n");
9965 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9968 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9976 LVP.
plan(UserVF, UserIC);
9983 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9988 unsigned SelectedIC = std::max(IC, UserIC);
9997 if (Checks.getSCEVChecks().first &&
9998 match(Checks.getSCEVChecks().first,
m_One()))
10000 if (Checks.getMemRuntimeChecks().first &&
10001 match(Checks.getMemRuntimeChecks().first,
m_One()))
10006 bool ForceVectorization =
10010 if (!ForceVectorization &&
10016 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10018 <<
"loop not vectorized: cannot prove it is safe to reorder "
10019 "memory operations";
10028 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10029 bool VectorizeLoop =
true, InterleaveLoop =
true;
10031 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10033 "VectorizationNotBeneficial",
10034 "the cost-model indicates that vectorization is not beneficial"};
10035 VectorizeLoop =
false;
10041 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10042 "interleaving should be avoided up front\n");
10043 IntDiagMsg = {
"InterleavingAvoided",
10044 "Ignoring UserIC, because interleaving was avoided up front"};
10045 InterleaveLoop =
false;
10046 }
else if (IC == 1 && UserIC <= 1) {
10050 "InterleavingNotBeneficial",
10051 "the cost-model indicates that interleaving is not beneficial"};
10052 InterleaveLoop =
false;
10054 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10055 IntDiagMsg.second +=
10056 " and is explicitly disabled or interleave count is set to 1";
10058 }
else if (IC > 1 && UserIC == 1) {
10060 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10062 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10063 "the cost-model indicates that interleaving is beneficial "
10064 "but is explicitly disabled or interleave count is set to 1"};
10065 InterleaveLoop =
false;
10071 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10072 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10073 <<
"to histogram operations.\n");
10075 "HistogramPreventsScalarInterleaving",
10076 "Unable to interleave without vectorization due to constraints on "
10077 "the order of histogram operations"};
10078 InterleaveLoop =
false;
10082 IC = UserIC > 0 ? UserIC : IC;
10086 if (!VectorizeLoop && !InterleaveLoop) {
10090 L->getStartLoc(), L->getHeader())
10091 << VecDiagMsg.second;
10095 L->getStartLoc(), L->getHeader())
10096 << IntDiagMsg.second;
10101 if (!VectorizeLoop && InterleaveLoop) {
10105 L->getStartLoc(), L->getHeader())
10106 << VecDiagMsg.second;
10108 }
else if (VectorizeLoop && !InterleaveLoop) {
10110 <<
") in " << L->getLocStr() <<
'\n');
10113 L->getStartLoc(), L->getHeader())
10114 << IntDiagMsg.second;
10116 }
else if (VectorizeLoop && InterleaveLoop) {
10118 <<
") in " << L->getLocStr() <<
'\n');
10124 using namespace ore;
10129 <<
"interleaved loop (interleaved count: "
10130 << NV(
"InterleaveCount", IC) <<
")";
10147 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10158 PSI, Checks, *BestMainPlan);
10160 *BestMainPlan, MainILV,
DT,
false);
10166 BFI,
PSI, Checks, BestEpiPlan);
10174 BestEpiPlan, LVL, ExpandedSCEVs,
10176 ++LoopsEpilogueVectorized;
10178 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10192 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10193 "DT not preserved correctly");
10208 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10212 bool Changed =
false, CFGChanged =
false;
10219 for (
const auto &L : *
LI)
10231 LoopsAnalyzed += Worklist.
size();
10234 while (!Worklist.
empty()) {
10277 if (
PSI &&
PSI->hasProfileSummary())
10280 if (!Result.MadeAnyChange)
10294 if (Result.MadeCFGChange) {
10310 OS, MapClassName2PassName);
10313 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10314 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, bool VectorizingEpilogue, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
iterator_range< op_iterator > op_range
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks