161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
709 EPI.EpilogueVF,
EPI.EpilogueUF) {
719 assert(AdditionalBypassBlock &&
720 "Trying to access AdditionalBypassBlock but it has not been set");
721 return AdditionalBypassBlock;
742 if (
I->getDebugLoc() !=
Empty)
743 return I->getDebugLoc();
745 for (
Use &
Op :
I->operands()) {
747 if (OpInst->getDebugLoc() !=
Empty)
748 return OpInst->getDebugLoc();
751 return I->getDebugLoc();
760 dbgs() <<
"LV: " << Prefix << DebugMsg;
782 if (
I &&
I->getDebugLoc())
783 DL =
I->getDebugLoc();
795 assert(Ty->isIntegerTy() &&
"Expected an integer step");
803 return B.CreateElementCount(Ty, VFxStep);
808 return B.CreateElementCount(Ty, VF);
819 <<
"loop not vectorized: " << OREMsg);
842 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
848 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
850 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
906 initializeVScaleForTuning();
987 "Profitable to scalarize relevant only for VF > 1.");
990 "cost-model should not be used for outer loops (in VPlan-native path)");
992 auto Scalars = InstsToScalarize.find(VF);
993 assert(Scalars != InstsToScalarize.end() &&
994 "VF not yet analyzed for scalarization profitability");
995 return Scalars->second.contains(
I);
1002 "cost-model should not be used for outer loops (in VPlan-native path)");
1012 auto UniformsPerVF = Uniforms.find(VF);
1013 assert(UniformsPerVF != Uniforms.end() &&
1014 "VF not yet analyzed for uniformity");
1015 return UniformsPerVF->second.count(
I);
1022 "cost-model should not be used for outer loops (in VPlan-native path)");
1026 auto ScalarsPerVF = Scalars.find(VF);
1027 assert(ScalarsPerVF != Scalars.end() &&
1028 "Scalar values are not calculated for VF");
1029 return ScalarsPerVF->second.count(
I);
1035 return VF.
isVector() && MinBWs.contains(
I) &&
1057 WideningDecisions[{
I, VF}] = {W,
Cost};
1076 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1079 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1081 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1093 "cost-model should not be used for outer loops (in VPlan-native path)");
1095 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1096 auto Itr = WideningDecisions.find(InstOnVF);
1097 if (Itr == WideningDecisions.end())
1099 return Itr->second.first;
1106 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1107 assert(WideningDecisions.contains(InstOnVF) &&
1108 "The cost is not calculated");
1109 return WideningDecisions[InstOnVF].second;
1122 std::optional<unsigned> MaskPos,
1125 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1131 auto I = CallWideningDecisions.find({CI, VF});
1132 if (
I == CallWideningDecisions.end())
1155 Value *
Op = Trunc->getOperand(0);
1156 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1160 return Legal->isInductionPhi(
Op);
1176 if (VF.
isScalar() || Uniforms.contains(VF))
1179 collectLoopUniforms(VF);
1181 collectLoopScalars(VF);
1189 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1197 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1212 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1219 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1220 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1221 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1232 return ScalarCost < SafeDivisorCost;
1256 std::pair<InstructionCost, InstructionCost>
1284 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1292 "from latch block\n");
1297 "interleaved group requires scalar epilogue\n");
1300 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1394 return InLoopReductions.contains(Phi);
1405 TTI.preferPredicatedReductionSelect();
1420 WideningDecisions.clear();
1421 CallWideningDecisions.clear();
1440 const unsigned IC)
const;
1450 Type *VectorTy)
const;
1460 unsigned NumPredStores = 0;
1464 std::optional<unsigned> VScaleForTuning;
1469 void initializeVScaleForTuning() {
1474 auto Max = Attr.getVScaleRangeMax();
1475 if (Max && Min == Max) {
1476 VScaleForTuning = Max;
1481 VScaleForTuning =
TTI.getVScaleForTuning();
1489 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1490 ElementCount UserVF,
1491 bool FoldTailByMasking);
1495 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1496 bool FoldTailByMasking)
const;
1501 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1502 unsigned SmallestType,
1503 unsigned WidestType,
1504 ElementCount MaxSafeVF,
1505 bool FoldTailByMasking);
1509 bool isScalableVectorizationAllowed();
1513 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1519 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1540 ElementCount VF)
const;
1544 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1549 MapVector<Instruction *, uint64_t> MinBWs;
1554 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1558 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1559 PredicatedBBsAfterVectorization;
1572 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1573 ChosenTailFoldingStyle;
1576 std::optional<bool> IsScalableVectorizationAllowed;
1582 std::optional<unsigned> MaxSafeElements;
1588 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1592 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1596 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1600 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1603 SmallPtrSet<PHINode *, 4> InLoopReductions;
1608 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1616 ScalarCostsTy &ScalarCosts,
1628 void collectLoopUniforms(ElementCount VF);
1637 void collectLoopScalars(ElementCount VF);
1641 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1642 std::pair<InstWidening, InstructionCost>>;
1644 DecisionList WideningDecisions;
1646 using CallDecisionList =
1649 CallDecisionList CallWideningDecisions;
1653 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 ElementCount VF)
const {
1675 SmallPtrSet<const Value *, 4> UniqueOperands;
1679 !needsExtract(
Op, VF))
1751class GeneratedRTChecks {
1757 Value *SCEVCheckCond =
nullptr;
1764 Value *MemRuntimeCheckCond =
nullptr;
1773 bool CostTooHigh =
false;
1775 Loop *OuterLoop =
nullptr;
1786 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1787 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1795 void create(Loop *L,
const LoopAccessInfo &LAI,
1796 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1816 nullptr,
"vector.scevcheck");
1823 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1824 SCEVCleaner.cleanup();
1829 if (RtPtrChecking.Need) {
1830 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1831 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1834 auto DiffChecks = RtPtrChecking.getDiffChecks();
1836 Value *RuntimeVF =
nullptr;
1839 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1841 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1847 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1850 assert(MemRuntimeCheckCond &&
1851 "no RT checks generated although RtPtrChecking "
1852 "claimed checks are required");
1857 if (!MemCheckBlock && !SCEVCheckBlock)
1867 if (SCEVCheckBlock) {
1870 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1874 if (MemCheckBlock) {
1877 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1883 if (MemCheckBlock) {
1887 if (SCEVCheckBlock) {
1893 OuterLoop =
L->getParentLoop();
1897 if (SCEVCheckBlock || MemCheckBlock)
1909 for (Instruction &
I : *SCEVCheckBlock) {
1910 if (SCEVCheckBlock->getTerminator() == &
I)
1916 if (MemCheckBlock) {
1918 for (Instruction &
I : *MemCheckBlock) {
1919 if (MemCheckBlock->getTerminator() == &
I)
1931 ScalarEvolution *SE = MemCheckExp.
getSE();
1936 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1941 unsigned BestTripCount = 2;
1945 PSE, OuterLoop,
false))
1946 if (EstimatedTC->isFixed())
1947 BestTripCount = EstimatedTC->getFixedValue();
1952 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1953 (InstructionCost::CostType)1);
1955 if (BestTripCount > 1)
1957 <<
"We expect runtime memory checks to be hoisted "
1958 <<
"out of the outer loop. Cost reduced from "
1959 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1961 MemCheckCost = NewMemCheckCost;
1965 RTCheckCost += MemCheckCost;
1968 if (SCEVCheckBlock || MemCheckBlock)
1969 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1977 ~GeneratedRTChecks() {
1978 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1979 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1980 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1981 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1983 SCEVCleaner.markResultUsed();
1985 if (MemChecksUsed) {
1986 MemCheckCleaner.markResultUsed();
1988 auto &SE = *MemCheckExp.
getSE();
1995 I.eraseFromParent();
1998 MemCheckCleaner.cleanup();
1999 SCEVCleaner.cleanup();
2001 if (!SCEVChecksUsed)
2002 SCEVCheckBlock->eraseFromParent();
2004 MemCheckBlock->eraseFromParent();
2009 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2010 using namespace llvm::PatternMatch;
2012 return {
nullptr,
nullptr};
2014 return {SCEVCheckCond, SCEVCheckBlock};
2019 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2020 using namespace llvm::PatternMatch;
2021 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2022 return {
nullptr,
nullptr};
2023 return {MemRuntimeCheckCond, MemCheckBlock};
2027 bool hasChecks()
const {
2028 return getSCEVChecks().first || getMemRuntimeChecks().first;
2071 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2077 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2107 for (
Loop *InnerL : L)
2130 ?
B.CreateSExtOrTrunc(Index, StepTy)
2131 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2132 if (CastedIndex != Index) {
2134 Index = CastedIndex;
2144 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2149 return B.CreateAdd(
X,
Y);
2155 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2156 "Types don't match!");
2163 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2164 return B.CreateMul(
X,
Y);
2167 switch (InductionKind) {
2170 "Vector indices not supported for integer inductions yet");
2172 "Index type does not match StartValue type");
2174 return B.CreateSub(StartValue, Index);
2179 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2182 "Vector indices not supported for FP inductions yet");
2185 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2186 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2187 "Original bin op should be defined for FP induction");
2189 Value *MulExp =
B.CreateFMul(Step, Index);
2190 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2201 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2204 if (
F.hasFnAttribute(Attribute::VScaleRange))
2205 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2207 return std::nullopt;
2216 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2218 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2220 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2226 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2229 std::optional<unsigned> MaxVScale =
2233 MaxVF *= *MaxVScale;
2236 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2250 return TTI.enableMaskedInterleavedAccessVectorization();
2263 PreVectorPH = CheckVPIRBB;
2273 "must have incoming values for all operands");
2274 R.addOperand(R.getOperand(NumPredecessors - 2));
2300 auto CreateStep = [&]() ->
Value * {
2307 if (!
VF.isScalable())
2309 return Builder.CreateBinaryIntrinsic(
2315 Value *Step = CreateStep();
2324 CheckMinIters =
Builder.getTrue();
2326 TripCountSCEV, SE.
getSCEV(Step))) {
2329 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2331 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2339 Value *MaxUIntTripCount =
2346 return CheckMinIters;
2356 auto IP = IRVPBB->
begin();
2358 R.moveBefore(*IRVPBB, IP);
2362 R.moveBefore(*IRVPBB, IRVPBB->
end());
2371 assert(VectorPH &&
"Invalid loop structure");
2373 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2374 "loops not exiting via the latch without required epilogue?");
2381 Twine(Prefix) +
"scalar.ph");
2387 const SCEV2ValueTy &ExpandedSCEVs) {
2388 const SCEV *Step =
ID.getStep();
2390 return C->getValue();
2392 return U->getValue();
2393 Value *V = ExpandedSCEVs.lookup(Step);
2394 assert(V &&
"SCEV must be expanded at this point");
2404 auto *Cmp = L->getLatchCmpInst();
2406 InstsToIgnore.
insert(Cmp);
2407 for (
const auto &KV : IL) {
2416 [&](
const User *U) { return U == IV || U == Cmp; }))
2417 InstsToIgnore.
insert(IVInst);
2429struct CSEDenseMapInfo {
2440 return DenseMapInfo<Instruction *>::getTombstoneKey();
2443 static unsigned getHashValue(
const Instruction *
I) {
2444 assert(canHandle(
I) &&
"Unknown instruction!");
2449 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2450 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2451 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2453 return LHS->isIdenticalTo(
RHS);
2464 if (!CSEDenseMapInfo::canHandle(&In))
2470 In.replaceAllUsesWith(V);
2471 In.eraseFromParent();
2484 std::optional<unsigned> VScale) {
2488 EstimatedVF *= *VScale;
2489 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2507 for (
auto &ArgOp : CI->
args())
2518 return ScalarCallCost;
2531 assert(
ID &&
"Expected intrinsic call!");
2535 FMF = FPMO->getFastMathFlags();
2541 std::back_inserter(ParamTys),
2542 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2547 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2561 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2576 Builder.SetInsertPoint(NewPhi);
2578 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2583void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2588 "This function should not be visited twice for the same VF");
2613 "Widening decision should be ready at this moment");
2615 if (
Ptr == Store->getValueOperand())
2618 "Ptr is neither a value or pointer operand");
2624 auto IsLoopVaryingGEP = [&](
Value *
V) {
2635 if (!IsLoopVaryingGEP(
Ptr))
2647 if (IsScalarUse(MemAccess,
Ptr) &&
2651 PossibleNonScalarPtrs.
insert(
I);
2667 for (
auto *BB :
TheLoop->blocks())
2668 for (
auto &
I : *BB) {
2670 EvaluatePtrUse(Load,
Load->getPointerOperand());
2672 EvaluatePtrUse(Store,
Store->getPointerOperand());
2673 EvaluatePtrUse(Store,
Store->getValueOperand());
2676 for (
auto *
I : ScalarPtrs)
2677 if (!PossibleNonScalarPtrs.
count(
I)) {
2685 auto ForcedScalar = ForcedScalars.find(VF);
2686 if (ForcedScalar != ForcedScalars.end())
2687 for (
auto *
I : ForcedScalar->second) {
2688 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2697 while (Idx != Worklist.
size()) {
2699 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2703 auto *J = cast<Instruction>(U);
2704 return !TheLoop->contains(J) || Worklist.count(J) ||
2705 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2706 IsScalarUse(J, Src));
2709 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2715 for (
const auto &Induction :
Legal->getInductionVars()) {
2716 auto *Ind = Induction.first;
2726 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2728 return Induction.second.getKind() ==
2736 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2737 auto *I = cast<Instruction>(U);
2738 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2739 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2748 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2753 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2754 auto *I = cast<Instruction>(U);
2755 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2756 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2758 if (!ScalarIndUpdate)
2763 Worklist.
insert(IndUpdate);
2764 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2765 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2769 Scalars[VF].insert_range(Worklist);
2779 switch(
I->getOpcode()) {
2782 case Instruction::Call:
2786 case Instruction::Load:
2787 case Instruction::Store: {
2796 TTI.isLegalMaskedGather(VTy, Alignment))
2798 TTI.isLegalMaskedScatter(VTy, Alignment));
2800 case Instruction::UDiv:
2801 case Instruction::SDiv:
2802 case Instruction::SRem:
2803 case Instruction::URem: {
2824 if (
Legal->blockNeedsPredication(
I->getParent()))
2836 switch(
I->getOpcode()) {
2839 "instruction should have been considered by earlier checks");
2840 case Instruction::Call:
2844 "should have returned earlier for calls not needing a mask");
2846 case Instruction::Load:
2849 case Instruction::Store: {
2857 case Instruction::UDiv:
2858 case Instruction::SDiv:
2859 case Instruction::SRem:
2860 case Instruction::URem:
2862 return !
Legal->isInvariant(
I->getOperand(1));
2866std::pair<InstructionCost, InstructionCost>
2869 assert(
I->getOpcode() == Instruction::UDiv ||
2870 I->getOpcode() == Instruction::SDiv ||
2871 I->getOpcode() == Instruction::SRem ||
2872 I->getOpcode() == Instruction::URem);
2881 ScalarizationCost = 0;
2887 ScalarizationCost +=
2891 ScalarizationCost +=
2893 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2897 ScalarizationCost += getScalarizationOverhead(
I, VF);
2911 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2916 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2918 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2919 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2921 return {ScalarizationCost, SafeDivisorCost};
2928 "Decision should not be set yet.");
2930 assert(Group &&
"Must have a group.");
2931 unsigned InterleaveFactor = Group->getFactor();
2935 auto &
DL =
I->getDataLayout();
2947 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2948 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2953 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2955 if (MemberNI != ScalarNI)
2958 if (MemberNI && ScalarNI &&
2959 ScalarTy->getPointerAddressSpace() !=
2960 MemberTy->getPointerAddressSpace())
2969 bool PredicatedAccessRequiresMasking =
2971 Legal->isMaskRequired(
I);
2972 bool LoadAccessWithGapsRequiresEpilogMasking =
2975 bool StoreAccessWithGapsRequiresMasking =
2977 if (!PredicatedAccessRequiresMasking &&
2978 !LoadAccessWithGapsRequiresEpilogMasking &&
2979 !StoreAccessWithGapsRequiresMasking)
2986 "Masked interleave-groups for predicated accesses are not enabled.");
2988 if (Group->isReverse())
2992 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2993 StoreAccessWithGapsRequiresMasking;
3001 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3013 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3023 auto &
DL =
I->getDataLayout();
3030void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3037 "This function should not be visited twice for the same VF");
3041 Uniforms[VF].
clear();
3049 auto IsOutOfScope = [&](
Value *V) ->
bool {
3061 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3062 if (IsOutOfScope(
I)) {
3069 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3073 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3082 TheLoop->getExitingBlocks(Exiting);
3083 for (BasicBlock *
E : Exiting) {
3084 if (
Legal->hasUncountableEarlyExit() &&
TheLoop->getLoopLatch() !=
E)
3087 if (Cmp &&
TheLoop->contains(Cmp) &&
Cmp->hasOneUse())
3088 AddToWorklistIfAllowed(Cmp);
3097 if (PrevVF.isVector()) {
3098 auto Iter = Uniforms.find(PrevVF);
3099 if (Iter != Uniforms.end() && !Iter->second.contains(
I))
3102 if (!
Legal->isUniformMemOp(*
I, VF))
3112 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3115 "Widening decision should be ready at this moment");
3117 if (IsUniformMemOpUse(
I))
3120 return (WideningDecision ==
CM_Widen ||
3132 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3140 SetVector<Value *> HasUniformUse;
3144 for (
auto *BB :
TheLoop->blocks())
3145 for (
auto &
I : *BB) {
3147 switch (
II->getIntrinsicID()) {
3148 case Intrinsic::sideeffect:
3149 case Intrinsic::experimental_noalias_scope_decl:
3150 case Intrinsic::assume:
3151 case Intrinsic::lifetime_start:
3152 case Intrinsic::lifetime_end:
3153 if (
TheLoop->hasLoopInvariantOperands(&
I))
3154 AddToWorklistIfAllowed(&
I);
3162 if (IsOutOfScope(EVI->getAggregateOperand())) {
3163 AddToWorklistIfAllowed(EVI);
3169 "Expected aggregate value to be call return value");
3177 if (IsUniformMemOpUse(&
I))
3178 AddToWorklistIfAllowed(&
I);
3180 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3187 for (
auto *V : HasUniformUse) {
3188 if (IsOutOfScope(V))
3191 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3192 auto *UI = cast<Instruction>(U);
3193 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3195 if (UsersAreMemAccesses)
3196 AddToWorklistIfAllowed(
I);
3203 while (Idx != Worklist.
size()) {
3206 for (
auto *OV :
I->operand_values()) {
3208 if (IsOutOfScope(OV))
3213 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3219 auto *J = cast<Instruction>(U);
3220 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3222 AddToWorklistIfAllowed(OI);
3233 for (
const auto &Induction :
Legal->getInductionVars()) {
3234 auto *Ind = Induction.first;
3239 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3240 auto *I = cast<Instruction>(U);
3241 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3242 IsVectorizedMemAccessUse(I, Ind);
3249 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3250 auto *I = cast<Instruction>(U);
3251 return I == Ind || Worklist.count(I) ||
3252 IsVectorizedMemAccessUse(I, IndUpdate);
3254 if (!UniformIndUpdate)
3258 AddToWorklistIfAllowed(Ind);
3259 AddToWorklistIfAllowed(IndUpdate);
3262 Uniforms[VF].insert_range(Worklist);
3268 if (
Legal->getRuntimePointerChecking()->Need) {
3270 "runtime pointer checks needed. Enable vectorization of this "
3271 "loop with '#pragma clang loop vectorize(enable)' when "
3272 "compiling with -Os/-Oz",
3273 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3277 if (!
PSE.getPredicate().isAlwaysTrue()) {
3279 "runtime SCEV checks needed. Enable vectorization of this "
3280 "loop with '#pragma clang loop vectorize(enable)' when "
3281 "compiling with -Os/-Oz",
3282 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3287 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3289 "runtime stride == 1 checks needed. Enable vectorization of "
3290 "this loop without such check by compiling with -Os/-Oz",
3291 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3298bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3299 if (IsScalableVectorizationAllowed)
3300 return *IsScalableVectorizationAllowed;
3302 IsScalableVectorizationAllowed =
false;
3308 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3312 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3315 std::numeric_limits<ElementCount::ScalarTy>::max());
3326 "Scalable vectorization not supported for the reduction "
3327 "operations found in this loop.",
3336 !this->
TTI.isElementTypeLegalForScalableVector(Ty);
3339 "for all element types found in this loop.",
3346 "for safe distance analysis.",
3351 IsScalableVectorizationAllowed =
true;
3356LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3357 if (!isScalableVectorizationAllowed())
3361 std::numeric_limits<ElementCount::ScalarTy>::max());
3362 if (
Legal->isSafeForAnyVectorWidth())
3363 return MaxScalableVF;
3371 "Max legal vector width too small, scalable vectorization "
3375 return MaxScalableVF;
3379 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3381 unsigned SmallestType, WidestType;
3388 unsigned MaxSafeElementsPowerOf2 =
3390 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3391 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3392 MaxSafeElementsPowerOf2 =
3393 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3396 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3398 if (!
Legal->isSafeForAnyVectorWidth())
3399 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3401 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3403 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3408 auto MaxSafeUserVF =
3409 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3414 return FixedScalableVFPair(
3426 <<
" is unsafe, clamping to max safe VF="
3427 << MaxSafeFixedVF <<
".\n");
3429 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3432 <<
"User-specified vectorization factor "
3433 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3434 <<
" is unsafe, clamping to maximum safe vectorization factor "
3435 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3437 return MaxSafeFixedVF;
3442 <<
" is ignored because scalable vectors are not "
3445 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3448 <<
"User-specified vectorization factor "
3449 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3450 <<
" is ignored because the target does not support scalable "
3451 "vectors. The compiler will pick a more suitable value.";
3455 <<
" is unsafe. Ignoring scalable UserVF.\n");
3457 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3460 <<
"User-specified vectorization factor "
3461 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3462 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3463 "more suitable value.";
3468 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3469 <<
" / " << WidestType <<
" bits.\n");
3474 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3475 MaxSafeFixedVF, FoldTailByMasking))
3479 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3480 MaxSafeScalableVF, FoldTailByMasking))
3481 if (MaxVF.isScalable()) {
3482 Result.ScalableVF = MaxVF;
3483 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3492 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3496 "Not inserting runtime ptr check for divergent target",
3497 "runtime pointer checks needed. Not enabled for divergent target",
3498 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3504 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3507 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3510 "loop trip count is one, irrelevant for vectorization",
3521 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3525 "Trip count computation wrapped",
3526 "backedge-taken count is -1, loop trip count wrapped to 0",
3531 switch (ScalarEpilogueStatus) {
3533 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3538 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3539 <<
"LV: Not allowing scalar epilogue, creating predicated "
3540 <<
"vector loop.\n");
3547 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3549 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3565 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3566 "No decisions should have been taken at this point");
3576 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3580 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3581 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3582 *MaxPowerOf2RuntimeVF,
3585 MaxPowerOf2RuntimeVF = std::nullopt;
3588 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3592 !
Legal->hasUncountableEarlyExit())
3594 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3599 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3601 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3602 "Invalid loop count");
3604 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3611 if (MaxPowerOf2RuntimeVF > 0u) {
3613 "MaxFixedVF must be a power of 2");
3614 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3616 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3622 if (ExpectedTC && ExpectedTC->isFixed() &&
3623 ExpectedTC->getFixedValue() <=
3624 TTI.getMinTripCountTailFoldingThreshold()) {
3625 if (MaxPowerOf2RuntimeVF > 0u) {
3631 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3632 "remain for any chosen VF.\n");
3639 "The trip count is below the minial threshold value.",
3640 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3655 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3656 "try to generate VP Intrinsics with scalable vector "
3661 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3671 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3672 "scalar epilogue instead.\n");
3678 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3684 "unable to calculate the loop count due to complex control flow",
3690 "Cannot optimize for size and vectorize at the same time.",
3691 "cannot optimize for size and vectorize at the same time. "
3692 "Enable vectorization of this loop with '#pragma clang loop "
3693 "vectorize(enable)' when compiling with -Os/-Oz",
3705 if (
TTI.shouldConsiderVectorizationRegPressure())
3721 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3723 Legal->hasVectorCallVariants())));
3726ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3727 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3741 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3749 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3750 "exceeding the constant trip count: "
3751 << ClampedUpperTripCount <<
"\n");
3753 FoldTailByMasking ? VF.
isScalable() :
false);
3758ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3759 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3761 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3762 const TypeSize WidestRegister =
TTI.getRegisterBitWidth(
3767 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3769 "Scalable flags must match");
3777 ComputeScalableMaxVF);
3778 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3780 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3782 if (!MaxVectorElementCount) {
3784 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3785 <<
" vector registers.\n");
3789 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3790 MaxTripCount, FoldTailByMasking);
3793 if (MaxVF != MaxVectorElementCount)
3808 ComputeScalableMaxVF);
3809 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3811 if (ElementCount MinVF =
3812 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3815 <<
") with target's minimum: " << MinVF <<
'\n');
3820 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3822 if (MaxVectorElementCount != MaxVF) {
3834 const unsigned MaxTripCount,
3836 bool IsEpilogue)
const {
3842 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3843 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3844 if (
A.Width.isScalable())
3845 EstimatedWidthA *= *VScale;
3846 if (
B.Width.isScalable())
3847 EstimatedWidthB *= *VScale;
3854 return CostA < CostB ||
3855 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3860 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3861 A.Width.isScalable() && !
B.Width.isScalable();
3872 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3874 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3886 return VectorCost * (MaxTripCount / VF) +
3887 ScalarCost * (MaxTripCount % VF);
3888 return VectorCost *
divideCeil(MaxTripCount, VF);
3891 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3892 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3893 return CmpFn(RTCostA, RTCostB);
3899 bool IsEpilogue)
const {
3900 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3901 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3907 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3909 for (
const auto &Plan : VPlans) {
3918 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3919 precomputeCosts(*Plan, VF, CostCtx);
3922 for (
auto &R : *VPBB) {
3923 if (!R.cost(VF, CostCtx).isValid())
3929 if (InvalidCosts.
empty())
3937 for (
auto &Pair : InvalidCosts)
3942 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3943 unsigned NA = Numbering[
A.first];
3944 unsigned NB = Numbering[
B.first];
3959 Subset =
Tail.take_front(1);
3966 [](
const auto *R) {
return Instruction::PHI; })
3967 .Case<VPWidenSelectRecipe>(
3968 [](
const auto *R) {
return Instruction::Select; })
3969 .Case<VPWidenStoreRecipe>(
3970 [](
const auto *R) {
return Instruction::Store; })
3971 .Case<VPWidenLoadRecipe>(
3972 [](
const auto *R) {
return Instruction::Load; })
3973 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3974 [](
const auto *R) {
return Instruction::Call; })
3977 [](
const auto *R) {
return R->getOpcode(); })
3979 return R->getStoredValues().empty() ? Instruction::Load
3980 : Instruction::Store;
3988 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3989 std::string OutString;
3991 assert(!Subset.empty() &&
"Unexpected empty range");
3992 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3993 for (
const auto &Pair : Subset)
3994 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3996 if (Opcode == Instruction::Call) {
3999 Name =
Int->getIntrinsicName();
4003 WidenCall ? WidenCall->getCalledScalarFunction()
4005 ->getLiveInIRValue());
4008 OS <<
" call to " << Name;
4013 Tail =
Tail.drop_front(Subset.size());
4017 Subset =
Tail.take_front(Subset.size() + 1);
4018 }
while (!
Tail.empty());
4040 switch (R.getVPDefID()) {
4041 case VPDef::VPDerivedIVSC:
4042 case VPDef::VPScalarIVStepsSC:
4043 case VPDef::VPReplicateSC:
4044 case VPDef::VPInstructionSC:
4045 case VPDef::VPCanonicalIVPHISC:
4046 case VPDef::VPVectorPointerSC:
4047 case VPDef::VPVectorEndPointerSC:
4048 case VPDef::VPExpandSCEVSC:
4049 case VPDef::VPEVLBasedIVPHISC:
4050 case VPDef::VPPredInstPHISC:
4051 case VPDef::VPBranchOnMaskSC:
4053 case VPDef::VPReductionSC:
4054 case VPDef::VPActiveLaneMaskPHISC:
4055 case VPDef::VPWidenCallSC:
4056 case VPDef::VPWidenCanonicalIVSC:
4057 case VPDef::VPWidenCastSC:
4058 case VPDef::VPWidenGEPSC:
4059 case VPDef::VPWidenIntrinsicSC:
4060 case VPDef::VPWidenSC:
4061 case VPDef::VPWidenSelectSC:
4062 case VPDef::VPBlendSC:
4063 case VPDef::VPFirstOrderRecurrencePHISC:
4064 case VPDef::VPHistogramSC:
4065 case VPDef::VPWidenPHISC:
4066 case VPDef::VPWidenIntOrFpInductionSC:
4067 case VPDef::VPWidenPointerInductionSC:
4068 case VPDef::VPReductionPHISC:
4069 case VPDef::VPInterleaveEVLSC:
4070 case VPDef::VPInterleaveSC:
4071 case VPDef::VPWidenLoadEVLSC:
4072 case VPDef::VPWidenLoadSC:
4073 case VPDef::VPWidenStoreEVLSC:
4074 case VPDef::VPWidenStoreSC:
4080 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4081 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4097 if (R.getNumDefinedValues() == 0 &&
4106 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4108 if (!Visited.
insert({ScalarTy}).second)
4122 [](
auto *VPRB) { return VPRB->isReplicator(); });
4128 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4129 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4132 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4133 "Expected Scalar VF to be a candidate");
4140 if (ForceVectorization &&
4141 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4148 for (
auto &
P : VPlans) {
4150 P->vectorFactors().end());
4153 if (
any_of(VFs, [
this](ElementCount VF) {
4154 return CM.shouldConsiderRegPressureForVF(VF);
4158 for (
unsigned I = 0;
I < VFs.size();
I++) {
4159 ElementCount VF = VFs[
I];
4167 if (CM.shouldConsiderRegPressureForVF(VF) &&
4175 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind);
4176 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4177 assert(VectorRegion &&
"Expected to have a vector region!");
4180 for (VPRecipeBase &R : *VPBB) {
4184 switch (VPI->getOpcode()) {
4187 case Instruction::Select: {
4188 VPValue *VPV = VPI->getVPSingleValue();
4191 switch (WR->getOpcode()) {
4192 case Instruction::UDiv:
4193 case Instruction::SDiv:
4194 case Instruction::URem:
4195 case Instruction::SRem:
4202 C += VPI->cost(VF, CostCtx);
4206 unsigned Multiplier =
4209 C += VPI->cost(VF * Multiplier, CostCtx);
4213 C += VPI->cost(VF, CostCtx);
4225 <<
" costs: " << (Candidate.Cost / Width));
4228 << CM.getVScaleForTuning().value_or(1) <<
")");
4234 <<
"LV: Not considering vector loop of width " << VF
4235 <<
" because it will not generate any vector instructions.\n");
4242 <<
"LV: Not considering vector loop of width " << VF
4243 <<
" because it would cause replicated blocks to be generated,"
4244 <<
" which isn't allowed when optimizing for size.\n");
4248 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4249 ChosenFactor = Candidate;
4255 "There are conditional stores.",
4256 "store that is conditionally executed prevents vectorization",
4257 "ConditionalStore", ORE, OrigLoop);
4258 ChosenFactor = ScalarCost;
4262 !isMoreProfitable(ChosenFactor, ScalarCost,
4263 !CM.foldTailByMasking()))
dbgs()
4264 <<
"LV: Vectorization seems to be not beneficial, "
4265 <<
"but was forced by a user.\n");
4266 return ChosenFactor;
4270bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4274 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4275 if (!Legal->isReductionVariable(&Phi))
4276 return Legal->isFixedOrderRecurrence(&Phi);
4277 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4278 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4284 for (
const auto &Entry : Legal->getInductionVars()) {
4287 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4288 for (User *U :
PostInc->users())
4292 for (User *U :
Entry.first->users())
4301 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4315 if (!
TTI.preferEpilogueVectorization())
4320 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4325 :
TTI.getEpilogueVectorizationMinVF();
4333 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4337 if (!CM.isScalarEpilogueAllowed()) {
4338 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4339 "epilogue is allowed.\n");
4345 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4346 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4347 "is not a supported candidate.\n");
4352 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4355 return {ForcedEC, 0, 0};
4357 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4362 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4364 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4368 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4369 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4381 Type *TCType = Legal->getWidestInductionType();
4382 const SCEV *RemainingIterations =
nullptr;
4383 unsigned MaxTripCount = 0;
4387 RemainingIterations =
4391 if (RemainingIterations->
isZero())
4401 << MaxTripCount <<
"\n");
4404 for (
auto &NextVF : ProfitableVFs) {
4411 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4413 (NextVF.Width.isScalable() &&
4415 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4421 if (RemainingIterations && !NextVF.Width.isScalable()) {
4424 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4425 RemainingIterations))
4429 if (Result.Width.isScalar() ||
4430 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4437 << Result.Width <<
"\n");
4441std::pair<unsigned, unsigned>
4443 unsigned MinWidth = -1U;
4444 unsigned MaxWidth = 8;
4450 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4454 MinWidth = std::min(
4458 MaxWidth = std::max(MaxWidth,
4463 MinWidth = std::min<unsigned>(
4464 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4465 MaxWidth = std::max<unsigned>(
4466 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4469 return {MinWidth, MaxWidth};
4477 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4491 if (!
Legal->isReductionVariable(PN))
4494 Legal->getRecurrenceDescriptor(PN);
4504 T = ST->getValueOperand()->getType();
4507 "Expected the load/store/recurrence type to be sized");
4531 if (!CM.isScalarEpilogueAllowed())
4536 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4537 "Unroll factor forced to be 1.\n");
4542 if (!Legal->isSafeForAnyVectorWidth())
4551 const bool HasReductions =
4557 if (LoopCost == 0) {
4559 LoopCost = CM.expectedCost(VF);
4561 LoopCost = cost(Plan, VF);
4562 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4573 for (
auto &Pair : R.MaxLocalUsers) {
4574 Pair.second = std::max(Pair.second, 1U);
4588 unsigned IC = UINT_MAX;
4590 for (
const auto &Pair : R.MaxLocalUsers) {
4591 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4594 << TTI.getRegisterClassName(Pair.first)
4595 <<
" register class\n");
4603 unsigned MaxLocalUsers = Pair.second;
4604 unsigned LoopInvariantRegs = 0;
4605 if (R.LoopInvariantRegs.contains(Pair.first))
4606 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4608 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4612 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4613 std::max(1U, (MaxLocalUsers - 1)));
4616 IC = std::min(IC, TmpIC);
4620 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4636 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4638 unsigned AvailableTC =
4644 if (CM.requiresScalarEpilogue(VF.
isVector()))
4647 unsigned InterleaveCountLB =
bit_floor(std::max(
4648 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4662 unsigned InterleaveCountUB =
bit_floor(std::max(
4663 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4664 MaxInterleaveCount = InterleaveCountLB;
4666 if (InterleaveCountUB != InterleaveCountLB) {
4667 unsigned TailTripCountUB =
4668 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4669 unsigned TailTripCountLB =
4670 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4673 if (TailTripCountUB == TailTripCountLB)
4674 MaxInterleaveCount = InterleaveCountUB;
4682 MaxInterleaveCount = InterleaveCountLB;
4686 assert(MaxInterleaveCount > 0 &&
4687 "Maximum interleave count must be greater than 0");
4691 if (IC > MaxInterleaveCount)
4692 IC = MaxInterleaveCount;
4695 IC = std::max(1u, IC);
4697 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4701 if (VF.
isVector() && HasReductions) {
4702 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4710 bool ScalarInterleavingRequiresPredication =
4712 return Legal->blockNeedsPredication(BB);
4714 bool ScalarInterleavingRequiresRuntimePointerCheck =
4715 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4720 <<
"LV: IC is " << IC <<
'\n'
4721 <<
"LV: VF is " << VF <<
'\n');
4722 const bool AggressivelyInterleaveReductions =
4723 TTI.enableAggressiveInterleaving(HasReductions);
4724 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4725 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4734 unsigned NumStores = 0;
4735 unsigned NumLoads = 0;
4749 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4750 NumStores += StoreOps;
4752 NumLoads += InterleaveR->getNumDefinedValues();
4767 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4768 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4774 bool HasSelectCmpReductions =
4778 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4779 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4780 RedR->getRecurrenceKind()) ||
4781 RecurrenceDescriptor::isFindIVRecurrenceKind(
4782 RedR->getRecurrenceKind()));
4784 if (HasSelectCmpReductions) {
4785 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4794 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4795 bool HasOrderedReductions =
4798 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4800 return RedR && RedR->isOrdered();
4802 if (HasOrderedReductions) {
4804 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4809 SmallIC = std::min(SmallIC,
F);
4810 StoresIC = std::min(StoresIC,
F);
4811 LoadsIC = std::min(LoadsIC,
F);
4815 std::max(StoresIC, LoadsIC) > SmallIC) {
4817 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4818 return std::max(StoresIC, LoadsIC);
4823 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4827 return std::max(IC / 2, SmallIC);
4830 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4836 if (AggressivelyInterleaveReductions) {
4845bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4856 "Expecting a scalar emulated instruction");
4869 if (InstsToScalarize.contains(VF) ||
4870 PredicatedBBsAfterVectorization.contains(VF))
4876 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4886 ScalarCostsTy ScalarCosts;
4893 !useEmulatedMaskMemRefHack(&
I, VF) &&
4894 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4895 for (
const auto &[
I, IC] : ScalarCosts)
4896 ScalarCostsVF.
insert({
I, IC});
4899 for (
const auto &[
I,
Cost] : ScalarCosts) {
4901 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4904 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4908 PredicatedBBsAfterVectorization[VF].insert(BB);
4910 if (Pred->getSingleSuccessor() == BB)
4911 PredicatedBBsAfterVectorization[VF].insert(Pred);
4920 "Instruction marked uniform-after-vectorization will be predicated");
4938 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4957 for (
Use &U :
I->operands())
4970 while (!Worklist.
empty()) {
4974 if (ScalarCosts.contains(
I))
4997 ScalarCost +=
TTI.getScalarizationOverhead(
5010 for (Use &U :
I->operands())
5013 "Instruction has non-scalar type");
5014 if (CanBeScalarized(J))
5016 else if (needsExtract(J, VF)) {
5019 ScalarCost +=
TTI.getScalarizationOverhead(
5032 Discount += VectorCost - ScalarCost;
5033 ScalarCosts[
I] = ScalarCost;
5049 ValuesToIgnoreForVF);
5056 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5069 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5070 << VF <<
" For instruction: " <<
I <<
'\n');
5098 const Loop *TheLoop) {
5106 auto *SE = PSE.
getSE();
5107 unsigned NumOperands = Gep->getNumOperands();
5108 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5109 Value *Opd = Gep->getOperand(Idx);
5111 !
Legal->isInductionVariable(Opd))
5120LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5123 "Scalarization cost of instruction implies vectorization.");
5128 auto *SE =
PSE.getSE();
5153 Cost += getScalarizationOverhead(
I, VF);
5164 Cost +=
TTI.getScalarizationOverhead(
5169 if (useEmulatedMaskMemRefHack(
I, VF))
5179LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5185 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5187 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5188 "Stride should be 1 or -1 for consecutive memory access");
5191 if (
Legal->isMaskRequired(
I)) {
5192 Cost +=
TTI.getMaskedMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5196 Cost +=
TTI.getMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5200 bool Reverse = ConsecutiveStride < 0;
5208LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5218 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5219 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5226 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5232 TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5233 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind);
5234 if (!IsLoopInvariantStoreValue)
5235 Cost +=
TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5241LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5252 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5253 TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy,
Ptr,
5254 Legal->isMaskRequired(
I), Alignment,
5259LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5262 assert(Group &&
"Fail to get an interleaved access group.");
5269 unsigned InterleaveFactor = Group->getFactor();
5273 SmallVector<unsigned, 4> Indices;
5274 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5275 if (Group->getMember(IF))
5279 bool UseMaskForGaps =
5283 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5287 if (Group->isReverse()) {
5290 "Reverse masked interleaved access not supported.");
5291 Cost += Group->getNumMembers() *
5298std::optional<InstructionCost>
5305 return std::nullopt;
5323 return std::nullopt;
5334 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5336 return std::nullopt;
5342 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5351 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5354 BaseCost =
TTI.getArithmeticReductionCost(
5362 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5379 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5385 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5397 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5400 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5402 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5410 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5411 return I == RetI ? RedCost : 0;
5413 !
TheLoop->isLoopInvariant(RedOp)) {
5422 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5424 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5425 return I == RetI ? RedCost : 0;
5426 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5430 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5449 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5455 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5456 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5457 ExtraExtCost =
TTI.getCastInstrCost(
5464 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5465 return I == RetI ? RedCost : 0;
5469 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5475 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5476 return I == RetI ? RedCost : 0;
5480 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5484LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5495 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5496 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5503LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5520 Cost +=
TTI.getScalarizationOverhead(
5542 for (
auto *V : filterExtractingOperands(
Ops, VF))
5565 if (
Legal->isUniformMemOp(
I, VF)) {
5566 auto IsLegalToScalarize = [&]() {
5586 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5598 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5604 if (GatherScatterCost < ScalarizationCost)
5614 int ConsecutiveStride =
Legal->isConsecutivePtr(
5616 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5617 "Expected consecutive stride.");
5626 unsigned NumAccesses = 1;
5629 assert(Group &&
"Fail to get an interleaved access group.");
5635 NumAccesses = Group->getNumMembers();
5637 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5642 ? getGatherScatterCost(&
I, VF) * NumAccesses
5646 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5652 if (InterleaveCost <= GatherScatterCost &&
5653 InterleaveCost < ScalarizationCost) {
5655 Cost = InterleaveCost;
5656 }
else if (GatherScatterCost < ScalarizationCost) {
5658 Cost = GatherScatterCost;
5661 Cost = ScalarizationCost;
5678 if (
TTI.prefersVectorizedAddressing())
5687 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5695 while (!Worklist.
empty()) {
5697 for (
auto &
Op :
I->operands())
5699 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5700 AddrDefs.
insert(InstOp).second)
5704 for (
auto *
I : AddrDefs) {
5719 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5734 ForcedScalars[VF].insert(
I);
5741 "Trying to set a vectorization decision for a scalar VF");
5743 auto ForcedScalar = ForcedScalars.find(VF);
5758 for (
auto &ArgOp : CI->
args())
5767 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5777 "Unexpected valid cost for scalarizing scalable vectors");
5784 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5785 ForcedScalar->second.contains(CI)) ||
5793 bool MaskRequired =
Legal->isMaskRequired(CI);
5796 for (
Type *ScalarTy : ScalarTys)
5805 std::nullopt, *RedCost);
5816 if (Info.Shape.VF != VF)
5820 if (MaskRequired && !Info.isMasked())
5824 bool ParamsOk =
true;
5826 switch (Param.ParamKind) {
5832 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5869 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5880 if (VectorCost <=
Cost) {
5902 return !OpI || !
TheLoop->contains(OpI) ||
5906 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5918 return InstsToScalarize[VF][
I];
5921 auto ForcedScalar = ForcedScalars.find(VF);
5922 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5923 auto InstSet = ForcedScalar->second;
5924 if (InstSet.count(
I))
5929 Type *RetTy =
I->getType();
5932 auto *SE =
PSE.getSE();
5936 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5941 auto Scalarized = InstsToScalarize.find(VF);
5942 assert(Scalarized != InstsToScalarize.end() &&
5943 "VF not yet analyzed for scalarization profitability");
5944 return !Scalarized->second.count(
I) &&
5946 auto *UI = cast<Instruction>(U);
5947 return !Scalarized->second.count(UI);
5956 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5957 I->getOpcode() == Instruction::PHI ||
5958 (
I->getOpcode() == Instruction::BitCast &&
5959 I->getType()->isPointerTy()) ||
5960 HasSingleCopyAfterVectorization(
I, VF));
5966 !
TTI.getNumberOfParts(VectorTy))
5970 switch (
I->getOpcode()) {
5971 case Instruction::GetElementPtr:
5977 case Instruction::Br: {
5984 bool ScalarPredicatedBB =
false;
5987 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5988 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5990 ScalarPredicatedBB =
true;
5992 if (ScalarPredicatedBB) {
6000 TTI.getScalarizationOverhead(
6008 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6016 case Instruction::Switch: {
6018 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6020 return Switch->getNumCases() *
6021 TTI.getCmpSelInstrCost(
6023 toVectorTy(Switch->getCondition()->getType(), VF),
6027 case Instruction::PHI: {
6044 Type *ResultTy = Phi->getType();
6050 auto *Phi = dyn_cast<PHINode>(U);
6051 if (Phi && Phi->getParent() == TheLoop->getHeader())
6056 auto &ReductionVars =
Legal->getReductionVars();
6057 auto Iter = ReductionVars.find(HeaderUser);
6058 if (Iter != ReductionVars.end() &&
6060 Iter->second.getRecurrenceKind()))
6063 return (Phi->getNumIncomingValues() - 1) *
6064 TTI.getCmpSelInstrCost(
6065 Instruction::Select,
toVectorTy(ResultTy, VF),
6075 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6076 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6080 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6082 case Instruction::UDiv:
6083 case Instruction::SDiv:
6084 case Instruction::URem:
6085 case Instruction::SRem:
6089 ScalarCost : SafeDivisorCost;
6093 case Instruction::Add:
6094 case Instruction::Sub: {
6095 auto Info =
Legal->getHistogramInfo(
I);
6102 if (!RHS || RHS->getZExtValue() != 1)
6104 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6108 Type *ScalarTy =
I->getType();
6112 {PtrTy, ScalarTy, MaskTy});
6115 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6116 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6120 case Instruction::FAdd:
6121 case Instruction::FSub:
6122 case Instruction::Mul:
6123 case Instruction::FMul:
6124 case Instruction::FDiv:
6125 case Instruction::FRem:
6126 case Instruction::Shl:
6127 case Instruction::LShr:
6128 case Instruction::AShr:
6129 case Instruction::And:
6130 case Instruction::Or:
6131 case Instruction::Xor: {
6135 if (
I->getOpcode() == Instruction::Mul &&
6136 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6137 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6138 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6139 PSE.getSCEV(
I->getOperand(1))->isOne())))
6148 Value *Op2 =
I->getOperand(1);
6154 auto Op2Info =
TTI.getOperandInfo(Op2);
6160 return TTI.getArithmeticInstrCost(
6162 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6165 case Instruction::FNeg: {
6166 return TTI.getArithmeticInstrCost(
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6169 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6170 I->getOperand(0),
I);
6172 case Instruction::Select: {
6177 const Value *Op0, *Op1;
6188 return TTI.getArithmeticInstrCost(
6190 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6193 Type *CondTy =
SI->getCondition()->getType();
6199 Pred = Cmp->getPredicate();
6200 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6201 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6202 {TTI::OK_AnyValue, TTI::OP_None},
I);
6204 case Instruction::ICmp:
6205 case Instruction::FCmp: {
6206 Type *ValTy =
I->getOperand(0)->getType();
6212 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6213 "if both the operand and the compare are marked for "
6214 "truncation, they must have the same bitwidth");
6219 return TTI.getCmpSelInstrCost(
6222 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6224 case Instruction::Store:
6225 case Instruction::Load: {
6230 "CM decision should be taken at this point");
6237 return getMemoryInstructionCost(
I, VF);
6239 case Instruction::BitCast:
6240 if (
I->getType()->isPointerTy())
6243 case Instruction::ZExt:
6244 case Instruction::SExt:
6245 case Instruction::FPToUI:
6246 case Instruction::FPToSI:
6247 case Instruction::FPExt:
6248 case Instruction::PtrToInt:
6249 case Instruction::IntToPtr:
6250 case Instruction::SIToFP:
6251 case Instruction::UIToFP:
6252 case Instruction::Trunc:
6253 case Instruction::FPTrunc: {
6257 "Expected a load or a store!");
6283 unsigned Opcode =
I->getOpcode();
6286 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6289 CCH = ComputeCCH(Store);
6292 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6293 Opcode == Instruction::FPExt) {
6295 CCH = ComputeCCH(Load);
6303 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6304 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6311 Type *SrcScalarTy =
I->getOperand(0)->getType();
6323 (
I->getOpcode() == Instruction::ZExt ||
6324 I->getOpcode() == Instruction::SExt))
6328 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6330 case Instruction::Call:
6332 case Instruction::ExtractValue:
6334 case Instruction::Alloca:
6342 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6357 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6358 return RequiresScalarEpilogue &&
6371 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
6373 DeadInvariantStoreOps[
SI->getPointerOperand()].push_back(
6374 SI->getValueOperand());
6383 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6384 return VecValuesToIgnore.contains(U) ||
6385 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6394 if (Group->getInsertPos() == &
I)
6397 DeadInterleavePointerOps.
push_back(PointerOp);
6403 if (Br->isConditional())
6410 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6413 Instruction *UI = cast<Instruction>(U);
6414 return !VecValuesToIgnore.contains(U) &&
6415 (!isAccessInterleaved(UI) ||
6416 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6423 for (
const auto &[
_,
Ops] : DeadInvariantStoreOps)
6439 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6451 if ((ThenEmpty && ElseEmpty) ||
6453 ElseBB->
phis().empty()) ||
6455 ThenBB->
phis().empty())) {
6467 return !VecValuesToIgnore.contains(U) &&
6468 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6476 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6485 for (
const auto &Reduction :
Legal->getReductionVars()) {
6492 for (
const auto &Induction :
Legal->getInductionVars()) {
6501 if (!InLoopReductions.empty())
6504 for (
const auto &Reduction :
Legal->getReductionVars()) {
6505 PHINode *Phi = Reduction.first;
6516 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6524 bool InLoop = !ReductionOperations.
empty();
6527 InLoopReductions.insert(Phi);
6530 for (
auto *
I : ReductionOperations) {
6531 InLoopReductionImmediateChains[
I] = LastChain;
6535 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6536 <<
" reduction for phi: " << *Phi <<
"\n");
6549 unsigned WidestType;
6553 TTI.enableScalableVectorization()
6558 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6569 if (!OrigLoop->isInnermost()) {
6579 <<
"overriding computed VF.\n");
6582 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6584 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6585 <<
"not supported by the target.\n");
6587 "Scalable vectorization requested but not supported by the target",
6588 "the scalable user-specified vectorization width for outer-loop "
6589 "vectorization cannot be used because the target does not support "
6590 "scalable vectors.",
6591 "ScalableVFUnfeasible", ORE, OrigLoop);
6596 "VF needs to be a power of two");
6598 <<
"VF " << VF <<
" to build VPlans.\n");
6608 return {VF, 0 , 0 };
6612 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6613 "VPlan-native path.\n");
6618 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6619 CM.collectValuesToIgnore();
6620 CM.collectElementTypesForWidening();
6627 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6631 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6632 "which requires masked-interleaved support.\n");
6633 if (CM.InterleaveInfo.invalidateGroups())
6637 CM.invalidateCostModelingDecisions();
6640 if (CM.foldTailByMasking())
6641 Legal->prepareToFoldTailByMasking();
6648 "UserVF ignored because it may be larger than the maximal safe VF",
6649 "InvalidUserVF", ORE, OrigLoop);
6652 "VF needs to be a power of two");
6655 CM.collectInLoopReductions();
6656 if (CM.selectUserVectorizationFactor(UserVF)) {
6658 buildVPlansWithVPRecipes(UserVF, UserVF);
6663 "InvalidCost", ORE, OrigLoop);
6676 CM.collectInLoopReductions();
6677 for (
const auto &VF : VFCandidates) {
6679 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6698 return CM.isUniformAfterVectorization(
I, VF);
6702 return CM.ValuesToIgnore.contains(UI) ||
6703 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6723 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6727 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6728 for (
Value *
Op : IVInsts[
I]->operands()) {
6730 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
6736 for (User *U :
IV->users()) {
6749 if (TC == VF && !CM.foldTailByMasking())
6753 for (Instruction *IVInst : IVInsts) {
6758 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6759 <<
": induction instruction " << *IVInst <<
"\n";
6761 Cost += InductionCost;
6771 CM.TheLoop->getExitingBlocks(Exiting);
6772 SetVector<Instruction *> ExitInstrs;
6774 for (BasicBlock *EB : Exiting) {
6779 ExitInstrs.
insert(CondI);
6783 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6785 if (!OrigLoop->contains(CondI) ||
6790 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6791 <<
": exit condition instruction " << *CondI <<
"\n";
6797 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6798 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6799 !ExitInstrs.contains(cast<Instruction>(U));
6811 for (BasicBlock *BB : OrigLoop->blocks()) {
6815 if (BB == OrigLoop->getLoopLatch())
6817 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6824 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6830 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6831 <<
": forced scalar " << *ForcedScalar <<
"\n";
6835 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6840 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6841 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6851 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6859 <<
" (Estimated cost per lane: ");
6861 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6884 return &WidenMem->getIngredient();
6893 auto *IG =
IR->getInterleaveGroup();
6894 unsigned NumMembers = IG->getNumMembers();
6895 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6905 auto *VPI = dyn_cast<VPInstruction>(U);
6906 return VPI && VPI->getOpcode() ==
6907 VPInstruction::FirstOrderRecurrenceSplice;
6930 if (RepR->isSingleScalar() &&
6932 RepR->getUnderlyingInstr(), VF))
6935 if (
Instruction *UI = GetInstructionForCost(&R)) {
6940 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6952 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6954 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6957 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6958 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6960 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6970 VPlan &FirstPlan = *VPlans[0];
6976 ?
"Reciprocal Throughput\n"
6978 ?
"Instruction Latency\n"
6981 ?
"Code Size and Latency\n"
6986 "More than a single plan/VF w/o any plan having scalar VF");
6990 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
6995 if (ForceVectorization) {
7002 for (
auto &
P : VPlans) {
7004 P->vectorFactors().end());
7008 return CM.shouldConsiderRegPressureForVF(VF);
7012 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7019 <<
"LV: Not considering vector loop of width " << VF
7020 <<
" because it will not generate any vector instructions.\n");
7026 <<
"LV: Not considering vector loop of width " << VF
7027 <<
" because it would cause replicated blocks to be generated,"
7028 <<
" which isn't allowed when optimizing for size.\n");
7035 if (CM.shouldConsiderRegPressureForVF(VF) &&
7037 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7038 << VF <<
" because it uses too many registers\n");
7042 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7043 BestFactor = CurrentFactor;
7046 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7047 ProfitableVFs.push_back(CurrentFactor);
7063 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7064 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7071 BestFactor.
Width) ||
7074 " VPlan cost model and legacy cost model disagreed");
7076 "when vectorizing, the scalar cost must be computed.");
7086 "RdxResult must be ComputeFindIVResult");
7104 if (!EpiRedResult ||
7110 auto *EpiRedHeaderPhi =
7112 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7113 Value *MainResumeValue;
7117 "unexpected start recipe");
7118 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7120 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7122 [[maybe_unused]]
Value *StartV =
7123 EpiRedResult->getOperand(1)->getLiveInIRValue();
7126 "AnyOf expected to start with ICMP_NE");
7127 assert(Cmp->getOperand(1) == StartV &&
7128 "AnyOf expected to start by comparing main resume value to original "
7130 MainResumeValue = Cmp->getOperand(0);
7133 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7135 Value *Cmp, *OrigResumeV, *CmpOp;
7136 [[maybe_unused]]
bool IsExpectedPattern =
7137 match(MainResumeValue,
7143 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7144 MainResumeValue = OrigResumeV;
7159 "Trying to execute plan with unsupported VF");
7161 "Trying to execute plan with unsupported UF");
7163 ++LoopsEarlyExitVectorized;
7170 bool HasBranchWeights =
7172 if (HasBranchWeights) {
7173 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7175 BestVPlan, BestVF, VScale);
7180 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7202 BestVPlan, VectorPH, CM.foldTailByMasking(),
7203 CM.requiresScalarEpilogue(BestVF.
isVector()));
7214 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7215 "count during epilogue vectorization");
7219 OrigLoop->getParentLoop(),
7220 Legal->getWidestInductionType());
7222#ifdef EXPENSIVE_CHECKS
7223 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7234 "final VPlan is invalid");
7241 if (!Exit->hasPredecessors())
7270 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7272 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7274 HeaderVPBB, VectorizingEpilogue,
7276 DisableRuntimeUnroll);
7284 return ExpandedSCEVs;
7299 EPI.EpilogueIterationCountCheck =
7301 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7311 EPI.MainLoopIterationCountCheck =
7320 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7321 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7322 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7323 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7324 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7330 dbgs() <<
"intermediate fn:\n"
7331 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7337 assert(Bypass &&
"Expected valid bypass basic block.");
7341 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7342 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7346 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7372 return TCCheckBlock;
7386 VectorPH->
setName(
"vec.epilog.ph");
7389 "vec.epilog.iter.check",
true);
7393 VecEpilogueIterationCountCheck);
7394 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7398 assert(
EPI.MainLoopIterationCountCheck &&
EPI.EpilogueIterationCountCheck &&
7399 "expected this to be saved from the previous pass.");
7400 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7401 VecEpilogueIterationCountCheck, VectorPH);
7403 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7404 VecEpilogueIterationCountCheck, ScalarPH);
7411 VecEpilogueIterationCountCheck, ScalarPH);
7414 VecEpilogueIterationCountCheck, ScalarPH);
7416 DT->changeImmediateDominator(ScalarPH,
EPI.EpilogueIterationCountCheck);
7424 for (
PHINode *Phi : PhisInBlock) {
7426 Phi->replaceIncomingBlockWith(
7428 VecEpilogueIterationCountCheck);
7435 return EPI.EpilogueIterationCountCheck == IncB;
7438 Phi->removeIncomingValue(
EPI.EpilogueIterationCountCheck);
7440 Phi->removeIncomingValue(SCEVCheckBlock);
7442 Phi->removeIncomingValue(MemCheckBlock);
7453 "Expected trip count to have been saved in the first pass.");
7460 auto P =
Cost->requiresScalarEpilogue(
EPI.EpilogueVF.isVector())
7464 Value *CheckMinIters =
7467 EPI.EpilogueVF,
EPI.EpilogueUF),
7468 "min.epilog.iters.check");
7471 auto VScale =
Cost->getVScaleForTuning();
7472 unsigned MainLoopStep =
7474 unsigned EpilogueLoopStep =
7482 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7483 const uint32_t Weights[] = {EstimatedSkipCount,
7484 MainLoopStep - EstimatedSkipCount};
7493 Plan.setEntry(NewEntry);
7501 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7502 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7503 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7509 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7517 "Must be called with either a load or store");
7523 "CM decision should be taken at this point.");
7536 if (
Legal->isMaskRequired(
I))
7550 Ptr->getUnderlyingValue()->stripPointerCasts());
7562 -1, Flags,
I->getDebugLoc());
7565 GEP ?
GEP->getNoWrapFlags()
7569 Builder.insert(VectorPtr);
7573 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7574 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7577 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7578 Reverse, VPIRMetadata(*Store, LVer),
7591 "step must be loop invariant");
7598 TruncI->getDebugLoc());
7602 IndDesc, Phi->getDebugLoc());
7610 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7612 *PSE.getSE(), *OrigLoop);
7615 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7617 return new VPWidenPointerInductionRecipe(
7618 Phi,
Operands[0], Step, &Plan.getVFxUF(), *
II,
7620 [&](ElementCount VF) {
7621 return CM.isScalarAfterVectorization(Phi, VF);
7624 Phi->getDebugLoc());
7638 auto IsOptimizableIVTruncate =
7639 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7640 return [=](ElementCount VF) ->
bool {
7641 return CM.isOptimizableIVTruncate(K, VF);
7646 IsOptimizableIVTruncate(
I),
Range)) {
7649 const InductionDescriptor &
II = *Legal->getIntOrFpInductionDescriptor(Phi);
7650 VPValue *
Start = Plan.getOrAddLiveIn(
II.getStartValue());
7661 [
this, CI](ElementCount VF) {
7662 return CM.isScalarWithPredication(CI, VF);
7670 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7671 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7672 ID == Intrinsic::pseudoprobe ||
7673 ID == Intrinsic::experimental_noalias_scope_decl))
7679 bool ShouldUseVectorIntrinsic =
7681 [&](ElementCount VF) ->
bool {
7682 return CM.getCallWideningDecision(CI, VF).Kind ==
7686 if (ShouldUseVectorIntrinsic)
7687 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7691 std::optional<unsigned> MaskPos;
7695 [&](ElementCount VF) ->
bool {
7710 LoopVectorizationCostModel::CallWideningDecision Decision =
7711 CM.getCallWideningDecision(CI, VF);
7721 if (ShouldUseVectorCall) {
7722 if (MaskPos.has_value()) {
7730 VPValue *
Mask =
nullptr;
7731 if (Legal->isMaskRequired(CI))
7734 Mask = Plan.getOrAddLiveIn(
7737 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7741 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7749 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7752 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7753 return CM.isScalarAfterVectorization(
I, VF) ||
7754 CM.isProfitableToScalarize(
I, VF) ||
7755 CM.isScalarWithPredication(
I, VF);
7763 switch (
I->getOpcode()) {
7766 case Instruction::SDiv:
7767 case Instruction::UDiv:
7768 case Instruction::SRem:
7769 case Instruction::URem: {
7772 if (CM.isPredicatedInst(
I)) {
7776 Plan.getOrAddLiveIn(ConstantInt::get(
I->getType(), 1u,
false));
7777 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7779 return new VPWidenRecipe(*
I,
Ops);
7783 case Instruction::Add:
7784 case Instruction::And:
7785 case Instruction::AShr:
7786 case Instruction::FAdd:
7787 case Instruction::FCmp:
7788 case Instruction::FDiv:
7789 case Instruction::FMul:
7790 case Instruction::FNeg:
7791 case Instruction::FRem:
7792 case Instruction::FSub:
7793 case Instruction::ICmp:
7794 case Instruction::LShr:
7795 case Instruction::Mul:
7796 case Instruction::Or:
7797 case Instruction::Select:
7798 case Instruction::Shl:
7799 case Instruction::Sub:
7800 case Instruction::Xor:
7801 case Instruction::Freeze: {
7807 ScalarEvolution &SE = *PSE.getSE();
7808 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7809 if (!
Op->isLiveIn())
7811 Value *
V =
Op->getUnderlyingValue();
7817 return Plan.getOrAddLiveIn(
C->getValue());
7820 if (
I->getOpcode() == Instruction::Mul)
7821 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7823 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7825 return new VPWidenRecipe(*
I, NewOps);
7827 case Instruction::ExtractValue: {
7831 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7832 unsigned Idx = EVI->getIndices()[0];
7833 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7834 return new VPWidenRecipe(*
I, NewOps);
7840VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7843 unsigned Opcode =
HI->Update->getOpcode();
7844 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7845 "Histogram update operation must be an Add or Sub");
7855 if (Legal->isMaskRequired(
HI->Store))
7858 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7865 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7868 bool IsPredicated = CM.isPredicatedInst(
I);
7876 case Intrinsic::assume:
7877 case Intrinsic::lifetime_start:
7878 case Intrinsic::lifetime_end:
7900 VPValue *BlockInMask =
nullptr;
7901 if (!IsPredicated) {
7905 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7916 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7918 "Should not predicate a uniform recipe");
7929 PartialReductionChains;
7930 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7931 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7932 PartialReductionChains);
7941 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7942 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7944 auto ExtendIsOnlyUsedByPartialReductions =
7946 return all_of(Extend->users(), [&](
const User *U) {
7947 return PartialReductionOps.contains(U);
7953 for (
auto Pair : PartialReductionChains) {
7955 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7956 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7957 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7961bool VPRecipeBuilder::getScaledReductions(
7963 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7971 Value *
Op = Update->getOperand(0);
7972 Value *PhiOp = Update->getOperand(1);
7980 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7981 PHI = Chains.rbegin()->first.Reduction;
7983 Op = Update->getOperand(0);
7984 PhiOp = Update->getOperand(1);
7992 using namespace llvm::PatternMatch;
7999 std::optional<unsigned> BinOpc;
8000 Type *ExtOpTypes[2] = {
nullptr};
8002 auto CollectExtInfo = [
this, &Exts,
8003 &ExtOpTypes](SmallVectorImpl<Value *> &
Ops) ->
bool {
8012 if (!CM.TheLoop->contains(Exts[
I]))
8030 if (!CollectExtInfo(
Ops))
8033 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8037 if (!CollectExtInfo(
Ops))
8040 ExtendUser = Update;
8041 BinOpc = std::nullopt;
8049 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8051 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8058 [&](ElementCount VF) {
8060 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8061 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8065 Chains.emplace_back(Chain, TargetScaleFactor);
8084 "Non-header phis should have been handled during predication");
8086 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8087 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8091 assert((Legal->isReductionVariable(Phi) ||
8092 Legal->isFixedOrderRecurrence(Phi)) &&
8093 "can only widen reductions and fixed-order recurrences here");
8095 if (Legal->isReductionVariable(Phi)) {
8098 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8101 unsigned ScaleFactor =
8105 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8117 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8119 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8132 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8133 return tryToWidenHistogram(*HistInfo,
Operands);
8141 if (!shouldWiden(Instr,
Range))
8156 return tryToWiden(Instr,
Operands);
8162 unsigned ScaleFactor) {
8164 "Unexpected number of operands for partial reduction");
8173 unsigned ReductionOpcode = Reduction->getOpcode();
8174 if (ReductionOpcode == Instruction::Sub) {
8175 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8177 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8178 Ops.push_back(BinOp);
8181 ReductionOpcode = Instruction::Add;
8185 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8186 assert((ReductionOpcode == Instruction::Add ||
8187 ReductionOpcode == Instruction::Sub) &&
8188 "Expected an ADD or SUB operation for predicated partial "
8189 "reductions (because the neutral element in the mask is zero)!");
8192 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8193 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8196 ScaleFactor, Reduction);
8199void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8208 OrigLoop, LI, DT, PSE.
getSE());
8213 LVer.prepareNoAliasMetadata();
8219 OrigLoop, *LI,
Legal->getWidestInductionType(),
8222 auto MaxVFTimes2 = MaxVF * 2;
8224 VFRange SubRange = {VF, MaxVFTimes2};
8225 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8226 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8231 *Plan, CM.getMinimalBitwidths());
8234 if (CM.foldTailWithEVL() && !HasScalarVF)
8236 *Plan, CM.getMaxSafeElements());
8238 VPlans.push_back(std::move(Plan));
8253 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8260 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8263 Start, VectorTC, Step);
8276 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8277 return ResumePhiRecipe;
8292 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8303 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8306 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8307 ScalarPhiIRI->addOperand(ResumePhi);
8314 "should only skip truncated wide inductions");
8322 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8324 "Cannot handle loops with uncountable early exits");
8328 "vector.recur.extract");
8329 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8331 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8344 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8345 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8357 "Cannot handle loops with uncountable early exits");
8429 for (
VPUser *U : FOR->users()) {
8443 {},
"vector.recur.extract.for.phi");
8449VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8452 using namespace llvm::VPlanPatternMatch;
8453 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8460 bool RequiresScalarEpilogueCheck =
8462 [
this](ElementCount VF) {
8463 return !CM.requiresScalarEpilogue(VF.
isVector());
8468 CM.foldTailByMasking());
8476 bool IVUpdateMayOverflow =
false;
8477 for (ElementCount VF :
Range)
8487 auto *IVInc = Plan->getVectorLoopRegion()
8488 ->getExitingBasicBlock()
8491 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8493 "Did not find the canonical IV increment");
8506 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8507 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8509 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8514 "Unsupported interleave factor for scalable vectors");
8519 InterleaveGroups.
insert(IG);
8526 *Plan, CM.foldTailByMasking());
8532 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8533 Builder, BlockMaskCache, LVer);
8534 RecipeBuilder.collectScaledReductions(
Range);
8538 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8540 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8543 auto *MiddleVPBB = Plan->getMiddleBlock();
8547 DenseMap<VPValue *, VPValue *> Old2New;
8552 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8566 UnderlyingValue &&
"unsupported recipe");
8571 Builder.setInsertPoint(SingleDef);
8578 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8580 if (Legal->isInvariantStoreOfReduction(SI)) {
8582 new VPReplicateRecipe(SI,
R.operands(),
true ,
8583 nullptr , VPIRMetadata(*SI, LVer));
8584 Recipe->insertBefore(*MiddleVPBB, MBIP);
8586 R.eraseFromParent();
8590 VPRecipeBase *Recipe =
8591 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8593 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8595 RecipeBuilder.setRecipe(Instr, Recipe);
8601 Builder.insert(Recipe);
8608 "Unexpected multidef recipe");
8609 R.eraseFromParent();
8618 RecipeBuilder.updateBlockMaskCache(Old2New);
8619 for (VPValue *Old : Old2New.
keys())
8620 Old->getDefiningRecipe()->eraseFromParent();
8623 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8624 "entry block must be set to a VPRegionBlock having a non-empty entry "
8630 for (
const auto &[Phi,
ID] : Legal->getInductionVars()) {
8632 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8635 VPWidenInductionRecipe *WideIV =
8637 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8642 DenseMap<VPValue *, VPValue *> IVEndValues;
8651 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8663 if (!CM.foldTailWithEVL()) {
8664 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8669 for (ElementCount VF :
Range)
8671 Plan->setName(
"Initial VPlan");
8677 InterleaveGroups, RecipeBuilder,
8678 CM.isScalarEpilogueAllowed());
8682 Legal->getLAI()->getSymbolicStrides());
8684 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8685 return Legal->blockNeedsPredication(BB);
8688 BlockNeedsPredication);
8700 bool WithoutRuntimeCheck =
8703 WithoutRuntimeCheck);
8716 assert(!OrigLoop->isInnermost());
8720 OrigLoop, *LI, Legal->getWidestInductionType(),
8729 for (ElementCount VF :
Range)
8734 [
this](PHINode *
P) {
8735 return Legal->getIntOrFpInductionDescriptor(
P);
8742 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8743 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8744 Builder, BlockMaskCache,
nullptr );
8745 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8749 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8751 DenseMap<VPValue *, VPValue *> IVEndValues;
8773void LoopVectorizationPlanner::adjustRecipesForReductions(
8775 using namespace VPlanPatternMatch;
8776 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8778 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8781 for (VPRecipeBase &R : Header->phis()) {
8783 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8790 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8793 SetVector<VPSingleDefRecipe *> Worklist;
8795 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8796 VPSingleDefRecipe *Cur = Worklist[
I];
8797 for (VPUser *U : Cur->
users()) {
8799 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8800 assert((UserRecipe->getParent() == MiddleVPBB ||
8801 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8802 "U must be either in the loop region, the middle block or the "
8803 "scalar preheader.");
8806 Worklist.
insert(UserRecipe);
8817 VPSingleDefRecipe *PreviousLink = PhiR;
8818 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8820 assert(Blend->getNumIncomingValues() == 2 &&
8821 "Blend must have 2 incoming values");
8822 if (Blend->getIncomingValue(0) == PhiR) {
8823 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8825 assert(Blend->getIncomingValue(1) == PhiR &&
8826 "PhiR must be an operand of the blend");
8827 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8832 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8835 unsigned IndexOfFirstOperand;
8839 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8843 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8846 CurrentLink->getOperand(2) == PreviousLink &&
8847 "expected a call where the previous link is the added operand");
8853 VPInstruction *FMulRecipe =
new VPInstruction(
8855 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8857 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8860 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8861 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8862 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8863 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8864 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8866 Sub->setUnderlyingValue(CurrentLinkI);
8867 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8873 "need to have the compare of the select");
8877 "must be a select recipe");
8878 IndexOfFirstOperand = 1;
8881 "Expected to replace a VPWidenSC");
8882 IndexOfFirstOperand = 0;
8887 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8888 ? IndexOfFirstOperand + 1
8889 : IndexOfFirstOperand;
8890 VecOp = CurrentLink->getOperand(VecOpId);
8891 assert(VecOp != PreviousLink &&
8892 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8893 (VecOpId - IndexOfFirstOperand)) ==
8895 "PreviousLink must be the operand other than VecOp");
8898 VPValue *CondOp =
nullptr;
8899 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8903 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8909 auto *RedRecipe =
new VPReductionRecipe(
8910 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8917 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8921 CurrentLink->replaceAllUsesWith(RedRecipe);
8923 PreviousLink = RedRecipe;
8927 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8929 for (VPRecipeBase &R :
8930 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8935 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8946 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8949 std::optional<FastMathFlags> FMFs =
8954 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8955 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8964 if (CM.usePredicatedReductionSelect())
8975 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8981 VPInstruction *FinalReductionResult;
8982 VPBuilder::InsertPointGuard Guard(Builder);
8983 Builder.setInsertPoint(MiddleVPBB, IP);
8988 FinalReductionResult =
8993 FinalReductionResult =
8995 {PhiR,
Start, NewExitingVPV}, ExitDL);
9001 FinalReductionResult =
9003 {PhiR, NewExitingVPV},
Flags, ExitDL);
9010 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9012 "Unexpected truncated min-max recurrence!");
9015 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9017 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9018 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
9019 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9020 Extnd->insertAfter(Trunc);
9022 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9027 FinalReductionResult =
9028 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9033 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9035 if (FinalReductionResult == U || Parent->getParent())
9037 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9048 return isa<VPWidenSelectRecipe>(U) ||
9049 (isa<VPReplicateRecipe>(U) &&
9050 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9051 Instruction::Select);
9056 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9058 Builder.setInsertPoint(
Select);
9062 if (
Select->getOperand(1) == PhiR)
9063 Cmp = Builder.createNot(Cmp);
9064 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9065 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9071 OrigLoop->getHeader()->getContext())));
9086 VPBuilder PHBuilder(Plan->getVectorPreheader());
9087 VPValue *Iden = Plan->getOrAddLiveIn(
9090 unsigned ScaleFactor =
9094 auto *ScaleFactorVPV =
9095 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9096 VPValue *StartV = PHBuilder.createNaryOp(
9104 for (VPRecipeBase *R : ToDelete)
9105 R->eraseFromParent();
9110void LoopVectorizationPlanner::attachRuntimeChecks(
9111 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9112 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9113 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9114 assert((!CM.OptForSize ||
9116 "Cannot SCEV check stride or overflow when optimizing for size");
9120 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9121 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9125 "Runtime checks are not supported for outer loops yet");
9127 if (CM.OptForSize) {
9130 "Cannot emit memory checks when optimizing for size, unless forced "
9133 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9134 OrigLoop->getStartLoc(),
9135 OrigLoop->getHeader())
9136 <<
"Code-size may be reduced by not forcing "
9137 "vectorization, or by source-code modifications "
9138 "eliminating the need for runtime checks "
9139 "(e.g., adding 'restrict').";
9153 bool IsIndvarOverflowCheckNeededForVF =
9154 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9156 CM.getTailFoldingStyle() !=
9163 Plan, VF, UF, MinProfitableTripCount,
9164 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9165 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9166 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9171 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9176 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9184 State.set(
this, DerivedIV,
VPLane(0));
9230 if (
TTI->preferPredicateOverEpilogue(&TFI))
9249 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9253 Function *
F = L->getHeader()->getParent();
9259 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9260 &Hints, IAI, PSI, BFI);
9264 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9284 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9286 BFI, PSI, Checks, BestPlan);
9288 << L->getHeader()->getParent()->getName() <<
"\"\n");
9310 if (S->getValueOperand()->getType()->isFloatTy())
9320 while (!Worklist.
empty()) {
9322 if (!L->contains(
I))
9324 if (!Visited.
insert(
I).second)
9334 I->getDebugLoc(), L->getHeader())
9335 <<
"floating point conversion changes vector width. "
9336 <<
"Mixed floating point precision requires an up/down "
9337 <<
"cast that will negatively impact performance.";
9340 for (
Use &
Op :
I->operands())
9356 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9362 << PredVPBB->getName() <<
":\n");
9363 Cost += PredVPBB->cost(VF, CostCtx);
9382 std::optional<unsigned> VScale) {
9398 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9457 uint64_t MinTC = std::max(MinTC1, MinTC2);
9459 MinTC =
alignTo(MinTC, IntVF);
9463 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9470 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9471 "trip count < minimum profitable VF ("
9482 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9484 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9505 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9524 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9525 bool UpdateResumePhis) {
9531 VPValue *OrigStart = VPI->getOperand(1);
9535 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9537 if (UpdateResumePhis)
9543 AddFreezeForFindLastIVReductions(MainPlan,
true);
9544 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9551 auto ResumePhiIter =
9553 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9556 VPPhi *ResumePhi =
nullptr;
9557 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9561 "vec.epilog.resume.val");
9564 if (MainScalarPH->
begin() == MainScalarPH->
end())
9566 else if (&*MainScalarPH->
begin() != ResumePhi)
9578 const SCEV2ValueTy &ExpandedSCEVs,
9582 Header->
setName(
"vec.epilog.vector.body");
9596 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9601 "Must only have a single non-zero incoming value");
9613 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9614 "all incoming values must be 0");
9620 return isa<VPScalarIVStepsRecipe>(U) ||
9621 isa<VPDerivedIVRecipe>(U) ||
9622 cast<VPRecipeBase>(U)->isScalarCast() ||
9623 cast<VPInstruction>(U)->getOpcode() ==
9626 "the canonical IV should only be used by its increment or "
9627 "ScalarIVSteps when resetting the start value");
9628 IV->setOperand(0, VPV);
9632 Value *ResumeV =
nullptr;
9637 auto *VPI = dyn_cast<VPInstruction>(U);
9639 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9640 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9641 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9644 ->getIncomingValueForBlock(L->getLoopPreheader());
9645 RecurKind RK = ReductionPhi->getRecurrenceKind();
9653 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9656 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9667 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9668 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9669 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9675 "unexpected start value");
9676 VPI->setOperand(0, StartVal);
9688 assert(ResumeV &&
"Must have a resume value");
9702 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9704 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9719 ExpandR->eraseFromParent();
9729 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9734 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9735 if (OrigPhi != OldInduction) {
9736 auto *BinOp =
II.getInductionBinOp();
9742 EndValueFromAdditionalBypass =
9744 II.getStartValue(), Step,
II.getKind(), BinOp);
9745 EndValueFromAdditionalBypass->
setName(
"ind.end");
9747 return EndValueFromAdditionalBypass;
9753 const SCEV2ValueTy &ExpandedSCEVs,
9754 Value *MainVectorTripCount) {
9759 if (Phi.getBasicBlockIndex(Pred) != -1)
9761 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9765 if (ScalarPH->hasPredecessors()) {
9768 for (
const auto &[R, IRPhi] :
9769 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9778 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9780 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9783 Inc->setIncomingValueForBlock(BypassBlock, V);
9789 "VPlan-native path is not enabled. Only process inner loops.");
9792 << L->getHeader()->getParent()->getName() <<
"' from "
9793 << L->getLocStr() <<
"\n");
9798 dbgs() <<
"LV: Loop hints:"
9809 Function *
F = L->getHeader()->getParent();
9831 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9838 "early exit is not enabled",
9839 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9845 "faulting load is not supported",
9846 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9855 if (!L->isInnermost())
9859 assert(L->isInnermost() &&
"Inner loop expected.");
9862 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9876 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9878 "requiring a scalar epilogue is unsupported",
9879 "UncountableEarlyExitUnsupported",
ORE, L);
9892 if (ExpectedTC && ExpectedTC->isFixed() &&
9894 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9895 <<
"This loop is worth vectorizing only if no scalar "
9896 <<
"iteration overheads are incurred.");
9898 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9914 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9916 "Can't vectorize when the NoImplicitFloat attribute is used",
9917 "loop not vectorized due to NoImplicitFloat attribute",
9918 "NoImplicitFloat",
ORE, L);
9928 TTI->isFPVectorizationPotentiallyUnsafe()) {
9930 "Potentially unsafe FP op prevents vectorization",
9931 "loop not vectorized due to unsafe FP support.",
9932 "UnsafeFP",
ORE, L);
9937 bool AllowOrderedReductions;
9942 AllowOrderedReductions =
TTI->enableOrderedReductions();
9947 ExactFPMathInst->getDebugLoc(),
9948 ExactFPMathInst->getParent())
9949 <<
"loop not vectorized: cannot prove it is safe to reorder "
9950 "floating-point operations";
9952 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9953 "reorder floating-point operations\n");
9959 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9962 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9970 LVP.
plan(UserVF, UserIC);
9977 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9982 unsigned SelectedIC = std::max(IC, UserIC);
9991 if (Checks.getSCEVChecks().first &&
9992 match(Checks.getSCEVChecks().first,
m_One()))
9994 if (Checks.getMemRuntimeChecks().first &&
9995 match(Checks.getMemRuntimeChecks().first,
m_One()))
10000 bool ForceVectorization =
10004 if (!ForceVectorization &&
10010 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10012 <<
"loop not vectorized: cannot prove it is safe to reorder "
10013 "memory operations";
10022 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10023 bool VectorizeLoop =
true, InterleaveLoop =
true;
10025 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10027 "VectorizationNotBeneficial",
10028 "the cost-model indicates that vectorization is not beneficial"};
10029 VectorizeLoop =
false;
10035 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10036 "interleaving should be avoided up front\n");
10037 IntDiagMsg = {
"InterleavingAvoided",
10038 "Ignoring UserIC, because interleaving was avoided up front"};
10039 InterleaveLoop =
false;
10040 }
else if (IC == 1 && UserIC <= 1) {
10044 "InterleavingNotBeneficial",
10045 "the cost-model indicates that interleaving is not beneficial"};
10046 InterleaveLoop =
false;
10048 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10049 IntDiagMsg.second +=
10050 " and is explicitly disabled or interleave count is set to 1";
10052 }
else if (IC > 1 && UserIC == 1) {
10054 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10056 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10057 "the cost-model indicates that interleaving is beneficial "
10058 "but is explicitly disabled or interleave count is set to 1"};
10059 InterleaveLoop =
false;
10065 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10066 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10067 <<
"to histogram operations.\n");
10069 "HistogramPreventsScalarInterleaving",
10070 "Unable to interleave without vectorization due to constraints on "
10071 "the order of histogram operations"};
10072 InterleaveLoop =
false;
10076 IC = UserIC > 0 ? UserIC : IC;
10080 if (!VectorizeLoop && !InterleaveLoop) {
10084 L->getStartLoc(), L->getHeader())
10085 << VecDiagMsg.second;
10089 L->getStartLoc(), L->getHeader())
10090 << IntDiagMsg.second;
10095 if (!VectorizeLoop && InterleaveLoop) {
10099 L->getStartLoc(), L->getHeader())
10100 << VecDiagMsg.second;
10102 }
else if (VectorizeLoop && !InterleaveLoop) {
10104 <<
") in " << L->getLocStr() <<
'\n');
10107 L->getStartLoc(), L->getHeader())
10108 << IntDiagMsg.second;
10110 }
else if (VectorizeLoop && InterleaveLoop) {
10112 <<
") in " << L->getLocStr() <<
'\n');
10118 using namespace ore;
10123 <<
"interleaved loop (interleaved count: "
10124 << NV(
"InterleaveCount", IC) <<
")";
10141 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10152 PSI, Checks, *BestMainPlan);
10154 *BestMainPlan, MainILV,
DT,
false);
10160 BFI,
PSI, Checks, BestEpiPlan);
10168 BestEpiPlan, LVL, ExpandedSCEVs,
10170 ++LoopsEpilogueVectorized;
10172 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10186 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10187 "DT not preserved correctly");
10202 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10206 bool Changed =
false, CFGChanged =
false;
10213 for (
const auto &L : *
LI)
10225 LoopsAnalyzed += Worklist.
size();
10228 while (!Worklist.
empty()) {
10271 if (
PSI &&
PSI->hasProfileSummary())
10274 if (!Result.MadeAnyChange)
10288 if (Result.MadeCFGChange) {
10304 OS, MapClassName2PassName);
10307 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10308 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, bool VectorizingEpilogue, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
iterator_range< op_iterator > op_range
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks