LLVM 22.0.0git
TargetInstrInfo.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Uniformity.h"
31#include "llvm/MC/MCInstrInfo.h"
36#include <array>
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class DFAPacketizer;
47class LiveIntervals;
48class LiveVariables;
49class MachineLoop;
53class MCAsmInfo;
54class MCInst;
55struct MCSchedModel;
56class Module;
57class ScheduleDAG;
58class ScheduleDAGMI;
60class SDNode;
61class SelectionDAG;
62class SMSchedule;
64class RegScavenger;
69enum class MachineTraceStrategy;
70
71template <class T> class SmallVectorImpl;
72
73using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
74
78
80 : Destination(&Dest), Source(&Src) {}
81};
82
83/// Used to describe a register and immediate addition.
84struct RegImmPair {
86 int64_t Imm;
87
88 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
89};
90
91/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
92/// It holds the register values, the scale value and the displacement.
93/// It also holds a descriptor for the expression used to calculate the address
94/// from the operands.
96 enum class Formula {
97 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
98 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
99 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
100 };
101
104 int64_t Scale = 0;
105 int64_t Displacement = 0;
107 ExtAddrMode() = default;
108};
109
110//---------------------------------------------------------------------------
111///
112/// TargetInstrInfo - Interface to description of machine instruction set
113///
115protected:
116 /// Subtarget specific sub-array of MCInstrInfo's RegClassByHwModeTables
117 /// (i.e. the table for the active HwMode). This should be indexed by
118 /// MCOperandInfo's RegClass field for LookupRegClassByHwMode operands.
119 const int16_t *const RegClassByHwMode;
120
121 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
122 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u,
123 const int16_t *const RegClassByHwModeTable = nullptr)
124 : RegClassByHwMode(RegClassByHwModeTable),
125 CallFrameSetupOpcode(CFSetupOpcode),
126 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
127 ReturnOpcode(ReturnOpcode) {}
128
129public:
133
134 static bool isGenericOpcode(unsigned Opc) {
135 return Opc <= TargetOpcode::GENERIC_OP_END;
136 }
137
138 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
139 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
140 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
141 }
142
143 /// \returns the subtarget appropriate RegClassID for \p OpInfo
144 ///
145 /// Note this shadows a version of getOpRegClassID in MCInstrInfo which takes
146 /// an additional argument for the subtarget's HwMode, since TargetInstrInfo
147 /// is owned by a subtarget in CodeGen but MCInstrInfo is a TargetMachine
148 /// constant.
149 int16_t getOpRegClassID(const MCOperandInfo &OpInfo) const {
150 if (OpInfo.isLookupRegClassByHwMode())
151 return RegClassByHwMode[OpInfo.RegClass];
152 return OpInfo.RegClass;
153 }
154
155 /// Given a machine instruction descriptor, returns the register
156 /// class constraint for OpNum, or NULL.
157 virtual const TargetRegisterClass *
158 getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
159 const TargetRegisterInfo *TRI) const;
160
161 /// Returns true if MI is an instruction we are unable to reason about
162 /// (like a call or something with unmodeled side effects).
163 virtual bool isGlobalMemoryObject(const MachineInstr *MI) const;
164
165 /// Return true if the instruction is trivially rematerializable, meaning it
166 /// has no side effects and requires no operands that aren't always available.
167 /// This means the only allowed uses are constants and unallocatable physical
168 /// registers so that the instructions result is independent of the place
169 /// in the function.
171 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
172 MI.getNumOperands() == 1) ||
173 (MI.getDesc().isRematerializable() &&
175 }
176
177 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
178 /// of instruction rematerialization or sinking.
179 virtual bool isIgnorableUse(const MachineOperand &MO) const {
180 return false;
181 }
182
183 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
184 MachineCycleInfo *CI) const {
185 return true;
186 }
187
188 /// For a "cheap" instruction which doesn't enable additional sinking,
189 /// should MachineSink break a critical edge to sink it anyways?
191 return false;
192 }
193
194protected:
195 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
196 /// set, this hook lets the target specify whether the instruction is actually
197 /// trivially rematerializable, taking into consideration its operands. This
198 /// predicate must return false if the instruction has any side effects other
199 /// than producing a value, or if it requres any address registers that are
200 /// not always available.
201 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
202
203 /// This method commutes the operands of the given machine instruction MI.
204 /// The operands to be commuted are specified by their indices OpIdx1 and
205 /// OpIdx2.
206 ///
207 /// If a target has any instructions that are commutable but require
208 /// converting to different instructions or making non-trivial changes
209 /// to commute them, this method can be overloaded to do that.
210 /// The default implementation simply swaps the commutable operands.
211 ///
212 /// If NewMI is false, MI is modified in place and returned; otherwise, a
213 /// new machine instruction is created and returned.
214 ///
215 /// Do not call this method for a non-commutable instruction.
216 /// Even though the instruction is commutable, the method may still
217 /// fail to commute the operands, null pointer is returned in such cases.
218 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
219 unsigned OpIdx1,
220 unsigned OpIdx2) const;
221
222 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
223 /// operand indices to (ResultIdx1, ResultIdx2).
224 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
225 /// predefined to some indices or be undefined (designated by the special
226 /// value 'CommuteAnyOperandIndex').
227 /// The predefined result indices cannot be re-defined.
228 /// The function returns true iff after the result pair redefinition
229 /// the fixed result pair is equal to or equivalent to the source pair of
230 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
231 /// the pairs (x,y) and (y,x) are equivalent.
232 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
233 unsigned CommutableOpIdx1,
234 unsigned CommutableOpIdx2);
235
236public:
237 /// These methods return the opcode of the frame setup/destroy instructions
238 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
239 /// order to abstract away the difference between operating with a frame
240 /// pointer and operating without, through the use of these two instructions.
241 /// A FrameSetup MI in MF implies MFI::AdjustsStack.
242 ///
243 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
244 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
245
246 /// Returns true if the argument is a frame pseudo instruction.
247 bool isFrameInstr(const MachineInstr &I) const {
248 return I.getOpcode() == getCallFrameSetupOpcode() ||
249 I.getOpcode() == getCallFrameDestroyOpcode();
250 }
251
252 /// Returns true if the argument is a frame setup pseudo instruction.
253 bool isFrameSetup(const MachineInstr &I) const {
254 return I.getOpcode() == getCallFrameSetupOpcode();
255 }
256
257 /// Returns size of the frame associated with the given frame instruction.
258 /// For frame setup instruction this is frame that is set up space set up
259 /// after the instruction. For frame destroy instruction this is the frame
260 /// freed by the caller.
261 /// Note, in some cases a call frame (or a part of it) may be prepared prior
262 /// to the frame setup instruction. It occurs in the calls that involve
263 /// inalloca arguments. This function reports only the size of the frame part
264 /// that is set up between the frame setup and destroy pseudo instructions.
265 int64_t getFrameSize(const MachineInstr &I) const {
266 assert(isFrameInstr(I) && "Not a frame instruction");
267 assert(I.getOperand(0).getImm() >= 0);
268 return I.getOperand(0).getImm();
269 }
270
271 /// Returns the total frame size, which is made up of the space set up inside
272 /// the pair of frame start-stop instructions and the space that is set up
273 /// prior to the pair.
274 int64_t getFrameTotalSize(const MachineInstr &I) const {
275 if (isFrameSetup(I)) {
276 assert(I.getOperand(1).getImm() >= 0 &&
277 "Frame size must not be negative");
278 return getFrameSize(I) + I.getOperand(1).getImm();
279 }
280 return getFrameSize(I);
281 }
282
283 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
284 unsigned getReturnOpcode() const { return ReturnOpcode; }
285
286 /// Returns the actual stack pointer adjustment made by an instruction
287 /// as part of a call sequence. By default, only call frame setup/destroy
288 /// instructions adjust the stack, but targets may want to override this
289 /// to enable more fine-grained adjustment, or adjust by a different value.
290 virtual int getSPAdjust(const MachineInstr &MI) const;
291
292 /// Return true if the instruction is a "coalescable" extension instruction.
293 /// That is, it's like a copy where it's legal for the source to overlap the
294 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
295 /// expected the pre-extension value is available as a subreg of the result
296 /// register. This also returns the sub-register index in SubIdx.
297 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
298 Register &DstReg, unsigned &SubIdx) const {
299 return false;
300 }
301
302 /// If the specified machine instruction is a direct
303 /// load from a stack slot, return the virtual or physical register number of
304 /// the destination along with the FrameIndex of the loaded stack slot. If
305 /// not, return 0. This predicate must return 0 if the instruction has
306 /// any side effects other than loading from the stack slot.
308 int &FrameIndex) const {
309 return 0;
310 }
311
312 /// Optional extension of isLoadFromStackSlot that returns the number of
313 /// bytes loaded from the stack. This must be implemented if a backend
314 /// supports partial stack slot spills/loads to further disambiguate
315 /// what the load does.
317 int &FrameIndex,
318 TypeSize &MemBytes) const {
319 MemBytes = TypeSize::getZero();
320 return isLoadFromStackSlot(MI, FrameIndex);
321 }
322
323 /// Check for post-frame ptr elimination stack locations as well.
324 /// This uses a heuristic so it isn't reliable for correctness.
326 int &FrameIndex) const {
327 return 0;
328 }
329
330 /// If the specified machine instruction has a load from a stack slot,
331 /// return true along with the FrameIndices of the loaded stack slot and the
332 /// machine mem operands containing the reference.
333 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
334 /// any instructions that loads from the stack. This is just a hint, as some
335 /// cases may be missed.
336 virtual bool hasLoadFromStackSlot(
337 const MachineInstr &MI,
339
340 /// If the specified machine instruction is a direct
341 /// store to a stack slot, return the virtual or physical register number of
342 /// the source reg along with the FrameIndex of the loaded stack slot. If
343 /// not, return 0. This predicate must return 0 if the instruction has
344 /// any side effects other than storing to the stack slot.
346 int &FrameIndex) const {
347 return 0;
348 }
349
350 /// Optional extension of isStoreToStackSlot that returns the number of
351 /// bytes stored to the stack. This must be implemented if a backend
352 /// supports partial stack slot spills/loads to further disambiguate
353 /// what the store does.
355 int &FrameIndex,
356 TypeSize &MemBytes) const {
357 MemBytes = TypeSize::getZero();
358 return isStoreToStackSlot(MI, FrameIndex);
359 }
360
361 /// Check for post-frame ptr elimination stack locations as well.
362 /// This uses a heuristic, so it isn't reliable for correctness.
364 int &FrameIndex) const {
365 return 0;
366 }
367
368 /// If the specified machine instruction has a store to a stack slot,
369 /// return true along with the FrameIndices of the loaded stack slot and the
370 /// machine mem operands containing the reference.
371 /// If not, return false. Unlike isStoreToStackSlot,
372 /// this returns true for any instructions that stores to the
373 /// stack. This is just a hint, as some cases may be missed.
374 virtual bool hasStoreToStackSlot(
375 const MachineInstr &MI,
377
378 /// Return true if the specified machine instruction
379 /// is a copy of one stack slot to another and has no other effect.
380 /// Provide the identity of the two frame indices.
381 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
382 int &SrcFrameIndex) const {
383 return false;
384 }
385
386 /// Compute the size in bytes and offset within a stack slot of a spilled
387 /// register or subregister.
388 ///
389 /// \param [out] Size in bytes of the spilled value.
390 /// \param [out] Offset in bytes within the stack slot.
391 /// \returns true if both Size and Offset are successfully computed.
392 ///
393 /// Not all subregisters have computable spill slots. For example,
394 /// subregisters registers may not be byte-sized, and a pair of discontiguous
395 /// subregisters has no single offset.
396 ///
397 /// Targets with nontrivial bigendian implementations may need to override
398 /// this, particularly to support spilled vector registers.
399 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
400 unsigned &Size, unsigned &Offset,
401 const MachineFunction &MF) const;
402
403 /// Return true if the given instruction is terminator that is unspillable,
404 /// according to isUnspillableTerminatorImpl.
406 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
407 }
408
409 /// Returns the size in bytes of the specified MachineInstr, or ~0U
410 /// when this function is not implemented by a target.
411 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
412 return ~0U;
413 }
414
415 /// Return true if the instruction is as cheap as a move instruction.
416 ///
417 /// Targets for different archs need to override this, and different
418 /// micro-architectures can also be finely tuned inside.
419 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
420 return MI.isAsCheapAsAMove();
421 }
422
423 /// Return true if the instruction should be sunk by MachineSink.
424 ///
425 /// MachineSink determines on its own whether the instruction is safe to sink;
426 /// this gives the target a hook to override the default behavior with regards
427 /// to which instructions should be sunk.
428 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
429
430 /// Return false if the instruction should not be hoisted by MachineLICM.
431 ///
432 /// MachineLICM determines on its own whether the instruction is safe to
433 /// hoist; this gives the target a hook to extend this assessment and prevent
434 /// an instruction being hoisted from a given loop for target specific
435 /// reasons.
436 virtual bool shouldHoist(const MachineInstr &MI,
437 const MachineLoop *FromLoop) const {
438 return true;
439 }
440
441 /// Re-issue the specified 'original' instruction at the
442 /// specific location targeting a new destination register.
443 /// The register in Orig->getOperand(0).getReg() will be substituted by
444 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
445 /// SubIdx.
446 virtual void reMaterialize(MachineBasicBlock &MBB,
448 unsigned SubIdx, const MachineInstr &Orig,
449 const TargetRegisterInfo &TRI) const;
450
451 /// Clones instruction or the whole instruction bundle \p Orig and
452 /// insert into \p MBB before \p InsertBefore. The target may update operands
453 /// that are required to be unique.
454 ///
455 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
456 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
457 MachineBasicBlock::iterator InsertBefore,
458 const MachineInstr &Orig) const;
459
460 /// This method must be implemented by targets that
461 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
462 /// may be able to convert a two-address instruction into one or more true
463 /// three-address instructions on demand. This allows the X86 target (for
464 /// example) to convert ADD and SHL instructions into LEA instructions if they
465 /// would require register copies due to two-addressness.
466 ///
467 /// This method returns a null pointer if the transformation cannot be
468 /// performed, otherwise it returns the last new instruction.
469 ///
470 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
471 /// replacing \p MI with new instructions, even though this function does not
472 /// remove MI.
474 LiveVariables *LV,
475 LiveIntervals *LIS) const {
476 return nullptr;
477 }
478
479 // This constant can be used as an input value of operand index passed to
480 // the method findCommutedOpIndices() to tell the method that the
481 // corresponding operand index is not pre-defined and that the method
482 // can pick any commutable operand.
483 static const unsigned CommuteAnyOperandIndex = ~0U;
484
485 /// This method commutes the operands of the given machine instruction MI.
486 ///
487 /// The operands to be commuted are specified by their indices OpIdx1 and
488 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
489 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
490 /// any arbitrarily chosen commutable operand. If both arguments are set to
491 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
492 /// operands; then commutes them if such operands could be found.
493 ///
494 /// If NewMI is false, MI is modified in place and returned; otherwise, a
495 /// new machine instruction is created and returned.
496 ///
497 /// Do not call this method for a non-commutable instruction or
498 /// for non-commuable operands.
499 /// Even though the instruction is commutable, the method may still
500 /// fail to commute the operands, null pointer is returned in such cases.
502 commuteInstruction(MachineInstr &MI, bool NewMI = false,
503 unsigned OpIdx1 = CommuteAnyOperandIndex,
504 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
505
506 /// Returns true iff the routine could find two commutable operands in the
507 /// given machine instruction.
508 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
509 /// If any of the INPUT values is set to the special value
510 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
511 /// operand, then returns its index in the corresponding argument.
512 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
513 /// looks for 2 commutable operands.
514 /// If INPUT values refer to some operands of MI, then the method simply
515 /// returns true if the corresponding operands are commutable and returns
516 /// false otherwise.
517 ///
518 /// For example, calling this method this way:
519 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
520 /// findCommutedOpIndices(MI, Op1, Op2);
521 /// can be interpreted as a query asking to find an operand that would be
522 /// commutable with the operand#1.
523 virtual bool findCommutedOpIndices(const MachineInstr &MI,
524 unsigned &SrcOpIdx1,
525 unsigned &SrcOpIdx2) const;
526
527 /// Returns true if the target has a preference on the operands order of
528 /// the given machine instruction. And specify if \p Commute is required to
529 /// get the desired operands order.
530 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
531 return false;
532 }
533
534 /// If possible, converts the instruction to a simplified/canonical form.
535 /// Returns true if the instruction was modified.
536 ///
537 /// This function is only called after register allocation. The MI will be
538 /// modified in place. This is called by passes such as
539 /// MachineCopyPropagation, where their mutation of the MI operands may
540 /// expose opportunities to convert the instruction to a simpler form (e.g.
541 /// a load of 0).
542 virtual bool simplifyInstruction(MachineInstr &MI) const { return false; }
543
544 /// A pair composed of a register and a sub-register index.
545 /// Used to give some type checking when modeling Reg:SubReg.
548 unsigned SubReg;
549
551 : Reg(Reg), SubReg(SubReg) {}
552
553 bool operator==(const RegSubRegPair& P) const {
554 return Reg == P.Reg && SubReg == P.SubReg;
555 }
556 bool operator!=(const RegSubRegPair& P) const {
557 return !(*this == P);
558 }
559 };
560
561 /// A pair composed of a pair of a register and a sub-register index,
562 /// and another sub-register index.
563 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
565 unsigned SubIdx;
566
568 unsigned SubIdx = 0)
570 };
571
572 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
573 /// and \p DefIdx.
574 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
575 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
576 /// flag are not added to this list.
577 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
578 /// two elements:
579 /// - %1:sub1, sub0
580 /// - %2<:0>, sub1
581 ///
582 /// \returns true if it is possible to build such an input sequence
583 /// with the pair \p MI, \p DefIdx. False otherwise.
584 ///
585 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
586 ///
587 /// \note The generic implementation does not provide any support for
588 /// MI.isRegSequenceLike(). In other words, one has to override
589 /// getRegSequenceLikeInputs for target specific instructions.
590 bool
591 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
592 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
593
594 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
595 /// and \p DefIdx.
596 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
597 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
598 /// - %1:sub1, sub0
599 ///
600 /// \returns true if it is possible to build such an input sequence
601 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
602 /// False otherwise.
603 ///
604 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
605 ///
606 /// \note The generic implementation does not provide any support for
607 /// MI.isExtractSubregLike(). In other words, one has to override
608 /// getExtractSubregLikeInputs for target specific instructions.
609 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
610 RegSubRegPairAndIdx &InputReg) const;
611
612 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
613 /// and \p DefIdx.
614 /// \p [out] BaseReg and \p [out] InsertedReg contain
615 /// the equivalent inputs of INSERT_SUBREG.
616 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
617 /// - BaseReg: %0:sub0
618 /// - InsertedReg: %1:sub1, sub3
619 ///
620 /// \returns true if it is possible to build such an input sequence
621 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
622 /// False otherwise.
623 ///
624 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
625 ///
626 /// \note The generic implementation does not provide any support for
627 /// MI.isInsertSubregLike(). In other words, one has to override
628 /// getInsertSubregLikeInputs for target specific instructions.
629 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
630 RegSubRegPair &BaseReg,
631 RegSubRegPairAndIdx &InsertedReg) const;
632
633 /// Return true if two machine instructions would produce identical values.
634 /// By default, this is only true when the two instructions
635 /// are deemed identical except for defs. If this function is called when the
636 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
637 /// aggressive checks.
638 virtual bool produceSameValue(const MachineInstr &MI0,
639 const MachineInstr &MI1,
640 const MachineRegisterInfo *MRI = nullptr) const;
641
642 /// \returns true if a branch from an instruction with opcode \p BranchOpc
643 /// bytes is capable of jumping to a position \p BrOffset bytes away.
644 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
645 int64_t BrOffset) const {
646 llvm_unreachable("target did not implement");
647 }
648
649 /// \returns The block that branch instruction \p MI jumps to.
651 llvm_unreachable("target did not implement");
652 }
653
654 /// Insert an unconditional indirect branch at the end of \p MBB to \p
655 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
656 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
657 /// the offset of the position to insert the new branch.
659 MachineBasicBlock &NewDestBB,
660 MachineBasicBlock &RestoreBB,
661 const DebugLoc &DL, int64_t BrOffset = 0,
662 RegScavenger *RS = nullptr) const {
663 llvm_unreachable("target did not implement");
664 }
665
666 /// Analyze the branching code at the end of MBB, returning
667 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
668 /// implemented for a target). Upon success, this returns false and returns
669 /// with the following information in various cases:
670 ///
671 /// 1. If this block ends with no branches (it just falls through to its succ)
672 /// just return false, leaving TBB/FBB null.
673 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
674 /// the destination block.
675 /// 3. If this block ends with a conditional branch and it falls through to a
676 /// successor block, it sets TBB to be the branch destination block and a
677 /// list of operands that evaluate the condition. These operands can be
678 /// passed to other TargetInstrInfo methods to create new branches.
679 /// 4. If this block ends with a conditional branch followed by an
680 /// unconditional branch, it returns the 'true' destination in TBB, the
681 /// 'false' destination in FBB, and a list of operands that evaluate the
682 /// condition. These operands can be passed to other TargetInstrInfo
683 /// methods to create new branches.
684 ///
685 /// Note that removeBranch and insertBranch must be implemented to support
686 /// cases where this method returns success.
687 ///
688 /// If AllowModify is true, then this routine is allowed to modify the basic
689 /// block (e.g. delete instructions after the unconditional branch).
690 ///
691 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
692 /// before calling this function.
694 MachineBasicBlock *&FBB,
696 bool AllowModify = false) const {
697 return true;
698 }
699
700 /// Represents a predicate at the MachineFunction level. The control flow a
701 /// MachineBranchPredicate represents is:
702 ///
703 /// Reg = LHS `Predicate` RHS == ConditionDef
704 /// if Reg then goto TrueDest else goto FalseDest
705 ///
708 PRED_EQ, // True if two values are equal
709 PRED_NE, // True if two values are not equal
710 PRED_INVALID // Sentinel value
711 };
712
719
720 /// SingleUseCondition is true if ConditionDef is dead except for the
721 /// branch(es) at the end of the basic block.
722 ///
723 bool SingleUseCondition = false;
724
725 explicit MachineBranchPredicate() = default;
726 };
727
728 /// Analyze the branching code at the end of MBB and parse it into the
729 /// MachineBranchPredicate structure if possible. Returns false on success
730 /// and true on failure.
731 ///
732 /// If AllowModify is true, then this routine is allowed to modify the basic
733 /// block (e.g. delete instructions after the unconditional branch).
734 ///
737 bool AllowModify = false) const {
738 return true;
739 }
740
741 /// Remove the branching code at the end of the specific MBB.
742 /// This is only invoked in cases where analyzeBranch returns success. It
743 /// returns the number of instructions that were removed.
744 /// If \p BytesRemoved is non-null, report the change in code size from the
745 /// removed instructions.
747 int *BytesRemoved = nullptr) const {
748 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
749 }
750
751 /// Insert branch code into the end of the specified MachineBasicBlock. The
752 /// operands to this method are the same as those returned by analyzeBranch.
753 /// This is only invoked in cases where analyzeBranch returns success. It
754 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
755 /// report the change in code size from the added instructions.
756 ///
757 /// It is also invoked by tail merging to add unconditional branches in
758 /// cases where analyzeBranch doesn't apply because there was no original
759 /// branch to analyze. At least this much must be implemented, else tail
760 /// merging needs to be disabled.
761 ///
762 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
763 /// before calling this function.
767 const DebugLoc &DL,
768 int *BytesAdded = nullptr) const {
769 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
770 }
771
773 MachineBasicBlock *DestBB,
774 const DebugLoc &DL,
775 int *BytesAdded = nullptr) const {
776 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
777 BytesAdded);
778 }
779
780 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
781 /// implementations to query attributes of the loop being pipelined and to
782 /// apply target-specific updates to the loop once pipelining is complete.
784 public:
786 /// Return true if the given instruction should not be pipelined and should
787 /// be ignored. An example could be a loop comparison, or induction variable
788 /// update with no users being pipelined.
789 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
790
791 /// Return true if the proposed schedule should used. Otherwise return
792 /// false to not pipeline the loop. This function should be used to ensure
793 /// that pipelined loops meet target-specific quality heuristics.
795 return true;
796 }
797
798 /// Create a condition to determine if the trip count of the loop is greater
799 /// than TC, where TC is always one more than for the previous prologue or
800 /// 0 if this is being called for the outermost prologue.
801 ///
802 /// If the trip count is statically known to be greater than TC, return
803 /// true. If the trip count is statically known to be not greater than TC,
804 /// return false. Otherwise return nullopt and fill out Cond with the test
805 /// condition.
806 ///
807 /// Note: This hook is guaranteed to be called from the innermost to the
808 /// outermost prologue of the loop being software pipelined.
809 virtual std::optional<bool>
812
813 /// Create a condition to determine if the remaining trip count for a phase
814 /// is greater than TC. Some instructions such as comparisons may be
815 /// inserted at the bottom of MBB. All instructions expanded for the
816 /// phase must be inserted in MBB before calling this function.
817 /// LastStage0Insts is the map from the original instructions scheduled at
818 /// stage#0 to the expanded instructions for the last iteration of the
819 /// kernel. LastStage0Insts is intended to obtain the instruction that
820 /// refers the latest loop counter value.
821 ///
822 /// MBB can also be a predecessor of the prologue block. Then
823 /// LastStage0Insts must be empty and the compared value is the initial
824 /// value of the trip count.
829 "Target didn't implement "
830 "PipelinerLoopInfo::createRemainingIterationsGreaterCondition!");
831 }
832
833 /// Modify the loop such that the trip count is
834 /// OriginalTC + TripCountAdjust.
835 virtual void adjustTripCount(int TripCountAdjust) = 0;
836
837 /// Called when the loop's preheader has been modified to NewPreheader.
838 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
839
840 /// Called when the loop is being removed. Any instructions in the preheader
841 /// should be removed.
842 ///
843 /// Once this function is called, no other functions on this object are
844 /// valid; the loop has been removed.
845 virtual void disposed(LiveIntervals *LIS = nullptr) {}
846
847 /// Return true if the target can expand pipelined schedule with modulo
848 /// variable expansion.
849 virtual bool isMVEExpanderSupported() { return false; }
850 };
851
852 /// Analyze loop L, which must be a single-basic-block loop, and if the
853 /// conditions can be understood enough produce a PipelinerLoopInfo object.
854 virtual std::unique_ptr<PipelinerLoopInfo>
856 return nullptr;
857 }
858
859 /// Analyze the loop code, return true if it cannot be understood. Upon
860 /// success, this function returns false and returns information about the
861 /// induction variable and compare instruction used at the end.
862 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
863 MachineInstr *&CmpInst) const {
864 return true;
865 }
866
867 /// Generate code to reduce the loop iteration by one and check if the loop
868 /// is finished. Return the value/register of the new loop count. We need
869 /// this function when peeling off one or more iterations of a loop. This
870 /// function assumes the nth iteration is peeled first.
872 MachineBasicBlock &PreHeader,
873 MachineInstr *IndVar, MachineInstr &Cmp,
876 unsigned Iter, unsigned MaxIter) const {
877 llvm_unreachable("Target didn't implement ReduceLoopCount");
878 }
879
880 /// Delete the instruction OldInst and everything after it, replacing it with
881 /// an unconditional branch to NewDest. This is used by the tail merging pass.
882 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
883 MachineBasicBlock *NewDest) const;
884
885 /// Return true if it's legal to split the given basic
886 /// block at the specified instruction (i.e. instruction would be the start
887 /// of a new basic block).
890 return true;
891 }
892
893 /// Return true if it's profitable to predicate
894 /// instructions with accumulated instruction latency of "NumCycles"
895 /// of the specified basic block, where the probability of the instructions
896 /// being executed is given by Probability, and Confidence is a measure
897 /// of our confidence that it will be properly predicted.
898 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
899 unsigned ExtraPredCycles,
900 BranchProbability Probability) const {
901 return false;
902 }
903
904 /// Second variant of isProfitableToIfCvt. This one
905 /// checks for the case where two basic blocks from true and false path
906 /// of a if-then-else (diamond) are predicated on mutually exclusive
907 /// predicates, where the probability of the true path being taken is given
908 /// by Probability, and Confidence is a measure of our confidence that it
909 /// will be properly predicted.
910 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
911 unsigned ExtraTCycles,
912 MachineBasicBlock &FMBB, unsigned NumFCycles,
913 unsigned ExtraFCycles,
914 BranchProbability Probability) const {
915 return false;
916 }
917
918 /// Return true if it's profitable for if-converter to duplicate instructions
919 /// of specified accumulated instruction latencies in the specified MBB to
920 /// enable if-conversion.
921 /// The probability of the instructions being executed is given by
922 /// Probability, and Confidence is a measure of our confidence that it
923 /// will be properly predicted.
925 unsigned NumCycles,
926 BranchProbability Probability) const {
927 return false;
928 }
929
930 /// Return the increase in code size needed to predicate a contiguous run of
931 /// NumInsts instructions.
933 unsigned NumInsts) const {
934 return 0;
935 }
936
937 /// Return an estimate for the code size reduction (in bytes) which will be
938 /// caused by removing the given branch instruction during if-conversion.
939 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
940 return getInstSizeInBytes(MI);
941 }
942
943 /// Return true if it's profitable to unpredicate
944 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
945 /// exclusive predicates.
946 /// e.g.
947 /// subeq r0, r1, #1
948 /// addne r0, r1, #1
949 /// =>
950 /// sub r0, r1, #1
951 /// addne r0, r1, #1
952 ///
953 /// This may be profitable is conditional instructions are always executed.
955 MachineBasicBlock &FMBB) const {
956 return false;
957 }
958
959 /// Return true if it is possible to insert a select
960 /// instruction that chooses between TrueReg and FalseReg based on the
961 /// condition code in Cond.
962 ///
963 /// When successful, also return the latency in cycles from TrueReg,
964 /// FalseReg, and Cond to the destination register. In most cases, a select
965 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
966 ///
967 /// Some x86 implementations have 2-cycle cmov instructions.
968 ///
969 /// @param MBB Block where select instruction would be inserted.
970 /// @param Cond Condition returned by analyzeBranch.
971 /// @param DstReg Virtual dest register that the result should write to.
972 /// @param TrueReg Virtual register to select when Cond is true.
973 /// @param FalseReg Virtual register to select when Cond is false.
974 /// @param CondCycles Latency from Cond+Branch to select output.
975 /// @param TrueCycles Latency from TrueReg to select output.
976 /// @param FalseCycles Latency from FalseReg to select output.
979 Register TrueReg, Register FalseReg,
980 int &CondCycles, int &TrueCycles,
981 int &FalseCycles) const {
982 return false;
983 }
984
985 /// Insert a select instruction into MBB before I that will copy TrueReg to
986 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
987 ///
988 /// This function can only be called after canInsertSelect() returned true.
989 /// The condition in Cond comes from analyzeBranch, and it can be assumed
990 /// that the same flags or registers required by Cond are available at the
991 /// insertion point.
992 ///
993 /// @param MBB Block where select instruction should be inserted.
994 /// @param I Insertion point.
995 /// @param DL Source location for debugging.
996 /// @param DstReg Virtual register to be defined by select instruction.
997 /// @param Cond Condition as computed by analyzeBranch.
998 /// @param TrueReg Virtual register to copy when Cond is true.
999 /// @param FalseReg Virtual register to copy when Cons is false.
1003 Register TrueReg, Register FalseReg) const {
1004 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
1005 }
1006
1007 /// Analyze the given select instruction, returning true if
1008 /// it cannot be understood. It is assumed that MI->isSelect() is true.
1009 ///
1010 /// When successful, return the controlling condition and the operands that
1011 /// determine the true and false result values.
1012 ///
1013 /// Result = SELECT Cond, TrueOp, FalseOp
1014 ///
1015 /// Some targets can optimize select instructions, for example by predicating
1016 /// the instruction defining one of the operands. Such targets should set
1017 /// Optimizable.
1018 ///
1019 /// @param MI Select instruction to analyze.
1020 /// @param Cond Condition controlling the select.
1021 /// @param TrueOp Operand number of the value selected when Cond is true.
1022 /// @param FalseOp Operand number of the value selected when Cond is false.
1023 /// @param Optimizable Returned as true if MI is optimizable.
1024 /// @returns False on success.
1025 virtual bool analyzeSelect(const MachineInstr &MI,
1027 unsigned &TrueOp, unsigned &FalseOp,
1028 bool &Optimizable) const {
1029 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
1030 return true;
1031 }
1032
1033 /// Given a select instruction that was understood by
1034 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
1035 /// merging it with one of its operands. Returns NULL on failure.
1036 ///
1037 /// When successful, returns the new select instruction. The client is
1038 /// responsible for deleting MI.
1039 ///
1040 /// If both sides of the select can be optimized, PreferFalse is used to pick
1041 /// a side.
1042 ///
1043 /// @param MI Optimizable select instruction.
1044 /// @param NewMIs Set that record all MIs in the basic block up to \p
1045 /// MI. Has to be updated with any newly created MI or deleted ones.
1046 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
1047 /// @returns Optimized instruction or NULL.
1050 bool PreferFalse = false) const {
1051 // This function must be implemented if Optimizable is ever set.
1052 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
1053 }
1054
1055 /// Emit instructions to copy a pair of physical registers.
1056 ///
1057 /// This function should support copies within any legal register class as
1058 /// well as any cross-class copies created during instruction selection.
1059 ///
1060 /// The source and destination registers may overlap, which may require a
1061 /// careful implementation when multiple copy instructions are required for
1062 /// large registers. See for example the ARM target.
1063 ///
1064 /// If RenamableDest is true, the copy instruction's destination operand is
1065 /// marked renamable.
1066 /// If RenamableSrc is true, the copy instruction's source operand is
1067 /// marked renamable.
1070 Register DestReg, Register SrcReg, bool KillSrc,
1071 bool RenamableDest = false,
1072 bool RenamableSrc = false) const {
1073 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
1074 }
1075
1076 /// Allow targets to tell MachineVerifier whether a specific register
1077 /// MachineOperand can be used as part of PC-relative addressing.
1078 /// PC-relative addressing modes in many CISC architectures contain
1079 /// (non-PC) registers as offsets or scaling values, which inherently
1080 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1081 ///
1082 /// @param MO The MachineOperand in question. MO.isReg() should always
1083 /// be true.
1084 /// @return Whether this operand is allowed to be used PC-relatively.
1085 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1086 return false;
1087 }
1088
1089 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1090 /// using a jump table, otherwise -1.
1091 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1092
1093protected:
1094 /// Target-dependent implementation for IsCopyInstr.
1095 /// If the specific machine instruction is a instruction that moves/copies
1096 /// value from one register to another register return destination and source
1097 /// registers as machine operands.
1098 virtual std::optional<DestSourcePair>
1100 return std::nullopt;
1101 }
1102
1103 virtual std::optional<DestSourcePair>
1105 return std::nullopt;
1106 }
1107
1108 /// Return true if the given terminator MI is not expected to spill. This
1109 /// sets the live interval as not spillable and adjusts phi node lowering to
1110 /// not introduce copies after the terminator. Use with care, these are
1111 /// currently used for hardware loop intrinsics in very controlled situations,
1112 /// created prior to registry allocation in loops that only have single phi
1113 /// users for the terminators value. They may run out of registers if not used
1114 /// carefully.
1115 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1116 return false;
1117 }
1118
1119public:
1120 /// If the specific machine instruction is a instruction that moves/copies
1121 /// value from one register to another register return destination and source
1122 /// registers as machine operands.
1123 /// For COPY-instruction the method naturally returns destination and source
1124 /// registers as machine operands, for all other instructions the method calls
1125 /// target-dependent implementation.
1126 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1127 if (MI.isCopy()) {
1128 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1129 }
1130 return isCopyInstrImpl(MI);
1131 }
1132
1133 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1134 // ultimately generates a copy instruction.
1135 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1136 if (auto IsCopyInstr = isCopyInstr(MI))
1137 return IsCopyInstr;
1138 return isCopyLikeInstrImpl(MI);
1139 }
1140
1141 bool isFullCopyInstr(const MachineInstr &MI) const {
1142 auto DestSrc = isCopyInstr(MI);
1143 if (!DestSrc)
1144 return false;
1145
1146 const MachineOperand *DestRegOp = DestSrc->Destination;
1147 const MachineOperand *SrcRegOp = DestSrc->Source;
1148 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1149 }
1150
1151 /// If the specific machine instruction is an instruction that adds an
1152 /// immediate value and a register, and stores the result in the given
1153 /// register \c Reg, return a pair of the source register and the offset
1154 /// which has been added.
1155 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1156 Register Reg) const {
1157 return std::nullopt;
1158 }
1159
1160 /// Returns true if MI is an instruction that defines Reg to have a constant
1161 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1162 /// should be interpreted as modulo size of Reg.
1164 const Register Reg,
1165 int64_t &ImmVal) const {
1166 return false;
1167 }
1168
1169 /// Store the specified register of the given register class to the specified
1170 /// stack frame index. The store instruction is to be added to the given
1171 /// machine basic block before the specified machine instruction. If isKill
1172 /// is true, the register operand is the last use and must be marked kill. If
1173 /// \p SrcReg is being directly spilled as part of assigning a virtual
1174 /// register, \p VReg is the register being assigned. This additional register
1175 /// argument is needed for certain targets when invoked from RegAllocFast to
1176 /// map the spilled physical register to its virtual register. A null register
1177 /// can be passed elsewhere. The \p Flags is used to set appropriate machine
1178 /// flags on the spill instruction e.g. FrameSetup flag on a callee saved
1179 /// register spill instruction, part of prologue, during the frame lowering.
1182 bool isKill, int FrameIndex, const TargetRegisterClass *RC,
1183 const TargetRegisterInfo *TRI, Register VReg,
1185 llvm_unreachable("Target didn't implement "
1186 "TargetInstrInfo::storeRegToStackSlot!");
1187 }
1188
1189 /// Load the specified register of the given register class from the specified
1190 /// stack frame index. The load instruction is to be added to the given
1191 /// machine basic block before the specified machine instruction. If \p
1192 /// DestReg is being directly reloaded as part of assigning a virtual
1193 /// register, \p VReg is the register being assigned. This additional register
1194 /// argument is needed for certain targets when invoked from RegAllocFast to
1195 /// map the loaded physical register to its virtual register. A null register
1196 /// can be passed elsewhere. The \p Flags is used to set appropriate machine
1197 /// flags on the spill instruction e.g. FrameDestroy flag on a callee saved
1198 /// register reload instruction, part of epilogue, during the frame lowering.
1201 int FrameIndex, const TargetRegisterClass *RC,
1202 const TargetRegisterInfo *TRI, Register VReg,
1204 llvm_unreachable("Target didn't implement "
1205 "TargetInstrInfo::loadRegFromStackSlot!");
1206 }
1207
1208 /// This function is called for all pseudo instructions
1209 /// that remain after register allocation. Many pseudo instructions are
1210 /// created to help register allocation. This is the place to convert them
1211 /// into real instructions. The target can edit MI in place, or it can insert
1212 /// new instructions and erase MI. The function should return true if
1213 /// anything was changed.
1214 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1215
1216 /// Check whether the target can fold a load that feeds a subreg operand
1217 /// (or a subreg operand that feeds a store).
1218 /// For example, X86 may want to return true if it can fold
1219 /// movl (%esp), %eax
1220 /// subb, %al, ...
1221 /// Into:
1222 /// subb (%esp), ...
1223 ///
1224 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1225 /// reject subregs - but since this behavior used to be enforced in the
1226 /// target-independent code, moving this responsibility to the targets
1227 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1228 virtual bool isSubregFoldable() const { return false; }
1229
1230 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1231 /// operands which can't be folded into stack references. Operands outside
1232 /// of the range are most likely foldable but it is not guaranteed.
1233 /// These instructions are unique in that stack references for some operands
1234 /// have the same execution cost (e.g. none) as the unfolded register forms.
1235 /// The ranged return is guaranteed to include all operands which can't be
1236 /// folded at zero cost.
1237 virtual std::pair<unsigned, unsigned>
1238 getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1239
1240 /// Attempt to fold a load or store of the specified stack
1241 /// slot into the specified machine instruction for the specified operand(s).
1242 /// If this is possible, a new instruction is returned with the specified
1243 /// operand folded, otherwise NULL is returned.
1244 /// The new instruction is inserted before MI, and the client is responsible
1245 /// for removing the old instruction.
1246 /// If VRM is passed, the assigned physregs can be inspected by target to
1247 /// decide on using an opcode (note that those assignments can still change).
1248 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1249 int FI,
1250 LiveIntervals *LIS = nullptr,
1251 VirtRegMap *VRM = nullptr) const;
1252
1253 /// Same as the previous version except it allows folding of any load and
1254 /// store from / to any address, not just from a specific stack slot.
1255 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1256 MachineInstr &LoadMI,
1257 LiveIntervals *LIS = nullptr) const;
1258
1259 /// This function defines the logic to lower COPY instruction to
1260 /// target specific instruction(s).
1261 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1262
1263 /// Return true when there is potentially a faster code sequence
1264 /// for an instruction chain ending in \p Root. All potential patterns are
1265 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1266 /// order since the pattern evaluator stops checking as soon as it finds a
1267 /// faster sequence.
1268 /// \param Root - Instruction that could be combined with one of its operands
1269 /// \param Patterns - Vector of possible combination patterns
1270 virtual bool getMachineCombinerPatterns(MachineInstr &Root,
1271 SmallVectorImpl<unsigned> &Patterns,
1272 bool DoRegPressureReduce) const;
1273
1274 /// Return true if target supports reassociation of instructions in machine
1275 /// combiner pass to reduce register pressure for a given BB.
1276 virtual bool
1278 const RegisterClassInfo *RegClassInfo) const {
1279 return false;
1280 }
1281
1282 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1283 virtual void
1285 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1286
1287 /// Return true when a code sequence can improve throughput. It
1288 /// should be called only for instructions in loops.
1289 /// \param Pattern - combiner pattern
1290 virtual bool isThroughputPattern(unsigned Pattern) const;
1291
1292 /// Return the objective of a combiner pattern.
1293 /// \param Pattern - combiner pattern
1294 virtual CombinerObjective getCombinerObjective(unsigned Pattern) const;
1295
1296 /// Return true if the input \P Inst is part of a chain of dependent ops
1297 /// that are suitable for reassociation, otherwise return false.
1298 /// If the instruction's operands must be commuted to have a previous
1299 /// instruction of the same type define the first source operand, \P Commuted
1300 /// will be set to true.
1301 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1302
1303 /// Return true when \P Inst is both associative and commutative. If \P Invert
1304 /// is true, then the inverse of \P Inst operation must be tested.
1306 bool Invert = false) const {
1307 return false;
1308 }
1309
1310 /// Find chains of accumulations that can be rewritten as a tree for increased
1311 /// ILP.
1312 bool getAccumulatorReassociationPatterns(
1313 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns) const;
1314
1315 /// Find the chain of accumulator instructions in \P MBB and return them in
1316 /// \P Chain.
1317 void getAccumulatorChain(MachineInstr *CurrentInstr,
1318 SmallVectorImpl<Register> &Chain) const;
1319
1320 /// Return true when \P OpCode is an instruction which performs
1321 /// accumulation into one of its operand registers.
1322 virtual bool isAccumulationOpcode(unsigned Opcode) const { return false; }
1323
1324 /// Returns an opcode which defines the accumulator used by \P Opcode.
1325 virtual unsigned getAccumulationStartOpcode(unsigned Opcode) const {
1326 llvm_unreachable("Function not implemented for target!");
1327 return 0;
1328 }
1329
1330 /// Returns the opcode that should be use to reduce accumulation registers.
1331 virtual unsigned
1332 getReduceOpcodeForAccumulator(unsigned int AccumulatorOpCode) const {
1333 llvm_unreachable("Function not implemented for target!");
1334 return 0;
1335 }
1336
1337 /// Reduces branches of the accumulator tree into a single register.
1338 void reduceAccumulatorTree(SmallVectorImpl<Register> &RegistersToReduce,
1340 MachineFunction &MF, MachineInstr &Root,
1342 DenseMap<Register, unsigned> &InstrIdxForVirtReg,
1343 Register ResultReg) const;
1344
1345 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1346 /// for sub and vice versa).
1347 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1348 return std::nullopt;
1349 }
1350
1351 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1352 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1353
1354 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1355 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1356 const MachineBasicBlock *MBB) const;
1357
1358 /// Return true when \P Inst has reassociable sibling.
1359 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1360 bool &Commuted) const;
1361
1362 /// When getMachineCombinerPatterns() finds patterns, this function generates
1363 /// the instructions that could replace the original code sequence. The client
1364 /// has to decide whether the actual replacement is beneficial or not.
1365 /// \param Root - Instruction that could be combined with one of its operands
1366 /// \param Pattern - Combination pattern for Root
1367 /// \param InsInstrs - Vector of new instructions that implement P
1368 /// \param DelInstrs - Old instructions, including Root, that could be
1369 /// replaced by InsInstr
1370 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1371 /// InsInstr that defines it
1372 virtual void genAlternativeCodeSequence(
1373 MachineInstr &Root, unsigned Pattern,
1376 DenseMap<Register, unsigned> &InstIdxForVirtReg) const;
1377
1378 /// When calculate the latency of the root instruction, accumulate the
1379 /// latency of the sequence to the root latency.
1380 /// \param Root - Instruction that could be combined with one of its operands
1382 return true;
1383 }
1384
1385 /// The returned array encodes the operand index for each parameter because
1386 /// the operands may be commuted; the operand indices for associative
1387 /// operations might also be target-specific. Each element specifies the index
1388 /// of {Prev, A, B, X, Y}.
1389 virtual void
1390 getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern,
1391 std::array<unsigned, 5> &OperandIndices) const;
1392
1393 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1394 /// reduce critical path length.
1395 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1399 DenseMap<Register, unsigned> &InstrIdxForVirtReg) const;
1400
1401 /// Reassociation of some instructions requires inverse operations (e.g.
1402 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1403 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1404 /// Root and \P Prev accoring to \P Pattern.
1405 std::pair<unsigned, unsigned>
1406 getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root,
1407 const MachineInstr &Prev) const;
1408
1409 /// The limit on resource length extension we accept in MachineCombiner Pass.
1410 virtual int getExtendResourceLenLimit() const { return 0; }
1411
1412 /// This is an architecture-specific helper function of reassociateOps.
1413 /// Set special operand attributes for new instructions after reassociation.
1414 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1415 MachineInstr &NewMI1,
1416 MachineInstr &NewMI2) const {}
1417
1418 /// Return true when a target supports MachineCombiner.
1419 virtual bool useMachineCombiner() const { return false; }
1420
1421 /// Return a strategy that MachineCombiner must use when creating traces.
1422 virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1423
1424 /// Return true if the given SDNode can be copied during scheduling
1425 /// even if it has glue.
1426 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1427
1428protected:
1429 /// Target-dependent implementation for foldMemoryOperand.
1430 /// Target-independent code in foldMemoryOperand will
1431 /// take care of adding a MachineMemOperand to the newly created instruction.
1432 /// The instruction and any auxiliary instructions necessary will be inserted
1433 /// at InsertPt.
1434 virtual MachineInstr *
1437 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1438 LiveIntervals *LIS = nullptr,
1439 VirtRegMap *VRM = nullptr) const {
1440 return nullptr;
1441 }
1442
1443 /// Target-dependent implementation for foldMemoryOperand.
1444 /// Target-independent code in foldMemoryOperand will
1445 /// take care of adding a MachineMemOperand to the newly created instruction.
1446 /// The instruction and any auxiliary instructions necessary will be inserted
1447 /// at InsertPt.
1450 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1451 LiveIntervals *LIS = nullptr) const {
1452 return nullptr;
1453 }
1454
1455 /// Target-dependent implementation of getRegSequenceInputs.
1456 ///
1457 /// \returns true if it is possible to build the equivalent
1458 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1459 ///
1460 /// \pre MI.isRegSequenceLike().
1461 ///
1462 /// \see TargetInstrInfo::getRegSequenceInputs.
1464 const MachineInstr &MI, unsigned DefIdx,
1465 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1466 return false;
1467 }
1468
1469 /// Target-dependent implementation of getExtractSubregInputs.
1470 ///
1471 /// \returns true if it is possible to build the equivalent
1472 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1473 ///
1474 /// \pre MI.isExtractSubregLike().
1475 ///
1476 /// \see TargetInstrInfo::getExtractSubregInputs.
1478 unsigned DefIdx,
1479 RegSubRegPairAndIdx &InputReg) const {
1480 return false;
1481 }
1482
1483 /// Target-dependent implementation of getInsertSubregInputs.
1484 ///
1485 /// \returns true if it is possible to build the equivalent
1486 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1487 ///
1488 /// \pre MI.isInsertSubregLike().
1489 ///
1490 /// \see TargetInstrInfo::getInsertSubregInputs.
1491 virtual bool
1493 RegSubRegPair &BaseReg,
1494 RegSubRegPairAndIdx &InsertedReg) const {
1495 return false;
1496 }
1497
1498public:
1499 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1500 /// a store or a load and a store into two or more instruction. If this is
1501 /// possible, returns true as well as the new instructions by reference.
1502 virtual bool
1504 bool UnfoldLoad, bool UnfoldStore,
1505 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1506 return false;
1507 }
1508
1510 SmallVectorImpl<SDNode *> &NewNodes) const {
1511 return false;
1512 }
1513
1514 /// Returns the opcode of the would be new
1515 /// instruction after load / store are unfolded from an instruction of the
1516 /// specified opcode. It returns zero if the specified unfolding is not
1517 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1518 /// index of the operand which will hold the register holding the loaded
1519 /// value.
1520 virtual unsigned
1521 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1522 unsigned *LoadRegIndex = nullptr) const {
1523 return 0;
1524 }
1525
1526 /// This is used by the pre-regalloc scheduler to determine if two loads are
1527 /// loading from the same base address. It should only return true if the base
1528 /// pointers are the same and the only differences between the two addresses
1529 /// are the offset. It also returns the offsets by reference.
1530 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1531 int64_t &Offset1,
1532 int64_t &Offset2) const {
1533 return false;
1534 }
1535
1536 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1537 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1538 /// On some targets if two loads are loading from
1539 /// addresses in the same cache line, it's better if they are scheduled
1540 /// together. This function takes two integers that represent the load offsets
1541 /// from the common base address. It returns true if it decides it's desirable
1542 /// to schedule the two loads together. "NumLoads" is the number of loads that
1543 /// have already been scheduled after Load1.
1544 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1545 int64_t Offset1, int64_t Offset2,
1546 unsigned NumLoads) const {
1547 return false;
1548 }
1549
1550 /// Get the base operand and byte offset of an instruction that reads/writes
1551 /// memory. This is a convenience function for callers that are only prepared
1552 /// to handle a single base operand.
1553 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1554 /// abstraction that supports negative offsets.
1555 bool getMemOperandWithOffset(const MachineInstr &MI,
1556 const MachineOperand *&BaseOp, int64_t &Offset,
1557 bool &OffsetIsScalable,
1558 const TargetRegisterInfo *TRI) const;
1559
1560 /// Get zero or more base operands and the byte offset of an instruction that
1561 /// reads/writes memory. Note that there may be zero base operands if the
1562 /// instruction accesses a constant address.
1563 /// It returns false if MI does not read/write memory.
1564 /// It returns false if base operands and offset could not be determined.
1565 /// It is not guaranteed to always recognize base operands and offsets in all
1566 /// cases.
1567 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1568 /// abstraction that supports negative offsets.
1571 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1572 const TargetRegisterInfo *TRI) const {
1573 return false;
1574 }
1575
1576 /// Return true if the instruction contains a base register and offset. If
1577 /// true, the function also sets the operand position in the instruction
1578 /// for the base register and offset.
1580 unsigned &BasePos,
1581 unsigned &OffsetPos) const {
1582 return false;
1583 }
1584
1585 /// Target dependent implementation to get the values constituting the address
1586 /// MachineInstr that is accessing memory. These values are returned as a
1587 /// struct ExtAddrMode which contains all relevant information to make up the
1588 /// address.
1589 virtual std::optional<ExtAddrMode>
1591 const TargetRegisterInfo *TRI) const {
1592 return std::nullopt;
1593 }
1594
1595 /// Check if it's possible and beneficial to fold the addressing computation
1596 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1597 /// memory instruction is a user of the virtual register `Reg`, which in turn
1598 /// is the ultimate destination of zero or more COPY instructions from the
1599 /// output register of `AddrI`.
1600 /// Return the adddressing mode after folding in `AM`.
1602 const MachineInstr &AddrI,
1603 ExtAddrMode &AM) const {
1604 return false;
1605 }
1606
1607 /// Emit a load/store instruction with the same value register as `MemI`, but
1608 /// using the address from `AM`. The addressing mode must have been obtained
1609 /// from `canFoldIntoAddr` for the same memory instruction.
1611 const ExtAddrMode &AM) const {
1612 llvm_unreachable("target did not implement emitLdStWithAddr()");
1613 }
1614
1615 /// Returns true if MI's Def is NullValueReg, and the MI
1616 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1617 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1618 /// function can return true even if becomes zero. Specifically cases such as
1619 /// NullValueReg = shl NullValueReg, 63.
1621 const Register NullValueReg,
1622 const TargetRegisterInfo *TRI) const {
1623 return false;
1624 }
1625
1626 /// If the instruction is an increment of a constant value, return the amount.
1627 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1628 return false;
1629 }
1630
1631 /// Returns true if the two given memory operations should be scheduled
1632 /// adjacent. Note that you have to add:
1633 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1634 /// or
1635 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1636 /// to TargetMachine::createMachineScheduler() to have an effect.
1637 ///
1638 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1639 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1640 /// operations.
1641 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1642 /// scaled by a runtime quantity.
1643 /// \p ClusterSize is the number of operations in the resulting load/store
1644 /// cluster if this hook returns true.
1645 /// \p NumBytes is the number of bytes that will be loaded from all the
1646 /// clustered loads if this hook returns true.
1648 int64_t Offset1, bool OffsetIsScalable1,
1650 int64_t Offset2, bool OffsetIsScalable2,
1651 unsigned ClusterSize,
1652 unsigned NumBytes) const {
1653 llvm_unreachable("target did not implement shouldClusterMemOps()");
1654 }
1655
1656 /// Reverses the branch condition of the specified condition list,
1657 /// returning false on success and true if it cannot be reversed.
1658 virtual bool
1662
1663 /// Insert a noop into the instruction stream at the specified point.
1664 virtual void insertNoop(MachineBasicBlock &MBB,
1666
1667 /// Insert noops into the instruction stream at the specified point.
1668 virtual void insertNoops(MachineBasicBlock &MBB,
1670 unsigned Quantity) const;
1671
1672 /// Return the noop instruction to use for a noop.
1673 virtual MCInst getNop() const;
1674
1675 /// Return true for post-incremented instructions.
1676 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1677
1678 /// Returns true if the instruction is already predicated.
1679 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1680
1681 /// Assumes the instruction is already predicated and returns true if the
1682 /// instruction can be predicated again.
1683 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1684 assert(isPredicated(MI) && "Instruction is not predicated");
1685 return false;
1686 }
1687
1688 // Returns a MIRPrinter comment for this machine operand.
1689 virtual std::string
1690 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1691 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1692
1693 /// Returns true if the instruction is a
1694 /// terminator instruction that has not been predicated.
1695 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1696
1697 /// Returns true if MI is an unconditional tail call.
1698 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1699 return false;
1700 }
1701
1702 /// Returns true if the tail call can be made conditional on BranchCond.
1704 const MachineInstr &TailCall) const {
1705 return false;
1706 }
1707
1708 /// Replace the conditional branch in MBB with a conditional tail call.
1711 const MachineInstr &TailCall) const {
1712 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1713 }
1714
1715 /// Convert the instruction into a predicated instruction.
1716 /// It returns true if the operation was successful.
1717 virtual bool PredicateInstruction(MachineInstr &MI,
1718 ArrayRef<MachineOperand> Pred) const;
1719
1720 /// Returns true if the first specified predicate
1721 /// subsumes the second, e.g. GE subsumes GT.
1723 ArrayRef<MachineOperand> Pred2) const {
1724 return false;
1725 }
1726
1727 /// If the specified instruction defines any predicate
1728 /// or condition code register(s) used for predication, returns true as well
1729 /// as the definition predicate(s) by reference.
1730 /// SkipDead should be set to false at any point that dead
1731 /// predicate instructions should be considered as being defined.
1732 /// A dead predicate instruction is one that is guaranteed to be removed
1733 /// after a call to PredicateInstruction.
1735 std::vector<MachineOperand> &Pred,
1736 bool SkipDead) const {
1737 return false;
1738 }
1739
1740 /// Return true if the specified instruction can be predicated.
1741 /// By default, this returns true for every instruction with a
1742 /// PredicateOperand.
1743 virtual bool isPredicable(const MachineInstr &MI) const {
1744 return MI.getDesc().isPredicable();
1745 }
1746
1747 /// Return true if it's safe to move a machine
1748 /// instruction that defines the specified register class.
1749 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1750 return true;
1751 }
1752
1753 /// Test if the given instruction should be considered a scheduling boundary.
1754 /// This primarily includes labels and terminators.
1755 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1756 const MachineBasicBlock *MBB,
1757 const MachineFunction &MF) const;
1758
1759 /// Measure the specified inline asm to determine an approximation of its
1760 /// length.
1761 virtual unsigned getInlineAsmLength(
1762 const char *Str, const MCAsmInfo &MAI,
1763 const TargetSubtargetInfo *STI = nullptr) const;
1764
1765 /// Allocate and return a hazard recognizer to use for this target when
1766 /// scheduling the machine instructions before register allocation.
1767 virtual ScheduleHazardRecognizer *
1768 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1769 const ScheduleDAG *DAG) const;
1770
1771 /// Allocate and return a hazard recognizer to use for this target when
1772 /// scheduling the machine instructions before register allocation.
1773 virtual ScheduleHazardRecognizer *
1774 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1775 const ScheduleDAGMI *DAG) const;
1776
1777 /// Allocate and return a hazard recognizer to use for this target when
1778 /// scheduling the machine instructions after register allocation.
1779 virtual ScheduleHazardRecognizer *
1780 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1781 const ScheduleDAG *DAG) const;
1782
1783 /// Allocate and return a hazard recognizer to use for by non-scheduling
1784 /// passes.
1785 virtual ScheduleHazardRecognizer *
1787 return nullptr;
1788 }
1789
1790 /// Provide a global flag for disabling the PreRA hazard recognizer that
1791 /// targets may choose to honor.
1792 bool usePreRAHazardRecognizer() const;
1793
1794 /// For a comparison instruction, return the source registers
1795 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1796 /// compares against in CmpValue. Return true if the comparison instruction
1797 /// can be analyzed.
1798 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1799 Register &SrcReg2, int64_t &Mask,
1800 int64_t &Value) const {
1801 return false;
1802 }
1803
1804 /// See if the comparison instruction can be converted
1805 /// into something more efficient. E.g., on ARM most instructions can set the
1806 /// flags register, obviating the need for a separate CMP.
1807 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1808 Register SrcReg2, int64_t Mask,
1809 int64_t Value,
1810 const MachineRegisterInfo *MRI) const {
1811 return false;
1812 }
1813 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1814
1815 /// Try to remove the load by folding it to a register operand at the use.
1816 /// We fold the load instructions if and only if the
1817 /// def and use are in the same BB. We only look at one load and see
1818 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1819 /// defined by the load we are trying to fold. DefMI returns the machine
1820 /// instruction that defines FoldAsLoadDefReg, and the function returns
1821 /// the machine instruction generated due to folding.
1822 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1823 const MachineRegisterInfo *MRI,
1824 Register &FoldAsLoadDefReg,
1825 MachineInstr *&DefMI) const;
1826
1827 /// 'Reg' is known to be defined by a move immediate instruction,
1828 /// try to fold the immediate into the use instruction.
1829 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1830 /// then the caller may assume that DefMI has been erased from its parent
1831 /// block. The caller may assume that it will not be erased by this
1832 /// function otherwise.
1835 return false;
1836 }
1837
1838 /// Return the number of u-operations the given machine
1839 /// instruction will be decoded to on the target cpu. The itinerary's
1840 /// IssueWidth is the number of microops that can be dispatched each
1841 /// cycle. An instruction with zero microops takes no dispatch resources.
1842 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1843 const MachineInstr &MI) const;
1844
1845 /// Return true for pseudo instructions that don't consume any
1846 /// machine resources in their current form. These are common cases that the
1847 /// scheduler should consider free, rather than conservatively handling them
1848 /// as instructions with no itinerary.
1849 bool isZeroCost(unsigned Opcode) const {
1850 return Opcode <= TargetOpcode::COPY;
1851 }
1852
1853 virtual std::optional<unsigned>
1854 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1855 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1856
1857 /// Compute and return the use operand latency of a given pair of def and use.
1858 /// In most cases, the static scheduling itinerary was enough to determine the
1859 /// operand latency. But it may not be possible for instructions with variable
1860 /// number of defs / uses.
1861 ///
1862 /// This is a raw interface to the itinerary that may be directly overridden
1863 /// by a target. Use computeOperandLatency to get the best estimate of
1864 /// latency.
1865 virtual std::optional<unsigned>
1866 getOperandLatency(const InstrItineraryData *ItinData,
1867 const MachineInstr &DefMI, unsigned DefIdx,
1868 const MachineInstr &UseMI, unsigned UseIdx) const;
1869
1870 /// Compute the instruction latency of a given instruction.
1871 /// If the instruction has higher cost when predicated, it's returned via
1872 /// PredCost.
1873 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1874 const MachineInstr &MI,
1875 unsigned *PredCost = nullptr) const;
1876
1877 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1878
1879 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1880 SDNode *Node) const;
1881
1882 /// Return the default expected latency for a def based on its opcode.
1883 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1884 const MachineInstr &DefMI) const;
1885
1886 /// Return true if this opcode has high latency to its result.
1887 virtual bool isHighLatencyDef(int opc) const { return false; }
1888
1889 /// Compute operand latency between a def of 'Reg'
1890 /// and a use in the current loop. Return true if the target considered
1891 /// it 'high'. This is used by optimization passes such as machine LICM to
1892 /// determine whether it makes sense to hoist an instruction out even in a
1893 /// high register pressure situation.
1894 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1895 const MachineRegisterInfo *MRI,
1896 const MachineInstr &DefMI, unsigned DefIdx,
1897 const MachineInstr &UseMI,
1898 unsigned UseIdx) const {
1899 return false;
1900 }
1901
1902 /// Compute operand latency of a def of 'Reg'. Return true
1903 /// if the target considered it 'low'.
1904 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1905 const MachineInstr &DefMI,
1906 unsigned DefIdx) const;
1907
1908 /// Perform target-specific instruction verification.
1909 virtual bool verifyInstruction(const MachineInstr &MI,
1910 StringRef &ErrInfo) const {
1911 return true;
1912 }
1913
1914 /// Return the current execution domain and bit mask of
1915 /// possible domains for instruction.
1916 ///
1917 /// Some micro-architectures have multiple execution domains, and multiple
1918 /// opcodes that perform the same operation in different domains. For
1919 /// example, the x86 architecture provides the por, orps, and orpd
1920 /// instructions that all do the same thing. There is a latency penalty if a
1921 /// register is written in one domain and read in another.
1922 ///
1923 /// This function returns a pair (domain, mask) containing the execution
1924 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1925 /// function can be used to change the opcode to one of the domains in the
1926 /// bit mask. Instructions whose execution domain can't be changed should
1927 /// return a 0 mask.
1928 ///
1929 /// The execution domain numbers don't have any special meaning except domain
1930 /// 0 is used for instructions that are not associated with any interesting
1931 /// execution domain.
1932 ///
1933 virtual std::pair<uint16_t, uint16_t>
1935 return std::make_pair(0, 0);
1936 }
1937
1938 /// Change the opcode of MI to execute in Domain.
1939 ///
1940 /// The bit (1 << Domain) must be set in the mask returned from
1941 /// getExecutionDomain(MI).
1942 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1943
1944 /// Returns the preferred minimum clearance
1945 /// before an instruction with an unwanted partial register update.
1946 ///
1947 /// Some instructions only write part of a register, and implicitly need to
1948 /// read the other parts of the register. This may cause unwanted stalls
1949 /// preventing otherwise unrelated instructions from executing in parallel in
1950 /// an out-of-order CPU.
1951 ///
1952 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1953 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1954 /// the instruction needs to wait for the old value of the register to become
1955 /// available:
1956 ///
1957 /// addps %xmm1, %xmm0
1958 /// movaps %xmm0, (%rax)
1959 /// cvtsi2ss %rbx, %xmm0
1960 ///
1961 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1962 /// instruction before it can issue, even though the high bits of %xmm0
1963 /// probably aren't needed.
1964 ///
1965 /// This hook returns the preferred clearance before MI, measured in
1966 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1967 /// instructions before MI. It should only return a positive value for
1968 /// unwanted dependencies. If the old bits of the defined register have
1969 /// useful values, or if MI is determined to otherwise read the dependency,
1970 /// the hook should return 0.
1971 ///
1972 /// The unwanted dependency may be handled by:
1973 ///
1974 /// 1. Allocating the same register for an MI def and use. That makes the
1975 /// unwanted dependency identical to a required dependency.
1976 ///
1977 /// 2. Allocating a register for the def that has no defs in the previous N
1978 /// instructions.
1979 ///
1980 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1981 /// allows the target to insert a dependency breaking instruction.
1982 ///
1983 virtual unsigned
1985 const TargetRegisterInfo *TRI) const {
1986 // The default implementation returns 0 for no partial register dependency.
1987 return 0;
1988 }
1989
1990 /// Return the minimum clearance before an instruction that reads an
1991 /// unused register.
1992 ///
1993 /// For example, AVX instructions may copy part of a register operand into
1994 /// the unused high bits of the destination register.
1995 ///
1996 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1997 ///
1998 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1999 /// false dependence on any previous write to %xmm0.
2000 ///
2001 /// This hook works similarly to getPartialRegUpdateClearance, except that it
2002 /// does not take an operand index. Instead sets \p OpNum to the index of the
2003 /// unused register.
2004 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
2005 const TargetRegisterInfo *TRI) const {
2006 // The default implementation returns 0 for no undef register dependency.
2007 return 0;
2008 }
2009
2010 /// Insert a dependency-breaking instruction
2011 /// before MI to eliminate an unwanted dependency on OpNum.
2012 ///
2013 /// If it wasn't possible to avoid a def in the last N instructions before MI
2014 /// (see getPartialRegUpdateClearance), this hook will be called to break the
2015 /// unwanted dependency.
2016 ///
2017 /// On x86, an xorps instruction can be used as a dependency breaker:
2018 ///
2019 /// addps %xmm1, %xmm0
2020 /// movaps %xmm0, (%rax)
2021 /// xorps %xmm0, %xmm0
2022 /// cvtsi2ss %rbx, %xmm0
2023 ///
2024 /// An <imp-kill> operand should be added to MI if an instruction was
2025 /// inserted. This ties the instructions together in the post-ra scheduler.
2026 ///
2027 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
2028 const TargetRegisterInfo *TRI) const {}
2029
2030 /// Create machine specific model for scheduling.
2031 virtual DFAPacketizer *
2033 return nullptr;
2034 }
2035
2036 /// Sometimes, it is possible for the target
2037 /// to tell, even without aliasing information, that two MIs access different
2038 /// memory addresses. This function returns true if two MIs access different
2039 /// memory addresses and false otherwise.
2040 ///
2041 /// Assumes any physical registers used to compute addresses have the same
2042 /// value for both instructions. (This is the most useful assumption for
2043 /// post-RA scheduling.)
2044 ///
2045 /// See also MachineInstr::mayAlias, which is implemented on top of this
2046 /// function.
2047 virtual bool
2049 const MachineInstr &MIb) const {
2050 assert(MIa.mayLoadOrStore() &&
2051 "MIa must load from or modify a memory location");
2052 assert(MIb.mayLoadOrStore() &&
2053 "MIb must load from or modify a memory location");
2054 return false;
2055 }
2056
2057 /// Return the value to use for the MachineCSE's LookAheadLimit,
2058 /// which is a heuristic used for CSE'ing phys reg defs.
2059 virtual unsigned getMachineCSELookAheadLimit() const {
2060 // The default lookahead is small to prevent unprofitable quadratic
2061 // behavior.
2062 return 5;
2063 }
2064
2065 /// Return the maximal number of alias checks on memory operands. For
2066 /// instructions with more than one memory operands, the alias check on a
2067 /// single MachineInstr pair has quadratic overhead and results in
2068 /// unacceptable performance in the worst case. The limit here is to clamp
2069 /// that maximal checks performed. Usually, that's the product of memory
2070 /// operand numbers from that pair of MachineInstr to be checked. For
2071 /// instance, with two MachineInstrs with 4 and 5 memory operands
2072 /// correspondingly, a total of 20 checks are required. With this limit set to
2073 /// 16, their alias check is skipped. We choose to limit the product instead
2074 /// of the individual instruction as targets may have special MachineInstrs
2075 /// with a considerably high number of memory operands, such as `ldm` in ARM.
2076 /// Setting this limit per MachineInstr would result in either too high
2077 /// overhead or too rigid restriction.
2078 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
2079
2080 /// Return an array that contains the ids of the target indices (used for the
2081 /// TargetIndex machine operand) and their names.
2082 ///
2083 /// MIR Serialization is able to serialize only the target indices that are
2084 /// defined by this method.
2087 return {};
2088 }
2089
2090 /// Decompose the machine operand's target flags into two values - the direct
2091 /// target flag value and any of bit flags that are applied.
2092 virtual std::pair<unsigned, unsigned>
2094 return std::make_pair(0u, 0u);
2095 }
2096
2097 /// Return an array that contains the direct target flag values and their
2098 /// names.
2099 ///
2100 /// MIR Serialization is able to serialize only the target flags that are
2101 /// defined by this method.
2104 return {};
2105 }
2106
2107 /// Return an array that contains the bitmask target flag values and their
2108 /// names.
2109 ///
2110 /// MIR Serialization is able to serialize only the target flags that are
2111 /// defined by this method.
2114 return {};
2115 }
2116
2117 /// Return an array that contains the MMO target flag values and their
2118 /// names.
2119 ///
2120 /// MIR Serialization is able to serialize only the MMO target flags that are
2121 /// defined by this method.
2124 return {};
2125 }
2126
2127 /// Determines whether \p Inst is a tail call instruction. Override this
2128 /// method on targets that do not properly set MCID::Return and MCID::Call on
2129 /// tail call instructions."
2130 virtual bool isTailCall(const MachineInstr &Inst) const {
2131 return Inst.isReturn() && Inst.isCall();
2132 }
2133
2134 /// True if the instruction is bound to the top of its basic block and no
2135 /// other instructions shall be inserted before it. This can be implemented
2136 /// to prevent register allocator to insert spills for \p Reg before such
2137 /// instructions.
2139 Register Reg = Register()) const {
2140 return false;
2141 }
2142
2143 /// Allows targets to use appropriate copy instruction while spilitting live
2144 /// range of a register in register allocation.
2146 const MachineFunction &MF) const {
2147 return TargetOpcode::COPY;
2148 }
2149
2150 /// During PHI eleimination lets target to make necessary checks and
2151 /// insert the copy to the PHI destination register in a target specific
2152 /// manner.
2155 const DebugLoc &DL, Register Src, Register Dst) const {
2156 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2157 .addReg(Src);
2158 }
2159
2160 /// During PHI eleimination lets target to make necessary checks and
2161 /// insert the copy to the PHI destination register in a target specific
2162 /// manner.
2165 const DebugLoc &DL, Register Src,
2166 unsigned SrcSubReg,
2167 Register Dst) const {
2168 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2169 .addReg(Src, 0, SrcSubReg);
2170 }
2171
2172 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2173 /// information for a set of outlining candidates. Returns std::nullopt if the
2174 /// candidates are not suitable for outlining. \p MinRepeats is the minimum
2175 /// number of times the instruction sequence must be repeated.
2176 virtual std::optional<std::unique_ptr<outliner::OutlinedFunction>>
2178 const MachineModuleInfo &MMI,
2179 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
2180 unsigned MinRepeats) const {
2182 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2183 }
2184
2185 /// Optional target hook to create the LLVM IR attributes for the outlined
2186 /// function. If overridden, the overriding function must call the default
2187 /// implementation.
2188 virtual void mergeOutliningCandidateAttributes(
2189 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2190
2191protected:
2192 /// Target-dependent implementation for getOutliningTypeImpl.
2193 virtual outliner::InstrType
2195 MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2197 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2198 }
2199
2200public:
2201 /// Returns how or if \p MIT should be outlined. \p Flags is the
2202 /// target-specific information returned by isMBBSafeToOutlineFrom.
2203 outliner::InstrType getOutliningType(const MachineModuleInfo &MMI,
2205 unsigned Flags) const;
2206
2207 /// Optional target hook that returns true if \p MBB is safe to outline from,
2208 /// and returns any target-specific information in \p Flags.
2209 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2210 unsigned &Flags) const;
2211
2212 /// Optional target hook which partitions \p MBB into outlinable ranges for
2213 /// instruction mapping purposes. Each range is defined by two iterators:
2214 /// [start, end).
2215 ///
2216 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2217 /// top of the block should come before ranges closer to the end of the block.
2218 ///
2219 /// Ranges cannot overlap.
2220 ///
2221 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2222 ///
2223 /// All instructions not present in an outlinable range are considered
2224 /// illegal.
2225 virtual SmallVector<
2226 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2227 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2228 return {std::make_pair(MBB.begin(), MBB.end())};
2229 }
2230
2231 /// Insert a custom frame for outlined functions.
2233 const outliner::OutlinedFunction &OF) const {
2235 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2236 }
2237
2238 /// Insert a call to an outlined function into the program.
2239 /// Returns an iterator to the spot where we inserted the call. This must be
2240 /// implemented by the target.
2244 outliner::Candidate &C) const {
2246 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2247 }
2248
2249 /// Insert an architecture-specific instruction to clear a register. If you
2250 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2251 /// \p AllowSideEffects to \p false.
2254 DebugLoc &DL,
2255 bool AllowSideEffects = true) const {
2256#if 0
2257 // FIXME: This should exist once all platforms that use stack protectors
2258 // implements it.
2260 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2261#endif
2262 }
2263
2264 /// Return true if the function can safely be outlined from.
2265 /// A function \p MF is considered safe for outlining if an outlined function
2266 /// produced from instructions in F will produce a program which produces the
2267 /// same output for any set of given inputs.
2269 bool OutlineFromLinkOnceODRs) const {
2270 llvm_unreachable("Target didn't implement "
2271 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2272 }
2273
2274 /// Return true if the function should be outlined from by default.
2276 return false;
2277 }
2278
2279 /// Return true if the function is a viable candidate for machine function
2280 /// splitting. The criteria for if a function can be split may vary by target.
2281 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2282
2283 /// Return true if the MachineBasicBlock can safely be split to the cold
2284 /// section. On AArch64, certain instructions may cause a block to be unsafe
2285 /// to split to the cold section.
2286 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2287 return true;
2288 }
2289
2290 /// Produce the expression describing the \p MI loading a value into
2291 /// the physical register \p Reg. This hook should only be used with
2292 /// \p MIs belonging to VReg-less functions.
2293 virtual std::optional<ParamLoadedValue>
2294 describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2295
2296 /// Given the generic extension instruction \p ExtMI, returns true if this
2297 /// extension is a likely candidate for being folded into an another
2298 /// instruction.
2300 MachineRegisterInfo &MRI) const {
2301 return false;
2302 }
2303
2304 /// Return MIR formatter to format/parse MIR operands. Target can override
2305 /// this virtual function and return target specific MIR formatter.
2306 virtual const MIRFormatter *getMIRFormatter() const {
2307 if (!Formatter)
2308 Formatter = std::make_unique<MIRFormatter>();
2309 return Formatter.get();
2310 }
2311
2312 /// Returns the target-specific default value for tail duplication.
2313 /// This value will be used if the tail-dup-placement-threshold argument is
2314 /// not provided.
2315 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2316 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2317 }
2318
2319 /// Returns the target-specific default value for tail merging.
2320 /// This value will be used if the tail-merge-size argument is not provided.
2321 virtual unsigned getTailMergeSize(const MachineFunction &MF) const {
2322 return 3;
2323 }
2324
2325 /// Returns the callee operand from the given \p MI.
2326 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2327 return MI.getOperand(0);
2328 }
2329
2330 /// Return the uniformity behavior of the given instruction.
2331 virtual InstructionUniformity
2335
2336 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2337 /// tracked by their offset, can have values, and can have debug info
2338 /// associated with it. If so, sets \p Index and \p Offset of the target index
2339 /// operand.
2340 virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2341 int64_t &Offset) const {
2342 return false;
2343 }
2344
2345 // Get the call frame size just before MI.
2346 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2347
2348 /// Fills in the necessary MachineOperands to refer to a frame index.
2349 /// The best way to understand this is to print `asm(""::"m"(x));` after
2350 /// finalize-isel. Example:
2351 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2352 /// we would add placeholders for: ^ ^ ^ ^
2354 int FI) const {
2355 llvm_unreachable("unknown number of operands necessary");
2356 }
2357
2358private:
2359 mutable std::unique_ptr<MIRFormatter> Formatter;
2360 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2361 unsigned CatchRetOpcode;
2362 unsigned ReturnOpcode;
2363};
2364
2365/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2369
2371 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2372 SubRegInfo::getEmptyKey());
2373 }
2374
2376 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2377 SubRegInfo::getTombstoneKey());
2378 }
2379
2380 /// Reuse getHashValue implementation from
2381 /// std::pair<unsigned, unsigned>.
2382 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2384 std::make_pair(Val.Reg, Val.SubReg));
2385 }
2386
2389 return LHS == RHS;
2390 }
2391};
2392
2393} // end namespace llvm
2394
2395#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static const TargetRegisterClass * getRegClass(const MachineInstr &MI, Register Reg)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
SmallVector< int16_t, MAX_SRC_OPERANDS_NUM > OperandIndices
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
#define LLVM_ABI
Definition Compiler.h:213
DXIL Forward Handle Accesses
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Contains all data structures shared between the outliner implemented in MachineOutliner....
TargetInstrInfo::RegSubRegPair RegSubRegPair
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
#define P(N)
TargetInstrInfo::RegSubRegPairAndIdx RegSubRegPairAndIdx
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getInstSizeInBytes(const MachineInstr &MI, const SystemZInstrInfo *TII)
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
This class is the base class for the comparison instructions.
Definition InstrTypes.h:666
A debug info location.
Definition DebugLoc.h:124
Itinerary data supplied by a subtarget to be used by a target.
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
Describe properties that are true of each instruction in the target description file.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:90
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition MCInstrDesc.h:87
MIRFormater - Interface to format MIR operand based on target.
MachineInstrBundleIterator< MachineInstr > iterator
Representation of each machine instruction.
bool isReturn(QueryType Type=AnyInBundle) const
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
bool isCall(QueryType Type=AnyInBundle) const
A description of a memory reference used in the backend.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
static MachineOperand CreateImm(int64_t Val)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Represents one node in the SelectionDAG.
This class represents the scheduled code.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
Object returned by analyzeLoopForPipelining.
virtual bool isMVEExpanderSupported()
Return true if the target can expand pipelined schedule with modulo variable expansion.
virtual void createRemainingIterationsGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, DenseMap< MachineInstr *, MachineInstr * > &LastStage0Insts)
Create a condition to determine if the remaining trip count for a phase is greater than TC.
virtual void adjustTripCount(int TripCountAdjust)=0
Modify the loop such that the trip count is OriginalTC + TripCountAdjust.
virtual void disposed(LiveIntervals *LIS=nullptr)
Called when the loop is being removed.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const =0
Return true if the given instruction should not be pipelined and should be ignored.
virtual void setPreheader(MachineBasicBlock *NewPreheader)=0
Called when the loop's preheader has been modified to NewPreheader.
virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS)
Return true if the proposed schedule should used.
virtual std::optional< bool > createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond)=0
Create a condition to determine if the trip count of the loop is greater than TC, where TC is always ...
TargetInstrInfo - Interface to description of machine instruction set.
virtual SmallVector< std::pair< MachineBasicBlock::iterator, MachineBasicBlock::iterator > > getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook which partitions MBB into outlinable ranges for instruction mapping purposes.
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
virtual bool isBasicBlockPrologue(const MachineInstr &MI, Register Reg=Register()) const
True if the instruction is bound to the top of its basic block and no other instructions shall be ins...
virtual bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
Reverses the branch condition of the specified condition list, returning false on success and true if...
virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const
Remove the branching code at the end of the specific MBB.
virtual std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
virtual bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const
If the specified instruction defines any predicate or condition code register(s) used for predication...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const
Assumes the instruction is already predicated and returns true if the instruction can be predicated a...
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
bool isZeroCost(unsigned Opcode) const
Return true for pseudo instructions that don't consume any machine resources in their current form.
virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const
Insert an architecture-specific instruction to clear a register.
virtual void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const
Fills in the necessary MachineOperands to refer to a frame index.
virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify=false) const
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, MachineRegisterInfo &MRI) const
Given the generic extension instruction ExtMI, returns true if this extension is a likely candidate f...
virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const
virtual std::optional< DestSourcePair > isCopyLikeInstrImpl(const MachineInstr &MI) const
virtual unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Returns the preferred minimum clearance before an instruction with an unwanted partial register updat...
virtual bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Returns true if the tail call can be made conditional on BranchCond.
virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const
Create machine specific model for scheduling.
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, MachineInstr &Cmp, SmallVectorImpl< MachineOperand > &Cond, SmallVectorImpl< MachineInstr * > &PrevInsts, unsigned Iter, unsigned MaxIter) const
Generate code to reduce the loop iteration by one and check if the loop is finished.
virtual bool isPostIncrement(const MachineInstr &MI) const
Return true for post-incremented instructions.
bool isTriviallyReMaterializable(const MachineInstr &MI) const
Return true if the instruction is trivially rematerializable, meaning it has no side effects and requ...
virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const
Return true if the instruction is a "coalescable" extension instruction.
virtual void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset=0, RegScavenger *RS=nullptr) const
Insert an unconditional indirect branch at the end of MBB to NewDestBB.
virtual ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const
Return an array that contains the MMO target flag values and their names.
virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const
Return true if the instruction contains a base register and offset.
int16_t getOpRegClassID(const MCOperandInfo &OpInfo) const
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const
Returns the opcode of the would be new instruction after load / store are unfolded from an instructio...
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify=false) const
Analyze the branching code at the end of MBB and parse it into the MachineBranchPredicate structure i...
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const
Return true if the function should be outlined from by default.
virtual MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &NewMIs, bool PreferFalse=false) const
Given a select instruction that was understood by analyzeSelect and returned Optimizable = true,...
virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const
Check if it's possible and beneficial to fold the addressing computation AddrI into the addressing mo...
virtual const MIRFormatter * getMIRFormatter() const
Return MIR formatter to format/parse MIR operands.
virtual bool shouldReduceRegisterPressure(const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const
Return true if target supports reassociation of instructions in machine combiner pass to reduce regis...
virtual ArrayRef< std::pair< int, const char * > > getSerializableTargetIndices() const
Return an array that contains the ids of the target indices (used for the TargetIndex machine operand...
bool isFullCopyInstr(const MachineInstr &MI) const
virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Return the minimum clearance before an instruction that reads an unused register.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const
Returns true if MI's Def is NullValueReg, and the MI does not change the Zero value.
virtual bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const
Perform target-specific instruction verification.
virtual void finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs) const
Fix up the placeholder we may add in genAlternativeCodeSequence().
virtual bool isUnconditionalTailCall(const MachineInstr &MI) const
Returns true if MI is an unconditional tail call.
virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const
Compute operand latency between a def of 'Reg' and a use in the current loop.
bool isUnspillableTerminator(const MachineInstr *MI) const
Return true if the given instruction is terminator that is unspillable, according to isUnspillableTer...
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const
Return true if it's profitable to unpredicate one side of a 'diamond', i.e.
virtual bool useMachineCombiner() const
Return true when a target supports MachineCombiner.
virtual bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const
Returns true if the first specified predicate subsumes the second, e.g.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Insert a dependency-breaking instruction before MI to eliminate an unwanted dependency on OpNum.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const
Second variant of isProfitableToIfCvt.
virtual int getExtendResourceLenLimit() const
The limit on resource length extension we accept in MachineCombiner Pass.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const
Allocate and return a hazard recognizer to use for by non-scheduling passes.
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const
Insert a select instruction into MBB before I that will copy TrueReg to DstReg when Cond is true,...
virtual bool shouldBreakCriticalEdgeToSink(MachineInstr &MI) const
For a "cheap" instruction which doesn't enable additional sinking, should MachineSink break a critica...
virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const
Sometimes, it is possible for the target to tell, even without aliasing information,...
virtual bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const
unsigned getReturnOpcode() const
virtual bool isIgnorableUse(const MachineOperand &MO) const
Given MO is a PhysReg use return if it can be ignored for the purpose of instruction rematerializatio...
virtual unsigned getReduceOpcodeForAccumulator(unsigned int AccumulatorOpCode) const
Returns the opcode that should be use to reduce accumulation registers.
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
virtual bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const
Returns true if the two given memory operations should be scheduled adjacent.
virtual unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const
Allows targets to use appropriate copy instruction while spilitting live range of a register in regis...
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Store the specified register of the given register class to the specified stack frame index.
virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t Mask, int64_t Value, const MachineRegisterInfo *MRI) const
See if the comparison instruction can be converted into something more efficient.
virtual unsigned getMemOperandAACheckLimit() const
Return the maximal number of alias checks on memory operands.
virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const
Return true if the function can safely be outlined from.
virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const
Return true if the MachineBasicBlock can safely be split to the cold section.
virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const
Insert a custom frame for outlined functions.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const
Emit instructions to copy a pair of physical registers.
virtual unsigned getAccumulationStartOpcode(unsigned Opcode) const
Returns an opcode which defines the accumulator used by \P Opcode.
virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const
Return true if the given SDNode can be copied during scheduling even if it has glue.
virtual bool simplifyInstruction(MachineInstr &MI) const
If possible, converts the instruction to a simplified/canonical form.
virtual std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const
Target dependent implementation to get the values constituting the address MachineInstr that is acces...
virtual std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const
Target-dependent implementation for IsCopyInstr.
virtual MachineInstr * createPHIDestinationCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const
Returns true if MI is an instruction that defines Reg to have a constant value and the value is recor...
static bool isGenericOpcode(unsigned Opc)
TargetInstrInfo & operator=(const TargetInstrInfo &)=delete
std::optional< DestSourcePair > isCopyLikeInstr(const MachineInstr &MI) const
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const
Return an array that contains the bitmask target flag values and their names.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool isSubregFoldable() const
Check whether the target can fold a load that feeds a subreg operand (or a subreg operand that feeds ...
virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const
Return the current execution domain and bit mask of possible domains for instruction.
virtual bool optimizeCondBranch(MachineInstr &MI) const
virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, MachineInstr *&CmpInst) const
Analyze the loop code, return true if it cannot be understood.
unsigned getCatchReturnOpcode() const
virtual unsigned getTailMergeSize(const MachineFunction &MF) const
Returns the target-specific default value for tail merging.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Load the specified register of the given register class from the specified stack frame index.
virtual InstructionUniformity getInstructionUniformity(const MachineInstr &MI) const
Return the uniformity behavior of the given instruction.
virtual bool isAsCheapAsAMove(const MachineInstr &MI) const
Return true if the instruction is as cheap as a move instruction.
virtual bool isTailCall(const MachineInstr &Inst) const
Determines whether Inst is a tail call instruction.
const int16_t *const RegClassByHwMode
Subtarget specific sub-array of MCInstrInfo's RegClassByHwModeTables (i.e.
virtual const MachineOperand & getCalleeOperand(const MachineInstr &MI) const
Returns the callee operand from the given MI.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const
'Reg' is known to be defined by a move immediate instruction, try to fold the immediate into the use ...
virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const
Return true if the specified machine instruction is a copy of one stack slot to another and has no ot...
virtual int getJumpTableIndex(const MachineInstr &MI) const
Return an index for MachineJumpTableInfo if insn is an indirect jump using a jump table,...
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, int64_t &Offset) const
Returns true if the given MI defines a TargetIndex operand that can be tracked by their offset,...
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const
unfoldMemoryOperand - Separate a single instruction which folded a load or a store or a load and a st...
virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const
Allow targets to tell MachineVerifier whether a specific register MachineOperand can be used as part ...
virtual std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const
Returns a outliner::OutlinedFunction struct containing target-specific information for a set of outli...
virtual MachineInstr * createPHISourceCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const
Insert a call to an outlined function into the program.
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Replace the conditional branch in MBB with a conditional tail call.
TargetInstrInfo(const TargetInstrInfo &)=delete
virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const
Return an estimate for the code size reduction (in bytes) which will be caused by removing the given ...
virtual ~TargetInstrInfo()
virtual bool isAccumulationOpcode(unsigned Opcode) const
Return true when \P OpCode is an instruction which performs accumulation into one of its operand regi...
bool isFrameSetup(const MachineInstr &I) const
Returns true if the argument is a frame setup pseudo instruction.
virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, unsigned NumInsts) const
Return the increase in code size needed to predicate a contiguous run of NumInsts instructions.
virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const
When calculate the latency of the root instruction, accumulate the latency of the sequence to the roo...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
virtual bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const
Analyze the given select instruction, returning true if it cannot be understood.
TargetInstrInfo(unsigned CFSetupOpcode=~0u, unsigned CFDestroyOpcode=~0u, unsigned CatchRetOpcode=~0u, unsigned ReturnOpcode=~0u, const int16_t *const RegClassByHwModeTable=nullptr)
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, TypeSize &MemBytes) const
Optional extension of isStoreToStackSlot that returns the number of bytes stored to the stack.
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, TypeSize &MemBytes) const
Optional extension of isLoadFromStackSlot that returns the number of bytes loaded from the stack.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const
Returns the size in bytes of the specified MachineInstr, or ~0U when this function is not implemented...
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
virtual bool shouldSink(const MachineInstr &MI) const
Return true if the instruction should be sunk by MachineSink.
virtual MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const
This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_ADDR flag.
virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const
Change the opcode of MI to execute in Domain.
virtual bool isPredicable(const MachineInstr &MI) const
Return true if the specified instruction can be predicated.
virtual std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned) const
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const
Return true if it's safe to move a machine instruction that defines the specified register class.
virtual bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef< MachineOperand > Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const
Return true if it is possible to insert a select instruction that chooses between TrueReg and FalseRe...
virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const
Return true if the given terminator MI is not expected to spill.
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
static bool isGenericAtomicRMWOpcode(unsigned Opc)
virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const
Returns true if the target has a preference on the operands order of the given machine instruction.
static const unsigned CommuteAnyOperandIndex
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
virtual MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const
Emit a load/store instruction with the same value register as MemI, but using the address from AM.
virtual bool expandPostRAPseudo(MachineInstr &MI) const
This function is called for all pseudo instructions that remain after register allocation.
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const
Return an array that contains the direct target flag values and their names.
virtual bool shouldHoist(const MachineInstr &MI, const MachineLoop *FromLoop) const
Return false if the instruction should not be hoisted by MachineLICM.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const
Returns the target-specific default value for tail duplication.
unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, MachineBasicBlock *DestBB, const DebugLoc &DL, int *BytesAdded=nullptr) const
virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const
If the instruction is an increment of a constant value, return the amount.
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const
This is used by the pre-regalloc scheduler to determine if two loads are loading from the same base a...
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl< SDNode * > &NewNodes) const
virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
virtual unsigned getMachineCSELookAheadLimit() const
Return the value to use for the MachineCSE's LookAheadLimit, which is a heuristic used for CSE'ing ph...
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const
Return true if it's legal to split the given basic block at the specified instruction (i....
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
static constexpr TypeSize getZero()
Definition TypeSize.h:349
LLVM Value Representation.
Definition Value.h:75
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
MachineTraceStrategy
Strategies for selecting traces.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
DWARFExpression::Operation Op
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition Uniformity.h:18
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
GenericCycleInfo< MachineSSAContext > MachineCycleInfo
#define N
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val)
Reuse getHashValue implementation from std::pair<unsigned, unsigned>.
static TargetInstrInfo::RegSubRegPair getTombstoneKey()
static TargetInstrInfo::RegSubRegPair getEmptyKey()
static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, const TargetInstrInfo::RegSubRegPair &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
const MachineOperand * Source
DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
const MachineOperand * Destination
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
ExtAddrMode()=default
Machine model for scheduling, bundling, and heuristics.
Definition MCSchedule.h:258
RegImmPair(Register Reg, int64_t Imm)
Represents a predicate at the MachineFunction level.
bool SingleUseCondition
SingleUseCondition is true if ConditionDef is dead except for the branch(es) at the end of the basic ...
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
RegSubRegPairAndIdx(Register Reg=Register(), unsigned SubReg=0, unsigned SubIdx=0)
A pair composed of a register and a sub-register index.
bool operator==(const RegSubRegPair &P) const
RegSubRegPair(Register Reg=Register(), unsigned SubReg=0)
bool operator!=(const RegSubRegPair &P) const
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.