LLVM 21.0.0git
RISCVInstrInfo.cpp
Go to the documentation of this file.
1//===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the RISC-V implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RISCVInstrInfo.h"
16#include "RISCV.h"
18#include "RISCVSubtarget.h"
19#include "llvm/ADT/STLExtras.h"
32#include "llvm/IR/Module.h"
36
37using namespace llvm;
38
39#define GEN_CHECK_COMPRESS_INSTR
40#include "RISCVGenCompressInstEmitter.inc"
41
42#define GET_INSTRINFO_CTOR_DTOR
43#define GET_INSTRINFO_NAMED_OPS
44#include "RISCVGenInstrInfo.inc"
45
47 "riscv-prefer-whole-register-move", cl::init(false), cl::Hidden,
48 cl::desc("Prefer whole register move for vector registers."));
49
51 "riscv-force-machine-combiner-strategy", cl::Hidden,
52 cl::desc("Force machine combiner to use a specific strategy for machine "
53 "trace metrics evaluation."),
54 cl::init(MachineTraceStrategy::TS_NumStrategies),
55 cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local",
56 "Local strategy."),
57 clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr",
58 "MinInstrCount strategy.")));
59
61
62using namespace RISCV;
63
64#define GET_RISCVVPseudosTable_IMPL
65#include "RISCVGenSearchableTables.inc"
66
67} // namespace llvm::RISCVVPseudosTable
68
69namespace llvm::RISCV {
70
71#define GET_RISCVMaskedPseudosTable_IMPL
72#include "RISCVGenSearchableTables.inc"
73
74} // end namespace llvm::RISCV
75
77 : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
78 STI(STI) {}
79
81 if (STI.hasStdExtCOrZca())
82 return MCInstBuilder(RISCV::C_NOP);
83 return MCInstBuilder(RISCV::ADDI)
84 .addReg(RISCV::X0)
85 .addReg(RISCV::X0)
86 .addImm(0);
87}
88
90 int &FrameIndex) const {
91 unsigned Dummy;
92 return isLoadFromStackSlot(MI, FrameIndex, Dummy);
93}
94
96 int &FrameIndex,
97 unsigned &MemBytes) const {
98 switch (MI.getOpcode()) {
99 default:
100 return 0;
101 case RISCV::LB:
102 case RISCV::LBU:
103 MemBytes = 1;
104 break;
105 case RISCV::LH:
106 case RISCV::LH_INX:
107 case RISCV::LHU:
108 case RISCV::FLH:
109 MemBytes = 2;
110 break;
111 case RISCV::LW:
112 case RISCV::LW_INX:
113 case RISCV::FLW:
114 case RISCV::LWU:
115 MemBytes = 4;
116 break;
117 case RISCV::LD:
118 case RISCV::FLD:
119 MemBytes = 8;
120 break;
121 }
122
123 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
124 MI.getOperand(2).getImm() == 0) {
125 FrameIndex = MI.getOperand(1).getIndex();
126 return MI.getOperand(0).getReg();
127 }
128
129 return 0;
130}
131
133 int &FrameIndex) const {
134 unsigned Dummy;
135 return isStoreToStackSlot(MI, FrameIndex, Dummy);
136}
137
139 int &FrameIndex,
140 unsigned &MemBytes) const {
141 switch (MI.getOpcode()) {
142 default:
143 return 0;
144 case RISCV::SB:
145 MemBytes = 1;
146 break;
147 case RISCV::SH:
148 case RISCV::SH_INX:
149 case RISCV::FSH:
150 MemBytes = 2;
151 break;
152 case RISCV::SW:
153 case RISCV::SW_INX:
154 case RISCV::FSW:
155 MemBytes = 4;
156 break;
157 case RISCV::SD:
158 case RISCV::FSD:
159 MemBytes = 8;
160 break;
161 }
162
163 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
164 MI.getOperand(2).getImm() == 0) {
165 FrameIndex = MI.getOperand(1).getIndex();
166 return MI.getOperand(0).getReg();
167 }
168
169 return 0;
170}
171
173 const MachineInstr &MI) const {
174 switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
175 case RISCV::VMV_V_X:
176 case RISCV::VFMV_V_F:
177 case RISCV::VMV_V_I:
178 case RISCV::VMV_S_X:
179 case RISCV::VFMV_S_F:
180 case RISCV::VID_V:
181 return MI.getOperand(1).isUndef();
182 default:
184 }
185}
186
187static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
188 unsigned NumRegs) {
189 return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs;
190}
191
193 const MachineBasicBlock &MBB,
196 RISCVII::VLMUL LMul) {
198 return false;
199
200 assert(MBBI->getOpcode() == TargetOpcode::COPY &&
201 "Unexpected COPY instruction.");
202 Register SrcReg = MBBI->getOperand(1).getReg();
204
205 bool FoundDef = false;
206 bool FirstVSetVLI = false;
207 unsigned FirstSEW = 0;
208 while (MBBI != MBB.begin()) {
209 --MBBI;
210 if (MBBI->isMetaInstruction())
211 continue;
212
213 if (MBBI->getOpcode() == RISCV::PseudoVSETVLI ||
214 MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 ||
215 MBBI->getOpcode() == RISCV::PseudoVSETIVLI) {
216 // There is a vsetvli between COPY and source define instruction.
217 // vy = def_vop ... (producing instruction)
218 // ...
219 // vsetvli
220 // ...
221 // vx = COPY vy
222 if (!FoundDef) {
223 if (!FirstVSetVLI) {
224 FirstVSetVLI = true;
225 unsigned FirstVType = MBBI->getOperand(2).getImm();
226 RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType);
227 FirstSEW = RISCVVType::getSEW(FirstVType);
228 // The first encountered vsetvli must have the same lmul as the
229 // register class of COPY.
230 if (FirstLMul != LMul)
231 return false;
232 }
233 // Only permit `vsetvli x0, x0, vtype` between COPY and the source
234 // define instruction.
235 if (MBBI->getOperand(0).getReg() != RISCV::X0)
236 return false;
237 if (MBBI->getOperand(1).isImm())
238 return false;
239 if (MBBI->getOperand(1).getReg() != RISCV::X0)
240 return false;
241 continue;
242 }
243
244 // MBBI is the first vsetvli before the producing instruction.
245 unsigned VType = MBBI->getOperand(2).getImm();
246 // If there is a vsetvli between COPY and the producing instruction.
247 if (FirstVSetVLI) {
248 // If SEW is different, return false.
249 if (RISCVVType::getSEW(VType) != FirstSEW)
250 return false;
251 }
252
253 // If the vsetvli is tail undisturbed, keep the whole register move.
254 if (!RISCVVType::isTailAgnostic(VType))
255 return false;
256
257 // The checking is conservative. We only have register classes for
258 // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v
259 // for fractional LMUL operations. However, we could not use the vsetvli
260 // lmul for widening operations. The result of widening operation is
261 // 2 x LMUL.
262 return LMul == RISCVVType::getVLMUL(VType);
263 } else if (MBBI->isInlineAsm() || MBBI->isCall()) {
264 return false;
265 } else if (MBBI->getNumDefs()) {
266 // Check all the instructions which will change VL.
267 // For example, vleff has implicit def VL.
268 if (MBBI->modifiesRegister(RISCV::VL, /*TRI=*/nullptr))
269 return false;
270
271 // Only converting whole register copies to vmv.v.v when the defining
272 // value appears in the explicit operands.
273 for (const MachineOperand &MO : MBBI->explicit_operands()) {
274 if (!MO.isReg() || !MO.isDef())
275 continue;
276 if (!FoundDef && TRI->regsOverlap(MO.getReg(), SrcReg)) {
277 // We only permit the source of COPY has the same LMUL as the defined
278 // operand.
279 // There are cases we need to keep the whole register copy if the LMUL
280 // is different.
281 // For example,
282 // $x0 = PseudoVSETIVLI 4, 73 // vsetivli zero, 4, e16,m2,ta,m
283 // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2
284 // # The COPY may be created by vlmul_trunc intrinsic.
285 // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4
286 //
287 // After widening, the valid value will be 4 x e32 elements. If we
288 // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements.
289 // FIXME: The COPY of subregister of Zvlsseg register will not be able
290 // to convert to vmv.v.[v|i] under the constraint.
291 if (MO.getReg() != SrcReg)
292 return false;
293
294 // In widening reduction instructions with LMUL_1 input vector case,
295 // only checking the LMUL is insufficient due to reduction result is
296 // always LMUL_1.
297 // For example,
298 // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu
299 // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27
300 // $v26 = COPY killed renamable $v8
301 // After widening, The valid value will be 1 x e16 elements. If we
302 // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements.
303 uint64_t TSFlags = MBBI->getDesc().TSFlags;
305 return false;
306
307 // If the producing instruction does not depend on vsetvli, do not
308 // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD.
309 if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags))
310 return false;
311
312 // Found the definition.
313 FoundDef = true;
314 DefMBBI = MBBI;
315 break;
316 }
317 }
318 }
319 }
320
321 return false;
322}
323
326 const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc,
327 const TargetRegisterClass *RegClass) const {
329 RISCVII::VLMUL LMul = RISCVRI::getLMul(RegClass->TSFlags);
330 unsigned NF = RISCVRI::getNF(RegClass->TSFlags);
331
332 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
333 uint16_t DstEncoding = TRI->getEncodingValue(DstReg);
334 auto [LMulVal, Fractional] = RISCVVType::decodeVLMUL(LMul);
335 assert(!Fractional && "It is impossible be fractional lmul here.");
336 unsigned NumRegs = NF * LMulVal;
337 bool ReversedCopy =
338 forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NumRegs);
339 if (ReversedCopy) {
340 // If the src and dest overlap when copying a tuple, we need to copy the
341 // registers in reverse.
342 SrcEncoding += NumRegs - 1;
343 DstEncoding += NumRegs - 1;
344 }
345
346 unsigned I = 0;
347 auto GetCopyInfo = [&](uint16_t SrcEncoding, uint16_t DstEncoding)
348 -> std::tuple<RISCVII::VLMUL, const TargetRegisterClass &, unsigned,
349 unsigned, unsigned> {
350 if (ReversedCopy) {
351 // For reversed copying, if there are enough aligned registers(8/4/2), we
352 // can do a larger copy(LMUL8/4/2).
353 // Besides, we have already known that DstEncoding is larger than
354 // SrcEncoding in forwardCopyWillClobberTuple, so the difference between
355 // DstEncoding and SrcEncoding should be >= LMUL value we try to use to
356 // avoid clobbering.
357 uint16_t Diff = DstEncoding - SrcEncoding;
358 if (I + 8 <= NumRegs && Diff >= 8 && SrcEncoding % 8 == 7 &&
359 DstEncoding % 8 == 7)
360 return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
361 RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
362 if (I + 4 <= NumRegs && Diff >= 4 && SrcEncoding % 4 == 3 &&
363 DstEncoding % 4 == 3)
364 return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
365 RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
366 if (I + 2 <= NumRegs && Diff >= 2 && SrcEncoding % 2 == 1 &&
367 DstEncoding % 2 == 1)
368 return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
369 RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
370 // Or we should do LMUL1 copying.
371 return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
372 RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
373 }
374
375 // For forward copying, if source register encoding and destination register
376 // encoding are aligned to 8/4/2, we can do a LMUL8/4/2 copying.
377 if (I + 8 <= NumRegs && SrcEncoding % 8 == 0 && DstEncoding % 8 == 0)
378 return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
379 RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
380 if (I + 4 <= NumRegs && SrcEncoding % 4 == 0 && DstEncoding % 4 == 0)
381 return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
382 RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
383 if (I + 2 <= NumRegs && SrcEncoding % 2 == 0 && DstEncoding % 2 == 0)
384 return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
385 RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
386 // Or we should do LMUL1 copying.
387 return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
388 RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
389 };
390 auto FindRegWithEncoding = [TRI](const TargetRegisterClass &RegClass,
391 uint16_t Encoding) {
392 MCRegister Reg = RISCV::V0 + Encoding;
394 return Reg;
395 return TRI->getMatchingSuperReg(Reg, RISCV::sub_vrm1_0, &RegClass);
396 };
397 while (I != NumRegs) {
398 // For non-segment copying, we only do this once as the registers are always
399 // aligned.
400 // For segment copying, we may do this several times. If the registers are
401 // aligned to larger LMUL, we can eliminate some copyings.
402 auto [LMulCopied, RegClass, Opc, VVOpc, VIOpc] =
403 GetCopyInfo(SrcEncoding, DstEncoding);
404 auto [NumCopied, _] = RISCVVType::decodeVLMUL(LMulCopied);
405
407 if (LMul == LMulCopied &&
408 isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) {
409 Opc = VVOpc;
410 if (DefMBBI->getOpcode() == VIOpc)
411 Opc = VIOpc;
412 }
413
414 // Emit actual copying.
415 // For reversed copying, the encoding should be decreased.
416 MCRegister ActualSrcReg = FindRegWithEncoding(
417 RegClass, ReversedCopy ? (SrcEncoding - NumCopied + 1) : SrcEncoding);
418 MCRegister ActualDstReg = FindRegWithEncoding(
419 RegClass, ReversedCopy ? (DstEncoding - NumCopied + 1) : DstEncoding);
420
421 auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), ActualDstReg);
422 bool UseVMV_V_I = RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_I;
423 bool UseVMV = UseVMV_V_I || RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_V;
424 if (UseVMV)
425 MIB.addReg(ActualDstReg, RegState::Undef);
426 if (UseVMV_V_I)
427 MIB = MIB.add(DefMBBI->getOperand(2));
428 else
429 MIB = MIB.addReg(ActualSrcReg, getKillRegState(KillSrc));
430 if (UseVMV) {
431 const MCInstrDesc &Desc = DefMBBI->getDesc();
432 MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc))); // AVL
433 unsigned Log2SEW =
434 DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc)).getImm();
435 MIB.addImm(Log2SEW ? Log2SEW : 3); // SEW
436 MIB.addImm(0); // tu, mu
437 MIB.addReg(RISCV::VL, RegState::Implicit);
438 MIB.addReg(RISCV::VTYPE, RegState::Implicit);
439 }
440
441 // If we are copying reversely, we should decrease the encoding.
442 SrcEncoding += (ReversedCopy ? -NumCopied : NumCopied);
443 DstEncoding += (ReversedCopy ? -NumCopied : NumCopied);
444 I += NumCopied;
445 }
446}
447
450 const DebugLoc &DL, MCRegister DstReg,
451 MCRegister SrcReg, bool KillSrc,
452 bool RenamableDest, bool RenamableSrc) const {
454
455 if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
456 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
457 .addReg(SrcReg,
458 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc))
459 .addImm(0);
460 return;
461 }
462
463 if (RISCV::GPRF16RegClass.contains(DstReg, SrcReg)) {
464 BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR16INX), DstReg)
465 .addReg(SrcReg,
466 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc));
467 return;
468 }
469
470 if (RISCV::GPRF32RegClass.contains(DstReg, SrcReg)) {
471 BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR32INX), DstReg)
472 .addReg(SrcReg,
473 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc));
474 return;
475 }
476
477 if (RISCV::GPRPairRegClass.contains(DstReg, SrcReg)) {
478 // Emit an ADDI for both parts of GPRPair.
479 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
480 TRI->getSubReg(DstReg, RISCV::sub_gpr_even))
481 .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_even),
482 getKillRegState(KillSrc))
483 .addImm(0);
484 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
485 TRI->getSubReg(DstReg, RISCV::sub_gpr_odd))
486 .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_odd),
487 getKillRegState(KillSrc))
488 .addImm(0);
489 return;
490 }
491
492 // Handle copy from csr
493 if (RISCV::VCSRRegClass.contains(SrcReg) &&
494 RISCV::GPRRegClass.contains(DstReg)) {
495 BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg)
496 .addImm(RISCVSysReg::lookupSysRegByName(TRI->getName(SrcReg))->Encoding)
497 .addReg(RISCV::X0);
498 return;
499 }
500
501 if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
502 unsigned Opc;
503 if (STI.hasStdExtZfh()) {
504 Opc = RISCV::FSGNJ_H;
505 } else {
506 assert(STI.hasStdExtF() &&
507 (STI.hasStdExtZfhmin() || STI.hasStdExtZfbfmin()) &&
508 "Unexpected extensions");
509 // Zfhmin/Zfbfmin doesn't have FSGNJ_H, replace FSGNJ_H with FSGNJ_S.
510 DstReg = TRI->getMatchingSuperReg(DstReg, RISCV::sub_16,
511 &RISCV::FPR32RegClass);
512 SrcReg = TRI->getMatchingSuperReg(SrcReg, RISCV::sub_16,
513 &RISCV::FPR32RegClass);
514 Opc = RISCV::FSGNJ_S;
515 }
516 BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
517 .addReg(SrcReg, getKillRegState(KillSrc))
518 .addReg(SrcReg, getKillRegState(KillSrc));
519 return;
520 }
521
522 if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
523 BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_S), DstReg)
524 .addReg(SrcReg, getKillRegState(KillSrc))
525 .addReg(SrcReg, getKillRegState(KillSrc));
526 return;
527 }
528
529 if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
530 BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_D), DstReg)
531 .addReg(SrcReg, getKillRegState(KillSrc))
532 .addReg(SrcReg, getKillRegState(KillSrc));
533 return;
534 }
535
536 if (RISCV::FPR32RegClass.contains(DstReg) &&
537 RISCV::GPRRegClass.contains(SrcReg)) {
538 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_W_X), DstReg)
539 .addReg(SrcReg, getKillRegState(KillSrc));
540 return;
541 }
542
543 if (RISCV::GPRRegClass.contains(DstReg) &&
544 RISCV::FPR32RegClass.contains(SrcReg)) {
545 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_W), DstReg)
546 .addReg(SrcReg, getKillRegState(KillSrc));
547 return;
548 }
549
550 if (RISCV::FPR64RegClass.contains(DstReg) &&
551 RISCV::GPRRegClass.contains(SrcReg)) {
552 assert(STI.getXLen() == 64 && "Unexpected GPR size");
553 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_D_X), DstReg)
554 .addReg(SrcReg, getKillRegState(KillSrc));
555 return;
556 }
557
558 if (RISCV::GPRRegClass.contains(DstReg) &&
559 RISCV::FPR64RegClass.contains(SrcReg)) {
560 assert(STI.getXLen() == 64 && "Unexpected GPR size");
561 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_D), DstReg)
562 .addReg(SrcReg, getKillRegState(KillSrc));
563 return;
564 }
565
566 // VR->VR copies.
567 const TargetRegisterClass *RegClass =
568 TRI->getCommonMinimalPhysRegClass(SrcReg, DstReg);
569 if (RISCVRegisterInfo::isRVVRegClass(RegClass)) {
570 copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RegClass);
571 return;
572 }
573
574 llvm_unreachable("Impossible reg-to-reg copy");
575}
576
579 Register SrcReg, bool IsKill, int FI,
580 const TargetRegisterClass *RC,
581 const TargetRegisterInfo *TRI,
582 Register VReg,
583 MachineInstr::MIFlag Flags) const {
585 MachineFrameInfo &MFI = MF->getFrameInfo();
586
587 unsigned Opcode;
588 bool IsScalableVector = true;
589 if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
590 Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
591 RISCV::SW : RISCV::SD;
592 IsScalableVector = false;
593 } else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
594 Opcode = RISCV::SH_INX;
595 IsScalableVector = false;
596 } else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
597 Opcode = RISCV::SW_INX;
598 IsScalableVector = false;
599 } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
600 Opcode = RISCV::PseudoRV32ZdinxSD;
601 IsScalableVector = false;
602 } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
603 Opcode = RISCV::FSH;
604 IsScalableVector = false;
605 } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
606 Opcode = RISCV::FSW;
607 IsScalableVector = false;
608 } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
609 Opcode = RISCV::FSD;
610 IsScalableVector = false;
611 } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
612 Opcode = RISCV::VS1R_V;
613 } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
614 Opcode = RISCV::VS2R_V;
615 } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
616 Opcode = RISCV::VS4R_V;
617 } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
618 Opcode = RISCV::VS8R_V;
619 } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
620 Opcode = RISCV::PseudoVSPILL2_M1;
621 else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
622 Opcode = RISCV::PseudoVSPILL2_M2;
623 else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
624 Opcode = RISCV::PseudoVSPILL2_M4;
625 else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
626 Opcode = RISCV::PseudoVSPILL3_M1;
627 else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
628 Opcode = RISCV::PseudoVSPILL3_M2;
629 else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
630 Opcode = RISCV::PseudoVSPILL4_M1;
631 else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
632 Opcode = RISCV::PseudoVSPILL4_M2;
633 else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
634 Opcode = RISCV::PseudoVSPILL5_M1;
635 else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
636 Opcode = RISCV::PseudoVSPILL6_M1;
637 else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
638 Opcode = RISCV::PseudoVSPILL7_M1;
639 else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
640 Opcode = RISCV::PseudoVSPILL8_M1;
641 else
642 llvm_unreachable("Can't store this register to stack slot");
643
644 if (IsScalableVector) {
648
650 BuildMI(MBB, I, DebugLoc(), get(Opcode))
651 .addReg(SrcReg, getKillRegState(IsKill))
652 .addFrameIndex(FI)
653 .addMemOperand(MMO)
654 .setMIFlag(Flags);
655 } else {
658 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
659
660 BuildMI(MBB, I, DebugLoc(), get(Opcode))
661 .addReg(SrcReg, getKillRegState(IsKill))
662 .addFrameIndex(FI)
663 .addImm(0)
664 .addMemOperand(MMO)
665 .setMIFlag(Flags);
666 }
667}
668
671 int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
672 Register VReg, MachineInstr::MIFlag Flags) const {
674 MachineFrameInfo &MFI = MF->getFrameInfo();
675 DebugLoc DL =
677
678 unsigned Opcode;
679 bool IsScalableVector = true;
680 if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
681 Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
682 RISCV::LW : RISCV::LD;
683 IsScalableVector = false;
684 } else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
685 Opcode = RISCV::LH_INX;
686 IsScalableVector = false;
687 } else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
688 Opcode = RISCV::LW_INX;
689 IsScalableVector = false;
690 } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
691 Opcode = RISCV::PseudoRV32ZdinxLD;
692 IsScalableVector = false;
693 } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
694 Opcode = RISCV::FLH;
695 IsScalableVector = false;
696 } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
697 Opcode = RISCV::FLW;
698 IsScalableVector = false;
699 } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
700 Opcode = RISCV::FLD;
701 IsScalableVector = false;
702 } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
703 Opcode = RISCV::VL1RE8_V;
704 } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
705 Opcode = RISCV::VL2RE8_V;
706 } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
707 Opcode = RISCV::VL4RE8_V;
708 } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
709 Opcode = RISCV::VL8RE8_V;
710 } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
711 Opcode = RISCV::PseudoVRELOAD2_M1;
712 else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
713 Opcode = RISCV::PseudoVRELOAD2_M2;
714 else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
715 Opcode = RISCV::PseudoVRELOAD2_M4;
716 else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
717 Opcode = RISCV::PseudoVRELOAD3_M1;
718 else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
719 Opcode = RISCV::PseudoVRELOAD3_M2;
720 else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
721 Opcode = RISCV::PseudoVRELOAD4_M1;
722 else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
723 Opcode = RISCV::PseudoVRELOAD4_M2;
724 else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
725 Opcode = RISCV::PseudoVRELOAD5_M1;
726 else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
727 Opcode = RISCV::PseudoVRELOAD6_M1;
728 else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
729 Opcode = RISCV::PseudoVRELOAD7_M1;
730 else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
731 Opcode = RISCV::PseudoVRELOAD8_M1;
732 else
733 llvm_unreachable("Can't load this register from stack slot");
734
735 if (IsScalableVector) {
739
741 BuildMI(MBB, I, DL, get(Opcode), DstReg)
742 .addFrameIndex(FI)
743 .addMemOperand(MMO)
744 .setMIFlag(Flags);
745 } else {
748 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
749
750 BuildMI(MBB, I, DL, get(Opcode), DstReg)
751 .addFrameIndex(FI)
752 .addImm(0)
753 .addMemOperand(MMO)
754 .setMIFlag(Flags);
755 }
756}
757
760 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
761 VirtRegMap *VRM) const {
762 // The below optimizations narrow the load so they are only valid for little
763 // endian.
764 // TODO: Support big endian by adding an offset into the frame object?
765 if (MF.getDataLayout().isBigEndian())
766 return nullptr;
767
768 // Fold load from stack followed by sext.b/sext.h/sext.w/zext.b/zext.h/zext.w.
769 if (Ops.size() != 1 || Ops[0] != 1)
770 return nullptr;
771
772 unsigned LoadOpc;
773 switch (MI.getOpcode()) {
774 default:
775 if (RISCV::isSEXT_W(MI)) {
776 LoadOpc = RISCV::LW;
777 break;
778 }
779 if (RISCV::isZEXT_W(MI)) {
780 LoadOpc = RISCV::LWU;
781 break;
782 }
783 if (RISCV::isZEXT_B(MI)) {
784 LoadOpc = RISCV::LBU;
785 break;
786 }
787 if (RISCV::getRVVMCOpcode(MI.getOpcode()) == RISCV::VMV_X_S) {
788 unsigned Log2SEW =
789 MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
790 if (STI.getXLen() < (1U << Log2SEW))
791 return nullptr;
792 switch (Log2SEW) {
793 case 3:
794 LoadOpc = RISCV::LB;
795 break;
796 case 4:
797 LoadOpc = RISCV::LH;
798 break;
799 case 5:
800 LoadOpc = RISCV::LW;
801 break;
802 case 6:
803 LoadOpc = RISCV::LD;
804 break;
805 default:
806 llvm_unreachable("Unexpected SEW");
807 }
808 break;
809 }
810 if (RISCV::getRVVMCOpcode(MI.getOpcode()) == RISCV::VFMV_F_S) {
811 unsigned Log2SEW =
812 MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
813 switch (Log2SEW) {
814 case 4:
815 LoadOpc = RISCV::FLH;
816 break;
817 case 5:
818 LoadOpc = RISCV::FLW;
819 break;
820 case 6:
821 LoadOpc = RISCV::FLD;
822 break;
823 default:
824 llvm_unreachable("Unexpected SEW");
825 }
826 break;
827 }
828 return nullptr;
829 case RISCV::SEXT_H:
830 LoadOpc = RISCV::LH;
831 break;
832 case RISCV::SEXT_B:
833 LoadOpc = RISCV::LB;
834 break;
835 case RISCV::ZEXT_H_RV32:
836 case RISCV::ZEXT_H_RV64:
837 LoadOpc = RISCV::LHU;
838 break;
839 }
840
841 Register DstReg = MI.getOperand(0).getReg();
842 return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpc),
843 DstReg)
844 .addFrameIndex(FrameIndex)
845 .addImm(0);
846}
847
850 const DebugLoc &DL, Register DstReg, uint64_t Val,
851 MachineInstr::MIFlag Flag, bool DstRenamable,
852 bool DstIsDead) const {
853 Register SrcReg = RISCV::X0;
854
855 // For RV32, allow a sign or unsigned 32 bit value.
856 if (!STI.is64Bit() && !isInt<32>(Val)) {
857 // If have a uimm32 it will still fit in a register so we can allow it.
858 if (!isUInt<32>(Val))
859 report_fatal_error("Should only materialize 32-bit constants for RV32");
860
861 // Sign extend for generateInstSeq.
862 Val = SignExtend64<32>(Val);
863 }
864
866 assert(!Seq.empty());
867
868 bool SrcRenamable = false;
869 unsigned Num = 0;
870
871 for (const RISCVMatInt::Inst &Inst : Seq) {
872 bool LastItem = ++Num == Seq.size();
873 unsigned DstRegState = getDeadRegState(DstIsDead && LastItem) |
874 getRenamableRegState(DstRenamable);
875 unsigned SrcRegState = getKillRegState(SrcReg != RISCV::X0) |
876 getRenamableRegState(SrcRenamable);
877 switch (Inst.getOpndKind()) {
878 case RISCVMatInt::Imm:
879 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
880 .addReg(DstReg, RegState::Define | DstRegState)
881 .addImm(Inst.getImm())
882 .setMIFlag(Flag);
883 break;
885 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
886 .addReg(DstReg, RegState::Define | DstRegState)
887 .addReg(SrcReg, SrcRegState)
888 .addReg(RISCV::X0)
889 .setMIFlag(Flag);
890 break;
892 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
893 .addReg(DstReg, RegState::Define | DstRegState)
894 .addReg(SrcReg, SrcRegState)
895 .addReg(SrcReg, SrcRegState)
896 .setMIFlag(Flag);
897 break;
899 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
900 .addReg(DstReg, RegState::Define | DstRegState)
901 .addReg(SrcReg, SrcRegState)
902 .addImm(Inst.getImm())
903 .setMIFlag(Flag);
904 break;
905 }
906
907 // Only the first instruction has X0 as its source.
908 SrcReg = DstReg;
909 SrcRenamable = DstRenamable;
910 }
911}
912
914 switch (Opc) {
915 default:
917 case RISCV::CV_BEQIMM:
918 return RISCVCC::COND_EQ;
919 case RISCV::CV_BNEIMM:
920 return RISCVCC::COND_NE;
921 case RISCV::BEQ:
922 return RISCVCC::COND_EQ;
923 case RISCV::BNE:
924 return RISCVCC::COND_NE;
925 case RISCV::BLT:
926 return RISCVCC::COND_LT;
927 case RISCV::BGE:
928 return RISCVCC::COND_GE;
929 case RISCV::BLTU:
930 return RISCVCC::COND_LTU;
931 case RISCV::BGEU:
932 return RISCVCC::COND_GEU;
933 }
934}
935
936// The contents of values added to Cond are not examined outside of
937// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
938// push BranchOpcode, Reg1, Reg2.
941 // Block ends with fall-through condbranch.
942 assert(LastInst.getDesc().isConditionalBranch() &&
943 "Unknown conditional branch");
944 Target = LastInst.getOperand(2).getMBB();
945 unsigned CC = getCondFromBranchOpc(LastInst.getOpcode());
947 Cond.push_back(LastInst.getOperand(0));
948 Cond.push_back(LastInst.getOperand(1));
949}
950
952 switch (CC) {
953 default:
954 llvm_unreachable("Unknown condition code!");
955 case RISCVCC::COND_EQ:
956 return Imm ? RISCV::CV_BEQIMM : RISCV::BEQ;
957 case RISCVCC::COND_NE:
958 return Imm ? RISCV::CV_BNEIMM : RISCV::BNE;
959 case RISCVCC::COND_LT:
960 return RISCV::BLT;
961 case RISCVCC::COND_GE:
962 return RISCV::BGE;
964 return RISCV::BLTU;
966 return RISCV::BGEU;
967 }
968}
969
971 bool Imm) const {
972 return get(RISCVCC::getBrCond(CC, Imm));
973}
974
976 switch (CC) {
977 default:
978 llvm_unreachable("Unrecognized conditional branch");
979 case RISCVCC::COND_EQ:
980 return RISCVCC::COND_NE;
981 case RISCVCC::COND_NE:
982 return RISCVCC::COND_EQ;
983 case RISCVCC::COND_LT:
984 return RISCVCC::COND_GE;
985 case RISCVCC::COND_GE:
986 return RISCVCC::COND_LT;
988 return RISCVCC::COND_GEU;
990 return RISCVCC::COND_LTU;
991 }
992}
993
996 MachineBasicBlock *&FBB,
998 bool AllowModify) const {
999 TBB = FBB = nullptr;
1000 Cond.clear();
1001
1002 // If the block has no terminators, it just falls into the block after it.
1004 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1005 return false;
1006
1007 // Count the number of terminators and find the first unconditional or
1008 // indirect branch.
1009 MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
1010 int NumTerminators = 0;
1011 for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
1012 J++) {
1013 NumTerminators++;
1014 if (J->getDesc().isUnconditionalBranch() ||
1015 J->getDesc().isIndirectBranch()) {
1016 FirstUncondOrIndirectBr = J.getReverse();
1017 }
1018 }
1019
1020 // If AllowModify is true, we can erase any terminators after
1021 // FirstUncondOrIndirectBR.
1022 if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
1023 while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
1024 std::next(FirstUncondOrIndirectBr)->eraseFromParent();
1025 NumTerminators--;
1026 }
1027 I = FirstUncondOrIndirectBr;
1028 }
1029
1030 // We can't handle blocks that end in an indirect branch.
1031 if (I->getDesc().isIndirectBranch())
1032 return true;
1033
1034 // We can't handle Generic branch opcodes from Global ISel.
1035 if (I->isPreISelOpcode())
1036 return true;
1037
1038 // We can't handle blocks with more than 2 terminators.
1039 if (NumTerminators > 2)
1040 return true;
1041
1042 // Handle a single unconditional branch.
1043 if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
1045 return false;
1046 }
1047
1048 // Handle a single conditional branch.
1049 if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
1051 return false;
1052 }
1053
1054 // Handle a conditional branch followed by an unconditional branch.
1055 if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
1056 I->getDesc().isUnconditionalBranch()) {
1057 parseCondBranch(*std::prev(I), TBB, Cond);
1058 FBB = getBranchDestBlock(*I);
1059 return false;
1060 }
1061
1062 // Otherwise, we can't handle this.
1063 return true;
1064}
1065
1067 int *BytesRemoved) const {
1068 if (BytesRemoved)
1069 *BytesRemoved = 0;
1071 if (I == MBB.end())
1072 return 0;
1073
1074 if (!I->getDesc().isUnconditionalBranch() &&
1075 !I->getDesc().isConditionalBranch())
1076 return 0;
1077
1078 // Remove the branch.
1079 if (BytesRemoved)
1080 *BytesRemoved += getInstSizeInBytes(*I);
1081 I->eraseFromParent();
1082
1083 I = MBB.end();
1084
1085 if (I == MBB.begin())
1086 return 1;
1087 --I;
1088 if (!I->getDesc().isConditionalBranch())
1089 return 1;
1090
1091 // Remove the branch.
1092 if (BytesRemoved)
1093 *BytesRemoved += getInstSizeInBytes(*I);
1094 I->eraseFromParent();
1095 return 2;
1096}
1097
1098// Inserts a branch into the end of the specific MachineBasicBlock, returning
1099// the number of instructions inserted.
1102 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
1103 if (BytesAdded)
1104 *BytesAdded = 0;
1105
1106 // Shouldn't be a fall through.
1107 assert(TBB && "insertBranch must not be told to insert a fallthrough");
1108 assert((Cond.size() == 3 || Cond.size() == 0) &&
1109 "RISC-V branch conditions have two components!");
1110
1111 // Unconditional branch.
1112 if (Cond.empty()) {
1113 MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
1114 if (BytesAdded)
1115 *BytesAdded += getInstSizeInBytes(MI);
1116 return 1;
1117 }
1118
1119 // Either a one or two-way conditional branch.
1120 auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1121 MachineInstr &CondMI = *BuildMI(&MBB, DL, getBrCond(CC, Cond[2].isImm()))
1122 .add(Cond[1])
1123 .add(Cond[2])
1124 .addMBB(TBB);
1125 if (BytesAdded)
1126 *BytesAdded += getInstSizeInBytes(CondMI);
1127
1128 // One-way conditional branch.
1129 if (!FBB)
1130 return 1;
1131
1132 // Two-way conditional branch.
1133 MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
1134 if (BytesAdded)
1135 *BytesAdded += getInstSizeInBytes(MI);
1136 return 2;
1137}
1138
1140 MachineBasicBlock &DestBB,
1141 MachineBasicBlock &RestoreBB,
1142 const DebugLoc &DL, int64_t BrOffset,
1143 RegScavenger *RS) const {
1144 assert(RS && "RegScavenger required for long branching");
1145 assert(MBB.empty() &&
1146 "new block should be inserted for expanding unconditional branch");
1147 assert(MBB.pred_size() == 1);
1148 assert(RestoreBB.empty() &&
1149 "restore block should be inserted for restoring clobbered registers");
1150
1155
1156 if (!isInt<32>(BrOffset))
1158 "Branch offsets outside of the signed 32-bit range not supported");
1159
1160 // FIXME: A virtual register must be used initially, as the register
1161 // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
1162 // uses the same workaround).
1163 Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRJALRRegClass);
1164 auto II = MBB.end();
1165 // We may also update the jump target to RestoreBB later.
1166 MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
1167 .addReg(ScratchReg, RegState::Define | RegState::Dead)
1168 .addMBB(&DestBB, RISCVII::MO_CALL);
1169
1171 Register TmpGPR =
1172 RS->scavengeRegisterBackwards(RISCV::GPRRegClass, MI.getIterator(),
1173 /*RestoreAfter=*/false, /*SpAdj=*/0,
1174 /*AllowSpill=*/false);
1175 if (TmpGPR != RISCV::NoRegister)
1176 RS->setRegUsed(TmpGPR);
1177 else {
1178 // The case when there is no scavenged register needs special handling.
1179
1180 // Pick s11 because it doesn't make a difference.
1181 TmpGPR = RISCV::X27;
1182
1183 int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex();
1184 if (FrameIndex == -1)
1185 report_fatal_error("underestimated function size");
1186
1187 storeRegToStackSlot(MBB, MI, TmpGPR, /*IsKill=*/true, FrameIndex,
1188 &RISCV::GPRRegClass, TRI, Register());
1189 TRI->eliminateFrameIndex(std::prev(MI.getIterator()),
1190 /*SpAdj=*/0, /*FIOperandNum=*/1);
1191
1192 MI.getOperand(1).setMBB(&RestoreBB);
1193
1194 loadRegFromStackSlot(RestoreBB, RestoreBB.end(), TmpGPR, FrameIndex,
1195 &RISCV::GPRRegClass, TRI, Register());
1196 TRI->eliminateFrameIndex(RestoreBB.back(),
1197 /*SpAdj=*/0, /*FIOperandNum=*/1);
1198 }
1199
1200 MRI.replaceRegWith(ScratchReg, TmpGPR);
1201 MRI.clearVirtRegs();
1202}
1203
1206 assert((Cond.size() == 3) && "Invalid branch condition!");
1207 auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1209 return false;
1210}
1211
1213 MachineBasicBlock *MBB = MI.getParent();
1215
1216 MachineBasicBlock *TBB, *FBB;
1218 if (analyzeBranch(*MBB, TBB, FBB, Cond, /*AllowModify=*/false))
1219 return false;
1220
1221 RISCVCC::CondCode CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1223
1225 return false;
1226
1227 // For two constants C0 and C1 from
1228 // ```
1229 // li Y, C0
1230 // li Z, C1
1231 // ```
1232 // 1. if C1 = C0 + 1
1233 // we can turn:
1234 // (a) blt Y, X -> bge X, Z
1235 // (b) bge Y, X -> blt X, Z
1236 //
1237 // 2. if C1 = C0 - 1
1238 // we can turn:
1239 // (a) blt X, Y -> bge Z, X
1240 // (b) bge X, Y -> blt Z, X
1241 //
1242 // To make sure this optimization is really beneficial, we only
1243 // optimize for cases where Y had only one use (i.e. only used by the branch).
1244
1245 // Right now we only care about LI (i.e. ADDI x0, imm)
1246 auto isLoadImm = [](const MachineInstr *MI, int64_t &Imm) -> bool {
1247 if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1248 MI->getOperand(1).getReg() == RISCV::X0) {
1249 Imm = MI->getOperand(2).getImm();
1250 return true;
1251 }
1252 return false;
1253 };
1254 // Either a load from immediate instruction or X0.
1255 auto isFromLoadImm = [&](const MachineOperand &Op, int64_t &Imm) -> bool {
1256 if (!Op.isReg())
1257 return false;
1258 Register Reg = Op.getReg();
1259 return Reg.isVirtual() && isLoadImm(MRI.getVRegDef(Reg), Imm);
1260 };
1261
1262 MachineOperand &LHS = MI.getOperand(0);
1263 MachineOperand &RHS = MI.getOperand(1);
1264 // Try to find the register for constant Z; return
1265 // invalid register otherwise.
1266 auto searchConst = [&](int64_t C1) -> Register {
1268 auto DefC1 = std::find_if(++II, E, [&](const MachineInstr &I) -> bool {
1269 int64_t Imm;
1270 return isLoadImm(&I, Imm) && Imm == C1 &&
1271 I.getOperand(0).getReg().isVirtual();
1272 });
1273 if (DefC1 != E)
1274 return DefC1->getOperand(0).getReg();
1275
1276 return Register();
1277 };
1278
1279 bool Modify = false;
1280 int64_t C0;
1281 if (isFromLoadImm(LHS, C0) && MRI.hasOneUse(LHS.getReg())) {
1282 // Might be case 1.
1283 // Signed integer overflow is UB. (UINT64_MAX is bigger so we don't need
1284 // to worry about unsigned overflow here)
1285 if (C0 < INT64_MAX)
1286 if (Register RegZ = searchConst(C0 + 1)) {
1288 Cond[1] = MachineOperand::CreateReg(RHS.getReg(), /*isDef=*/false);
1289 Cond[2] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1290 // We might extend the live range of Z, clear its kill flag to
1291 // account for this.
1292 MRI.clearKillFlags(RegZ);
1293 Modify = true;
1294 }
1295 } else if (isFromLoadImm(RHS, C0) && MRI.hasOneUse(RHS.getReg())) {
1296 // Might be case 2.
1297 // For unsigned cases, we don't want C1 to wrap back to UINT64_MAX
1298 // when C0 is zero.
1299 if ((CC == RISCVCC::COND_GE || CC == RISCVCC::COND_LT) || C0)
1300 if (Register RegZ = searchConst(C0 - 1)) {
1302 Cond[1] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1303 Cond[2] = MachineOperand::CreateReg(LHS.getReg(), /*isDef=*/false);
1304 // We might extend the live range of Z, clear its kill flag to
1305 // account for this.
1306 MRI.clearKillFlags(RegZ);
1307 Modify = true;
1308 }
1309 }
1310
1311 if (!Modify)
1312 return false;
1313
1314 // Build the new branch and remove the old one.
1315 BuildMI(*MBB, MI, MI.getDebugLoc(),
1316 getBrCond(static_cast<RISCVCC::CondCode>(Cond[0].getImm())))
1317 .add(Cond[1])
1318 .add(Cond[2])
1319 .addMBB(TBB);
1320 MI.eraseFromParent();
1321
1322 return true;
1323}
1324
1327 assert(MI.getDesc().isBranch() && "Unexpected opcode!");
1328 // The branch target is always the last operand.
1329 int NumOp = MI.getNumExplicitOperands();
1330 return MI.getOperand(NumOp - 1).getMBB();
1331}
1332
1334 int64_t BrOffset) const {
1335 unsigned XLen = STI.getXLen();
1336 // Ideally we could determine the supported branch offset from the
1337 // RISCVII::FormMask, but this can't be used for Pseudo instructions like
1338 // PseudoBR.
1339 switch (BranchOp) {
1340 default:
1341 llvm_unreachable("Unexpected opcode!");
1342 case RISCV::BEQ:
1343 case RISCV::BNE:
1344 case RISCV::BLT:
1345 case RISCV::BGE:
1346 case RISCV::BLTU:
1347 case RISCV::BGEU:
1348 case RISCV::CV_BEQIMM:
1349 case RISCV::CV_BNEIMM:
1350 return isIntN(13, BrOffset);
1351 case RISCV::JAL:
1352 case RISCV::PseudoBR:
1353 return isIntN(21, BrOffset);
1354 case RISCV::PseudoJump:
1355 return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
1356 }
1357}
1358
1359// If the operation has a predicated pseudo instruction, return the pseudo
1360// instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END.
1361// TODO: Support more operations.
1362unsigned getPredicatedOpcode(unsigned Opcode) {
1363 switch (Opcode) {
1364 case RISCV::ADD: return RISCV::PseudoCCADD; break;
1365 case RISCV::SUB: return RISCV::PseudoCCSUB; break;
1366 case RISCV::SLL: return RISCV::PseudoCCSLL; break;
1367 case RISCV::SRL: return RISCV::PseudoCCSRL; break;
1368 case RISCV::SRA: return RISCV::PseudoCCSRA; break;
1369 case RISCV::AND: return RISCV::PseudoCCAND; break;
1370 case RISCV::OR: return RISCV::PseudoCCOR; break;
1371 case RISCV::XOR: return RISCV::PseudoCCXOR; break;
1372
1373 case RISCV::ADDI: return RISCV::PseudoCCADDI; break;
1374 case RISCV::SLLI: return RISCV::PseudoCCSLLI; break;
1375 case RISCV::SRLI: return RISCV::PseudoCCSRLI; break;
1376 case RISCV::SRAI: return RISCV::PseudoCCSRAI; break;
1377 case RISCV::ANDI: return RISCV::PseudoCCANDI; break;
1378 case RISCV::ORI: return RISCV::PseudoCCORI; break;
1379 case RISCV::XORI: return RISCV::PseudoCCXORI; break;
1380
1381 case RISCV::ADDW: return RISCV::PseudoCCADDW; break;
1382 case RISCV::SUBW: return RISCV::PseudoCCSUBW; break;
1383 case RISCV::SLLW: return RISCV::PseudoCCSLLW; break;
1384 case RISCV::SRLW: return RISCV::PseudoCCSRLW; break;
1385 case RISCV::SRAW: return RISCV::PseudoCCSRAW; break;
1386
1387 case RISCV::ADDIW: return RISCV::PseudoCCADDIW; break;
1388 case RISCV::SLLIW: return RISCV::PseudoCCSLLIW; break;
1389 case RISCV::SRLIW: return RISCV::PseudoCCSRLIW; break;
1390 case RISCV::SRAIW: return RISCV::PseudoCCSRAIW; break;
1391
1392 case RISCV::ANDN: return RISCV::PseudoCCANDN; break;
1393 case RISCV::ORN: return RISCV::PseudoCCORN; break;
1394 case RISCV::XNOR: return RISCV::PseudoCCXNOR; break;
1395 }
1396
1397 return RISCV::INSTRUCTION_LIST_END;
1398}
1399
1400/// Identify instructions that can be folded into a CCMOV instruction, and
1401/// return the defining instruction.
1403 const MachineRegisterInfo &MRI,
1404 const TargetInstrInfo *TII) {
1405 if (!Reg.isVirtual())
1406 return nullptr;
1407 if (!MRI.hasOneNonDBGUse(Reg))
1408 return nullptr;
1409 MachineInstr *MI = MRI.getVRegDef(Reg);
1410 if (!MI)
1411 return nullptr;
1412 // Check if MI can be predicated and folded into the CCMOV.
1413 if (getPredicatedOpcode(MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END)
1414 return nullptr;
1415 // Don't predicate li idiom.
1416 if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1417 MI->getOperand(1).getReg() == RISCV::X0)
1418 return nullptr;
1419 // Check if MI has any other defs or physreg uses.
1420 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
1421 // Reject frame index operands, PEI can't handle the predicated pseudos.
1422 if (MO.isFI() || MO.isCPI() || MO.isJTI())
1423 return nullptr;
1424 if (!MO.isReg())
1425 continue;
1426 // MI can't have any tied operands, that would conflict with predication.
1427 if (MO.isTied())
1428 return nullptr;
1429 if (MO.isDef())
1430 return nullptr;
1431 // Allow constant physregs.
1432 if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(MO.getReg()))
1433 return nullptr;
1434 }
1435 bool DontMoveAcrossStores = true;
1436 if (!MI->isSafeToMove(DontMoveAcrossStores))
1437 return nullptr;
1438 return MI;
1439}
1440
1443 unsigned &TrueOp, unsigned &FalseOp,
1444 bool &Optimizable) const {
1445 assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1446 "Unknown select instruction");
1447 // CCMOV operands:
1448 // 0: Def.
1449 // 1: LHS of compare.
1450 // 2: RHS of compare.
1451 // 3: Condition code.
1452 // 4: False use.
1453 // 5: True use.
1454 TrueOp = 5;
1455 FalseOp = 4;
1456 Cond.push_back(MI.getOperand(1));
1457 Cond.push_back(MI.getOperand(2));
1458 Cond.push_back(MI.getOperand(3));
1459 // We can only fold when we support short forward branch opt.
1460 Optimizable = STI.hasShortForwardBranchOpt();
1461 return false;
1462}
1463
1467 bool PreferFalse) const {
1468 assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1469 "Unknown select instruction");
1470 if (!STI.hasShortForwardBranchOpt())
1471 return nullptr;
1472
1473 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1475 canFoldAsPredicatedOp(MI.getOperand(5).getReg(), MRI, this);
1476 bool Invert = !DefMI;
1477 if (!DefMI)
1478 DefMI = canFoldAsPredicatedOp(MI.getOperand(4).getReg(), MRI, this);
1479 if (!DefMI)
1480 return nullptr;
1481
1482 // Find new register class to use.
1483 MachineOperand FalseReg = MI.getOperand(Invert ? 5 : 4);
1484 Register DestReg = MI.getOperand(0).getReg();
1485 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1486 if (!MRI.constrainRegClass(DestReg, PreviousClass))
1487 return nullptr;
1488
1489 unsigned PredOpc = getPredicatedOpcode(DefMI->getOpcode());
1490 assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!");
1491
1492 // Create a new predicated version of DefMI.
1493 MachineInstrBuilder NewMI =
1494 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(PredOpc), DestReg);
1495
1496 // Copy the condition portion.
1497 NewMI.add(MI.getOperand(1));
1498 NewMI.add(MI.getOperand(2));
1499
1500 // Add condition code, inverting if necessary.
1501 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
1502 if (Invert)
1504 NewMI.addImm(CC);
1505
1506 // Copy the false register.
1507 NewMI.add(FalseReg);
1508
1509 // Copy all the DefMI operands.
1510 const MCInstrDesc &DefDesc = DefMI->getDesc();
1511 for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i)
1512 NewMI.add(DefMI->getOperand(i));
1513
1514 // Update SeenMIs set: register newly created MI and erase removed DefMI.
1515 SeenMIs.insert(NewMI);
1516 SeenMIs.erase(DefMI);
1517
1518 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1519 // DefMI would be invalid when tranferred inside the loop. Checking for a
1520 // loop is expensive, but at least remove kill flags if they are in different
1521 // BBs.
1522 if (DefMI->getParent() != MI.getParent())
1523 NewMI->clearKillInfo();
1524
1525 // The caller will erase MI, but not DefMI.
1527 return NewMI;
1528}
1529
1531 if (MI.isMetaInstruction())
1532 return 0;
1533
1534 unsigned Opcode = MI.getOpcode();
1535
1536 if (Opcode == TargetOpcode::INLINEASM ||
1537 Opcode == TargetOpcode::INLINEASM_BR) {
1538 const MachineFunction &MF = *MI.getParent()->getParent();
1539 return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
1540 *MF.getTarget().getMCAsmInfo());
1541 }
1542
1543 if (!MI.memoperands_empty()) {
1544 MachineMemOperand *MMO = *(MI.memoperands_begin());
1545 if (STI.hasStdExtZihintntl() && MMO->isNonTemporal()) {
1546 if (STI.hasStdExtCOrZca() && STI.enableRVCHintInstrs()) {
1547 if (isCompressibleInst(MI, STI))
1548 return 4; // c.ntl.all + c.load/c.store
1549 return 6; // c.ntl.all + load/store
1550 }
1551 return 8; // ntl.all + load/store
1552 }
1553 }
1554
1555 if (Opcode == TargetOpcode::BUNDLE)
1556 return getInstBundleLength(MI);
1557
1558 if (MI.getParent() && MI.getParent()->getParent()) {
1559 if (isCompressibleInst(MI, STI))
1560 return 2;
1561 }
1562
1563 switch (Opcode) {
1564 case RISCV::PseudoMV_FPR16INX:
1565 case RISCV::PseudoMV_FPR32INX:
1566 // MV is always compressible to either c.mv or c.li rd, 0.
1567 return STI.hasStdExtCOrZca() ? 2 : 4;
1568 case TargetOpcode::STACKMAP:
1569 // The upper bound for a stackmap intrinsic is the full length of its shadow
1571 case TargetOpcode::PATCHPOINT:
1572 // The size of the patchpoint intrinsic is the number of bytes requested
1574 case TargetOpcode::STATEPOINT: {
1575 // The size of the statepoint intrinsic is the number of bytes requested
1576 unsigned NumBytes = StatepointOpers(&MI).getNumPatchBytes();
1577 // No patch bytes means at most a PseudoCall is emitted
1578 return std::max(NumBytes, 8U);
1579 }
1580 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
1581 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1582 case TargetOpcode::PATCHABLE_TAIL_CALL: {
1583 const MachineFunction &MF = *MI.getParent()->getParent();
1584 const Function &F = MF.getFunction();
1585 if (Opcode == TargetOpcode::PATCHABLE_FUNCTION_ENTER &&
1586 F.hasFnAttribute("patchable-function-entry")) {
1587 unsigned Num;
1588 if (F.getFnAttribute("patchable-function-entry")
1589 .getValueAsString()
1590 .getAsInteger(10, Num))
1591 return get(Opcode).getSize();
1592
1593 // Number of C.NOP or NOP
1594 return (STI.hasStdExtCOrZca() ? 2 : 4) * Num;
1595 }
1596 // XRay uses C.JAL + 21 or 33 C.NOP for each sled in RV32 and RV64,
1597 // respectively.
1598 return STI.is64Bit() ? 68 : 44;
1599 }
1600 default:
1601 return get(Opcode).getSize();
1602 }
1603}
1604
1605unsigned RISCVInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
1606 unsigned Size = 0;
1608 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
1609 while (++I != E && I->isInsideBundle()) {
1610 assert(!I->isBundle() && "No nested bundle!");
1612 }
1613 return Size;
1614}
1615
1617 const unsigned Opcode = MI.getOpcode();
1618 switch (Opcode) {
1619 default:
1620 break;
1621 case RISCV::FSGNJ_D:
1622 case RISCV::FSGNJ_S:
1623 case RISCV::FSGNJ_H:
1624 case RISCV::FSGNJ_D_INX:
1625 case RISCV::FSGNJ_D_IN32X:
1626 case RISCV::FSGNJ_S_INX:
1627 case RISCV::FSGNJ_H_INX:
1628 // The canonical floating-point move is fsgnj rd, rs, rs.
1629 return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1630 MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
1631 case RISCV::ADDI:
1632 case RISCV::ORI:
1633 case RISCV::XORI:
1634 return (MI.getOperand(1).isReg() &&
1635 MI.getOperand(1).getReg() == RISCV::X0) ||
1636 (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
1637 }
1638 return MI.isAsCheapAsAMove();
1639}
1640
1641std::optional<DestSourcePair>
1643 if (MI.isMoveReg())
1644 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1645 switch (MI.getOpcode()) {
1646 default:
1647 break;
1648 case RISCV::ADDI:
1649 // Operand 1 can be a frameindex but callers expect registers
1650 if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
1651 MI.getOperand(2).getImm() == 0)
1652 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1653 break;
1654 case RISCV::FSGNJ_D:
1655 case RISCV::FSGNJ_S:
1656 case RISCV::FSGNJ_H:
1657 case RISCV::FSGNJ_D_INX:
1658 case RISCV::FSGNJ_D_IN32X:
1659 case RISCV::FSGNJ_S_INX:
1660 case RISCV::FSGNJ_H_INX:
1661 // The canonical floating-point move is fsgnj rd, rs, rs.
1662 if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1663 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
1664 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1665 break;
1666 }
1667 return std::nullopt;
1668}
1669
1671 if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) {
1672 // The option is unused. Choose Local strategy only for in-order cores. When
1673 // scheduling model is unspecified, use MinInstrCount strategy as more
1674 // generic one.
1675 const auto &SchedModel = STI.getSchedModel();
1676 return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder())
1679 }
1680 // The strategy was forced by the option.
1682}
1683
1685 MachineInstr &Root, unsigned &Pattern,
1686 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
1687 int16_t FrmOpIdx =
1688 RISCV::getNamedOperandIdx(Root.getOpcode(), RISCV::OpName::frm);
1689 if (FrmOpIdx < 0) {
1690 assert(all_of(InsInstrs,
1691 [](MachineInstr *MI) {
1692 return RISCV::getNamedOperandIdx(MI->getOpcode(),
1693 RISCV::OpName::frm) < 0;
1694 }) &&
1695 "New instructions require FRM whereas the old one does not have it");
1696 return;
1697 }
1698
1699 const MachineOperand &FRM = Root.getOperand(FrmOpIdx);
1700 MachineFunction &MF = *Root.getMF();
1701
1702 for (auto *NewMI : InsInstrs) {
1703 // We'd already added the FRM operand.
1704 if (static_cast<unsigned>(RISCV::getNamedOperandIdx(
1705 NewMI->getOpcode(), RISCV::OpName::frm)) != NewMI->getNumOperands())
1706 continue;
1707 MachineInstrBuilder MIB(MF, NewMI);
1708 MIB.add(FRM);
1709 if (FRM.getImm() == RISCVFPRndMode::DYN)
1710 MIB.addUse(RISCV::FRM, RegState::Implicit);
1711 }
1712}
1713
1714static bool isFADD(unsigned Opc) {
1715 switch (Opc) {
1716 default:
1717 return false;
1718 case RISCV::FADD_H:
1719 case RISCV::FADD_S:
1720 case RISCV::FADD_D:
1721 return true;
1722 }
1723}
1724
1725static bool isFSUB(unsigned Opc) {
1726 switch (Opc) {
1727 default:
1728 return false;
1729 case RISCV::FSUB_H:
1730 case RISCV::FSUB_S:
1731 case RISCV::FSUB_D:
1732 return true;
1733 }
1734}
1735
1736static bool isFMUL(unsigned Opc) {
1737 switch (Opc) {
1738 default:
1739 return false;
1740 case RISCV::FMUL_H:
1741 case RISCV::FMUL_S:
1742 case RISCV::FMUL_D:
1743 return true;
1744 }
1745}
1746
1747bool RISCVInstrInfo::isVectorAssociativeAndCommutative(const MachineInstr &Inst,
1748 bool Invert) const {
1749#define OPCODE_LMUL_CASE(OPC) \
1750 case RISCV::OPC##_M1: \
1751 case RISCV::OPC##_M2: \
1752 case RISCV::OPC##_M4: \
1753 case RISCV::OPC##_M8: \
1754 case RISCV::OPC##_MF2: \
1755 case RISCV::OPC##_MF4: \
1756 case RISCV::OPC##_MF8
1757
1758#define OPCODE_LMUL_MASK_CASE(OPC) \
1759 case RISCV::OPC##_M1_MASK: \
1760 case RISCV::OPC##_M2_MASK: \
1761 case RISCV::OPC##_M4_MASK: \
1762 case RISCV::OPC##_M8_MASK: \
1763 case RISCV::OPC##_MF2_MASK: \
1764 case RISCV::OPC##_MF4_MASK: \
1765 case RISCV::OPC##_MF8_MASK
1766
1767 unsigned Opcode = Inst.getOpcode();
1768 if (Invert) {
1769 if (auto InvOpcode = getInverseOpcode(Opcode))
1770 Opcode = *InvOpcode;
1771 else
1772 return false;
1773 }
1774
1775 // clang-format off
1776 switch (Opcode) {
1777 default:
1778 return false;
1779 OPCODE_LMUL_CASE(PseudoVADD_VV):
1780 OPCODE_LMUL_MASK_CASE(PseudoVADD_VV):
1781 OPCODE_LMUL_CASE(PseudoVMUL_VV):
1782 OPCODE_LMUL_MASK_CASE(PseudoVMUL_VV):
1783 return true;
1784 }
1785 // clang-format on
1786
1787#undef OPCODE_LMUL_MASK_CASE
1788#undef OPCODE_LMUL_CASE
1789}
1790
1791bool RISCVInstrInfo::areRVVInstsReassociable(const MachineInstr &Root,
1792 const MachineInstr &Prev) const {
1793 if (!areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()))
1794 return false;
1795
1796 assert(Root.getMF() == Prev.getMF());
1797 const MachineRegisterInfo *MRI = &Root.getMF()->getRegInfo();
1798 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1799
1800 // Make sure vtype operands are also the same.
1801 const MCInstrDesc &Desc = get(Root.getOpcode());
1802 const uint64_t TSFlags = Desc.TSFlags;
1803
1804 auto checkImmOperand = [&](unsigned OpIdx) {
1805 return Root.getOperand(OpIdx).getImm() == Prev.getOperand(OpIdx).getImm();
1806 };
1807
1808 auto checkRegOperand = [&](unsigned OpIdx) {
1809 return Root.getOperand(OpIdx).getReg() == Prev.getOperand(OpIdx).getReg();
1810 };
1811
1812 // PassThru
1813 // TODO: Potentially we can loosen the condition to consider Root to be
1814 // associable with Prev if Root has NoReg as passthru. In which case we
1815 // also need to loosen the condition on vector policies between these.
1816 if (!checkRegOperand(1))
1817 return false;
1818
1819 // SEW
1820 if (RISCVII::hasSEWOp(TSFlags) &&
1821 !checkImmOperand(RISCVII::getSEWOpNum(Desc)))
1822 return false;
1823
1824 // Mask
1825 if (RISCVII::usesMaskPolicy(TSFlags)) {
1826 const MachineBasicBlock *MBB = Root.getParent();
1829 Register MI1VReg;
1830
1831 bool SeenMI2 = false;
1832 for (auto End = MBB->rend(), It = It1; It != End; ++It) {
1833 if (It == It2) {
1834 SeenMI2 = true;
1835 if (!MI1VReg.isValid())
1836 // There is no V0 def between Root and Prev; they're sharing the
1837 // same V0.
1838 break;
1839 }
1840
1841 if (It->modifiesRegister(RISCV::V0, TRI)) {
1842 Register SrcReg = It->getOperand(1).getReg();
1843 // If it's not VReg it'll be more difficult to track its defs, so
1844 // bailing out here just to be safe.
1845 if (!SrcReg.isVirtual())
1846 return false;
1847
1848 if (!MI1VReg.isValid()) {
1849 // This is the V0 def for Root.
1850 MI1VReg = SrcReg;
1851 continue;
1852 }
1853
1854 // Some random mask updates.
1855 if (!SeenMI2)
1856 continue;
1857
1858 // This is the V0 def for Prev; check if it's the same as that of
1859 // Root.
1860 if (MI1VReg != SrcReg)
1861 return false;
1862 else
1863 break;
1864 }
1865 }
1866
1867 // If we haven't encountered Prev, it's likely that this function was
1868 // called in a wrong way (e.g. Root is before Prev).
1869 assert(SeenMI2 && "Prev is expected to appear before Root");
1870 }
1871
1872 // Tail / Mask policies
1873 if (RISCVII::hasVecPolicyOp(TSFlags) &&
1874 !checkImmOperand(RISCVII::getVecPolicyOpNum(Desc)))
1875 return false;
1876
1877 // VL
1878 if (RISCVII::hasVLOp(TSFlags)) {
1879 unsigned OpIdx = RISCVII::getVLOpNum(Desc);
1880 const MachineOperand &Op1 = Root.getOperand(OpIdx);
1881 const MachineOperand &Op2 = Prev.getOperand(OpIdx);
1882 if (Op1.getType() != Op2.getType())
1883 return false;
1884 switch (Op1.getType()) {
1886 if (Op1.getReg() != Op2.getReg())
1887 return false;
1888 break;
1890 if (Op1.getImm() != Op2.getImm())
1891 return false;
1892 break;
1893 default:
1894 llvm_unreachable("Unrecognized VL operand type");
1895 }
1896 }
1897
1898 // Rounding modes
1899 if (RISCVII::hasRoundModeOp(TSFlags) &&
1900 !checkImmOperand(RISCVII::getVLOpNum(Desc) - 1))
1901 return false;
1902
1903 return true;
1904}
1905
1906// Most of our RVV pseudos have passthru operand, so the real operands
1907// start from index = 2.
1908bool RISCVInstrInfo::hasReassociableVectorSibling(const MachineInstr &Inst,
1909 bool &Commuted) const {
1910 const MachineBasicBlock *MBB = Inst.getParent();
1913 "Expect the present of passthrough operand.");
1914 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
1915 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(3).getReg());
1916
1917 // If only one operand has the same or inverse opcode and it's the second
1918 // source operand, the operands must be commuted.
1919 Commuted = !areRVVInstsReassociable(Inst, *MI1) &&
1920 areRVVInstsReassociable(Inst, *MI2);
1921 if (Commuted)
1922 std::swap(MI1, MI2);
1923
1924 return areRVVInstsReassociable(Inst, *MI1) &&
1925 (isVectorAssociativeAndCommutative(*MI1) ||
1926 isVectorAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
1928 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
1929}
1930
1932 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
1933 if (!isVectorAssociativeAndCommutative(Inst) &&
1934 !isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
1936
1937 const MachineOperand &Op1 = Inst.getOperand(2);
1938 const MachineOperand &Op2 = Inst.getOperand(3);
1940
1941 // We need virtual register definitions for the operands that we will
1942 // reassociate.
1943 MachineInstr *MI1 = nullptr;
1944 MachineInstr *MI2 = nullptr;
1945 if (Op1.isReg() && Op1.getReg().isVirtual())
1946 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
1947 if (Op2.isReg() && Op2.getReg().isVirtual())
1948 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
1949
1950 // And at least one operand must be defined in MBB.
1951 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
1952}
1953
1955 const MachineInstr &Root, unsigned Pattern,
1956 std::array<unsigned, 5> &OperandIndices) const {
1958 if (RISCV::getRVVMCOpcode(Root.getOpcode())) {
1959 // Skip the passthrough operand, so increment all indices by one.
1960 for (unsigned I = 0; I < 5; ++I)
1961 ++OperandIndices[I];
1962 }
1963}
1964
1966 bool &Commuted) const {
1967 if (isVectorAssociativeAndCommutative(Inst) ||
1968 isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
1969 return hasReassociableVectorSibling(Inst, Commuted);
1970
1971 if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted))
1972 return false;
1973
1974 const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
1975 unsigned OperandIdx = Commuted ? 2 : 1;
1976 const MachineInstr &Sibling =
1977 *MRI.getVRegDef(Inst.getOperand(OperandIdx).getReg());
1978
1979 int16_t InstFrmOpIdx =
1980 RISCV::getNamedOperandIdx(Inst.getOpcode(), RISCV::OpName::frm);
1981 int16_t SiblingFrmOpIdx =
1982 RISCV::getNamedOperandIdx(Sibling.getOpcode(), RISCV::OpName::frm);
1983
1984 return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) ||
1985 RISCV::hasEqualFRM(Inst, Sibling);
1986}
1987
1989 bool Invert) const {
1990 if (isVectorAssociativeAndCommutative(Inst, Invert))
1991 return true;
1992
1993 unsigned Opc = Inst.getOpcode();
1994 if (Invert) {
1995 auto InverseOpcode = getInverseOpcode(Opc);
1996 if (!InverseOpcode)
1997 return false;
1998 Opc = *InverseOpcode;
1999 }
2000
2001 if (isFADD(Opc) || isFMUL(Opc))
2004
2005 switch (Opc) {
2006 default:
2007 return false;
2008 case RISCV::ADD:
2009 case RISCV::ADDW:
2010 case RISCV::AND:
2011 case RISCV::OR:
2012 case RISCV::XOR:
2013 // From RISC-V ISA spec, if both the high and low bits of the same product
2014 // are required, then the recommended code sequence is:
2015 //
2016 // MULH[[S]U] rdh, rs1, rs2
2017 // MUL rdl, rs1, rs2
2018 // (source register specifiers must be in same order and rdh cannot be the
2019 // same as rs1 or rs2)
2020 //
2021 // Microarchitectures can then fuse these into a single multiply operation
2022 // instead of performing two separate multiplies.
2023 // MachineCombiner may reassociate MUL operands and lose the fusion
2024 // opportunity.
2025 case RISCV::MUL:
2026 case RISCV::MULW:
2027 case RISCV::MIN:
2028 case RISCV::MINU:
2029 case RISCV::MAX:
2030 case RISCV::MAXU:
2031 case RISCV::FMIN_H:
2032 case RISCV::FMIN_S:
2033 case RISCV::FMIN_D:
2034 case RISCV::FMAX_H:
2035 case RISCV::FMAX_S:
2036 case RISCV::FMAX_D:
2037 return true;
2038 }
2039
2040 return false;
2041}
2042
2043std::optional<unsigned>
2044RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const {
2045#define RVV_OPC_LMUL_CASE(OPC, INV) \
2046 case RISCV::OPC##_M1: \
2047 return RISCV::INV##_M1; \
2048 case RISCV::OPC##_M2: \
2049 return RISCV::INV##_M2; \
2050 case RISCV::OPC##_M4: \
2051 return RISCV::INV##_M4; \
2052 case RISCV::OPC##_M8: \
2053 return RISCV::INV##_M8; \
2054 case RISCV::OPC##_MF2: \
2055 return RISCV::INV##_MF2; \
2056 case RISCV::OPC##_MF4: \
2057 return RISCV::INV##_MF4; \
2058 case RISCV::OPC##_MF8: \
2059 return RISCV::INV##_MF8
2060
2061#define RVV_OPC_LMUL_MASK_CASE(OPC, INV) \
2062 case RISCV::OPC##_M1_MASK: \
2063 return RISCV::INV##_M1_MASK; \
2064 case RISCV::OPC##_M2_MASK: \
2065 return RISCV::INV##_M2_MASK; \
2066 case RISCV::OPC##_M4_MASK: \
2067 return RISCV::INV##_M4_MASK; \
2068 case RISCV::OPC##_M8_MASK: \
2069 return RISCV::INV##_M8_MASK; \
2070 case RISCV::OPC##_MF2_MASK: \
2071 return RISCV::INV##_MF2_MASK; \
2072 case RISCV::OPC##_MF4_MASK: \
2073 return RISCV::INV##_MF4_MASK; \
2074 case RISCV::OPC##_MF8_MASK: \
2075 return RISCV::INV##_MF8_MASK
2076
2077 switch (Opcode) {
2078 default:
2079 return std::nullopt;
2080 case RISCV::FADD_H:
2081 return RISCV::FSUB_H;
2082 case RISCV::FADD_S:
2083 return RISCV::FSUB_S;
2084 case RISCV::FADD_D:
2085 return RISCV::FSUB_D;
2086 case RISCV::FSUB_H:
2087 return RISCV::FADD_H;
2088 case RISCV::FSUB_S:
2089 return RISCV::FADD_S;
2090 case RISCV::FSUB_D:
2091 return RISCV::FADD_D;
2092 case RISCV::ADD:
2093 return RISCV::SUB;
2094 case RISCV::SUB:
2095 return RISCV::ADD;
2096 case RISCV::ADDW:
2097 return RISCV::SUBW;
2098 case RISCV::SUBW:
2099 return RISCV::ADDW;
2100 // clang-format off
2101 RVV_OPC_LMUL_CASE(PseudoVADD_VV, PseudoVSUB_VV);
2102 RVV_OPC_LMUL_MASK_CASE(PseudoVADD_VV, PseudoVSUB_VV);
2103 RVV_OPC_LMUL_CASE(PseudoVSUB_VV, PseudoVADD_VV);
2104 RVV_OPC_LMUL_MASK_CASE(PseudoVSUB_VV, PseudoVADD_VV);
2105 // clang-format on
2106 }
2107
2108#undef RVV_OPC_LMUL_MASK_CASE
2109#undef RVV_OPC_LMUL_CASE
2110}
2111
2113 const MachineOperand &MO,
2114 bool DoRegPressureReduce) {
2115 if (!MO.isReg() || !MO.getReg().isVirtual())
2116 return false;
2117 const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
2118 MachineInstr *MI = MRI.getVRegDef(MO.getReg());
2119 if (!MI || !isFMUL(MI->getOpcode()))
2120 return false;
2121
2124 return false;
2125
2126 // Try combining even if fmul has more than one use as it eliminates
2127 // dependency between fadd(fsub) and fmul. However, it can extend liveranges
2128 // for fmul operands, so reject the transformation in register pressure
2129 // reduction mode.
2130 if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
2131 return false;
2132
2133 // Do not combine instructions from different basic blocks.
2134 if (Root.getParent() != MI->getParent())
2135 return false;
2136 return RISCV::hasEqualFRM(Root, *MI);
2137}
2138
2140 SmallVectorImpl<unsigned> &Patterns,
2141 bool DoRegPressureReduce) {
2142 unsigned Opc = Root.getOpcode();
2143 bool IsFAdd = isFADD(Opc);
2144 if (!IsFAdd && !isFSUB(Opc))
2145 return false;
2146 bool Added = false;
2147 if (canCombineFPFusedMultiply(Root, Root.getOperand(1),
2148 DoRegPressureReduce)) {
2151 Added = true;
2152 }
2153 if (canCombineFPFusedMultiply(Root, Root.getOperand(2),
2154 DoRegPressureReduce)) {
2157 Added = true;
2158 }
2159 return Added;
2160}
2161
2162static bool getFPPatterns(MachineInstr &Root,
2163 SmallVectorImpl<unsigned> &Patterns,
2164 bool DoRegPressureReduce) {
2165 return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce);
2166}
2167
2168/// Utility routine that checks if \param MO is defined by an
2169/// \param CombineOpc instruction in the basic block \param MBB
2171 const MachineOperand &MO,
2172 unsigned CombineOpc) {
2174 const MachineInstr *MI = nullptr;
2175
2176 if (MO.isReg() && MO.getReg().isVirtual())
2177 MI = MRI.getUniqueVRegDef(MO.getReg());
2178 // And it needs to be in the trace (otherwise, it won't have a depth).
2179 if (!MI || MI->getParent() != &MBB || MI->getOpcode() != CombineOpc)
2180 return nullptr;
2181 // Must only used by the user we combine with.
2182 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
2183 return nullptr;
2184
2185 return MI;
2186}
2187
2188/// Utility routine that checks if \param MO is defined by a SLLI in \param
2189/// MBB that can be combined by splitting across 2 SHXADD instructions. The
2190/// first SHXADD shift amount is given by \param OuterShiftAmt.
2192 const MachineOperand &MO,
2193 unsigned OuterShiftAmt) {
2194 const MachineInstr *ShiftMI = canCombine(MBB, MO, RISCV::SLLI);
2195 if (!ShiftMI)
2196 return false;
2197
2198 unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
2199 if (InnerShiftAmt < OuterShiftAmt || (InnerShiftAmt - OuterShiftAmt) > 3)
2200 return false;
2201
2202 return true;
2203}
2204
2205// Returns the shift amount from a SHXADD instruction. Returns 0 if the
2206// instruction is not a SHXADD.
2207static unsigned getSHXADDShiftAmount(unsigned Opc) {
2208 switch (Opc) {
2209 default:
2210 return 0;
2211 case RISCV::SH1ADD:
2212 return 1;
2213 case RISCV::SH2ADD:
2214 return 2;
2215 case RISCV::SH3ADD:
2216 return 3;
2217 }
2218}
2219
2220// Look for opportunities to combine (sh3add Z, (add X, (slli Y, 5))) into
2221// (sh3add (sh2add Y, Z), X).
2222static bool getSHXADDPatterns(const MachineInstr &Root,
2223 SmallVectorImpl<unsigned> &Patterns) {
2224 unsigned ShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
2225 if (!ShiftAmt)
2226 return false;
2227
2228 const MachineBasicBlock &MBB = *Root.getParent();
2229
2230 const MachineInstr *AddMI = canCombine(MBB, Root.getOperand(2), RISCV::ADD);
2231 if (!AddMI)
2232 return false;
2233
2234 bool Found = false;
2235 if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(1), ShiftAmt)) {
2237 Found = true;
2238 }
2239 if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(2), ShiftAmt)) {
2241 Found = true;
2242 }
2243
2244 return Found;
2245}
2246
2248 switch (Pattern) {
2254 default:
2256 }
2257}
2258
2260 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
2261 bool DoRegPressureReduce) const {
2262
2263 if (getFPPatterns(Root, Patterns, DoRegPressureReduce))
2264 return true;
2265
2266 if (getSHXADDPatterns(Root, Patterns))
2267 return true;
2268
2269 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
2270 DoRegPressureReduce);
2271}
2272
2273static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern) {
2274 switch (RootOpc) {
2275 default:
2276 llvm_unreachable("Unexpected opcode");
2277 case RISCV::FADD_H:
2278 return RISCV::FMADD_H;
2279 case RISCV::FADD_S:
2280 return RISCV::FMADD_S;
2281 case RISCV::FADD_D:
2282 return RISCV::FMADD_D;
2283 case RISCV::FSUB_H:
2284 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_H
2285 : RISCV::FNMSUB_H;
2286 case RISCV::FSUB_S:
2287 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_S
2288 : RISCV::FNMSUB_S;
2289 case RISCV::FSUB_D:
2290 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_D
2291 : RISCV::FNMSUB_D;
2292 }
2293}
2294
2295static unsigned getAddendOperandIdx(unsigned Pattern) {
2296 switch (Pattern) {
2297 default:
2298 llvm_unreachable("Unexpected pattern");
2301 return 2;
2304 return 1;
2305 }
2306}
2307
2309 unsigned Pattern,
2312 MachineFunction *MF = Root.getMF();
2315
2316 MachineOperand &Mul1 = Prev.getOperand(1);
2317 MachineOperand &Mul2 = Prev.getOperand(2);
2318 MachineOperand &Dst = Root.getOperand(0);
2320
2321 Register DstReg = Dst.getReg();
2322 unsigned FusedOpc = getFPFusedMultiplyOpcode(Root.getOpcode(), Pattern);
2323 uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
2324 DebugLoc MergedLoc =
2326
2327 bool Mul1IsKill = Mul1.isKill();
2328 bool Mul2IsKill = Mul2.isKill();
2329 bool AddendIsKill = Addend.isKill();
2330
2331 // We need to clear kill flags since we may be extending the live range past
2332 // a kill. If the mul had kill flags, we can preserve those since we know
2333 // where the previous range stopped.
2334 MRI.clearKillFlags(Mul1.getReg());
2335 MRI.clearKillFlags(Mul2.getReg());
2336
2338 BuildMI(*MF, MergedLoc, TII->get(FusedOpc), DstReg)
2339 .addReg(Mul1.getReg(), getKillRegState(Mul1IsKill))
2340 .addReg(Mul2.getReg(), getKillRegState(Mul2IsKill))
2341 .addReg(Addend.getReg(), getKillRegState(AddendIsKill))
2342 .setMIFlags(IntersectedFlags);
2343
2344 InsInstrs.push_back(MIB);
2345 if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg()))
2346 DelInstrs.push_back(&Prev);
2347 DelInstrs.push_back(&Root);
2348}
2349
2350// Combine patterns like (sh3add Z, (add X, (slli Y, 5))) to
2351// (sh3add (sh2add Y, Z), X) if the shift amount can be split across two
2352// shXadd instructions. The outer shXadd keeps its original opcode.
2353static void
2354genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx,
2357 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
2358 MachineFunction *MF = Root.getMF();
2361
2362 unsigned OuterShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
2363 assert(OuterShiftAmt != 0 && "Unexpected opcode");
2364
2365 MachineInstr *AddMI = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
2366 MachineInstr *ShiftMI =
2367 MRI.getUniqueVRegDef(AddMI->getOperand(AddOpIdx).getReg());
2368
2369 unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
2370 assert(InnerShiftAmt >= OuterShiftAmt && "Unexpected shift amount");
2371
2372 unsigned InnerOpc;
2373 switch (InnerShiftAmt - OuterShiftAmt) {
2374 default:
2375 llvm_unreachable("Unexpected shift amount");
2376 case 0:
2377 InnerOpc = RISCV::ADD;
2378 break;
2379 case 1:
2380 InnerOpc = RISCV::SH1ADD;
2381 break;
2382 case 2:
2383 InnerOpc = RISCV::SH2ADD;
2384 break;
2385 case 3:
2386 InnerOpc = RISCV::SH3ADD;
2387 break;
2388 }
2389
2390 const MachineOperand &X = AddMI->getOperand(3 - AddOpIdx);
2391 const MachineOperand &Y = ShiftMI->getOperand(1);
2392 const MachineOperand &Z = Root.getOperand(1);
2393
2394 Register NewVR = MRI.createVirtualRegister(&RISCV::GPRRegClass);
2395
2396 auto MIB1 = BuildMI(*MF, MIMetadata(Root), TII->get(InnerOpc), NewVR)
2397 .addReg(Y.getReg(), getKillRegState(Y.isKill()))
2398 .addReg(Z.getReg(), getKillRegState(Z.isKill()));
2399 auto MIB2 = BuildMI(*MF, MIMetadata(Root), TII->get(Root.getOpcode()),
2400 Root.getOperand(0).getReg())
2401 .addReg(NewVR, RegState::Kill)
2402 .addReg(X.getReg(), getKillRegState(X.isKill()));
2403
2404 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
2405 InsInstrs.push_back(MIB1);
2406 InsInstrs.push_back(MIB2);
2407 DelInstrs.push_back(ShiftMI);
2408 DelInstrs.push_back(AddMI);
2409 DelInstrs.push_back(&Root);
2410}
2411
2413 MachineInstr &Root, unsigned Pattern,
2416 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
2418 switch (Pattern) {
2419 default:
2421 DelInstrs, InstrIdxForVirtReg);
2422 return;
2425 MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(1).getReg());
2426 combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
2427 return;
2428 }
2431 MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(2).getReg());
2432 combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
2433 return;
2434 }
2436 genShXAddAddShift(Root, 1, InsInstrs, DelInstrs, InstrIdxForVirtReg);
2437 return;
2439 genShXAddAddShift(Root, 2, InsInstrs, DelInstrs, InstrIdxForVirtReg);
2440 return;
2441 }
2442}
2443
2445 StringRef &ErrInfo) const {
2446 MCInstrDesc const &Desc = MI.getDesc();
2447
2448 for (const auto &[Index, Operand] : enumerate(Desc.operands())) {
2449 unsigned OpType = Operand.OperandType;
2450 if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
2452 const MachineOperand &MO = MI.getOperand(Index);
2453 if (MO.isReg()) {
2454 ErrInfo = "Expected a non-register operand.";
2455 return false;
2456 }
2457 if (MO.isImm()) {
2458 int64_t Imm = MO.getImm();
2459 bool Ok;
2460 switch (OpType) {
2461 default:
2462 llvm_unreachable("Unexpected operand type");
2463
2464 // clang-format off
2465#define CASE_OPERAND_UIMM(NUM) \
2466 case RISCVOp::OPERAND_UIMM##NUM: \
2467 Ok = isUInt<NUM>(Imm); \
2468 break;
2469#define CASE_OPERAND_SIMM(NUM) \
2470 case RISCVOp::OPERAND_SIMM##NUM: \
2471 Ok = isInt<NUM>(Imm); \
2472 break;
2484 // clang-format on
2486 Ok = isShiftedUInt<1, 1>(Imm);
2487 break;
2489 Ok = isShiftedUInt<4, 1>(Imm);
2490 break;
2492 Ok = isShiftedUInt<5, 1>(Imm);
2493 break;
2495 Ok = isShiftedUInt<5, 2>(Imm);
2496 break;
2498 Ok = isShiftedUInt<4, 3>(Imm);
2499 break;
2501 Ok = isShiftedUInt<6, 2>(Imm);
2502 break;
2504 Ok = isShiftedUInt<5, 3>(Imm);
2505 break;
2507 Ok = isUInt<8>(Imm) && Imm >= 32;
2508 break;
2510 Ok = isShiftedUInt<6, 3>(Imm);
2511 break;
2513 Ok = isShiftedInt<6, 4>(Imm) && (Imm != 0);
2514 break;
2516 Ok = isShiftedUInt<8, 2>(Imm) && (Imm != 0);
2517 break;
2519 Ok = Imm == 0;
2520 break;
2521 // clang-format off
2526 // clang-format on
2528 Ok = (isInt<5>(Imm) && Imm != -16) || Imm == 16;
2529 break;
2531 Ok = Imm != 0 && isInt<6>(Imm);
2532 break;
2534 Ok = isUInt<10>(Imm);
2535 break;
2537 Ok = isUInt<11>(Imm);
2538 break;
2540 Ok = isShiftedInt<7, 5>(Imm);
2541 break;
2543 Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2544 break;
2546 Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2547 Ok = Ok && Imm != 0;
2548 break;
2550 Ok = (isUInt<5>(Imm) && Imm != 0) ||
2551 (Imm >= 0xfffe0 && Imm <= 0xfffff);
2552 break;
2554 Ok = Imm >= 0 && Imm <= 10;
2555 break;
2557 Ok = Imm >= 0 && Imm <= 7;
2558 break;
2560 Ok = Imm >= 1 && Imm <= 10;
2561 break;
2563 Ok = Imm >= 2 && Imm <= 14;
2564 break;
2566 Ok = (Imm & 0xf) == 0;
2567 break;
2570 break;
2572 Ok = Imm == RISCVFPRndMode::RTZ;
2573 break;
2575 Ok = Imm >= 0 && Imm < RISCVCC::COND_INVALID;
2576 break;
2578 Ok = (Imm & (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC)) == Imm;
2579 break;
2581 Ok = (isUInt<5>(Imm) && RISCVVType::isValidSEW(1 << Imm));
2582 break;
2584 Ok = Imm == 0;
2585 break;
2588 if (RISCVII::usesVXRM(Desc.TSFlags))
2589 Ok = isUInt<2>(Imm);
2590 else
2592 break;
2593 }
2594 if (!Ok) {
2595 ErrInfo = "Invalid immediate";
2596 return false;
2597 }
2598 }
2599 }
2600 }
2601
2602 const uint64_t TSFlags = Desc.TSFlags;
2603 if (RISCVII::hasVLOp(TSFlags)) {
2604 const MachineOperand &Op = MI.getOperand(RISCVII::getVLOpNum(Desc));
2605 if (!Op.isImm() && !Op.isReg()) {
2606 ErrInfo = "Invalid operand type for VL operand";
2607 return false;
2608 }
2609 if (Op.isReg() && Op.getReg() != RISCV::NoRegister) {
2610 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2611 auto *RC = MRI.getRegClass(Op.getReg());
2612 if (!RISCV::GPRRegClass.hasSubClassEq(RC)) {
2613 ErrInfo = "Invalid register class for VL operand";
2614 return false;
2615 }
2616 }
2617 if (!RISCVII::hasSEWOp(TSFlags)) {
2618 ErrInfo = "VL operand w/o SEW operand?";
2619 return false;
2620 }
2621 }
2622 if (RISCVII::hasSEWOp(TSFlags)) {
2623 unsigned OpIdx = RISCVII::getSEWOpNum(Desc);
2624 if (!MI.getOperand(OpIdx).isImm()) {
2625 ErrInfo = "SEW value expected to be an immediate";
2626 return false;
2627 }
2628 uint64_t Log2SEW = MI.getOperand(OpIdx).getImm();
2629 if (Log2SEW > 31) {
2630 ErrInfo = "Unexpected SEW value";
2631 return false;
2632 }
2633 unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
2634 if (!RISCVVType::isValidSEW(SEW)) {
2635 ErrInfo = "Unexpected SEW value";
2636 return false;
2637 }
2638 }
2639 if (RISCVII::hasVecPolicyOp(TSFlags)) {
2640 unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc);
2641 if (!MI.getOperand(OpIdx).isImm()) {
2642 ErrInfo = "Policy operand expected to be an immediate";
2643 return false;
2644 }
2645 uint64_t Policy = MI.getOperand(OpIdx).getImm();
2647 ErrInfo = "Invalid Policy Value";
2648 return false;
2649 }
2650 if (!RISCVII::hasVLOp(TSFlags)) {
2651 ErrInfo = "policy operand w/o VL operand?";
2652 return false;
2653 }
2654
2655 // VecPolicy operands can only exist on instructions with passthru/merge
2656 // arguments. Note that not all arguments with passthru have vec policy
2657 // operands- some instructions have implicit policies.
2658 unsigned UseOpIdx;
2659 if (!MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
2660 ErrInfo = "policy operand w/o tied operand?";
2661 return false;
2662 }
2663 }
2664
2665 if (int Idx = RISCVII::getFRMOpNum(Desc);
2666 Idx >= 0 && MI.getOperand(Idx).getImm() == RISCVFPRndMode::DYN &&
2667 !MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr)) {
2668 ErrInfo = "dynamic rounding mode should read FRM";
2669 return false;
2670 }
2671
2672 return true;
2673}
2674
2676 const MachineInstr &AddrI,
2677 ExtAddrMode &AM) const {
2678 switch (MemI.getOpcode()) {
2679 default:
2680 return false;
2681 case RISCV::LB:
2682 case RISCV::LBU:
2683 case RISCV::LH:
2684 case RISCV::LH_INX:
2685 case RISCV::LHU:
2686 case RISCV::LW:
2687 case RISCV::LW_INX:
2688 case RISCV::LWU:
2689 case RISCV::LD:
2690 case RISCV::FLH:
2691 case RISCV::FLW:
2692 case RISCV::FLD:
2693 case RISCV::SB:
2694 case RISCV::SH:
2695 case RISCV::SH_INX:
2696 case RISCV::SW:
2697 case RISCV::SW_INX:
2698 case RISCV::SD:
2699 case RISCV::FSH:
2700 case RISCV::FSW:
2701 case RISCV::FSD:
2702 break;
2703 }
2704
2705 if (MemI.getOperand(0).getReg() == Reg)
2706 return false;
2707
2708 if (AddrI.getOpcode() != RISCV::ADDI || !AddrI.getOperand(1).isReg() ||
2709 !AddrI.getOperand(2).isImm())
2710 return false;
2711
2712 int64_t OldOffset = MemI.getOperand(2).getImm();
2713 int64_t Disp = AddrI.getOperand(2).getImm();
2714 int64_t NewOffset = OldOffset + Disp;
2715 if (!STI.is64Bit())
2716 NewOffset = SignExtend64<32>(NewOffset);
2717
2718 if (!isInt<12>(NewOffset))
2719 return false;
2720
2721 AM.BaseReg = AddrI.getOperand(1).getReg();
2722 AM.ScaledReg = 0;
2723 AM.Scale = 0;
2724 AM.Displacement = NewOffset;
2726 return true;
2727}
2728
2730 const ExtAddrMode &AM) const {
2731
2732 const DebugLoc &DL = MemI.getDebugLoc();
2733 MachineBasicBlock &MBB = *MemI.getParent();
2734
2735 assert(AM.ScaledReg == 0 && AM.Scale == 0 &&
2736 "Addressing mode not supported for folding");
2737
2738 return BuildMI(MBB, MemI, DL, get(MemI.getOpcode()))
2739 .addReg(MemI.getOperand(0).getReg(),
2740 MemI.mayLoad() ? RegState::Define : 0)
2741 .addReg(AM.BaseReg)
2742 .addImm(AM.Displacement)
2743 .setMemRefs(MemI.memoperands())
2744 .setMIFlags(MemI.getFlags());
2745}
2746
2749 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
2750 const TargetRegisterInfo *TRI) const {
2751 if (!LdSt.mayLoadOrStore())
2752 return false;
2753
2754 // Conservatively, only handle scalar loads/stores for now.
2755 switch (LdSt.getOpcode()) {
2756 case RISCV::LB:
2757 case RISCV::LBU:
2758 case RISCV::SB:
2759 case RISCV::LH:
2760 case RISCV::LH_INX:
2761 case RISCV::LHU:
2762 case RISCV::FLH:
2763 case RISCV::SH:
2764 case RISCV::SH_INX:
2765 case RISCV::FSH:
2766 case RISCV::LW:
2767 case RISCV::LW_INX:
2768 case RISCV::LWU:
2769 case RISCV::FLW:
2770 case RISCV::SW:
2771 case RISCV::SW_INX:
2772 case RISCV::FSW:
2773 case RISCV::LD:
2774 case RISCV::FLD:
2775 case RISCV::SD:
2776 case RISCV::FSD:
2777 break;
2778 default:
2779 return false;
2780 }
2781 const MachineOperand *BaseOp;
2782 OffsetIsScalable = false;
2783 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2784 return false;
2785 BaseOps.push_back(BaseOp);
2786 return true;
2787}
2788
2789// TODO: This was copied from SIInstrInfo. Could it be lifted to a common
2790// helper?
2793 const MachineInstr &MI2,
2795 // Only examine the first "base" operand of each instruction, on the
2796 // assumption that it represents the real base address of the memory access.
2797 // Other operands are typically offsets or indices from this base address.
2798 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
2799 return true;
2800
2801 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
2802 return false;
2803
2804 auto MO1 = *MI1.memoperands_begin();
2805 auto MO2 = *MI2.memoperands_begin();
2806 if (MO1->getAddrSpace() != MO2->getAddrSpace())
2807 return false;
2808
2809 auto Base1 = MO1->getValue();
2810 auto Base2 = MO2->getValue();
2811 if (!Base1 || !Base2)
2812 return false;
2813 Base1 = getUnderlyingObject(Base1);
2814 Base2 = getUnderlyingObject(Base2);
2815
2816 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
2817 return false;
2818
2819 return Base1 == Base2;
2820}
2821
2823 ArrayRef<const MachineOperand *> BaseOps1, int64_t Offset1,
2824 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2825 int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize,
2826 unsigned NumBytes) const {
2827 // If the mem ops (to be clustered) do not have the same base ptr, then they
2828 // should not be clustered
2829 if (!BaseOps1.empty() && !BaseOps2.empty()) {
2830 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
2831 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
2832 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
2833 return false;
2834 } else if (!BaseOps1.empty() || !BaseOps2.empty()) {
2835 // If only one base op is empty, they do not have the same base ptr
2836 return false;
2837 }
2838
2839 unsigned CacheLineSize =
2840 BaseOps1.front()->getParent()->getMF()->getSubtarget().getCacheLineSize();
2841 // Assume a cache line size of 64 bytes if no size is set in RISCVSubtarget.
2843 // Cluster if the memory operations are on the same or a neighbouring cache
2844 // line, but limit the maximum ClusterSize to avoid creating too much
2845 // additional register pressure.
2846 return ClusterSize <= 4 && std::abs(Offset1 - Offset2) < CacheLineSize;
2847}
2848
2849// Set BaseReg (the base register operand), Offset (the byte offset being
2850// accessed) and the access Width of the passed instruction that reads/writes
2851// memory. Returns false if the instruction does not read/write memory or the
2852// BaseReg/Offset/Width can't be determined. Is not guaranteed to always
2853// recognise base operands and offsets in all cases.
2854// TODO: Add an IsScalable bool ref argument (like the equivalent AArch64
2855// function) and set it as appropriate.
2857 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
2858 LocationSize &Width, const TargetRegisterInfo *TRI) const {
2859 if (!LdSt.mayLoadOrStore())
2860 return false;
2861
2862 // Here we assume the standard RISC-V ISA, which uses a base+offset
2863 // addressing mode. You'll need to relax these conditions to support custom
2864 // load/store instructions.
2865 if (LdSt.getNumExplicitOperands() != 3)
2866 return false;
2867 if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2868 !LdSt.getOperand(2).isImm())
2869 return false;
2870
2871 if (!LdSt.hasOneMemOperand())
2872 return false;
2873
2874 Width = (*LdSt.memoperands_begin())->getSize();
2875 BaseReg = &LdSt.getOperand(1);
2876 Offset = LdSt.getOperand(2).getImm();
2877 return true;
2878}
2879
2881 const MachineInstr &MIa, const MachineInstr &MIb) const {
2882 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
2883 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
2884
2887 return false;
2888
2889 // Retrieve the base register, offset from the base register and width. Width
2890 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
2891 // base registers are identical, and the offset of a lower memory access +
2892 // the width doesn't overlap the offset of a higher memory access,
2893 // then the memory accesses are different.
2895 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
2896 int64_t OffsetA = 0, OffsetB = 0;
2897 LocationSize WidthA = 0, WidthB = 0;
2898 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
2899 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
2900 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
2901 int LowOffset = std::min(OffsetA, OffsetB);
2902 int HighOffset = std::max(OffsetA, OffsetB);
2903 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2904 if (LowWidth.hasValue() &&
2905 LowOffset + (int)LowWidth.getValue() <= HighOffset)
2906 return true;
2907 }
2908 }
2909 return false;
2910}
2911
2912std::pair<unsigned, unsigned>
2914 const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
2915 return std::make_pair(TF & Mask, TF & ~Mask);
2916}
2917
2920 using namespace RISCVII;
2921 static const std::pair<unsigned, const char *> TargetFlags[] = {
2922 {MO_CALL, "riscv-call"},
2923 {MO_LO, "riscv-lo"},
2924 {MO_HI, "riscv-hi"},
2925 {MO_PCREL_LO, "riscv-pcrel-lo"},
2926 {MO_PCREL_HI, "riscv-pcrel-hi"},
2927 {MO_GOT_HI, "riscv-got-hi"},
2928 {MO_TPREL_LO, "riscv-tprel-lo"},
2929 {MO_TPREL_HI, "riscv-tprel-hi"},
2930 {MO_TPREL_ADD, "riscv-tprel-add"},
2931 {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
2932 {MO_TLS_GD_HI, "riscv-tls-gd-hi"},
2933 {MO_TLSDESC_HI, "riscv-tlsdesc-hi"},
2934 {MO_TLSDESC_LOAD_LO, "riscv-tlsdesc-load-lo"},
2935 {MO_TLSDESC_ADD_LO, "riscv-tlsdesc-add-lo"},
2936 {MO_TLSDESC_CALL, "riscv-tlsdesc-call"}};
2937 return ArrayRef(TargetFlags);
2938}
2940 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
2941 const Function &F = MF.getFunction();
2942
2943 // Can F be deduplicated by the linker? If it can, don't outline from it.
2944 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
2945 return false;
2946
2947 // Don't outline from functions with section markings; the program could
2948 // expect that all the code is in the named section.
2949 if (F.hasSection())
2950 return false;
2951
2952 // It's safe to outline from MF.
2953 return true;
2954}
2955
2957 unsigned &Flags) const {
2958 // More accurate safety checking is done in getOutliningCandidateInfo.
2960}
2961
2962// Enum values indicating how an outlined call should be constructed.
2967
2969 MachineFunction &MF) const {
2970 return MF.getFunction().hasMinSize();
2971}
2972
2974 const MachineFunction *MF = MBB.getParent();
2975 const Function &F = MF->getFunction();
2976 return F.getFnAttribute("fentry-call").getValueAsBool() ||
2977 F.hasFnAttribute("patchable-function-entry");
2978}
2979
2981 unsigned RegNo) {
2982 return MI.readsRegister(RegNo, TRI) ||
2983 MI.getDesc().hasImplicitUseOfPhysReg(RegNo);
2984}
2985
2987 const TargetRegisterInfo *TRI, unsigned RegNo) {
2988 return MI.modifiesRegister(RegNo, TRI) ||
2989 MI.getDesc().hasImplicitDefOfPhysReg(RegNo);
2990}
2991
2993 if (!MBB.back().isReturn())
2994 return true;
2996 return true;
2997
2998 // If the candidate reads the pre-set register
2999 // that can be used for expanding PseudoTAIL instruction,
3000 // then we cannot insert tail call.
3002 unsigned TailExpandUseRegNo =
3004 for (const MachineInstr &MI : MBB) {
3005 if (isMIReadsReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
3006 return true;
3007 if (isMIModifiesReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
3008 break;
3009 }
3010 return false;
3011}
3012
3013static std::optional<MachineOutlinerConstructionID>
3015 // If last instruction is return then we can rely on
3016 // the verification already performed in the getOutliningTypeImpl.
3017 if (C.back().isReturn()) {
3018 assert(!cannotInsertTailCall(*C.getMBB()) &&
3019 "The candidate who uses return instruction must be outlined "
3020 "using tail call");
3022 }
3023
3024 auto CandidateUsesX5 = [](outliner::Candidate &C) {
3025 const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
3026 if (std::any_of(C.begin(), C.end(), [TRI](const MachineInstr &MI) {
3027 return isMIModifiesReg(MI, TRI, RISCV::X5);
3028 }))
3029 return true;
3030 return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI);
3031 };
3032
3033 if (!CandidateUsesX5(C))
3035
3036 return std::nullopt;
3037}
3038
3039std::optional<std::unique_ptr<outliner::OutlinedFunction>>
3041 const MachineModuleInfo &MMI,
3042 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
3043 unsigned MinRepeats) const {
3044
3045 // Each RepeatedSequenceLoc is identical.
3046 outliner::Candidate &Candidate = RepeatedSequenceLocs[0];
3047 auto CandidateInfo = analyzeCandidate(Candidate);
3048 if (!CandidateInfo)
3049 RepeatedSequenceLocs.clear();
3050
3051 // If the sequence doesn't have enough candidates left, then we're done.
3052 if (RepeatedSequenceLocs.size() < MinRepeats)
3053 return std::nullopt;
3054
3055 unsigned InstrSizeCExt =
3056 Candidate.getMF()->getSubtarget<RISCVSubtarget>().hasStdExtCOrZca() ? 2
3057 : 4;
3058 unsigned CallOverhead = 0, FrameOverhead = 0;
3059
3060 MachineOutlinerConstructionID MOCI = CandidateInfo.value();
3061 switch (MOCI) {
3063 // call t0, function = 8 bytes.
3064 CallOverhead = 8;
3065 // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
3066 FrameOverhead = InstrSizeCExt;
3067 break;
3069 // tail call = auipc + jalr in the worst case without linker relaxation.
3070 CallOverhead = 4 + InstrSizeCExt;
3071 // Using tail call we move ret instruction from caller to callee.
3072 FrameOverhead = 0;
3073 break;
3074 }
3075
3076 for (auto &C : RepeatedSequenceLocs)
3077 C.setCallInfo(MOCI, CallOverhead);
3078
3079 unsigned SequenceSize = 0;
3080 for (auto &MI : Candidate)
3081 SequenceSize += getInstSizeInBytes(MI);
3082
3083 return std::make_unique<outliner::OutlinedFunction>(
3084 RepeatedSequenceLocs, SequenceSize, FrameOverhead, MOCI);
3085}
3086
3090 unsigned Flags) const {
3091 MachineInstr &MI = *MBBI;
3092 MachineBasicBlock *MBB = MI.getParent();
3093 const TargetRegisterInfo *TRI =
3095 const auto &F = MI.getMF()->getFunction();
3096
3097 // We can manually strip out CFI instructions later.
3098 if (MI.isCFIInstruction())
3099 // If current function has exception handling code, we can't outline &
3100 // strip these CFI instructions since it may break .eh_frame section
3101 // needed in unwinding.
3102 return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal
3104
3105 if (cannotInsertTailCall(*MBB) &&
3106 (MI.isReturn() || isMIModifiesReg(MI, TRI, RISCV::X5)))
3108
3109 // Make sure the operands don't reference something unsafe.
3110 for (const auto &MO : MI.operands()) {
3111
3112 // pcrel-hi and pcrel-lo can't put in separate sections, filter that out
3113 // if any possible.
3114 if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO &&
3115 (MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() ||
3116 F.hasSection() || F.getSectionPrefix()))
3118 }
3119
3121}
3122
3125 const outliner::OutlinedFunction &OF) const {
3126
3127 // Strip out any CFI instructions
3128 bool Changed = true;
3129 while (Changed) {
3130 Changed = false;
3131 auto I = MBB.begin();
3132 auto E = MBB.end();
3133 for (; I != E; ++I) {
3134 if (I->isCFIInstruction()) {
3135 I->removeFromParent();
3136 Changed = true;
3137 break;
3138 }
3139 }
3140 }
3141
3143 return;
3144
3145 MBB.addLiveIn(RISCV::X5);
3146
3147 // Add in a return instruction to the end of the outlined frame.
3148 MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
3149 .addReg(RISCV::X0, RegState::Define)
3150 .addReg(RISCV::X5)
3151 .addImm(0));
3152}
3153
3157
3158 if (C.CallConstructionID == MachineOutlinerTailCall) {
3159 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(RISCV::PseudoTAIL))
3160 .addGlobalAddress(M.getNamedValue(MF.getName()),
3161 /*Offset=*/0, RISCVII::MO_CALL));
3162 return It;
3163 }
3164
3165 // Add in a call instruction to the outlined function at the given location.
3166 It = MBB.insert(It,
3167 BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
3168 .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
3170 return It;
3171}
3172
3173std::optional<RegImmPair> RISCVInstrInfo::isAddImmediate(const MachineInstr &MI,
3174 Register Reg) const {
3175 // TODO: Handle cases where Reg is a super- or sub-register of the
3176 // destination register.
3177 const MachineOperand &Op0 = MI.getOperand(0);
3178 if (!Op0.isReg() || Reg != Op0.getReg())
3179 return std::nullopt;
3180
3181 // Don't consider ADDIW as a candidate because the caller may not be aware
3182 // of its sign extension behaviour.
3183 if (MI.getOpcode() == RISCV::ADDI && MI.getOperand(1).isReg() &&
3184 MI.getOperand(2).isImm())
3185 return RegImmPair{MI.getOperand(1).getReg(), MI.getOperand(2).getImm()};
3186
3187 return std::nullopt;
3188}
3189
3190// MIR printer helper function to annotate Operands with a comment.
3192 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
3193 const TargetRegisterInfo *TRI) const {
3194 // Print a generic comment for this operand if there is one.
3195 std::string GenericComment =
3197 if (!GenericComment.empty())
3198 return GenericComment;
3199
3200 // If not, we must have an immediate operand.
3201 if (!Op.isImm())
3202 return std::string();
3203
3204 const MCInstrDesc &Desc = MI.getDesc();
3205 if (OpIdx >= Desc.getNumOperands())
3206 return std::string();
3207
3208 std::string Comment;
3209 raw_string_ostream OS(Comment);
3210
3211 const MCOperandInfo &OpInfo = Desc.operands()[OpIdx];
3212
3213 // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW
3214 // operand of vector codegen pseudos.
3215 switch (OpInfo.OperandType) {
3218 unsigned Imm = Op.getImm();
3220 break;
3221 }
3224 unsigned Log2SEW = Op.getImm();
3225 unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
3226 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
3227 OS << "e" << SEW;
3228 break;
3229 }
3231 unsigned Policy = Op.getImm();
3233 "Invalid Policy Value");
3234 OS << (Policy & RISCVII::TAIL_AGNOSTIC ? "ta" : "tu") << ", "
3235 << (Policy & RISCVII::MASK_AGNOSTIC ? "ma" : "mu");
3236 break;
3237 }
3238
3239 return Comment;
3240}
3241
3242// clang-format off
3243#define CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL) \
3244 RISCV::Pseudo##OP##_##LMUL
3245
3246#define CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL) \
3247 RISCV::Pseudo##OP##_##LMUL##_MASK
3248
3249#define CASE_RVV_OPCODE_LMUL(OP, LMUL) \
3250 CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL): \
3251 case CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL)
3252
3253#define CASE_RVV_OPCODE_UNMASK_WIDEN(OP) \
3254 CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF8): \
3255 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF4): \
3256 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF2): \
3257 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M1): \
3258 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M2): \
3259 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M4)
3260
3261#define CASE_RVV_OPCODE_UNMASK(OP) \
3262 CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
3263 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M8)
3264
3265#define CASE_RVV_OPCODE_MASK_WIDEN(OP) \
3266 CASE_RVV_OPCODE_MASK_LMUL(OP, MF8): \
3267 case CASE_RVV_OPCODE_MASK_LMUL(OP, MF4): \
3268 case CASE_RVV_OPCODE_MASK_LMUL(OP, MF2): \
3269 case CASE_RVV_OPCODE_MASK_LMUL(OP, M1): \
3270 case CASE_RVV_OPCODE_MASK_LMUL(OP, M2): \
3271 case CASE_RVV_OPCODE_MASK_LMUL(OP, M4)
3272
3273#define CASE_RVV_OPCODE_MASK(OP) \
3274 CASE_RVV_OPCODE_MASK_WIDEN(OP): \
3275 case CASE_RVV_OPCODE_MASK_LMUL(OP, M8)
3276
3277#define CASE_RVV_OPCODE_WIDEN(OP) \
3278 CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
3279 case CASE_RVV_OPCODE_MASK_WIDEN(OP)
3280
3281#define CASE_RVV_OPCODE(OP) \
3282 CASE_RVV_OPCODE_UNMASK(OP): \
3283 case CASE_RVV_OPCODE_MASK(OP)
3284// clang-format on
3285
3286// clang-format off
3287#define CASE_VMA_OPCODE_COMMON(OP, TYPE, LMUL) \
3288 RISCV::PseudoV##OP##_##TYPE##_##LMUL
3289
3290#define CASE_VMA_OPCODE_LMULS_M1(OP, TYPE) \
3291 CASE_VMA_OPCODE_COMMON(OP, TYPE, M1): \
3292 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M2): \
3293 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M4): \
3294 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M8)
3295
3296#define CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE) \
3297 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF2): \
3298 case CASE_VMA_OPCODE_LMULS_M1(OP, TYPE)
3299
3300#define CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE) \
3301 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF4): \
3302 case CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE)
3303
3304#define CASE_VMA_OPCODE_LMULS(OP, TYPE) \
3305 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF8): \
3306 case CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE)
3307
3308// VFMA instructions are SEW specific.
3309#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL, SEW) \
3310 RISCV::PseudoV##OP##_##TYPE##_##LMUL##_##SEW
3311
3312#define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW) \
3313 CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1, SEW): \
3314 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2, SEW): \
3315 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4, SEW): \
3316 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8, SEW)
3317
3318#define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW) \
3319 CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2, SEW): \
3320 case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW)
3321
3322#define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE, SEW) \
3323 CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4, SEW): \
3324 case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW)
3325
3326#define CASE_VFMA_OPCODE_VV(OP) \
3327 CASE_VFMA_OPCODE_LMULS_MF4(OP, VV, E16): \
3328 case CASE_VFMA_OPCODE_LMULS_MF2(OP, VV, E32): \
3329 case CASE_VFMA_OPCODE_LMULS_M1(OP, VV, E64)
3330
3331#define CASE_VFMA_SPLATS(OP) \
3332 CASE_VFMA_OPCODE_LMULS_MF4(OP, VFPR16, E16): \
3333 case CASE_VFMA_OPCODE_LMULS_MF2(OP, VFPR32, E32): \
3334 case CASE_VFMA_OPCODE_LMULS_M1(OP, VFPR64, E64)
3335// clang-format on
3336
3338 unsigned &SrcOpIdx1,
3339 unsigned &SrcOpIdx2) const {
3340 const MCInstrDesc &Desc = MI.getDesc();
3341 if (!Desc.isCommutable())
3342 return false;
3343
3344 switch (MI.getOpcode()) {
3345 case RISCV::TH_MVEQZ:
3346 case RISCV::TH_MVNEZ:
3347 // We can't commute operands if operand 2 (i.e., rs1 in
3348 // mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is
3349 // not valid as the in/out-operand 1).
3350 if (MI.getOperand(2).getReg() == RISCV::X0)
3351 return false;
3352 // Operands 1 and 2 are commutable, if we switch the opcode.
3353 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
3354 case RISCV::TH_MULA:
3355 case RISCV::TH_MULAW:
3356 case RISCV::TH_MULAH:
3357 case RISCV::TH_MULS:
3358 case RISCV::TH_MULSW:
3359 case RISCV::TH_MULSH:
3360 // Operands 2 and 3 are commutable.
3361 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
3362 case RISCV::PseudoCCMOVGPRNoX0:
3363 case RISCV::PseudoCCMOVGPR:
3364 // Operands 4 and 5 are commutable.
3365 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 4, 5);
3366 case CASE_RVV_OPCODE(VADD_VV):
3367 case CASE_RVV_OPCODE(VAND_VV):
3368 case CASE_RVV_OPCODE(VOR_VV):
3369 case CASE_RVV_OPCODE(VXOR_VV):
3370 case CASE_RVV_OPCODE_MASK(VMSEQ_VV):
3371 case CASE_RVV_OPCODE_MASK(VMSNE_VV):
3372 case CASE_RVV_OPCODE(VMIN_VV):
3373 case CASE_RVV_OPCODE(VMINU_VV):
3374 case CASE_RVV_OPCODE(VMAX_VV):
3375 case CASE_RVV_OPCODE(VMAXU_VV):
3376 case CASE_RVV_OPCODE(VMUL_VV):
3377 case CASE_RVV_OPCODE(VMULH_VV):
3378 case CASE_RVV_OPCODE(VMULHU_VV):
3379 case CASE_RVV_OPCODE_WIDEN(VWADD_VV):
3380 case CASE_RVV_OPCODE_WIDEN(VWADDU_VV):
3381 case CASE_RVV_OPCODE_WIDEN(VWMUL_VV):
3382 case CASE_RVV_OPCODE_WIDEN(VWMULU_VV):
3383 case CASE_RVV_OPCODE_WIDEN(VWMACC_VV):
3384 case CASE_RVV_OPCODE_WIDEN(VWMACCU_VV):
3385 case CASE_RVV_OPCODE_UNMASK(VADC_VVM):
3386 case CASE_RVV_OPCODE(VSADD_VV):
3387 case CASE_RVV_OPCODE(VSADDU_VV):
3388 case CASE_RVV_OPCODE(VAADD_VV):
3389 case CASE_RVV_OPCODE(VAADDU_VV):
3390 case CASE_RVV_OPCODE(VSMUL_VV):
3391 // Operands 2 and 3 are commutable.
3392 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
3393 case CASE_VFMA_SPLATS(FMADD):
3394 case CASE_VFMA_SPLATS(FMSUB):
3395 case CASE_VFMA_SPLATS(FMACC):
3396 case CASE_VFMA_SPLATS(FMSAC):
3399 case CASE_VFMA_SPLATS(FNMACC):
3400 case CASE_VFMA_SPLATS(FNMSAC):
3401 case CASE_VFMA_OPCODE_VV(FMACC):
3402 case CASE_VFMA_OPCODE_VV(FMSAC):
3403 case CASE_VFMA_OPCODE_VV(FNMACC):
3404 case CASE_VFMA_OPCODE_VV(FNMSAC):
3405 case CASE_VMA_OPCODE_LMULS(MADD, VX):
3406 case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
3407 case CASE_VMA_OPCODE_LMULS(MACC, VX):
3408 case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
3409 case CASE_VMA_OPCODE_LMULS(MACC, VV):
3410 case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
3411 // If the tail policy is undisturbed we can't commute.
3412 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
3413 if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
3414 return false;
3415
3416 // For these instructions we can only swap operand 1 and operand 3 by
3417 // changing the opcode.
3418 unsigned CommutableOpIdx1 = 1;
3419 unsigned CommutableOpIdx2 = 3;
3420 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3421 CommutableOpIdx2))
3422 return false;
3423 return true;
3424 }
3425 case CASE_VFMA_OPCODE_VV(FMADD):
3429 case CASE_VMA_OPCODE_LMULS(MADD, VV):
3430 case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
3431 // If the tail policy is undisturbed we can't commute.
3432 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
3433 if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
3434 return false;
3435
3436 // For these instructions we have more freedom. We can commute with the
3437 // other multiplicand or with the addend/subtrahend/minuend.
3438
3439 // Any fixed operand must be from source 1, 2 or 3.
3440 if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
3441 return false;
3442 if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
3443 return false;
3444
3445 // It both ops are fixed one must be the tied source.
3446 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
3447 SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
3448 return false;
3449
3450 // Look for two different register operands assumed to be commutable
3451 // regardless of the FMA opcode. The FMA opcode is adjusted later if
3452 // needed.
3453 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
3454 SrcOpIdx2 == CommuteAnyOperandIndex) {
3455 // At least one of operands to be commuted is not specified and
3456 // this method is free to choose appropriate commutable operands.
3457 unsigned CommutableOpIdx1 = SrcOpIdx1;
3458 if (SrcOpIdx1 == SrcOpIdx2) {
3459 // Both of operands are not fixed. Set one of commutable
3460 // operands to the tied source.
3461 CommutableOpIdx1 = 1;
3462 } else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
3463 // Only one of the operands is not fixed.
3464 CommutableOpIdx1 = SrcOpIdx2;
3465 }
3466
3467 // CommutableOpIdx1 is well defined now. Let's choose another commutable
3468 // operand and assign its index to CommutableOpIdx2.
3469 unsigned CommutableOpIdx2;
3470 if (CommutableOpIdx1 != 1) {
3471 // If we haven't already used the tied source, we must use it now.
3472 CommutableOpIdx2 = 1;
3473 } else {
3474 Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
3475
3476 // The commuted operands should have different registers.
3477 // Otherwise, the commute transformation does not change anything and
3478 // is useless. We use this as a hint to make our decision.
3479 if (Op1Reg != MI.getOperand(2).getReg())
3480 CommutableOpIdx2 = 2;
3481 else
3482 CommutableOpIdx2 = 3;
3483 }
3484
3485 // Assign the found pair of commutable indices to SrcOpIdx1 and
3486 // SrcOpIdx2 to return those values.
3487 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3488 CommutableOpIdx2))
3489 return false;
3490 }
3491
3492 return true;
3493 }
3494 }
3495
3496 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3497}
3498
3499// clang-format off
3500#define CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \
3501 case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL: \
3502 Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL; \
3503 break;
3504
3505#define CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) \
3506 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \
3507 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \
3508 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \
3509 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
3510
3511#define CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) \
3512 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \
3513 CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)
3514
3515#define CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) \
3516 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \
3517 CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)
3518
3519#define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \
3520 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \
3521 CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)
3522
3523#define CASE_VMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
3524 CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16) \
3525 CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32) \
3526 CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64)
3527
3528// VFMA depends on SEW.
3529#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL, SEW) \
3530 case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_##SEW: \
3531 Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_##SEW; \
3532 break;
3533
3534#define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW) \
3535 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1, SEW) \
3536 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2, SEW) \
3537 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4, SEW) \
3538 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8, SEW)
3539
3540#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW) \
3541 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2, SEW) \
3542 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW)
3543
3544#define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP) \
3545 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VV, E16) \
3546 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VV, E32) \
3547 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VV, E64)
3548
3549#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW) \
3550 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4, SEW) \
3551 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW)
3552
3553#define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE, SEW) \
3554 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8, SEW) \
3555 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW)
3556
3557#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
3558 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16, E16) \
3559 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32, E32) \
3560 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64, E64)
3561
3563 bool NewMI,
3564 unsigned OpIdx1,
3565 unsigned OpIdx2) const {
3566 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
3567 if (NewMI)
3568 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
3569 return MI;
3570 };
3571
3572 switch (MI.getOpcode()) {
3573 case RISCV::TH_MVEQZ:
3574 case RISCV::TH_MVNEZ: {
3575 auto &WorkingMI = cloneIfNew(MI);
3576 WorkingMI.setDesc(get(MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ
3577 : RISCV::TH_MVEQZ));
3578 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, false, OpIdx1,
3579 OpIdx2);
3580 }
3581 case RISCV::PseudoCCMOVGPRNoX0:
3582 case RISCV::PseudoCCMOVGPR: {
3583 // CCMOV can be commuted by inverting the condition.
3584 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
3586 auto &WorkingMI = cloneIfNew(MI);
3587 WorkingMI.getOperand(3).setImm(CC);
3588 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI*/ false,
3589 OpIdx1, OpIdx2);
3590 }
3591 case CASE_VFMA_SPLATS(FMACC):
3592 case CASE_VFMA_SPLATS(FMADD):
3593 case CASE_VFMA_SPLATS(FMSAC):
3594 case CASE_VFMA_SPLATS(FMSUB):
3595 case CASE_VFMA_SPLATS(FNMACC):
3597 case CASE_VFMA_SPLATS(FNMSAC):
3599 case CASE_VFMA_OPCODE_VV(FMACC):
3600 case CASE_VFMA_OPCODE_VV(FMSAC):
3601 case CASE_VFMA_OPCODE_VV(FNMACC):
3602 case CASE_VFMA_OPCODE_VV(FNMSAC):
3603 case CASE_VMA_OPCODE_LMULS(MADD, VX):
3604 case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
3605 case CASE_VMA_OPCODE_LMULS(MACC, VX):
3606 case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
3607 case CASE_VMA_OPCODE_LMULS(MACC, VV):
3608 case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
3609 // It only make sense to toggle these between clobbering the
3610 // addend/subtrahend/minuend one of the multiplicands.
3611 assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
3612 assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
3613 unsigned Opc;
3614 switch (MI.getOpcode()) {
3615 default:
3616 llvm_unreachable("Unexpected opcode");
3617 CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
3618 CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
3625 CASE_VFMA_CHANGE_OPCODE_VV(FMACC, FMADD)
3629 CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
3630 CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
3631 CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
3632 CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
3633 CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
3634 CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
3635 }
3636
3637 auto &WorkingMI = cloneIfNew(MI);
3638 WorkingMI.setDesc(get(Opc));
3639 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
3640 OpIdx1, OpIdx2);
3641 }
3642 case CASE_VFMA_OPCODE_VV(FMADD):
3646 case CASE_VMA_OPCODE_LMULS(MADD, VV):
3647 case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
3648 assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
3649 // If one of the operands, is the addend we need to change opcode.
3650 // Otherwise we're just swapping 2 of the multiplicands.
3651 if (OpIdx1 == 3 || OpIdx2 == 3) {
3652 unsigned Opc;
3653 switch (MI.getOpcode()) {
3654 default:
3655 llvm_unreachable("Unexpected opcode");
3656 CASE_VFMA_CHANGE_OPCODE_VV(FMADD, FMACC)
3660 CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
3661 CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
3662 }
3663
3664 auto &WorkingMI = cloneIfNew(MI);
3665 WorkingMI.setDesc(get(Opc));
3666 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
3667 OpIdx1, OpIdx2);
3668 }
3669 // Let the default code handle it.
3670 break;
3671 }
3672 }
3673
3674 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3675}
3676
3677#undef CASE_RVV_OPCODE_UNMASK_LMUL
3678#undef CASE_RVV_OPCODE_MASK_LMUL
3679#undef CASE_RVV_OPCODE_LMUL
3680#undef CASE_RVV_OPCODE_UNMASK_WIDEN
3681#undef CASE_RVV_OPCODE_UNMASK
3682#undef CASE_RVV_OPCODE_MASK_WIDEN
3683#undef CASE_RVV_OPCODE_MASK
3684#undef CASE_RVV_OPCODE_WIDEN
3685#undef CASE_RVV_OPCODE
3686
3687#undef CASE_VMA_OPCODE_COMMON
3688#undef CASE_VMA_OPCODE_LMULS_M1
3689#undef CASE_VMA_OPCODE_LMULS_MF2
3690#undef CASE_VMA_OPCODE_LMULS_MF4
3691#undef CASE_VMA_OPCODE_LMULS
3692#undef CASE_VFMA_OPCODE_COMMON
3693#undef CASE_VFMA_OPCODE_LMULS_M1
3694#undef CASE_VFMA_OPCODE_LMULS_MF2
3695#undef CASE_VFMA_OPCODE_LMULS_MF4
3696#undef CASE_VFMA_OPCODE_VV
3697#undef CASE_VFMA_SPLATS
3698
3699// clang-format off
3700#define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL) \
3701 RISCV::PseudoV##OP##_##LMUL##_TIED
3702
3703#define CASE_WIDEOP_OPCODE_LMULS_MF4(OP) \
3704 CASE_WIDEOP_OPCODE_COMMON(OP, MF4): \
3705 case CASE_WIDEOP_OPCODE_COMMON(OP, MF2): \
3706 case CASE_WIDEOP_OPCODE_COMMON(OP, M1): \
3707 case CASE_WIDEOP_OPCODE_COMMON(OP, M2): \
3708 case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
3709
3710#define CASE_WIDEOP_OPCODE_LMULS(OP) \
3711 CASE_WIDEOP_OPCODE_COMMON(OP, MF8): \
3712 case CASE_WIDEOP_OPCODE_LMULS_MF4(OP)
3713
3714#define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL) \
3715 case RISCV::PseudoV##OP##_##LMUL##_TIED: \
3716 NewOpc = RISCV::PseudoV##OP##_##LMUL; \
3717 break;
3718
3719#define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \
3720 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4) \
3721 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2) \
3722 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1) \
3723 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2) \
3724 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)
3725
3726#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
3727 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8) \
3728 CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
3729
3730// FP Widening Ops may by SEW aware. Create SEW aware cases for these cases.
3731#define CASE_FP_WIDEOP_OPCODE_COMMON(OP, LMUL, SEW) \
3732 RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED
3733
3734#define CASE_FP_WIDEOP_OPCODE_LMULS_MF4(OP) \
3735 CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF4, E16): \
3736 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E16): \
3737 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E32): \
3738 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E16): \
3739 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E32): \
3740 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E16): \
3741 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E32): \
3742 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E16): \
3743 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E32) \
3744
3745#define CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL, SEW) \
3746 case RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED: \
3747 NewOpc = RISCV::PseudoV##OP##_##LMUL##_##SEW; \
3748 break;
3749
3750#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \
3751 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4, E16) \
3752 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E16) \
3753 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E32) \
3754 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E16) \
3755 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E32) \
3756 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E16) \
3757 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E32) \
3758 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E16) \
3759 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E32) \
3760
3761#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
3762 CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
3763// clang-format on
3764
3766 LiveVariables *LV,
3767 LiveIntervals *LIS) const {
3769 switch (MI.getOpcode()) {
3770 default:
3771 return nullptr;
3772 case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV):
3773 case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV): {
3774 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
3775 MI.getNumExplicitOperands() == 7 &&
3776 "Expect 7 explicit operands rd, rs2, rs1, rm, vl, sew, policy");
3777 // If the tail policy is undisturbed we can't convert.
3778 if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
3779 1) == 0)
3780 return nullptr;
3781 // clang-format off
3782 unsigned NewOpc;
3783 switch (MI.getOpcode()) {
3784 default:
3785 llvm_unreachable("Unexpected opcode");
3788 }
3789 // clang-format on
3790
3791 MachineBasicBlock &MBB = *MI.getParent();
3792 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3793 .add(MI.getOperand(0))
3794 .addReg(MI.getOperand(0).getReg(), RegState::Undef)
3795 .add(MI.getOperand(1))
3796 .add(MI.getOperand(2))
3797 .add(MI.getOperand(3))
3798 .add(MI.getOperand(4))
3799 .add(MI.getOperand(5))
3800 .add(MI.getOperand(6));
3801 break;
3802 }
3803 case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
3804 case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
3805 case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
3806 case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
3807 // If the tail policy is undisturbed we can't convert.
3808 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
3809 MI.getNumExplicitOperands() == 6);
3810 if ((MI.getOperand(5).getImm() & 1) == 0)
3811 return nullptr;
3812
3813 // clang-format off
3814 unsigned NewOpc;
3815 switch (MI.getOpcode()) {
3816 default:
3817 llvm_unreachable("Unexpected opcode");
3822 }
3823 // clang-format on
3824
3825 MachineBasicBlock &MBB = *MI.getParent();
3826 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3827 .add(MI.getOperand(0))
3828 .addReg(MI.getOperand(0).getReg(), RegState::Undef)
3829 .add(MI.getOperand(1))
3830 .add(MI.getOperand(2))
3831 .add(MI.getOperand(3))
3832 .add(MI.getOperand(4))
3833 .add(MI.getOperand(5));
3834 break;
3835 }
3836 }
3837 MIB.copyImplicitOps(MI);
3838
3839 if (LV) {
3840 unsigned NumOps = MI.getNumOperands();
3841 for (unsigned I = 1; I < NumOps; ++I) {
3842 MachineOperand &Op = MI.getOperand(I);
3843 if (Op.isReg() && Op.isKill())
3844 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
3845 }
3846 }
3847
3848 if (LIS) {
3850
3851 if (MI.getOperand(0).isEarlyClobber()) {
3852 // Use operand 1 was tied to early-clobber def operand 0, so its live
3853 // interval could have ended at an early-clobber slot. Now they are not
3854 // tied we need to update it to the normal register slot.
3855 LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg());
3857 if (S->end == Idx.getRegSlot(true))
3858 S->end = Idx.getRegSlot();
3859 }
3860 }
3861
3862 return MIB;
3863}
3864
3865#undef CASE_WIDEOP_OPCODE_COMMON
3866#undef CASE_WIDEOP_OPCODE_LMULS_MF4
3867#undef CASE_WIDEOP_OPCODE_LMULS
3868#undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
3869#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4
3870#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
3871#undef CASE_FP_WIDEOP_OPCODE_COMMON
3872#undef CASE_FP_WIDEOP_OPCODE_LMULS_MF4
3873#undef CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON
3874#undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4
3875#undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS
3876
3879 Register DestReg, uint32_t Amount,
3880 MachineInstr::MIFlag Flag) const {
3882 if (llvm::has_single_bit<uint32_t>(Amount)) {
3883 uint32_t ShiftAmount = Log2_32(Amount);
3884 if (ShiftAmount == 0)
3885 return;
3886 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3887 .addReg(DestReg, RegState::Kill)
3888 .addImm(ShiftAmount)
3889 .setMIFlag(Flag);
3890 } else if (STI.hasStdExtZba() &&
3891 ((Amount % 3 == 0 && isPowerOf2_64(Amount / 3)) ||
3892 (Amount % 5 == 0 && isPowerOf2_64(Amount / 5)) ||
3893 (Amount % 9 == 0 && isPowerOf2_64(Amount / 9)))) {
3894 // We can use Zba SHXADD+SLLI instructions for multiply in some cases.
3895 unsigned Opc;
3896 uint32_t ShiftAmount;
3897 if (Amount % 9 == 0) {
3898 Opc = RISCV::SH3ADD;
3899 ShiftAmount = Log2_64(Amount / 9);
3900 } else if (Amount % 5 == 0) {
3901 Opc = RISCV::SH2ADD;
3902 ShiftAmount = Log2_64(Amount / 5);
3903 } else if (Amount % 3 == 0) {
3904 Opc = RISCV::SH1ADD;
3905 ShiftAmount = Log2_64(Amount / 3);
3906 } else {
3907 llvm_unreachable("implied by if-clause");
3908 }
3909 if (ShiftAmount)
3910 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3911 .addReg(DestReg, RegState::Kill)
3912 .addImm(ShiftAmount)
3913 .setMIFlag(Flag);
3914 BuildMI(MBB, II, DL, get(Opc), DestReg)
3915 .addReg(DestReg, RegState::Kill)
3916 .addReg(DestReg)
3917 .setMIFlag(Flag);
3918 } else if (llvm::has_single_bit<uint32_t>(Amount - 1)) {
3919 Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3920 uint32_t ShiftAmount = Log2_32(Amount - 1);
3921 BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3922 .addReg(DestReg)
3923 .addImm(ShiftAmount)
3924 .setMIFlag(Flag);
3925 BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3926 .addReg(ScaledRegister, RegState::Kill)
3927 .addReg(DestReg, RegState::Kill)
3928 .setMIFlag(Flag);
3929 } else if (llvm::has_single_bit<uint32_t>(Amount + 1)) {
3930 Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3931 uint32_t ShiftAmount = Log2_32(Amount + 1);
3932 BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3933 .addReg(DestReg)
3934 .addImm(ShiftAmount)
3935 .setMIFlag(Flag);
3936 BuildMI(MBB, II, DL, get(RISCV::SUB), DestReg)
3937 .addReg(ScaledRegister, RegState::Kill)
3938 .addReg(DestReg, RegState::Kill)
3939 .setMIFlag(Flag);
3940 } else if (STI.hasStdExtZmmul()) {
3941 Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3942 movImm(MBB, II, DL, N, Amount, Flag);
3943 BuildMI(MBB, II, DL, get(RISCV::MUL), DestReg)
3944 .addReg(DestReg, RegState::Kill)
3946 .setMIFlag(Flag);
3947 } else {
3948 Register Acc;
3949 uint32_t PrevShiftAmount = 0;
3950 for (uint32_t ShiftAmount = 0; Amount >> ShiftAmount; ShiftAmount++) {
3951 if (Amount & (1U << ShiftAmount)) {
3952 if (ShiftAmount)
3953 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3954 .addReg(DestReg, RegState::Kill)
3955 .addImm(ShiftAmount - PrevShiftAmount)
3956 .setMIFlag(Flag);
3957 if (Amount >> (ShiftAmount + 1)) {
3958 // If we don't have an accmulator yet, create it and copy DestReg.
3959 if (!Acc) {
3960 Acc = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3961 BuildMI(MBB, II, DL, get(TargetOpcode::COPY), Acc)
3962 .addReg(DestReg)
3963 .setMIFlag(Flag);
3964 } else {
3965 BuildMI(MBB, II, DL, get(RISCV::ADD), Acc)
3966 .addReg(Acc, RegState::Kill)
3967 .addReg(DestReg)
3968 .setMIFlag(Flag);
3969 }
3970 }
3971 PrevShiftAmount = ShiftAmount;
3972 }
3973 }
3974 assert(Acc && "Expected valid accumulator");
3975 BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3976 .addReg(DestReg, RegState::Kill)
3977 .addReg(Acc, RegState::Kill)
3978 .setMIFlag(Flag);
3979 }
3980}
3981
3984 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
3985 {{MONontemporalBit0, "riscv-nontemporal-domain-bit-0"},
3986 {MONontemporalBit1, "riscv-nontemporal-domain-bit-1"}};
3987 return ArrayRef(TargetFlags);
3988}
3989
3991 return OptLevel >= CodeGenOptLevel::Aggressive
3993 : 2;
3994}
3995
3996// Returns true if this is the sext.w pattern, addiw rd, rs1, 0.
3998 return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(1).isReg() &&
3999 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0;
4000}
4001
4002// Returns true if this is the zext.w pattern, adduw rd, rs1, x0.
4004 return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(1).isReg() &&
4005 MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0;
4006}
4007
4008// Returns true if this is the zext.b pattern, andi rd, rs1, 255.
4010 return MI.getOpcode() == RISCV::ANDI && MI.getOperand(1).isReg() &&
4011 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 255;
4012}
4013
4014static bool isRVVWholeLoadStore(unsigned Opcode) {
4015 switch (Opcode) {
4016 default:
4017 return false;
4018 case RISCV::VS1R_V:
4019 case RISCV::VS2R_V:
4020 case RISCV::VS4R_V:
4021 case RISCV::VS8R_V:
4022 case RISCV::VL1RE8_V:
4023 case RISCV::VL2RE8_V:
4024 case RISCV::VL4RE8_V:
4025 case RISCV::VL8RE8_V:
4026 case RISCV::VL1RE16_V:
4027 case RISCV::VL2RE16_V:
4028 case RISCV::VL4RE16_V:
4029 case RISCV::VL8RE16_V:
4030 case RISCV::VL1RE32_V:
4031 case RISCV::VL2RE32_V:
4032 case RISCV::VL4RE32_V:
4033 case RISCV::VL8RE32_V:
4034 case RISCV::VL1RE64_V:
4035 case RISCV::VL2RE64_V:
4036 case RISCV::VL4RE64_V:
4037 case RISCV::VL8RE64_V:
4038 return true;
4039 }
4040}
4041
4043 // RVV lacks any support for immediate addressing for stack addresses, so be
4044 // conservative.
4045 unsigned Opcode = MI.getOpcode();
4046 if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
4047 !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
4048 return false;
4049 return true;
4050}
4051
4052std::optional<std::pair<unsigned, unsigned>>
4054 switch (Opcode) {
4055 default:
4056 return std::nullopt;
4057 case RISCV::PseudoVSPILL2_M1:
4058 case RISCV::PseudoVRELOAD2_M1:
4059 return std::make_pair(2u, 1u);
4060 case RISCV::PseudoVSPILL2_M2:
4061 case RISCV::PseudoVRELOAD2_M2:
4062 return std::make_pair(2u, 2u);
4063 case RISCV::PseudoVSPILL2_M4:
4064 case RISCV::PseudoVRELOAD2_M4:
4065 return std::make_pair(2u, 4u);
4066 case RISCV::PseudoVSPILL3_M1:
4067 case RISCV::PseudoVRELOAD3_M1:
4068 return std::make_pair(3u, 1u);
4069 case RISCV::PseudoVSPILL3_M2:
4070 case RISCV::PseudoVRELOAD3_M2:
4071 return std::make_pair(3u, 2u);
4072 case RISCV::PseudoVSPILL4_M1:
4073 case RISCV::PseudoVRELOAD4_M1:
4074 return std::make_pair(4u, 1u);
4075 case RISCV::PseudoVSPILL4_M2:
4076 case RISCV::PseudoVRELOAD4_M2:
4077 return std::make_pair(4u, 2u);
4078 case RISCV::PseudoVSPILL5_M1:
4079 case RISCV::PseudoVRELOAD5_M1:
4080 return std::make_pair(5u, 1u);
4081 case RISCV::PseudoVSPILL6_M1:
4082 case RISCV::PseudoVRELOAD6_M1:
4083 return std::make_pair(6u, 1u);
4084 case RISCV::PseudoVSPILL7_M1:
4085 case RISCV::PseudoVRELOAD7_M1:
4086 return std::make_pair(7u, 1u);
4087 case RISCV::PseudoVSPILL8_M1:
4088 case RISCV::PseudoVRELOAD8_M1:
4089 return std::make_pair(8u, 1u);
4090 }
4091}
4092
4094 return MI.getNumExplicitDefs() == 2 &&
4095 MI.modifiesRegister(RISCV::VL, /*TRI=*/nullptr) && !MI.isInlineAsm();
4096}
4097
4098bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) {
4099 int16_t MI1FrmOpIdx =
4100 RISCV::getNamedOperandIdx(MI1.getOpcode(), RISCV::OpName::frm);
4101 int16_t MI2FrmOpIdx =
4102 RISCV::getNamedOperandIdx(MI2.getOpcode(), RISCV::OpName::frm);
4103 if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0)
4104 return false;
4105 MachineOperand FrmOp1 = MI1.getOperand(MI1FrmOpIdx);
4106 MachineOperand FrmOp2 = MI2.getOperand(MI2FrmOpIdx);
4107 return FrmOp1.getImm() == FrmOp2.getImm();
4108}
4109
4110std::optional<unsigned>
4112 // TODO: Handle Zvbb instructions
4113 switch (Opcode) {
4114 default:
4115 return std::nullopt;
4116
4117 // 11.6. Vector Single-Width Shift Instructions
4118 case RISCV::VSLL_VX:
4119 case RISCV::VSRL_VX:
4120 case RISCV::VSRA_VX:
4121 // 12.4. Vector Single-Width Scaling Shift Instructions
4122 case RISCV::VSSRL_VX:
4123 case RISCV::VSSRA_VX:
4124 // Only the low lg2(SEW) bits of the shift-amount value are used.
4125 return Log2SEW;
4126
4127 // 11.7 Vector Narrowing Integer Right Shift Instructions
4128 case RISCV::VNSRL_WX:
4129 case RISCV::VNSRA_WX:
4130 // 12.5. Vector Narrowing Fixed-Point Clip Instructions
4131 case RISCV::VNCLIPU_WX:
4132 case RISCV::VNCLIP_WX:
4133 // Only the low lg2(2*SEW) bits of the shift-amount value are used.
4134 return Log2SEW + 1;
4135
4136 // 11.1. Vector Single-Width Integer Add and Subtract
4137 case RISCV::VADD_VX:
4138 case RISCV::VSUB_VX:
4139 case RISCV::VRSUB_VX:
4140 // 11.2. Vector Widening Integer Add/Subtract
4141 case RISCV::VWADDU_VX:
4142 case RISCV::VWSUBU_VX:
4143 case RISCV::VWADD_VX:
4144 case RISCV::VWSUB_VX:
4145 case RISCV::VWADDU_WX:
4146 case RISCV::VWSUBU_WX:
4147 case RISCV::VWADD_WX:
4148 case RISCV::VWSUB_WX:
4149 // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
4150 case RISCV::VADC_VXM:
4151 case RISCV::VADC_VIM:
4152 case RISCV::VMADC_VXM:
4153 case RISCV::VMADC_VIM:
4154 case RISCV::VMADC_VX:
4155 case RISCV::VSBC_VXM:
4156 case RISCV::VMSBC_VXM:
4157 case RISCV::VMSBC_VX:
4158 // 11.5 Vector Bitwise Logical Instructions
4159 case RISCV::VAND_VX:
4160 case RISCV::VOR_VX:
4161 case RISCV::VXOR_VX:
4162 // 11.8. Vector Integer Compare Instructions
4163 case RISCV::VMSEQ_VX:
4164 case RISCV::VMSNE_VX:
4165 case RISCV::VMSLTU_VX:
4166 case RISCV::VMSLT_VX:
4167 case RISCV::VMSLEU_VX:
4168 case RISCV::VMSLE_VX:
4169 case RISCV::VMSGTU_VX:
4170 case RISCV::VMSGT_VX:
4171 // 11.9. Vector Integer Min/Max Instructions
4172 case RISCV::VMINU_VX:
4173 case RISCV::VMIN_VX:
4174 case RISCV::VMAXU_VX:
4175 case RISCV::VMAX_VX:
4176 // 11.10. Vector Single-Width Integer Multiply Instructions
4177 case RISCV::VMUL_VX:
4178 case RISCV::VMULH_VX:
4179 case RISCV::VMULHU_VX:
4180 case RISCV::VMULHSU_VX:
4181 // 11.11. Vector Integer Divide Instructions
4182 case RISCV::VDIVU_VX:
4183 case RISCV::VDIV_VX:
4184 case RISCV::VREMU_VX:
4185 case RISCV::VREM_VX:
4186 // 11.12. Vector Widening Integer Multiply Instructions
4187 case RISCV::VWMUL_VX:
4188 case RISCV::VWMULU_VX:
4189 case RISCV::VWMULSU_VX:
4190 // 11.13. Vector Single-Width Integer Multiply-Add Instructions
4191 case RISCV::VMACC_VX:
4192 case RISCV::VNMSAC_VX:
4193 case RISCV::VMADD_VX:
4194 case RISCV::VNMSUB_VX:
4195 // 11.14. Vector Widening Integer Multiply-Add Instructions
4196 case RISCV::VWMACCU_VX:
4197 case RISCV::VWMACC_VX:
4198 case RISCV::VWMACCSU_VX:
4199 case RISCV::VWMACCUS_VX:
4200 // 11.15. Vector Integer Merge Instructions
4201 case RISCV::VMERGE_VXM:
4202 // 11.16. Vector Integer Move Instructions
4203 case RISCV::VMV_V_X:
4204 // 12.1. Vector Single-Width Saturating Add and Subtract
4205 case RISCV::VSADDU_VX:
4206 case RISCV::VSADD_VX:
4207 case RISCV::VSSUBU_VX:
4208 case RISCV::VSSUB_VX:
4209 // 12.2. Vector Single-Width Averaging Add and Subtract
4210 case RISCV::VAADDU_VX:
4211 case RISCV::VAADD_VX:
4212 case RISCV::VASUBU_VX:
4213 case RISCV::VASUB_VX:
4214 // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
4215 case RISCV::VSMUL_VX:
4216 // 16.1. Integer Scalar Move Instructions
4217 case RISCV::VMV_S_X:
4218 return 1U << Log2SEW;
4219 }
4220}
4221
4222unsigned RISCV::getRVVMCOpcode(unsigned RVVPseudoOpcode) {
4224 RISCVVPseudosTable::getPseudoInfo(RVVPseudoOpcode);
4225 if (!RVV)
4226 return 0;
4227 return RVV->BaseInstr;
4228}
4229
4230unsigned RISCV::getDestLog2EEW(const MCInstrDesc &Desc, unsigned Log2SEW) {
4231 unsigned DestEEW =
4233 // EEW = 1
4234 if (DestEEW == 0)
4235 return 0;
4236 // EEW = SEW * n
4237 unsigned Scaled = Log2SEW + (DestEEW - 1);
4238 assert(Scaled >= 3 && Scaled <= 6);
4239 return Scaled;
4240}
4241
4242/// Given two VL operands, do we know that LHS <= RHS?
4244 if (LHS.isReg() && RHS.isReg() && LHS.getReg().isVirtual() &&
4245 LHS.getReg() == RHS.getReg())
4246 return true;
4247 if (RHS.isImm() && RHS.getImm() == RISCV::VLMaxSentinel)
4248 return true;
4249 if (LHS.isImm() && LHS.getImm() == RISCV::VLMaxSentinel)
4250 return false;
4251 if (!LHS.isImm() || !RHS.isImm())
4252 return false;
4253 return LHS.getImm() <= RHS.getImm();
4254}
4255
4256namespace {
4257class RISCVPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4258 const MachineInstr *LHS;
4259 const MachineInstr *RHS;
4261
4262public:
4263 RISCVPipelinerLoopInfo(const MachineInstr *LHS, const MachineInstr *RHS,
4265 : LHS(LHS), RHS(RHS), Cond(Cond.begin(), Cond.end()) {}
4266
4267 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4268 // Make the instructions for loop control be placed in stage 0.
4269 // The predecessors of LHS/RHS are considered by the caller.
4270 if (LHS && MI == LHS)
4271 return true;
4272 if (RHS && MI == RHS)
4273 return true;
4274 return false;
4275 }
4276
4277 std::optional<bool> createTripCountGreaterCondition(
4278 int TC, MachineBasicBlock &MBB,
4279 SmallVectorImpl<MachineOperand> &CondParam) override {
4280 // A branch instruction will be inserted as "if (Cond) goto epilogue".
4281 // Cond is normalized for such use.
4282 // The predecessors of the branch are assumed to have already been inserted.
4283 CondParam = Cond;
4284 return {};
4285 }
4286
4287 void setPreheader(MachineBasicBlock *NewPreheader) override {}
4288
4289 void adjustTripCount(int TripCountAdjust) override {}
4290};
4291} // namespace
4292
4293std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4295 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
4297 if (analyzeBranch(*LoopBB, TBB, FBB, Cond, /*AllowModify=*/false))
4298 return nullptr;
4299
4300 // Infinite loops are not supported
4301 if (TBB == LoopBB && FBB == LoopBB)
4302 return nullptr;
4303
4304 // Must be conditional branch
4305 if (FBB == nullptr)
4306 return nullptr;
4307
4308 assert((TBB == LoopBB || FBB == LoopBB) &&
4309 "The Loop must be a single-basic-block loop");
4310
4311 // Normalization for createTripCountGreaterCondition()
4312 if (TBB == LoopBB)
4314
4315 const MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
4316 auto FindRegDef = [&MRI](MachineOperand &Op) -> const MachineInstr * {
4317 if (!Op.isReg())
4318 return nullptr;
4319 Register Reg = Op.getReg();
4320 if (!Reg.isVirtual())
4321 return nullptr;
4322 return MRI.getVRegDef(Reg);
4323 };
4324
4325 const MachineInstr *LHS = FindRegDef(Cond[1]);
4326 const MachineInstr *RHS = FindRegDef(Cond[2]);
4327 if (LHS && LHS->isPHI())
4328 return nullptr;
4329 if (RHS && RHS->isPHI())
4330 return nullptr;
4331
4332 return std::make_unique<RISCVPipelinerLoopInfo>(LHS, RHS, Cond);
4333}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg, unsigned NumRegs)
static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, unsigned CombineOpc, unsigned ZeroReg=0, bool CheckZeroReg=false)
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl< MachineOperand > &Cond)
@ MachineOutlinerTailCall
Emit a save, restore, call, and return.
@ MachineOutlinerDefault
@ Scaled
static ARCCC::CondCode getOppositeBranchCondition(ARCCC::CondCode CC)
Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
basic Basic Alias true
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
#define _
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static M68k::CondCode getCondFromBranchOpc(unsigned BrOpc)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool cannotInsertTailCall(const MachineBasicBlock &MBB)
#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP)
#define CASE_OPERAND_SIMM(NUM)
static bool isRVVWholeLoadStore(unsigned Opcode)
#define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP)
static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern)
#define RVV_OPC_LMUL_CASE(OPC, INV)
static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs)
static unsigned getAddendOperandIdx(unsigned Pattern)
#define CASE_RVV_OPCODE_UNMASK(OP)
#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP)
static std::optional< MachineOutlinerConstructionID > analyzeCandidate(outliner::Candidate &C)
static cl::opt< bool > PreferWholeRegisterMove("riscv-prefer-whole-register-move", cl::init(false), cl::Hidden, cl::desc("Prefer whole register move for vector registers."))
#define CASE_VFMA_SPLATS(OP)
unsigned getPredicatedOpcode(unsigned Opcode)
static void genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg)
#define CASE_WIDEOP_OPCODE_LMULS(OP)
#define OPCODE_LMUL_MASK_CASE(OPC)
static bool isFSUB(unsigned Opc)
#define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE)
#define CASE_RVV_OPCODE(OP)
#define CASE_VFMA_OPCODE_VV(OP)
MachineOutlinerConstructionID
#define CASE_RVV_OPCODE_WIDEN(OP)
#define CASE_VMA_OPCODE_LMULS(OP, TYPE)
static bool isFMUL(unsigned Opc)
static bool getFPPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce)
#define OPCODE_LMUL_CASE(OPC)
#define CASE_OPERAND_UIMM(NUM)
static bool canCombineShiftIntoShXAdd(const MachineBasicBlock &MBB, const MachineOperand &MO, unsigned OuterShiftAmt)
Utility routine that checks if.
static bool isCandidatePatchable(const MachineBasicBlock &MBB)
static bool isMIReadsReg(const MachineInstr &MI, const TargetRegisterInfo *TRI, unsigned RegNo)
static bool isFADD(unsigned Opc)
#define CASE_FP_WIDEOP_OPCODE_LMULS_MF4(OP)
static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI, const MachineBasicBlock &MBB, MachineBasicBlock::const_iterator MBBI, MachineBasicBlock::const_iterator &DefMBBI, RISCVII::VLMUL LMul)
static bool isMIModifiesReg(const MachineInstr &MI, const TargetRegisterInfo *TRI, unsigned RegNo)
static MachineInstr * canFoldAsPredicatedOp(Register Reg, const MachineRegisterInfo &MRI, const TargetInstrInfo *TII)
Identify instructions that can be folded into a CCMOV instruction, and return the defining instructio...
static bool canCombineFPFusedMultiply(const MachineInstr &Root, const MachineOperand &MO, bool DoRegPressureReduce)
static bool getSHXADDPatterns(const MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns)
static bool getFPFusedMultiplyPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce)
static cl::opt< MachineTraceStrategy > ForceMachineCombinerStrategy("riscv-force-machine-combiner-strategy", cl::Hidden, cl::desc("Force machine combiner to use a specific strategy for machine " "trace metrics evaluation."), cl::init(MachineTraceStrategy::TS_NumStrategies), cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local", "Local strategy."), clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr", "MinInstrCount strategy.")))
static unsigned getSHXADDShiftAmount(unsigned Opc)
#define CASE_RVV_OPCODE_MASK(OP)
#define RVV_OPC_LMUL_MASK_CASE(OPC, INV)
#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
This file declares the machine register scavenger class.
static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, ArrayRef< const MachineOperand * > BaseOps1, const MachineInstr &MI2, ArrayRef< const MachineOperand * > BaseOps2)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the SmallVector class.
static cl::opt< unsigned > CacheLineSize("cache-line-size", cl::init(0), cl::Hidden, cl::desc("Use this to override the target cache line size when " "specified by the user."))
Value * RHS
Value * LHS
static unsigned getSize(unsigned Kind)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
static DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
This class represents an Operation in the Expression.
bool isBigEndian() const
Definition: DataLayout.h:198
A debug info location.
Definition: DebugLoc.h:33
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:716
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
LiveInterval & getInterval(Register Reg)
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:408
void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
bool hasValue() const
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
TypeSize getValue() const
MCInstBuilder & addReg(MCRegister Reg)
Add a new register operand.
Definition: MCInstBuilder.h:37
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Definition: MCInstBuilder.h:43
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
bool isConditionalBranch() const
Return true if this is a branch which may fall through to the next instruction or may transfer contro...
Definition: MCInstrDesc.h:317
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition: MCInstrDesc.h:85
uint8_t OperandType
Information about the type of the operand.
Definition: MCInstrDesc.h:97
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
const FeatureBitset & getFeatureBits() const
Set of metadata that should be preserved when using BuildMI().
unsigned pred_size() const
reverse_iterator rend()
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
Instructions::const_iterator const_instr_iterator
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setStackID(int ObjectIdx, uint8_t ID)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
Definition: MachineInstr.h:71
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:577
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:948
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:349
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
Definition: MachineInstr.h:399
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:574
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
Definition: MachineInstr.h:823
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:808
bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:790
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:501
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:587
uint32_t getFlags() const
Return the MI flags bitvector.
Definition: MachineInstr.h:394
void clearKillInfo()
Clears kill flags on all operands.
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
@ MO_Immediate
Immediate operand.
@ MO_Register
Register operand.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MI-level patchpoint operands.
Definition: StackMaps.h:76
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given patchpoint should emit.
Definition: StackMaps.h:104
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const override
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
void movImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register DstReg, uint64_t Val, MachineInstr::MIFlag Flag=MachineInstr::NoFlags, bool DstRenamable=false, bool DstIsDead=false) const
MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const override
void mulImm(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator II, const DebugLoc &DL, Register DestReg, uint32_t Amt, MachineInstr::MIFlag Flag) const
Generate code to multiply the value in DestReg by Amt - handles all the common optimizations for this...
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool IsKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &dl, int *BytesAdded=nullptr) const override
bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const override
RISCVInstrInfo(RISCVSubtarget &STI)
void copyPhysRegVector(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc, const TargetRegisterClass *RegClass) const
void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const override
const MCInstrDesc & getBrCond(RISCVCC::CondCode CC, bool Imm=false) const
MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &SeenMIs, bool) const override
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const override
void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset, RegScavenger *RS) const override
bool isAsCheapAsAMove(const MachineInstr &MI) const override
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset, LocationSize &Width, const TargetRegisterInfo *TRI) const
unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const override
void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const override
const RISCVSubtarget & STI
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
std::optional< unsigned > getInverseOpcode(unsigned Opcode) const override
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MBBI, unsigned Flags) const override
MachineTraceStrategy getMachineCombinerTraceStrategy() const override
unsigned getInstSizeInBytes(const MachineInstr &MI) const override
std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const override
MCInst getNop() const override
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const override
bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override
void finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs) const override
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const override
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DstReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const override
MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const override
std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const override
bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override
bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
CombinerObjective getCombinerObjective(unsigned Pattern) const override
bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const override
bool optimizeCondBranch(MachineInstr &MI) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const override
bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const override
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
RISCVMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private RISCV-...
bool hasStdExtCOrZca() const
unsigned getTailDupAggressiveThreshold() const
unsigned getXLen() const
const RISCVRegisterInfo * getRegisterInfo() const override
void enterBasicBlockEnd(MachineBasicBlock &MBB)
Start tracking liveness from the end of basic block MBB.
void setRegUsed(Register Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Tell the scavenger a register is used.
Register scavengeRegisterBackwards(const TargetRegisterClass &RC, MachineBasicBlock::iterator To, bool RestoreAfter, int SPAdj, bool AllowSpill=true)
Make a register of the specific register class available from the current position backwards to the p...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:121
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:65
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
MI-level stackmap operands.
Definition: StackMaps.h:35
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given stackmap should emit.
Definition: StackMaps.h:50
MI-level Statepoint operands.
Definition: StackMaps.h:158
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given statepoint should emit.
Definition: StackMaps.h:207
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
virtual void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const
The returned array encodes the operand index for each parameter because the operands may be commuted;...
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual CombinerObjective getCombinerObjective(unsigned Pattern) const
Return the objective of a combiner pattern.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
const uint8_t TSFlags
Configurable target specific flags.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
Target - Wrapper for Target specific information.
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define INT64_MAX
Definition: DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
CondCode getOppositeBranchCondition(CondCode)
unsigned getBrCond(CondCode CC, bool Imm=false)
static bool isValidRoundingMode(unsigned Mode)
static unsigned getVecPolicyOpNum(const MCInstrDesc &Desc)
static bool usesMaskPolicy(uint64_t TSFlags)
static bool hasRoundModeOp(uint64_t TSFlags)
static unsigned getVLOpNum(const MCInstrDesc &Desc)
static bool hasVLOp(uint64_t TSFlags)
static int getFRMOpNum(const MCInstrDesc &Desc)
static bool hasVecPolicyOp(uint64_t TSFlags)
static bool usesVXRM(uint64_t TSFlags)
static unsigned getTailExpandUseRegNo(const FeatureBitset &FeatureBits)
static bool isRVVWideningReduction(uint64_t TSFlags)
static unsigned getSEWOpNum(const MCInstrDesc &Desc)
static bool hasSEWOp(uint64_t TSFlags)
static bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc)
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI)
@ OPERAND_UIMMLOG2XLEN_NONZERO
@ OPERAND_UIMM10_LSB00_NONZERO
@ OPERAND_SIMM10_LSB0000_NONZERO
static RISCVII::VLMUL getLMul(uint64_t TSFlags)
static unsigned getNF(uint64_t TSFlags)
static bool isTailAgnostic(unsigned VType)
static RISCVII::VLMUL getVLMUL(unsigned VType)
std::pair< unsigned, bool > decodeVLMUL(RISCVII::VLMUL VLMUL)
static bool isValidSEW(unsigned SEW)
void printVType(unsigned VType, raw_ostream &OS)
static unsigned getSEW(unsigned VType)
bool hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2)
bool isVLKnownLE(const MachineOperand &LHS, const MachineOperand &RHS)
Given two VL operands, do we know that LHS <= RHS?
std::optional< unsigned > getVectorLowDemandedScalarBits(uint16_t Opcode, unsigned Log2SEW)
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex)
unsigned getRVVMCOpcode(unsigned RVVPseudoOpcode)
unsigned getDestLog2EEW(const MCInstrDesc &Desc, unsigned Log2SEW)
bool isSEXT_W(const MachineInstr &MI)
bool isFaultFirstLoad(const MachineInstr &MI)
std::optional< std::pair< unsigned, unsigned > > isRVVSpillForZvlsseg(unsigned Opcode)
bool isZEXT_B(const MachineInstr &MI)
bool isRVVSpill(const MachineInstr &MI)
static constexpr int64_t VLMaxSentinel
bool isZEXT_W(const MachineInstr &MI)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Dead
Unused definition.
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
@ SHXADD_ADD_SLLI_OP2
@ FMADD_AX
@ FMADD_XA
@ SHXADD_ADD_SLLI_OP1
MachineTraceStrategy
Strategies for selecting traces.
@ TS_MinInstrCount
Select the trace through a block that has the fewest instructions.
@ TS_Local
Select the trace that contains only the current basic block.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
static const MachineMemOperand::Flags MONontemporalBit1
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
static const MachineMemOperand::Flags MONontemporalBit0
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
unsigned getDeadRegState(bool B)
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:297
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:347
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:341
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
unsigned getKillRegState(bool B)
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:261
unsigned getRenamableRegState(bool B)
DWARFExpression::Operation Op
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:582
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
Description of the encoding of one expression Op.
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool isRVVRegClass(const TargetRegisterClass *RC)
Used to describe a register and immediate addition.
An individual sequence of instructions to be replaced with a call to an outlined function.
MachineFunction * getMF() const
The information necessary to create an outlined function for some class of candidate.
unsigned FrameConstructionID
Target-defined identifier for constructing a frame for this function.