LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cstdint>
150#include <functional>
151#include <iterator>
152#include <limits>
153#include <memory>
154#include <string>
155#include <tuple>
156#include <utility>
157
158using namespace llvm;
159using namespace SCEVPatternMatch;
160
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
163
164#ifndef NDEBUG
165const char VerboseDebug[] = DEBUG_TYPE "-verbose";
166#endif
167
168STATISTIC(LoopsVectorized, "Number of loops vectorized");
169STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
172
174 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
175 cl::desc("Enable vectorization of epilogue loops."));
176
178 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
179 cl::desc("When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
181 "loops."));
182
184 "epilogue-vectorization-minimum-VF", cl::Hidden,
185 cl::desc("Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
187
188/// Loops with a known constant trip count below this number are vectorized only
189/// if no scalar iteration overheads are incurred.
191 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
192 cl::desc("Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
194 "are incurred."));
195
197 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
198 cl::desc("The maximum allowed number of runtime memory checks"));
199
200// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201// that predication is preferred, and this lists all options. I.e., the
202// vectorizer will try to fold the tail-loop (epilogue) into the vector body
203// and predicate the instructions accordingly. If tail-folding fails, there are
204// different fallback strategies depending on these values:
211} // namespace PreferPredicateTy
212
214 "prefer-predicate-over-epilogue",
217 cl::desc("Tail-folding and predication preferences over creating a scalar "
218 "epilogue loop."),
220 "scalar-epilogue",
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
225 "folding fails."),
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
230
232 "force-tail-folding-style", cl::desc("Force the tail folding style"),
235 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
251
253 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
254 cl::desc("Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
256
258 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
259 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
260
261/// An interleave-group may need masking if it resides in a block that needs
262/// predication, or in order to mask away gaps.
264 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
266
268 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
269 cl::desc("A flag that overrides the target's number of scalar registers."));
270
272 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
273 cl::desc("A flag that overrides the target's number of vector registers."));
274
276 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
277 cl::desc("A flag that overrides the target's max interleave factor for "
278 "scalar loops."));
279
281 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
282 cl::desc("A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
284
286 "force-target-instruction-cost", cl::init(0), cl::Hidden,
287 cl::desc("A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
290
292 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
293 cl::desc(
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
296
298 "small-loop-cost", cl::init(20), cl::Hidden,
299 cl::desc(
300 "The cost of a loop that is considered 'small' by the interleaver."));
301
303 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
304 cl::desc("Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
307
308// Runtime interleave loops for load/store throughput.
310 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
311 cl::desc(
312 "Enable runtime interleaving until load/store ports are saturated"));
313
314/// The number of stores in a loop that are allowed to need predication.
316 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
317 cl::desc("Max number of stores to be predicated behind an if."));
318
320 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
321 cl::desc("Count the induction variable only once when interleaving"));
322
324 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
325 cl::desc("Enable if predication of stores during vectorization."));
326
328 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
329 cl::desc("The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
331
332static cl::opt<bool>
333 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
335 cl::desc("Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
337
339 "force-ordered-reductions", cl::init(false), cl::Hidden,
340 cl::desc("Enable the vectorisation of loops with in-order (strict) "
341 "FP reductions"));
342
344 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
345 cl::desc(
346 "Prefer predicating a reduction operation over an after loop select."));
347
349 "enable-vplan-native-path", cl::Hidden,
350 cl::desc("Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
352
354 llvm::VerifyEachVPlan("vplan-verify-each",
355#ifdef EXPENSIVE_CHECKS
356 cl::init(true),
357#else
358 cl::init(false),
359#endif
361 cl::desc("Verfiy VPlans after VPlan transforms."));
362
363// This flag enables the stress testing of the VPlan H-CFG construction in the
364// VPlan-native vectorization path. It must be used in conjuction with
365// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
366// verification of the H-CFGs built.
368 "vplan-build-stress-test", cl::init(false), cl::Hidden,
369 cl::desc(
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
373
375 "interleave-loops", cl::init(true), cl::Hidden,
376 cl::desc("Enable loop interleaving in Loop vectorization passes"));
378 "vectorize-loops", cl::init(true), cl::Hidden,
379 cl::desc("Run the Loop vectorization passes"));
380
382 "force-widen-divrem-via-safe-divisor", cl::Hidden,
383 cl::desc(
384 "Override cost based safe divisor widening for div/rem instructions"));
385
387 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
389 cl::desc("Try wider VFs if they enable the use of vector variants"));
390
392 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
393 cl::desc(
394 "Enable vectorization of early exit loops with uncountable exits."));
395
397 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
398 cl::desc("Discard VFs if their register pressure is too high."));
399
400// Likelyhood of bypassing the vectorized loop because there are zero trips left
401// after prolog. See `emitIterationCountCheck`.
402static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
403
404/// A helper function that returns true if the given type is irregular. The
405/// type is irregular if its allocated size doesn't equal the store size of an
406/// element of the corresponding vector type.
407static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
408 // Determine if an array of N elements of type Ty is "bitcast compatible"
409 // with a <N x Ty> vector.
410 // This is only true if there is no padding between the array elements.
411 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
412}
413
414/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
415/// ElementCount to include loops whose trip count is a function of vscale.
417 const Loop *L) {
418 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
419 return ElementCount::getFixed(ExpectedTC);
420
421 const SCEV *BTC = SE->getBackedgeTakenCount(L);
423 return ElementCount::getFixed(0);
424
425 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
426 if (isa<SCEVVScale>(ExitCount))
428
429 const APInt *Scale;
430 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
431 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
432 if (Scale->getActiveBits() <= 32)
434
435 return ElementCount::getFixed(0);
436}
437
438/// Returns "best known" trip count, which is either a valid positive trip count
439/// or std::nullopt when an estimate cannot be made (including when the trip
440/// count would overflow), for the specified loop \p L as defined by the
441/// following procedure:
442/// 1) Returns exact trip count if it is known.
443/// 2) Returns expected trip count according to profile data if any.
444/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
445/// 4) Returns std::nullopt if all of the above failed.
446static std::optional<ElementCount>
448 bool CanUseConstantMax = true) {
449 // Check if exact trip count is known.
450 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
451 return ExpectedTC;
452
453 // Check if there is an expected trip count available from profile data.
455 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
456 return ElementCount::getFixed(*EstimatedTC);
457
458 if (!CanUseConstantMax)
459 return std::nullopt;
460
461 // Check if upper bound estimate is known.
462 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
463 return ElementCount::getFixed(ExpectedTC);
464
465 return std::nullopt;
466}
467
468namespace {
469// Forward declare GeneratedRTChecks.
470class GeneratedRTChecks;
471
472using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
473} // namespace
474
475namespace llvm {
476
478
479/// InnerLoopVectorizer vectorizes loops which contain only one basic
480/// block to a specified vectorization factor (VF).
481/// This class performs the widening of scalars into vectors, or multiple
482/// scalars. This class also implements the following features:
483/// * It inserts an epilogue loop for handling loops that don't have iteration
484/// counts that are known to be a multiple of the vectorization factor.
485/// * It handles the code generation for reduction variables.
486/// * Scalarization (implementation using scalars) of un-vectorizable
487/// instructions.
488/// InnerLoopVectorizer does not perform any vectorization-legality
489/// checks, and relies on the caller to check for the different legality
490/// aspects. The InnerLoopVectorizer relies on the
491/// LoopVectorizationLegality class to provide information about the induction
492/// and reduction variables that were found to a given vectorization factor.
494public:
498 ElementCount VecWidth, unsigned UnrollFactor,
500 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks,
501 VPlan &Plan)
502 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
503 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
507
508 virtual ~InnerLoopVectorizer() = default;
509
510 /// Creates a basic block for the scalar preheader. Both
511 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
512 /// the method to create additional blocks and checks needed for epilogue
513 /// vectorization.
515
516 /// Fix the vectorized code, taking care of header phi's, and more.
518
519 /// Fix the non-induction PHIs in \p Plan.
521
522 /// Returns the original loop trip count.
523 Value *getTripCount() const { return TripCount; }
524
525 /// Used to set the trip count after ILV's construction and after the
526 /// preheader block has been executed. Note that this always holds the trip
527 /// count of the original loop for both main loop and epilogue vectorization.
528 void setTripCount(Value *TC) { TripCount = TC; }
529
530protected:
532
533 /// Create and return a new IR basic block for the scalar preheader whose name
534 /// is prefixed with \p Prefix.
536
537 /// Allow subclasses to override and print debug traces before/after vplan
538 /// execution, when trace information is requested.
539 virtual void printDebugTracesAtStart() {}
540 virtual void printDebugTracesAtEnd() {}
541
542 /// The original loop.
544
545 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
546 /// dynamic knowledge to simplify SCEV expressions and converts them to a
547 /// more usable form.
549
550 /// Loop Info.
552
553 /// Dominator Tree.
555
556 /// Target Transform Info.
558
559 /// Assumption Cache.
561
562 /// The vectorization SIMD factor to use. Each vector will have this many
563 /// vector elements.
565
566 /// The vectorization unroll factor to use. Each scalar is vectorized to this
567 /// many different vector instructions.
568 unsigned UF;
569
570 /// The builder that we use
572
573 // --- Vectorization state ---
574
575 /// Trip count of the original loop.
576 Value *TripCount = nullptr;
577
578 /// The profitablity analysis.
580
581 /// BFI and PSI are used to check for profile guided size optimizations.
584
585 /// Structure to hold information about generated runtime checks, responsible
586 /// for cleaning the checks, if vectorization turns out unprofitable.
587 GeneratedRTChecks &RTChecks;
588
590
591 /// The vector preheader block of \p Plan, used as target for check blocks
592 /// introduced during skeleton creation.
594};
595
596/// Encapsulate information regarding vectorization of a loop and its epilogue.
597/// This information is meant to be updated and used across two stages of
598/// epilogue vectorization.
601 unsigned MainLoopUF = 0;
603 unsigned EpilogueUF = 0;
606 Value *TripCount = nullptr;
609
611 ElementCount EVF, unsigned EUF,
613 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
615 assert(EUF == 1 &&
616 "A high UF for the epilogue loop is likely not beneficial.");
617 }
618};
619
620/// An extension of the inner loop vectorizer that creates a skeleton for a
621/// vectorized loop that has its epilogue (residual) also vectorized.
622/// The idea is to run the vplan on a given loop twice, firstly to setup the
623/// skeleton and vectorize the main loop, and secondly to complete the skeleton
624/// from the first step and vectorize the epilogue. This is achieved by
625/// deriving two concrete strategy classes from this base class and invoking
626/// them in succession from the loop vectorizer planner.
628public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
668 /// Implements the interface for creating a vectorized skeleton using the
669 /// *main loop* strategy (i.e., the first pass of VPlan execution).
671
672protected:
673 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
674 /// vector preheader and its predecessor, also connecting the new block to the
675 /// scalar preheader.
676 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
677
678 // Create a check to see if the main vector loop should be executed
680 unsigned UF) const;
681
682 /// Emits an iteration count bypass check once for the main loop (when \p
683 /// ForEpilogue is false) and once for the epilogue loop (when \p
684 /// ForEpilogue is true).
686 bool ForEpilogue);
687 void printDebugTracesAtStart() override;
688 void printDebugTracesAtEnd() override;
689};
690
691// A specialized derived class of inner loop vectorizer that performs
692// vectorization of *epilogue* loops in the process of vectorizing loops and
693// their epilogues.
695 /// The additional bypass block which conditionally skips over the epilogue
696 /// loop after executing the main loop. Needed to resume inductions and
697 /// reductions during epilogue vectorization.
698 BasicBlock *AdditionalBypassBlock = nullptr;
699
700public:
712 /// Implements the interface for creating a vectorized skeleton using the
713 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
715
716 /// Return the additional bypass block which targets the scalar loop by
717 /// skipping the epilogue loop after completing the main loop.
719 assert(AdditionalBypassBlock &&
720 "Trying to access AdditionalBypassBlock but it has not been set");
721 return AdditionalBypassBlock;
722 }
723
724protected:
725 /// Emits an iteration count bypass check after the main vector loop has
726 /// finished to see if there are any iterations left to execute by either
727 /// the vector epilogue or the scalar epilogue.
728 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH,
729 BasicBlock *Bypass,
730 BasicBlock *Insert);
731 void printDebugTracesAtStart() override;
732 void printDebugTracesAtEnd() override;
733};
734} // end namespace llvm
735
736/// Look for a meaningful debug location on the instruction or its operands.
738 if (!I)
739 return DebugLoc::getUnknown();
740
742 if (I->getDebugLoc() != Empty)
743 return I->getDebugLoc();
744
745 for (Use &Op : I->operands()) {
746 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
747 if (OpInst->getDebugLoc() != Empty)
748 return OpInst->getDebugLoc();
749 }
750
751 return I->getDebugLoc();
752}
753
754/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
755/// is passed, the message relates to that particular instruction.
756#ifndef NDEBUG
757static void debugVectorizationMessage(const StringRef Prefix,
758 const StringRef DebugMsg,
759 Instruction *I) {
760 dbgs() << "LV: " << Prefix << DebugMsg;
761 if (I != nullptr)
762 dbgs() << " " << *I;
763 else
764 dbgs() << '.';
765 dbgs() << '\n';
766}
767#endif
768
769/// Create an analysis remark that explains why vectorization failed
770///
771/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
772/// RemarkName is the identifier for the remark. If \p I is passed it is an
773/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
774/// the location of the remark. If \p DL is passed, use it as debug location for
775/// the remark. \return the remark object that can be streamed to.
777createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
778 Instruction *I, DebugLoc DL = {}) {
779 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
780 // If debug location is attached to the instruction, use it. Otherwise if DL
781 // was not provided, use the loop's.
782 if (I && I->getDebugLoc())
783 DL = I->getDebugLoc();
784 else if (!DL)
785 DL = TheLoop->getStartLoc();
786
787 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
788}
789
790namespace llvm {
791
792/// Return a value for Step multiplied by VF.
794 int64_t Step) {
795 assert(Ty->isIntegerTy() && "Expected an integer step");
796 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
797 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
798 if (VF.isScalable() && isPowerOf2_64(Step)) {
799 return B.CreateShl(
800 B.CreateVScale(Ty),
801 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
802 }
803 return B.CreateElementCount(Ty, VFxStep);
804}
805
806/// Return the runtime value for VF.
808 return B.CreateElementCount(Ty, VF);
809}
810
812 const StringRef OREMsg, const StringRef ORETag,
813 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
814 Instruction *I) {
815 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
816 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
817 ORE->emit(
818 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
819 << "loop not vectorized: " << OREMsg);
820}
821
822/// Reports an informative message: print \p Msg for debugging purposes as well
823/// as an optimization remark. Uses either \p I as location of the remark, or
824/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
825/// remark. If \p DL is passed, use it as debug location for the remark.
826static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
828 Loop *TheLoop, Instruction *I = nullptr,
829 DebugLoc DL = {}) {
831 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
832 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
833 I, DL)
834 << Msg);
835}
836
837/// Report successful vectorization of the loop. In case an outer loop is
838/// vectorized, prepend "outer" to the vectorization remark.
840 VectorizationFactor VF, unsigned IC) {
842 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
843 nullptr));
844 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
845 ORE->emit([&]() {
846 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
847 TheLoop->getHeader())
848 << "vectorized " << LoopType << "loop (vectorization width: "
849 << ore::NV("VectorizationFactor", VF.Width)
850 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
851 });
852}
853
854} // end namespace llvm
855
856namespace llvm {
857
858// Loop vectorization cost-model hints how the scalar epilogue loop should be
859// lowered.
861
862 // The default: allowing scalar epilogues.
864
865 // Vectorization with OptForSize: don't allow epilogues.
867
868 // A special case of vectorisation with OptForSize: loops with a very small
869 // trip count are considered for vectorization under OptForSize, thereby
870 // making sure the cost of their loop body is dominant, free of runtime
871 // guards and scalar iteration overheads.
873
874 // Loop hint predicate indicating an epilogue is undesired.
876
877 // Directive indicating we must either tail fold or not vectorize
879};
880
881/// LoopVectorizationCostModel - estimates the expected speedups due to
882/// vectorization.
883/// In many cases vectorization is not profitable. This can happen because of
884/// a number of reasons. In this class we mainly attempt to predict the
885/// expected speedup/slowdowns due to the supported instruction set. We use the
886/// TargetTransformInfo to query the different backends for the cost of
887/// different operations.
890
891public:
902 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
903 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
904 Hints(Hints), InterleaveInfo(IAI) {
905 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
906 initializeVScaleForTuning();
908 // Query this against the original loop and save it here because the profile
909 // of the original loop header may change as the transformation happens.
910 OptForSize = llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
912 }
913
914 /// \return An upper bound for the vectorization factors (both fixed and
915 /// scalable). If the factors are 0, vectorization and interleaving should be
916 /// avoided up front.
917 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
918
919 /// \return True if runtime checks are required for vectorization, and false
920 /// otherwise.
922
923 /// Setup cost-based decisions for user vectorization factor.
924 /// \return true if the UserVF is a feasible VF to be chosen.
929
930 /// \return True if maximizing vector bandwidth is enabled by the target or
931 /// user options, for the given register kind.
933
934 /// \return True if register pressure should be considered for the given VF.
936
937 /// \return The size (in bits) of the smallest and widest types in the code
938 /// that needs to be vectorized. We ignore values that remain scalar such as
939 /// 64 bit loop indices.
940 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
941
942 /// Memory access instruction may be vectorized in more than one way.
943 /// Form of instruction after vectorization depends on cost.
944 /// This function takes cost-based decisions for Load/Store instructions
945 /// and collects them in a map. This decisions map is used for building
946 /// the lists of loop-uniform and loop-scalar instructions.
947 /// The calculated cost is saved with widening decision in order to
948 /// avoid redundant calculations.
950
951 /// A call may be vectorized in different ways depending on whether we have
952 /// vectorized variants available and whether the target supports masking.
953 /// This function analyzes all calls in the function at the supplied VF,
954 /// makes a decision based on the costs of available options, and stores that
955 /// decision in a map for use in planning and plan execution.
957
958 /// Collect values we want to ignore in the cost model.
960
961 /// Collect all element types in the loop for which widening is needed.
963
964 /// Split reductions into those that happen in the loop, and those that happen
965 /// outside. In loop reductions are collected into InLoopReductions.
967
968 /// Returns true if we should use strict in-order reductions for the given
969 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
970 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
971 /// of FP operations.
972 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
973 return !Hints->allowReordering() && RdxDesc.isOrdered();
974 }
975
976 /// \returns The smallest bitwidth each instruction can be represented with.
977 /// The vector equivalents of these instructions should be truncated to this
978 /// type.
980 return MinBWs;
981 }
982
983 /// \returns True if it is more profitable to scalarize instruction \p I for
984 /// vectorization factor \p VF.
986 assert(VF.isVector() &&
987 "Profitable to scalarize relevant only for VF > 1.");
988 assert(
989 TheLoop->isInnermost() &&
990 "cost-model should not be used for outer loops (in VPlan-native path)");
991
992 auto Scalars = InstsToScalarize.find(VF);
993 assert(Scalars != InstsToScalarize.end() &&
994 "VF not yet analyzed for scalarization profitability");
995 return Scalars->second.contains(I);
996 }
997
998 /// Returns true if \p I is known to be uniform after vectorization.
1000 assert(
1001 TheLoop->isInnermost() &&
1002 "cost-model should not be used for outer loops (in VPlan-native path)");
1003 // Pseudo probe needs to be duplicated for each unrolled iteration and
1004 // vector lane so that profiled loop trip count can be accurately
1005 // accumulated instead of being under counted.
1007 return false;
1008
1009 if (VF.isScalar())
1010 return true;
1011
1012 auto UniformsPerVF = Uniforms.find(VF);
1013 assert(UniformsPerVF != Uniforms.end() &&
1014 "VF not yet analyzed for uniformity");
1015 return UniformsPerVF->second.count(I);
1016 }
1017
1018 /// Returns true if \p I is known to be scalar after vectorization.
1020 assert(
1021 TheLoop->isInnermost() &&
1022 "cost-model should not be used for outer loops (in VPlan-native path)");
1023 if (VF.isScalar())
1024 return true;
1025
1026 auto ScalarsPerVF = Scalars.find(VF);
1027 assert(ScalarsPerVF != Scalars.end() &&
1028 "Scalar values are not calculated for VF");
1029 return ScalarsPerVF->second.count(I);
1030 }
1031
1032 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1033 /// for vectorization factor \p VF.
1035 return VF.isVector() && MinBWs.contains(I) &&
1036 !isProfitableToScalarize(I, VF) &&
1038 }
1039
1040 /// Decision that was taken during cost calculation for memory instruction.
1043 CM_Widen, // For consecutive accesses with stride +1.
1044 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1050 };
1051
1052 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1053 /// instruction \p I and vector width \p VF.
1056 assert(VF.isVector() && "Expected VF >=2");
1057 WideningDecisions[{I, VF}] = {W, Cost};
1058 }
1059
1060 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1061 /// interleaving group \p Grp and vector width \p VF.
1065 assert(VF.isVector() && "Expected VF >=2");
1066 /// Broadcast this decicion to all instructions inside the group.
1067 /// When interleaving, the cost will only be assigned one instruction, the
1068 /// insert position. For other cases, add the appropriate fraction of the
1069 /// total cost to each instruction. This ensures accurate costs are used,
1070 /// even if the insert position instruction is not used.
1071 InstructionCost InsertPosCost = Cost;
1072 InstructionCost OtherMemberCost = 0;
1073 if (W != CM_Interleave)
1074 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1075 ;
1076 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1077 if (auto *I = Grp->getMember(Idx)) {
1078 if (Grp->getInsertPos() == I)
1079 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1080 else
1081 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1082 }
1083 }
1084 }
1085
1086 /// Return the cost model decision for the given instruction \p I and vector
1087 /// width \p VF. Return CM_Unknown if this instruction did not pass
1088 /// through the cost modeling.
1090 assert(VF.isVector() && "Expected VF to be a vector VF");
1091 assert(
1092 TheLoop->isInnermost() &&
1093 "cost-model should not be used for outer loops (in VPlan-native path)");
1094
1095 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1096 auto Itr = WideningDecisions.find(InstOnVF);
1097 if (Itr == WideningDecisions.end())
1098 return CM_Unknown;
1099 return Itr->second.first;
1100 }
1101
1102 /// Return the vectorization cost for the given instruction \p I and vector
1103 /// width \p VF.
1105 assert(VF.isVector() && "Expected VF >=2");
1106 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1107 assert(WideningDecisions.contains(InstOnVF) &&
1108 "The cost is not calculated");
1109 return WideningDecisions[InstOnVF].second;
1110 }
1111
1119
1121 Function *Variant, Intrinsic::ID IID,
1122 std::optional<unsigned> MaskPos,
1124 assert(!VF.isScalar() && "Expected vector VF");
1125 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1126 }
1127
1129 ElementCount VF) const {
1130 assert(!VF.isScalar() && "Expected vector VF");
1131 auto I = CallWideningDecisions.find({CI, VF});
1132 if (I == CallWideningDecisions.end())
1133 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1134 return I->second;
1135 }
1136
1137 /// Return True if instruction \p I is an optimizable truncate whose operand
1138 /// is an induction variable. Such a truncate will be removed by adding a new
1139 /// induction variable with the destination type.
1141 // If the instruction is not a truncate, return false.
1142 auto *Trunc = dyn_cast<TruncInst>(I);
1143 if (!Trunc)
1144 return false;
1145
1146 // Get the source and destination types of the truncate.
1147 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1148 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1149
1150 // If the truncate is free for the given types, return false. Replacing a
1151 // free truncate with an induction variable would add an induction variable
1152 // update instruction to each iteration of the loop. We exclude from this
1153 // check the primary induction variable since it will need an update
1154 // instruction regardless.
1155 Value *Op = Trunc->getOperand(0);
1156 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1157 return false;
1158
1159 // If the truncated value is not an induction variable, return false.
1160 return Legal->isInductionPhi(Op);
1161 }
1162
1163 /// Collects the instructions to scalarize for each predicated instruction in
1164 /// the loop.
1166
1167 /// Collect values that will not be widened, including Uniforms, Scalars, and
1168 /// Instructions to Scalarize for the given \p VF.
1169 /// The sets depend on CM decision for Load/Store instructions
1170 /// that may be vectorized as interleave, gather-scatter or scalarized.
1171 /// Also make a decision on what to do about call instructions in the loop
1172 /// at that VF -- scalarize, call a known vector routine, or call a
1173 /// vector intrinsic.
1175 // Do the analysis once.
1176 if (VF.isScalar() || Uniforms.contains(VF))
1177 return;
1179 collectLoopUniforms(VF);
1181 collectLoopScalars(VF);
1183 }
1184
1185 /// Returns true if the target machine supports masked store operation
1186 /// for the given \p DataType and kind of access to \p Ptr.
1187 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1188 unsigned AddressSpace) const {
1189 return Legal->isConsecutivePtr(DataType, Ptr) &&
1190 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1191 }
1192
1193 /// Returns true if the target machine supports masked load operation
1194 /// for the given \p DataType and kind of access to \p Ptr.
1195 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1196 unsigned AddressSpace) const {
1197 return Legal->isConsecutivePtr(DataType, Ptr) &&
1198 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1199 }
1200
1201 /// Returns true if the target machine can represent \p V as a masked gather
1202 /// or scatter operation.
1204 bool LI = isa<LoadInst>(V);
1205 bool SI = isa<StoreInst>(V);
1206 if (!LI && !SI)
1207 return false;
1208 auto *Ty = getLoadStoreType(V);
1210 if (VF.isVector())
1211 Ty = VectorType::get(Ty, VF);
1212 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1213 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1214 }
1215
1216 /// Returns true if the target machine supports all of the reduction
1217 /// variables found for the given VF.
1219 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1220 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1221 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1222 }));
1223 }
1224
1225 /// Given costs for both strategies, return true if the scalar predication
1226 /// lowering should be used for div/rem. This incorporates an override
1227 /// option so it is not simply a cost comparison.
1229 InstructionCost SafeDivisorCost) const {
1230 switch (ForceSafeDivisor) {
1231 case cl::BOU_UNSET:
1232 return ScalarCost < SafeDivisorCost;
1233 case cl::BOU_TRUE:
1234 return false;
1235 case cl::BOU_FALSE:
1236 return true;
1237 }
1238 llvm_unreachable("impossible case value");
1239 }
1240
1241 /// Returns true if \p I is an instruction which requires predication and
1242 /// for which our chosen predication strategy is scalarization (i.e. we
1243 /// don't have an alternate strategy such as masking available).
1244 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1246
1247 /// Returns true if \p I is an instruction that needs to be predicated
1248 /// at runtime. The result is independent of the predication mechanism.
1249 /// Superset of instructions that return true for isScalarWithPredication.
1250 bool isPredicatedInst(Instruction *I) const;
1251
1252 /// Return the costs for our two available strategies for lowering a
1253 /// div/rem operation which requires speculating at least one lane.
1254 /// First result is for scalarization (will be invalid for scalable
1255 /// vectors); second is for the safe-divisor strategy.
1256 std::pair<InstructionCost, InstructionCost>
1258 ElementCount VF) const;
1259
1260 /// Returns true if \p I is a memory instruction with consecutive memory
1261 /// access that can be widened.
1263
1264 /// Returns true if \p I is a memory instruction in an interleaved-group
1265 /// of memory accesses that can be vectorized with wide vector loads/stores
1266 /// and shuffles.
1268
1269 /// Check if \p Instr belongs to any interleaved access group.
1271 return InterleaveInfo.isInterleaved(Instr);
1272 }
1273
1274 /// Get the interleaved access group that \p Instr belongs to.
1277 return InterleaveInfo.getInterleaveGroup(Instr);
1278 }
1279
1280 /// Returns true if we're required to use a scalar epilogue for at least
1281 /// the final iteration of the original loop.
1282 bool requiresScalarEpilogue(bool IsVectorizing) const {
1283 if (!isScalarEpilogueAllowed()) {
1284 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1285 return false;
1286 }
1287 // If we might exit from anywhere but the latch and early exit vectorization
1288 // is disabled, we must run the exiting iteration in scalar form.
1289 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1290 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1291 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1292 "from latch block\n");
1293 return true;
1294 }
1295 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1296 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1297 "interleaved group requires scalar epilogue\n");
1298 return true;
1299 }
1300 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1301 return false;
1302 }
1303
1304 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1305 /// loop hint annotation.
1307 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Return maximum safe number of elements to be processed per vector
1371 /// iteration, which do not prevent store-load forwarding and are safe with
1372 /// regard to the memory dependencies. Required for EVL-based VPlans to
1373 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1374 /// MaxSafeElements).
1375 /// TODO: need to consider adjusting cost model to use this value as a
1376 /// vectorization factor for EVL-based vectorization.
1377 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1378
1379 /// Returns true if the instructions in this block requires predication
1380 /// for any reason, e.g. because tail folding now requires a predicate
1381 /// or because the block in the original loop was predicated.
1383 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1384 }
1385
1386 /// Returns true if VP intrinsics with explicit vector length support should
1387 /// be generated in the tail folded loop.
1391
1392 /// Returns true if the Phi is part of an inloop reduction.
1393 bool isInLoopReduction(PHINode *Phi) const {
1394 return InLoopReductions.contains(Phi);
1395 }
1396
1397 /// Returns true if the predicated reduction select should be used to set the
1398 /// incoming value for the reduction phi.
1400 // Force to use predicated reduction select since the EVL of the
1401 // second-to-last iteration might not be VF*UF.
1402 if (foldTailWithEVL())
1403 return true;
1405 TTI.preferPredicatedReductionSelect();
1406 }
1407
1408 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1409 /// with factor VF. Return the cost of the instruction, including
1410 /// scalarization overhead if it's needed.
1412
1413 /// Estimate cost of a call instruction CI if it were vectorized with factor
1414 /// VF. Return the cost of the instruction, including scalarization overhead
1415 /// if it's needed.
1417
1418 /// Invalidates decisions already taken by the cost model.
1420 WideningDecisions.clear();
1421 CallWideningDecisions.clear();
1422 Uniforms.clear();
1423 Scalars.clear();
1424 }
1425
1426 /// Returns the expected execution cost. The unit of the cost does
1427 /// not matter because we use the 'cost' units to compare different
1428 /// vector widths. The cost that is returned is *not* normalized by
1429 /// the factor width.
1431
1432 bool hasPredStores() const { return NumPredStores > 0; }
1433
1434 /// Returns true if epilogue vectorization is considered profitable, and
1435 /// false otherwise.
1436 /// \p VF is the vectorization factor chosen for the original loop.
1437 /// \p Multiplier is an aditional scaling factor applied to VF before
1438 /// comparing to EpilogueVectorizationMinVF.
1440 const unsigned IC) const;
1441
1442 /// Returns the execution time cost of an instruction for a given vector
1443 /// width. Vector width of one means scalar.
1445
1446 /// Return the cost of instructions in an inloop reduction pattern, if I is
1447 /// part of that pattern.
1448 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1449 ElementCount VF,
1450 Type *VectorTy) const;
1451
1452 /// Returns true if \p Op should be considered invariant and if it is
1453 /// trivially hoistable.
1455
1456 /// Return the value of vscale used for tuning the cost model.
1457 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1458
1459private:
1460 unsigned NumPredStores = 0;
1461
1462 /// Used to store the value of vscale used for tuning the cost model. It is
1463 /// initialized during object construction.
1464 std::optional<unsigned> VScaleForTuning;
1465
1466 /// Initializes the value of vscale used for tuning the cost model. If
1467 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1468 /// return the value returned by the corresponding TTI method.
1469 void initializeVScaleForTuning() {
1470 const Function *Fn = TheLoop->getHeader()->getParent();
1471 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1472 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1473 auto Min = Attr.getVScaleRangeMin();
1474 auto Max = Attr.getVScaleRangeMax();
1475 if (Max && Min == Max) {
1476 VScaleForTuning = Max;
1477 return;
1478 }
1479 }
1480
1481 VScaleForTuning = TTI.getVScaleForTuning();
1482 }
1483
1484 /// \return An upper bound for the vectorization factors for both
1485 /// fixed and scalable vectorization, where the minimum-known number of
1486 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1487 /// disabled or unsupported, then the scalable part will be equal to
1488 /// ElementCount::getScalable(0).
1489 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1490 ElementCount UserVF,
1491 bool FoldTailByMasking);
1492
1493 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1494 /// MaxTripCount.
1495 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1496 bool FoldTailByMasking) const;
1497
1498 /// \return the maximized element count based on the targets vector
1499 /// registers and the loop trip-count, but limited to a maximum safe VF.
1500 /// This is a helper function of computeFeasibleMaxVF.
1501 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1502 unsigned SmallestType,
1503 unsigned WidestType,
1504 ElementCount MaxSafeVF,
1505 bool FoldTailByMasking);
1506
1507 /// Checks if scalable vectorization is supported and enabled. Caches the
1508 /// result to avoid repeated debug dumps for repeated queries.
1509 bool isScalableVectorizationAllowed();
1510
1511 /// \return the maximum legal scalable VF, based on the safe max number
1512 /// of elements.
1513 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1514
1515 /// Calculate vectorization cost of memory instruction \p I.
1516 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1517
1518 /// The cost computation for scalarized memory instruction.
1519 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1520
1521 /// The cost computation for interleaving group of memory instructions.
1522 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1523
1524 /// The cost computation for Gather/Scatter instruction.
1525 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1526
1527 /// The cost computation for widening instruction \p I with consecutive
1528 /// memory access.
1529 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1530
1531 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1532 /// Load: scalar load + broadcast.
1533 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1534 /// element)
1535 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1536
1537 /// Estimate the overhead of scalarizing an instruction. This is a
1538 /// convenience wrapper for the type-based getScalarizationOverhead API.
1539 InstructionCost getScalarizationOverhead(Instruction *I,
1540 ElementCount VF) const;
1541
1542 /// Returns true if an artificially high cost for emulated masked memrefs
1543 /// should be used.
1544 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1545
1546 /// Map of scalar integer values to the smallest bitwidth they can be legally
1547 /// represented as. The vector equivalents of these values should be truncated
1548 /// to this type.
1549 MapVector<Instruction *, uint64_t> MinBWs;
1550
1551 /// A type representing the costs for instructions if they were to be
1552 /// scalarized rather than vectorized. The entries are Instruction-Cost
1553 /// pairs.
1554 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1555
1556 /// A set containing all BasicBlocks that are known to present after
1557 /// vectorization as a predicated block.
1558 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1559 PredicatedBBsAfterVectorization;
1560
1561 /// Records whether it is allowed to have the original scalar loop execute at
1562 /// least once. This may be needed as a fallback loop in case runtime
1563 /// aliasing/dependence checks fail, or to handle the tail/remainder
1564 /// iterations when the trip count is unknown or doesn't divide by the VF,
1565 /// or as a peel-loop to handle gaps in interleave-groups.
1566 /// Under optsize and when the trip count is very small we don't allow any
1567 /// iterations to execute in the scalar loop.
1568 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1569
1570 /// Control finally chosen tail folding style. The first element is used if
1571 /// the IV update may overflow, the second element - if it does not.
1572 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1573 ChosenTailFoldingStyle;
1574
1575 /// true if scalable vectorization is supported and enabled.
1576 std::optional<bool> IsScalableVectorizationAllowed;
1577
1578 /// Maximum safe number of elements to be processed per vector iteration,
1579 /// which do not prevent store-load forwarding and are safe with regard to the
1580 /// memory dependencies. Required for EVL-based veectorization, where this
1581 /// value is used as the upper bound of the safe AVL.
1582 std::optional<unsigned> MaxSafeElements;
1583
1584 /// A map holding scalar costs for different vectorization factors. The
1585 /// presence of a cost for an instruction in the mapping indicates that the
1586 /// instruction will be scalarized when vectorizing with the associated
1587 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1588 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1589
1590 /// Holds the instructions known to be uniform after vectorization.
1591 /// The data is collected per VF.
1592 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1593
1594 /// Holds the instructions known to be scalar after vectorization.
1595 /// The data is collected per VF.
1596 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1597
1598 /// Holds the instructions (address computations) that are forced to be
1599 /// scalarized.
1600 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1601
1602 /// PHINodes of the reductions that should be expanded in-loop.
1603 SmallPtrSet<PHINode *, 4> InLoopReductions;
1604
1605 /// A Map of inloop reduction operations and their immediate chain operand.
1606 /// FIXME: This can be removed once reductions can be costed correctly in
1607 /// VPlan. This was added to allow quick lookup of the inloop operations.
1608 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1609
1610 /// Returns the expected difference in cost from scalarizing the expression
1611 /// feeding a predicated instruction \p PredInst. The instructions to
1612 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1613 /// non-negative return value implies the expression will be scalarized.
1614 /// Currently, only single-use chains are considered for scalarization.
1615 InstructionCost computePredInstDiscount(Instruction *PredInst,
1616 ScalarCostsTy &ScalarCosts,
1617 ElementCount VF);
1618
1619 /// Collect the instructions that are uniform after vectorization. An
1620 /// instruction is uniform if we represent it with a single scalar value in
1621 /// the vectorized loop corresponding to each vector iteration. Examples of
1622 /// uniform instructions include pointer operands of consecutive or
1623 /// interleaved memory accesses. Note that although uniformity implies an
1624 /// instruction will be scalar, the reverse is not true. In general, a
1625 /// scalarized instruction will be represented by VF scalar values in the
1626 /// vectorized loop, each corresponding to an iteration of the original
1627 /// scalar loop.
1628 void collectLoopUniforms(ElementCount VF);
1629
1630 /// Collect the instructions that are scalar after vectorization. An
1631 /// instruction is scalar if it is known to be uniform or will be scalarized
1632 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1633 /// to the list if they are used by a load/store instruction that is marked as
1634 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1635 /// VF values in the vectorized loop, each corresponding to an iteration of
1636 /// the original scalar loop.
1637 void collectLoopScalars(ElementCount VF);
1638
1639 /// Keeps cost model vectorization decision and cost for instructions.
1640 /// Right now it is used for memory instructions only.
1641 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1642 std::pair<InstWidening, InstructionCost>>;
1643
1644 DecisionList WideningDecisions;
1645
1646 using CallDecisionList =
1647 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1648
1649 CallDecisionList CallWideningDecisions;
1650
1651 /// Returns true if \p V is expected to be vectorized and it needs to be
1652 /// extracted.
1653 bool needsExtract(Value *V, ElementCount VF) const {
1655 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1656 TheLoop->isLoopInvariant(I) ||
1658 (isa<CallInst>(I) &&
1660 return false;
1661
1662 // Assume we can vectorize V (and hence we need extraction) if the
1663 // scalars are not computed yet. This can happen, because it is called
1664 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1665 // the scalars are collected. That should be a safe assumption in most
1666 // cases, because we check if the operands have vectorizable types
1667 // beforehand in LoopVectorizationLegality.
1668 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1669 };
1670
1671 /// Returns a range containing only operands needing to be extracted.
1672 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1673 ElementCount VF) const {
1674
1675 SmallPtrSet<const Value *, 4> UniqueOperands;
1677 for (Value *Op : Ops) {
1678 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1679 !needsExtract(Op, VF))
1680 continue;
1681 Res.push_back(Op);
1682 }
1683 return Res;
1684 }
1685
1686public:
1687 /// The loop that we evaluate.
1689
1690 /// Predicated scalar evolution analysis.
1692
1693 /// Loop Info analysis.
1695
1696 /// Vectorization legality.
1698
1699 /// Vector target information.
1701
1702 /// Target Library Info.
1704
1705 /// Demanded bits analysis.
1707
1708 /// Assumption cache.
1710
1711 /// Interface to emit optimization remarks.
1713
1715
1716 /// Loop Vectorize Hint.
1718
1719 /// The interleave access information contains groups of interleaved accesses
1720 /// with the same stride and close to each other.
1722
1723 /// Values to ignore in the cost model.
1725
1726 /// Values to ignore in the cost model when VF > 1.
1728
1729 /// All element types found in the loop.
1731
1732 /// The kind of cost that we are calculating
1734
1735 /// Whether this loop should be optimized for size based on function attribute
1736 /// or profile information.
1738
1739 /// The highest VF possible for this loop, without using MaxBandwidth.
1741};
1742} // end namespace llvm
1743
1744namespace {
1745/// Helper struct to manage generating runtime checks for vectorization.
1746///
1747/// The runtime checks are created up-front in temporary blocks to allow better
1748/// estimating the cost and un-linked from the existing IR. After deciding to
1749/// vectorize, the checks are moved back. If deciding not to vectorize, the
1750/// temporary blocks are completely removed.
1751class GeneratedRTChecks {
1752 /// Basic block which contains the generated SCEV checks, if any.
1753 BasicBlock *SCEVCheckBlock = nullptr;
1754
1755 /// The value representing the result of the generated SCEV checks. If it is
1756 /// nullptr no SCEV checks have been generated.
1757 Value *SCEVCheckCond = nullptr;
1758
1759 /// Basic block which contains the generated memory runtime checks, if any.
1760 BasicBlock *MemCheckBlock = nullptr;
1761
1762 /// The value representing the result of the generated memory runtime checks.
1763 /// If it is nullptr no memory runtime checks have been generated.
1764 Value *MemRuntimeCheckCond = nullptr;
1765
1766 DominatorTree *DT;
1767 LoopInfo *LI;
1769
1770 SCEVExpander SCEVExp;
1771 SCEVExpander MemCheckExp;
1772
1773 bool CostTooHigh = false;
1774
1775 Loop *OuterLoop = nullptr;
1776
1778
1779 /// The kind of cost that we are calculating
1781
1782public:
1783 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1786 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"),
1787 MemCheckExp(*PSE.getSE(), DL, "scev.check"), PSE(PSE),
1788 CostKind(CostKind) {}
1789
1790 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1791 /// accurately estimate the cost of the runtime checks. The blocks are
1792 /// un-linked from the IR and are added back during vector code generation. If
1793 /// there is no vector code generation, the check blocks are removed
1794 /// completely.
1795 void create(Loop *L, const LoopAccessInfo &LAI,
1796 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1797
1798 // Hard cutoff to limit compile-time increase in case a very large number of
1799 // runtime checks needs to be generated.
1800 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1801 // profile info.
1802 CostTooHigh =
1804 if (CostTooHigh)
1805 return;
1806
1807 BasicBlock *LoopHeader = L->getHeader();
1808 BasicBlock *Preheader = L->getLoopPreheader();
1809
1810 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1811 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1812 // may be used by SCEVExpander. The blocks will be un-linked from their
1813 // predecessors and removed from LI & DT at the end of the function.
1814 if (!UnionPred.isAlwaysTrue()) {
1815 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1816 nullptr, "vector.scevcheck");
1817
1818 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1819 &UnionPred, SCEVCheckBlock->getTerminator());
1820 if (isa<Constant>(SCEVCheckCond)) {
1821 // Clean up directly after expanding the predicate to a constant, to
1822 // avoid further expansions re-using anything left over from SCEVExp.
1823 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1824 SCEVCleaner.cleanup();
1825 }
1826 }
1827
1828 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1829 if (RtPtrChecking.Need) {
1830 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1831 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1832 "vector.memcheck");
1833
1834 auto DiffChecks = RtPtrChecking.getDiffChecks();
1835 if (DiffChecks) {
1836 Value *RuntimeVF = nullptr;
1837 MemRuntimeCheckCond = addDiffRuntimeChecks(
1838 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1839 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1840 if (!RuntimeVF)
1841 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1842 return RuntimeVF;
1843 },
1844 IC);
1845 } else {
1846 MemRuntimeCheckCond = addRuntimeChecks(
1847 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1849 }
1850 assert(MemRuntimeCheckCond &&
1851 "no RT checks generated although RtPtrChecking "
1852 "claimed checks are required");
1853 }
1854
1855 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1856
1857 if (!MemCheckBlock && !SCEVCheckBlock)
1858 return;
1859
1860 // Unhook the temporary block with the checks, update various places
1861 // accordingly.
1862 if (SCEVCheckBlock)
1863 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1864 if (MemCheckBlock)
1865 MemCheckBlock->replaceAllUsesWith(Preheader);
1866
1867 if (SCEVCheckBlock) {
1868 SCEVCheckBlock->getTerminator()->moveBefore(
1869 Preheader->getTerminator()->getIterator());
1870 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1871 UI->setDebugLoc(DebugLoc::getTemporary());
1872 Preheader->getTerminator()->eraseFromParent();
1873 }
1874 if (MemCheckBlock) {
1875 MemCheckBlock->getTerminator()->moveBefore(
1876 Preheader->getTerminator()->getIterator());
1877 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1878 UI->setDebugLoc(DebugLoc::getTemporary());
1879 Preheader->getTerminator()->eraseFromParent();
1880 }
1881
1882 DT->changeImmediateDominator(LoopHeader, Preheader);
1883 if (MemCheckBlock) {
1884 DT->eraseNode(MemCheckBlock);
1885 LI->removeBlock(MemCheckBlock);
1886 }
1887 if (SCEVCheckBlock) {
1888 DT->eraseNode(SCEVCheckBlock);
1889 LI->removeBlock(SCEVCheckBlock);
1890 }
1891
1892 // Outer loop is used as part of the later cost calculations.
1893 OuterLoop = L->getParentLoop();
1894 }
1895
1897 if (SCEVCheckBlock || MemCheckBlock)
1898 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1899
1900 if (CostTooHigh) {
1902 Cost.setInvalid();
1903 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1904 return Cost;
1905 }
1906
1907 InstructionCost RTCheckCost = 0;
1908 if (SCEVCheckBlock)
1909 for (Instruction &I : *SCEVCheckBlock) {
1910 if (SCEVCheckBlock->getTerminator() == &I)
1911 continue;
1913 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1914 RTCheckCost += C;
1915 }
1916 if (MemCheckBlock) {
1917 InstructionCost MemCheckCost = 0;
1918 for (Instruction &I : *MemCheckBlock) {
1919 if (MemCheckBlock->getTerminator() == &I)
1920 continue;
1922 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1923 MemCheckCost += C;
1924 }
1925
1926 // If the runtime memory checks are being created inside an outer loop
1927 // we should find out if these checks are outer loop invariant. If so,
1928 // the checks will likely be hoisted out and so the effective cost will
1929 // reduce according to the outer loop trip count.
1930 if (OuterLoop) {
1931 ScalarEvolution *SE = MemCheckExp.getSE();
1932 // TODO: If profitable, we could refine this further by analysing every
1933 // individual memory check, since there could be a mixture of loop
1934 // variant and invariant checks that mean the final condition is
1935 // variant.
1936 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1937 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1938 // It seems reasonable to assume that we can reduce the effective
1939 // cost of the checks even when we know nothing about the trip
1940 // count. Assume that the outer loop executes at least twice.
1941 unsigned BestTripCount = 2;
1942
1943 // Get the best known TC estimate.
1944 if (auto EstimatedTC = getSmallBestKnownTC(
1945 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1946 if (EstimatedTC->isFixed())
1947 BestTripCount = EstimatedTC->getFixedValue();
1948
1949 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1950
1951 // Let's ensure the cost is always at least 1.
1952 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1953 (InstructionCost::CostType)1);
1954
1955 if (BestTripCount > 1)
1957 << "We expect runtime memory checks to be hoisted "
1958 << "out of the outer loop. Cost reduced from "
1959 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1960
1961 MemCheckCost = NewMemCheckCost;
1962 }
1963 }
1964
1965 RTCheckCost += MemCheckCost;
1966 }
1967
1968 if (SCEVCheckBlock || MemCheckBlock)
1969 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
1970 << "\n");
1971
1972 return RTCheckCost;
1973 }
1974
1975 /// Remove the created SCEV & memory runtime check blocks & instructions, if
1976 /// unused.
1977 ~GeneratedRTChecks() {
1978 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1979 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1980 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
1981 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
1982 if (SCEVChecksUsed)
1983 SCEVCleaner.markResultUsed();
1984
1985 if (MemChecksUsed) {
1986 MemCheckCleaner.markResultUsed();
1987 } else {
1988 auto &SE = *MemCheckExp.getSE();
1989 // Memory runtime check generation creates compares that use expanded
1990 // values. Remove them before running the SCEVExpanderCleaners.
1991 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1992 if (MemCheckExp.isInsertedInstruction(&I))
1993 continue;
1994 SE.forgetValue(&I);
1995 I.eraseFromParent();
1996 }
1997 }
1998 MemCheckCleaner.cleanup();
1999 SCEVCleaner.cleanup();
2000
2001 if (!SCEVChecksUsed)
2002 SCEVCheckBlock->eraseFromParent();
2003 if (!MemChecksUsed)
2004 MemCheckBlock->eraseFromParent();
2005 }
2006
2007 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2008 /// outside VPlan.
2009 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2010 using namespace llvm::PatternMatch;
2011 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2012 return {nullptr, nullptr};
2013
2014 return {SCEVCheckCond, SCEVCheckBlock};
2015 }
2016
2017 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2018 /// outside VPlan.
2019 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2020 using namespace llvm::PatternMatch;
2021 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2022 return {nullptr, nullptr};
2023 return {MemRuntimeCheckCond, MemCheckBlock};
2024 }
2025
2026 /// Return true if any runtime checks have been added
2027 bool hasChecks() const {
2028 return getSCEVChecks().first || getMemRuntimeChecks().first;
2029 }
2030};
2031} // namespace
2032
2038
2043
2044// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2045// vectorization. The loop needs to be annotated with #pragma omp simd
2046// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2047// vector length information is not provided, vectorization is not considered
2048// explicit. Interleave hints are not allowed either. These limitations will be
2049// relaxed in the future.
2050// Please, note that we are currently forced to abuse the pragma 'clang
2051// vectorize' semantics. This pragma provides *auto-vectorization hints*
2052// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2053// provides *explicit vectorization hints* (LV can bypass legal checks and
2054// assume that vectorization is legal). However, both hints are implemented
2055// using the same metadata (llvm.loop.vectorize, processed by
2056// LoopVectorizeHints). This will be fixed in the future when the native IR
2057// representation for pragma 'omp simd' is introduced.
2058static bool isExplicitVecOuterLoop(Loop *OuterLp,
2060 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2061 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2062
2063 // Only outer loops with an explicit vectorization hint are supported.
2064 // Unannotated outer loops are ignored.
2066 return false;
2067
2068 Function *Fn = OuterLp->getHeader()->getParent();
2069 if (!Hints.allowVectorization(Fn, OuterLp,
2070 true /*VectorizeOnlyWhenForced*/)) {
2071 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2072 return false;
2073 }
2074
2075 if (Hints.getInterleave() > 1) {
2076 // TODO: Interleave support is future work.
2077 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2078 "outer loops.\n");
2079 Hints.emitRemarkWithHints();
2080 return false;
2081 }
2082
2083 return true;
2084}
2085
2089 // Collect inner loops and outer loops without irreducible control flow. For
2090 // now, only collect outer loops that have explicit vectorization hints. If we
2091 // are stress testing the VPlan H-CFG construction, we collect the outermost
2092 // loop of every loop nest.
2093 if (L.isInnermost() || VPlanBuildStressTest ||
2095 LoopBlocksRPO RPOT(&L);
2096 RPOT.perform(LI);
2098 V.push_back(&L);
2099 // TODO: Collect inner loops inside marked outer loops in case
2100 // vectorization fails for the outer loop. Do not invoke
2101 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2102 // already known to be reducible. We can use an inherited attribute for
2103 // that.
2104 return;
2105 }
2106 }
2107 for (Loop *InnerL : L)
2108 collectSupportedLoops(*InnerL, LI, ORE, V);
2109}
2110
2111//===----------------------------------------------------------------------===//
2112// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2113// LoopVectorizationCostModel and LoopVectorizationPlanner.
2114//===----------------------------------------------------------------------===//
2115
2116/// Compute the transformed value of Index at offset StartValue using step
2117/// StepValue.
2118/// For integer induction, returns StartValue + Index * StepValue.
2119/// For pointer induction, returns StartValue[Index * StepValue].
2120/// FIXME: The newly created binary instructions should contain nsw/nuw
2121/// flags, which can be found from the original scalar operations.
2122static Value *
2124 Value *Step,
2126 const BinaryOperator *InductionBinOp) {
2127 using namespace llvm::PatternMatch;
2128 Type *StepTy = Step->getType();
2129 Value *CastedIndex = StepTy->isIntegerTy()
2130 ? B.CreateSExtOrTrunc(Index, StepTy)
2131 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2132 if (CastedIndex != Index) {
2133 CastedIndex->setName(CastedIndex->getName() + ".cast");
2134 Index = CastedIndex;
2135 }
2136
2137 // Note: the IR at this point is broken. We cannot use SE to create any new
2138 // SCEV and then expand it, hoping that SCEV's simplification will give us
2139 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2140 // lead to various SCEV crashes. So all we can do is to use builder and rely
2141 // on InstCombine for future simplifications. Here we handle some trivial
2142 // cases only.
2143 auto CreateAdd = [&B](Value *X, Value *Y) {
2144 assert(X->getType() == Y->getType() && "Types don't match!");
2145 if (match(X, m_ZeroInt()))
2146 return Y;
2147 if (match(Y, m_ZeroInt()))
2148 return X;
2149 return B.CreateAdd(X, Y);
2150 };
2151
2152 // We allow X to be a vector type, in which case Y will potentially be
2153 // splatted into a vector with the same element count.
2154 auto CreateMul = [&B](Value *X, Value *Y) {
2155 assert(X->getType()->getScalarType() == Y->getType() &&
2156 "Types don't match!");
2157 if (match(X, m_One()))
2158 return Y;
2159 if (match(Y, m_One()))
2160 return X;
2161 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2162 if (XVTy && !isa<VectorType>(Y->getType()))
2163 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2164 return B.CreateMul(X, Y);
2165 };
2166
2167 switch (InductionKind) {
2169 assert(!isa<VectorType>(Index->getType()) &&
2170 "Vector indices not supported for integer inductions yet");
2171 assert(Index->getType() == StartValue->getType() &&
2172 "Index type does not match StartValue type");
2173 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2174 return B.CreateSub(StartValue, Index);
2175 auto *Offset = CreateMul(Index, Step);
2176 return CreateAdd(StartValue, Offset);
2177 }
2179 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2181 assert(!isa<VectorType>(Index->getType()) &&
2182 "Vector indices not supported for FP inductions yet");
2183 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2184 assert(InductionBinOp &&
2185 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2186 InductionBinOp->getOpcode() == Instruction::FSub) &&
2187 "Original bin op should be defined for FP induction");
2188
2189 Value *MulExp = B.CreateFMul(Step, Index);
2190 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2191 "induction");
2192 }
2194 return nullptr;
2195 }
2196 llvm_unreachable("invalid enum");
2197}
2198
2199static std::optional<unsigned> getMaxVScale(const Function &F,
2200 const TargetTransformInfo &TTI) {
2201 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2202 return MaxVScale;
2203
2204 if (F.hasFnAttribute(Attribute::VScaleRange))
2205 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2206
2207 return std::nullopt;
2208}
2209
2210/// For the given VF and UF and maximum trip count computed for the loop, return
2211/// whether the induction variable might overflow in the vectorized loop. If not,
2212/// then we know a runtime overflow check always evaluates to false and can be
2213/// removed.
2215 const LoopVectorizationCostModel *Cost,
2216 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2217 // Always be conservative if we don't know the exact unroll factor.
2218 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2219
2220 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2221 APInt MaxUIntTripCount = IdxTy->getMask();
2222
2223 // We know the runtime overflow check is known false iff the (max) trip-count
2224 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2225 // the vector loop induction variable.
2226 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2227 uint64_t MaxVF = VF.getKnownMinValue();
2228 if (VF.isScalable()) {
2229 std::optional<unsigned> MaxVScale =
2230 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2231 if (!MaxVScale)
2232 return false;
2233 MaxVF *= *MaxVScale;
2234 }
2235
2236 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2237 }
2238
2239 return false;
2240}
2241
2242// Return whether we allow using masked interleave-groups (for dealing with
2243// strided loads/stores that reside in predicated blocks, or for dealing
2244// with gaps).
2246 // If an override option has been passed in for interleaved accesses, use it.
2247 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2249
2250 return TTI.enableMaskedInterleavedAccessVectorization();
2251}
2252
2254 BasicBlock *CheckIRBB) {
2255 // Note: The block with the minimum trip-count check is already connected
2256 // during earlier VPlan construction.
2257 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2258 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2259 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2260 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2261 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2262 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2263 PreVectorPH = CheckVPIRBB;
2264 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2265 PreVectorPH->swapSuccessors();
2266
2267 // We just connected a new block to the scalar preheader. Update all
2268 // VPPhis by adding an incoming value for it, replicating the last value.
2269 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2270 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2271 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2272 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2273 "must have incoming values for all operands");
2274 R.addOperand(R.getOperand(NumPredecessors - 2));
2275 }
2276}
2277
2279 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2280 // Generate code to check if the loop's trip count is less than VF * UF, or
2281 // equal to it in case a scalar epilogue is required; this implies that the
2282 // vector trip count is zero. This check also covers the case where adding one
2283 // to the backedge-taken count overflowed leading to an incorrect trip count
2284 // of zero. In this case we will also jump to the scalar loop.
2285 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2287
2288 // Reuse existing vector loop preheader for TC checks.
2289 // Note that new preheader block is generated for vector loop.
2290 BasicBlock *const TCCheckBlock = VectorPH;
2292 TCCheckBlock->getContext(),
2293 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2294 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2295
2296 // If tail is to be folded, vector loop takes care of all iterations.
2298 Type *CountTy = Count->getType();
2299 Value *CheckMinIters = Builder.getFalse();
2300 auto CreateStep = [&]() -> Value * {
2301 // Create step with max(MinProTripCount, UF * VF).
2302 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2303 return createStepForVF(Builder, CountTy, VF, UF);
2304
2305 Value *MinProfTC =
2306 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2307 if (!VF.isScalable())
2308 return MinProfTC;
2309 return Builder.CreateBinaryIntrinsic(
2310 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2311 };
2312
2313 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2314 if (Style == TailFoldingStyle::None) {
2315 Value *Step = CreateStep();
2316 ScalarEvolution &SE = *PSE.getSE();
2317 // TODO: Emit unconditional branch to vector preheader instead of
2318 // conditional branch with known condition.
2319 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2320 // Check if the trip count is < the step.
2321 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2322 // TODO: Ensure step is at most the trip count when determining max VF and
2323 // UF, w/o tail folding.
2324 CheckMinIters = Builder.getTrue();
2326 TripCountSCEV, SE.getSCEV(Step))) {
2327 // Generate the minimum iteration check only if we cannot prove the
2328 // check is known to be true, or known to be false.
2329 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2330 } // else step known to be < trip count, use CheckMinIters preset to false.
2331 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2334 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2335 // an overflow to zero when updating induction variables and so an
2336 // additional overflow check is required before entering the vector loop.
2337
2338 // Get the maximum unsigned value for the type.
2339 Value *MaxUIntTripCount =
2340 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2341 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2342
2343 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2344 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2345 }
2346 return CheckMinIters;
2347}
2348
2349/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2350/// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
2351/// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
2352/// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
2354 BasicBlock *IRBB) {
2355 VPIRBasicBlock *IRVPBB = VPBB->getPlan()->createVPIRBasicBlock(IRBB);
2356 auto IP = IRVPBB->begin();
2357 for (auto &R : make_early_inc_range(VPBB->phis()))
2358 R.moveBefore(*IRVPBB, IP);
2359
2360 for (auto &R :
2362 R.moveBefore(*IRVPBB, IRVPBB->end());
2363
2364 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2365 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2366 return IRVPBB;
2367}
2368
2370 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2371 assert(VectorPH && "Invalid loop structure");
2372 assert((OrigLoop->getUniqueLatchExitBlock() ||
2373 Cost->requiresScalarEpilogue(VF.isVector())) &&
2374 "loops not exiting via the latch without required epilogue?");
2375
2376 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2377 // wrapping the newly created scalar preheader here at the moment, because the
2378 // Plan's scalar preheader may be unreachable at this point. Instead it is
2379 // replaced in executePlan.
2380 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2381 Twine(Prefix) + "scalar.ph");
2382}
2383
2384/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2385/// expansion results.
2387 const SCEV2ValueTy &ExpandedSCEVs) {
2388 const SCEV *Step = ID.getStep();
2389 if (auto *C = dyn_cast<SCEVConstant>(Step))
2390 return C->getValue();
2391 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2392 return U->getValue();
2393 Value *V = ExpandedSCEVs.lookup(Step);
2394 assert(V && "SCEV must be expanded at this point");
2395 return V;
2396}
2397
2398/// Knowing that loop \p L executes a single vector iteration, add instructions
2399/// that will get simplified and thus should not have any cost to \p
2400/// InstsToIgnore.
2403 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2404 auto *Cmp = L->getLatchCmpInst();
2405 if (Cmp)
2406 InstsToIgnore.insert(Cmp);
2407 for (const auto &KV : IL) {
2408 // Extract the key by hand so that it can be used in the lambda below. Note
2409 // that captured structured bindings are a C++20 extension.
2410 const PHINode *IV = KV.first;
2411
2412 // Get next iteration value of the induction variable.
2413 Instruction *IVInst =
2414 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2415 if (all_of(IVInst->users(),
2416 [&](const User *U) { return U == IV || U == Cmp; }))
2417 InstsToIgnore.insert(IVInst);
2418 }
2419}
2420
2422 // Create a new IR basic block for the scalar preheader.
2423 BasicBlock *ScalarPH = createScalarPreheader("");
2424 return ScalarPH->getSinglePredecessor();
2425}
2426
2427namespace {
2428
2429struct CSEDenseMapInfo {
2430 static bool canHandle(const Instruction *I) {
2433 }
2434
2435 static inline Instruction *getEmptyKey() {
2437 }
2438
2439 static inline Instruction *getTombstoneKey() {
2440 return DenseMapInfo<Instruction *>::getTombstoneKey();
2441 }
2442
2443 static unsigned getHashValue(const Instruction *I) {
2444 assert(canHandle(I) && "Unknown instruction!");
2445 return hash_combine(I->getOpcode(),
2446 hash_combine_range(I->operand_values()));
2447 }
2448
2449 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2450 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2451 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2452 return LHS == RHS;
2453 return LHS->isIdenticalTo(RHS);
2454 }
2455};
2456
2457} // end anonymous namespace
2458
2459///Perform cse of induction variable instructions.
2460static void cse(BasicBlock *BB) {
2461 // Perform simple cse.
2463 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2464 if (!CSEDenseMapInfo::canHandle(&In))
2465 continue;
2466
2467 // Check if we can replace this instruction with any of the
2468 // visited instructions.
2469 if (Instruction *V = CSEMap.lookup(&In)) {
2470 In.replaceAllUsesWith(V);
2471 In.eraseFromParent();
2472 continue;
2473 }
2474
2475 CSEMap[&In] = &In;
2476 }
2477}
2478
2479/// This function attempts to return a value that represents the ElementCount
2480/// at runtime. For fixed-width VFs we know this precisely at compile
2481/// time, but for scalable VFs we calculate it based on an estimate of the
2482/// vscale value.
2484 std::optional<unsigned> VScale) {
2485 unsigned EstimatedVF = VF.getKnownMinValue();
2486 if (VF.isScalable())
2487 if (VScale)
2488 EstimatedVF *= *VScale;
2489 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2490 return EstimatedVF;
2491}
2492
2495 ElementCount VF) const {
2496 // We only need to calculate a cost if the VF is scalar; for actual vectors
2497 // we should already have a pre-calculated cost at each VF.
2498 if (!VF.isScalar())
2499 return getCallWideningDecision(CI, VF).Cost;
2500
2501 Type *RetTy = CI->getType();
2503 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2504 return *RedCost;
2505
2507 for (auto &ArgOp : CI->args())
2508 Tys.push_back(ArgOp->getType());
2509
2510 InstructionCost ScalarCallCost =
2511 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2512
2513 // If this is an intrinsic we may have a lower cost for it.
2516 return std::min(ScalarCallCost, IntrinsicCost);
2517 }
2518 return ScalarCallCost;
2519}
2520
2522 if (VF.isScalar() || !canVectorizeTy(Ty))
2523 return Ty;
2524 return toVectorizedTy(Ty, VF);
2525}
2526
2529 ElementCount VF) const {
2531 assert(ID && "Expected intrinsic call!");
2532 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2533 FastMathFlags FMF;
2534 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2535 FMF = FPMO->getFastMathFlags();
2536
2539 SmallVector<Type *> ParamTys;
2540 std::transform(FTy->param_begin(), FTy->param_end(),
2541 std::back_inserter(ParamTys),
2542 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2543
2544 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2547 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2548}
2549
2551 // Fix widened non-induction PHIs by setting up the PHI operands.
2552 fixNonInductionPHIs(State);
2553
2554 // Don't apply optimizations below when no (vector) loop remains, as they all
2555 // require one at the moment.
2556 VPBasicBlock *HeaderVPBB =
2557 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2558 if (!HeaderVPBB)
2559 return;
2560
2561 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2562
2563 // Remove redundant induction instructions.
2564 cse(HeaderBB);
2565}
2566
2568 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2570 for (VPRecipeBase &P : VPBB->phis()) {
2572 if (!VPPhi)
2573 continue;
2574 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2575 // Make sure the builder has a valid insert point.
2576 Builder.SetInsertPoint(NewPhi);
2577 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2578 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2579 }
2580 }
2581}
2582
2583void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2584 // We should not collect Scalars more than once per VF. Right now, this
2585 // function is called from collectUniformsAndScalars(), which already does
2586 // this check. Collecting Scalars for VF=1 does not make any sense.
2587 assert(VF.isVector() && !Scalars.contains(VF) &&
2588 "This function should not be visited twice for the same VF");
2589
2590 // This avoids any chances of creating a REPLICATE recipe during planning
2591 // since that would result in generation of scalarized code during execution,
2592 // which is not supported for scalable vectors.
2593 if (VF.isScalable()) {
2594 Scalars[VF].insert_range(Uniforms[VF]);
2595 return;
2596 }
2597
2599
2600 // These sets are used to seed the analysis with pointers used by memory
2601 // accesses that will remain scalar.
2603 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2604 auto *Latch = TheLoop->getLoopLatch();
2605
2606 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2607 // The pointer operands of loads and stores will be scalar as long as the
2608 // memory access is not a gather or scatter operation. The value operand of a
2609 // store will remain scalar if the store is scalarized.
2610 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2611 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2612 assert(WideningDecision != CM_Unknown &&
2613 "Widening decision should be ready at this moment");
2614 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2615 if (Ptr == Store->getValueOperand())
2616 return WideningDecision == CM_Scalarize;
2617 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2618 "Ptr is neither a value or pointer operand");
2619 return WideningDecision != CM_GatherScatter;
2620 };
2621
2622 // A helper that returns true if the given value is a getelementptr
2623 // instruction contained in the loop.
2624 auto IsLoopVaryingGEP = [&](Value *V) {
2625 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2626 };
2627
2628 // A helper that evaluates a memory access's use of a pointer. If the use will
2629 // be a scalar use and the pointer is only used by memory accesses, we place
2630 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2631 // PossibleNonScalarPtrs.
2632 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2633 // We only care about bitcast and getelementptr instructions contained in
2634 // the loop.
2635 if (!IsLoopVaryingGEP(Ptr))
2636 return;
2637
2638 // If the pointer has already been identified as scalar (e.g., if it was
2639 // also identified as uniform), there's nothing to do.
2640 auto *I = cast<Instruction>(Ptr);
2641 if (Worklist.count(I))
2642 return;
2643
2644 // If the use of the pointer will be a scalar use, and all users of the
2645 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2646 // place the pointer in PossibleNonScalarPtrs.
2647 if (IsScalarUse(MemAccess, Ptr) &&
2649 ScalarPtrs.insert(I);
2650 else
2651 PossibleNonScalarPtrs.insert(I);
2652 };
2653
2654 // We seed the scalars analysis with three classes of instructions: (1)
2655 // instructions marked uniform-after-vectorization and (2) bitcast,
2656 // getelementptr and (pointer) phi instructions used by memory accesses
2657 // requiring a scalar use.
2658 //
2659 // (1) Add to the worklist all instructions that have been identified as
2660 // uniform-after-vectorization.
2661 Worklist.insert_range(Uniforms[VF]);
2662
2663 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2664 // memory accesses requiring a scalar use. The pointer operands of loads and
2665 // stores will be scalar unless the operation is a gather or scatter.
2666 // The value operand of a store will remain scalar if the store is scalarized.
2667 for (auto *BB : TheLoop->blocks())
2668 for (auto &I : *BB) {
2669 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2670 EvaluatePtrUse(Load, Load->getPointerOperand());
2671 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2672 EvaluatePtrUse(Store, Store->getPointerOperand());
2673 EvaluatePtrUse(Store, Store->getValueOperand());
2674 }
2675 }
2676 for (auto *I : ScalarPtrs)
2677 if (!PossibleNonScalarPtrs.count(I)) {
2678 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2679 Worklist.insert(I);
2680 }
2681
2682 // Insert the forced scalars.
2683 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2684 // induction variable when the PHI user is scalarized.
2685 auto ForcedScalar = ForcedScalars.find(VF);
2686 if (ForcedScalar != ForcedScalars.end())
2687 for (auto *I : ForcedScalar->second) {
2688 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2689 Worklist.insert(I);
2690 }
2691
2692 // Expand the worklist by looking through any bitcasts and getelementptr
2693 // instructions we've already identified as scalar. This is similar to the
2694 // expansion step in collectLoopUniforms(); however, here we're only
2695 // expanding to include additional bitcasts and getelementptr instructions.
2696 unsigned Idx = 0;
2697 while (Idx != Worklist.size()) {
2698 Instruction *Dst = Worklist[Idx++];
2699 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2700 continue;
2701 auto *Src = cast<Instruction>(Dst->getOperand(0));
2702 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2703 auto *J = cast<Instruction>(U);
2704 return !TheLoop->contains(J) || Worklist.count(J) ||
2705 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2706 IsScalarUse(J, Src));
2707 })) {
2708 Worklist.insert(Src);
2709 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2710 }
2711 }
2712
2713 // An induction variable will remain scalar if all users of the induction
2714 // variable and induction variable update remain scalar.
2715 for (const auto &Induction : Legal->getInductionVars()) {
2716 auto *Ind = Induction.first;
2717 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2718
2719 // If tail-folding is applied, the primary induction variable will be used
2720 // to feed a vector compare.
2721 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2722 continue;
2723
2724 // Returns true if \p Indvar is a pointer induction that is used directly by
2725 // load/store instruction \p I.
2726 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2727 Instruction *I) {
2728 return Induction.second.getKind() ==
2731 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2732 };
2733
2734 // Determine if all users of the induction variable are scalar after
2735 // vectorization.
2736 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2737 auto *I = cast<Instruction>(U);
2738 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2739 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2740 });
2741 if (!ScalarInd)
2742 continue;
2743
2744 // If the induction variable update is a fixed-order recurrence, neither the
2745 // induction variable or its update should be marked scalar after
2746 // vectorization.
2747 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2748 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2749 continue;
2750
2751 // Determine if all users of the induction variable update instruction are
2752 // scalar after vectorization.
2753 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2754 auto *I = cast<Instruction>(U);
2755 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2756 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2757 });
2758 if (!ScalarIndUpdate)
2759 continue;
2760
2761 // The induction variable and its update instruction will remain scalar.
2762 Worklist.insert(Ind);
2763 Worklist.insert(IndUpdate);
2764 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2765 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2766 << "\n");
2767 }
2768
2769 Scalars[VF].insert_range(Worklist);
2770}
2771
2773 Instruction *I, ElementCount VF) const {
2774 if (!isPredicatedInst(I))
2775 return false;
2776
2777 // Do we have a non-scalar lowering for this predicated
2778 // instruction? No - it is scalar with predication.
2779 switch(I->getOpcode()) {
2780 default:
2781 return true;
2782 case Instruction::Call:
2783 if (VF.isScalar())
2784 return true;
2786 case Instruction::Load:
2787 case Instruction::Store: {
2789 auto *Ty = getLoadStoreType(I);
2790 unsigned AS = getLoadStoreAddressSpace(I);
2791 Type *VTy = Ty;
2792 if (VF.isVector())
2793 VTy = VectorType::get(Ty, VF);
2794 const Align Alignment = getLoadStoreAlignment(I);
2795 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2796 TTI.isLegalMaskedGather(VTy, Alignment))
2797 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2798 TTI.isLegalMaskedScatter(VTy, Alignment));
2799 }
2800 case Instruction::UDiv:
2801 case Instruction::SDiv:
2802 case Instruction::SRem:
2803 case Instruction::URem: {
2804 // We have the option to use the safe-divisor idiom to avoid predication.
2805 // The cost based decision here will always select safe-divisor for
2806 // scalable vectors as scalarization isn't legal.
2807 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2808 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2809 }
2810 }
2811}
2812
2813// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2815 // TODO: We can use the loop-preheader as context point here and get
2816 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2818 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2820 return false;
2821
2822 // If the instruction was executed conditionally in the original scalar loop,
2823 // predication is needed with a mask whose lanes are all possibly inactive.
2824 if (Legal->blockNeedsPredication(I->getParent()))
2825 return true;
2826
2827 // If we're not folding the tail by masking, predication is unnecessary.
2828 if (!foldTailByMasking())
2829 return false;
2830
2831 // All that remain are instructions with side-effects originally executed in
2832 // the loop unconditionally, but now execute under a tail-fold mask (only)
2833 // having at least one active lane (the first). If the side-effects of the
2834 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2835 // - it will cause the same side-effects as when masked.
2836 switch(I->getOpcode()) {
2837 default:
2839 "instruction should have been considered by earlier checks");
2840 case Instruction::Call:
2841 // Side-effects of a Call are assumed to be non-invariant, needing a
2842 // (fold-tail) mask.
2843 assert(Legal->isMaskRequired(I) &&
2844 "should have returned earlier for calls not needing a mask");
2845 return true;
2846 case Instruction::Load:
2847 // If the address is loop invariant no predication is needed.
2848 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2849 case Instruction::Store: {
2850 // For stores, we need to prove both speculation safety (which follows from
2851 // the same argument as loads), but also must prove the value being stored
2852 // is correct. The easiest form of the later is to require that all values
2853 // stored are the same.
2854 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2855 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2856 }
2857 case Instruction::UDiv:
2858 case Instruction::SDiv:
2859 case Instruction::SRem:
2860 case Instruction::URem:
2861 // If the divisor is loop-invariant no predication is needed.
2862 return !Legal->isInvariant(I->getOperand(1));
2863 }
2864}
2865
2866std::pair<InstructionCost, InstructionCost>
2868 ElementCount VF) const {
2869 assert(I->getOpcode() == Instruction::UDiv ||
2870 I->getOpcode() == Instruction::SDiv ||
2871 I->getOpcode() == Instruction::SRem ||
2872 I->getOpcode() == Instruction::URem);
2874
2875 // Scalarization isn't legal for scalable vector types
2876 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2877 if (!VF.isScalable()) {
2878 // Get the scalarization cost and scale this amount by the probability of
2879 // executing the predicated block. If the instruction is not predicated,
2880 // we fall through to the next case.
2881 ScalarizationCost = 0;
2882
2883 // These instructions have a non-void type, so account for the phi nodes
2884 // that we will create. This cost is likely to be zero. The phi node
2885 // cost, if any, should be scaled by the block probability because it
2886 // models a copy at the end of each predicated block.
2887 ScalarizationCost +=
2888 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2889
2890 // The cost of the non-predicated instruction.
2891 ScalarizationCost +=
2892 VF.getFixedValue() *
2893 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2894
2895 // The cost of insertelement and extractelement instructions needed for
2896 // scalarization.
2897 ScalarizationCost += getScalarizationOverhead(I, VF);
2898
2899 // Scale the cost by the probability of executing the predicated blocks.
2900 // This assumes the predicated block for each vector lane is equally
2901 // likely.
2902 ScalarizationCost = ScalarizationCost / getPredBlockCostDivisor(CostKind);
2903 }
2904 InstructionCost SafeDivisorCost = 0;
2905
2906 auto *VecTy = toVectorTy(I->getType(), VF);
2907
2908 // The cost of the select guard to ensure all lanes are well defined
2909 // after we speculate above any internal control flow.
2910 SafeDivisorCost +=
2911 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2912 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2914
2915 SmallVector<const Value *, 4> Operands(I->operand_values());
2916 SafeDivisorCost += TTI.getArithmeticInstrCost(
2917 I->getOpcode(), VecTy, CostKind,
2918 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2919 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2920 Operands, I);
2921 return {ScalarizationCost, SafeDivisorCost};
2922}
2923
2925 Instruction *I, ElementCount VF) const {
2926 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2928 "Decision should not be set yet.");
2929 auto *Group = getInterleavedAccessGroup(I);
2930 assert(Group && "Must have a group.");
2931 unsigned InterleaveFactor = Group->getFactor();
2932
2933 // If the instruction's allocated size doesn't equal its type size, it
2934 // requires padding and will be scalarized.
2935 auto &DL = I->getDataLayout();
2936 auto *ScalarTy = getLoadStoreType(I);
2937 if (hasIrregularType(ScalarTy, DL))
2938 return false;
2939
2940 // For scalable vectors, the interleave factors must be <= 8 since we require
2941 // the (de)interleaveN intrinsics instead of shufflevectors.
2942 if (VF.isScalable() && InterleaveFactor > 8)
2943 return false;
2944
2945 // If the group involves a non-integral pointer, we may not be able to
2946 // losslessly cast all values to a common type.
2947 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
2948 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2949 Instruction *Member = Group->getMember(Idx);
2950 if (!Member)
2951 continue;
2952 auto *MemberTy = getLoadStoreType(Member);
2953 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
2954 // Don't coerce non-integral pointers to integers or vice versa.
2955 if (MemberNI != ScalarNI)
2956 // TODO: Consider adding special nullptr value case here
2957 return false;
2958 if (MemberNI && ScalarNI &&
2959 ScalarTy->getPointerAddressSpace() !=
2960 MemberTy->getPointerAddressSpace())
2961 return false;
2962 }
2963
2964 // Check if masking is required.
2965 // A Group may need masking for one of two reasons: it resides in a block that
2966 // needs predication, or it was decided to use masking to deal with gaps
2967 // (either a gap at the end of a load-access that may result in a speculative
2968 // load, or any gaps in a store-access).
2969 bool PredicatedAccessRequiresMasking =
2970 blockNeedsPredicationForAnyReason(I->getParent()) &&
2971 Legal->isMaskRequired(I);
2972 bool LoadAccessWithGapsRequiresEpilogMasking =
2973 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
2975 bool StoreAccessWithGapsRequiresMasking =
2976 isa<StoreInst>(I) && !Group->isFull();
2977 if (!PredicatedAccessRequiresMasking &&
2978 !LoadAccessWithGapsRequiresEpilogMasking &&
2979 !StoreAccessWithGapsRequiresMasking)
2980 return true;
2981
2982 // If masked interleaving is required, we expect that the user/target had
2983 // enabled it, because otherwise it either wouldn't have been created or
2984 // it should have been invalidated by the CostModel.
2986 "Masked interleave-groups for predicated accesses are not enabled.");
2987
2988 if (Group->isReverse())
2989 return false;
2990
2991 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
2992 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2993 StoreAccessWithGapsRequiresMasking;
2994 if (VF.isScalable() && NeedsMaskForGaps)
2995 return false;
2996
2997 auto *Ty = getLoadStoreType(I);
2998 const Align Alignment = getLoadStoreAlignment(I);
2999 unsigned AS = getLoadStoreAddressSpace(I);
3000 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3001 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3002}
3003
3005 Instruction *I, ElementCount VF) {
3006 // Get and ensure we have a valid memory instruction.
3007 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3008
3010 auto *ScalarTy = getLoadStoreType(I);
3011
3012 // In order to be widened, the pointer should be consecutive, first of all.
3013 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3014 return false;
3015
3016 // If the instruction is a store located in a predicated block, it will be
3017 // scalarized.
3018 if (isScalarWithPredication(I, VF))
3019 return false;
3020
3021 // If the instruction's allocated size doesn't equal it's type size, it
3022 // requires padding and will be scalarized.
3023 auto &DL = I->getDataLayout();
3024 if (hasIrregularType(ScalarTy, DL))
3025 return false;
3026
3027 return true;
3028}
3029
3030void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3031 // We should not collect Uniforms more than once per VF. Right now,
3032 // this function is called from collectUniformsAndScalars(), which
3033 // already does this check. Collecting Uniforms for VF=1 does not make any
3034 // sense.
3035
3036 assert(VF.isVector() && !Uniforms.contains(VF) &&
3037 "This function should not be visited twice for the same VF");
3038
3039 // Visit the list of Uniforms. If we find no uniform value, we won't
3040 // analyze again. Uniforms.count(VF) will return 1.
3041 Uniforms[VF].clear();
3042
3043 // Now we know that the loop is vectorizable!
3044 // Collect instructions inside the loop that will remain uniform after
3045 // vectorization.
3046
3047 // Global values, params and instructions outside of current loop are out of
3048 // scope.
3049 auto IsOutOfScope = [&](Value *V) -> bool {
3051 return (!I || !TheLoop->contains(I));
3052 };
3053
3054 // Worklist containing uniform instructions demanding lane 0.
3055 SetVector<Instruction *> Worklist;
3056
3057 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3058 // that require predication must not be considered uniform after
3059 // vectorization, because that would create an erroneous replicating region
3060 // where only a single instance out of VF should be formed.
3061 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3062 if (IsOutOfScope(I)) {
3063 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3064 << *I << "\n");
3065 return;
3066 }
3067 if (isPredicatedInst(I)) {
3068 LLVM_DEBUG(
3069 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3070 << "\n");
3071 return;
3072 }
3073 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3074 Worklist.insert(I);
3075 };
3076
3077 // Start with the conditional branches exiting the loop. If the branch
3078 // condition is an instruction contained in the loop that is only used by the
3079 // branch, it is uniform. Note conditions from uncountable early exits are not
3080 // uniform.
3082 TheLoop->getExitingBlocks(Exiting);
3083 for (BasicBlock *E : Exiting) {
3084 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3085 continue;
3086 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3087 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3088 AddToWorklistIfAllowed(Cmp);
3089 }
3090
3091 auto PrevVF = VF.divideCoefficientBy(2);
3092 // Return true if all lanes perform the same memory operation, and we can
3093 // thus choose to execute only one.
3094 auto IsUniformMemOpUse = [&](Instruction *I) {
3095 // If the value was already known to not be uniform for the previous
3096 // (smaller VF), it cannot be uniform for the larger VF.
3097 if (PrevVF.isVector()) {
3098 auto Iter = Uniforms.find(PrevVF);
3099 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3100 return false;
3101 }
3102 if (!Legal->isUniformMemOp(*I, VF))
3103 return false;
3104 if (isa<LoadInst>(I))
3105 // Loading the same address always produces the same result - at least
3106 // assuming aliasing and ordering which have already been checked.
3107 return true;
3108 // Storing the same value on every iteration.
3109 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3110 };
3111
3112 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3113 InstWidening WideningDecision = getWideningDecision(I, VF);
3114 assert(WideningDecision != CM_Unknown &&
3115 "Widening decision should be ready at this moment");
3116
3117 if (IsUniformMemOpUse(I))
3118 return true;
3119
3120 return (WideningDecision == CM_Widen ||
3121 WideningDecision == CM_Widen_Reverse ||
3122 WideningDecision == CM_Interleave);
3123 };
3124
3125 // Returns true if Ptr is the pointer operand of a memory access instruction
3126 // I, I is known to not require scalarization, and the pointer is not also
3127 // stored.
3128 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3129 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3130 return false;
3131 return getLoadStorePointerOperand(I) == Ptr &&
3132 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3133 };
3134
3135 // Holds a list of values which are known to have at least one uniform use.
3136 // Note that there may be other uses which aren't uniform. A "uniform use"
3137 // here is something which only demands lane 0 of the unrolled iterations;
3138 // it does not imply that all lanes produce the same value (e.g. this is not
3139 // the usual meaning of uniform)
3140 SetVector<Value *> HasUniformUse;
3141
3142 // Scan the loop for instructions which are either a) known to have only
3143 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3144 for (auto *BB : TheLoop->blocks())
3145 for (auto &I : *BB) {
3146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3147 switch (II->getIntrinsicID()) {
3148 case Intrinsic::sideeffect:
3149 case Intrinsic::experimental_noalias_scope_decl:
3150 case Intrinsic::assume:
3151 case Intrinsic::lifetime_start:
3152 case Intrinsic::lifetime_end:
3153 if (TheLoop->hasLoopInvariantOperands(&I))
3154 AddToWorklistIfAllowed(&I);
3155 break;
3156 default:
3157 break;
3158 }
3159 }
3160
3161 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3162 if (IsOutOfScope(EVI->getAggregateOperand())) {
3163 AddToWorklistIfAllowed(EVI);
3164 continue;
3165 }
3166 // Only ExtractValue instructions where the aggregate value comes from a
3167 // call are allowed to be non-uniform.
3168 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3169 "Expected aggregate value to be call return value");
3170 }
3171
3172 // If there's no pointer operand, there's nothing to do.
3174 if (!Ptr)
3175 continue;
3176
3177 if (IsUniformMemOpUse(&I))
3178 AddToWorklistIfAllowed(&I);
3179
3180 if (IsVectorizedMemAccessUse(&I, Ptr))
3181 HasUniformUse.insert(Ptr);
3182 }
3183
3184 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3185 // demanding) users. Since loops are assumed to be in LCSSA form, this
3186 // disallows uses outside the loop as well.
3187 for (auto *V : HasUniformUse) {
3188 if (IsOutOfScope(V))
3189 continue;
3190 auto *I = cast<Instruction>(V);
3191 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3192 auto *UI = cast<Instruction>(U);
3193 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3194 });
3195 if (UsersAreMemAccesses)
3196 AddToWorklistIfAllowed(I);
3197 }
3198
3199 // Expand Worklist in topological order: whenever a new instruction
3200 // is added , its users should be already inside Worklist. It ensures
3201 // a uniform instruction will only be used by uniform instructions.
3202 unsigned Idx = 0;
3203 while (Idx != Worklist.size()) {
3204 Instruction *I = Worklist[Idx++];
3205
3206 for (auto *OV : I->operand_values()) {
3207 // isOutOfScope operands cannot be uniform instructions.
3208 if (IsOutOfScope(OV))
3209 continue;
3210 // First order recurrence Phi's should typically be considered
3211 // non-uniform.
3212 auto *OP = dyn_cast<PHINode>(OV);
3213 if (OP && Legal->isFixedOrderRecurrence(OP))
3214 continue;
3215 // If all the users of the operand are uniform, then add the
3216 // operand into the uniform worklist.
3217 auto *OI = cast<Instruction>(OV);
3218 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3219 auto *J = cast<Instruction>(U);
3220 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3221 }))
3222 AddToWorklistIfAllowed(OI);
3223 }
3224 }
3225
3226 // For an instruction to be added into Worklist above, all its users inside
3227 // the loop should also be in Worklist. However, this condition cannot be
3228 // true for phi nodes that form a cyclic dependence. We must process phi
3229 // nodes separately. An induction variable will remain uniform if all users
3230 // of the induction variable and induction variable update remain uniform.
3231 // The code below handles both pointer and non-pointer induction variables.
3232 BasicBlock *Latch = TheLoop->getLoopLatch();
3233 for (const auto &Induction : Legal->getInductionVars()) {
3234 auto *Ind = Induction.first;
3235 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3236
3237 // Determine if all users of the induction variable are uniform after
3238 // vectorization.
3239 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3240 auto *I = cast<Instruction>(U);
3241 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3242 IsVectorizedMemAccessUse(I, Ind);
3243 });
3244 if (!UniformInd)
3245 continue;
3246
3247 // Determine if all users of the induction variable update instruction are
3248 // uniform after vectorization.
3249 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3250 auto *I = cast<Instruction>(U);
3251 return I == Ind || Worklist.count(I) ||
3252 IsVectorizedMemAccessUse(I, IndUpdate);
3253 });
3254 if (!UniformIndUpdate)
3255 continue;
3256
3257 // The induction variable and its update instruction will remain uniform.
3258 AddToWorklistIfAllowed(Ind);
3259 AddToWorklistIfAllowed(IndUpdate);
3260 }
3261
3262 Uniforms[VF].insert_range(Worklist);
3263}
3264
3266 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3267
3268 if (Legal->getRuntimePointerChecking()->Need) {
3269 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3270 "runtime pointer checks needed. Enable vectorization of this "
3271 "loop with '#pragma clang loop vectorize(enable)' when "
3272 "compiling with -Os/-Oz",
3273 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3274 return true;
3275 }
3276
3277 if (!PSE.getPredicate().isAlwaysTrue()) {
3278 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3279 "runtime SCEV checks needed. Enable vectorization of this "
3280 "loop with '#pragma clang loop vectorize(enable)' when "
3281 "compiling with -Os/-Oz",
3282 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3283 return true;
3284 }
3285
3286 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3287 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3288 reportVectorizationFailure("Runtime stride check for small trip count",
3289 "runtime stride == 1 checks needed. Enable vectorization of "
3290 "this loop without such check by compiling with -Os/-Oz",
3291 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3292 return true;
3293 }
3294
3295 return false;
3296}
3297
3298bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3299 if (IsScalableVectorizationAllowed)
3300 return *IsScalableVectorizationAllowed;
3301
3302 IsScalableVectorizationAllowed = false;
3303 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3304 return false;
3305
3307 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3308 "ScalableVectorizationDisabled", ORE, TheLoop);
3309 return false;
3310 }
3311
3312 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3313
3314 auto MaxScalableVF = ElementCount::getScalable(
3315 std::numeric_limits<ElementCount::ScalarTy>::max());
3316
3317 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3318 // FIXME: While for scalable vectors this is currently sufficient, this should
3319 // be replaced by a more detailed mechanism that filters out specific VFs,
3320 // instead of invalidating vectorization for a whole set of VFs based on the
3321 // MaxVF.
3322
3323 // Disable scalable vectorization if the loop contains unsupported reductions.
3324 if (!canVectorizeReductions(MaxScalableVF)) {
3326 "Scalable vectorization not supported for the reduction "
3327 "operations found in this loop.",
3328 "ScalableVFUnfeasible", ORE, TheLoop);
3329 return false;
3330 }
3331
3332 // Disable scalable vectorization if the loop contains any instructions
3333 // with element types not supported for scalable vectors.
3334 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3335 return !Ty->isVoidTy() &&
3336 !this->TTI.isElementTypeLegalForScalableVector(Ty);
3337 })) {
3338 reportVectorizationInfo("Scalable vectorization is not supported "
3339 "for all element types found in this loop.",
3340 "ScalableVFUnfeasible", ORE, TheLoop);
3341 return false;
3342 }
3343
3344 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3345 reportVectorizationInfo("The target does not provide maximum vscale value "
3346 "for safe distance analysis.",
3347 "ScalableVFUnfeasible", ORE, TheLoop);
3348 return false;
3349 }
3350
3351 IsScalableVectorizationAllowed = true;
3352 return true;
3353}
3354
3356LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3357 if (!isScalableVectorizationAllowed())
3358 return ElementCount::getScalable(0);
3359
3360 auto MaxScalableVF = ElementCount::getScalable(
3361 std::numeric_limits<ElementCount::ScalarTy>::max());
3362 if (Legal->isSafeForAnyVectorWidth())
3363 return MaxScalableVF;
3364
3365 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3366 // Limit MaxScalableVF by the maximum safe dependence distance.
3367 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3368
3369 if (!MaxScalableVF)
3371 "Max legal vector width too small, scalable vectorization "
3372 "unfeasible.",
3373 "ScalableVFUnfeasible", ORE, TheLoop);
3374
3375 return MaxScalableVF;
3376}
3377
3378FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3379 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3380 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3381 unsigned SmallestType, WidestType;
3382 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3383
3384 // Get the maximum safe dependence distance in bits computed by LAA.
3385 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3386 // the memory accesses that is most restrictive (involved in the smallest
3387 // dependence distance).
3388 unsigned MaxSafeElementsPowerOf2 =
3389 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3390 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3391 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3392 MaxSafeElementsPowerOf2 =
3393 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3394 }
3395 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3396 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3397
3398 if (!Legal->isSafeForAnyVectorWidth())
3399 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3400
3401 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3402 << ".\n");
3403 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3404 << ".\n");
3405
3406 // First analyze the UserVF, fall back if the UserVF should be ignored.
3407 if (UserVF) {
3408 auto MaxSafeUserVF =
3409 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3410
3411 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3412 // If `VF=vscale x N` is safe, then so is `VF=N`
3413 if (UserVF.isScalable())
3414 return FixedScalableVFPair(
3415 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3416
3417 return UserVF;
3418 }
3419
3420 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3421
3422 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3423 // is better to ignore the hint and let the compiler choose a suitable VF.
3424 if (!UserVF.isScalable()) {
3425 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3426 << " is unsafe, clamping to max safe VF="
3427 << MaxSafeFixedVF << ".\n");
3428 ORE->emit([&]() {
3429 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3430 TheLoop->getStartLoc(),
3431 TheLoop->getHeader())
3432 << "User-specified vectorization factor "
3433 << ore::NV("UserVectorizationFactor", UserVF)
3434 << " is unsafe, clamping to maximum safe vectorization factor "
3435 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3436 });
3437 return MaxSafeFixedVF;
3438 }
3439
3440 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
3441 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3442 << " is ignored because scalable vectors are not "
3443 "available.\n");
3444 ORE->emit([&]() {
3445 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3446 TheLoop->getStartLoc(),
3447 TheLoop->getHeader())
3448 << "User-specified vectorization factor "
3449 << ore::NV("UserVectorizationFactor", UserVF)
3450 << " is ignored because the target does not support scalable "
3451 "vectors. The compiler will pick a more suitable value.";
3452 });
3453 } else {
3454 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3455 << " is unsafe. Ignoring scalable UserVF.\n");
3456 ORE->emit([&]() {
3457 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3458 TheLoop->getStartLoc(),
3459 TheLoop->getHeader())
3460 << "User-specified vectorization factor "
3461 << ore::NV("UserVectorizationFactor", UserVF)
3462 << " is unsafe. Ignoring the hint to let the compiler pick a "
3463 "more suitable value.";
3464 });
3465 }
3466 }
3467
3468 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3469 << " / " << WidestType << " bits.\n");
3470
3471 FixedScalableVFPair Result(ElementCount::getFixed(1),
3473 if (auto MaxVF =
3474 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3475 MaxSafeFixedVF, FoldTailByMasking))
3476 Result.FixedVF = MaxVF;
3477
3478 if (auto MaxVF =
3479 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3480 MaxSafeScalableVF, FoldTailByMasking))
3481 if (MaxVF.isScalable()) {
3482 Result.ScalableVF = MaxVF;
3483 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3484 << "\n");
3485 }
3486
3487 return Result;
3488}
3489
3492 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3493 // TODO: It may be useful to do since it's still likely to be dynamically
3494 // uniform if the target can skip.
3496 "Not inserting runtime ptr check for divergent target",
3497 "runtime pointer checks needed. Not enabled for divergent target",
3498 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3500 }
3501
3502 ScalarEvolution *SE = PSE.getSE();
3504 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3505 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3506 if (TC != ElementCount::getFixed(MaxTC))
3507 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3508 if (TC.isScalar()) {
3509 reportVectorizationFailure("Single iteration (non) loop",
3510 "loop trip count is one, irrelevant for vectorization",
3511 "SingleIterationLoop", ORE, TheLoop);
3513 }
3514
3515 // If BTC matches the widest induction type and is -1 then the trip count
3516 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3517 // to vectorize.
3518 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3519 if (!isa<SCEVCouldNotCompute>(BTC) &&
3520 BTC->getType()->getScalarSizeInBits() >=
3521 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3523 SE->getMinusOne(BTC->getType()))) {
3525 "Trip count computation wrapped",
3526 "backedge-taken count is -1, loop trip count wrapped to 0",
3527 "TripCountWrapped", ORE, TheLoop);
3529 }
3530
3531 switch (ScalarEpilogueStatus) {
3533 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3535 [[fallthrough]];
3537 LLVM_DEBUG(
3538 dbgs() << "LV: vector predicate hint/switch found.\n"
3539 << "LV: Not allowing scalar epilogue, creating predicated "
3540 << "vector loop.\n");
3541 break;
3543 // fallthrough as a special case of OptForSize
3545 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3546 LLVM_DEBUG(
3547 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3548 else
3549 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3550 << "count.\n");
3551
3552 // Bail if runtime checks are required, which are not good when optimising
3553 // for size.
3556
3557 break;
3558 }
3559
3560 // Now try the tail folding
3561
3562 // Invalidate interleave groups that require an epilogue if we can't mask
3563 // the interleave-group.
3565 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3566 "No decisions should have been taken at this point");
3567 // Note: There is no need to invalidate any cost modeling decisions here, as
3568 // none were taken so far.
3569 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3570 }
3571
3572 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3573
3574 // Avoid tail folding if the trip count is known to be a multiple of any VF
3575 // we choose.
3576 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3577 MaxFactors.FixedVF.getFixedValue();
3578 if (MaxFactors.ScalableVF) {
3579 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3580 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3581 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3582 *MaxPowerOf2RuntimeVF,
3583 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3584 } else
3585 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3586 }
3587
3588 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3589 // Return false if the loop is neither a single-latch-exit loop nor an
3590 // early-exit loop as tail-folding is not supported in that case.
3591 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3592 !Legal->hasUncountableEarlyExit())
3593 return false;
3594 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3595 ScalarEvolution *SE = PSE.getSE();
3596 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3597 // with uncountable exits. For countable loops, the symbolic maximum must
3598 // remain identical to the known back-edge taken count.
3599 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3600 assert((Legal->hasUncountableEarlyExit() ||
3601 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3602 "Invalid loop count");
3603 const SCEV *ExitCount = SE->getAddExpr(
3604 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3605 const SCEV *Rem = SE->getURemExpr(
3606 SE->applyLoopGuards(ExitCount, TheLoop),
3607 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3608 return Rem->isZero();
3609 };
3610
3611 if (MaxPowerOf2RuntimeVF > 0u) {
3612 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3613 "MaxFixedVF must be a power of 2");
3614 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3615 // Accept MaxFixedVF if we do not have a tail.
3616 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3617 return MaxFactors;
3618 }
3619 }
3620
3621 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3622 if (ExpectedTC && ExpectedTC->isFixed() &&
3623 ExpectedTC->getFixedValue() <=
3624 TTI.getMinTripCountTailFoldingThreshold()) {
3625 if (MaxPowerOf2RuntimeVF > 0u) {
3626 // If we have a low-trip-count, and the fixed-width VF is known to divide
3627 // the trip count but the scalable factor does not, use the fixed-width
3628 // factor in preference to allow the generation of a non-predicated loop.
3629 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3630 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3631 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3632 "remain for any chosen VF.\n");
3633 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3634 return MaxFactors;
3635 }
3636 }
3637
3639 "The trip count is below the minial threshold value.",
3640 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3641 ORE, TheLoop);
3643 }
3644
3645 // If we don't know the precise trip count, or if the trip count that we
3646 // found modulo the vectorization factor is not zero, try to fold the tail
3647 // by masking.
3648 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3649 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3650 setTailFoldingStyles(ContainsScalableVF, UserIC);
3651 if (foldTailByMasking()) {
3653 LLVM_DEBUG(
3654 dbgs()
3655 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3656 "try to generate VP Intrinsics with scalable vector "
3657 "factors only.\n");
3658 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3659 // for now.
3660 // TODO: extend it for fixed vectors, if required.
3661 assert(ContainsScalableVF && "Expected scalable vector factor.");
3662
3663 MaxFactors.FixedVF = ElementCount::getFixed(1);
3664 }
3665 return MaxFactors;
3666 }
3667
3668 // If there was a tail-folding hint/switch, but we can't fold the tail by
3669 // masking, fallback to a vectorization with a scalar epilogue.
3670 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3671 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3672 "scalar epilogue instead.\n");
3673 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3674 return MaxFactors;
3675 }
3676
3677 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3678 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3680 }
3681
3682 if (TC.isZero()) {
3684 "unable to calculate the loop count due to complex control flow",
3685 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3687 }
3688
3690 "Cannot optimize for size and vectorize at the same time.",
3691 "cannot optimize for size and vectorize at the same time. "
3692 "Enable vectorization of this loop with '#pragma clang loop "
3693 "vectorize(enable)' when compiling with -Os/-Oz",
3694 "NoTailLoopWithOptForSize", ORE, TheLoop);
3696}
3697
3699 ElementCount VF) {
3700 if (ConsiderRegPressure.getNumOccurrences())
3701 return ConsiderRegPressure;
3702
3703 // TODO: We should eventually consider register pressure for all targets. The
3704 // TTI hook is temporary whilst target-specific issues are being fixed.
3705 if (TTI.shouldConsiderVectorizationRegPressure())
3706 return true;
3707
3708 if (!useMaxBandwidth(VF.isScalable()
3711 return false;
3712 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3714 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3716}
3717
3720 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3721 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3723 Legal->hasVectorCallVariants())));
3724}
3725
3726ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3727 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3728 unsigned EstimatedVF = VF.getKnownMinValue();
3729 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3730 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3731 auto Min = Attr.getVScaleRangeMin();
3732 EstimatedVF *= Min;
3733 }
3734
3735 // When a scalar epilogue is required, at least one iteration of the scalar
3736 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3737 // max VF that results in a dead vector loop.
3738 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3739 MaxTripCount -= 1;
3740
3741 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3742 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3743 // If upper bound loop trip count (TC) is known at compile time there is no
3744 // point in choosing VF greater than TC (as done in the loop below). Select
3745 // maximum power of two which doesn't exceed TC. If VF is
3746 // scalable, we only fall back on a fixed VF when the TC is less than or
3747 // equal to the known number of lanes.
3748 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3749 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3750 "exceeding the constant trip count: "
3751 << ClampedUpperTripCount << "\n");
3752 return ElementCount::get(ClampedUpperTripCount,
3753 FoldTailByMasking ? VF.isScalable() : false);
3754 }
3755 return VF;
3756}
3757
3758ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3759 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3760 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3761 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3762 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3763 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3765
3766 // Convenience function to return the minimum of two ElementCounts.
3767 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3768 assert((LHS.isScalable() == RHS.isScalable()) &&
3769 "Scalable flags must match");
3770 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3771 };
3772
3773 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3774 // Note that both WidestRegister and WidestType may not be a powers of 2.
3775 auto MaxVectorElementCount = ElementCount::get(
3776 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3777 ComputeScalableMaxVF);
3778 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3779 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3780 << (MaxVectorElementCount * WidestType) << " bits.\n");
3781
3782 if (!MaxVectorElementCount) {
3783 LLVM_DEBUG(dbgs() << "LV: The target has no "
3784 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3785 << " vector registers.\n");
3786 return ElementCount::getFixed(1);
3787 }
3788
3789 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3790 MaxTripCount, FoldTailByMasking);
3791 // If the MaxVF was already clamped, there's no point in trying to pick a
3792 // larger one.
3793 if (MaxVF != MaxVectorElementCount)
3794 return MaxVF;
3795
3797 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3799
3800 if (MaxVF.isScalable())
3801 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3802 else
3803 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3804
3805 if (useMaxBandwidth(RegKind)) {
3806 auto MaxVectorElementCountMaxBW = ElementCount::get(
3807 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3808 ComputeScalableMaxVF);
3809 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3810
3811 if (ElementCount MinVF =
3812 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3813 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3814 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3815 << ") with target's minimum: " << MinVF << '\n');
3816 MaxVF = MinVF;
3817 }
3818 }
3819
3820 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3821
3822 if (MaxVectorElementCount != MaxVF) {
3823 // Invalidate any widening decisions we might have made, in case the loop
3824 // requires prediction (decided later), but we have already made some
3825 // load/store widening decisions.
3827 }
3828 }
3829 return MaxVF;
3830}
3831
3832bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3833 const VectorizationFactor &B,
3834 const unsigned MaxTripCount,
3835 bool HasTail,
3836 bool IsEpilogue) const {
3837 InstructionCost CostA = A.Cost;
3838 InstructionCost CostB = B.Cost;
3839
3840 // Improve estimate for the vector width if it is scalable.
3841 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3842 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3843 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3844 if (A.Width.isScalable())
3845 EstimatedWidthA *= *VScale;
3846 if (B.Width.isScalable())
3847 EstimatedWidthB *= *VScale;
3848 }
3849
3850 // When optimizing for size choose whichever is smallest, which will be the
3851 // one with the smallest cost for the whole loop. On a tie pick the larger
3852 // vector width, on the assumption that throughput will be greater.
3853 if (CM.CostKind == TTI::TCK_CodeSize)
3854 return CostA < CostB ||
3855 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3856
3857 // Assume vscale may be larger than 1 (or the value being tuned for),
3858 // so that scalable vectorization is slightly favorable over fixed-width
3859 // vectorization.
3860 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3861 A.Width.isScalable() && !B.Width.isScalable();
3862
3863 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3864 const InstructionCost &RHS) {
3865 return PreferScalable ? LHS <= RHS : LHS < RHS;
3866 };
3867
3868 // To avoid the need for FP division:
3869 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3870 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3871 if (!MaxTripCount)
3872 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3873
3874 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3875 InstructionCost VectorCost,
3876 InstructionCost ScalarCost) {
3877 // If the trip count is a known (possibly small) constant, the trip count
3878 // will be rounded up to an integer number of iterations under
3879 // FoldTailByMasking. The total cost in that case will be
3880 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3881 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3882 // some extra overheads, but for the purpose of comparing the costs of
3883 // different VFs we can use this to compare the total loop-body cost
3884 // expected after vectorization.
3885 if (HasTail)
3886 return VectorCost * (MaxTripCount / VF) +
3887 ScalarCost * (MaxTripCount % VF);
3888 return VectorCost * divideCeil(MaxTripCount, VF);
3889 };
3890
3891 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3892 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3893 return CmpFn(RTCostA, RTCostB);
3894}
3895
3896bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3897 const VectorizationFactor &B,
3898 bool HasTail,
3899 bool IsEpilogue) const {
3900 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3901 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3902 IsEpilogue);
3903}
3904
3907 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3908 SmallVector<RecipeVFPair> InvalidCosts;
3909 for (const auto &Plan : VPlans) {
3910 for (ElementCount VF : Plan->vectorFactors()) {
3911 // The VPlan-based cost model is designed for computing vector cost.
3912 // Querying VPlan-based cost model with a scarlar VF will cause some
3913 // errors because we expect the VF is vector for most of the widen
3914 // recipes.
3915 if (VF.isScalar())
3916 continue;
3917
3918 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3919 precomputeCosts(*Plan, VF, CostCtx);
3920 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3922 for (auto &R : *VPBB) {
3923 if (!R.cost(VF, CostCtx).isValid())
3924 InvalidCosts.emplace_back(&R, VF);
3925 }
3926 }
3927 }
3928 }
3929 if (InvalidCosts.empty())
3930 return;
3931
3932 // Emit a report of VFs with invalid costs in the loop.
3933
3934 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3936 unsigned I = 0;
3937 for (auto &Pair : InvalidCosts)
3938 if (Numbering.try_emplace(Pair.first, I).second)
3939 ++I;
3940
3941 // Sort the list, first on recipe(number) then on VF.
3942 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
3943 unsigned NA = Numbering[A.first];
3944 unsigned NB = Numbering[B.first];
3945 if (NA != NB)
3946 return NA < NB;
3947 return ElementCount::isKnownLT(A.second, B.second);
3948 });
3949
3950 // For a list of ordered recipe-VF pairs:
3951 // [(load, VF1), (load, VF2), (store, VF1)]
3952 // group the recipes together to emit separate remarks for:
3953 // load (VF1, VF2)
3954 // store (VF1)
3955 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
3956 auto Subset = ArrayRef<RecipeVFPair>();
3957 do {
3958 if (Subset.empty())
3959 Subset = Tail.take_front(1);
3960
3961 VPRecipeBase *R = Subset.front().first;
3962
3963 unsigned Opcode =
3966 [](const auto *R) { return Instruction::PHI; })
3967 .Case<VPWidenSelectRecipe>(
3968 [](const auto *R) { return Instruction::Select; })
3969 .Case<VPWidenStoreRecipe>(
3970 [](const auto *R) { return Instruction::Store; })
3971 .Case<VPWidenLoadRecipe>(
3972 [](const auto *R) { return Instruction::Load; })
3973 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3974 [](const auto *R) { return Instruction::Call; })
3977 [](const auto *R) { return R->getOpcode(); })
3978 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
3979 return R->getStoredValues().empty() ? Instruction::Load
3980 : Instruction::Store;
3981 });
3982
3983 // If the next recipe is different, or if there are no other pairs,
3984 // emit a remark for the collated subset. e.g.
3985 // [(load, VF1), (load, VF2))]
3986 // to emit:
3987 // remark: invalid costs for 'load' at VF=(VF1, VF2)
3988 if (Subset == Tail || Tail[Subset.size()].first != R) {
3989 std::string OutString;
3990 raw_string_ostream OS(OutString);
3991 assert(!Subset.empty() && "Unexpected empty range");
3992 OS << "Recipe with invalid costs prevented vectorization at VF=(";
3993 for (const auto &Pair : Subset)
3994 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
3995 OS << "):";
3996 if (Opcode == Instruction::Call) {
3997 StringRef Name = "";
3998 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
3999 Name = Int->getIntrinsicName();
4000 } else {
4001 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4002 Function *CalledFn =
4003 WidenCall ? WidenCall->getCalledScalarFunction()
4004 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4005 ->getLiveInIRValue());
4006 Name = CalledFn->getName();
4007 }
4008 OS << " call to " << Name;
4009 } else
4010 OS << " " << Instruction::getOpcodeName(Opcode);
4011 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4012 R->getDebugLoc());
4013 Tail = Tail.drop_front(Subset.size());
4014 Subset = {};
4015 } else
4016 // Grow the subset by one element
4017 Subset = Tail.take_front(Subset.size() + 1);
4018 } while (!Tail.empty());
4019}
4020
4021/// Check if any recipe of \p Plan will generate a vector value, which will be
4022/// assigned a vector register.
4024 const TargetTransformInfo &TTI) {
4025 assert(VF.isVector() && "Checking a scalar VF?");
4026 VPTypeAnalysis TypeInfo(Plan);
4027 DenseSet<VPRecipeBase *> EphemeralRecipes;
4028 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4029 // Set of already visited types.
4030 DenseSet<Type *> Visited;
4033 for (VPRecipeBase &R : *VPBB) {
4034 if (EphemeralRecipes.contains(&R))
4035 continue;
4036 // Continue early if the recipe is considered to not produce a vector
4037 // result. Note that this includes VPInstruction where some opcodes may
4038 // produce a vector, to preserve existing behavior as VPInstructions model
4039 // aspects not directly mapped to existing IR instructions.
4040 switch (R.getVPDefID()) {
4041 case VPDef::VPDerivedIVSC:
4042 case VPDef::VPScalarIVStepsSC:
4043 case VPDef::VPReplicateSC:
4044 case VPDef::VPInstructionSC:
4045 case VPDef::VPCanonicalIVPHISC:
4046 case VPDef::VPVectorPointerSC:
4047 case VPDef::VPVectorEndPointerSC:
4048 case VPDef::VPExpandSCEVSC:
4049 case VPDef::VPEVLBasedIVPHISC:
4050 case VPDef::VPPredInstPHISC:
4051 case VPDef::VPBranchOnMaskSC:
4052 continue;
4053 case VPDef::VPReductionSC:
4054 case VPDef::VPActiveLaneMaskPHISC:
4055 case VPDef::VPWidenCallSC:
4056 case VPDef::VPWidenCanonicalIVSC:
4057 case VPDef::VPWidenCastSC:
4058 case VPDef::VPWidenGEPSC:
4059 case VPDef::VPWidenIntrinsicSC:
4060 case VPDef::VPWidenSC:
4061 case VPDef::VPWidenSelectSC:
4062 case VPDef::VPBlendSC:
4063 case VPDef::VPFirstOrderRecurrencePHISC:
4064 case VPDef::VPHistogramSC:
4065 case VPDef::VPWidenPHISC:
4066 case VPDef::VPWidenIntOrFpInductionSC:
4067 case VPDef::VPWidenPointerInductionSC:
4068 case VPDef::VPReductionPHISC:
4069 case VPDef::VPInterleaveEVLSC:
4070 case VPDef::VPInterleaveSC:
4071 case VPDef::VPWidenLoadEVLSC:
4072 case VPDef::VPWidenLoadSC:
4073 case VPDef::VPWidenStoreEVLSC:
4074 case VPDef::VPWidenStoreSC:
4075 break;
4076 default:
4077 llvm_unreachable("unhandled recipe");
4078 }
4079
4080 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4081 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4082 if (!NumLegalParts)
4083 return false;
4084 if (VF.isScalable()) {
4085 // <vscale x 1 x iN> is assumed to be profitable over iN because
4086 // scalable registers are a distinct register class from scalar
4087 // ones. If we ever find a target which wants to lower scalable
4088 // vectors back to scalars, we'll need to update this code to
4089 // explicitly ask TTI about the register class uses for each part.
4090 return NumLegalParts <= VF.getKnownMinValue();
4091 }
4092 // Two or more elements that share a register - are vectorized.
4093 return NumLegalParts < VF.getFixedValue();
4094 };
4095
4096 // If no def nor is a store, e.g., branches, continue - no value to check.
4097 if (R.getNumDefinedValues() == 0 &&
4099 continue;
4100 // For multi-def recipes, currently only interleaved loads, suffice to
4101 // check first def only.
4102 // For stores check their stored value; for interleaved stores suffice
4103 // the check first stored value only. In all cases this is the second
4104 // operand.
4105 VPValue *ToCheck =
4106 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4107 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4108 if (!Visited.insert({ScalarTy}).second)
4109 continue;
4110 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4111 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4112 return true;
4113 }
4114 }
4115
4116 return false;
4117}
4118
4119static bool hasReplicatorRegion(VPlan &Plan) {
4121 Plan.getVectorLoopRegion()->getEntry())),
4122 [](auto *VPRB) { return VPRB->isReplicator(); });
4123}
4124
4125#ifndef NDEBUG
4126VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4127 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4128 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4129 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4130 assert(
4131 any_of(VPlans,
4132 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4133 "Expected Scalar VF to be a candidate");
4134
4135 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4136 ExpectedCost);
4137 VectorizationFactor ChosenFactor = ScalarCost;
4138
4139 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4140 if (ForceVectorization &&
4141 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4142 // Ignore scalar width, because the user explicitly wants vectorization.
4143 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4144 // evaluation.
4145 ChosenFactor.Cost = InstructionCost::getMax();
4146 }
4147
4148 for (auto &P : VPlans) {
4149 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4150 P->vectorFactors().end());
4151
4153 if (any_of(VFs, [this](ElementCount VF) {
4154 return CM.shouldConsiderRegPressureForVF(VF);
4155 }))
4156 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4157
4158 for (unsigned I = 0; I < VFs.size(); I++) {
4159 ElementCount VF = VFs[I];
4160 // The cost for scalar VF=1 is already calculated, so ignore it.
4161 if (VF.isScalar())
4162 continue;
4163
4164 /// If the register pressure needs to be considered for VF,
4165 /// don't consider the VF as valid if it exceeds the number
4166 /// of registers for the target.
4167 if (CM.shouldConsiderRegPressureForVF(VF) &&
4168 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4169 continue;
4170
4171 InstructionCost C = CM.expectedCost(VF);
4172
4173 // Add on other costs that are modelled in VPlan, but not in the legacy
4174 // cost model.
4175 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind);
4176 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4177 assert(VectorRegion && "Expected to have a vector region!");
4178 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4179 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4180 for (VPRecipeBase &R : *VPBB) {
4181 auto *VPI = dyn_cast<VPInstruction>(&R);
4182 if (!VPI)
4183 continue;
4184 switch (VPI->getOpcode()) {
4185 // Selects are only modelled in the legacy cost model for safe
4186 // divisors.
4187 case Instruction::Select: {
4188 VPValue *VPV = VPI->getVPSingleValue();
4189 if (VPV->getNumUsers() == 1) {
4190 if (auto *WR = dyn_cast<VPWidenRecipe>(*VPV->user_begin())) {
4191 switch (WR->getOpcode()) {
4192 case Instruction::UDiv:
4193 case Instruction::SDiv:
4194 case Instruction::URem:
4195 case Instruction::SRem:
4196 continue;
4197 default:
4198 break;
4199 }
4200 }
4201 }
4202 C += VPI->cost(VF, CostCtx);
4203 break;
4204 }
4206 unsigned Multiplier =
4207 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4208 ->getZExtValue();
4209 C += VPI->cost(VF * Multiplier, CostCtx);
4210 break;
4211 }
4213 C += VPI->cost(VF, CostCtx);
4214 break;
4215 default:
4216 break;
4217 }
4218 }
4219 }
4220
4221 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4222 unsigned Width =
4223 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4224 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4225 << " costs: " << (Candidate.Cost / Width));
4226 if (VF.isScalable())
4227 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4228 << CM.getVScaleForTuning().value_or(1) << ")");
4229 LLVM_DEBUG(dbgs() << ".\n");
4230
4231 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4232 LLVM_DEBUG(
4233 dbgs()
4234 << "LV: Not considering vector loop of width " << VF
4235 << " because it will not generate any vector instructions.\n");
4236 continue;
4237 }
4238
4239 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4240 LLVM_DEBUG(
4241 dbgs()
4242 << "LV: Not considering vector loop of width " << VF
4243 << " because it would cause replicated blocks to be generated,"
4244 << " which isn't allowed when optimizing for size.\n");
4245 continue;
4246 }
4247
4248 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4249 ChosenFactor = Candidate;
4250 }
4251 }
4252
4253 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4255 "There are conditional stores.",
4256 "store that is conditionally executed prevents vectorization",
4257 "ConditionalStore", ORE, OrigLoop);
4258 ChosenFactor = ScalarCost;
4259 }
4260
4261 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4262 !isMoreProfitable(ChosenFactor, ScalarCost,
4263 !CM.foldTailByMasking())) dbgs()
4264 << "LV: Vectorization seems to be not beneficial, "
4265 << "but was forced by a user.\n");
4266 return ChosenFactor;
4267}
4268#endif
4269
4270bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4271 ElementCount VF) const {
4272 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4273 // reductions need special handling and are currently unsupported.
4274 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4275 if (!Legal->isReductionVariable(&Phi))
4276 return Legal->isFixedOrderRecurrence(&Phi);
4277 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4278 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4279 }))
4280 return false;
4281
4282 // Phis with uses outside of the loop require special handling and are
4283 // currently unsupported.
4284 for (const auto &Entry : Legal->getInductionVars()) {
4285 // Look for uses of the value of the induction at the last iteration.
4286 Value *PostInc =
4287 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4288 for (User *U : PostInc->users())
4289 if (!OrigLoop->contains(cast<Instruction>(U)))
4290 return false;
4291 // Look for uses of penultimate value of the induction.
4292 for (User *U : Entry.first->users())
4293 if (!OrigLoop->contains(cast<Instruction>(U)))
4294 return false;
4295 }
4296
4297 // Epilogue vectorization code has not been auditted to ensure it handles
4298 // non-latch exits properly. It may be fine, but it needs auditted and
4299 // tested.
4300 // TODO: Add support for loops with an early exit.
4301 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4302 return false;
4303
4304 return true;
4305}
4306
4308 const ElementCount VF, const unsigned IC) const {
4309 // FIXME: We need a much better cost-model to take different parameters such
4310 // as register pressure, code size increase and cost of extra branches into
4311 // account. For now we apply a very crude heuristic and only consider loops
4312 // with vectorization factors larger than a certain value.
4313
4314 // Allow the target to opt out entirely.
4315 if (!TTI.preferEpilogueVectorization())
4316 return false;
4317
4318 // We also consider epilogue vectorization unprofitable for targets that don't
4319 // consider interleaving beneficial (eg. MVE).
4320 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4321 return false;
4322
4323 // TODO: PR #108190 introduced a discrepancy between fixed-width and scalable
4324 // VFs when deciding profitability.
4325 // See related "TODO: extend to support scalable VFs." in
4326 // selectEpilogueVectorizationFactor.
4327 unsigned Multiplier = VF.isFixed() ? IC : 1;
4328 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4330 : TTI.getEpilogueVectorizationMinVF();
4331 return estimateElementCount(VF * Multiplier, VScaleForTuning) >=
4332 MinVFThreshold;
4333}
4334
4336 const ElementCount MainLoopVF, unsigned IC) {
4339 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4340 return Result;
4341 }
4342
4343 if (!CM.isScalarEpilogueAllowed()) {
4344 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4345 "epilogue is allowed.\n");
4346 return Result;
4347 }
4348
4349 // Not really a cost consideration, but check for unsupported cases here to
4350 // simplify the logic.
4351 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4352 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4353 "is not a supported candidate.\n");
4354 return Result;
4355 }
4356
4358 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4360 if (hasPlanWithVF(ForcedEC))
4361 return {ForcedEC, 0, 0};
4362
4363 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4364 "viable.\n");
4365 return Result;
4366 }
4367
4368 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4369 LLVM_DEBUG(
4370 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4371 return Result;
4372 }
4373
4374 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4375 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4376 "this loop\n");
4377 return Result;
4378 }
4379
4380 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4381 // the main loop handles 8 lanes per iteration. We could still benefit from
4382 // vectorizing the epilogue loop with VF=4.
4383 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4384 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4385
4386 ScalarEvolution &SE = *PSE.getSE();
4387 Type *TCType = Legal->getWidestInductionType();
4388 const SCEV *RemainingIterations = nullptr;
4389 unsigned MaxTripCount = 0;
4390 const SCEV *TC =
4391 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4392 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4393 RemainingIterations =
4394 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4395
4396 // No iterations left to process in the epilogue.
4397 if (RemainingIterations->isZero())
4398 return Result;
4399
4400 if (MainLoopVF.isFixed()) {
4401 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4402 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4403 SE.getConstant(TCType, MaxTripCount))) {
4404 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4405 }
4406 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4407 << MaxTripCount << "\n");
4408 }
4409
4410 for (auto &NextVF : ProfitableVFs) {
4411 // Skip candidate VFs without a corresponding VPlan.
4412 if (!hasPlanWithVF(NextVF.Width))
4413 continue;
4414
4415 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4416 // vectors) or > the VF of the main loop (fixed vectors).
4417 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4418 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4419 (NextVF.Width.isScalable() &&
4420 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4421 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4422 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4423 continue;
4424
4425 // If NextVF is greater than the number of remaining iterations, the
4426 // epilogue loop would be dead. Skip such factors.
4427 if (RemainingIterations && !NextVF.Width.isScalable()) {
4428 if (SE.isKnownPredicate(
4430 SE.getConstant(TCType, NextVF.Width.getFixedValue()),
4431 RemainingIterations))
4432 continue;
4433 }
4434
4435 if (Result.Width.isScalar() ||
4436 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4437 /*IsEpilogue*/ true))
4438 Result = NextVF;
4439 }
4440
4441 if (Result != VectorizationFactor::Disabled())
4442 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4443 << Result.Width << "\n");
4444 return Result;
4445}
4446
4447std::pair<unsigned, unsigned>
4449 unsigned MinWidth = -1U;
4450 unsigned MaxWidth = 8;
4451 const DataLayout &DL = TheFunction->getDataLayout();
4452 // For in-loop reductions, no element types are added to ElementTypesInLoop
4453 // if there are no loads/stores in the loop. In this case, check through the
4454 // reduction variables to determine the maximum width.
4455 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4456 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4457 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4458 // When finding the min width used by the recurrence we need to account
4459 // for casts on the input operands of the recurrence.
4460 MinWidth = std::min(
4461 MinWidth,
4462 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4464 MaxWidth = std::max(MaxWidth,
4466 }
4467 } else {
4468 for (Type *T : ElementTypesInLoop) {
4469 MinWidth = std::min<unsigned>(
4470 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4471 MaxWidth = std::max<unsigned>(
4472 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4473 }
4474 }
4475 return {MinWidth, MaxWidth};
4476}
4477
4479 ElementTypesInLoop.clear();
4480 // For each block.
4481 for (BasicBlock *BB : TheLoop->blocks()) {
4482 // For each instruction in the loop.
4483 for (Instruction &I : BB->instructionsWithoutDebug()) {
4484 Type *T = I.getType();
4485
4486 // Skip ignored values.
4487 if (ValuesToIgnore.count(&I))
4488 continue;
4489
4490 // Only examine Loads, Stores and PHINodes.
4491 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4492 continue;
4493
4494 // Examine PHI nodes that are reduction variables. Update the type to
4495 // account for the recurrence type.
4496 if (auto *PN = dyn_cast<PHINode>(&I)) {
4497 if (!Legal->isReductionVariable(PN))
4498 continue;
4499 const RecurrenceDescriptor &RdxDesc =
4500 Legal->getRecurrenceDescriptor(PN);
4502 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4503 RdxDesc.getRecurrenceType()))
4504 continue;
4505 T = RdxDesc.getRecurrenceType();
4506 }
4507
4508 // Examine the stored values.
4509 if (auto *ST = dyn_cast<StoreInst>(&I))
4510 T = ST->getValueOperand()->getType();
4511
4512 assert(T->isSized() &&
4513 "Expected the load/store/recurrence type to be sized");
4514
4515 ElementTypesInLoop.insert(T);
4516 }
4517 }
4518}
4519
4520unsigned
4522 InstructionCost LoopCost) {
4523 // -- The interleave heuristics --
4524 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4525 // There are many micro-architectural considerations that we can't predict
4526 // at this level. For example, frontend pressure (on decode or fetch) due to
4527 // code size, or the number and capabilities of the execution ports.
4528 //
4529 // We use the following heuristics to select the interleave count:
4530 // 1. If the code has reductions, then we interleave to break the cross
4531 // iteration dependency.
4532 // 2. If the loop is really small, then we interleave to reduce the loop
4533 // overhead.
4534 // 3. We don't interleave if we think that we will spill registers to memory
4535 // due to the increased register pressure.
4536
4537 if (!CM.isScalarEpilogueAllowed())
4538 return 1;
4539
4542 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4543 "Unroll factor forced to be 1.\n");
4544 return 1;
4545 }
4546
4547 // We used the distance for the interleave count.
4548 if (!Legal->isSafeForAnyVectorWidth())
4549 return 1;
4550
4551 // We don't attempt to perform interleaving for loops with uncountable early
4552 // exits because the VPInstruction::AnyOf code cannot currently handle
4553 // multiple parts.
4554 if (Plan.hasEarlyExit())
4555 return 1;
4556
4557 const bool HasReductions =
4560
4561 // If we did not calculate the cost for VF (because the user selected the VF)
4562 // then we calculate the cost of VF here.
4563 if (LoopCost == 0) {
4564 if (VF.isScalar())
4565 LoopCost = CM.expectedCost(VF);
4566 else
4567 LoopCost = cost(Plan, VF);
4568 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4569
4570 // Loop body is free and there is no need for interleaving.
4571 if (LoopCost == 0)
4572 return 1;
4573 }
4574
4575 VPRegisterUsage R =
4576 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4577 // We divide by these constants so assume that we have at least one
4578 // instruction that uses at least one register.
4579 for (auto &Pair : R.MaxLocalUsers) {
4580 Pair.second = std::max(Pair.second, 1U);
4581 }
4582
4583 // We calculate the interleave count using the following formula.
4584 // Subtract the number of loop invariants from the number of available
4585 // registers. These registers are used by all of the interleaved instances.
4586 // Next, divide the remaining registers by the number of registers that is
4587 // required by the loop, in order to estimate how many parallel instances
4588 // fit without causing spills. All of this is rounded down if necessary to be
4589 // a power of two. We want power of two interleave count to simplify any
4590 // addressing operations or alignment considerations.
4591 // We also want power of two interleave counts to ensure that the induction
4592 // variable of the vector loop wraps to zero, when tail is folded by masking;
4593 // this currently happens when OptForSize, in which case IC is set to 1 above.
4594 unsigned IC = UINT_MAX;
4595
4596 for (const auto &Pair : R.MaxLocalUsers) {
4597 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4598 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4599 << " registers of "
4600 << TTI.getRegisterClassName(Pair.first)
4601 << " register class\n");
4602 if (VF.isScalar()) {
4603 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4604 TargetNumRegisters = ForceTargetNumScalarRegs;
4605 } else {
4606 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4607 TargetNumRegisters = ForceTargetNumVectorRegs;
4608 }
4609 unsigned MaxLocalUsers = Pair.second;
4610 unsigned LoopInvariantRegs = 0;
4611 if (R.LoopInvariantRegs.contains(Pair.first))
4612 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4613
4614 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4615 MaxLocalUsers);
4616 // Don't count the induction variable as interleaved.
4618 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4619 std::max(1U, (MaxLocalUsers - 1)));
4620 }
4621
4622 IC = std::min(IC, TmpIC);
4623 }
4624
4625 // Clamp the interleave ranges to reasonable counts.
4626 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4627
4628 // Check if the user has overridden the max.
4629 if (VF.isScalar()) {
4630 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4631 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4632 } else {
4633 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4634 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4635 }
4636
4637 // Try to get the exact trip count, or an estimate based on profiling data or
4638 // ConstantMax from PSE, failing that.
4639 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4640
4641 // For fixed length VFs treat a scalable trip count as unknown.
4642 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4643 // Re-evaluate trip counts and VFs to be in the same numerical space.
4644 unsigned AvailableTC =
4645 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4646 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4647
4648 // At least one iteration must be scalar when this constraint holds. So the
4649 // maximum available iterations for interleaving is one less.
4650 if (CM.requiresScalarEpilogue(VF.isVector()))
4651 --AvailableTC;
4652
4653 unsigned InterleaveCountLB = bit_floor(std::max(
4654 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4655
4656 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4657 // If the best known trip count is exact, we select between two
4658 // prospective ICs, where
4659 //
4660 // 1) the aggressive IC is capped by the trip count divided by VF
4661 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4662 //
4663 // The final IC is selected in a way that the epilogue loop trip count is
4664 // minimized while maximizing the IC itself, so that we either run the
4665 // vector loop at least once if it generates a small epilogue loop, or
4666 // else we run the vector loop at least twice.
4667
4668 unsigned InterleaveCountUB = bit_floor(std::max(
4669 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4670 MaxInterleaveCount = InterleaveCountLB;
4671
4672 if (InterleaveCountUB != InterleaveCountLB) {
4673 unsigned TailTripCountUB =
4674 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4675 unsigned TailTripCountLB =
4676 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4677 // If both produce same scalar tail, maximize the IC to do the same work
4678 // in fewer vector loop iterations
4679 if (TailTripCountUB == TailTripCountLB)
4680 MaxInterleaveCount = InterleaveCountUB;
4681 }
4682 } else {
4683 // If trip count is an estimated compile time constant, limit the
4684 // IC to be capped by the trip count divided by VF * 2, such that the
4685 // vector loop runs at least twice to make interleaving seem profitable
4686 // when there is an epilogue loop present. Since exact Trip count is not
4687 // known we choose to be conservative in our IC estimate.
4688 MaxInterleaveCount = InterleaveCountLB;
4689 }
4690 }
4691
4692 assert(MaxInterleaveCount > 0 &&
4693 "Maximum interleave count must be greater than 0");
4694
4695 // Clamp the calculated IC to be between the 1 and the max interleave count
4696 // that the target and trip count allows.
4697 if (IC > MaxInterleaveCount)
4698 IC = MaxInterleaveCount;
4699 else
4700 // Make sure IC is greater than 0.
4701 IC = std::max(1u, IC);
4702
4703 assert(IC > 0 && "Interleave count must be greater than 0.");
4704
4705 // Interleave if we vectorized this loop and there is a reduction that could
4706 // benefit from interleaving.
4707 if (VF.isVector() && HasReductions) {
4708 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4709 return IC;
4710 }
4711
4712 // For any scalar loop that either requires runtime checks or predication we
4713 // are better off leaving this to the unroller. Note that if we've already
4714 // vectorized the loop we will have done the runtime check and so interleaving
4715 // won't require further checks.
4716 bool ScalarInterleavingRequiresPredication =
4717 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4718 return Legal->blockNeedsPredication(BB);
4719 }));
4720 bool ScalarInterleavingRequiresRuntimePointerCheck =
4721 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4722
4723 // We want to interleave small loops in order to reduce the loop overhead and
4724 // potentially expose ILP opportunities.
4725 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4726 << "LV: IC is " << IC << '\n'
4727 << "LV: VF is " << VF << '\n');
4728 const bool AggressivelyInterleaveReductions =
4729 TTI.enableAggressiveInterleaving(HasReductions);
4730 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4731 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4732 // We assume that the cost overhead is 1 and we use the cost model
4733 // to estimate the cost of the loop and interleave until the cost of the
4734 // loop overhead is about 5% of the cost of the loop.
4735 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4736 SmallLoopCost / LoopCost.getValue()));
4737
4738 // Interleave until store/load ports (estimated by max interleave count) are
4739 // saturated.
4740 unsigned NumStores = 0;
4741 unsigned NumLoads = 0;
4744 for (VPRecipeBase &R : *VPBB) {
4746 NumLoads++;
4747 continue;
4748 }
4750 NumStores++;
4751 continue;
4752 }
4753
4754 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4755 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4756 NumStores += StoreOps;
4757 else
4758 NumLoads += InterleaveR->getNumDefinedValues();
4759 continue;
4760 }
4761 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4762 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4763 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4764 continue;
4765 }
4766 if (isa<VPHistogramRecipe>(&R)) {
4767 NumLoads++;
4768 NumStores++;
4769 continue;
4770 }
4771 }
4772 }
4773 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4774 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4775
4776 // There is little point in interleaving for reductions containing selects
4777 // and compares when VF=1 since it may just create more overhead than it's
4778 // worth for loops with small trip counts. This is because we still have to
4779 // do the final reduction after the loop.
4780 bool HasSelectCmpReductions =
4781 HasReductions &&
4783 [](VPRecipeBase &R) {
4784 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4785 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4786 RedR->getRecurrenceKind()) ||
4787 RecurrenceDescriptor::isFindIVRecurrenceKind(
4788 RedR->getRecurrenceKind()));
4789 });
4790 if (HasSelectCmpReductions) {
4791 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4792 return 1;
4793 }
4794
4795 // If we have a scalar reduction (vector reductions are already dealt with
4796 // by this point), we can increase the critical path length if the loop
4797 // we're interleaving is inside another loop. For tree-wise reductions
4798 // set the limit to 2, and for ordered reductions it's best to disable
4799 // interleaving entirely.
4800 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4801 bool HasOrderedReductions =
4803 [](VPRecipeBase &R) {
4804 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4805
4806 return RedR && RedR->isOrdered();
4807 });
4808 if (HasOrderedReductions) {
4809 LLVM_DEBUG(
4810 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4811 return 1;
4812 }
4813
4814 unsigned F = MaxNestedScalarReductionIC;
4815 SmallIC = std::min(SmallIC, F);
4816 StoresIC = std::min(StoresIC, F);
4817 LoadsIC = std::min(LoadsIC, F);
4818 }
4819
4821 std::max(StoresIC, LoadsIC) > SmallIC) {
4822 LLVM_DEBUG(
4823 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4824 return std::max(StoresIC, LoadsIC);
4825 }
4826
4827 // If there are scalar reductions and TTI has enabled aggressive
4828 // interleaving for reductions, we will interleave to expose ILP.
4829 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4830 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4831 // Interleave no less than SmallIC but not as aggressive as the normal IC
4832 // to satisfy the rare situation when resources are too limited.
4833 return std::max(IC / 2, SmallIC);
4834 }
4835
4836 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4837 return SmallIC;
4838 }
4839
4840 // Interleave if this is a large loop (small loops are already dealt with by
4841 // this point) that could benefit from interleaving.
4842 if (AggressivelyInterleaveReductions) {
4843 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4844 return IC;
4845 }
4846
4847 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4848 return 1;
4849}
4850
4851bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4852 ElementCount VF) {
4853 // TODO: Cost model for emulated masked load/store is completely
4854 // broken. This hack guides the cost model to use an artificially
4855 // high enough value to practically disable vectorization with such
4856 // operations, except where previously deployed legality hack allowed
4857 // using very low cost values. This is to avoid regressions coming simply
4858 // from moving "masked load/store" check from legality to cost model.
4859 // Masked Load/Gather emulation was previously never allowed.
4860 // Limited number of Masked Store/Scatter emulation was allowed.
4862 "Expecting a scalar emulated instruction");
4863 return isa<LoadInst>(I) ||
4864 (isa<StoreInst>(I) &&
4865 NumPredStores > NumberOfStoresToPredicate);
4866}
4867
4869 assert(VF.isVector() && "Expected VF >= 2");
4870
4871 // If we've already collected the instructions to scalarize or the predicated
4872 // BBs after vectorization, there's nothing to do. Collection may already have
4873 // occurred if we have a user-selected VF and are now computing the expected
4874 // cost for interleaving.
4875 if (InstsToScalarize.contains(VF) ||
4876 PredicatedBBsAfterVectorization.contains(VF))
4877 return;
4878
4879 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4880 // not profitable to scalarize any instructions, the presence of VF in the
4881 // map will indicate that we've analyzed it already.
4882 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4883
4884 // Find all the instructions that are scalar with predication in the loop and
4885 // determine if it would be better to not if-convert the blocks they are in.
4886 // If so, we also record the instructions to scalarize.
4887 for (BasicBlock *BB : TheLoop->blocks()) {
4889 continue;
4890 for (Instruction &I : *BB)
4891 if (isScalarWithPredication(&I, VF)) {
4892 ScalarCostsTy ScalarCosts;
4893 // Do not apply discount logic for:
4894 // 1. Scalars after vectorization, as there will only be a single copy
4895 // of the instruction.
4896 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4897 // 3. Emulated masked memrefs, if a hacked cost is needed.
4898 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4899 !useEmulatedMaskMemRefHack(&I, VF) &&
4900 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4901 for (const auto &[I, IC] : ScalarCosts)
4902 ScalarCostsVF.insert({I, IC});
4903 // Check if we decided to scalarize a call. If so, update the widening
4904 // decision of the call to CM_Scalarize with the computed scalar cost.
4905 for (const auto &[I, Cost] : ScalarCosts) {
4906 auto *CI = dyn_cast<CallInst>(I);
4907 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4908 continue;
4909 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4910 CallWideningDecisions[{CI, VF}].Cost = Cost;
4911 }
4912 }
4913 // Remember that BB will remain after vectorization.
4914 PredicatedBBsAfterVectorization[VF].insert(BB);
4915 for (auto *Pred : predecessors(BB)) {
4916 if (Pred->getSingleSuccessor() == BB)
4917 PredicatedBBsAfterVectorization[VF].insert(Pred);
4918 }
4919 }
4920 }
4921}
4922
4923InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
4924 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
4925 assert(!isUniformAfterVectorization(PredInst, VF) &&
4926 "Instruction marked uniform-after-vectorization will be predicated");
4927
4928 // Initialize the discount to zero, meaning that the scalar version and the
4929 // vector version cost the same.
4930 InstructionCost Discount = 0;
4931
4932 // Holds instructions to analyze. The instructions we visit are mapped in
4933 // ScalarCosts. Those instructions are the ones that would be scalarized if
4934 // we find that the scalar version costs less.
4936
4937 // Returns true if the given instruction can be scalarized.
4938 auto CanBeScalarized = [&](Instruction *I) -> bool {
4939 // We only attempt to scalarize instructions forming a single-use chain
4940 // from the original predicated block that would otherwise be vectorized.
4941 // Although not strictly necessary, we give up on instructions we know will
4942 // already be scalar to avoid traversing chains that are unlikely to be
4943 // beneficial.
4944 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
4946 return false;
4947
4948 // If the instruction is scalar with predication, it will be analyzed
4949 // separately. We ignore it within the context of PredInst.
4950 if (isScalarWithPredication(I, VF))
4951 return false;
4952
4953 // If any of the instruction's operands are uniform after vectorization,
4954 // the instruction cannot be scalarized. This prevents, for example, a
4955 // masked load from being scalarized.
4956 //
4957 // We assume we will only emit a value for lane zero of an instruction
4958 // marked uniform after vectorization, rather than VF identical values.
4959 // Thus, if we scalarize an instruction that uses a uniform, we would
4960 // create uses of values corresponding to the lanes we aren't emitting code
4961 // for. This behavior can be changed by allowing getScalarValue to clone
4962 // the lane zero values for uniforms rather than asserting.
4963 for (Use &U : I->operands())
4964 if (auto *J = dyn_cast<Instruction>(U.get()))
4965 if (isUniformAfterVectorization(J, VF))
4966 return false;
4967
4968 // Otherwise, we can scalarize the instruction.
4969 return true;
4970 };
4971
4972 // Compute the expected cost discount from scalarizing the entire expression
4973 // feeding the predicated instruction. We currently only consider expressions
4974 // that are single-use instruction chains.
4975 Worklist.push_back(PredInst);
4976 while (!Worklist.empty()) {
4977 Instruction *I = Worklist.pop_back_val();
4978
4979 // If we've already analyzed the instruction, there's nothing to do.
4980 if (ScalarCosts.contains(I))
4981 continue;
4982
4983 // Cannot scalarize fixed-order recurrence phis at the moment.
4984 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
4985 continue;
4986
4987 // Compute the cost of the vector instruction. Note that this cost already
4988 // includes the scalarization overhead of the predicated instruction.
4989 InstructionCost VectorCost = getInstructionCost(I, VF);
4990
4991 // Compute the cost of the scalarized instruction. This cost is the cost of
4992 // the instruction as if it wasn't if-converted and instead remained in the
4993 // predicated block. We will scale this cost by block probability after
4994 // computing the scalarization overhead.
4995 InstructionCost ScalarCost =
4997
4998 // Compute the scalarization overhead of needed insertelement instructions
4999 // and phi nodes.
5000 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5001 Type *WideTy = toVectorizedTy(I->getType(), VF);
5002 for (Type *VectorTy : getContainedTypes(WideTy)) {
5003 ScalarCost += TTI.getScalarizationOverhead(
5005 /*Insert=*/true,
5006 /*Extract=*/false, CostKind);
5007 }
5008 ScalarCost +=
5009 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5010 }
5011
5012 // Compute the scalarization overhead of needed extractelement
5013 // instructions. For each of the instruction's operands, if the operand can
5014 // be scalarized, add it to the worklist; otherwise, account for the
5015 // overhead.
5016 for (Use &U : I->operands())
5017 if (auto *J = dyn_cast<Instruction>(U.get())) {
5018 assert(canVectorizeTy(J->getType()) &&
5019 "Instruction has non-scalar type");
5020 if (CanBeScalarized(J))
5021 Worklist.push_back(J);
5022 else if (needsExtract(J, VF)) {
5023 Type *WideTy = toVectorizedTy(J->getType(), VF);
5024 for (Type *VectorTy : getContainedTypes(WideTy)) {
5025 ScalarCost += TTI.getScalarizationOverhead(
5026 cast<VectorType>(VectorTy),
5027 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5028 /*Extract*/ true, CostKind);
5029 }
5030 }
5031 }
5032
5033 // Scale the total scalar cost by block probability.
5034 ScalarCost /= getPredBlockCostDivisor(CostKind);
5035
5036 // Compute the discount. A non-negative discount means the vector version
5037 // of the instruction costs more, and scalarizing would be beneficial.
5038 Discount += VectorCost - ScalarCost;
5039 ScalarCosts[I] = ScalarCost;
5040 }
5041
5042 return Discount;
5043}
5044
5047
5048 // If the vector loop gets executed exactly once with the given VF, ignore the
5049 // costs of comparison and induction instructions, as they'll get simplified
5050 // away.
5051 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5052 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5053 if (TC == VF && !foldTailByMasking())
5055 ValuesToIgnoreForVF);
5056
5057 // For each block.
5058 for (BasicBlock *BB : TheLoop->blocks()) {
5059 InstructionCost BlockCost;
5060
5061 // For each instruction in the old loop.
5062 for (Instruction &I : BB->instructionsWithoutDebug()) {
5063 // Skip ignored values.
5064 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5065 (VF.isVector() && VecValuesToIgnore.count(&I)))
5066 continue;
5067
5069
5070 // Check if we should override the cost.
5071 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0)
5073
5074 BlockCost += C;
5075 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5076 << VF << " For instruction: " << I << '\n');
5077 }
5078
5079 // If we are vectorizing a predicated block, it will have been
5080 // if-converted. This means that the block's instructions (aside from
5081 // stores and instructions that may divide by zero) will now be
5082 // unconditionally executed. For the scalar case, we may not always execute
5083 // the predicated block, if it is an if-else block. Thus, scale the block's
5084 // cost by the probability of executing it. blockNeedsPredication from
5085 // Legal is used so as to not include all blocks in tail folded loops.
5086 if (VF.isScalar() && Legal->blockNeedsPredication(BB))
5087 BlockCost /= getPredBlockCostDivisor(CostKind);
5088
5089 Cost += BlockCost;
5090 }
5091
5092 return Cost;
5093}
5094
5095/// Gets Address Access SCEV after verifying that the access pattern
5096/// is loop invariant except the induction variable dependence.
5097///
5098/// This SCEV can be sent to the Target in order to estimate the address
5099/// calculation cost.
5101 Value *Ptr,
5104 const Loop *TheLoop) {
5105
5106 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5107 if (!Gep)
5108 return nullptr;
5109
5110 // We are looking for a gep with all loop invariant indices except for one
5111 // which should be an induction variable.
5112 auto *SE = PSE.getSE();
5113 unsigned NumOperands = Gep->getNumOperands();
5114 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5115 Value *Opd = Gep->getOperand(Idx);
5116 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5117 !Legal->isInductionVariable(Opd))
5118 return nullptr;
5119 }
5120
5121 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5122 return PSE.getSCEV(Ptr);
5123}
5124
5126LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5127 ElementCount VF) {
5128 assert(VF.isVector() &&
5129 "Scalarization cost of instruction implies vectorization.");
5130 if (VF.isScalable())
5132
5133 Type *ValTy = getLoadStoreType(I);
5134 auto *SE = PSE.getSE();
5135
5136 unsigned AS = getLoadStoreAddressSpace(I);
5138 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5139 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5140 // that it is being called from this specific place.
5141
5142 // Figure out whether the access is strided and get the stride value
5143 // if it's known in compile time
5144 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5145
5146 // Get the cost of the scalar memory instruction and address computation.
5147 InstructionCost Cost = VF.getFixedValue() * TTI.getAddressComputationCost(
5148 PtrTy, SE, PtrSCEV, CostKind);
5149
5150 // Don't pass *I here, since it is scalar but will actually be part of a
5151 // vectorized loop where the user of it is a vectorized instruction.
5152 const Align Alignment = getLoadStoreAlignment(I);
5153 Cost += VF.getFixedValue() * TTI.getMemoryOpCost(I->getOpcode(),
5154 ValTy->getScalarType(),
5155 Alignment, AS, CostKind);
5156
5157 // Get the overhead of the extractelement and insertelement instructions
5158 // we might create due to scalarization.
5159 Cost += getScalarizationOverhead(I, VF);
5160
5161 // If we have a predicated load/store, it will need extra i1 extracts and
5162 // conditional branches, but may not be executed for each vector lane. Scale
5163 // the cost by the probability of executing the predicated block.
5164 if (isPredicatedInst(I)) {
5166
5167 // Add the cost of an i1 extract and a branch
5168 auto *VecI1Ty =
5170 Cost += TTI.getScalarizationOverhead(
5171 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5172 /*Insert=*/false, /*Extract=*/true, CostKind);
5173 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5174
5175 if (useEmulatedMaskMemRefHack(I, VF))
5176 // Artificially setting to a high enough value to practically disable
5177 // vectorization with such operations.
5178 Cost = 3000000;
5179 }
5180
5181 return Cost;
5182}
5183
5185LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5186 ElementCount VF) {
5187 Type *ValTy = getLoadStoreType(I);
5188 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5190 unsigned AS = getLoadStoreAddressSpace(I);
5191 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5192
5193 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5194 "Stride should be 1 or -1 for consecutive memory access");
5195 const Align Alignment = getLoadStoreAlignment(I);
5197 if (Legal->isMaskRequired(I)) {
5198 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5199 CostKind);
5200 } else {
5201 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5202 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5203 CostKind, OpInfo, I);
5204 }
5205
5206 bool Reverse = ConsecutiveStride < 0;
5207 if (Reverse)
5208 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
5209 VectorTy, {}, CostKind, 0);
5210 return Cost;
5211}
5212
5214LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5215 ElementCount VF) {
5216 assert(Legal->isUniformMemOp(*I, VF));
5217
5218 Type *ValTy = getLoadStoreType(I);
5220 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5221 const Align Alignment = getLoadStoreAlignment(I);
5222 unsigned AS = getLoadStoreAddressSpace(I);
5223 if (isa<LoadInst>(I)) {
5224 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5225 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5226 CostKind) +
5227 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy,
5228 VectorTy, {}, CostKind);
5229 }
5230 StoreInst *SI = cast<StoreInst>(I);
5231
5232 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5233 // TODO: We have existing tests that request the cost of extracting element
5234 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5235 // the actual generated code, which involves extracting the last element of
5236 // a scalable vector where the lane to extract is unknown at compile time.
5238 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5239 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5240 if (!IsLoopInvariantStoreValue)
5241 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5242 VectorTy, CostKind, 0);
5243 return Cost;
5244}
5245
5247LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5248 ElementCount VF) {
5249 Type *ValTy = getLoadStoreType(I);
5250 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5251 const Align Alignment = getLoadStoreAlignment(I);
5253 Type *PtrTy = Ptr->getType();
5254
5255 if (!Legal->isUniform(Ptr, VF))
5256 PtrTy = toVectorTy(PtrTy, VF);
5257
5258 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5259 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5260 Legal->isMaskRequired(I), Alignment,
5261 CostKind, I);
5262}
5263
5265LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5266 ElementCount VF) {
5267 const auto *Group = getInterleavedAccessGroup(I);
5268 assert(Group && "Fail to get an interleaved access group.");
5269
5270 Instruction *InsertPos = Group->getInsertPos();
5271 Type *ValTy = getLoadStoreType(InsertPos);
5272 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5273 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5274
5275 unsigned InterleaveFactor = Group->getFactor();
5276 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5277
5278 // Holds the indices of existing members in the interleaved group.
5279 SmallVector<unsigned, 4> Indices;
5280 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5281 if (Group->getMember(IF))
5282 Indices.push_back(IF);
5283
5284 // Calculate the cost of the whole interleaved group.
5285 bool UseMaskForGaps =
5286 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5287 (isa<StoreInst>(I) && !Group->isFull());
5288 InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
5289 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5290 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5291 UseMaskForGaps);
5292
5293 if (Group->isReverse()) {
5294 // TODO: Add support for reversed masked interleaved access.
5295 assert(!Legal->isMaskRequired(I) &&
5296 "Reverse masked interleaved access not supported.");
5297 Cost += Group->getNumMembers() *
5298 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
5299 VectorTy, {}, CostKind, 0);
5300 }
5301 return Cost;
5302}
5303
5304std::optional<InstructionCost>
5306 ElementCount VF,
5307 Type *Ty) const {
5308 using namespace llvm::PatternMatch;
5309 // Early exit for no inloop reductions
5310 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5311 return std::nullopt;
5312 auto *VectorTy = cast<VectorType>(Ty);
5313
5314 // We are looking for a pattern of, and finding the minimal acceptable cost:
5315 // reduce(mul(ext(A), ext(B))) or
5316 // reduce(mul(A, B)) or
5317 // reduce(ext(A)) or
5318 // reduce(A).
5319 // The basic idea is that we walk down the tree to do that, finding the root
5320 // reduction instruction in InLoopReductionImmediateChains. From there we find
5321 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5322 // of the components. If the reduction cost is lower then we return it for the
5323 // reduction instruction and 0 for the other instructions in the pattern. If
5324 // it is not we return an invalid cost specifying the orignal cost method
5325 // should be used.
5326 Instruction *RetI = I;
5327 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5328 if (!RetI->hasOneUser())
5329 return std::nullopt;
5330 RetI = RetI->user_back();
5331 }
5332
5333 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5334 RetI->user_back()->getOpcode() == Instruction::Add) {
5335 RetI = RetI->user_back();
5336 }
5337
5338 // Test if the found instruction is a reduction, and if not return an invalid
5339 // cost specifying the parent to use the original cost modelling.
5340 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5341 if (!LastChain)
5342 return std::nullopt;
5343
5344 // Find the reduction this chain is a part of and calculate the basic cost of
5345 // the reduction on its own.
5346 Instruction *ReductionPhi = LastChain;
5347 while (!isa<PHINode>(ReductionPhi))
5348 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5349
5350 const RecurrenceDescriptor &RdxDesc =
5351 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5352
5353 InstructionCost BaseCost;
5354 RecurKind RK = RdxDesc.getRecurrenceKind();
5357 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5358 RdxDesc.getFastMathFlags(), CostKind);
5359 } else {
5360 BaseCost = TTI.getArithmeticReductionCost(
5361 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5362 }
5363
5364 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5365 // normal fmul instruction to the cost of the fadd reduction.
5366 if (RK == RecurKind::FMulAdd)
5367 BaseCost +=
5368 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5369
5370 // If we're using ordered reductions then we can just return the base cost
5371 // here, since getArithmeticReductionCost calculates the full ordered
5372 // reduction cost when FP reassociation is not allowed.
5373 if (useOrderedReductions(RdxDesc))
5374 return BaseCost;
5375
5376 // Get the operand that was not the reduction chain and match it to one of the
5377 // patterns, returning the better cost if it is found.
5378 Instruction *RedOp = RetI->getOperand(1) == LastChain
5381
5382 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5383
5384 Instruction *Op0, *Op1;
5385 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5386 match(RedOp,
5388 match(Op0, m_ZExtOrSExt(m_Value())) &&
5389 Op0->getOpcode() == Op1->getOpcode() &&
5390 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5391 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5392 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5393
5394 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5395 // Note that the extend opcodes need to all match, or if A==B they will have
5396 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5397 // which is equally fine.
5398 bool IsUnsigned = isa<ZExtInst>(Op0);
5399 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5400 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5401
5402 InstructionCost ExtCost =
5403 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5405 InstructionCost MulCost =
5406 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5407 InstructionCost Ext2Cost =
5408 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5410
5411 InstructionCost RedCost = TTI.getMulAccReductionCost(
5412 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5413 CostKind);
5414
5415 if (RedCost.isValid() &&
5416 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5417 return I == RetI ? RedCost : 0;
5418 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5419 !TheLoop->isLoopInvariant(RedOp)) {
5420 // Matched reduce(ext(A))
5421 bool IsUnsigned = isa<ZExtInst>(RedOp);
5422 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5423 InstructionCost RedCost = TTI.getExtendedReductionCost(
5424 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5425 RdxDesc.getFastMathFlags(), CostKind);
5426
5427 InstructionCost ExtCost =
5428 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5430 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5431 return I == RetI ? RedCost : 0;
5432 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5433 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5434 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5435 Op0->getOpcode() == Op1->getOpcode() &&
5436 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5437 bool IsUnsigned = isa<ZExtInst>(Op0);
5438 Type *Op0Ty = Op0->getOperand(0)->getType();
5439 Type *Op1Ty = Op1->getOperand(0)->getType();
5440 Type *LargestOpTy =
5441 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5442 : Op0Ty;
5443 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5444
5445 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5446 // different sizes. We take the largest type as the ext to reduce, and add
5447 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5448 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5449 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5451 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5452 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5454 InstructionCost MulCost =
5455 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5456
5457 InstructionCost RedCost = TTI.getMulAccReductionCost(
5458 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5459 CostKind);
5460 InstructionCost ExtraExtCost = 0;
5461 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5462 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5463 ExtraExtCost = TTI.getCastInstrCost(
5464 ExtraExtOp->getOpcode(), ExtType,
5465 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5467 }
5468
5469 if (RedCost.isValid() &&
5470 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5471 return I == RetI ? RedCost : 0;
5472 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5473 // Matched reduce.add(mul())
5474 InstructionCost MulCost =
5475 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5476
5477 InstructionCost RedCost = TTI.getMulAccReductionCost(
5478 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5479 CostKind);
5480
5481 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5482 return I == RetI ? RedCost : 0;
5483 }
5484 }
5485
5486 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5487}
5488
5490LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5491 ElementCount VF) {
5492 // Calculate scalar cost only. Vectorization cost should be ready at this
5493 // moment.
5494 if (VF.isScalar()) {
5495 Type *ValTy = getLoadStoreType(I);
5497 const Align Alignment = getLoadStoreAlignment(I);
5498 unsigned AS = getLoadStoreAddressSpace(I);
5499
5500 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5501 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5502 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5503 OpInfo, I);
5504 }
5505 return getWideningCost(I, VF);
5506}
5507
5509LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5510 ElementCount VF) const {
5511
5512 // There is no mechanism yet to create a scalable scalarization loop,
5513 // so this is currently Invalid.
5514 if (VF.isScalable())
5516
5517 if (VF.isScalar())
5518 return 0;
5519
5521 Type *RetTy = toVectorizedTy(I->getType(), VF);
5522 if (!RetTy->isVoidTy() &&
5523 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) {
5524
5525 for (Type *VectorTy : getContainedTypes(RetTy)) {
5526 Cost += TTI.getScalarizationOverhead(
5528 /*Insert=*/true,
5529 /*Extract=*/false, CostKind);
5530 }
5531 }
5532
5533 // Some targets keep addresses scalar.
5534 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
5535 return Cost;
5536
5537 // Some targets support efficient element stores.
5538 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
5539 return Cost;
5540
5541 // Collect operands to consider.
5542 CallInst *CI = dyn_cast<CallInst>(I);
5543 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5544
5545 // Skip operands that do not require extraction/scalarization and do not incur
5546 // any overhead.
5548 for (auto *V : filterExtractingOperands(Ops, VF))
5549 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5550 return Cost + TTI.getOperandsScalarizationOverhead(Tys, CostKind);
5551}
5552
5554 if (VF.isScalar())
5555 return;
5556 NumPredStores = 0;
5557 for (BasicBlock *BB : TheLoop->blocks()) {
5558 // For each instruction in the old loop.
5559 for (Instruction &I : *BB) {
5561 if (!Ptr)
5562 continue;
5563
5564 // TODO: We should generate better code and update the cost model for
5565 // predicated uniform stores. Today they are treated as any other
5566 // predicated store (see added test cases in
5567 // invariant-store-vectorization.ll).
5569 NumPredStores++;
5570
5571 if (Legal->isUniformMemOp(I, VF)) {
5572 auto IsLegalToScalarize = [&]() {
5573 if (!VF.isScalable())
5574 // Scalarization of fixed length vectors "just works".
5575 return true;
5576
5577 // We have dedicated lowering for unpredicated uniform loads and
5578 // stores. Note that even with tail folding we know that at least
5579 // one lane is active (i.e. generalized predication is not possible
5580 // here), and the logic below depends on this fact.
5581 if (!foldTailByMasking())
5582 return true;
5583
5584 // For scalable vectors, a uniform memop load is always
5585 // uniform-by-parts and we know how to scalarize that.
5586 if (isa<LoadInst>(I))
5587 return true;
5588
5589 // A uniform store isn't neccessarily uniform-by-part
5590 // and we can't assume scalarization.
5591 auto &SI = cast<StoreInst>(I);
5592 return TheLoop->isLoopInvariant(SI.getValueOperand());
5593 };
5594
5595 const InstructionCost GatherScatterCost =
5597 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5598
5599 // Load: Scalar load + broadcast
5600 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5601 // FIXME: This cost is a significant under-estimate for tail folded
5602 // memory ops.
5603 const InstructionCost ScalarizationCost =
5604 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5606
5607 // Choose better solution for the current VF, Note that Invalid
5608 // costs compare as maximumal large. If both are invalid, we get
5609 // scalable invalid which signals a failure and a vectorization abort.
5610 if (GatherScatterCost < ScalarizationCost)
5611 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5612 else
5613 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5614 continue;
5615 }
5616
5617 // We assume that widening is the best solution when possible.
5618 if (memoryInstructionCanBeWidened(&I, VF)) {
5619 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5620 int ConsecutiveStride = Legal->isConsecutivePtr(
5622 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5623 "Expected consecutive stride.");
5624 InstWidening Decision =
5625 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5626 setWideningDecision(&I, VF, Decision, Cost);
5627 continue;
5628 }
5629
5630 // Choose between Interleaving, Gather/Scatter or Scalarization.
5632 unsigned NumAccesses = 1;
5633 if (isAccessInterleaved(&I)) {
5634 const auto *Group = getInterleavedAccessGroup(&I);
5635 assert(Group && "Fail to get an interleaved access group.");
5636
5637 // Make one decision for the whole group.
5638 if (getWideningDecision(&I, VF) != CM_Unknown)
5639 continue;
5640
5641 NumAccesses = Group->getNumMembers();
5643 InterleaveCost = getInterleaveGroupCost(&I, VF);
5644 }
5645
5646 InstructionCost GatherScatterCost =
5648 ? getGatherScatterCost(&I, VF) * NumAccesses
5650
5651 InstructionCost ScalarizationCost =
5652 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5653
5654 // Choose better solution for the current VF,
5655 // write down this decision and use it during vectorization.
5657 InstWidening Decision;
5658 if (InterleaveCost <= GatherScatterCost &&
5659 InterleaveCost < ScalarizationCost) {
5660 Decision = CM_Interleave;
5661 Cost = InterleaveCost;
5662 } else if (GatherScatterCost < ScalarizationCost) {
5663 Decision = CM_GatherScatter;
5664 Cost = GatherScatterCost;
5665 } else {
5666 Decision = CM_Scalarize;
5667 Cost = ScalarizationCost;
5668 }
5669 // If the instructions belongs to an interleave group, the whole group
5670 // receives the same decision. The whole group receives the cost, but
5671 // the cost will actually be assigned to one instruction.
5672 if (const auto *Group = getInterleavedAccessGroup(&I))
5673 setWideningDecision(Group, VF, Decision, Cost);
5674 else
5675 setWideningDecision(&I, VF, Decision, Cost);
5676 }
5677 }
5678
5679 // Make sure that any load of address and any other address computation
5680 // remains scalar unless there is gather/scatter support. This avoids
5681 // inevitable extracts into address registers, and also has the benefit of
5682 // activating LSR more, since that pass can't optimize vectorized
5683 // addresses.
5684 if (TTI.prefersVectorizedAddressing())
5685 return;
5686
5687 // Start with all scalar pointer uses.
5689 for (BasicBlock *BB : TheLoop->blocks())
5690 for (Instruction &I : *BB) {
5691 Instruction *PtrDef =
5693 if (PtrDef && TheLoop->contains(PtrDef) &&
5695 AddrDefs.insert(PtrDef);
5696 }
5697
5698 // Add all instructions used to generate the addresses.
5700 append_range(Worklist, AddrDefs);
5701 while (!Worklist.empty()) {
5702 Instruction *I = Worklist.pop_back_val();
5703 for (auto &Op : I->operands())
5704 if (auto *InstOp = dyn_cast<Instruction>(Op))
5705 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
5706 AddrDefs.insert(InstOp).second)
5707 Worklist.push_back(InstOp);
5708 }
5709
5710 for (auto *I : AddrDefs) {
5711 if (isa<LoadInst>(I)) {
5712 // Setting the desired widening decision should ideally be handled in
5713 // by cost functions, but since this involves the task of finding out
5714 // if the loaded register is involved in an address computation, it is
5715 // instead changed here when we know this is the case.
5716 InstWidening Decision = getWideningDecision(I, VF);
5717 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
5718 // Scalarize a widened load of address.
5720 I, VF, CM_Scalarize,
5721 (VF.getKnownMinValue() *
5722 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5723 else if (const auto *Group = getInterleavedAccessGroup(I)) {
5724 // Scalarize an interleave group of address loads.
5725 for (unsigned I = 0; I < Group->getFactor(); ++I) {
5726 if (Instruction *Member = Group->getMember(I))
5728 Member, VF, CM_Scalarize,
5729 (VF.getKnownMinValue() *
5730 getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
5731 }
5732 }
5733 } else {
5734 // Cannot scalarize fixed-order recurrence phis at the moment.
5735 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5736 continue;
5737
5738 // Make sure I gets scalarized and a cost estimate without
5739 // scalarization overhead.
5740 ForcedScalars[VF].insert(I);
5741 }
5742 }
5743}
5744
5746 assert(!VF.isScalar() &&
5747 "Trying to set a vectorization decision for a scalar VF");
5748
5749 auto ForcedScalar = ForcedScalars.find(VF);
5750 for (BasicBlock *BB : TheLoop->blocks()) {
5751 // For each instruction in the old loop.
5752 for (Instruction &I : *BB) {
5754
5755 if (!CI)
5756 continue;
5757
5761 Function *ScalarFunc = CI->getCalledFunction();
5762 Type *ScalarRetTy = CI->getType();
5763 SmallVector<Type *, 4> Tys, ScalarTys;
5764 for (auto &ArgOp : CI->args())
5765 ScalarTys.push_back(ArgOp->getType());
5766
5767 // Estimate cost of scalarized vector call. The source operands are
5768 // assumed to be vectors, so we need to extract individual elements from
5769 // there, execute VF scalar calls, and then gather the result into the
5770 // vector return value.
5771 if (VF.isFixed()) {
5772 InstructionCost ScalarCallCost =
5773 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5774
5775 // Compute costs of unpacking argument values for the scalar calls and
5776 // packing the return values to a vector.
5777 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5778 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5779 } else {
5780 // There is no point attempting to calculate the scalar cost for a
5781 // scalable VF as we know it will be Invalid.
5782 assert(!getScalarizationOverhead(CI, VF).isValid() &&
5783 "Unexpected valid cost for scalarizing scalable vectors");
5784 ScalarCost = InstructionCost::getInvalid();
5785 }
5786
5787 // Honor ForcedScalars and UniformAfterVectorization decisions.
5788 // TODO: For calls, it might still be more profitable to widen. Use
5789 // VPlan-based cost model to compare different options.
5790 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5791 ForcedScalar->second.contains(CI)) ||
5792 isUniformAfterVectorization(CI, VF))) {
5793 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5794 Intrinsic::not_intrinsic, std::nullopt,
5795 ScalarCost);
5796 continue;
5797 }
5798
5799 bool MaskRequired = Legal->isMaskRequired(CI);
5800 // Compute corresponding vector type for return value and arguments.
5801 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5802 for (Type *ScalarTy : ScalarTys)
5803 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5804
5805 // An in-loop reduction using an fmuladd intrinsic is a special case;
5806 // we don't want the normal cost for that intrinsic.
5808 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5811 std::nullopt, *RedCost);
5812 continue;
5813 }
5814
5815 // Find the cost of vectorizing the call, if we can find a suitable
5816 // vector variant of the function.
5817 VFInfo FuncInfo;
5818 Function *VecFunc = nullptr;
5819 // Search through any available variants for one we can use at this VF.
5820 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5821 // Must match requested VF.
5822 if (Info.Shape.VF != VF)
5823 continue;
5824
5825 // Must take a mask argument if one is required
5826 if (MaskRequired && !Info.isMasked())
5827 continue;
5828
5829 // Check that all parameter kinds are supported
5830 bool ParamsOk = true;
5831 for (VFParameter Param : Info.Shape.Parameters) {
5832 switch (Param.ParamKind) {
5834 break;
5836 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5837 // Make sure the scalar parameter in the loop is invariant.
5838 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5839 TheLoop))
5840 ParamsOk = false;
5841 break;
5842 }
5844 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5845 // Find the stride for the scalar parameter in this loop and see if
5846 // it matches the stride for the variant.
5847 // TODO: do we need to figure out the cost of an extract to get the
5848 // first lane? Or do we hope that it will be folded away?
5849 ScalarEvolution *SE = PSE.getSE();
5850 if (!match(SE->getSCEV(ScalarParam),
5852 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5854 ParamsOk = false;
5855 break;
5856 }
5858 break;
5859 default:
5860 ParamsOk = false;
5861 break;
5862 }
5863 }
5864
5865 if (!ParamsOk)
5866 continue;
5867
5868 // Found a suitable candidate, stop here.
5869 VecFunc = CI->getModule()->getFunction(Info.VectorName);
5870 FuncInfo = Info;
5871 break;
5872 }
5873
5874 if (TLI && VecFunc && !CI->isNoBuiltin())
5875 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
5876
5877 // Find the cost of an intrinsic; some targets may have instructions that
5878 // perform the operation without needing an actual call.
5880 if (IID != Intrinsic::not_intrinsic)
5882
5883 InstructionCost Cost = ScalarCost;
5884 InstWidening Decision = CM_Scalarize;
5885
5886 if (VectorCost <= Cost) {
5887 Cost = VectorCost;
5888 Decision = CM_VectorCall;
5889 }
5890
5891 if (IntrinsicCost <= Cost) {
5893 Decision = CM_IntrinsicCall;
5894 }
5895
5896 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
5898 }
5899 }
5900}
5901
5903 if (!Legal->isInvariant(Op))
5904 return false;
5905 // Consider Op invariant, if it or its operands aren't predicated
5906 // instruction in the loop. In that case, it is not trivially hoistable.
5907 auto *OpI = dyn_cast<Instruction>(Op);
5908 return !OpI || !TheLoop->contains(OpI) ||
5909 (!isPredicatedInst(OpI) &&
5910 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
5911 all_of(OpI->operands(),
5912 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
5913}
5914
5917 ElementCount VF) {
5918 // If we know that this instruction will remain uniform, check the cost of
5919 // the scalar version.
5921 VF = ElementCount::getFixed(1);
5922
5923 if (VF.isVector() && isProfitableToScalarize(I, VF))
5924 return InstsToScalarize[VF][I];
5925
5926 // Forced scalars do not have any scalarization overhead.
5927 auto ForcedScalar = ForcedScalars.find(VF);
5928 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
5929 auto InstSet = ForcedScalar->second;
5930 if (InstSet.count(I))
5932 VF.getKnownMinValue();
5933 }
5934
5935 Type *RetTy = I->getType();
5937 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5938 auto *SE = PSE.getSE();
5939
5940 Type *VectorTy;
5941 if (isScalarAfterVectorization(I, VF)) {
5942 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
5943 [this](Instruction *I, ElementCount VF) -> bool {
5944 if (VF.isScalar())
5945 return true;
5946
5947 auto Scalarized = InstsToScalarize.find(VF);
5948 assert(Scalarized != InstsToScalarize.end() &&
5949 "VF not yet analyzed for scalarization profitability");
5950 return !Scalarized->second.count(I) &&
5951 llvm::all_of(I->users(), [&](User *U) {
5952 auto *UI = cast<Instruction>(U);
5953 return !Scalarized->second.count(UI);
5954 });
5955 };
5956
5957 // With the exception of GEPs and PHIs, after scalarization there should
5958 // only be one copy of the instruction generated in the loop. This is
5959 // because the VF is either 1, or any instructions that need scalarizing
5960 // have already been dealt with by the time we get here. As a result,
5961 // it means we don't have to multiply the instruction cost by VF.
5962 assert(I->getOpcode() == Instruction::GetElementPtr ||
5963 I->getOpcode() == Instruction::PHI ||
5964 (I->getOpcode() == Instruction::BitCast &&
5965 I->getType()->isPointerTy()) ||
5966 HasSingleCopyAfterVectorization(I, VF));
5967 VectorTy = RetTy;
5968 } else
5969 VectorTy = toVectorizedTy(RetTy, VF);
5970
5971 if (VF.isVector() && VectorTy->isVectorTy() &&
5972 !TTI.getNumberOfParts(VectorTy))
5974
5975 // TODO: We need to estimate the cost of intrinsic calls.
5976 switch (I->getOpcode()) {
5977 case Instruction::GetElementPtr:
5978 // We mark this instruction as zero-cost because the cost of GEPs in
5979 // vectorized code depends on whether the corresponding memory instruction
5980 // is scalarized or not. Therefore, we handle GEPs with the memory
5981 // instruction cost.
5982 return 0;
5983 case Instruction::Br: {
5984 // In cases of scalarized and predicated instructions, there will be VF
5985 // predicated blocks in the vectorized loop. Each branch around these
5986 // blocks requires also an extract of its vector compare i1 element.
5987 // Note that the conditional branch from the loop latch will be replaced by
5988 // a single branch controlling the loop, so there is no extra overhead from
5989 // scalarization.
5990 bool ScalarPredicatedBB = false;
5992 if (VF.isVector() && BI->isConditional() &&
5993 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
5994 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
5995 BI->getParent() != TheLoop->getLoopLatch())
5996 ScalarPredicatedBB = true;
5997
5998 if (ScalarPredicatedBB) {
5999 // Not possible to scalarize scalable vector with predicated instructions.
6000 if (VF.isScalable())
6002 // Return cost for branches around scalarized and predicated blocks.
6003 auto *VecI1Ty =
6005 return (
6006 TTI.getScalarizationOverhead(
6007 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6008 /*Insert*/ false, /*Extract*/ true, CostKind) +
6009 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6010 }
6011
6012 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6013 // The back-edge branch will remain, as will all scalar branches.
6014 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6015
6016 // This branch will be eliminated by if-conversion.
6017 return 0;
6018 // Note: We currently assume zero cost for an unconditional branch inside
6019 // a predicated block since it will become a fall-through, although we
6020 // may decide in the future to call TTI for all branches.
6021 }
6022 case Instruction::Switch: {
6023 if (VF.isScalar())
6024 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6025 auto *Switch = cast<SwitchInst>(I);
6026 return Switch->getNumCases() *
6027 TTI.getCmpSelInstrCost(
6028 Instruction::ICmp,
6029 toVectorTy(Switch->getCondition()->getType(), VF),
6030 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6032 }
6033 case Instruction::PHI: {
6034 auto *Phi = cast<PHINode>(I);
6035
6036 // First-order recurrences are replaced by vector shuffles inside the loop.
6037 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6039 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6040 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6041 cast<VectorType>(VectorTy),
6042 cast<VectorType>(VectorTy), Mask, CostKind,
6043 VF.getKnownMinValue() - 1);
6044 }
6045
6046 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6047 // converted into select instructions. We require N - 1 selects per phi
6048 // node, where N is the number of incoming values.
6049 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6050 Type *ResultTy = Phi->getType();
6051
6052 // All instructions in an Any-of reduction chain are narrowed to bool.
6053 // Check if that is the case for this phi node.
6054 auto *HeaderUser = cast_if_present<PHINode>(
6055 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6056 auto *Phi = dyn_cast<PHINode>(U);
6057 if (Phi && Phi->getParent() == TheLoop->getHeader())
6058 return Phi;
6059 return nullptr;
6060 }));
6061 if (HeaderUser) {
6062 auto &ReductionVars = Legal->getReductionVars();
6063 auto Iter = ReductionVars.find(HeaderUser);
6064 if (Iter != ReductionVars.end() &&
6066 Iter->second.getRecurrenceKind()))
6067 ResultTy = Type::getInt1Ty(Phi->getContext());
6068 }
6069 return (Phi->getNumIncomingValues() - 1) *
6070 TTI.getCmpSelInstrCost(
6071 Instruction::Select, toVectorTy(ResultTy, VF),
6072 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6074 }
6075
6076 // When tail folding with EVL, if the phi is part of an out of loop
6077 // reduction then it will be transformed into a wide vp_merge.
6078 if (VF.isVector() && foldTailWithEVL() &&
6079 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6081 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6082 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6083 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6084 }
6085
6086 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6087 }
6088 case Instruction::UDiv:
6089 case Instruction::SDiv:
6090 case Instruction::URem:
6091 case Instruction::SRem:
6092 if (VF.isVector() && isPredicatedInst(I)) {
6093 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6094 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6095 ScalarCost : SafeDivisorCost;
6096 }
6097 // We've proven all lanes safe to speculate, fall through.
6098 [[fallthrough]];
6099 case Instruction::Add:
6100 case Instruction::Sub: {
6101 auto Info = Legal->getHistogramInfo(I);
6102 if (Info && VF.isVector()) {
6103 const HistogramInfo *HGram = Info.value();
6104 // Assume that a non-constant update value (or a constant != 1) requires
6105 // a multiply, and add that into the cost.
6107 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6108 if (!RHS || RHS->getZExtValue() != 1)
6109 MulCost =
6110 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6111
6112 // Find the cost of the histogram operation itself.
6113 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6114 Type *ScalarTy = I->getType();
6115 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6116 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6117 Type::getVoidTy(I->getContext()),
6118 {PtrTy, ScalarTy, MaskTy});
6119
6120 // Add the costs together with the add/sub operation.
6121 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6122 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6123 }
6124 [[fallthrough]];
6125 }
6126 case Instruction::FAdd:
6127 case Instruction::FSub:
6128 case Instruction::Mul:
6129 case Instruction::FMul:
6130 case Instruction::FDiv:
6131 case Instruction::FRem:
6132 case Instruction::Shl:
6133 case Instruction::LShr:
6134 case Instruction::AShr:
6135 case Instruction::And:
6136 case Instruction::Or:
6137 case Instruction::Xor: {
6138 // If we're speculating on the stride being 1, the multiplication may
6139 // fold away. We can generalize this for all operations using the notion
6140 // of neutral elements. (TODO)
6141 if (I->getOpcode() == Instruction::Mul &&
6142 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6143 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6144 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6145 PSE.getSCEV(I->getOperand(1))->isOne())))
6146 return 0;
6147
6148 // Detect reduction patterns
6149 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6150 return *RedCost;
6151
6152 // Certain instructions can be cheaper to vectorize if they have a constant
6153 // second vector operand. One example of this are shifts on x86.
6154 Value *Op2 = I->getOperand(1);
6155 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6156 PSE.getSE()->isSCEVable(Op2->getType()) &&
6157 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6158 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6159 }
6160 auto Op2Info = TTI.getOperandInfo(Op2);
6161 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6164
6165 SmallVector<const Value *, 4> Operands(I->operand_values());
6166 return TTI.getArithmeticInstrCost(
6167 I->getOpcode(), VectorTy, CostKind,
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6169 Op2Info, Operands, I, TLI);
6170 }
6171 case Instruction::FNeg: {
6172 return TTI.getArithmeticInstrCost(
6173 I->getOpcode(), VectorTy, CostKind,
6174 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6175 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6176 I->getOperand(0), I);
6177 }
6178 case Instruction::Select: {
6180 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6181 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6182
6183 const Value *Op0, *Op1;
6184 using namespace llvm::PatternMatch;
6185 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6186 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6187 // select x, y, false --> x & y
6188 // select x, true, y --> x | y
6189 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6190 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6191 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6192 Op1->getType()->getScalarSizeInBits() == 1);
6193
6194 return TTI.getArithmeticInstrCost(
6195 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6196 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6197 }
6198
6199 Type *CondTy = SI->getCondition()->getType();
6200 if (!ScalarCond)
6201 CondTy = VectorType::get(CondTy, VF);
6202
6204 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6205 Pred = Cmp->getPredicate();
6206 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6207 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6208 {TTI::OK_AnyValue, TTI::OP_None}, I);
6209 }
6210 case Instruction::ICmp:
6211 case Instruction::FCmp: {
6212 Type *ValTy = I->getOperand(0)->getType();
6213
6215 [[maybe_unused]] Instruction *Op0AsInstruction =
6216 dyn_cast<Instruction>(I->getOperand(0));
6217 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6218 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6219 "if both the operand and the compare are marked for "
6220 "truncation, they must have the same bitwidth");
6221 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6222 }
6223
6224 VectorTy = toVectorTy(ValTy, VF);
6225 return TTI.getCmpSelInstrCost(
6226 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6227 cast<CmpInst>(I)->getPredicate(), CostKind,
6228 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6229 }
6230 case Instruction::Store:
6231 case Instruction::Load: {
6232 ElementCount Width = VF;
6233 if (Width.isVector()) {
6234 InstWidening Decision = getWideningDecision(I, Width);
6235 assert(Decision != CM_Unknown &&
6236 "CM decision should be taken at this point");
6239 if (Decision == CM_Scalarize)
6240 Width = ElementCount::getFixed(1);
6241 }
6242 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6243 return getMemoryInstructionCost(I, VF);
6244 }
6245 case Instruction::BitCast:
6246 if (I->getType()->isPointerTy())
6247 return 0;
6248 [[fallthrough]];
6249 case Instruction::ZExt:
6250 case Instruction::SExt:
6251 case Instruction::FPToUI:
6252 case Instruction::FPToSI:
6253 case Instruction::FPExt:
6254 case Instruction::PtrToInt:
6255 case Instruction::IntToPtr:
6256 case Instruction::SIToFP:
6257 case Instruction::UIToFP:
6258 case Instruction::Trunc:
6259 case Instruction::FPTrunc: {
6260 // Computes the CastContextHint from a Load/Store instruction.
6261 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6263 "Expected a load or a store!");
6264
6265 if (VF.isScalar() || !TheLoop->contains(I))
6267
6268 switch (getWideningDecision(I, VF)) {
6280 llvm_unreachable("Instr did not go through cost modelling?");
6283 llvm_unreachable_internal("Instr has invalid widening decision");
6284 }
6285
6286 llvm_unreachable("Unhandled case!");
6287 };
6288
6289 unsigned Opcode = I->getOpcode();
6291 // For Trunc, the context is the only user, which must be a StoreInst.
6292 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6293 if (I->hasOneUse())
6294 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6295 CCH = ComputeCCH(Store);
6296 }
6297 // For Z/Sext, the context is the operand, which must be a LoadInst.
6298 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6299 Opcode == Instruction::FPExt) {
6300 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6301 CCH = ComputeCCH(Load);
6302 }
6303
6304 // We optimize the truncation of induction variables having constant
6305 // integer steps. The cost of these truncations is the same as the scalar
6306 // operation.
6307 if (isOptimizableIVTruncate(I, VF)) {
6308 auto *Trunc = cast<TruncInst>(I);
6309 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6310 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6311 }
6312
6313 // Detect reduction patterns
6314 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6315 return *RedCost;
6316
6317 Type *SrcScalarTy = I->getOperand(0)->getType();
6318 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6319 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6320 SrcScalarTy =
6321 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6322 Type *SrcVecTy =
6323 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6324
6326 // If the result type is <= the source type, there will be no extend
6327 // after truncating the users to the minimal required bitwidth.
6328 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6329 (I->getOpcode() == Instruction::ZExt ||
6330 I->getOpcode() == Instruction::SExt))
6331 return 0;
6332 }
6333
6334 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6335 }
6336 case Instruction::Call:
6337 return getVectorCallCost(cast<CallInst>(I), VF);
6338 case Instruction::ExtractValue:
6339 return TTI.getInstructionCost(I, CostKind);
6340 case Instruction::Alloca:
6341 // We cannot easily widen alloca to a scalable alloca, as
6342 // the result would need to be a vector of pointers.
6343 if (VF.isScalable())
6345 [[fallthrough]];
6346 default:
6347 // This opcode is unknown. Assume that it is the same as 'mul'.
6348 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6349 } // end of switch.
6350}
6351
6353 // Ignore ephemeral values.
6355
6356 SmallVector<Value *, 4> DeadInterleavePointerOps;
6358
6359 // If a scalar epilogue is required, users outside the loop won't use
6360 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6361 // that is the case.
6362 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6363 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6364 return RequiresScalarEpilogue &&
6365 !TheLoop->contains(cast<Instruction>(U)->getParent());
6366 };
6367
6369 DFS.perform(LI);
6370 MapVector<Value *, SmallVector<Value *>> DeadInvariantStoreOps;
6371 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6372 for (Instruction &I : reverse(*BB)) {
6373 // Find all stores to invariant variables. Since they are going to sink
6374 // outside the loop we do not need calculate cost for them.
6375 StoreInst *SI;
6376 if ((SI = dyn_cast<StoreInst>(&I)) &&
6377 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
6378 ValuesToIgnore.insert(&I);
6379 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6380 SI->getValueOperand());
6381 }
6382
6383 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6384 continue;
6385
6386 // Add instructions that would be trivially dead and are only used by
6387 // values already ignored to DeadOps to seed worklist.
6389 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6390 return VecValuesToIgnore.contains(U) ||
6391 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6392 }))
6393 DeadOps.push_back(&I);
6394
6395 // For interleave groups, we only create a pointer for the start of the
6396 // interleave group. Queue up addresses of group members except the insert
6397 // position for further processing.
6398 if (isAccessInterleaved(&I)) {
6399 auto *Group = getInterleavedAccessGroup(&I);
6400 if (Group->getInsertPos() == &I)
6401 continue;
6402 Value *PointerOp = getLoadStorePointerOperand(&I);
6403 DeadInterleavePointerOps.push_back(PointerOp);
6404 }
6405
6406 // Queue branches for analysis. They are dead, if their successors only
6407 // contain dead instructions.
6408 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6409 if (Br->isConditional())
6410 DeadOps.push_back(&I);
6411 }
6412 }
6413
6414 // Mark ops feeding interleave group members as free, if they are only used
6415 // by other dead computations.
6416 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6417 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6418 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6419 Instruction *UI = cast<Instruction>(U);
6420 return !VecValuesToIgnore.contains(U) &&
6421 (!isAccessInterleaved(UI) ||
6422 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6423 }))
6424 continue;
6425 VecValuesToIgnore.insert(Op);
6426 append_range(DeadInterleavePointerOps, Op->operands());
6427 }
6428
6429 for (const auto &[_, Ops] : DeadInvariantStoreOps)
6430 llvm::append_range(DeadOps, drop_end(Ops));
6431
6432 // Mark ops that would be trivially dead and are only used by ignored
6433 // instructions as free.
6434 BasicBlock *Header = TheLoop->getHeader();
6435
6436 // Returns true if the block contains only dead instructions. Such blocks will
6437 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6438 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6439 auto IsEmptyBlock = [this](BasicBlock *BB) {
6440 return all_of(*BB, [this](Instruction &I) {
6441 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6442 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6443 });
6444 };
6445 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6446 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6447
6448 // Check if the branch should be considered dead.
6449 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6450 BasicBlock *ThenBB = Br->getSuccessor(0);
6451 BasicBlock *ElseBB = Br->getSuccessor(1);
6452 // Don't considers branches leaving the loop for simplification.
6453 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6454 continue;
6455 bool ThenEmpty = IsEmptyBlock(ThenBB);
6456 bool ElseEmpty = IsEmptyBlock(ElseBB);
6457 if ((ThenEmpty && ElseEmpty) ||
6458 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6459 ElseBB->phis().empty()) ||
6460 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6461 ThenBB->phis().empty())) {
6462 VecValuesToIgnore.insert(Br);
6463 DeadOps.push_back(Br->getCondition());
6464 }
6465 continue;
6466 }
6467
6468 // Skip any op that shouldn't be considered dead.
6469 if (!Op || !TheLoop->contains(Op) ||
6470 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6472 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6473 return !VecValuesToIgnore.contains(U) &&
6474 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6475 }))
6476 continue;
6477
6478 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6479 // which applies for both scalar and vector versions. Otherwise it is only
6480 // dead in vector versions, so only add it to VecValuesToIgnore.
6481 if (all_of(Op->users(),
6482 [this](User *U) { return ValuesToIgnore.contains(U); }))
6483 ValuesToIgnore.insert(Op);
6484
6485 VecValuesToIgnore.insert(Op);
6486 append_range(DeadOps, Op->operands());
6487 }
6488
6489 // Ignore type-promoting instructions we identified during reduction
6490 // detection.
6491 for (const auto &Reduction : Legal->getReductionVars()) {
6492 const RecurrenceDescriptor &RedDes = Reduction.second;
6493 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6494 VecValuesToIgnore.insert_range(Casts);
6495 }
6496 // Ignore type-casting instructions we identified during induction
6497 // detection.
6498 for (const auto &Induction : Legal->getInductionVars()) {
6499 const InductionDescriptor &IndDes = Induction.second;
6500 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6501 VecValuesToIgnore.insert_range(Casts);
6502 }
6503}
6504
6506 // Avoid duplicating work finding in-loop reductions.
6507 if (!InLoopReductions.empty())
6508 return;
6509
6510 for (const auto &Reduction : Legal->getReductionVars()) {
6511 PHINode *Phi = Reduction.first;
6512 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6513
6514 // We don't collect reductions that are type promoted (yet).
6515 if (RdxDesc.getRecurrenceType() != Phi->getType())
6516 continue;
6517
6518 // If the target would prefer this reduction to happen "in-loop", then we
6519 // want to record it as such.
6520 RecurKind Kind = RdxDesc.getRecurrenceKind();
6521 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6522 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6523 continue;
6524
6525 // Check that we can correctly put the reductions into the loop, by
6526 // finding the chain of operations that leads from the phi to the loop
6527 // exit value.
6528 SmallVector<Instruction *, 4> ReductionOperations =
6529 RdxDesc.getReductionOpChain(Phi, TheLoop);
6530 bool InLoop = !ReductionOperations.empty();
6531
6532 if (InLoop) {
6533 InLoopReductions.insert(Phi);
6534 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6535 Instruction *LastChain = Phi;
6536 for (auto *I : ReductionOperations) {
6537 InLoopReductionImmediateChains[I] = LastChain;
6538 LastChain = I;
6539 }
6540 }
6541 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6542 << " reduction for phi: " << *Phi << "\n");
6543 }
6544}
6545
6546// This function will select a scalable VF if the target supports scalable
6547// vectors and a fixed one otherwise.
6548// TODO: we could return a pair of values that specify the max VF and
6549// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6550// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6551// doesn't have a cost model that can choose which plan to execute if
6552// more than one is generated.
6555 unsigned WidestType;
6556 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6557
6559 TTI.enableScalableVectorization()
6562
6563 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6564 unsigned N = RegSize.getKnownMinValue() / WidestType;
6565 return ElementCount::get(N, RegSize.isScalable());
6566}
6567
6570 ElementCount VF = UserVF;
6571 // Outer loop handling: They may require CFG and instruction level
6572 // transformations before even evaluating whether vectorization is profitable.
6573 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6574 // the vectorization pipeline.
6575 if (!OrigLoop->isInnermost()) {
6576 // If the user doesn't provide a vectorization factor, determine a
6577 // reasonable one.
6578 if (UserVF.isZero()) {
6579 VF = determineVPlanVF(TTI, CM);
6580 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6581
6582 // Make sure we have a VF > 1 for stress testing.
6583 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6584 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6585 << "overriding computed VF.\n");
6586 VF = ElementCount::getFixed(4);
6587 }
6588 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6590 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6591 << "not supported by the target.\n");
6593 "Scalable vectorization requested but not supported by the target",
6594 "the scalable user-specified vectorization width for outer-loop "
6595 "vectorization cannot be used because the target does not support "
6596 "scalable vectors.",
6597 "ScalableVFUnfeasible", ORE, OrigLoop);
6599 }
6600 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6602 "VF needs to be a power of two");
6603 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6604 << "VF " << VF << " to build VPlans.\n");
6605 buildVPlans(VF, VF);
6606
6607 if (VPlans.empty())
6609
6610 // For VPlan build stress testing, we bail out after VPlan construction.
6613
6614 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6615 }
6616
6617 LLVM_DEBUG(
6618 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6619 "VPlan-native path.\n");
6621}
6622
6623void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6624 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6625 CM.collectValuesToIgnore();
6626 CM.collectElementTypesForWidening();
6627
6628 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6629 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6630 return;
6631
6632 // Invalidate interleave groups if all blocks of loop will be predicated.
6633 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6635 LLVM_DEBUG(
6636 dbgs()
6637 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6638 "which requires masked-interleaved support.\n");
6639 if (CM.InterleaveInfo.invalidateGroups())
6640 // Invalidating interleave groups also requires invalidating all decisions
6641 // based on them, which includes widening decisions and uniform and scalar
6642 // values.
6643 CM.invalidateCostModelingDecisions();
6644 }
6645
6646 if (CM.foldTailByMasking())
6647 Legal->prepareToFoldTailByMasking();
6648
6649 ElementCount MaxUserVF =
6650 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6651 if (UserVF) {
6652 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6654 "UserVF ignored because it may be larger than the maximal safe VF",
6655 "InvalidUserVF", ORE, OrigLoop);
6656 } else {
6658 "VF needs to be a power of two");
6659 // Collect the instructions (and their associated costs) that will be more
6660 // profitable to scalarize.
6661 CM.collectInLoopReductions();
6662 if (CM.selectUserVectorizationFactor(UserVF)) {
6663 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6664 buildVPlansWithVPRecipes(UserVF, UserVF);
6666 return;
6667 }
6668 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6669 "InvalidCost", ORE, OrigLoop);
6670 }
6671 }
6672
6673 // Collect the Vectorization Factor Candidates.
6674 SmallVector<ElementCount> VFCandidates;
6675 for (auto VF = ElementCount::getFixed(1);
6676 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6677 VFCandidates.push_back(VF);
6678 for (auto VF = ElementCount::getScalable(1);
6679 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6680 VFCandidates.push_back(VF);
6681
6682 CM.collectInLoopReductions();
6683 for (const auto &VF : VFCandidates) {
6684 // Collect Uniform and Scalar instructions after vectorization with VF.
6685 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6686 }
6687
6688 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6689 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6690
6692}
6693
6695 ElementCount VF) const {
6696 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6697 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6699 return Cost;
6700}
6701
6703 ElementCount VF) const {
6704 return CM.isUniformAfterVectorization(I, VF);
6705}
6706
6707bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6708 return CM.ValuesToIgnore.contains(UI) ||
6709 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6710 SkipCostComputation.contains(UI);
6711}
6712
6714LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6715 VPCostContext &CostCtx) const {
6717 // Cost modeling for inductions is inaccurate in the legacy cost model
6718 // compared to the recipes that are generated. To match here initially during
6719 // VPlan cost model bring up directly use the induction costs from the legacy
6720 // cost model. Note that we do this as pre-processing; the VPlan may not have
6721 // any recipes associated with the original induction increment instruction
6722 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6723 // the cost of induction phis and increments (both that are represented by
6724 // recipes and those that are not), to avoid distinguishing between them here,
6725 // and skip all recipes that represent induction phis and increments (the
6726 // former case) later on, if they exist, to avoid counting them twice.
6727 // Similarly we pre-compute the cost of any optimized truncates.
6728 // TODO: Switch to more accurate costing based on VPlan.
6729 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6731 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6732 SmallVector<Instruction *> IVInsts = {IVInc};
6733 for (unsigned I = 0; I != IVInsts.size(); I++) {
6734 for (Value *Op : IVInsts[I]->operands()) {
6735 auto *OpI = dyn_cast<Instruction>(Op);
6736 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6737 continue;
6738 IVInsts.push_back(OpI);
6739 }
6740 }
6741 IVInsts.push_back(IV);
6742 for (User *U : IV->users()) {
6743 auto *CI = cast<Instruction>(U);
6744 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6745 continue;
6746 IVInsts.push_back(CI);
6747 }
6748
6749 // If the vector loop gets executed exactly once with the given VF, ignore
6750 // the costs of comparison and induction instructions, as they'll get
6751 // simplified away.
6752 // TODO: Remove this code after stepping away from the legacy cost model and
6753 // adding code to simplify VPlans before calculating their costs.
6754 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6755 if (TC == VF && !CM.foldTailByMasking())
6756 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6757 CostCtx.SkipCostComputation);
6758
6759 for (Instruction *IVInst : IVInsts) {
6760 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6761 continue;
6762 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6763 LLVM_DEBUG({
6764 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6765 << ": induction instruction " << *IVInst << "\n";
6766 });
6767 Cost += InductionCost;
6768 CostCtx.SkipCostComputation.insert(IVInst);
6769 }
6770 }
6771
6772 /// Compute the cost of all exiting conditions of the loop using the legacy
6773 /// cost model. This is to match the legacy behavior, which adds the cost of
6774 /// all exit conditions. Note that this over-estimates the cost, as there will
6775 /// be a single condition to control the vector loop.
6777 CM.TheLoop->getExitingBlocks(Exiting);
6778 SetVector<Instruction *> ExitInstrs;
6779 // Collect all exit conditions.
6780 for (BasicBlock *EB : Exiting) {
6781 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6782 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6783 continue;
6784 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6785 ExitInstrs.insert(CondI);
6786 }
6787 }
6788 // Compute the cost of all instructions only feeding the exit conditions.
6789 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6790 Instruction *CondI = ExitInstrs[I];
6791 if (!OrigLoop->contains(CondI) ||
6792 !CostCtx.SkipCostComputation.insert(CondI).second)
6793 continue;
6794 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6795 LLVM_DEBUG({
6796 dbgs() << "Cost of " << CondICost << " for VF " << VF
6797 << ": exit condition instruction " << *CondI << "\n";
6798 });
6799 Cost += CondICost;
6800 for (Value *Op : CondI->operands()) {
6801 auto *OpI = dyn_cast<Instruction>(Op);
6802 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6803 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6804 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6805 !ExitInstrs.contains(cast<Instruction>(U));
6806 }))
6807 continue;
6808 ExitInstrs.insert(OpI);
6809 }
6810 }
6811
6812 // Pre-compute the costs for branches except for the backedge, as the number
6813 // of replicate regions in a VPlan may not directly match the number of
6814 // branches, which would lead to different decisions.
6815 // TODO: Compute cost of branches for each replicate region in the VPlan,
6816 // which is more accurate than the legacy cost model.
6817 for (BasicBlock *BB : OrigLoop->blocks()) {
6818 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6819 continue;
6820 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6821 if (BB == OrigLoop->getLoopLatch())
6822 continue;
6823 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6824 Cost += BranchCost;
6825 }
6826
6827 // Pre-compute costs for instructions that are forced-scalar or profitable to
6828 // scalarize. Their costs will be computed separately in the legacy cost
6829 // model.
6830 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6831 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6832 continue;
6833 CostCtx.SkipCostComputation.insert(ForcedScalar);
6834 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6835 LLVM_DEBUG({
6836 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6837 << ": forced scalar " << *ForcedScalar << "\n";
6838 });
6839 Cost += ForcedCost;
6840 }
6841 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6842 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6843 continue;
6844 CostCtx.SkipCostComputation.insert(Scalarized);
6845 LLVM_DEBUG({
6846 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6847 << ": profitable to scalarize " << *Scalarized << "\n";
6848 });
6849 Cost += ScalarCost;
6850 }
6851
6852 return Cost;
6853}
6854
6855InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6856 ElementCount VF) const {
6857 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6858 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6859
6860 // Now compute and add the VPlan-based cost.
6861 Cost += Plan.cost(VF, CostCtx);
6862#ifndef NDEBUG
6863 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6864 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6865 << " (Estimated cost per lane: ");
6866 if (Cost.isValid()) {
6867 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6868 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
6869 } else /* No point dividing an invalid cost - it will still be invalid */
6870 LLVM_DEBUG(dbgs() << "Invalid");
6871 LLVM_DEBUG(dbgs() << ")\n");
6872#endif
6873 return Cost;
6874}
6875
6876#ifndef NDEBUG
6877/// Return true if the original loop \ TheLoop contains any instructions that do
6878/// not have corresponding recipes in \p Plan and are not marked to be ignored
6879/// in \p CostCtx. This means the VPlan contains simplification that the legacy
6880/// cost-model did not account for.
6882 VPCostContext &CostCtx,
6883 Loop *TheLoop,
6884 ElementCount VF) {
6885 // First collect all instructions for the recipes in Plan.
6886 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
6887 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
6888 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6889 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6890 return &WidenMem->getIngredient();
6891 return nullptr;
6892 };
6893
6894 DenseSet<Instruction *> SeenInstrs;
6895 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
6897 for (VPRecipeBase &R : *VPBB) {
6898 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
6899 auto *IG = IR->getInterleaveGroup();
6900 unsigned NumMembers = IG->getNumMembers();
6901 for (unsigned I = 0; I != NumMembers; ++I) {
6902 if (Instruction *M = IG->getMember(I))
6903 SeenInstrs.insert(M);
6904 }
6905 continue;
6906 }
6907 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
6908 // cost model won't cost it whilst the legacy will.
6909 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
6910 if (none_of(FOR->users(), [](VPUser *U) {
6911 auto *VPI = dyn_cast<VPInstruction>(U);
6912 return VPI && VPI->getOpcode() ==
6913 VPInstruction::FirstOrderRecurrenceSplice;
6914 }))
6915 return true;
6916 }
6917 // The VPlan-based cost model is more accurate for partial reduction and
6918 // comparing against the legacy cost isn't desirable.
6920 return true;
6921
6922 // The VPlan-based cost model can analyze if recipes are scalar
6923 // recursively, but the legacy cost model cannot.
6924 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
6925 auto *AddrI = dyn_cast<Instruction>(
6926 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
6927 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
6928 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
6929 return true;
6930 }
6931
6932 /// If a VPlan transform folded a recipe to one producing a single-scalar,
6933 /// but the original instruction wasn't uniform-after-vectorization in the
6934 /// legacy cost model, the legacy cost overestimates the actual cost.
6935 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
6936 if (RepR->isSingleScalar() &&
6938 RepR->getUnderlyingInstr(), VF))
6939 return true;
6940 }
6941 if (Instruction *UI = GetInstructionForCost(&R)) {
6942 // If we adjusted the predicate of the recipe, the cost in the legacy
6943 // cost model may be different.
6944 using namespace VPlanPatternMatch;
6945 CmpPredicate Pred;
6946 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6947 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
6948 cast<CmpInst>(UI)->getPredicate())
6949 return true;
6950 SeenInstrs.insert(UI);
6951 }
6952 }
6953 }
6954
6955 // Return true if the loop contains any instructions that are not also part of
6956 // the VPlan or are skipped for VPlan-based cost computations. This indicates
6957 // that the VPlan contains extra simplifications.
6958 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
6959 TheLoop](BasicBlock *BB) {
6960 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6961 // Skip induction phis when checking for simplifications, as they may not
6962 // be lowered directly be lowered to a corresponding PHI recipe.
6963 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6964 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6965 return false;
6966 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6967 });
6968 });
6969}
6970#endif
6971
6973 if (VPlans.empty())
6975 // If there is a single VPlan with a single VF, return it directly.
6976 VPlan &FirstPlan = *VPlans[0];
6977 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
6978 return {*FirstPlan.vectorFactors().begin(), 0, 0};
6979
6980 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
6981 << (CM.CostKind == TTI::TCK_RecipThroughput
6982 ? "Reciprocal Throughput\n"
6983 : CM.CostKind == TTI::TCK_Latency
6984 ? "Instruction Latency\n"
6985 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
6986 : CM.CostKind == TTI::TCK_SizeAndLatency
6987 ? "Code Size and Latency\n"
6988 : "Unknown\n"));
6989
6991 assert(hasPlanWithVF(ScalarVF) &&
6992 "More than a single plan/VF w/o any plan having scalar VF");
6993
6994 // TODO: Compute scalar cost using VPlan-based cost model.
6995 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
6996 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
6997 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
6998 VectorizationFactor BestFactor = ScalarFactor;
6999
7000 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7001 if (ForceVectorization) {
7002 // Ignore scalar width, because the user explicitly wants vectorization.
7003 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7004 // evaluation.
7005 BestFactor.Cost = InstructionCost::getMax();
7006 }
7007
7008 for (auto &P : VPlans) {
7009 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7010 P->vectorFactors().end());
7011
7013 if (any_of(VFs, [this](ElementCount VF) {
7014 return CM.shouldConsiderRegPressureForVF(VF);
7015 }))
7016 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7017
7018 for (unsigned I = 0; I < VFs.size(); I++) {
7019 ElementCount VF = VFs[I];
7020 if (VF.isScalar())
7021 continue;
7022 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7023 LLVM_DEBUG(
7024 dbgs()
7025 << "LV: Not considering vector loop of width " << VF
7026 << " because it will not generate any vector instructions.\n");
7027 continue;
7028 }
7029 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7030 LLVM_DEBUG(
7031 dbgs()
7032 << "LV: Not considering vector loop of width " << VF
7033 << " because it would cause replicated blocks to be generated,"
7034 << " which isn't allowed when optimizing for size.\n");
7035 continue;
7036 }
7037
7038 InstructionCost Cost = cost(*P, VF);
7039 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7040
7041 if (CM.shouldConsiderRegPressureForVF(VF) &&
7042 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7043 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7044 << VF << " because it uses too many registers\n");
7045 continue;
7046 }
7047
7048 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7049 BestFactor = CurrentFactor;
7050
7051 // If profitable add it to ProfitableVF list.
7052 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7053 ProfitableVFs.push_back(CurrentFactor);
7054 }
7055 }
7056
7057#ifndef NDEBUG
7058 // Select the optimal vectorization factor according to the legacy cost-model.
7059 // This is now only used to verify the decisions by the new VPlan-based
7060 // cost-model and will be retired once the VPlan-based cost-model is
7061 // stabilized.
7062 VectorizationFactor LegacyVF = selectVectorizationFactor();
7063 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7064
7065 // Pre-compute the cost and use it to check if BestPlan contains any
7066 // simplifications not accounted for in the legacy cost model. If that's the
7067 // case, don't trigger the assertion, as the extra simplifications may cause a
7068 // different VF to be picked by the VPlan-based cost model.
7069 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7070 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7071 // Verify that the VPlan-based and legacy cost models agree, except for VPlans
7072 // with early exits and plans with additional VPlan simplifications. The
7073 // legacy cost model doesn't properly model costs for such loops.
7074 assert((BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7076 CostCtx, OrigLoop,
7077 BestFactor.Width) ||
7079 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7080 " VPlan cost model and legacy cost model disagreed");
7081 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7082 "when vectorizing, the scalar cost must be computed.");
7083#endif
7084
7085 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7086 return BestFactor;
7087}
7088
7090 using namespace VPlanPatternMatch;
7092 "RdxResult must be ComputeFindIVResult");
7093 VPValue *StartVPV = RdxResult->getOperand(1);
7094 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7095 return StartVPV->getLiveInIRValue();
7096}
7097
7098// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7099// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7100// from the main vector loop.
7102 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7103 // Get the VPInstruction computing the reduction result in the middle block.
7104 // The first operand may not be from the middle block if it is not connected
7105 // to the scalar preheader. In that case, there's nothing to fix.
7106 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7109 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7110 if (!EpiRedResult ||
7111 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7112 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7113 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7114 return;
7115
7116 auto *EpiRedHeaderPhi =
7117 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7118 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7119 Value *MainResumeValue;
7120 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7121 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7122 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7123 "unexpected start recipe");
7124 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7125 } else
7126 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7128 [[maybe_unused]] Value *StartV =
7129 EpiRedResult->getOperand(1)->getLiveInIRValue();
7130 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7131 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7132 "AnyOf expected to start with ICMP_NE");
7133 assert(Cmp->getOperand(1) == StartV &&
7134 "AnyOf expected to start by comparing main resume value to original "
7135 "start value");
7136 MainResumeValue = Cmp->getOperand(0);
7138 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7139 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7140 using namespace llvm::PatternMatch;
7141 Value *Cmp, *OrigResumeV, *CmpOp;
7142 [[maybe_unused]] bool IsExpectedPattern =
7143 match(MainResumeValue,
7144 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7145 m_Value(OrigResumeV))) &&
7147 m_Value(CmpOp))) &&
7148 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7149 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7150 MainResumeValue = OrigResumeV;
7151 }
7152 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7153
7154 // When fixing reductions in the epilogue loop we should already have
7155 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7156 // over the incoming values correctly.
7157 EpiResumePhi.setIncomingValueForBlock(
7158 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7159}
7160
7162 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7163 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7164 assert(BestVPlan.hasVF(BestVF) &&
7165 "Trying to execute plan with unsupported VF");
7166 assert(BestVPlan.hasUF(BestUF) &&
7167 "Trying to execute plan with unsupported UF");
7168 if (BestVPlan.hasEarlyExit())
7169 ++LoopsEarlyExitVectorized;
7170 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7171 // cost model is complete for better cost estimates.
7176 bool HasBranchWeights =
7177 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7178 if (HasBranchWeights) {
7179 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7181 BestVPlan, BestVF, VScale);
7182 }
7183
7184 // Checks are the same for all VPlans, added to BestVPlan only for
7185 // compactness.
7186 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7187
7188 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7189 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7190
7191 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7195 BestVPlan, BestVF,
7196 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector));
7197 VPlanTransforms::cse(BestVPlan);
7199
7201 // Regions are dissolved after optimizing for VF and UF, which completely
7202 // removes unneeded loop regions first.
7204 // Canonicalize EVL loops after regions are dissolved.
7208 BestVPlan, VectorPH, CM.foldTailByMasking(),
7209 CM.requiresScalarEpilogue(BestVF.isVector()));
7210 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7212
7213 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7214 // making any changes to the CFG.
7215 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7216 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7217 if (!ILV.getTripCount())
7218 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7219 else
7220 assert(VectorizingEpilogue && "should only re-use the existing trip "
7221 "count during epilogue vectorization");
7222
7223 // Perform the actual loop transformation.
7224 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7225 OrigLoop->getParentLoop(),
7226 Legal->getWidestInductionType());
7227
7228#ifdef EXPENSIVE_CHECKS
7229 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7230#endif
7231
7232 // 1. Set up the skeleton for vectorization, including vector pre-header and
7233 // middle block. The vector loop is created during VPlan execution.
7234 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7236 State.CFG.PrevBB->getSingleSuccessor());
7238
7239 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7240 "final VPlan is invalid");
7241
7242 // After vectorization, the exit blocks of the original loop will have
7243 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7244 // looked through single-entry phis.
7245 ScalarEvolution &SE = *PSE.getSE();
7246 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7247 if (!Exit->hasPredecessors())
7248 continue;
7249 for (VPRecipeBase &PhiR : Exit->phis())
7251 OrigLoop, cast<PHINode>(&cast<VPIRPhi>(PhiR).getInstruction()));
7252 }
7253 // Forget the original loop and block dispositions.
7254 SE.forgetLoop(OrigLoop);
7256
7258
7259 //===------------------------------------------------===//
7260 //
7261 // Notice: any optimization or new instruction that go
7262 // into the code below should also be implemented in
7263 // the cost-model.
7264 //
7265 //===------------------------------------------------===//
7266
7267 BestVPlan.execute(&State);
7268
7269 // 2.6. Maintain Loop Hints
7270 // Keep all loop hints from the original loop on the vector loop (we'll
7271 // replace the vectorizer-specific hints below).
7272 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7273 // Add metadata to disable runtime unrolling a scalar loop when there
7274 // are no runtime checks about strides and memory. A scalar loop that is
7275 // rarely used is not worth unrolling.
7276 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7278 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7279 : nullptr,
7280 HeaderVPBB, VectorizingEpilogue,
7281 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7282 DisableRuntimeUnroll);
7283
7284 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7285 // predication, updating analyses.
7286 ILV.fixVectorizedLoop(State);
7287
7289
7290 return ExpandedSCEVs;
7291}
7292
7293//===--------------------------------------------------------------------===//
7294// EpilogueVectorizerMainLoop
7295//===--------------------------------------------------------------------===//
7296
7297/// This function is partially responsible for generating the control flow
7298/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7300 BasicBlock *ScalarPH = createScalarPreheader("");
7301 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7302
7303 // Generate the code to check the minimum iteration count of the vector
7304 // epilogue (see below).
7305 EPI.EpilogueIterationCountCheck =
7306 emitIterationCountCheck(VectorPH, ScalarPH, true);
7307 EPI.EpilogueIterationCountCheck->setName("iter.check");
7308
7309 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7310 ->getSuccessor(1);
7311 // Generate the iteration count check for the main loop, *after* the check
7312 // for the epilogue loop, so that the path-length is shorter for the case
7313 // that goes directly through the vector epilogue. The longer-path length for
7314 // the main loop is compensated for, by the gain from vectorizing the larger
7315 // trip count. Note: the branch will get updated later on when we vectorize
7316 // the epilogue.
7317 EPI.MainLoopIterationCountCheck =
7318 emitIterationCountCheck(VectorPH, ScalarPH, false);
7319
7320 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7321 ->getSuccessor(1);
7322}
7323
7325 LLVM_DEBUG({
7326 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7327 << "Main Loop VF:" << EPI.MainLoopVF
7328 << ", Main Loop UF:" << EPI.MainLoopUF
7329 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7330 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7331 });
7332}
7333
7336 dbgs() << "intermediate fn:\n"
7337 << *OrigLoop->getHeader()->getParent() << "\n";
7338 });
7339}
7340
7342 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7343 assert(Bypass && "Expected valid bypass basic block.");
7346 Value *CheckMinIters = createIterationCountCheck(
7347 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7348 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7349
7350 BasicBlock *const TCCheckBlock = VectorPH;
7351 if (!ForEpilogue)
7352 TCCheckBlock->setName("vector.main.loop.iter.check");
7353
7354 // Create new preheader for vector loop.
7355 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7356 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7357 "vector.ph");
7358 if (ForEpilogue) {
7359 // Save the trip count so we don't have to regenerate it in the
7360 // vec.epilog.iter.check. This is safe to do because the trip count
7361 // generated here dominates the vector epilog iter check.
7362 EPI.TripCount = Count;
7363 } else {
7365 }
7366
7367 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7368 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7369 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7370 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7371
7372 // When vectorizing the main loop, its trip-count check is placed in a new
7373 // block, whereas the overall trip-count check is placed in the VPlan entry
7374 // block. When vectorizing the epilogue loop, its trip-count check is placed
7375 // in the VPlan entry block.
7376 if (!ForEpilogue)
7377 introduceCheckBlockInVPlan(TCCheckBlock);
7378 return TCCheckBlock;
7379}
7380
7381//===--------------------------------------------------------------------===//
7382// EpilogueVectorizerEpilogueLoop
7383//===--------------------------------------------------------------------===//
7384
7385/// This function is partially responsible for generating the control flow
7386/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7388 BasicBlock *ScalarPH = createScalarPreheader("vec.epilog.");
7389 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7390 // Now, compare the remaining count and if there aren't enough iterations to
7391 // execute the vectorized epilogue skip to the scalar part.
7392 VectorPH->setName("vec.epilog.ph");
7393 BasicBlock *VecEpilogueIterationCountCheck =
7394 SplitBlock(VectorPH, VectorPH->begin(), DT, LI, nullptr,
7395 "vec.epilog.iter.check", true);
7397
7398 emitMinimumVectorEpilogueIterCountCheck(VectorPH, ScalarPH,
7399 VecEpilogueIterationCountCheck);
7400 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7401
7402 // Adjust the control flow taking the state info from the main loop
7403 // vectorization into account.
7404 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7405 "expected this to be saved from the previous pass.");
7406 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7407 VecEpilogueIterationCountCheck, VectorPH);
7408
7409 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7410 VecEpilogueIterationCountCheck, ScalarPH);
7411
7412 // Adjust the terminators of runtime check blocks and phis using them.
7413 BasicBlock *SCEVCheckBlock = RTChecks.getSCEVChecks().second;
7414 BasicBlock *MemCheckBlock = RTChecks.getMemRuntimeChecks().second;
7415 if (SCEVCheckBlock)
7416 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
7417 VecEpilogueIterationCountCheck, ScalarPH);
7418 if (MemCheckBlock)
7419 MemCheckBlock->getTerminator()->replaceUsesOfWith(
7420 VecEpilogueIterationCountCheck, ScalarPH);
7421
7422 DT->changeImmediateDominator(ScalarPH, EPI.EpilogueIterationCountCheck);
7423
7424 // The vec.epilog.iter.check block may contain Phi nodes from inductions or
7425 // reductions which merge control-flow from the latch block and the middle
7426 // block. Update the incoming values here and move the Phi into the preheader.
7427 SmallVector<PHINode *, 4> PhisInBlock(
7428 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
7429
7430 for (PHINode *Phi : PhisInBlock) {
7431 Phi->moveBefore(VectorPH->getFirstNonPHIIt());
7432 Phi->replaceIncomingBlockWith(
7433 VecEpilogueIterationCountCheck->getSinglePredecessor(),
7434 VecEpilogueIterationCountCheck);
7435
7436 // If the phi doesn't have an incoming value from the
7437 // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
7438 // value and also those from other check blocks. This is needed for
7439 // reduction phis only.
7440 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
7441 return EPI.EpilogueIterationCountCheck == IncB;
7442 }))
7443 continue;
7444 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7445 if (SCEVCheckBlock)
7446 Phi->removeIncomingValue(SCEVCheckBlock);
7447 if (MemCheckBlock)
7448 Phi->removeIncomingValue(MemCheckBlock);
7449 }
7450
7451 return VectorPH;
7452}
7453
7454BasicBlock *
7456 BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert) {
7457
7458 assert(EPI.TripCount &&
7459 "Expected trip count to have been saved in the first pass.");
7460 Value *TC = EPI.TripCount;
7461 IRBuilder<> Builder(Insert->getTerminator());
7462 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7463
7464 // Generate code to check if the loop's trip count is less than VF * UF of the
7465 // vector epilogue loop.
7466 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector())
7469
7470 Value *CheckMinIters =
7471 Builder.CreateICmp(P, Count,
7472 createStepForVF(Builder, Count->getType(),
7473 EPI.EpilogueVF, EPI.EpilogueUF),
7474 "min.epilog.iters.check");
7475
7476 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7477 auto VScale = Cost->getVScaleForTuning();
7478 unsigned MainLoopStep =
7479 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
7480 unsigned EpilogueLoopStep =
7481 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
7482 // We assume the remaining `Count` is equally distributed in
7483 // [0, MainLoopStep)
7484 // So the probability for `Count < EpilogueLoopStep` should be
7485 // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep
7486 // TODO: Improve the estimate by taking the estimated trip count into
7487 // consideration.
7488 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7489 const uint32_t Weights[] = {EstimatedSkipCount,
7490 MainLoopStep - EstimatedSkipCount};
7491 setBranchWeights(BI, Weights, /*IsExpected=*/false);
7492 ReplaceInstWithInst(Insert->getTerminator(), &BI);
7493
7494 // A new entry block has been created for the epilogue VPlan. Hook it in, as
7495 // otherwise we would try to modify the entry to the main vector loop.
7496 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(Insert);
7497 VPBasicBlock *OldEntry = Plan.getEntry();
7498 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7499 Plan.setEntry(NewEntry);
7500 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7501
7502 return Insert;
7503}
7504
7506 LLVM_DEBUG({
7507 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7508 << "Epilogue Loop VF:" << EPI.EpilogueVF
7509 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7510 });
7511}
7512
7515 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7516 });
7517}
7518
7520VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands,
7521 VFRange &Range) {
7523 "Must be called with either a load or store");
7524
7525 auto WillWiden = [&](ElementCount VF) -> bool {
7527 CM.getWideningDecision(I, VF);
7529 "CM decision should be taken at this point.");
7531 return true;
7532 if (CM.isScalarAfterVectorization(I, VF) ||
7533 CM.isProfitableToScalarize(I, VF))
7534 return false;
7536 };
7537
7539 return nullptr;
7540
7541 VPValue *Mask = nullptr;
7542 if (Legal->isMaskRequired(I))
7543 Mask = getBlockInMask(Builder.getInsertBlock());
7544
7545 // Determine if the pointer operand of the access is either consecutive or
7546 // reverse consecutive.
7548 CM.getWideningDecision(I, Range.Start);
7550 bool Consecutive =
7552
7554 if (Consecutive) {
7556 Ptr->getUnderlyingValue()->stripPointerCasts());
7557 VPSingleDefRecipe *VectorPtr;
7558 if (Reverse) {
7559 // When folding the tail, we may compute an address that we don't in the
7560 // original scalar loop and it may not be inbounds. Drop Inbounds in that
7561 // case.
7562 GEPNoWrapFlags Flags =
7563 (CM.foldTailByMasking() || !GEP || !GEP->isInBounds())
7565 : GEPNoWrapFlags::inBounds();
7566 VectorPtr =
7568 /*Stride*/ -1, Flags, I->getDebugLoc());
7569 } else {
7570 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7571 GEP ? GEP->getNoWrapFlags()
7573 I->getDebugLoc());
7574 }
7575 Builder.insert(VectorPtr);
7576 Ptr = VectorPtr;
7577 }
7578 if (LoadInst *Load = dyn_cast<LoadInst>(I))
7579 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7580 VPIRMetadata(*Load, LVer), I->getDebugLoc());
7581
7582 StoreInst *Store = cast<StoreInst>(I);
7583 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive,
7584 Reverse, VPIRMetadata(*Store, LVer),
7585 I->getDebugLoc());
7586}
7587
7588/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
7589/// insert a recipe to expand the step for the induction recipe.
7592 VPValue *Start, const InductionDescriptor &IndDesc,
7593 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) {
7594 assert(IndDesc.getStartValue() ==
7595 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
7596 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
7597 "step must be loop invariant");
7598
7599 VPValue *Step =
7601 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
7602 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7603 IndDesc, TruncI,
7604 TruncI->getDebugLoc());
7605 }
7606 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
7607 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7608 IndDesc, Phi->getDebugLoc());
7609}
7610
7611VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7613
7614 // Check if this is an integer or fp induction. If so, build the recipe that
7615 // produces its scalar and vector values.
7616 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
7617 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
7618 *PSE.getSE(), *OrigLoop);
7619
7620 // Check if this is pointer induction. If so, build the recipe for it.
7621 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
7622 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep());
7623 return new VPWidenPointerInductionRecipe(
7624 Phi, Operands[0], Step, &Plan.getVFxUF(), *II,
7626 [&](ElementCount VF) {
7627 return CM.isScalarAfterVectorization(Phi, VF);
7628 },
7629 Range),
7630 Phi->getDebugLoc());
7631 }
7632 return nullptr;
7633}
7634
7635VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7637 // Optimize the special case where the source is a constant integer
7638 // induction variable. Notice that we can only optimize the 'trunc' case
7639 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7640 // (c) other casts depend on pointer size.
7641
7642 // Determine whether \p K is a truncation based on an induction variable that
7643 // can be optimized.
7644 auto IsOptimizableIVTruncate =
7645 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7646 return [=](ElementCount VF) -> bool {
7647 return CM.isOptimizableIVTruncate(K, VF);
7648 };
7649 };
7650
7652 IsOptimizableIVTruncate(I), Range)) {
7653
7654 auto *Phi = cast<PHINode>(I->getOperand(0));
7655 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
7656 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue());
7657 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
7658 *OrigLoop);
7659 }
7660 return nullptr;
7661}
7662
7663VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7665 VFRange &Range) {
7667 [this, CI](ElementCount VF) {
7668 return CM.isScalarWithPredication(CI, VF);
7669 },
7670 Range);
7671
7672 if (IsPredicated)
7673 return nullptr;
7674
7676 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7677 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7678 ID == Intrinsic::pseudoprobe ||
7679 ID == Intrinsic::experimental_noalias_scope_decl))
7680 return nullptr;
7681
7683
7684 // Is it beneficial to perform intrinsic call compared to lib call?
7685 bool ShouldUseVectorIntrinsic =
7687 [&](ElementCount VF) -> bool {
7688 return CM.getCallWideningDecision(CI, VF).Kind ==
7690 },
7691 Range);
7692 if (ShouldUseVectorIntrinsic)
7693 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(),
7694 CI->getDebugLoc());
7695
7696 Function *Variant = nullptr;
7697 std::optional<unsigned> MaskPos;
7698 // Is better to call a vectorized version of the function than to to scalarize
7699 // the call?
7700 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7701 [&](ElementCount VF) -> bool {
7702 // The following case may be scalarized depending on the VF.
7703 // The flag shows whether we can use a usual Call for vectorized
7704 // version of the instruction.
7705
7706 // If we've found a variant at a previous VF, then stop looking. A
7707 // vectorized variant of a function expects input in a certain shape
7708 // -- basically the number of input registers, the number of lanes
7709 // per register, and whether there's a mask required.
7710 // We store a pointer to the variant in the VPWidenCallRecipe, so
7711 // once we have an appropriate variant it's only valid for that VF.
7712 // This will force a different vplan to be generated for each VF that
7713 // finds a valid variant.
7714 if (Variant)
7715 return false;
7716 LoopVectorizationCostModel::CallWideningDecision Decision =
7717 CM.getCallWideningDecision(CI, VF);
7719 Variant = Decision.Variant;
7720 MaskPos = Decision.MaskPos;
7721 return true;
7722 }
7723
7724 return false;
7725 },
7726 Range);
7727 if (ShouldUseVectorCall) {
7728 if (MaskPos.has_value()) {
7729 // We have 2 cases that would require a mask:
7730 // 1) The block needs to be predicated, either due to a conditional
7731 // in the scalar loop or use of an active lane mask with
7732 // tail-folding, and we use the appropriate mask for the block.
7733 // 2) No mask is required for the block, but the only available
7734 // vector variant at this VF requires a mask, so we synthesize an
7735 // all-true mask.
7736 VPValue *Mask = nullptr;
7737 if (Legal->isMaskRequired(CI))
7738 Mask = getBlockInMask(Builder.getInsertBlock());
7739 else
7740 Mask = Plan.getOrAddLiveIn(
7742
7743 Ops.insert(Ops.begin() + *MaskPos, Mask);
7744 }
7745
7746 Ops.push_back(Operands.back());
7747 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc());
7748 }
7749
7750 return nullptr;
7751}
7752
7753bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7755 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7756 // Instruction should be widened, unless it is scalar after vectorization,
7757 // scalarization is profitable or it is predicated.
7758 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7759 return CM.isScalarAfterVectorization(I, VF) ||
7760 CM.isProfitableToScalarize(I, VF) ||
7761 CM.isScalarWithPredication(I, VF);
7762 };
7764 Range);
7765}
7766
7767VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
7769 switch (I->getOpcode()) {
7770 default:
7771 return nullptr;
7772 case Instruction::SDiv:
7773 case Instruction::UDiv:
7774 case Instruction::SRem:
7775 case Instruction::URem: {
7776 // If not provably safe, use a select to form a safe divisor before widening the
7777 // div/rem operation itself. Otherwise fall through to general handling below.
7778 if (CM.isPredicatedInst(I)) {
7780 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7781 VPValue *One =
7782 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false));
7783 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc());
7784 Ops[1] = SafeRHS;
7785 return new VPWidenRecipe(*I, Ops);
7786 }
7787 [[fallthrough]];
7788 }
7789 case Instruction::Add:
7790 case Instruction::And:
7791 case Instruction::AShr:
7792 case Instruction::FAdd:
7793 case Instruction::FCmp:
7794 case Instruction::FDiv:
7795 case Instruction::FMul:
7796 case Instruction::FNeg:
7797 case Instruction::FRem:
7798 case Instruction::FSub:
7799 case Instruction::ICmp:
7800 case Instruction::LShr:
7801 case Instruction::Mul:
7802 case Instruction::Or:
7803 case Instruction::Select:
7804 case Instruction::Shl:
7805 case Instruction::Sub:
7806 case Instruction::Xor:
7807 case Instruction::Freeze: {
7809 if (Instruction::isBinaryOp(I->getOpcode())) {
7810 // The legacy cost model uses SCEV to check if some of the operands are
7811 // constants. To match the legacy cost model's behavior, use SCEV to try
7812 // to replace operands with constants.
7813 ScalarEvolution &SE = *PSE.getSE();
7814 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
7815 if (!Op->isLiveIn())
7816 return Op;
7817 Value *V = Op->getUnderlyingValue();
7818 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
7819 return Op;
7820 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
7821 if (!C)
7822 return Op;
7823 return Plan.getOrAddLiveIn(C->getValue());
7824 };
7825 // For Mul, the legacy cost model checks both operands.
7826 if (I->getOpcode() == Instruction::Mul)
7827 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7828 // For other binops, the legacy cost model only checks the second operand.
7829 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7830 }
7831 return new VPWidenRecipe(*I, NewOps);
7832 }
7833 case Instruction::ExtractValue: {
7835 Type *I32Ty = IntegerType::getInt32Ty(I->getContext());
7836 auto *EVI = cast<ExtractValueInst>(I);
7837 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7838 unsigned Idx = EVI->getIndices()[0];
7839 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx, false)));
7840 return new VPWidenRecipe(*I, NewOps);
7841 }
7842 };
7843}
7844
7846VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7848 // FIXME: Support other operations.
7849 unsigned Opcode = HI->Update->getOpcode();
7850 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7851 "Histogram update operation must be an Add or Sub");
7852
7854 // Bucket address.
7855 HGramOps.push_back(Operands[1]);
7856 // Increment value.
7857 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7858
7859 // In case of predicated execution (due to tail-folding, or conditional
7860 // execution, or both), pass the relevant mask.
7861 if (Legal->isMaskRequired(HI->Store))
7862 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7863
7864 return new VPHistogramRecipe(Opcode, HGramOps, HI->Store->getDebugLoc());
7865}
7866
7869 VFRange &Range) {
7871 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7872 Range);
7873
7874 bool IsPredicated = CM.isPredicatedInst(I);
7875
7876 // Even if the instruction is not marked as uniform, there are certain
7877 // intrinsic calls that can be effectively treated as such, so we check for
7878 // them here. Conservatively, we only do this for scalable vectors, since
7879 // for fixed-width VFs we can always fall back on full scalarization.
7880 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7881 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7882 case Intrinsic::assume:
7883 case Intrinsic::lifetime_start:
7884 case Intrinsic::lifetime_end:
7885 // For scalable vectors if one of the operands is variant then we still
7886 // want to mark as uniform, which will generate one instruction for just
7887 // the first lane of the vector. We can't scalarize the call in the same
7888 // way as for fixed-width vectors because we don't know how many lanes
7889 // there are.
7890 //
7891 // The reasons for doing it this way for scalable vectors are:
7892 // 1. For the assume intrinsic generating the instruction for the first
7893 // lane is still be better than not generating any at all. For
7894 // example, the input may be a splat across all lanes.
7895 // 2. For the lifetime start/end intrinsics the pointer operand only
7896 // does anything useful when the input comes from a stack object,
7897 // which suggests it should always be uniform. For non-stack objects
7898 // the effect is to poison the object, which still allows us to
7899 // remove the call.
7900 IsUniform = true;
7901 break;
7902 default:
7903 break;
7904 }
7905 }
7906 VPValue *BlockInMask = nullptr;
7907 if (!IsPredicated) {
7908 // Finalize the recipe for Instr, first if it is not predicated.
7909 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7910 } else {
7911 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7912 // Instructions marked for predication are replicated and a mask operand is
7913 // added initially. Masked replicate recipes will later be placed under an
7914 // if-then construct to prevent side-effects. Generate recipes to compute
7915 // the block mask for this region.
7916 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7917 }
7918
7919 // Note that there is some custom logic to mark some intrinsics as uniform
7920 // manually above for scalable vectors, which this assert needs to account for
7921 // as well.
7922 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7923 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7924 "Should not predicate a uniform recipe");
7925 auto *Recipe = new VPReplicateRecipe(I, Operands, IsUniform, BlockInMask,
7926 VPIRMetadata(*I, LVer));
7927 return Recipe;
7928}
7929
7930/// Find all possible partial reductions in the loop and track all of those that
7931/// are valid so recipes can be formed later.
7933 // Find all possible partial reductions.
7935 PartialReductionChains;
7936 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7937 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(), Range,
7938 PartialReductionChains);
7939 }
7940
7941 // A partial reduction is invalid if any of its extends are used by
7942 // something that isn't another partial reduction. This is because the
7943 // extends are intended to be lowered along with the reduction itself.
7944
7945 // Build up a set of partial reduction ops for efficient use checking.
7946 SmallPtrSet<User *, 4> PartialReductionOps;
7947 for (const auto &[PartialRdx, _] : PartialReductionChains)
7948 PartialReductionOps.insert(PartialRdx.ExtendUser);
7949
7950 auto ExtendIsOnlyUsedByPartialReductions =
7951 [&PartialReductionOps](Instruction *Extend) {
7952 return all_of(Extend->users(), [&](const User *U) {
7953 return PartialReductionOps.contains(U);
7954 });
7955 };
7956
7957 // Check if each use of a chain's two extends is a partial reduction
7958 // and only add those that don't have non-partial reduction users.
7959 for (auto Pair : PartialReductionChains) {
7960 PartialReductionChain Chain = Pair.first;
7961 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
7962 (!Chain.ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
7963 ScaledReductionMap.try_emplace(Chain.Reduction, Pair.second);
7964 }
7965}
7966
7967bool VPRecipeBuilder::getScaledReductions(
7968 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
7969 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7970 if (!CM.TheLoop->contains(RdxExitInstr))
7971 return false;
7972
7973 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
7974 if (!Update)
7975 return false;
7976
7977 Value *Op = Update->getOperand(0);
7978 Value *PhiOp = Update->getOperand(1);
7979 if (Op == PHI)
7980 std::swap(Op, PhiOp);
7981
7982 // Try and get a scaled reduction from the first non-phi operand.
7983 // If one is found, we use the discovered reduction instruction in
7984 // place of the accumulator for costing.
7985 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
7986 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
7987 PHI = Chains.rbegin()->first.Reduction;
7988
7989 Op = Update->getOperand(0);
7990 PhiOp = Update->getOperand(1);
7991 if (Op == PHI)
7992 std::swap(Op, PhiOp);
7993 }
7994 }
7995 if (PhiOp != PHI)
7996 return false;
7997
7998 using namespace llvm::PatternMatch;
7999
8000 // If the update is a binary operator, check both of its operands to see if
8001 // they are extends. Otherwise, see if the update comes directly from an
8002 // extend.
8003 Instruction *Exts[2] = {nullptr};
8004 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8005 std::optional<unsigned> BinOpc;
8006 Type *ExtOpTypes[2] = {nullptr};
8007
8008 auto CollectExtInfo = [this, &Exts,
8009 &ExtOpTypes](SmallVectorImpl<Value *> &Ops) -> bool {
8010 unsigned I = 0;
8011 for (Value *OpI : Ops) {
8012 Value *ExtOp;
8013 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8014 return false;
8015 Exts[I] = cast<Instruction>(OpI);
8016
8017 // TODO: We should be able to support live-ins.
8018 if (!CM.TheLoop->contains(Exts[I]))
8019 return false;
8020
8021 ExtOpTypes[I] = ExtOp->getType();
8022 I++;
8023 }
8024 return true;
8025 };
8026
8027 if (ExtendUser) {
8028 if (!ExtendUser->hasOneUse())
8029 return false;
8030
8031 // Use the side-effect of match to replace BinOp only if the pattern is
8032 // matched, we don't care at this point whether it actually matched.
8033 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8034
8035 SmallVector<Value *> Ops(ExtendUser->operands());
8036 if (!CollectExtInfo(Ops))
8037 return false;
8038
8039 BinOpc = std::make_optional(ExtendUser->getOpcode());
8040 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8041 // We already know the operands for Update are Op and PhiOp.
8043 if (!CollectExtInfo(Ops))
8044 return false;
8045
8046 ExtendUser = Update;
8047 BinOpc = std::nullopt;
8048 } else
8049 return false;
8050
8054 Exts[1] ? TTI::getPartialReductionExtendKind(Exts[1]) : TTI::PR_None;
8055 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8056
8057 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8058 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8059 if (!PHISize.hasKnownScalarFactor(ASize))
8060 return false;
8061 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8062
8064 [&](ElementCount VF) {
8065 InstructionCost Cost = TTI->getPartialReductionCost(
8066 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8067 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8068 return Cost.isValid();
8069 },
8070 Range)) {
8071 Chains.emplace_back(Chain, TargetScaleFactor);
8072 return true;
8073 }
8074
8075 return false;
8076}
8077
8079 VFRange &Range) {
8080 // First, check for specific widening recipes that deal with inductions, Phi
8081 // nodes, calls and memory operations.
8082 VPRecipeBase *Recipe;
8083 Instruction *Instr = R->getUnderlyingInstr();
8084 SmallVector<VPValue *, 4> Operands(R->operands());
8085 if (auto *PhiR = dyn_cast<VPPhi>(R)) {
8086 VPBasicBlock *Parent = PhiR->getParent();
8087 [[maybe_unused]] VPRegionBlock *LoopRegionOf =
8088 Parent->getEnclosingLoopRegion();
8089 assert(LoopRegionOf && LoopRegionOf->getEntry() == Parent &&
8090 "Non-header phis should have been handled during predication");
8091 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8092 assert(Operands.size() == 2 && "Must have 2 operands for header phis");
8093 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8094 return Recipe;
8095
8096 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8097 assert((Legal->isReductionVariable(Phi) ||
8098 Legal->isFixedOrderRecurrence(Phi)) &&
8099 "can only widen reductions and fixed-order recurrences here");
8100 VPValue *StartV = Operands[0];
8101 if (Legal->isReductionVariable(Phi)) {
8102 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(Phi);
8103 assert(RdxDesc.getRecurrenceStartValue() ==
8104 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8105
8106 // If the PHI is used by a partial reduction, set the scale factor.
8107 unsigned ScaleFactor =
8108 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1);
8109 PhiRecipe = new VPReductionPHIRecipe(
8110 Phi, RdxDesc.getRecurrenceKind(), *StartV, CM.isInLoopReduction(Phi),
8111 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8112 } else {
8113 // TODO: Currently fixed-order recurrences are modeled as chains of
8114 // first-order recurrences. If there are no users of the intermediate
8115 // recurrences in the chain, the fixed order recurrence should be modeled
8116 // directly, enabling more efficient codegen.
8117 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8118 }
8119 // Add backedge value.
8120 PhiRecipe->addOperand(Operands[1]);
8121 return PhiRecipe;
8122 }
8123 assert(!R->isPhi() && "only VPPhi nodes expected at this point");
8124
8125 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8126 cast<TruncInst>(Instr), Operands, Range)))
8127 return Recipe;
8128
8129 // All widen recipes below deal only with VF > 1.
8131 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8132 return nullptr;
8133
8134 if (auto *CI = dyn_cast<CallInst>(Instr))
8135 return tryToWidenCall(CI, Operands, Range);
8136
8137 if (StoreInst *SI = dyn_cast<StoreInst>(Instr))
8138 if (auto HistInfo = Legal->getHistogramInfo(SI))
8139 return tryToWidenHistogram(*HistInfo, Operands);
8140
8141 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8142 return tryToWidenMemory(Instr, Operands, Range);
8143
8144 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8145 return tryToCreatePartialReduction(Instr, Operands, ScaleFactor.value());
8146
8147 if (!shouldWiden(Instr, Range))
8148 return nullptr;
8149
8150 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr))
8151 return new VPWidenGEPRecipe(GEP, Operands);
8152
8153 if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8154 return new VPWidenSelectRecipe(*SI, Operands);
8155 }
8156
8157 if (auto *CI = dyn_cast<CastInst>(Instr)) {
8158 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(),
8159 *CI);
8160 }
8161
8162 return tryToWiden(Instr, Operands);
8163}
8164
8168 unsigned ScaleFactor) {
8169 assert(Operands.size() == 2 &&
8170 "Unexpected number of operands for partial reduction");
8171
8172 VPValue *BinOp = Operands[0];
8174 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8175 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8176 isa<VPPartialReductionRecipe>(BinOpRecipe))
8177 std::swap(BinOp, Accumulator);
8178
8179 unsigned ReductionOpcode = Reduction->getOpcode();
8180 if (ReductionOpcode == Instruction::Sub) {
8181 auto *const Zero = ConstantInt::get(Reduction->getType(), 0);
8183 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8184 Ops.push_back(BinOp);
8185 BinOp = new VPWidenRecipe(*Reduction, Ops);
8186 Builder.insert(BinOp->getDefiningRecipe());
8187 ReductionOpcode = Instruction::Add;
8188 }
8189
8190 VPValue *Cond = nullptr;
8191 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8192 assert((ReductionOpcode == Instruction::Add ||
8193 ReductionOpcode == Instruction::Sub) &&
8194 "Expected an ADD or SUB operation for predicated partial "
8195 "reductions (because the neutral element in the mask is zero)!");
8196 Cond = getBlockInMask(Builder.getInsertBlock());
8197 VPValue *Zero =
8198 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8199 BinOp = Builder.createSelect(Cond, BinOp, Zero, Reduction->getDebugLoc());
8200 }
8201 return new VPPartialReductionRecipe(ReductionOpcode, Accumulator, BinOp, Cond,
8202 ScaleFactor, Reduction);
8203}
8204
8205void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8206 ElementCount MaxVF) {
8207 if (ElementCount::isKnownGT(MinVF, MaxVF))
8208 return;
8209
8210 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8211
8212 const LoopAccessInfo *LAI = Legal->getLAI();
8214 OrigLoop, LI, DT, PSE.getSE());
8215 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8217 // Only use noalias metadata when using memory checks guaranteeing no
8218 // overlap across all iterations.
8219 LVer.prepareNoAliasMetadata();
8220 }
8221
8222 // Create initial base VPlan0, to serve as common starting point for all
8223 // candidates built later for specific VF ranges.
8224 auto VPlan0 = VPlanTransforms::buildVPlan0(
8225 OrigLoop, *LI, Legal->getWidestInductionType(),
8226 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8227
8228 auto MaxVFTimes2 = MaxVF * 2;
8229 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8230 VFRange SubRange = {VF, MaxVFTimes2};
8231 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8232 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8233 bool HasScalarVF = Plan->hasScalarVFOnly();
8234 // Now optimize the initial VPlan.
8235 if (!HasScalarVF)
8237 *Plan, CM.getMinimalBitwidths());
8239 // TODO: try to put it close to addActiveLaneMask().
8240 if (CM.foldTailWithEVL() && !HasScalarVF)
8242 *Plan, CM.getMaxSafeElements());
8243 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8244 VPlans.push_back(std::move(Plan));
8245 }
8246 VF = SubRange.End;
8247 }
8248}
8249
8250/// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the
8251/// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute
8252/// the end value of the induction.
8254 VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder,
8255 VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC) {
8256 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8257 // Truncated wide inductions resume from the last lane of their vector value
8258 // in the last vector iteration which is handled elsewhere.
8259 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8260 return nullptr;
8261
8262 VPValue *Start = WideIV->getStartValue();
8263 VPValue *Step = WideIV->getStepValue();
8265 VPValue *EndValue = VectorTC;
8266 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8267 EndValue = VectorPHBuilder.createDerivedIV(
8268 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
8269 Start, VectorTC, Step);
8270 }
8271
8272 // EndValue is derived from the vector trip count (which has the same type as
8273 // the widest induction) and thus may be wider than the induction here.
8274 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV);
8275 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) {
8276 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue,
8277 ScalarTypeOfWideIV,
8278 WideIV->getDebugLoc());
8279 }
8280
8281 auto *ResumePhiRecipe = ScalarPHBuilder.createScalarPhi(
8282 {EndValue, Start}, WideIV->getDebugLoc(), "bc.resume.val");
8283 return ResumePhiRecipe;
8284}
8285
8286/// Create resume phis in the scalar preheader for first-order recurrences,
8287/// reductions and inductions, and update the VPIRInstructions wrapping the
8288/// original phis in the scalar header. End values for inductions are added to
8289/// \p IVEndValues.
8290static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan,
8291 DenseMap<VPValue *, VPValue *> &IVEndValues) {
8292 VPTypeAnalysis TypeInfo(Plan);
8293 auto *ScalarPH = Plan.getScalarPreheader();
8294 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getPredecessors()[0]);
8295 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8296 VPBuilder VectorPHBuilder(
8297 cast<VPBasicBlock>(VectorRegion->getSinglePredecessor()));
8298 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8299 VPBuilder ScalarPHBuilder(ScalarPH);
8300 for (VPRecipeBase &ScalarPhiR : Plan.getScalarHeader()->phis()) {
8301 auto *ScalarPhiIRI = cast<VPIRPhi>(&ScalarPhiR);
8302
8303 // TODO: Extract final value from induction recipe initially, optimize to
8304 // pre-computed end value together in optimizeInductionExitUsers.
8305 auto *VectorPhiR =
8306 cast<VPHeaderPHIRecipe>(Builder.getRecipe(&ScalarPhiIRI->getIRPhi()));
8307 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8309 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8310 &Plan.getVectorTripCount())) {
8311 assert(isa<VPPhi>(ResumePhi) && "Expected a phi");
8312 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8313 ScalarPhiIRI->addOperand(ResumePhi);
8314 continue;
8315 }
8316 // TODO: Also handle truncated inductions here. Computing end-values
8317 // separately should be done as VPlan-to-VPlan optimization, after
8318 // legalizing all resume values to use the last lane from the loop.
8319 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8320 "should only skip truncated wide inductions");
8321 continue;
8322 }
8323
8324 // The backedge value provides the value to resume coming out of a loop,
8325 // which for FORs is a vector whose last element needs to be extracted. The
8326 // start value provides the value if the loop is bypassed.
8327 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8328 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8329 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8330 "Cannot handle loops with uncountable early exits");
8331 if (IsFOR)
8332 ResumeFromVectorLoop = MiddleBuilder.createNaryOp(
8333 VPInstruction::ExtractLastElement, {ResumeFromVectorLoop}, {},
8334 "vector.recur.extract");
8335 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx";
8336 auto *ResumePhiR = ScalarPHBuilder.createScalarPhi(
8337 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8338 ScalarPhiIRI->addOperand(ResumePhiR);
8339 }
8340}
8341
8342/// Handle users in the exit block for first order reductions in the original
8343/// exit block. The penultimate value of recurrences is fed to their LCSSA phi
8344/// users in the original exit block using the VPIRInstruction wrapping to the
8345/// LCSSA phi.
8347 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8348 auto *ScalarPHVPBB = Plan.getScalarPreheader();
8349 auto *MiddleVPBB = Plan.getMiddleBlock();
8350 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8351 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8352
8353 auto IsScalableOne = [](ElementCount VF) -> bool {
8354 return VF == ElementCount::getScalable(1);
8355 };
8356
8357 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) {
8358 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8359 if (!FOR)
8360 continue;
8361
8362 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8363 "Cannot handle loops with uncountable early exits");
8364
8365 // This is the second phase of vectorizing first-order recurrences, creating
8366 // extract for users outside the loop. An overview of the transformation is
8367 // described below. Suppose we have the following loop with some use after
8368 // the loop of the last a[i-1],
8369 //
8370 // for (int i = 0; i < n; ++i) {
8371 // t = a[i - 1];
8372 // b[i] = a[i] - t;
8373 // }
8374 // use t;
8375 //
8376 // There is a first-order recurrence on "a". For this loop, the shorthand
8377 // scalar IR looks like:
8378 //
8379 // scalar.ph:
8380 // s.init = a[-1]
8381 // br scalar.body
8382 //
8383 // scalar.body:
8384 // i = phi [0, scalar.ph], [i+1, scalar.body]
8385 // s1 = phi [s.init, scalar.ph], [s2, scalar.body]
8386 // s2 = a[i]
8387 // b[i] = s2 - s1
8388 // br cond, scalar.body, exit.block
8389 //
8390 // exit.block:
8391 // use = lcssa.phi [s1, scalar.body]
8392 //
8393 // In this example, s1 is a recurrence because it's value depends on the
8394 // previous iteration. In the first phase of vectorization, we created a
8395 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts
8396 // for users in the scalar preheader and exit block.
8397 //
8398 // vector.ph:
8399 // v_init = vector(..., ..., ..., a[-1])
8400 // br vector.body
8401 //
8402 // vector.body
8403 // i = phi [0, vector.ph], [i+4, vector.body]
8404 // v1 = phi [v_init, vector.ph], [v2, vector.body]
8405 // v2 = a[i, i+1, i+2, i+3]
8406 // b[i] = v2 - v1
8407 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2))
8408 // b[i, i+1, i+2, i+3] = v2 - v1
8409 // br cond, vector.body, middle.block
8410 //
8411 // middle.block:
8412 // vector.recur.extract.for.phi = v2(2)
8413 // vector.recur.extract = v2(3)
8414 // br cond, scalar.ph, exit.block
8415 //
8416 // scalar.ph:
8417 // scalar.recur.init = phi [vector.recur.extract, middle.block],
8418 // [s.init, otherwise]
8419 // br scalar.body
8420 //
8421 // scalar.body:
8422 // i = phi [0, scalar.ph], [i+1, scalar.body]
8423 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body]
8424 // s2 = a[i]
8425 // b[i] = s2 - s1
8426 // br cond, scalar.body, exit.block
8427 //
8428 // exit.block:
8429 // lo = lcssa.phi [s1, scalar.body],
8430 // [vector.recur.extract.for.phi, middle.block]
8431 //
8432 // Now update VPIRInstructions modeling LCSSA phis in the exit block.
8433 // Extract the penultimate value of the recurrence and use it as operand for
8434 // the VPIRInstruction modeling the phi.
8435 for (VPUser *U : FOR->users()) {
8436 using namespace llvm::VPlanPatternMatch;
8437 if (!match(U, m_ExtractLastElement(m_Specific(FOR))))
8438 continue;
8439 // For VF vscale x 1, if vscale = 1, we are unable to extract the
8440 // penultimate value of the recurrence. Instead we rely on the existing
8441 // extract of the last element from the result of
8442 // VPInstruction::FirstOrderRecurrenceSplice.
8443 // TODO: Consider vscale_range info and UF.
8445 Range))
8446 return;
8447 VPValue *PenultimateElement = MiddleBuilder.createNaryOp(
8448 VPInstruction::ExtractPenultimateElement, {FOR->getBackedgeValue()},
8449 {}, "vector.recur.extract.for.phi");
8450 cast<VPInstruction>(U)->replaceAllUsesWith(PenultimateElement);
8451 }
8452 }
8453}
8454
8455VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8456 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8457
8458 using namespace llvm::VPlanPatternMatch;
8459 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8460
8461 // ---------------------------------------------------------------------------
8462 // Build initial VPlan: Scan the body of the loop in a topological order to
8463 // visit each basic block after having visited its predecessor basic blocks.
8464 // ---------------------------------------------------------------------------
8465
8466 bool RequiresScalarEpilogueCheck =
8468 [this](ElementCount VF) {
8469 return !CM.requiresScalarEpilogue(VF.isVector());
8470 },
8471 Range);
8472 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8473 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8474 CM.foldTailByMasking());
8475
8477
8478 // Don't use getDecisionAndClampRange here, because we don't know the UF
8479 // so this function is better to be conservative, rather than to split
8480 // it up into different VPlans.
8481 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8482 bool IVUpdateMayOverflow = false;
8483 for (ElementCount VF : Range)
8484 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8485
8486 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8487 // Use NUW for the induction increment if we proved that it won't overflow in
8488 // the vector loop or when not folding the tail. In the later case, we know
8489 // that the canonical induction increment will not overflow as the vector trip
8490 // count is >= increment and a multiple of the increment.
8491 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8492 if (!HasNUW) {
8493 auto *IVInc = Plan->getVectorLoopRegion()
8494 ->getExitingBasicBlock()
8495 ->getTerminator()
8496 ->getOperand(0);
8497 assert(match(IVInc, m_VPInstruction<Instruction::Add>(
8498 m_Specific(Plan->getCanonicalIV()), m_VPValue())) &&
8499 "Did not find the canonical IV increment");
8500 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8501 }
8502
8503 // ---------------------------------------------------------------------------
8504 // Pre-construction: record ingredients whose recipes we'll need to further
8505 // process after constructing the initial VPlan.
8506 // ---------------------------------------------------------------------------
8507
8508 // For each interleave group which is relevant for this (possibly trimmed)
8509 // Range, add it to the set of groups to be later applied to the VPlan and add
8510 // placeholders for its members' Recipes which we'll be replacing with a
8511 // single VPInterleaveRecipe.
8512 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8513 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8514 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8515 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8517 // For scalable vectors, the interleave factors must be <= 8 since we
8518 // require the (de)interleaveN intrinsics instead of shufflevectors.
8519 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8520 "Unsupported interleave factor for scalable vectors");
8521 return Result;
8522 };
8523 if (!getDecisionAndClampRange(ApplyIG, Range))
8524 continue;
8525 InterleaveGroups.insert(IG);
8526 }
8527
8528 // ---------------------------------------------------------------------------
8529 // Predicate and linearize the top-level loop region.
8530 // ---------------------------------------------------------------------------
8531 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8532 *Plan, CM.foldTailByMasking());
8533
8534 // ---------------------------------------------------------------------------
8535 // Construct wide recipes and apply predication for original scalar
8536 // VPInstructions in the loop.
8537 // ---------------------------------------------------------------------------
8538 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8539 Builder, BlockMaskCache, LVer);
8540 RecipeBuilder.collectScaledReductions(Range);
8541
8542 // Scan the body of the loop in a topological order to visit each basic block
8543 // after having visited its predecessor basic blocks.
8544 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8545 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8546 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8547 HeaderVPBB);
8548
8549 auto *MiddleVPBB = Plan->getMiddleBlock();
8550 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8551 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8552 // temporarily to update created block masks.
8553 DenseMap<VPValue *, VPValue *> Old2New;
8554 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8555 // Convert input VPInstructions to widened recipes.
8556 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8557 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8558 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8559 // Skip recipes that do not need transforming, including canonical IV,
8560 // wide canonical IV and VPInstructions without underlying values. The
8561 // latter are added above for masking.
8562 // FIXME: Migrate code relying on the underlying instruction from VPlan0
8563 // to construct recipes below to not use the underlying instruction.
8565 &R) ||
8566 (isa<VPInstruction>(&R) && !UnderlyingValue))
8567 continue;
8568
8569 // FIXME: VPlan0, which models a copy of the original scalar loop, should
8570 // not use VPWidenPHIRecipe to model the phis.
8572 UnderlyingValue && "unsupported recipe");
8573
8574 // TODO: Gradually replace uses of underlying instruction by analyses on
8575 // VPlan.
8576 Instruction *Instr = cast<Instruction>(UnderlyingValue);
8577 Builder.setInsertPoint(SingleDef);
8578
8579 // The stores with invariant address inside the loop will be deleted, and
8580 // in the exit block, a uniform store recipe will be created for the final
8581 // invariant store of the reduction.
8582 StoreInst *SI;
8583 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8584 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8585 // Only create recipe for the final invariant store of the reduction.
8586 if (Legal->isInvariantStoreOfReduction(SI)) {
8587 auto *Recipe =
8588 new VPReplicateRecipe(SI, R.operands(), true /* IsUniform */,
8589 nullptr /*Mask*/, VPIRMetadata(*SI, LVer));
8590 Recipe->insertBefore(*MiddleVPBB, MBIP);
8591 }
8592 R.eraseFromParent();
8593 continue;
8594 }
8595
8596 VPRecipeBase *Recipe =
8597 RecipeBuilder.tryToCreateWidenRecipe(SingleDef, Range);
8598 if (!Recipe)
8599 Recipe = RecipeBuilder.handleReplication(Instr, R.operands(), Range);
8600
8601 RecipeBuilder.setRecipe(Instr, Recipe);
8602 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8603 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8604 // moved to the phi section in the header.
8605 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8606 } else {
8607 Builder.insert(Recipe);
8608 }
8609 if (Recipe->getNumDefinedValues() == 1) {
8610 SingleDef->replaceAllUsesWith(Recipe->getVPSingleValue());
8611 Old2New[SingleDef] = Recipe->getVPSingleValue();
8612 } else {
8613 assert(Recipe->getNumDefinedValues() == 0 &&
8614 "Unexpected multidef recipe");
8615 R.eraseFromParent();
8616 }
8617 }
8618 }
8619
8620 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8621 // TODO: Include the masks as operands in the predicated VPlan directly
8622 // to remove the need to keep a map of masks beyond the predication
8623 // transform.
8624 RecipeBuilder.updateBlockMaskCache(Old2New);
8625 for (VPValue *Old : Old2New.keys())
8626 Old->getDefiningRecipe()->eraseFromParent();
8627
8628 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8629 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8630 "entry block must be set to a VPRegionBlock having a non-empty entry "
8631 "VPBasicBlock");
8632
8633 // Update wide induction increments to use the same step as the corresponding
8634 // wide induction. This enables detecting induction increments directly in
8635 // VPlan and removes redundant splats.
8636 for (const auto &[Phi, ID] : Legal->getInductionVars()) {
8637 auto *IVInc = cast<Instruction>(
8638 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8639 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add)
8640 continue;
8641 VPWidenInductionRecipe *WideIV =
8642 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
8643 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc);
8644 R->setOperand(1, WideIV->getStepValue());
8645 }
8646
8648 DenseMap<VPValue *, VPValue *> IVEndValues;
8649 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8650
8651 // ---------------------------------------------------------------------------
8652 // Transform initial VPlan: Apply previously taken decisions, in order, to
8653 // bring the VPlan to its final state.
8654 // ---------------------------------------------------------------------------
8655
8656 // Adjust the recipes for any inloop reductions.
8657 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8658
8659 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8660 // NaNs if possible, bail out otherwise.
8662 *Plan))
8663 return nullptr;
8664
8665 // Transform recipes to abstract recipes if it is legal and beneficial and
8666 // clamp the range for better cost estimation.
8667 // TODO: Enable following transform when the EVL-version of extended-reduction
8668 // and mulacc-reduction are implemented.
8669 if (!CM.foldTailWithEVL()) {
8670 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8672 CostCtx, Range);
8673 }
8674
8675 for (ElementCount VF : Range)
8676 Plan->addVF(VF);
8677 Plan->setName("Initial VPlan");
8678
8679 // Interleave memory: for each Interleave Group we marked earlier as relevant
8680 // for this VPlan, replace the Recipes widening its memory instructions with a
8681 // single VPInterleaveRecipe at its insertion point.
8683 InterleaveGroups, RecipeBuilder,
8684 CM.isScalarEpilogueAllowed());
8685
8686 // Replace VPValues for known constant strides.
8688 Legal->getLAI()->getSymbolicStrides());
8689
8690 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8691 return Legal->blockNeedsPredication(BB);
8692 };
8694 BlockNeedsPredication);
8695
8696 // Sink users of fixed-order recurrence past the recipe defining the previous
8697 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8699 *Plan, Builder))
8700 return nullptr;
8701
8702 if (useActiveLaneMask(Style)) {
8703 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8704 // TailFoldingStyle is visible there.
8705 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8706 bool WithoutRuntimeCheck =
8708 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8709 WithoutRuntimeCheck);
8710 }
8711 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8712
8713 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8714 return Plan;
8715}
8716
8717VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8718 // Outer loop handling: They may require CFG and instruction level
8719 // transformations before even evaluating whether vectorization is profitable.
8720 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8721 // the vectorization pipeline.
8722 assert(!OrigLoop->isInnermost());
8723 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8724
8725 auto Plan = VPlanTransforms::buildVPlan0(
8726 OrigLoop, *LI, Legal->getWidestInductionType(),
8727 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8729 /*HasUncountableExit*/ false);
8730 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8731 /*TailFolded*/ false);
8732
8734
8735 for (ElementCount VF : Range)
8736 Plan->addVF(VF);
8737
8739 Plan,
8740 [this](PHINode *P) {
8741 return Legal->getIntOrFpInductionDescriptor(P);
8742 },
8743 *TLI))
8744 return nullptr;
8745
8746 // Collect mapping of IR header phis to header phi recipes, to be used in
8747 // addScalarResumePhis.
8748 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8749 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8750 Builder, BlockMaskCache, nullptr /*LVer*/);
8751 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8753 continue;
8754 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8755 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8756 }
8757 DenseMap<VPValue *, VPValue *> IVEndValues;
8758 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8759 // values.
8760 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8761
8762 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8763 return Plan;
8764}
8765
8766// Adjust the recipes for reductions. For in-loop reductions the chain of
8767// instructions leading from the loop exit instr to the phi need to be converted
8768// to reductions, with one operand being vector and the other being the scalar
8769// reduction chain. For other reductions, a select is introduced between the phi
8770// and users outside the vector region when folding the tail.
8771//
8772// A ComputeReductionResult recipe is added to the middle block, also for
8773// in-loop reductions which compute their result in-loop, because generating
8774// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8775//
8776// Adjust AnyOf reductions; replace the reduction phi for the selected value
8777// with a boolean reduction phi node to check if the condition is true in any
8778// iteration. The final value is selected by the final ComputeReductionResult.
8779void LoopVectorizationPlanner::adjustRecipesForReductions(
8780 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8781 using namespace VPlanPatternMatch;
8782 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8783 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8784 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8786
8787 for (VPRecipeBase &R : Header->phis()) {
8788 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8789 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8790 continue;
8791
8792 RecurKind Kind = PhiR->getRecurrenceKind();
8793 assert(
8796 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8797
8798 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8799 SetVector<VPSingleDefRecipe *> Worklist;
8800 Worklist.insert(PhiR);
8801 for (unsigned I = 0; I != Worklist.size(); ++I) {
8802 VPSingleDefRecipe *Cur = Worklist[I];
8803 for (VPUser *U : Cur->users()) {
8804 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8805 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8806 assert((UserRecipe->getParent() == MiddleVPBB ||
8807 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8808 "U must be either in the loop region, the middle block or the "
8809 "scalar preheader.");
8810 continue;
8811 }
8812 Worklist.insert(UserRecipe);
8813 }
8814 }
8815
8816 // Visit operation "Links" along the reduction chain top-down starting from
8817 // the phi until LoopExitValue. We keep track of the previous item
8818 // (PreviousLink) to tell which of the two operands of a Link will remain
8819 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8820 // the select instructions. Blend recipes of in-loop reduction phi's will
8821 // get folded to their non-phi operand, as the reduction recipe handles the
8822 // condition directly.
8823 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8824 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8825 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8826 assert(Blend->getNumIncomingValues() == 2 &&
8827 "Blend must have 2 incoming values");
8828 if (Blend->getIncomingValue(0) == PhiR) {
8829 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8830 } else {
8831 assert(Blend->getIncomingValue(1) == PhiR &&
8832 "PhiR must be an operand of the blend");
8833 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8834 }
8835 continue;
8836 }
8837
8838 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8839
8840 // Index of the first operand which holds a non-mask vector operand.
8841 unsigned IndexOfFirstOperand;
8842 // Recognize a call to the llvm.fmuladd intrinsic.
8843 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8844 VPValue *VecOp;
8845 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8846 if (IsFMulAdd) {
8847 assert(
8849 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8850 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8851 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8852 CurrentLink->getOperand(2) == PreviousLink &&
8853 "expected a call where the previous link is the added operand");
8854
8855 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8856 // need to create an fmul recipe (multiplying the first two operands of
8857 // the fmuladd together) to use as the vector operand for the fadd
8858 // reduction.
8859 VPInstruction *FMulRecipe = new VPInstruction(
8860 Instruction::FMul,
8861 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8862 CurrentLinkI->getFastMathFlags());
8863 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8864 VecOp = FMulRecipe;
8865 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8866 CurrentLinkI->getOpcode() == Instruction::Sub) {
8867 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8868 auto *Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8869 VPWidenRecipe *Sub = new VPWidenRecipe(
8870 Instruction::Sub, {Zero, CurrentLink->getOperand(1)}, {},
8871 VPIRMetadata(), CurrentLinkI->getDebugLoc());
8872 Sub->setUnderlyingValue(CurrentLinkI);
8873 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8874 VecOp = Sub;
8875 } else {
8877 if (isa<VPWidenRecipe>(CurrentLink)) {
8878 assert(isa<CmpInst>(CurrentLinkI) &&
8879 "need to have the compare of the select");
8880 continue;
8881 }
8882 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8883 "must be a select recipe");
8884 IndexOfFirstOperand = 1;
8885 } else {
8886 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8887 "Expected to replace a VPWidenSC");
8888 IndexOfFirstOperand = 0;
8889 }
8890 // Note that for non-commutable operands (cmp-selects), the semantics of
8891 // the cmp-select are captured in the recurrence kind.
8892 unsigned VecOpId =
8893 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8894 ? IndexOfFirstOperand + 1
8895 : IndexOfFirstOperand;
8896 VecOp = CurrentLink->getOperand(VecOpId);
8897 assert(VecOp != PreviousLink &&
8898 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8899 (VecOpId - IndexOfFirstOperand)) ==
8900 PreviousLink &&
8901 "PreviousLink must be the operand other than VecOp");
8902 }
8903
8904 VPValue *CondOp = nullptr;
8905 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8906 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8907
8908 // TODO: Retrieve FMFs from recipes directly.
8909 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8910 cast<PHINode>(PhiR->getUnderlyingInstr()));
8911 // Non-FP RdxDescs will have all fast math flags set, so clear them.
8912 FastMathFlags FMFs = isa<FPMathOperator>(CurrentLinkI)
8913 ? RdxDesc.getFastMathFlags()
8914 : FastMathFlags();
8915 auto *RedRecipe = new VPReductionRecipe(
8916 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8917 PhiR->isOrdered(), CurrentLinkI->getDebugLoc());
8918 // Append the recipe to the end of the VPBasicBlock because we need to
8919 // ensure that it comes after all of it's inputs, including CondOp.
8920 // Delete CurrentLink as it will be invalid if its operand is replaced
8921 // with a reduction defined at the bottom of the block in the next link.
8922 if (LinkVPBB->getNumSuccessors() == 0)
8923 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8924 else
8925 LinkVPBB->appendRecipe(RedRecipe);
8926
8927 CurrentLink->replaceAllUsesWith(RedRecipe);
8928 ToDelete.push_back(CurrentLink);
8929 PreviousLink = RedRecipe;
8930 }
8931 }
8932 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8933 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8934 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8935 for (VPRecipeBase &R :
8936 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8937 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8938 if (!PhiR)
8939 continue;
8940
8941 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8943 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8944 // If tail is folded by masking, introduce selects between the phi
8945 // and the users outside the vector region of each reduction, at the
8946 // beginning of the dedicated latch block.
8947 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8948 auto *NewExitingVPV = PhiR->getBackedgeValue();
8949 // Don't output selects for partial reductions because they have an output
8950 // with fewer lanes than the VF. So the operands of the select would have
8951 // different numbers of lanes. Partial reductions mask the input instead.
8952 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8953 !isa<VPPartialReductionRecipe>(OrigExitingVPV->getDefiningRecipe())) {
8954 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8955 std::optional<FastMathFlags> FMFs =
8956 PhiTy->isFloatingPointTy()
8957 ? std::make_optional(RdxDesc.getFastMathFlags())
8958 : std::nullopt;
8959 NewExitingVPV =
8960 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8961 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8962 return isa<VPInstruction>(&U) &&
8963 (cast<VPInstruction>(&U)->getOpcode() ==
8965 cast<VPInstruction>(&U)->getOpcode() ==
8967 cast<VPInstruction>(&U)->getOpcode() ==
8969 });
8970 if (CM.usePredicatedReductionSelect())
8971 PhiR->setOperand(1, NewExitingVPV);
8972 }
8973
8974 // We want code in the middle block to appear to execute on the location of
8975 // the scalar loop's latch terminator because: (a) it is all compiler
8976 // generated, (b) these instructions are always executed after evaluating
8977 // the latch conditional branch, and (c) other passes may add new
8978 // predecessors which terminate on this line. This is the easiest way to
8979 // ensure we don't accidentally cause an extra step back into the loop while
8980 // debugging.
8981 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8982
8983 // TODO: At the moment ComputeReductionResult also drives creation of the
8984 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8985 // even for in-loop reductions, until the reduction resume value handling is
8986 // also modeled in VPlan.
8987 VPInstruction *FinalReductionResult;
8988 VPBuilder::InsertPointGuard Guard(Builder);
8989 Builder.setInsertPoint(MiddleVPBB, IP);
8990 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8992 VPValue *Start = PhiR->getStartValue();
8993 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8994 FinalReductionResult =
8995 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8996 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8997 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8998 VPValue *Start = PhiR->getStartValue();
8999 FinalReductionResult =
9000 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
9001 {PhiR, Start, NewExitingVPV}, ExitDL);
9002 } else {
9003 VPIRFlags Flags =
9005 ? VPIRFlags(RdxDesc.getFastMathFlags())
9006 : VPIRFlags();
9007 FinalReductionResult =
9008 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
9009 {PhiR, NewExitingVPV}, Flags, ExitDL);
9010 }
9011 // If the vector reduction can be performed in a smaller type, we truncate
9012 // then extend the loop exit value to enable InstCombine to evaluate the
9013 // entire expression in the smaller type.
9014 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
9016 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
9018 "Unexpected truncated min-max recurrence!");
9019 Type *RdxTy = RdxDesc.getRecurrenceType();
9020 auto *Trunc =
9021 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9022 Instruction::CastOps ExtendOpc =
9023 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
9024 auto *Extnd = new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
9025 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9026 Extnd->insertAfter(Trunc);
9027 if (PhiR->getOperand(1) == NewExitingVPV)
9028 PhiR->setOperand(1, Extnd->getVPSingleValue());
9029
9030 // Update ComputeReductionResult with the truncated exiting value and
9031 // extend its result.
9032 FinalReductionResult->setOperand(1, Trunc);
9033 FinalReductionResult =
9034 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9035 }
9036
9037 // Update all users outside the vector region. Also replace redundant
9038 // ExtractLastElement.
9039 for (auto *U : to_vector(OrigExitingVPV->users())) {
9040 auto *Parent = cast<VPRecipeBase>(U)->getParent();
9041 if (FinalReductionResult == U || Parent->getParent())
9042 continue;
9043 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9045 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
9046 }
9047
9048 // Adjust AnyOf reductions; replace the reduction phi for the selected value
9049 // with a boolean reduction phi node to check if the condition is true in
9050 // any iteration. The final value is selected by the final
9051 // ComputeReductionResult.
9052 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
9053 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
9054 return isa<VPWidenSelectRecipe>(U) ||
9055 (isa<VPReplicateRecipe>(U) &&
9056 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9057 Instruction::Select);
9058 }));
9059 VPValue *Cmp = Select->getOperand(0);
9060 // If the compare is checking the reduction PHI node, adjust it to check
9061 // the start value.
9062 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
9063 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
9064 Builder.setInsertPoint(Select);
9065
9066 // If the true value of the select is the reduction phi, the new value is
9067 // selected if the negated condition is true in any iteration.
9068 if (Select->getOperand(1) == PhiR)
9069 Cmp = Builder.createNot(Cmp);
9070 VPValue *Or = Builder.createOr(PhiR, Cmp);
9071 Select->getVPSingleValue()->replaceAllUsesWith(Or);
9072 // Delete Select now that it has invalid types.
9073 ToDelete.push_back(Select);
9074
9075 // Convert the reduction phi to operate on bools.
9076 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse(
9077 OrigLoop->getHeader()->getContext())));
9078 continue;
9079 }
9080
9082 RdxDesc.getRecurrenceKind())) {
9083 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
9084 // the sentinel value after generating the ResumePhi recipe, which uses
9085 // the original start value.
9086 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
9087 }
9088 RecurKind RK = RdxDesc.getRecurrenceKind();
9092 VPBuilder PHBuilder(Plan->getVectorPreheader());
9093 VPValue *Iden = Plan->getOrAddLiveIn(
9094 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
9095 // If the PHI is used by a partial reduction, set the scale factor.
9096 unsigned ScaleFactor =
9097 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
9098 .value_or(1);
9099 Type *I32Ty = IntegerType::getInt32Ty(PhiTy->getContext());
9100 auto *ScaleFactorVPV =
9101 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9102 VPValue *StartV = PHBuilder.createNaryOp(
9104 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
9105 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
9106 : FastMathFlags());
9107 PhiR->setOperand(0, StartV);
9108 }
9109 }
9110 for (VPRecipeBase *R : ToDelete)
9111 R->eraseFromParent();
9112
9114}
9115
9116void LoopVectorizationPlanner::attachRuntimeChecks(
9117 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9118 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9119 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9120 assert((!CM.OptForSize ||
9121 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9122 "Cannot SCEV check stride or overflow when optimizing for size");
9123 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9124 HasBranchWeights);
9125 }
9126 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9127 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9128 // VPlan-native path does not do any analysis for runtime checks
9129 // currently.
9130 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9131 "Runtime checks are not supported for outer loops yet");
9132
9133 if (CM.OptForSize) {
9134 assert(
9135 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9136 "Cannot emit memory checks when optimizing for size, unless forced "
9137 "to vectorize.");
9138 ORE->emit([&]() {
9139 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9140 OrigLoop->getStartLoc(),
9141 OrigLoop->getHeader())
9142 << "Code-size may be reduced by not forcing "
9143 "vectorization, or by source-code modifications "
9144 "eliminating the need for runtime checks "
9145 "(e.g., adding 'restrict').";
9146 });
9147 }
9148 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9149 HasBranchWeights);
9150 }
9151}
9152
9154 VPlan &Plan, ElementCount VF, unsigned UF,
9155 ElementCount MinProfitableTripCount) const {
9156 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9157 // an overflow to zero when updating induction variables and so an
9158 // additional overflow check is required before entering the vector loop.
9159 bool IsIndvarOverflowCheckNeededForVF =
9160 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9161 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9162 CM.getTailFoldingStyle() !=
9164 const uint32_t *BranchWeigths =
9165 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9167 : nullptr;
9169 Plan, VF, UF, MinProfitableTripCount,
9170 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9171 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9172 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9173 *PSE.getSE());
9174}
9175
9177 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9178
9179 // Fast-math-flags propagate from the original induction instruction.
9180 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9181 if (FPBinOp)
9182 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9183
9184 Value *Step = State.get(getStepValue(), VPLane(0));
9185 Value *Index = State.get(getOperand(1), VPLane(0));
9186 Value *DerivedIV = emitTransformedIndex(
9187 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9189 DerivedIV->setName(Name);
9190 State.set(this, DerivedIV, VPLane(0));
9191}
9192
9193// Determine how to lower the scalar epilogue, which depends on 1) optimising
9194// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9195// predication, and 4) a TTI hook that analyses whether the loop is suitable
9196// for predication.
9201 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9202 // don't look at hints or options, and don't request a scalar epilogue.
9203 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9204 // LoopAccessInfo (due to code dependency and not being able to reliably get
9205 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9206 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9207 // versioning when the vectorization is forced, unlike hasOptSize. So revert
9208 // back to the old way and vectorize with versioning when forced. See D81345.)
9209 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9213
9214 // 2) If set, obey the directives
9215 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9223 };
9224 }
9225
9226 // 3) If set, obey the hints
9227 switch (Hints.getPredicate()) {
9232 };
9233
9234 // 4) if the TTI hook indicates this is profitable, request predication.
9235 TailFoldingInfo TFI(TLI, &LVL, IAI);
9236 if (TTI->preferPredicateOverEpilogue(&TFI))
9238
9240}
9241
9242// Process the loop in the VPlan-native vectorization path. This path builds
9243// VPlan upfront in the vectorization pipeline, which allows to apply
9244// VPlan-to-VPlan transformations from the very beginning without modifying the
9245// input LLVM IR.
9252 LoopVectorizationRequirements &Requirements) {
9253
9255 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9256 return false;
9257 }
9258 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9259 Function *F = L->getHeader()->getParent();
9260 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9261
9263 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
9264
9265 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9266 &Hints, IAI, PSI, BFI);
9267 // Use the planner for outer loop vectorization.
9268 // TODO: CM is not used at this point inside the planner. Turn CM into an
9269 // optional argument if we don't need it in the future.
9270 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9271 ORE);
9272
9273 // Get user vectorization factor.
9274 ElementCount UserVF = Hints.getWidth();
9275
9277
9278 // Plan how to best vectorize, return the best VF and its cost.
9279 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9280
9281 // If we are stress testing VPlan builds, do not attempt to generate vector
9282 // code. Masked vector code generation support will follow soon.
9283 // Also, do not attempt to vectorize if no vector code will be produced.
9285 return false;
9286
9287 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9288
9289 {
9290 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9291 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9292 BFI, PSI, Checks, BestPlan);
9293 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9294 << L->getHeader()->getParent()->getName() << "\"\n");
9295 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9297
9298 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9299 }
9300
9301 reportVectorization(ORE, L, VF, 1);
9302
9303 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9304 return true;
9305}
9306
9307// Emit a remark if there are stores to floats that required a floating point
9308// extension. If the vectorized loop was generated with floating point there
9309// will be a performance penalty from the conversion overhead and the change in
9310// the vector width.
9313 for (BasicBlock *BB : L->getBlocks()) {
9314 for (Instruction &Inst : *BB) {
9315 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9316 if (S->getValueOperand()->getType()->isFloatTy())
9317 Worklist.push_back(S);
9318 }
9319 }
9320 }
9321
9322 // Traverse the floating point stores upwards searching, for floating point
9323 // conversions.
9326 while (!Worklist.empty()) {
9327 auto *I = Worklist.pop_back_val();
9328 if (!L->contains(I))
9329 continue;
9330 if (!Visited.insert(I).second)
9331 continue;
9332
9333 // Emit a remark if the floating point store required a floating
9334 // point conversion.
9335 // TODO: More work could be done to identify the root cause such as a
9336 // constant or a function return type and point the user to it.
9337 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9338 ORE->emit([&]() {
9339 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9340 I->getDebugLoc(), L->getHeader())
9341 << "floating point conversion changes vector width. "
9342 << "Mixed floating point precision requires an up/down "
9343 << "cast that will negatively impact performance.";
9344 });
9345
9346 for (Use &Op : I->operands())
9347 if (auto *OpI = dyn_cast<Instruction>(Op))
9348 Worklist.push_back(OpI);
9349 }
9350}
9351
9352/// For loops with uncountable early exits, find the cost of doing work when
9353/// exiting the loop early, such as calculating the final exit values of
9354/// variables used outside the loop.
9355/// TODO: This is currently overly pessimistic because the loop may not take
9356/// the early exit, but better to keep this conservative for now. In future,
9357/// it might be possible to relax this by using branch probabilities.
9359 VPlan &Plan, ElementCount VF) {
9360 InstructionCost Cost = 0;
9361 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9362 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9363 // If the predecessor is not the middle.block, then it must be the
9364 // vector.early.exit block, which may contain work to calculate the exit
9365 // values of variables used outside the loop.
9366 if (PredVPBB != Plan.getMiddleBlock()) {
9367 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9368 << PredVPBB->getName() << ":\n");
9369 Cost += PredVPBB->cost(VF, CostCtx);
9370 }
9371 }
9372 }
9373 return Cost;
9374}
9375
9376/// This function determines whether or not it's still profitable to vectorize
9377/// the loop given the extra work we have to do outside of the loop:
9378/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9379/// to vectorize.
9380/// 2. In the case of loops with uncountable early exits, we may have to do
9381/// extra work when exiting the loop early, such as calculating the final
9382/// exit values of variables used outside the loop.
9383static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9384 VectorizationFactor &VF, Loop *L,
9386 VPCostContext &CostCtx, VPlan &Plan,
9388 std::optional<unsigned> VScale) {
9389 InstructionCost TotalCost = Checks.getCost();
9390 if (!TotalCost.isValid())
9391 return false;
9392
9393 // Add on the cost of any work required in the vector early exit block, if
9394 // one exists.
9395 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9396
9397 // When interleaving only scalar and vector cost will be equal, which in turn
9398 // would lead to a divide by 0. Fall back to hard threshold.
9399 if (VF.Width.isScalar()) {
9400 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9401 if (TotalCost > VectorizeMemoryCheckThreshold) {
9402 LLVM_DEBUG(
9403 dbgs()
9404 << "LV: Interleaving only is not profitable due to runtime checks\n");
9405 return false;
9406 }
9407 return true;
9408 }
9409
9410 // The scalar cost should only be 0 when vectorizing with a user specified
9411 // VF/IC. In those cases, runtime checks should always be generated.
9412 uint64_t ScalarC = VF.ScalarCost.getValue();
9413 if (ScalarC == 0)
9414 return true;
9415
9416 // First, compute the minimum iteration count required so that the vector
9417 // loop outperforms the scalar loop.
9418 // The total cost of the scalar loop is
9419 // ScalarC * TC
9420 // where
9421 // * TC is the actual trip count of the loop.
9422 // * ScalarC is the cost of a single scalar iteration.
9423 //
9424 // The total cost of the vector loop is
9425 // RtC + VecC * (TC / VF) + EpiC
9426 // where
9427 // * RtC is the cost of the generated runtime checks plus the cost of
9428 // performing any additional work in the vector.early.exit block for loops
9429 // with uncountable early exits.
9430 // * VecC is the cost of a single vector iteration.
9431 // * TC is the actual trip count of the loop
9432 // * VF is the vectorization factor
9433 // * EpiCost is the cost of the generated epilogue, including the cost
9434 // of the remaining scalar operations.
9435 //
9436 // Vectorization is profitable once the total vector cost is less than the
9437 // total scalar cost:
9438 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9439 //
9440 // Now we can compute the minimum required trip count TC as
9441 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9442 //
9443 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9444 // the computations are performed on doubles, not integers and the result
9445 // is rounded up, hence we get an upper estimate of the TC.
9446 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9447 uint64_t RtC = TotalCost.getValue();
9448 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9449 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9450
9451 // Second, compute a minimum iteration count so that the cost of the
9452 // runtime checks is only a fraction of the total scalar loop cost. This
9453 // adds a loop-dependent bound on the overhead incurred if the runtime
9454 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9455 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9456 // cost, compute
9457 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9458 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9459
9460 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9461 // epilogue is allowed, choose the next closest multiple of VF. This should
9462 // partly compensate for ignoring the epilogue cost.
9463 uint64_t MinTC = std::max(MinTC1, MinTC2);
9464 if (SEL == CM_ScalarEpilogueAllowed)
9465 MinTC = alignTo(MinTC, IntVF);
9467
9468 LLVM_DEBUG(
9469 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9470 << VF.MinProfitableTripCount << "\n");
9471
9472 // Skip vectorization if the expected trip count is less than the minimum
9473 // required trip count.
9474 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9475 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9476 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9477 "trip count < minimum profitable VF ("
9478 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9479 << ")\n");
9480
9481 return false;
9482 }
9483 }
9484 return true;
9485}
9486
9488 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9490 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9492
9493/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9494/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9495/// don't have a corresponding wide induction in \p EpiPlan.
9496static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9497 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9498 // will need their resume-values computed in the main vector loop. Others
9499 // can be removed from the main VPlan.
9500 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9501 for (VPRecipeBase &R :
9504 continue;
9505 EpiWidenedPhis.insert(
9506 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9507 }
9508 for (VPRecipeBase &R :
9509 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9510 auto *VPIRInst = cast<VPIRPhi>(&R);
9511 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9512 continue;
9513 // There is no corresponding wide induction in the epilogue plan that would
9514 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9515 // together with the corresponding ResumePhi. The resume values for the
9516 // scalar loop will be created during execution of EpiPlan.
9517 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9518 VPIRInst->eraseFromParent();
9519 ResumePhi->eraseFromParent();
9520 }
9522
9523 using namespace VPlanPatternMatch;
9524 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9525 // introduce multiple uses of undef/poison. If the reduction start value may
9526 // be undef or poison it needs to be frozen and the frozen start has to be
9527 // used when computing the reduction result. We also need to use the frozen
9528 // value in the resume phi generated by the main vector loop, as this is also
9529 // used to compute the reduction result after the epilogue vector loop.
9530 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9531 bool UpdateResumePhis) {
9532 VPBuilder Builder(Plan.getEntry());
9533 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9534 auto *VPI = dyn_cast<VPInstruction>(&R);
9535 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9536 continue;
9537 VPValue *OrigStart = VPI->getOperand(1);
9539 continue;
9540 VPInstruction *Freeze =
9541 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9542 VPI->setOperand(1, Freeze);
9543 if (UpdateResumePhis)
9544 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9545 return Freeze != &U && isa<VPPhi>(&U);
9546 });
9547 }
9548 };
9549 AddFreezeForFindLastIVReductions(MainPlan, true);
9550 AddFreezeForFindLastIVReductions(EpiPlan, false);
9551
9552 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9553 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9554 // If there is a suitable resume value for the canonical induction in the
9555 // scalar (which will become vector) epilogue loop, use it and move it to the
9556 // beginning of the scalar preheader. Otherwise create it below.
9557 auto ResumePhiIter =
9558 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9559 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9560 m_SpecificInt(0)));
9561 });
9562 VPPhi *ResumePhi = nullptr;
9563 if (ResumePhiIter == MainScalarPH->phis().end()) {
9564 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9565 ResumePhi = ScalarPHBuilder.createScalarPhi(
9566 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {},
9567 "vec.epilog.resume.val");
9568 } else {
9569 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9570 if (MainScalarPH->begin() == MainScalarPH->end())
9571 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9572 else if (&*MainScalarPH->begin() != ResumePhi)
9573 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9574 }
9575 // Add a user to to make sure the resume phi won't get removed.
9576 VPBuilder(MainScalarPH)
9578}
9579
9580/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9581/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes.
9582static void
9584 const SCEV2ValueTy &ExpandedSCEVs,
9586 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9587 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9588 Header->setName("vec.epilog.vector.body");
9589
9591 // Ensure that the start values for all header phi recipes are updated before
9592 // vectorizing the epilogue loop.
9593 for (VPRecipeBase &R : Header->phis()) {
9594 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
9595 // When vectorizing the epilogue loop, the canonical induction start
9596 // value needs to be changed from zero to the value after the main
9597 // vector loop. Find the resume value created during execution of the main
9598 // VPlan. It must be the first phi in the loop preheader.
9599 // FIXME: Improve modeling for canonical IV start values in the epilogue
9600 // loop.
9601 using namespace llvm::PatternMatch;
9602 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9603 for (Value *Inc : EPResumeVal->incoming_values()) {
9604 if (match(Inc, m_SpecificInt(0)))
9605 continue;
9606 assert(!EPI.VectorTripCount &&
9607 "Must only have a single non-zero incoming value");
9608 EPI.VectorTripCount = Inc;
9609 }
9610 // If we didn't find a non-zero vector trip count, all incoming values
9611 // must be zero, which also means the vector trip count is zero. Pick the
9612 // first zero as vector trip count.
9613 // TODO: We should not choose VF * UF so the main vector loop is known to
9614 // be dead.
9615 if (!EPI.VectorTripCount) {
9616 assert(
9617 EPResumeVal->getNumIncomingValues() > 0 &&
9618 all_of(EPResumeVal->incoming_values(),
9619 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9620 "all incoming values must be 0");
9621 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9622 }
9623 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9624 assert(all_of(IV->users(),
9625 [](const VPUser *U) {
9626 return isa<VPScalarIVStepsRecipe>(U) ||
9627 isa<VPDerivedIVRecipe>(U) ||
9628 cast<VPRecipeBase>(U)->isScalarCast() ||
9629 cast<VPInstruction>(U)->getOpcode() ==
9630 Instruction::Add;
9631 }) &&
9632 "the canonical IV should only be used by its increment or "
9633 "ScalarIVSteps when resetting the start value");
9634 IV->setOperand(0, VPV);
9635 continue;
9636 }
9637
9638 Value *ResumeV = nullptr;
9639 // TODO: Move setting of resume values to prepareToExecute.
9640 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9641 auto *RdxResult =
9642 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9643 auto *VPI = dyn_cast<VPInstruction>(U);
9644 return VPI &&
9645 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9646 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9647 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9648 }));
9649 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9650 ->getIncomingValueForBlock(L->getLoopPreheader());
9651 RecurKind RK = ReductionPhi->getRecurrenceKind();
9653 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9654 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9655 // start value; compare the final value from the main vector loop
9656 // to the start value.
9657 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9658 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9659 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9661 Value *StartV = getStartValueFromReductionResult(RdxResult);
9662 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9664
9665 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9666 // an adjustment to the resume value. The resume value is adjusted to
9667 // the sentinel value when the final value from the main vector loop
9668 // equals the start value. This ensures correctness when the start value
9669 // might not be less than the minimum value of a monotonically
9670 // increasing induction variable.
9671 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9672 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9673 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9674 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9675 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9676 } else {
9677 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9678 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9679 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9680 assert(VPI->getOpcode() == VPInstruction::ReductionStartVector &&
9681 "unexpected start value");
9682 VPI->setOperand(0, StartVal);
9683 continue;
9684 }
9685 }
9686 } else {
9687 // Retrieve the induction resume values for wide inductions from
9688 // their original phi nodes in the scalar loop.
9689 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9690 // Hook up to the PHINode generated by a ResumePhi recipe of main
9691 // loop VPlan, which feeds the scalar loop.
9692 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9693 }
9694 assert(ResumeV && "Must have a resume value");
9695 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9696 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9697 }
9698
9699 // For some VPValues in the epilogue plan we must re-use the generated IR
9700 // values from the main plan. Replace them with live-in VPValues.
9701 // TODO: This is a workaround needed for epilogue vectorization and it
9702 // should be removed once induction resume value creation is done
9703 // directly in VPlan.
9704 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9705 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9706 // epilogue plan. This ensures all users use the same frozen value.
9707 auto *VPI = dyn_cast<VPInstruction>(&R);
9708 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9709 VPI->replaceAllUsesWith(Plan.getOrAddLiveIn(
9710 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9711 continue;
9712 }
9713
9714 // Re-use the trip count and steps expanded for the main loop, as
9715 // skeleton creation needs it as a value that dominates both the scalar
9716 // and vector epilogue loops
9717 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9718 if (!ExpandR)
9719 continue;
9720 VPValue *ExpandedVal =
9721 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9722 ExpandR->replaceAllUsesWith(ExpandedVal);
9723 if (Plan.getTripCount() == ExpandR)
9724 Plan.resetTripCount(ExpandedVal);
9725 ExpandR->eraseFromParent();
9726 }
9727}
9728
9729// Generate bypass values from the additional bypass block. Note that when the
9730// vectorized epilogue is skipped due to iteration count check, then the
9731// resume value for the induction variable comes from the trip count of the
9732// main vector loop, passed as the second argument.
9734 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9735 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9736 Instruction *OldInduction) {
9737 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9738 // For the primary induction the additional bypass end value is known.
9739 // Otherwise it is computed.
9740 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9741 if (OrigPhi != OldInduction) {
9742 auto *BinOp = II.getInductionBinOp();
9743 // Fast-math-flags propagate from the original induction instruction.
9745 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9746
9747 // Compute the end value for the additional bypass.
9748 EndValueFromAdditionalBypass =
9749 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9750 II.getStartValue(), Step, II.getKind(), BinOp);
9751 EndValueFromAdditionalBypass->setName("ind.end");
9752 }
9753 return EndValueFromAdditionalBypass;
9754}
9755
9757 VPlan &BestEpiPlan,
9759 const SCEV2ValueTy &ExpandedSCEVs,
9760 Value *MainVectorTripCount) {
9761 // Fix reduction resume values from the additional bypass block.
9762 BasicBlock *PH = L->getLoopPreheader();
9763 for (auto *Pred : predecessors(PH)) {
9764 for (PHINode &Phi : PH->phis()) {
9765 if (Phi.getBasicBlockIndex(Pred) != -1)
9766 continue;
9767 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9768 }
9769 }
9770 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9771 if (ScalarPH->hasPredecessors()) {
9772 // If ScalarPH has predecessors, we may need to update its reduction
9773 // resume values.
9774 for (const auto &[R, IRPhi] :
9775 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9777 BypassBlock);
9778 }
9779 }
9780
9781 // Fix induction resume values from the additional bypass block.
9782 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9783 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9784 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9786 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9787 LVL.getPrimaryInduction());
9788 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9789 Inc->setIncomingValueForBlock(BypassBlock, V);
9790 }
9791}
9792
9794 assert((EnableVPlanNativePath || L->isInnermost()) &&
9795 "VPlan-native path is not enabled. Only process inner loops.");
9796
9797 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9798 << L->getHeader()->getParent()->getName() << "' from "
9799 << L->getLocStr() << "\n");
9800
9801 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9802
9803 LLVM_DEBUG(
9804 dbgs() << "LV: Loop hints:"
9805 << " force="
9807 ? "disabled"
9809 ? "enabled"
9810 : "?"))
9811 << " width=" << Hints.getWidth()
9812 << " interleave=" << Hints.getInterleave() << "\n");
9813
9814 // Function containing loop
9815 Function *F = L->getHeader()->getParent();
9816
9817 // Looking at the diagnostic output is the only way to determine if a loop
9818 // was vectorized (other than looking at the IR or machine code), so it
9819 // is important to generate an optimization remark for each loop. Most of
9820 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9821 // generated as OptimizationRemark and OptimizationRemarkMissed are
9822 // less verbose reporting vectorized loops and unvectorized loops that may
9823 // benefit from vectorization, respectively.
9824
9825 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9826 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9827 return false;
9828 }
9829
9830 PredicatedScalarEvolution PSE(*SE, *L);
9831
9832 // Check if it is legal to vectorize the loop.
9833 LoopVectorizationRequirements Requirements;
9834 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9835 &Requirements, &Hints, DB, AC, BFI, PSI, AA);
9837 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9838 Hints.emitRemarkWithHints();
9839 return false;
9840 }
9841
9843 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9844 "early exit is not enabled",
9845 "UncountableEarlyExitLoopsDisabled", ORE, L);
9846 return false;
9847 }
9848
9849 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9850 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9851 "faulting load is not supported",
9852 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9853 return false;
9854 }
9855
9856 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9857 // here. They may require CFG and instruction level transformations before
9858 // even evaluating whether vectorization is profitable. Since we cannot modify
9859 // the incoming IR, we need to build VPlan upfront in the vectorization
9860 // pipeline.
9861 if (!L->isInnermost())
9862 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9863 ORE, BFI, PSI, Hints, Requirements);
9864
9865 assert(L->isInnermost() && "Inner loop expected.");
9866
9867 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9868 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9869
9870 // If an override option has been passed in for interleaved accesses, use it.
9871 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9872 UseInterleaved = EnableInterleavedMemAccesses;
9873
9874 // Analyze interleaved memory accesses.
9875 if (UseInterleaved)
9877
9878 if (LVL.hasUncountableEarlyExit()) {
9879 BasicBlock *LoopLatch = L->getLoopLatch();
9880 if (IAI.requiresScalarEpilogue() ||
9882 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9883 reportVectorizationFailure("Auto-vectorization of early exit loops "
9884 "requiring a scalar epilogue is unsupported",
9885 "UncountableEarlyExitUnsupported", ORE, L);
9886 return false;
9887 }
9888 }
9889
9890 // Check the function attributes and profiles to find out if this function
9891 // should be optimized for size.
9893 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
9894
9895 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9896 // count by optimizing for size, to minimize overheads.
9897 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9898 if (ExpectedTC && ExpectedTC->isFixed() &&
9899 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9900 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9901 << "This loop is worth vectorizing only if no scalar "
9902 << "iteration overheads are incurred.");
9904 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9905 else {
9906 LLVM_DEBUG(dbgs() << "\n");
9907 // Predicate tail-folded loops are efficient even when the loop
9908 // iteration count is low. However, setting the epilogue policy to
9909 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9910 // with runtime checks. It's more effective to let
9911 // `isOutsideLoopWorkProfitable` determine if vectorization is
9912 // beneficial for the loop.
9915 }
9916 }
9917
9918 // Check the function attributes to see if implicit floats or vectors are
9919 // allowed.
9920 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9922 "Can't vectorize when the NoImplicitFloat attribute is used",
9923 "loop not vectorized due to NoImplicitFloat attribute",
9924 "NoImplicitFloat", ORE, L);
9925 Hints.emitRemarkWithHints();
9926 return false;
9927 }
9928
9929 // Check if the target supports potentially unsafe FP vectorization.
9930 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9931 // for the target we're vectorizing for, to make sure none of the
9932 // additional fp-math flags can help.
9933 if (Hints.isPotentiallyUnsafe() &&
9934 TTI->isFPVectorizationPotentiallyUnsafe()) {
9936 "Potentially unsafe FP op prevents vectorization",
9937 "loop not vectorized due to unsafe FP support.",
9938 "UnsafeFP", ORE, L);
9939 Hints.emitRemarkWithHints();
9940 return false;
9941 }
9942
9943 bool AllowOrderedReductions;
9944 // If the flag is set, use that instead and override the TTI behaviour.
9945 if (ForceOrderedReductions.getNumOccurrences() > 0)
9946 AllowOrderedReductions = ForceOrderedReductions;
9947 else
9948 AllowOrderedReductions = TTI->enableOrderedReductions();
9949 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9950 ORE->emit([&]() {
9951 auto *ExactFPMathInst = Requirements.getExactFPInst();
9952 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9953 ExactFPMathInst->getDebugLoc(),
9954 ExactFPMathInst->getParent())
9955 << "loop not vectorized: cannot prove it is safe to reorder "
9956 "floating-point operations";
9957 });
9958 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9959 "reorder floating-point operations\n");
9960 Hints.emitRemarkWithHints();
9961 return false;
9962 }
9963
9964 // Use the cost model.
9965 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9966 F, &Hints, IAI, PSI, BFI);
9967 // Use the planner for vectorization.
9968 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9969 ORE);
9970
9971 // Get user vectorization factor and interleave count.
9972 ElementCount UserVF = Hints.getWidth();
9973 unsigned UserIC = Hints.getInterleave();
9974
9975 // Plan how to best vectorize.
9976 LVP.plan(UserVF, UserIC);
9978 unsigned IC = 1;
9979
9980 if (ORE->allowExtraAnalysis(LV_NAME))
9982
9983 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9984 if (LVP.hasPlanWithVF(VF.Width)) {
9985 // Select the interleave count.
9986 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
9987
9988 unsigned SelectedIC = std::max(IC, UserIC);
9989 // Optimistically generate runtime checks if they are needed. Drop them if
9990 // they turn out to not be profitable.
9991 if (VF.Width.isVector() || SelectedIC > 1) {
9992 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
9993
9994 // Bail out early if either the SCEV or memory runtime checks are known to
9995 // fail. In that case, the vector loop would never execute.
9996 using namespace llvm::PatternMatch;
9997 if (Checks.getSCEVChecks().first &&
9998 match(Checks.getSCEVChecks().first, m_One()))
9999 return false;
10000 if (Checks.getMemRuntimeChecks().first &&
10001 match(Checks.getMemRuntimeChecks().first, m_One()))
10002 return false;
10003 }
10004
10005 // Check if it is profitable to vectorize with runtime checks.
10006 bool ForceVectorization =
10008 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10009 CM.CostKind);
10010 if (!ForceVectorization &&
10011 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10012 LVP.getPlanFor(VF.Width), SEL,
10013 CM.getVScaleForTuning())) {
10014 ORE->emit([&]() {
10016 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10017 L->getHeader())
10018 << "loop not vectorized: cannot prove it is safe to reorder "
10019 "memory operations";
10020 });
10021 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10022 Hints.emitRemarkWithHints();
10023 return false;
10024 }
10025 }
10026
10027 // Identify the diagnostic messages that should be produced.
10028 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10029 bool VectorizeLoop = true, InterleaveLoop = true;
10030 if (VF.Width.isScalar()) {
10031 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10032 VecDiagMsg = {
10033 "VectorizationNotBeneficial",
10034 "the cost-model indicates that vectorization is not beneficial"};
10035 VectorizeLoop = false;
10036 }
10037
10038 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10039 // Tell the user interleaving was avoided up-front, despite being explicitly
10040 // requested.
10041 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10042 "interleaving should be avoided up front\n");
10043 IntDiagMsg = {"InterleavingAvoided",
10044 "Ignoring UserIC, because interleaving was avoided up front"};
10045 InterleaveLoop = false;
10046 } else if (IC == 1 && UserIC <= 1) {
10047 // Tell the user interleaving is not beneficial.
10048 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10049 IntDiagMsg = {
10050 "InterleavingNotBeneficial",
10051 "the cost-model indicates that interleaving is not beneficial"};
10052 InterleaveLoop = false;
10053 if (UserIC == 1) {
10054 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10055 IntDiagMsg.second +=
10056 " and is explicitly disabled or interleave count is set to 1";
10057 }
10058 } else if (IC > 1 && UserIC == 1) {
10059 // Tell the user interleaving is beneficial, but it explicitly disabled.
10060 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10061 "disabled.\n");
10062 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10063 "the cost-model indicates that interleaving is beneficial "
10064 "but is explicitly disabled or interleave count is set to 1"};
10065 InterleaveLoop = false;
10066 }
10067
10068 // If there is a histogram in the loop, do not just interleave without
10069 // vectorizing. The order of operations will be incorrect without the
10070 // histogram intrinsics, which are only used for recipes with VF > 1.
10071 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10072 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10073 << "to histogram operations.\n");
10074 IntDiagMsg = {
10075 "HistogramPreventsScalarInterleaving",
10076 "Unable to interleave without vectorization due to constraints on "
10077 "the order of histogram operations"};
10078 InterleaveLoop = false;
10079 }
10080
10081 // Override IC if user provided an interleave count.
10082 IC = UserIC > 0 ? UserIC : IC;
10083
10084 // Emit diagnostic messages, if any.
10085 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10086 if (!VectorizeLoop && !InterleaveLoop) {
10087 // Do not vectorize or interleaving the loop.
10088 ORE->emit([&]() {
10089 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10090 L->getStartLoc(), L->getHeader())
10091 << VecDiagMsg.second;
10092 });
10093 ORE->emit([&]() {
10094 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10095 L->getStartLoc(), L->getHeader())
10096 << IntDiagMsg.second;
10097 });
10098 return false;
10099 }
10100
10101 if (!VectorizeLoop && InterleaveLoop) {
10102 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10103 ORE->emit([&]() {
10104 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10105 L->getStartLoc(), L->getHeader())
10106 << VecDiagMsg.second;
10107 });
10108 } else if (VectorizeLoop && !InterleaveLoop) {
10109 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10110 << ") in " << L->getLocStr() << '\n');
10111 ORE->emit([&]() {
10112 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10113 L->getStartLoc(), L->getHeader())
10114 << IntDiagMsg.second;
10115 });
10116 } else if (VectorizeLoop && InterleaveLoop) {
10117 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10118 << ") in " << L->getLocStr() << '\n');
10119 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10120 }
10121
10122 // Report the vectorization decision.
10123 if (VF.Width.isScalar()) {
10124 using namespace ore;
10125 assert(IC > 1);
10126 ORE->emit([&]() {
10127 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10128 L->getHeader())
10129 << "interleaved loop (interleaved count: "
10130 << NV("InterleaveCount", IC) << ")";
10131 });
10132 } else {
10133 // Report the vectorization decision.
10134 reportVectorization(ORE, L, VF, IC);
10135 }
10136 if (ORE->allowExtraAnalysis(LV_NAME))
10138
10139 // If we decided that it is *legal* to interleave or vectorize the loop, then
10140 // do it.
10141
10142 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10143 // Consider vectorizing the epilogue too if it's profitable.
10144 VectorizationFactor EpilogueVF =
10146 if (EpilogueVF.Width.isVector()) {
10147 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10148
10149 // The first pass vectorizes the main loop and creates a scalar epilogue
10150 // to be vectorized by executing the plan (potentially with a different
10151 // factor) again shortly afterwards.
10152 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10153 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10154 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10155 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10156 BestEpiPlan);
10157 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM, BFI,
10158 PSI, Checks, *BestMainPlan);
10159 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10160 *BestMainPlan, MainILV, DT, false);
10161 ++LoopsVectorized;
10162
10163 // Second pass vectorizes the epilogue and adjusts the control flow
10164 // edges from the first pass.
10165 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10166 BFI, PSI, Checks, BestEpiPlan);
10167 EpilogILV.setTripCount(MainILV.getTripCount());
10168 preparePlanForEpilogueVectorLoop(BestEpiPlan, L, ExpandedSCEVs, EPI);
10169
10170 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10171 true);
10172
10174 BestEpiPlan, LVL, ExpandedSCEVs,
10175 EPI.VectorTripCount);
10176 ++LoopsEpilogueVectorized;
10177 } else {
10178 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, BFI, PSI,
10179 Checks, BestPlan);
10180 // TODO: Move to general VPlan pipeline once epilogue loops are also
10181 // supported.
10184 IC, PSE);
10185 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10187
10188 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10189 ++LoopsVectorized;
10190 }
10191
10192 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10193 "DT not preserved correctly");
10194 assert(!verifyFunction(*F, &dbgs()));
10195
10196 return true;
10197}
10198
10200
10201 // Don't attempt if
10202 // 1. the target claims to have no vector registers, and
10203 // 2. interleaving won't help ILP.
10204 //
10205 // The second condition is necessary because, even if the target has no
10206 // vector registers, loop vectorization may still enable scalar
10207 // interleaving.
10208 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10209 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10210 return LoopVectorizeResult(false, false);
10211
10212 bool Changed = false, CFGChanged = false;
10213
10214 // The vectorizer requires loops to be in simplified form.
10215 // Since simplification may add new inner loops, it has to run before the
10216 // legality and profitability checks. This means running the loop vectorizer
10217 // will simplify all loops, regardless of whether anything end up being
10218 // vectorized.
10219 for (const auto &L : *LI)
10220 Changed |= CFGChanged |=
10221 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10222
10223 // Build up a worklist of inner-loops to vectorize. This is necessary as
10224 // the act of vectorizing or partially unrolling a loop creates new loops
10225 // and can invalidate iterators across the loops.
10226 SmallVector<Loop *, 8> Worklist;
10227
10228 for (Loop *L : *LI)
10229 collectSupportedLoops(*L, LI, ORE, Worklist);
10230
10231 LoopsAnalyzed += Worklist.size();
10232
10233 // Now walk the identified inner loops.
10234 while (!Worklist.empty()) {
10235 Loop *L = Worklist.pop_back_val();
10236
10237 // For the inner loops we actually process, form LCSSA to simplify the
10238 // transform.
10239 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10240
10241 Changed |= CFGChanged |= processLoop(L);
10242
10243 if (Changed) {
10244 LAIs->clear();
10245
10246#ifndef NDEBUG
10247 if (VerifySCEV)
10248 SE->verify();
10249#endif
10250 }
10251 }
10252
10253 // Process each loop nest in the function.
10254 return LoopVectorizeResult(Changed, CFGChanged);
10255}
10256
10259 LI = &AM.getResult<LoopAnalysis>(F);
10260 // There are no loops in the function. Return before computing other
10261 // expensive analyses.
10262 if (LI->empty())
10263 return PreservedAnalyses::all();
10272 AA = &AM.getResult<AAManager>(F);
10273
10274 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10275 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10276 BFI = nullptr;
10277 if (PSI && PSI->hasProfileSummary())
10279 LoopVectorizeResult Result = runImpl(F);
10280 if (!Result.MadeAnyChange)
10281 return PreservedAnalyses::all();
10283
10284 if (isAssignmentTrackingEnabled(*F.getParent())) {
10285 for (auto &BB : F)
10287 }
10288
10289 PA.preserve<LoopAnalysis>();
10293
10294 if (Result.MadeCFGChange) {
10295 // Making CFG changes likely means a loop got vectorized. Indicate that
10296 // extra simplification passes should be run.
10297 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10298 // be run if runtime checks have been added.
10301 } else {
10303 }
10304 return PA;
10305}
10306
10308 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10309 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10310 OS, MapClassName2PassName);
10311
10312 OS << '<';
10313 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10314 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10315 OS << '>';
10316}
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:167
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getTemporary()
Definition DebugLoc.h:161
static DebugLoc getUnknown()
Definition DebugLoc.h:162
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:156
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:267
Implements a dense probed hash-table based set.
Definition DenseSet.h:261
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:762
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
ProfileSummaryInfo * PSI
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:343
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1599
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1583
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, bool VectorizingEpilogue, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1650
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1564
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1730
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:115
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
void insert_range(Range &&R)
Definition SetVector.h:193
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:279
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:21
iterator_range< op_iterator > op_range
Definition User.h:281
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3751
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3826
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3778
iterator end()
Definition VPlan.h:3788
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3786
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3839
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3817
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:217
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:238
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:176
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:203
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:422
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:395
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3628
VPValue * getStartValue() const
Definition VPlan.h:3627
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1964
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2012
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2001
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1679
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3904
Helper to manage IR metadata for recipes.
Definition VPlan.h:940
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:981
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1014
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1061
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1052
unsigned getOpcode() const
Definition VPlan.h:1117
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2563
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
Definition VPlan.h:2740
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1288
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
Definition VPlan.h:2318
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
Definition VPlan.h:2378
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2372
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3939
const VPBlockBase * getEntry() const
Definition VPlan.h:3975
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2843
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:197
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:241
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:236
void addOperand(VPValue *Operand)
Definition VPlanValue.h:230
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:174
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1400
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1404
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1830
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1480
A recipe for handling GEP instructions.
Definition VPlan.h:1766
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2029
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2057
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2074
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2104
A common base class for widening memory operations.
Definition VPlan.h:3120
A recipe for widened phis.
Definition VPlan.h:2240
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1437
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4042
bool hasVF(ElementCount VF) const
Definition VPlan.h:4251
VPBasicBlock * getEntry()
Definition VPlan.h:4141
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4231
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4234
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4203
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4258
bool hasUF(unsigned UF) const
Definition VPlan.h:4269
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4193
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1034
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4414
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1016
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4217
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4166
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition VPlan.cpp:1249
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4293
bool hasScalarVFOnly() const
Definition VPlan.h:4262
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4184
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:952
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4347
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4189
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4146
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1176
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:156
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr bool isZero() const
Definition TypeSize.h:154
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:823
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:689
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1665
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2118
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:682
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:400
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1632
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1769
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:126
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:317
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1740
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Definition VPlan.cpp:56
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:591
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:280
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:465
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
BlockFrequencyInfo * BFI
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2283
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1720
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks