LLVM 22.0.0git
TargetInstrInfo.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Uniformity.h"
31#include "llvm/MC/MCInstrInfo.h"
36#include <array>
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class DFAPacketizer;
47class LiveIntervals;
48class LiveVariables;
49class MachineLoop;
53class MCAsmInfo;
54class MCInst;
55struct MCSchedModel;
56class Module;
57class ScheduleDAG;
58class ScheduleDAGMI;
60class SDNode;
61class SelectionDAG;
62class SMSchedule;
64class RegScavenger;
69enum class MachineTraceStrategy;
70
71template <class T> class SmallVectorImpl;
72
73using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
74
78
80 : Destination(&Dest), Source(&Src) {}
81};
82
83/// Used to describe a register and immediate addition.
84struct RegImmPair {
86 int64_t Imm;
87
88 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
89};
90
91/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
92/// It holds the register values, the scale value and the displacement.
93/// It also holds a descriptor for the expression used to calculate the address
94/// from the operands.
96 enum class Formula {
97 Basic = 0, // BaseReg + ScaledReg * Scale + Displacement
98 SExtScaledReg = 1, // BaseReg + sext(ScaledReg) * Scale + Displacement
99 ZExtScaledReg = 2 // BaseReg + zext(ScaledReg) * Scale + Displacement
100 };
101
104 int64_t Scale = 0;
105 int64_t Displacement = 0;
107 ExtAddrMode() = default;
108};
109
110//---------------------------------------------------------------------------
111///
112/// TargetInstrInfo - Interface to description of machine instruction set
113///
115protected:
116 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
117 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
118 : CallFrameSetupOpcode(CFSetupOpcode),
119 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
120 ReturnOpcode(ReturnOpcode) {}
121
122public:
126
127 static bool isGenericOpcode(unsigned Opc) {
128 return Opc <= TargetOpcode::GENERIC_OP_END;
129 }
130
131 static bool isGenericAtomicRMWOpcode(unsigned Opc) {
132 return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
133 Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
134 }
135
136 /// Given a machine instruction descriptor, returns the register
137 /// class constraint for OpNum, or NULL.
138 virtual
139 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
140 const TargetRegisterInfo *TRI,
141 const MachineFunction &MF) const;
142
143 /// Returns true if MI is an instruction we are unable to reason about
144 /// (like a call or something with unmodeled side effects).
145 virtual bool isGlobalMemoryObject(const MachineInstr *MI) const;
146
147 /// Return true if the instruction is trivially rematerializable, meaning it
148 /// has no side effects and requires no operands that aren't always available.
149 /// This means the only allowed uses are constants and unallocatable physical
150 /// registers so that the instructions result is independent of the place
151 /// in the function.
153 return (MI.getOpcode() == TargetOpcode::IMPLICIT_DEF &&
154 MI.getNumOperands() == 1) ||
155 (MI.getDesc().isRematerializable() &&
157 }
158
159 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
160 /// of instruction rematerialization or sinking.
161 virtual bool isIgnorableUse(const MachineOperand &MO) const {
162 return false;
163 }
164
165 virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo,
166 MachineCycleInfo *CI) const {
167 return true;
168 }
169
170 /// For a "cheap" instruction which doesn't enable additional sinking,
171 /// should MachineSink break a critical edge to sink it anyways?
173 return false;
174 }
175
176protected:
177 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
178 /// set, this hook lets the target specify whether the instruction is actually
179 /// trivially rematerializable, taking into consideration its operands. This
180 /// predicate must return false if the instruction has any side effects other
181 /// than producing a value, or if it requres any address registers that are
182 /// not always available.
183 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const;
184
185 /// This method commutes the operands of the given machine instruction MI.
186 /// The operands to be commuted are specified by their indices OpIdx1 and
187 /// OpIdx2.
188 ///
189 /// If a target has any instructions that are commutable but require
190 /// converting to different instructions or making non-trivial changes
191 /// to commute them, this method can be overloaded to do that.
192 /// The default implementation simply swaps the commutable operands.
193 ///
194 /// If NewMI is false, MI is modified in place and returned; otherwise, a
195 /// new machine instruction is created and returned.
196 ///
197 /// Do not call this method for a non-commutable instruction.
198 /// Even though the instruction is commutable, the method may still
199 /// fail to commute the operands, null pointer is returned in such cases.
200 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
201 unsigned OpIdx1,
202 unsigned OpIdx2) const;
203
204 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
205 /// operand indices to (ResultIdx1, ResultIdx2).
206 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
207 /// predefined to some indices or be undefined (designated by the special
208 /// value 'CommuteAnyOperandIndex').
209 /// The predefined result indices cannot be re-defined.
210 /// The function returns true iff after the result pair redefinition
211 /// the fixed result pair is equal to or equivalent to the source pair of
212 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
213 /// the pairs (x,y) and (y,x) are equivalent.
214 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
215 unsigned CommutableOpIdx1,
216 unsigned CommutableOpIdx2);
217
218public:
219 /// These methods return the opcode of the frame setup/destroy instructions
220 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
221 /// order to abstract away the difference between operating with a frame
222 /// pointer and operating without, through the use of these two instructions.
223 /// A FrameSetup MI in MF implies MFI::AdjustsStack.
224 ///
225 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
226 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
227
228 /// Returns true if the argument is a frame pseudo instruction.
229 bool isFrameInstr(const MachineInstr &I) const {
230 return I.getOpcode() == getCallFrameSetupOpcode() ||
231 I.getOpcode() == getCallFrameDestroyOpcode();
232 }
233
234 /// Returns true if the argument is a frame setup pseudo instruction.
235 bool isFrameSetup(const MachineInstr &I) const {
236 return I.getOpcode() == getCallFrameSetupOpcode();
237 }
238
239 /// Returns size of the frame associated with the given frame instruction.
240 /// For frame setup instruction this is frame that is set up space set up
241 /// after the instruction. For frame destroy instruction this is the frame
242 /// freed by the caller.
243 /// Note, in some cases a call frame (or a part of it) may be prepared prior
244 /// to the frame setup instruction. It occurs in the calls that involve
245 /// inalloca arguments. This function reports only the size of the frame part
246 /// that is set up between the frame setup and destroy pseudo instructions.
247 int64_t getFrameSize(const MachineInstr &I) const {
248 assert(isFrameInstr(I) && "Not a frame instruction");
249 assert(I.getOperand(0).getImm() >= 0);
250 return I.getOperand(0).getImm();
251 }
252
253 /// Returns the total frame size, which is made up of the space set up inside
254 /// the pair of frame start-stop instructions and the space that is set up
255 /// prior to the pair.
256 int64_t getFrameTotalSize(const MachineInstr &I) const {
257 if (isFrameSetup(I)) {
258 assert(I.getOperand(1).getImm() >= 0 &&
259 "Frame size must not be negative");
260 return getFrameSize(I) + I.getOperand(1).getImm();
261 }
262 return getFrameSize(I);
263 }
264
265 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
266 unsigned getReturnOpcode() const { return ReturnOpcode; }
267
268 /// Returns the actual stack pointer adjustment made by an instruction
269 /// as part of a call sequence. By default, only call frame setup/destroy
270 /// instructions adjust the stack, but targets may want to override this
271 /// to enable more fine-grained adjustment, or adjust by a different value.
272 virtual int getSPAdjust(const MachineInstr &MI) const;
273
274 /// Return true if the instruction is a "coalescable" extension instruction.
275 /// That is, it's like a copy where it's legal for the source to overlap the
276 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
277 /// expected the pre-extension value is available as a subreg of the result
278 /// register. This also returns the sub-register index in SubIdx.
279 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
280 Register &DstReg, unsigned &SubIdx) const {
281 return false;
282 }
283
284 /// If the specified machine instruction is a direct
285 /// load from a stack slot, return the virtual or physical register number of
286 /// the destination along with the FrameIndex of the loaded stack slot. If
287 /// not, return 0. This predicate must return 0 if the instruction has
288 /// any side effects other than loading from the stack slot.
290 int &FrameIndex) const {
291 return 0;
292 }
293
294 /// Optional extension of isLoadFromStackSlot that returns the number of
295 /// bytes loaded from the stack. This must be implemented if a backend
296 /// supports partial stack slot spills/loads to further disambiguate
297 /// what the load does.
299 int &FrameIndex,
300 TypeSize &MemBytes) const {
301 MemBytes = TypeSize::getZero();
302 return isLoadFromStackSlot(MI, FrameIndex);
303 }
304
305 /// Check for post-frame ptr elimination stack locations as well.
306 /// This uses a heuristic so it isn't reliable for correctness.
308 int &FrameIndex) const {
309 return 0;
310 }
311
312 /// If the specified machine instruction has a load from a stack slot,
313 /// return true along with the FrameIndices of the loaded stack slot and the
314 /// machine mem operands containing the reference.
315 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
316 /// any instructions that loads from the stack. This is just a hint, as some
317 /// cases may be missed.
318 virtual bool hasLoadFromStackSlot(
319 const MachineInstr &MI,
321
322 /// If the specified machine instruction is a direct
323 /// store to a stack slot, return the virtual or physical register number of
324 /// the source reg along with the FrameIndex of the loaded stack slot. If
325 /// not, return 0. This predicate must return 0 if the instruction has
326 /// any side effects other than storing to the stack slot.
328 int &FrameIndex) const {
329 return 0;
330 }
331
332 /// Optional extension of isStoreToStackSlot that returns the number of
333 /// bytes stored to the stack. This must be implemented if a backend
334 /// supports partial stack slot spills/loads to further disambiguate
335 /// what the store does.
337 int &FrameIndex,
338 TypeSize &MemBytes) const {
339 MemBytes = TypeSize::getZero();
340 return isStoreToStackSlot(MI, FrameIndex);
341 }
342
343 /// Check for post-frame ptr elimination stack locations as well.
344 /// This uses a heuristic, so it isn't reliable for correctness.
346 int &FrameIndex) const {
347 return 0;
348 }
349
350 /// If the specified machine instruction has a store to a stack slot,
351 /// return true along with the FrameIndices of the loaded stack slot and the
352 /// machine mem operands containing the reference.
353 /// If not, return false. Unlike isStoreToStackSlot,
354 /// this returns true for any instructions that stores to the
355 /// stack. This is just a hint, as some cases may be missed.
356 virtual bool hasStoreToStackSlot(
357 const MachineInstr &MI,
359
360 /// Return true if the specified machine instruction
361 /// is a copy of one stack slot to another and has no other effect.
362 /// Provide the identity of the two frame indices.
363 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
364 int &SrcFrameIndex) const {
365 return false;
366 }
367
368 /// Compute the size in bytes and offset within a stack slot of a spilled
369 /// register or subregister.
370 ///
371 /// \param [out] Size in bytes of the spilled value.
372 /// \param [out] Offset in bytes within the stack slot.
373 /// \returns true if both Size and Offset are successfully computed.
374 ///
375 /// Not all subregisters have computable spill slots. For example,
376 /// subregisters registers may not be byte-sized, and a pair of discontiguous
377 /// subregisters has no single offset.
378 ///
379 /// Targets with nontrivial bigendian implementations may need to override
380 /// this, particularly to support spilled vector registers.
381 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
382 unsigned &Size, unsigned &Offset,
383 const MachineFunction &MF) const;
384
385 /// Return true if the given instruction is terminator that is unspillable,
386 /// according to isUnspillableTerminatorImpl.
388 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
389 }
390
391 /// Returns the size in bytes of the specified MachineInstr, or ~0U
392 /// when this function is not implemented by a target.
393 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
394 return ~0U;
395 }
396
397 /// Return true if the instruction is as cheap as a move instruction.
398 ///
399 /// Targets for different archs need to override this, and different
400 /// micro-architectures can also be finely tuned inside.
401 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
402 return MI.isAsCheapAsAMove();
403 }
404
405 /// Return true if the instruction should be sunk by MachineSink.
406 ///
407 /// MachineSink determines on its own whether the instruction is safe to sink;
408 /// this gives the target a hook to override the default behavior with regards
409 /// to which instructions should be sunk.
410 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
411
412 /// Return false if the instruction should not be hoisted by MachineLICM.
413 ///
414 /// MachineLICM determines on its own whether the instruction is safe to
415 /// hoist; this gives the target a hook to extend this assessment and prevent
416 /// an instruction being hoisted from a given loop for target specific
417 /// reasons.
418 virtual bool shouldHoist(const MachineInstr &MI,
419 const MachineLoop *FromLoop) const {
420 return true;
421 }
422
423 /// Re-issue the specified 'original' instruction at the
424 /// specific location targeting a new destination register.
425 /// The register in Orig->getOperand(0).getReg() will be substituted by
426 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
427 /// SubIdx.
428 virtual void reMaterialize(MachineBasicBlock &MBB,
430 unsigned SubIdx, const MachineInstr &Orig,
431 const TargetRegisterInfo &TRI) const;
432
433 /// Clones instruction or the whole instruction bundle \p Orig and
434 /// insert into \p MBB before \p InsertBefore. The target may update operands
435 /// that are required to be unique.
436 ///
437 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
438 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
439 MachineBasicBlock::iterator InsertBefore,
440 const MachineInstr &Orig) const;
441
442 /// This method must be implemented by targets that
443 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
444 /// may be able to convert a two-address instruction into one or more true
445 /// three-address instructions on demand. This allows the X86 target (for
446 /// example) to convert ADD and SHL instructions into LEA instructions if they
447 /// would require register copies due to two-addressness.
448 ///
449 /// This method returns a null pointer if the transformation cannot be
450 /// performed, otherwise it returns the last new instruction.
451 ///
452 /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
453 /// replacing \p MI with new instructions, even though this function does not
454 /// remove MI.
456 LiveVariables *LV,
457 LiveIntervals *LIS) const {
458 return nullptr;
459 }
460
461 // This constant can be used as an input value of operand index passed to
462 // the method findCommutedOpIndices() to tell the method that the
463 // corresponding operand index is not pre-defined and that the method
464 // can pick any commutable operand.
465 static const unsigned CommuteAnyOperandIndex = ~0U;
466
467 /// This method commutes the operands of the given machine instruction MI.
468 ///
469 /// The operands to be commuted are specified by their indices OpIdx1 and
470 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
471 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
472 /// any arbitrarily chosen commutable operand. If both arguments are set to
473 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
474 /// operands; then commutes them if such operands could be found.
475 ///
476 /// If NewMI is false, MI is modified in place and returned; otherwise, a
477 /// new machine instruction is created and returned.
478 ///
479 /// Do not call this method for a non-commutable instruction or
480 /// for non-commuable operands.
481 /// Even though the instruction is commutable, the method may still
482 /// fail to commute the operands, null pointer is returned in such cases.
484 commuteInstruction(MachineInstr &MI, bool NewMI = false,
485 unsigned OpIdx1 = CommuteAnyOperandIndex,
486 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
487
488 /// Returns true iff the routine could find two commutable operands in the
489 /// given machine instruction.
490 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
491 /// If any of the INPUT values is set to the special value
492 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
493 /// operand, then returns its index in the corresponding argument.
494 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
495 /// looks for 2 commutable operands.
496 /// If INPUT values refer to some operands of MI, then the method simply
497 /// returns true if the corresponding operands are commutable and returns
498 /// false otherwise.
499 ///
500 /// For example, calling this method this way:
501 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
502 /// findCommutedOpIndices(MI, Op1, Op2);
503 /// can be interpreted as a query asking to find an operand that would be
504 /// commutable with the operand#1.
505 virtual bool findCommutedOpIndices(const MachineInstr &MI,
506 unsigned &SrcOpIdx1,
507 unsigned &SrcOpIdx2) const;
508
509 /// Returns true if the target has a preference on the operands order of
510 /// the given machine instruction. And specify if \p Commute is required to
511 /// get the desired operands order.
512 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
513 return false;
514 }
515
516 /// If possible, converts the instruction to a simplified/canonical form.
517 /// Returns true if the instruction was modified.
518 ///
519 /// This function is only called after register allocation. The MI will be
520 /// modified in place. This is called by passes such as
521 /// MachineCopyPropagation, where their mutation of the MI operands may
522 /// expose opportunities to convert the instruction to a simpler form (e.g.
523 /// a load of 0).
524 virtual bool simplifyInstruction(MachineInstr &MI) const { return false; }
525
526 /// A pair composed of a register and a sub-register index.
527 /// Used to give some type checking when modeling Reg:SubReg.
530 unsigned SubReg;
531
533 : Reg(Reg), SubReg(SubReg) {}
534
535 bool operator==(const RegSubRegPair& P) const {
536 return Reg == P.Reg && SubReg == P.SubReg;
537 }
538 bool operator!=(const RegSubRegPair& P) const {
539 return !(*this == P);
540 }
541 };
542
543 /// A pair composed of a pair of a register and a sub-register index,
544 /// and another sub-register index.
545 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
547 unsigned SubIdx;
548
550 unsigned SubIdx = 0)
552 };
553
554 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
555 /// and \p DefIdx.
556 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
557 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
558 /// flag are not added to this list.
559 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
560 /// two elements:
561 /// - %1:sub1, sub0
562 /// - %2<:0>, sub1
563 ///
564 /// \returns true if it is possible to build such an input sequence
565 /// with the pair \p MI, \p DefIdx. False otherwise.
566 ///
567 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
568 ///
569 /// \note The generic implementation does not provide any support for
570 /// MI.isRegSequenceLike(). In other words, one has to override
571 /// getRegSequenceLikeInputs for target specific instructions.
572 bool
573 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
574 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
575
576 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
577 /// and \p DefIdx.
578 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
579 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
580 /// - %1:sub1, sub0
581 ///
582 /// \returns true if it is possible to build such an input sequence
583 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
584 /// False otherwise.
585 ///
586 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
587 ///
588 /// \note The generic implementation does not provide any support for
589 /// MI.isExtractSubregLike(). In other words, one has to override
590 /// getExtractSubregLikeInputs for target specific instructions.
591 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
592 RegSubRegPairAndIdx &InputReg) const;
593
594 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
595 /// and \p DefIdx.
596 /// \p [out] BaseReg and \p [out] InsertedReg contain
597 /// the equivalent inputs of INSERT_SUBREG.
598 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
599 /// - BaseReg: %0:sub0
600 /// - InsertedReg: %1:sub1, sub3
601 ///
602 /// \returns true if it is possible to build such an input sequence
603 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
604 /// False otherwise.
605 ///
606 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
607 ///
608 /// \note The generic implementation does not provide any support for
609 /// MI.isInsertSubregLike(). In other words, one has to override
610 /// getInsertSubregLikeInputs for target specific instructions.
611 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
612 RegSubRegPair &BaseReg,
613 RegSubRegPairAndIdx &InsertedReg) const;
614
615 /// Return true if two machine instructions would produce identical values.
616 /// By default, this is only true when the two instructions
617 /// are deemed identical except for defs. If this function is called when the
618 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
619 /// aggressive checks.
620 virtual bool produceSameValue(const MachineInstr &MI0,
621 const MachineInstr &MI1,
622 const MachineRegisterInfo *MRI = nullptr) const;
623
624 /// \returns true if a branch from an instruction with opcode \p BranchOpc
625 /// bytes is capable of jumping to a position \p BrOffset bytes away.
626 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
627 int64_t BrOffset) const {
628 llvm_unreachable("target did not implement");
629 }
630
631 /// \returns The block that branch instruction \p MI jumps to.
633 llvm_unreachable("target did not implement");
634 }
635
636 /// Insert an unconditional indirect branch at the end of \p MBB to \p
637 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
638 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
639 /// the offset of the position to insert the new branch.
641 MachineBasicBlock &NewDestBB,
642 MachineBasicBlock &RestoreBB,
643 const DebugLoc &DL, int64_t BrOffset = 0,
644 RegScavenger *RS = nullptr) const {
645 llvm_unreachable("target did not implement");
646 }
647
648 /// Analyze the branching code at the end of MBB, returning
649 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
650 /// implemented for a target). Upon success, this returns false and returns
651 /// with the following information in various cases:
652 ///
653 /// 1. If this block ends with no branches (it just falls through to its succ)
654 /// just return false, leaving TBB/FBB null.
655 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
656 /// the destination block.
657 /// 3. If this block ends with a conditional branch and it falls through to a
658 /// successor block, it sets TBB to be the branch destination block and a
659 /// list of operands that evaluate the condition. These operands can be
660 /// passed to other TargetInstrInfo methods to create new branches.
661 /// 4. If this block ends with a conditional branch followed by an
662 /// unconditional branch, it returns the 'true' destination in TBB, the
663 /// 'false' destination in FBB, and a list of operands that evaluate the
664 /// condition. These operands can be passed to other TargetInstrInfo
665 /// methods to create new branches.
666 ///
667 /// Note that removeBranch and insertBranch must be implemented to support
668 /// cases where this method returns success.
669 ///
670 /// If AllowModify is true, then this routine is allowed to modify the basic
671 /// block (e.g. delete instructions after the unconditional branch).
672 ///
673 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
674 /// before calling this function.
676 MachineBasicBlock *&FBB,
678 bool AllowModify = false) const {
679 return true;
680 }
681
682 /// Represents a predicate at the MachineFunction level. The control flow a
683 /// MachineBranchPredicate represents is:
684 ///
685 /// Reg = LHS `Predicate` RHS == ConditionDef
686 /// if Reg then goto TrueDest else goto FalseDest
687 ///
690 PRED_EQ, // True if two values are equal
691 PRED_NE, // True if two values are not equal
692 PRED_INVALID // Sentinel value
693 };
694
701
702 /// SingleUseCondition is true if ConditionDef is dead except for the
703 /// branch(es) at the end of the basic block.
704 ///
705 bool SingleUseCondition = false;
706
707 explicit MachineBranchPredicate() = default;
708 };
709
710 /// Analyze the branching code at the end of MBB and parse it into the
711 /// MachineBranchPredicate structure if possible. Returns false on success
712 /// and true on failure.
713 ///
714 /// If AllowModify is true, then this routine is allowed to modify the basic
715 /// block (e.g. delete instructions after the unconditional branch).
716 ///
719 bool AllowModify = false) const {
720 return true;
721 }
722
723 /// Remove the branching code at the end of the specific MBB.
724 /// This is only invoked in cases where analyzeBranch returns success. It
725 /// returns the number of instructions that were removed.
726 /// If \p BytesRemoved is non-null, report the change in code size from the
727 /// removed instructions.
729 int *BytesRemoved = nullptr) const {
730 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
731 }
732
733 /// Insert branch code into the end of the specified MachineBasicBlock. The
734 /// operands to this method are the same as those returned by analyzeBranch.
735 /// This is only invoked in cases where analyzeBranch returns success. It
736 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
737 /// report the change in code size from the added instructions.
738 ///
739 /// It is also invoked by tail merging to add unconditional branches in
740 /// cases where analyzeBranch doesn't apply because there was no original
741 /// branch to analyze. At least this much must be implemented, else tail
742 /// merging needs to be disabled.
743 ///
744 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
745 /// before calling this function.
749 const DebugLoc &DL,
750 int *BytesAdded = nullptr) const {
751 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
752 }
753
755 MachineBasicBlock *DestBB,
756 const DebugLoc &DL,
757 int *BytesAdded = nullptr) const {
758 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
759 BytesAdded);
760 }
761
762 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
763 /// implementations to query attributes of the loop being pipelined and to
764 /// apply target-specific updates to the loop once pipelining is complete.
766 public:
768 /// Return true if the given instruction should not be pipelined and should
769 /// be ignored. An example could be a loop comparison, or induction variable
770 /// update with no users being pipelined.
771 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
772
773 /// Return true if the proposed schedule should used. Otherwise return
774 /// false to not pipeline the loop. This function should be used to ensure
775 /// that pipelined loops meet target-specific quality heuristics.
777 return true;
778 }
779
780 /// Create a condition to determine if the trip count of the loop is greater
781 /// than TC, where TC is always one more than for the previous prologue or
782 /// 0 if this is being called for the outermost prologue.
783 ///
784 /// If the trip count is statically known to be greater than TC, return
785 /// true. If the trip count is statically known to be not greater than TC,
786 /// return false. Otherwise return nullopt and fill out Cond with the test
787 /// condition.
788 ///
789 /// Note: This hook is guaranteed to be called from the innermost to the
790 /// outermost prologue of the loop being software pipelined.
791 virtual std::optional<bool>
794
795 /// Create a condition to determine if the remaining trip count for a phase
796 /// is greater than TC. Some instructions such as comparisons may be
797 /// inserted at the bottom of MBB. All instructions expanded for the
798 /// phase must be inserted in MBB before calling this function.
799 /// LastStage0Insts is the map from the original instructions scheduled at
800 /// stage#0 to the expanded instructions for the last iteration of the
801 /// kernel. LastStage0Insts is intended to obtain the instruction that
802 /// refers the latest loop counter value.
803 ///
804 /// MBB can also be a predecessor of the prologue block. Then
805 /// LastStage0Insts must be empty and the compared value is the initial
806 /// value of the trip count.
811 "Target didn't implement "
812 "PipelinerLoopInfo::createRemainingIterationsGreaterCondition!");
813 }
814
815 /// Modify the loop such that the trip count is
816 /// OriginalTC + TripCountAdjust.
817 virtual void adjustTripCount(int TripCountAdjust) = 0;
818
819 /// Called when the loop's preheader has been modified to NewPreheader.
820 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
821
822 /// Called when the loop is being removed. Any instructions in the preheader
823 /// should be removed.
824 ///
825 /// Once this function is called, no other functions on this object are
826 /// valid; the loop has been removed.
827 virtual void disposed(LiveIntervals *LIS = nullptr) {}
828
829 /// Return true if the target can expand pipelined schedule with modulo
830 /// variable expansion.
831 virtual bool isMVEExpanderSupported() { return false; }
832 };
833
834 /// Analyze loop L, which must be a single-basic-block loop, and if the
835 /// conditions can be understood enough produce a PipelinerLoopInfo object.
836 virtual std::unique_ptr<PipelinerLoopInfo>
838 return nullptr;
839 }
840
841 /// Analyze the loop code, return true if it cannot be understood. Upon
842 /// success, this function returns false and returns information about the
843 /// induction variable and compare instruction used at the end.
844 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
845 MachineInstr *&CmpInst) const {
846 return true;
847 }
848
849 /// Generate code to reduce the loop iteration by one and check if the loop
850 /// is finished. Return the value/register of the new loop count. We need
851 /// this function when peeling off one or more iterations of a loop. This
852 /// function assumes the nth iteration is peeled first.
854 MachineBasicBlock &PreHeader,
855 MachineInstr *IndVar, MachineInstr &Cmp,
858 unsigned Iter, unsigned MaxIter) const {
859 llvm_unreachable("Target didn't implement ReduceLoopCount");
860 }
861
862 /// Delete the instruction OldInst and everything after it, replacing it with
863 /// an unconditional branch to NewDest. This is used by the tail merging pass.
864 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
865 MachineBasicBlock *NewDest) const;
866
867 /// Return true if it's legal to split the given basic
868 /// block at the specified instruction (i.e. instruction would be the start
869 /// of a new basic block).
872 return true;
873 }
874
875 /// Return true if it's profitable to predicate
876 /// instructions with accumulated instruction latency of "NumCycles"
877 /// of the specified basic block, where the probability of the instructions
878 /// being executed is given by Probability, and Confidence is a measure
879 /// of our confidence that it will be properly predicted.
880 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
881 unsigned ExtraPredCycles,
882 BranchProbability Probability) const {
883 return false;
884 }
885
886 /// Second variant of isProfitableToIfCvt. This one
887 /// checks for the case where two basic blocks from true and false path
888 /// of a if-then-else (diamond) are predicated on mutually exclusive
889 /// predicates, where the probability of the true path being taken is given
890 /// by Probability, and Confidence is a measure of our confidence that it
891 /// will be properly predicted.
892 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
893 unsigned ExtraTCycles,
894 MachineBasicBlock &FMBB, unsigned NumFCycles,
895 unsigned ExtraFCycles,
896 BranchProbability Probability) const {
897 return false;
898 }
899
900 /// Return true if it's profitable for if-converter to duplicate instructions
901 /// of specified accumulated instruction latencies in the specified MBB to
902 /// enable if-conversion.
903 /// The probability of the instructions being executed is given by
904 /// Probability, and Confidence is a measure of our confidence that it
905 /// will be properly predicted.
907 unsigned NumCycles,
908 BranchProbability Probability) const {
909 return false;
910 }
911
912 /// Return the increase in code size needed to predicate a contiguous run of
913 /// NumInsts instructions.
915 unsigned NumInsts) const {
916 return 0;
917 }
918
919 /// Return an estimate for the code size reduction (in bytes) which will be
920 /// caused by removing the given branch instruction during if-conversion.
921 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
922 return getInstSizeInBytes(MI);
923 }
924
925 /// Return true if it's profitable to unpredicate
926 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
927 /// exclusive predicates.
928 /// e.g.
929 /// subeq r0, r1, #1
930 /// addne r0, r1, #1
931 /// =>
932 /// sub r0, r1, #1
933 /// addne r0, r1, #1
934 ///
935 /// This may be profitable is conditional instructions are always executed.
937 MachineBasicBlock &FMBB) const {
938 return false;
939 }
940
941 /// Return true if it is possible to insert a select
942 /// instruction that chooses between TrueReg and FalseReg based on the
943 /// condition code in Cond.
944 ///
945 /// When successful, also return the latency in cycles from TrueReg,
946 /// FalseReg, and Cond to the destination register. In most cases, a select
947 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
948 ///
949 /// Some x86 implementations have 2-cycle cmov instructions.
950 ///
951 /// @param MBB Block where select instruction would be inserted.
952 /// @param Cond Condition returned by analyzeBranch.
953 /// @param DstReg Virtual dest register that the result should write to.
954 /// @param TrueReg Virtual register to select when Cond is true.
955 /// @param FalseReg Virtual register to select when Cond is false.
956 /// @param CondCycles Latency from Cond+Branch to select output.
957 /// @param TrueCycles Latency from TrueReg to select output.
958 /// @param FalseCycles Latency from FalseReg to select output.
961 Register TrueReg, Register FalseReg,
962 int &CondCycles, int &TrueCycles,
963 int &FalseCycles) const {
964 return false;
965 }
966
967 /// Insert a select instruction into MBB before I that will copy TrueReg to
968 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
969 ///
970 /// This function can only be called after canInsertSelect() returned true.
971 /// The condition in Cond comes from analyzeBranch, and it can be assumed
972 /// that the same flags or registers required by Cond are available at the
973 /// insertion point.
974 ///
975 /// @param MBB Block where select instruction should be inserted.
976 /// @param I Insertion point.
977 /// @param DL Source location for debugging.
978 /// @param DstReg Virtual register to be defined by select instruction.
979 /// @param Cond Condition as computed by analyzeBranch.
980 /// @param TrueReg Virtual register to copy when Cond is true.
981 /// @param FalseReg Virtual register to copy when Cons is false.
985 Register TrueReg, Register FalseReg) const {
986 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
987 }
988
989 /// Analyze the given select instruction, returning true if
990 /// it cannot be understood. It is assumed that MI->isSelect() is true.
991 ///
992 /// When successful, return the controlling condition and the operands that
993 /// determine the true and false result values.
994 ///
995 /// Result = SELECT Cond, TrueOp, FalseOp
996 ///
997 /// Some targets can optimize select instructions, for example by predicating
998 /// the instruction defining one of the operands. Such targets should set
999 /// Optimizable.
1000 ///
1001 /// @param MI Select instruction to analyze.
1002 /// @param Cond Condition controlling the select.
1003 /// @param TrueOp Operand number of the value selected when Cond is true.
1004 /// @param FalseOp Operand number of the value selected when Cond is false.
1005 /// @param Optimizable Returned as true if MI is optimizable.
1006 /// @returns False on success.
1007 virtual bool analyzeSelect(const MachineInstr &MI,
1009 unsigned &TrueOp, unsigned &FalseOp,
1010 bool &Optimizable) const {
1011 assert(MI.getDesc().isSelect() && "MI must be a select instruction");
1012 return true;
1013 }
1014
1015 /// Given a select instruction that was understood by
1016 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
1017 /// merging it with one of its operands. Returns NULL on failure.
1018 ///
1019 /// When successful, returns the new select instruction. The client is
1020 /// responsible for deleting MI.
1021 ///
1022 /// If both sides of the select can be optimized, PreferFalse is used to pick
1023 /// a side.
1024 ///
1025 /// @param MI Optimizable select instruction.
1026 /// @param NewMIs Set that record all MIs in the basic block up to \p
1027 /// MI. Has to be updated with any newly created MI or deleted ones.
1028 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
1029 /// @returns Optimized instruction or NULL.
1032 bool PreferFalse = false) const {
1033 // This function must be implemented if Optimizable is ever set.
1034 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
1035 }
1036
1037 /// Emit instructions to copy a pair of physical registers.
1038 ///
1039 /// This function should support copies within any legal register class as
1040 /// well as any cross-class copies created during instruction selection.
1041 ///
1042 /// The source and destination registers may overlap, which may require a
1043 /// careful implementation when multiple copy instructions are required for
1044 /// large registers. See for example the ARM target.
1045 ///
1046 /// If RenamableDest is true, the copy instruction's destination operand is
1047 /// marked renamable.
1048 /// If RenamableSrc is true, the copy instruction's source operand is
1049 /// marked renamable.
1052 Register DestReg, Register SrcReg, bool KillSrc,
1053 bool RenamableDest = false,
1054 bool RenamableSrc = false) const {
1055 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
1056 }
1057
1058 /// Allow targets to tell MachineVerifier whether a specific register
1059 /// MachineOperand can be used as part of PC-relative addressing.
1060 /// PC-relative addressing modes in many CISC architectures contain
1061 /// (non-PC) registers as offsets or scaling values, which inherently
1062 /// tags the corresponding MachineOperand with OPERAND_PCREL.
1063 ///
1064 /// @param MO The MachineOperand in question. MO.isReg() should always
1065 /// be true.
1066 /// @return Whether this operand is allowed to be used PC-relatively.
1067 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1068 return false;
1069 }
1070
1071 /// Return an index for MachineJumpTableInfo if \p insn is an indirect jump
1072 /// using a jump table, otherwise -1.
1073 virtual int getJumpTableIndex(const MachineInstr &MI) const { return -1; }
1074
1075protected:
1076 /// Target-dependent implementation for IsCopyInstr.
1077 /// If the specific machine instruction is a instruction that moves/copies
1078 /// value from one register to another register return destination and source
1079 /// registers as machine operands.
1080 virtual std::optional<DestSourcePair>
1082 return std::nullopt;
1083 }
1084
1085 virtual std::optional<DestSourcePair>
1087 return std::nullopt;
1088 }
1089
1090 /// Return true if the given terminator MI is not expected to spill. This
1091 /// sets the live interval as not spillable and adjusts phi node lowering to
1092 /// not introduce copies after the terminator. Use with care, these are
1093 /// currently used for hardware loop intrinsics in very controlled situations,
1094 /// created prior to registry allocation in loops that only have single phi
1095 /// users for the terminators value. They may run out of registers if not used
1096 /// carefully.
1097 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1098 return false;
1099 }
1100
1101public:
1102 /// If the specific machine instruction is a instruction that moves/copies
1103 /// value from one register to another register return destination and source
1104 /// registers as machine operands.
1105 /// For COPY-instruction the method naturally returns destination and source
1106 /// registers as machine operands, for all other instructions the method calls
1107 /// target-dependent implementation.
1108 std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1109 if (MI.isCopy()) {
1110 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1111 }
1112 return isCopyInstrImpl(MI);
1113 }
1114
1115 // Similar to `isCopyInstr`, but adds non-copy semantics on MIR, but
1116 // ultimately generates a copy instruction.
1117 std::optional<DestSourcePair> isCopyLikeInstr(const MachineInstr &MI) const {
1118 if (auto IsCopyInstr = isCopyInstr(MI))
1119 return IsCopyInstr;
1120 return isCopyLikeInstrImpl(MI);
1121 }
1122
1123 bool isFullCopyInstr(const MachineInstr &MI) const {
1124 auto DestSrc = isCopyInstr(MI);
1125 if (!DestSrc)
1126 return false;
1127
1128 const MachineOperand *DestRegOp = DestSrc->Destination;
1129 const MachineOperand *SrcRegOp = DestSrc->Source;
1130 return !DestRegOp->getSubReg() && !SrcRegOp->getSubReg();
1131 }
1132
1133 /// If the specific machine instruction is an instruction that adds an
1134 /// immediate value and a register, and stores the result in the given
1135 /// register \c Reg, return a pair of the source register and the offset
1136 /// which has been added.
1137 virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1138 Register Reg) const {
1139 return std::nullopt;
1140 }
1141
1142 /// Returns true if MI is an instruction that defines Reg to have a constant
1143 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1144 /// should be interpreted as modulo size of Reg.
1146 const Register Reg,
1147 int64_t &ImmVal) const {
1148 return false;
1149 }
1150
1151 /// Store the specified register of the given register class to the specified
1152 /// stack frame index. The store instruction is to be added to the given
1153 /// machine basic block before the specified machine instruction. If isKill
1154 /// is true, the register operand is the last use and must be marked kill. If
1155 /// \p SrcReg is being directly spilled as part of assigning a virtual
1156 /// register, \p VReg is the register being assigned. This additional register
1157 /// argument is needed for certain targets when invoked from RegAllocFast to
1158 /// map the spilled physical register to its virtual register. A null register
1159 /// can be passed elsewhere. The \p Flags is used to set appropriate machine
1160 /// flags on the spill instruction e.g. FrameSetup flag on a callee saved
1161 /// register spill instruction, part of prologue, during the frame lowering.
1164 bool isKill, int FrameIndex, const TargetRegisterClass *RC,
1165 const TargetRegisterInfo *TRI, Register VReg,
1167 llvm_unreachable("Target didn't implement "
1168 "TargetInstrInfo::storeRegToStackSlot!");
1169 }
1170
1171 /// Load the specified register of the given register class from the specified
1172 /// stack frame index. The load instruction is to be added to the given
1173 /// machine basic block before the specified machine instruction. If \p
1174 /// DestReg is being directly reloaded as part of assigning a virtual
1175 /// register, \p VReg is the register being assigned. This additional register
1176 /// argument is needed for certain targets when invoked from RegAllocFast to
1177 /// map the loaded physical register to its virtual register. A null register
1178 /// can be passed elsewhere. The \p Flags is used to set appropriate machine
1179 /// flags on the spill instruction e.g. FrameDestroy flag on a callee saved
1180 /// register reload instruction, part of epilogue, during the frame lowering.
1183 int FrameIndex, const TargetRegisterClass *RC,
1184 const TargetRegisterInfo *TRI, Register VReg,
1186 llvm_unreachable("Target didn't implement "
1187 "TargetInstrInfo::loadRegFromStackSlot!");
1188 }
1189
1190 /// This function is called for all pseudo instructions
1191 /// that remain after register allocation. Many pseudo instructions are
1192 /// created to help register allocation. This is the place to convert them
1193 /// into real instructions. The target can edit MI in place, or it can insert
1194 /// new instructions and erase MI. The function should return true if
1195 /// anything was changed.
1196 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1197
1198 /// Check whether the target can fold a load that feeds a subreg operand
1199 /// (or a subreg operand that feeds a store).
1200 /// For example, X86 may want to return true if it can fold
1201 /// movl (%esp), %eax
1202 /// subb, %al, ...
1203 /// Into:
1204 /// subb (%esp), ...
1205 ///
1206 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1207 /// reject subregs - but since this behavior used to be enforced in the
1208 /// target-independent code, moving this responsibility to the targets
1209 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1210 virtual bool isSubregFoldable() const { return false; }
1211
1212 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1213 /// operands which can't be folded into stack references. Operands outside
1214 /// of the range are most likely foldable but it is not guaranteed.
1215 /// These instructions are unique in that stack references for some operands
1216 /// have the same execution cost (e.g. none) as the unfolded register forms.
1217 /// The ranged return is guaranteed to include all operands which can't be
1218 /// folded at zero cost.
1219 virtual std::pair<unsigned, unsigned>
1220 getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1221
1222 /// Attempt to fold a load or store of the specified stack
1223 /// slot into the specified machine instruction for the specified operand(s).
1224 /// If this is possible, a new instruction is returned with the specified
1225 /// operand folded, otherwise NULL is returned.
1226 /// The new instruction is inserted before MI, and the client is responsible
1227 /// for removing the old instruction.
1228 /// If VRM is passed, the assigned physregs can be inspected by target to
1229 /// decide on using an opcode (note that those assignments can still change).
1230 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1231 int FI,
1232 LiveIntervals *LIS = nullptr,
1233 VirtRegMap *VRM = nullptr) const;
1234
1235 /// Same as the previous version except it allows folding of any load and
1236 /// store from / to any address, not just from a specific stack slot.
1237 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1238 MachineInstr &LoadMI,
1239 LiveIntervals *LIS = nullptr) const;
1240
1241 /// This function defines the logic to lower COPY instruction to
1242 /// target specific instruction(s).
1243 void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const;
1244
1245 /// Return true when there is potentially a faster code sequence
1246 /// for an instruction chain ending in \p Root. All potential patterns are
1247 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1248 /// order since the pattern evaluator stops checking as soon as it finds a
1249 /// faster sequence.
1250 /// \param Root - Instruction that could be combined with one of its operands
1251 /// \param Patterns - Vector of possible combination patterns
1252 virtual bool getMachineCombinerPatterns(MachineInstr &Root,
1253 SmallVectorImpl<unsigned> &Patterns,
1254 bool DoRegPressureReduce) const;
1255
1256 /// Return true if target supports reassociation of instructions in machine
1257 /// combiner pass to reduce register pressure for a given BB.
1258 virtual bool
1260 const RegisterClassInfo *RegClassInfo) const {
1261 return false;
1262 }
1263
1264 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1265 virtual void
1267 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1268
1269 /// Return true when a code sequence can improve throughput. It
1270 /// should be called only for instructions in loops.
1271 /// \param Pattern - combiner pattern
1272 virtual bool isThroughputPattern(unsigned Pattern) const;
1273
1274 /// Return the objective of a combiner pattern.
1275 /// \param Pattern - combiner pattern
1276 virtual CombinerObjective getCombinerObjective(unsigned Pattern) const;
1277
1278 /// Return true if the input \P Inst is part of a chain of dependent ops
1279 /// that are suitable for reassociation, otherwise return false.
1280 /// If the instruction's operands must be commuted to have a previous
1281 /// instruction of the same type define the first source operand, \P Commuted
1282 /// will be set to true.
1283 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1284
1285 /// Return true when \P Inst is both associative and commutative. If \P Invert
1286 /// is true, then the inverse of \P Inst operation must be tested.
1288 bool Invert = false) const {
1289 return false;
1290 }
1291
1292 /// Find chains of accumulations that can be rewritten as a tree for increased
1293 /// ILP.
1294 bool getAccumulatorReassociationPatterns(
1295 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns) const;
1296
1297 /// Find the chain of accumulator instructions in \P MBB and return them in
1298 /// \P Chain.
1299 void getAccumulatorChain(MachineInstr *CurrentInstr,
1300 SmallVectorImpl<Register> &Chain) const;
1301
1302 /// Return true when \P OpCode is an instruction which performs
1303 /// accumulation into one of its operand registers.
1304 virtual bool isAccumulationOpcode(unsigned Opcode) const { return false; }
1305
1306 /// Returns an opcode which defines the accumulator used by \P Opcode.
1307 virtual unsigned getAccumulationStartOpcode(unsigned Opcode) const {
1308 llvm_unreachable("Function not implemented for target!");
1309 return 0;
1310 }
1311
1312 /// Returns the opcode that should be use to reduce accumulation registers.
1313 virtual unsigned
1314 getReduceOpcodeForAccumulator(unsigned int AccumulatorOpCode) const {
1315 llvm_unreachable("Function not implemented for target!");
1316 return 0;
1317 }
1318
1319 /// Reduces branches of the accumulator tree into a single register.
1320 void reduceAccumulatorTree(SmallVectorImpl<Register> &RegistersToReduce,
1322 MachineFunction &MF, MachineInstr &Root,
1324 DenseMap<Register, unsigned> &InstrIdxForVirtReg,
1325 Register ResultReg) const;
1326
1327 /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1328 /// for sub and vice versa).
1329 virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1330 return std::nullopt;
1331 }
1332
1333 /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1334 bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1335
1336 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1337 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1338 const MachineBasicBlock *MBB) const;
1339
1340 /// Return true when \P Inst has reassociable sibling.
1341 virtual bool hasReassociableSibling(const MachineInstr &Inst,
1342 bool &Commuted) const;
1343
1344 /// When getMachineCombinerPatterns() finds patterns, this function generates
1345 /// the instructions that could replace the original code sequence. The client
1346 /// has to decide whether the actual replacement is beneficial or not.
1347 /// \param Root - Instruction that could be combined with one of its operands
1348 /// \param Pattern - Combination pattern for Root
1349 /// \param InsInstrs - Vector of new instructions that implement P
1350 /// \param DelInstrs - Old instructions, including Root, that could be
1351 /// replaced by InsInstr
1352 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1353 /// InsInstr that defines it
1354 virtual void genAlternativeCodeSequence(
1355 MachineInstr &Root, unsigned Pattern,
1358 DenseMap<Register, unsigned> &InstIdxForVirtReg) const;
1359
1360 /// When calculate the latency of the root instruction, accumulate the
1361 /// latency of the sequence to the root latency.
1362 /// \param Root - Instruction that could be combined with one of its operands
1364 return true;
1365 }
1366
1367 /// The returned array encodes the operand index for each parameter because
1368 /// the operands may be commuted; the operand indices for associative
1369 /// operations might also be target-specific. Each element specifies the index
1370 /// of {Prev, A, B, X, Y}.
1371 virtual void
1372 getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern,
1373 std::array<unsigned, 5> &OperandIndices) const;
1374
1375 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1376 /// reduce critical path length.
1377 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1381 DenseMap<Register, unsigned> &InstrIdxForVirtReg) const;
1382
1383 /// Reassociation of some instructions requires inverse operations (e.g.
1384 /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1385 /// (new root opcode, new prev opcode) that must be used to reassociate \P
1386 /// Root and \P Prev accoring to \P Pattern.
1387 std::pair<unsigned, unsigned>
1388 getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root,
1389 const MachineInstr &Prev) const;
1390
1391 /// The limit on resource length extension we accept in MachineCombiner Pass.
1392 virtual int getExtendResourceLenLimit() const { return 0; }
1393
1394 /// This is an architecture-specific helper function of reassociateOps.
1395 /// Set special operand attributes for new instructions after reassociation.
1396 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1397 MachineInstr &NewMI1,
1398 MachineInstr &NewMI2) const {}
1399
1400 /// Return true when a target supports MachineCombiner.
1401 virtual bool useMachineCombiner() const { return false; }
1402
1403 /// Return a strategy that MachineCombiner must use when creating traces.
1404 virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const;
1405
1406 /// Return true if the given SDNode can be copied during scheduling
1407 /// even if it has glue.
1408 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1409
1410protected:
1411 /// Target-dependent implementation for foldMemoryOperand.
1412 /// Target-independent code in foldMemoryOperand will
1413 /// take care of adding a MachineMemOperand to the newly created instruction.
1414 /// The instruction and any auxiliary instructions necessary will be inserted
1415 /// at InsertPt.
1416 virtual MachineInstr *
1419 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1420 LiveIntervals *LIS = nullptr,
1421 VirtRegMap *VRM = nullptr) const {
1422 return nullptr;
1423 }
1424
1425 /// Target-dependent implementation for foldMemoryOperand.
1426 /// Target-independent code in foldMemoryOperand will
1427 /// take care of adding a MachineMemOperand to the newly created instruction.
1428 /// The instruction and any auxiliary instructions necessary will be inserted
1429 /// at InsertPt.
1432 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1433 LiveIntervals *LIS = nullptr) const {
1434 return nullptr;
1435 }
1436
1437 /// Target-dependent implementation of getRegSequenceInputs.
1438 ///
1439 /// \returns true if it is possible to build the equivalent
1440 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1441 ///
1442 /// \pre MI.isRegSequenceLike().
1443 ///
1444 /// \see TargetInstrInfo::getRegSequenceInputs.
1446 const MachineInstr &MI, unsigned DefIdx,
1447 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1448 return false;
1449 }
1450
1451 /// Target-dependent implementation of getExtractSubregInputs.
1452 ///
1453 /// \returns true if it is possible to build the equivalent
1454 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1455 ///
1456 /// \pre MI.isExtractSubregLike().
1457 ///
1458 /// \see TargetInstrInfo::getExtractSubregInputs.
1460 unsigned DefIdx,
1461 RegSubRegPairAndIdx &InputReg) const {
1462 return false;
1463 }
1464
1465 /// Target-dependent implementation of getInsertSubregInputs.
1466 ///
1467 /// \returns true if it is possible to build the equivalent
1468 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1469 ///
1470 /// \pre MI.isInsertSubregLike().
1471 ///
1472 /// \see TargetInstrInfo::getInsertSubregInputs.
1473 virtual bool
1475 RegSubRegPair &BaseReg,
1476 RegSubRegPairAndIdx &InsertedReg) const {
1477 return false;
1478 }
1479
1480public:
1481 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1482 /// a store or a load and a store into two or more instruction. If this is
1483 /// possible, returns true as well as the new instructions by reference.
1484 virtual bool
1486 bool UnfoldLoad, bool UnfoldStore,
1487 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1488 return false;
1489 }
1490
1492 SmallVectorImpl<SDNode *> &NewNodes) const {
1493 return false;
1494 }
1495
1496 /// Returns the opcode of the would be new
1497 /// instruction after load / store are unfolded from an instruction of the
1498 /// specified opcode. It returns zero if the specified unfolding is not
1499 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1500 /// index of the operand which will hold the register holding the loaded
1501 /// value.
1502 virtual unsigned
1503 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1504 unsigned *LoadRegIndex = nullptr) const {
1505 return 0;
1506 }
1507
1508 /// This is used by the pre-regalloc scheduler to determine if two loads are
1509 /// loading from the same base address. It should only return true if the base
1510 /// pointers are the same and the only differences between the two addresses
1511 /// are the offset. It also returns the offsets by reference.
1512 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1513 int64_t &Offset1,
1514 int64_t &Offset2) const {
1515 return false;
1516 }
1517
1518 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1519 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1520 /// On some targets if two loads are loading from
1521 /// addresses in the same cache line, it's better if they are scheduled
1522 /// together. This function takes two integers that represent the load offsets
1523 /// from the common base address. It returns true if it decides it's desirable
1524 /// to schedule the two loads together. "NumLoads" is the number of loads that
1525 /// have already been scheduled after Load1.
1526 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1527 int64_t Offset1, int64_t Offset2,
1528 unsigned NumLoads) const {
1529 return false;
1530 }
1531
1532 /// Get the base operand and byte offset of an instruction that reads/writes
1533 /// memory. This is a convenience function for callers that are only prepared
1534 /// to handle a single base operand.
1535 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1536 /// abstraction that supports negative offsets.
1537 bool getMemOperandWithOffset(const MachineInstr &MI,
1538 const MachineOperand *&BaseOp, int64_t &Offset,
1539 bool &OffsetIsScalable,
1540 const TargetRegisterInfo *TRI) const;
1541
1542 /// Get zero or more base operands and the byte offset of an instruction that
1543 /// reads/writes memory. Note that there may be zero base operands if the
1544 /// instruction accesses a constant address.
1545 /// It returns false if MI does not read/write memory.
1546 /// It returns false if base operands and offset could not be determined.
1547 /// It is not guaranteed to always recognize base operands and offsets in all
1548 /// cases.
1549 /// FIXME: Move Offset and OffsetIsScalable to some ElementCount-style
1550 /// abstraction that supports negative offsets.
1553 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
1554 const TargetRegisterInfo *TRI) const {
1555 return false;
1556 }
1557
1558 /// Return true if the instruction contains a base register and offset. If
1559 /// true, the function also sets the operand position in the instruction
1560 /// for the base register and offset.
1562 unsigned &BasePos,
1563 unsigned &OffsetPos) const {
1564 return false;
1565 }
1566
1567 /// Target dependent implementation to get the values constituting the address
1568 /// MachineInstr that is accessing memory. These values are returned as a
1569 /// struct ExtAddrMode which contains all relevant information to make up the
1570 /// address.
1571 virtual std::optional<ExtAddrMode>
1573 const TargetRegisterInfo *TRI) const {
1574 return std::nullopt;
1575 }
1576
1577 /// Check if it's possible and beneficial to fold the addressing computation
1578 /// `AddrI` into the addressing mode of the load/store instruction `MemI`. The
1579 /// memory instruction is a user of the virtual register `Reg`, which in turn
1580 /// is the ultimate destination of zero or more COPY instructions from the
1581 /// output register of `AddrI`.
1582 /// Return the adddressing mode after folding in `AM`.
1584 const MachineInstr &AddrI,
1585 ExtAddrMode &AM) const {
1586 return false;
1587 }
1588
1589 /// Emit a load/store instruction with the same value register as `MemI`, but
1590 /// using the address from `AM`. The addressing mode must have been obtained
1591 /// from `canFoldIntoAddr` for the same memory instruction.
1593 const ExtAddrMode &AM) const {
1594 llvm_unreachable("target did not implement emitLdStWithAddr()");
1595 }
1596
1597 /// Returns true if MI's Def is NullValueReg, and the MI
1598 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1599 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1600 /// function can return true even if becomes zero. Specifically cases such as
1601 /// NullValueReg = shl NullValueReg, 63.
1603 const Register NullValueReg,
1604 const TargetRegisterInfo *TRI) const {
1605 return false;
1606 }
1607
1608 /// If the instruction is an increment of a constant value, return the amount.
1609 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1610 return false;
1611 }
1612
1613 /// Returns true if the two given memory operations should be scheduled
1614 /// adjacent. Note that you have to add:
1615 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1616 /// or
1617 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1618 /// to TargetMachine::createMachineScheduler() to have an effect.
1619 ///
1620 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1621 /// \p Offset1 and \p Offset2 are the byte offsets for the memory
1622 /// operations.
1623 /// \p OffsetIsScalable1 and \p OffsetIsScalable2 indicate if the offset is
1624 /// scaled by a runtime quantity.
1625 /// \p ClusterSize is the number of operations in the resulting load/store
1626 /// cluster if this hook returns true.
1627 /// \p NumBytes is the number of bytes that will be loaded from all the
1628 /// clustered loads if this hook returns true.
1630 int64_t Offset1, bool OffsetIsScalable1,
1632 int64_t Offset2, bool OffsetIsScalable2,
1633 unsigned ClusterSize,
1634 unsigned NumBytes) const {
1635 llvm_unreachable("target did not implement shouldClusterMemOps()");
1636 }
1637
1638 /// Reverses the branch condition of the specified condition list,
1639 /// returning false on success and true if it cannot be reversed.
1640 virtual bool
1644
1645 /// Insert a noop into the instruction stream at the specified point.
1646 virtual void insertNoop(MachineBasicBlock &MBB,
1648
1649 /// Insert noops into the instruction stream at the specified point.
1650 virtual void insertNoops(MachineBasicBlock &MBB,
1652 unsigned Quantity) const;
1653
1654 /// Return the noop instruction to use for a noop.
1655 virtual MCInst getNop() const;
1656
1657 /// Return true for post-incremented instructions.
1658 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1659
1660 /// Returns true if the instruction is already predicated.
1661 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1662
1663 /// Assumes the instruction is already predicated and returns true if the
1664 /// instruction can be predicated again.
1665 virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1666 assert(isPredicated(MI) && "Instruction is not predicated");
1667 return false;
1668 }
1669
1670 // Returns a MIRPrinter comment for this machine operand.
1671 virtual std::string
1672 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1673 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1674
1675 /// Returns true if the instruction is a
1676 /// terminator instruction that has not been predicated.
1677 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1678
1679 /// Returns true if MI is an unconditional tail call.
1680 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1681 return false;
1682 }
1683
1684 /// Returns true if the tail call can be made conditional on BranchCond.
1686 const MachineInstr &TailCall) const {
1687 return false;
1688 }
1689
1690 /// Replace the conditional branch in MBB with a conditional tail call.
1693 const MachineInstr &TailCall) const {
1694 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1695 }
1696
1697 /// Convert the instruction into a predicated instruction.
1698 /// It returns true if the operation was successful.
1699 virtual bool PredicateInstruction(MachineInstr &MI,
1700 ArrayRef<MachineOperand> Pred) const;
1701
1702 /// Returns true if the first specified predicate
1703 /// subsumes the second, e.g. GE subsumes GT.
1705 ArrayRef<MachineOperand> Pred2) const {
1706 return false;
1707 }
1708
1709 /// If the specified instruction defines any predicate
1710 /// or condition code register(s) used for predication, returns true as well
1711 /// as the definition predicate(s) by reference.
1712 /// SkipDead should be set to false at any point that dead
1713 /// predicate instructions should be considered as being defined.
1714 /// A dead predicate instruction is one that is guaranteed to be removed
1715 /// after a call to PredicateInstruction.
1717 std::vector<MachineOperand> &Pred,
1718 bool SkipDead) const {
1719 return false;
1720 }
1721
1722 /// Return true if the specified instruction can be predicated.
1723 /// By default, this returns true for every instruction with a
1724 /// PredicateOperand.
1725 virtual bool isPredicable(const MachineInstr &MI) const {
1726 return MI.getDesc().isPredicable();
1727 }
1728
1729 /// Return true if it's safe to move a machine
1730 /// instruction that defines the specified register class.
1731 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1732 return true;
1733 }
1734
1735 /// Test if the given instruction should be considered a scheduling boundary.
1736 /// This primarily includes labels and terminators.
1737 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1738 const MachineBasicBlock *MBB,
1739 const MachineFunction &MF) const;
1740
1741 /// Measure the specified inline asm to determine an approximation of its
1742 /// length.
1743 virtual unsigned getInlineAsmLength(
1744 const char *Str, const MCAsmInfo &MAI,
1745 const TargetSubtargetInfo *STI = nullptr) const;
1746
1747 /// Allocate and return a hazard recognizer to use for this target when
1748 /// scheduling the machine instructions before register allocation.
1749 virtual ScheduleHazardRecognizer *
1750 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1751 const ScheduleDAG *DAG) const;
1752
1753 /// Allocate and return a hazard recognizer to use for this target when
1754 /// scheduling the machine instructions before register allocation.
1755 virtual ScheduleHazardRecognizer *
1756 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1757 const ScheduleDAGMI *DAG) const;
1758
1759 /// Allocate and return a hazard recognizer to use for this target when
1760 /// scheduling the machine instructions after register allocation.
1761 virtual ScheduleHazardRecognizer *
1762 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1763 const ScheduleDAG *DAG) const;
1764
1765 /// Allocate and return a hazard recognizer to use for by non-scheduling
1766 /// passes.
1767 virtual ScheduleHazardRecognizer *
1769 return nullptr;
1770 }
1771
1772 /// Provide a global flag for disabling the PreRA hazard recognizer that
1773 /// targets may choose to honor.
1774 bool usePreRAHazardRecognizer() const;
1775
1776 /// For a comparison instruction, return the source registers
1777 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1778 /// compares against in CmpValue. Return true if the comparison instruction
1779 /// can be analyzed.
1780 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1781 Register &SrcReg2, int64_t &Mask,
1782 int64_t &Value) const {
1783 return false;
1784 }
1785
1786 /// See if the comparison instruction can be converted
1787 /// into something more efficient. E.g., on ARM most instructions can set the
1788 /// flags register, obviating the need for a separate CMP.
1789 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1790 Register SrcReg2, int64_t Mask,
1791 int64_t Value,
1792 const MachineRegisterInfo *MRI) const {
1793 return false;
1794 }
1795 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1796
1797 /// Try to remove the load by folding it to a register operand at the use.
1798 /// We fold the load instructions if and only if the
1799 /// def and use are in the same BB. We only look at one load and see
1800 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1801 /// defined by the load we are trying to fold. DefMI returns the machine
1802 /// instruction that defines FoldAsLoadDefReg, and the function returns
1803 /// the machine instruction generated due to folding.
1804 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1805 const MachineRegisterInfo *MRI,
1806 Register &FoldAsLoadDefReg,
1807 MachineInstr *&DefMI) const;
1808
1809 /// 'Reg' is known to be defined by a move immediate instruction,
1810 /// try to fold the immediate into the use instruction.
1811 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1812 /// then the caller may assume that DefMI has been erased from its parent
1813 /// block. The caller may assume that it will not be erased by this
1814 /// function otherwise.
1817 return false;
1818 }
1819
1820 /// Return the number of u-operations the given machine
1821 /// instruction will be decoded to on the target cpu. The itinerary's
1822 /// IssueWidth is the number of microops that can be dispatched each
1823 /// cycle. An instruction with zero microops takes no dispatch resources.
1824 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1825 const MachineInstr &MI) const;
1826
1827 /// Return true for pseudo instructions that don't consume any
1828 /// machine resources in their current form. These are common cases that the
1829 /// scheduler should consider free, rather than conservatively handling them
1830 /// as instructions with no itinerary.
1831 bool isZeroCost(unsigned Opcode) const {
1832 return Opcode <= TargetOpcode::COPY;
1833 }
1834
1835 virtual std::optional<unsigned>
1836 getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode,
1837 unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const;
1838
1839 /// Compute and return the use operand latency of a given pair of def and use.
1840 /// In most cases, the static scheduling itinerary was enough to determine the
1841 /// operand latency. But it may not be possible for instructions with variable
1842 /// number of defs / uses.
1843 ///
1844 /// This is a raw interface to the itinerary that may be directly overridden
1845 /// by a target. Use computeOperandLatency to get the best estimate of
1846 /// latency.
1847 virtual std::optional<unsigned>
1848 getOperandLatency(const InstrItineraryData *ItinData,
1849 const MachineInstr &DefMI, unsigned DefIdx,
1850 const MachineInstr &UseMI, unsigned UseIdx) const;
1851
1852 /// Compute the instruction latency of a given instruction.
1853 /// If the instruction has higher cost when predicated, it's returned via
1854 /// PredCost.
1855 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1856 const MachineInstr &MI,
1857 unsigned *PredCost = nullptr) const;
1858
1859 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1860
1861 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1862 SDNode *Node) const;
1863
1864 /// Return the default expected latency for a def based on its opcode.
1865 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1866 const MachineInstr &DefMI) const;
1867
1868 /// Return true if this opcode has high latency to its result.
1869 virtual bool isHighLatencyDef(int opc) const { return false; }
1870
1871 /// Compute operand latency between a def of 'Reg'
1872 /// and a use in the current loop. Return true if the target considered
1873 /// it 'high'. This is used by optimization passes such as machine LICM to
1874 /// determine whether it makes sense to hoist an instruction out even in a
1875 /// high register pressure situation.
1876 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1877 const MachineRegisterInfo *MRI,
1878 const MachineInstr &DefMI, unsigned DefIdx,
1879 const MachineInstr &UseMI,
1880 unsigned UseIdx) const {
1881 return false;
1882 }
1883
1884 /// Compute operand latency of a def of 'Reg'. Return true
1885 /// if the target considered it 'low'.
1886 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1887 const MachineInstr &DefMI,
1888 unsigned DefIdx) const;
1889
1890 /// Perform target-specific instruction verification.
1891 virtual bool verifyInstruction(const MachineInstr &MI,
1892 StringRef &ErrInfo) const {
1893 return true;
1894 }
1895
1896 /// Return the current execution domain and bit mask of
1897 /// possible domains for instruction.
1898 ///
1899 /// Some micro-architectures have multiple execution domains, and multiple
1900 /// opcodes that perform the same operation in different domains. For
1901 /// example, the x86 architecture provides the por, orps, and orpd
1902 /// instructions that all do the same thing. There is a latency penalty if a
1903 /// register is written in one domain and read in another.
1904 ///
1905 /// This function returns a pair (domain, mask) containing the execution
1906 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1907 /// function can be used to change the opcode to one of the domains in the
1908 /// bit mask. Instructions whose execution domain can't be changed should
1909 /// return a 0 mask.
1910 ///
1911 /// The execution domain numbers don't have any special meaning except domain
1912 /// 0 is used for instructions that are not associated with any interesting
1913 /// execution domain.
1914 ///
1915 virtual std::pair<uint16_t, uint16_t>
1917 return std::make_pair(0, 0);
1918 }
1919
1920 /// Change the opcode of MI to execute in Domain.
1921 ///
1922 /// The bit (1 << Domain) must be set in the mask returned from
1923 /// getExecutionDomain(MI).
1924 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1925
1926 /// Returns the preferred minimum clearance
1927 /// before an instruction with an unwanted partial register update.
1928 ///
1929 /// Some instructions only write part of a register, and implicitly need to
1930 /// read the other parts of the register. This may cause unwanted stalls
1931 /// preventing otherwise unrelated instructions from executing in parallel in
1932 /// an out-of-order CPU.
1933 ///
1934 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1935 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1936 /// the instruction needs to wait for the old value of the register to become
1937 /// available:
1938 ///
1939 /// addps %xmm1, %xmm0
1940 /// movaps %xmm0, (%rax)
1941 /// cvtsi2ss %rbx, %xmm0
1942 ///
1943 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1944 /// instruction before it can issue, even though the high bits of %xmm0
1945 /// probably aren't needed.
1946 ///
1947 /// This hook returns the preferred clearance before MI, measured in
1948 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1949 /// instructions before MI. It should only return a positive value for
1950 /// unwanted dependencies. If the old bits of the defined register have
1951 /// useful values, or if MI is determined to otherwise read the dependency,
1952 /// the hook should return 0.
1953 ///
1954 /// The unwanted dependency may be handled by:
1955 ///
1956 /// 1. Allocating the same register for an MI def and use. That makes the
1957 /// unwanted dependency identical to a required dependency.
1958 ///
1959 /// 2. Allocating a register for the def that has no defs in the previous N
1960 /// instructions.
1961 ///
1962 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1963 /// allows the target to insert a dependency breaking instruction.
1964 ///
1965 virtual unsigned
1967 const TargetRegisterInfo *TRI) const {
1968 // The default implementation returns 0 for no partial register dependency.
1969 return 0;
1970 }
1971
1972 /// Return the minimum clearance before an instruction that reads an
1973 /// unused register.
1974 ///
1975 /// For example, AVX instructions may copy part of a register operand into
1976 /// the unused high bits of the destination register.
1977 ///
1978 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1979 ///
1980 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1981 /// false dependence on any previous write to %xmm0.
1982 ///
1983 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1984 /// does not take an operand index. Instead sets \p OpNum to the index of the
1985 /// unused register.
1986 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1987 const TargetRegisterInfo *TRI) const {
1988 // The default implementation returns 0 for no undef register dependency.
1989 return 0;
1990 }
1991
1992 /// Insert a dependency-breaking instruction
1993 /// before MI to eliminate an unwanted dependency on OpNum.
1994 ///
1995 /// If it wasn't possible to avoid a def in the last N instructions before MI
1996 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1997 /// unwanted dependency.
1998 ///
1999 /// On x86, an xorps instruction can be used as a dependency breaker:
2000 ///
2001 /// addps %xmm1, %xmm0
2002 /// movaps %xmm0, (%rax)
2003 /// xorps %xmm0, %xmm0
2004 /// cvtsi2ss %rbx, %xmm0
2005 ///
2006 /// An <imp-kill> operand should be added to MI if an instruction was
2007 /// inserted. This ties the instructions together in the post-ra scheduler.
2008 ///
2009 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
2010 const TargetRegisterInfo *TRI) const {}
2011
2012 /// Create machine specific model for scheduling.
2013 virtual DFAPacketizer *
2015 return nullptr;
2016 }
2017
2018 /// Sometimes, it is possible for the target
2019 /// to tell, even without aliasing information, that two MIs access different
2020 /// memory addresses. This function returns true if two MIs access different
2021 /// memory addresses and false otherwise.
2022 ///
2023 /// Assumes any physical registers used to compute addresses have the same
2024 /// value for both instructions. (This is the most useful assumption for
2025 /// post-RA scheduling.)
2026 ///
2027 /// See also MachineInstr::mayAlias, which is implemented on top of this
2028 /// function.
2029 virtual bool
2031 const MachineInstr &MIb) const {
2032 assert(MIa.mayLoadOrStore() &&
2033 "MIa must load from or modify a memory location");
2034 assert(MIb.mayLoadOrStore() &&
2035 "MIb must load from or modify a memory location");
2036 return false;
2037 }
2038
2039 /// Return the value to use for the MachineCSE's LookAheadLimit,
2040 /// which is a heuristic used for CSE'ing phys reg defs.
2041 virtual unsigned getMachineCSELookAheadLimit() const {
2042 // The default lookahead is small to prevent unprofitable quadratic
2043 // behavior.
2044 return 5;
2045 }
2046
2047 /// Return the maximal number of alias checks on memory operands. For
2048 /// instructions with more than one memory operands, the alias check on a
2049 /// single MachineInstr pair has quadratic overhead and results in
2050 /// unacceptable performance in the worst case. The limit here is to clamp
2051 /// that maximal checks performed. Usually, that's the product of memory
2052 /// operand numbers from that pair of MachineInstr to be checked. For
2053 /// instance, with two MachineInstrs with 4 and 5 memory operands
2054 /// correspondingly, a total of 20 checks are required. With this limit set to
2055 /// 16, their alias check is skipped. We choose to limit the product instead
2056 /// of the individual instruction as targets may have special MachineInstrs
2057 /// with a considerably high number of memory operands, such as `ldm` in ARM.
2058 /// Setting this limit per MachineInstr would result in either too high
2059 /// overhead or too rigid restriction.
2060 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
2061
2062 /// Return an array that contains the ids of the target indices (used for the
2063 /// TargetIndex machine operand) and their names.
2064 ///
2065 /// MIR Serialization is able to serialize only the target indices that are
2066 /// defined by this method.
2069 return {};
2070 }
2071
2072 /// Decompose the machine operand's target flags into two values - the direct
2073 /// target flag value and any of bit flags that are applied.
2074 virtual std::pair<unsigned, unsigned>
2076 return std::make_pair(0u, 0u);
2077 }
2078
2079 /// Return an array that contains the direct target flag values and their
2080 /// names.
2081 ///
2082 /// MIR Serialization is able to serialize only the target flags that are
2083 /// defined by this method.
2086 return {};
2087 }
2088
2089 /// Return an array that contains the bitmask target flag values and their
2090 /// names.
2091 ///
2092 /// MIR Serialization is able to serialize only the target flags that are
2093 /// defined by this method.
2096 return {};
2097 }
2098
2099 /// Return an array that contains the MMO target flag values and their
2100 /// names.
2101 ///
2102 /// MIR Serialization is able to serialize only the MMO target flags that are
2103 /// defined by this method.
2106 return {};
2107 }
2108
2109 /// Determines whether \p Inst is a tail call instruction. Override this
2110 /// method on targets that do not properly set MCID::Return and MCID::Call on
2111 /// tail call instructions."
2112 virtual bool isTailCall(const MachineInstr &Inst) const {
2113 return Inst.isReturn() && Inst.isCall();
2114 }
2115
2116 /// True if the instruction is bound to the top of its basic block and no
2117 /// other instructions shall be inserted before it. This can be implemented
2118 /// to prevent register allocator to insert spills for \p Reg before such
2119 /// instructions.
2121 Register Reg = Register()) const {
2122 return false;
2123 }
2124
2125 /// Allows targets to use appropriate copy instruction while spilitting live
2126 /// range of a register in register allocation.
2128 const MachineFunction &MF) const {
2129 return TargetOpcode::COPY;
2130 }
2131
2132 /// During PHI eleimination lets target to make necessary checks and
2133 /// insert the copy to the PHI destination register in a target specific
2134 /// manner.
2137 const DebugLoc &DL, Register Src, Register Dst) const {
2138 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2139 .addReg(Src);
2140 }
2141
2142 /// During PHI eleimination lets target to make necessary checks and
2143 /// insert the copy to the PHI destination register in a target specific
2144 /// manner.
2147 const DebugLoc &DL, Register Src,
2148 unsigned SrcSubReg,
2149 Register Dst) const {
2150 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
2151 .addReg(Src, 0, SrcSubReg);
2152 }
2153
2154 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
2155 /// information for a set of outlining candidates. Returns std::nullopt if the
2156 /// candidates are not suitable for outlining. \p MinRepeats is the minimum
2157 /// number of times the instruction sequence must be repeated.
2158 virtual std::optional<std::unique_ptr<outliner::OutlinedFunction>>
2160 const MachineModuleInfo &MMI,
2161 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
2162 unsigned MinRepeats) const {
2164 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
2165 }
2166
2167 /// Optional target hook to create the LLVM IR attributes for the outlined
2168 /// function. If overridden, the overriding function must call the default
2169 /// implementation.
2170 virtual void mergeOutliningCandidateAttributes(
2171 Function &F, std::vector<outliner::Candidate> &Candidates) const;
2172
2173protected:
2174 /// Target-dependent implementation for getOutliningTypeImpl.
2175 virtual outliner::InstrType
2177 MachineBasicBlock::iterator &MIT, unsigned Flags) const {
2179 "Target didn't implement TargetInstrInfo::getOutliningTypeImpl!");
2180 }
2181
2182public:
2183 /// Returns how or if \p MIT should be outlined. \p Flags is the
2184 /// target-specific information returned by isMBBSafeToOutlineFrom.
2185 outliner::InstrType getOutliningType(const MachineModuleInfo &MMI,
2187 unsigned Flags) const;
2188
2189 /// Optional target hook that returns true if \p MBB is safe to outline from,
2190 /// and returns any target-specific information in \p Flags.
2191 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2192 unsigned &Flags) const;
2193
2194 /// Optional target hook which partitions \p MBB into outlinable ranges for
2195 /// instruction mapping purposes. Each range is defined by two iterators:
2196 /// [start, end).
2197 ///
2198 /// Ranges are expected to be ordered top-down. That is, ranges closer to the
2199 /// top of the block should come before ranges closer to the end of the block.
2200 ///
2201 /// Ranges cannot overlap.
2202 ///
2203 /// If an entire block is mappable, then its range is [MBB.begin(), MBB.end())
2204 ///
2205 /// All instructions not present in an outlinable range are considered
2206 /// illegal.
2207 virtual SmallVector<
2208 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
2209 getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const {
2210 return {std::make_pair(MBB.begin(), MBB.end())};
2211 }
2212
2213 /// Insert a custom frame for outlined functions.
2215 const outliner::OutlinedFunction &OF) const {
2217 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
2218 }
2219
2220 /// Insert a call to an outlined function into the program.
2221 /// Returns an iterator to the spot where we inserted the call. This must be
2222 /// implemented by the target.
2226 outliner::Candidate &C) const {
2228 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2229 }
2230
2231 /// Insert an architecture-specific instruction to clear a register. If you
2232 /// need to avoid sideeffects (e.g. avoid XOR on x86, which sets EFLAGS), set
2233 /// \p AllowSideEffects to \p false.
2236 DebugLoc &DL,
2237 bool AllowSideEffects = true) const {
2238#if 0
2239 // FIXME: This should exist once all platforms that use stack protectors
2240 // implements it.
2242 "Target didn't implement TargetInstrInfo::buildClearRegister!");
2243#endif
2244 }
2245
2246 /// Return true if the function can safely be outlined from.
2247 /// A function \p MF is considered safe for outlining if an outlined function
2248 /// produced from instructions in F will produce a program which produces the
2249 /// same output for any set of given inputs.
2251 bool OutlineFromLinkOnceODRs) const {
2252 llvm_unreachable("Target didn't implement "
2253 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2254 }
2255
2256 /// Return true if the function should be outlined from by default.
2258 return false;
2259 }
2260
2261 /// Return true if the function is a viable candidate for machine function
2262 /// splitting. The criteria for if a function can be split may vary by target.
2263 virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const;
2264
2265 /// Return true if the MachineBasicBlock can safely be split to the cold
2266 /// section. On AArch64, certain instructions may cause a block to be unsafe
2267 /// to split to the cold section.
2268 virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const {
2269 return true;
2270 }
2271
2272 /// Produce the expression describing the \p MI loading a value into
2273 /// the physical register \p Reg. This hook should only be used with
2274 /// \p MIs belonging to VReg-less functions.
2275 virtual std::optional<ParamLoadedValue>
2276 describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2277
2278 /// Given the generic extension instruction \p ExtMI, returns true if this
2279 /// extension is a likely candidate for being folded into an another
2280 /// instruction.
2282 MachineRegisterInfo &MRI) const {
2283 return false;
2284 }
2285
2286 /// Return MIR formatter to format/parse MIR operands. Target can override
2287 /// this virtual function and return target specific MIR formatter.
2288 virtual const MIRFormatter *getMIRFormatter() const {
2289 if (!Formatter)
2290 Formatter = std::make_unique<MIRFormatter>();
2291 return Formatter.get();
2292 }
2293
2294 /// Returns the target-specific default value for tail duplication.
2295 /// This value will be used if the tail-dup-placement-threshold argument is
2296 /// not provided.
2297 virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
2298 return OptLevel >= CodeGenOptLevel::Aggressive ? 4 : 2;
2299 }
2300
2301 /// Returns the target-specific default value for tail merging.
2302 /// This value will be used if the tail-merge-size argument is not provided.
2303 virtual unsigned getTailMergeSize(const MachineFunction &MF) const {
2304 return 3;
2305 }
2306
2307 /// Returns the callee operand from the given \p MI.
2308 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2309 return MI.getOperand(0);
2310 }
2311
2312 /// Return the uniformity behavior of the given instruction.
2313 virtual InstructionUniformity
2317
2318 /// Returns true if the given \p MI defines a TargetIndex operand that can be
2319 /// tracked by their offset, can have values, and can have debug info
2320 /// associated with it. If so, sets \p Index and \p Offset of the target index
2321 /// operand.
2322 virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2323 int64_t &Offset) const {
2324 return false;
2325 }
2326
2327 // Get the call frame size just before MI.
2328 unsigned getCallFrameSizeAt(MachineInstr &MI) const;
2329
2330 /// Fills in the necessary MachineOperands to refer to a frame index.
2331 /// The best way to understand this is to print `asm(""::"m"(x));` after
2332 /// finalize-isel. Example:
2333 /// INLINEASM ... 262190 /* mem:m */, %stack.0.x.addr, 1, $noreg, 0, $noreg
2334 /// we would add placeholders for: ^ ^ ^ ^
2336 int FI) const {
2337 llvm_unreachable("unknown number of operands necessary");
2338 }
2339
2340private:
2341 mutable std::unique_ptr<MIRFormatter> Formatter;
2342 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2343 unsigned CatchRetOpcode;
2344 unsigned ReturnOpcode;
2345};
2346
2347/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2351
2353 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2354 SubRegInfo::getEmptyKey());
2355 }
2356
2358 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2359 SubRegInfo::getTombstoneKey());
2360 }
2361
2362 /// Reuse getHashValue implementation from
2363 /// std::pair<unsigned, unsigned>.
2364 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2366 std::make_pair(Val.Reg, Val.SubReg));
2367 }
2368
2371 return LHS == RHS;
2372 }
2373};
2374
2375} // end namespace llvm
2376
2377#endif // LLVM_CODEGEN_TARGETINSTRINFO_H
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static const TargetRegisterClass * getRegClass(const MachineInstr &MI, Register Reg)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
SmallVector< int16_t, MAX_SRC_OPERANDS_NUM > OperandIndices
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
#define LLVM_ABI
Definition Compiler.h:213
DXIL Forward Handle Accesses
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Contains all data structures shared between the outliner implemented in MachineOutliner....
TargetInstrInfo::RegSubRegPair RegSubRegPair
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
#define P(N)
TargetInstrInfo::RegSubRegPairAndIdx RegSubRegPairAndIdx
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getInstSizeInBytes(const MachineInstr &MI, const SystemZInstrInfo *TII)
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
This class is the base class for the comparison instructions.
Definition InstrTypes.h:666
A debug info location.
Definition DebugLoc.h:124
Itinerary data supplied by a subtarget to be used by a target.
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
Describe properties that are true of each instruction in the target description file.
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition MCInstrInfo.h:64
MIRFormater - Interface to format MIR operand based on target.
MachineInstrBundleIterator< MachineInstr > iterator
Representation of each machine instruction.
bool isReturn(QueryType Type=AnyInBundle) const
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
bool isCall(QueryType Type=AnyInBundle) const
A description of a memory reference used in the backend.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
static MachineOperand CreateImm(int64_t Val)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Represents one node in the SelectionDAG.
This class represents the scheduled code.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
Object returned by analyzeLoopForPipelining.
virtual bool isMVEExpanderSupported()
Return true if the target can expand pipelined schedule with modulo variable expansion.
virtual void createRemainingIterationsGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, DenseMap< MachineInstr *, MachineInstr * > &LastStage0Insts)
Create a condition to determine if the remaining trip count for a phase is greater than TC.
virtual void adjustTripCount(int TripCountAdjust)=0
Modify the loop such that the trip count is OriginalTC + TripCountAdjust.
virtual void disposed(LiveIntervals *LIS=nullptr)
Called when the loop is being removed.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const =0
Return true if the given instruction should not be pipelined and should be ignored.
virtual void setPreheader(MachineBasicBlock *NewPreheader)=0
Called when the loop's preheader has been modified to NewPreheader.
virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS)
Return true if the proposed schedule should used.
virtual std::optional< bool > createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond)=0
Create a condition to determine if the trip count of the loop is greater than TC, where TC is always ...
TargetInstrInfo - Interface to description of machine instruction set.
virtual SmallVector< std::pair< MachineBasicBlock::iterator, MachineBasicBlock::iterator > > getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook which partitions MBB into outlinable ranges for instruction mapping purposes.
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
virtual bool isBasicBlockPrologue(const MachineInstr &MI, Register Reg=Register()) const
True if the instruction is bound to the top of its basic block and no other instructions shall be ins...
virtual bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
Reverses the branch condition of the specified condition list, returning false on success and true if...
virtual unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const
Remove the branching code at the end of the specific MBB.
virtual std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
virtual bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const
If the specified instruction defines any predicate or condition code register(s) used for predication...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const
Assumes the instruction is already predicated and returns true if the instruction can be predicated a...
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
bool isZeroCost(unsigned Opcode) const
Return true for pseudo instructions that don't consume any machine resources in their current form.
virtual void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const
Insert an architecture-specific instruction to clear a register.
virtual void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const
Fills in the necessary MachineOperands to refer to a frame index.
virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify=false) const
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, MachineRegisterInfo &MRI) const
Given the generic extension instruction ExtMI, returns true if this extension is a likely candidate f...
virtual bool isSafeToSink(MachineInstr &MI, MachineBasicBlock *SuccToSinkTo, MachineCycleInfo *CI) const
virtual std::optional< DestSourcePair > isCopyLikeInstrImpl(const MachineInstr &MI) const
virtual unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Returns the preferred minimum clearance before an instruction with an unwanted partial register updat...
virtual bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Returns true if the tail call can be made conditional on BranchCond.
virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &) const
Create machine specific model for scheduling.
virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar, MachineInstr &Cmp, SmallVectorImpl< MachineOperand > &Cond, SmallVectorImpl< MachineInstr * > &PrevInsts, unsigned Iter, unsigned MaxIter) const
Generate code to reduce the loop iteration by one and check if the loop is finished.
virtual bool isPostIncrement(const MachineInstr &MI) const
Return true for post-incremented instructions.
bool isTriviallyReMaterializable(const MachineInstr &MI) const
Return true if the instruction is trivially rematerializable, meaning it has no side effects and requ...
virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const
Return true if the instruction is a "coalescable" extension instruction.
virtual void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset=0, RegScavenger *RS=nullptr) const
Insert an unconditional indirect branch at the end of MBB to NewDestBB.
virtual ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const
Return an array that contains the MMO target flag values and their names.
virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const
Return true if the instruction contains a base register and offset.
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const
Returns the opcode of the would be new instruction after load / store are unfolded from an instructio...
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify=false) const
Analyze the branching code at the end of MBB and parse it into the MachineBranchPredicate structure i...
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const
Return true if the function should be outlined from by default.
virtual MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &NewMIs, bool PreferFalse=false) const
Given a select instruction that was understood by analyzeSelect and returned Optimizable = true,...
virtual bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const
Check if it's possible and beneficial to fold the addressing computation AddrI into the addressing mo...
virtual const MIRFormatter * getMIRFormatter() const
Return MIR formatter to format/parse MIR operands.
virtual bool shouldReduceRegisterPressure(const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const
Return true if target supports reassociation of instructions in machine combiner pass to reduce regis...
virtual ArrayRef< std::pair< int, const char * > > getSerializableTargetIndices() const
Return an array that contains the ids of the target indices (used for the TargetIndex machine operand...
bool isFullCopyInstr(const MachineInstr &MI) const
virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Return the minimum clearance before an instruction that reads an unused register.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const
Returns true if MI's Def is NullValueReg, and the MI does not change the Zero value.
virtual bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const
Perform target-specific instruction verification.
virtual void finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs) const
Fix up the placeholder we may add in genAlternativeCodeSequence().
virtual bool isUnconditionalTailCall(const MachineInstr &MI) const
Returns true if MI is an unconditional tail call.
virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const
Compute operand latency between a def of 'Reg' and a use in the current loop.
bool isUnspillableTerminator(const MachineInstr *MI) const
Return true if the given instruction is terminator that is unspillable, according to isUnspillableTer...
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const
Return true if it's profitable to unpredicate one side of a 'diamond', i.e.
virtual bool useMachineCombiner() const
Return true when a target supports MachineCombiner.
virtual bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const
Returns true if the first specified predicate subsumes the second, e.g.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
Insert a dependency-breaking instruction before MI to eliminate an unwanted dependency on OpNum.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) const
Second variant of isProfitableToIfCvt.
virtual int getExtendResourceLenLimit() const
The limit on resource length extension we accept in MachineCombiner Pass.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const
Allocate and return a hazard recognizer to use for by non-scheduling passes.
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const
Insert a select instruction into MBB before I that will copy TrueReg to DstReg when Cond is true,...
virtual bool shouldBreakCriticalEdgeToSink(MachineInstr &MI) const
For a "cheap" instruction which doesn't enable additional sinking, should MachineSink break a critica...
virtual bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const
Sometimes, it is possible for the target to tell, even without aliasing information,...
virtual bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const
unsigned getReturnOpcode() const
virtual bool isIgnorableUse(const MachineOperand &MO) const
Given MO is a PhysReg use return if it can be ignored for the purpose of instruction rematerializatio...
virtual unsigned getReduceOpcodeForAccumulator(unsigned int AccumulatorOpCode) const
Returns the opcode that should be use to reduce accumulation registers.
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
virtual bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const
Returns true if the two given memory operations should be scheduled adjacent.
virtual unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const
Allows targets to use appropriate copy instruction while spilitting live range of a register in regis...
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Store the specified register of the given register class to the specified stack frame index.
virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t Mask, int64_t Value, const MachineRegisterInfo *MRI) const
See if the comparison instruction can be converted into something more efficient.
virtual unsigned getMemOperandAACheckLimit() const
Return the maximal number of alias checks on memory operands.
virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const
Return true if the function can safely be outlined from.
virtual bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const
Return true if the MachineBasicBlock can safely be split to the cold section.
virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const
Insert a custom frame for outlined functions.
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const
Emit instructions to copy a pair of physical registers.
virtual unsigned getAccumulationStartOpcode(unsigned Opcode) const
Returns an opcode which defines the accumulator used by \P Opcode.
virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const
Return true if the given SDNode can be copied during scheduling even if it has glue.
virtual bool simplifyInstruction(MachineInstr &MI) const
If possible, converts the instruction to a simplified/canonical form.
virtual std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const
Target dependent implementation to get the values constituting the address MachineInstr that is acces...
virtual std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const
Target-dependent implementation for IsCopyInstr.
virtual MachineInstr * createPHIDestinationCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const
Returns true if MI is an instruction that defines Reg to have a constant value and the value is recor...
static bool isGenericOpcode(unsigned Opc)
TargetInstrInfo & operator=(const TargetInstrInfo &)=delete
std::optional< DestSourcePair > isCopyLikeInstr(const MachineInstr &MI) const
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const
Return an array that contains the bitmask target flag values and their names.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool isSubregFoldable() const
Check whether the target can fold a load that feeds a subreg operand (or a subreg operand that feeds ...
virtual Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const
Check for post-frame ptr elimination stack locations as well.
virtual std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const
Return the current execution domain and bit mask of possible domains for instruction.
virtual bool optimizeCondBranch(MachineInstr &MI) const
virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, MachineInstr *&CmpInst) const
Analyze the loop code, return true if it cannot be understood.
unsigned getCatchReturnOpcode() const
virtual unsigned getTailMergeSize(const MachineFunction &MF) const
Returns the target-specific default value for tail merging.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Load the specified register of the given register class from the specified stack frame index.
virtual InstructionUniformity getInstructionUniformity(const MachineInstr &MI) const
Return the uniformity behavior of the given instruction.
virtual bool isAsCheapAsAMove(const MachineInstr &MI) const
Return true if the instruction is as cheap as a move instruction.
virtual bool isTailCall(const MachineInstr &Inst) const
Determines whether Inst is a tail call instruction.
virtual const MachineOperand & getCalleeOperand(const MachineInstr &MI) const
Returns the callee operand from the given MI.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const
'Reg' is known to be defined by a move immediate instruction, try to fold the immediate into the use ...
virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, int &SrcFrameIndex) const
Return true if the specified machine instruction is a copy of one stack slot to another and has no ot...
virtual int getJumpTableIndex(const MachineInstr &MI) const
Return an index for MachineJumpTableInfo if insn is an indirect jump using a jump table,...
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, int64_t &Offset) const
Returns true if the given MI defines a TargetIndex operand that can be tracked by their offset,...
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const
unfoldMemoryOperand - Separate a single instruction which folded a load or a store or a load and a st...
virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const
Allow targets to tell MachineVerifier whether a specific register MachineOperand can be used as part ...
virtual std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const
Returns a outliner::OutlinedFunction struct containing target-specific information for a set of outli...
virtual MachineInstr * createPHISourceCopy(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const
During PHI eleimination lets target to make necessary checks and insert the copy to the PHI destinati...
virtual MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const
Insert a call to an outlined function into the program.
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
TargetInstrInfo(unsigned CFSetupOpcode=~0u, unsigned CFDestroyOpcode=~0u, unsigned CatchRetOpcode=~0u, unsigned ReturnOpcode=~0u)
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const
Replace the conditional branch in MBB with a conditional tail call.
TargetInstrInfo(const TargetInstrInfo &)=delete
virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const
Return an estimate for the code size reduction (in bytes) which will be caused by removing the given ...
virtual ~TargetInstrInfo()
virtual bool isAccumulationOpcode(unsigned Opcode) const
Return true when \P OpCode is an instruction which performs accumulation into one of its operand regi...
bool isFrameSetup(const MachineInstr &I) const
Returns true if the argument is a frame setup pseudo instruction.
virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, unsigned NumInsts) const
Return the increase in code size needed to predicate a contiguous run of NumInsts instructions.
virtual bool accumulateInstrSeqToRootLatency(MachineInstr &Root) const
When calculate the latency of the root instruction, accumulate the latency of the sequence to the roo...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
virtual bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const
Analyze the given select instruction, returning true if it cannot be understood.
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, TypeSize &MemBytes) const
Optional extension of isStoreToStackSlot that returns the number of bytes stored to the stack.
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, TypeSize &MemBytes) const
Optional extension of isLoadFromStackSlot that returns the number of bytes loaded from the stack.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const
Returns the size in bytes of the specified MachineInstr, or ~0U when this function is not implemented...
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
virtual bool shouldSink(const MachineInstr &MI) const
Return true if the instruction should be sunk by MachineSink.
virtual MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const
This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_ADDR flag.
virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const
Change the opcode of MI to execute in Domain.
virtual bool isPredicable(const MachineInstr &MI) const
Return true if the specified instruction can be predicated.
virtual std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned) const
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const
Return true if it's safe to move a machine instruction that defines the specified register class.
virtual bool canInsertSelect(const MachineBasicBlock &MBB, ArrayRef< MachineOperand > Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const
Return true if it is possible to insert a select instruction that chooses between TrueReg and FalseRe...
virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const
Return true if the given terminator MI is not expected to spill.
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
static bool isGenericAtomicRMWOpcode(unsigned Opc)
virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const
Returns true if the target has a preference on the operands order of the given machine instruction.
static const unsigned CommuteAnyOperandIndex
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
virtual MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const
Emit a load/store instruction with the same value register as MemI, but using the address from AM.
virtual bool expandPostRAPseudo(MachineInstr &MI) const
This function is called for all pseudo instructions that remain after register allocation.
virtual ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const
Return an array that contains the direct target flag values and their names.
virtual bool shouldHoist(const MachineInstr &MI, const MachineLoop *FromLoop) const
Return false if the instruction should not be hoisted by MachineLICM.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
virtual unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const
Returns the target-specific default value for tail duplication.
unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, MachineBasicBlock *DestBB, const DebugLoc &DL, int *BytesAdded=nullptr) const
virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const
If the instruction is an increment of a constant value, return the amount.
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const
This is used by the pre-regalloc scheduler to determine if two loads are loading from the same base a...
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl< SDNode * > &NewNodes) const
virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
virtual unsigned getMachineCSELookAheadLimit() const
Return the value to use for the MachineCSE's LookAheadLimit, which is a heuristic used for CSE'ing ph...
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const
Return true if it's legal to split the given basic block at the specified instruction (i....
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
static constexpr TypeSize getZero()
Definition TypeSize.h:349
LLVM Value Representation.
Definition Value.h:75
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
MachineTraceStrategy
Strategies for selecting traces.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
DWARFExpression::Operation Op
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition Uniformity.h:18
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
GenericCycleInfo< MachineSSAContext > MachineCycleInfo
#define N
static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val)
Reuse getHashValue implementation from std::pair<unsigned, unsigned>.
static TargetInstrInfo::RegSubRegPair getTombstoneKey()
static TargetInstrInfo::RegSubRegPair getEmptyKey()
static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, const TargetInstrInfo::RegSubRegPair &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
const MachineOperand * Source
DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
const MachineOperand * Destination
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
ExtAddrMode()=default
Machine model for scheduling, bundling, and heuristics.
Definition MCSchedule.h:258
RegImmPair(Register Reg, int64_t Imm)
Represents a predicate at the MachineFunction level.
bool SingleUseCondition
SingleUseCondition is true if ConditionDef is dead except for the branch(es) at the end of the basic ...
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
RegSubRegPairAndIdx(Register Reg=Register(), unsigned SubReg=0, unsigned SubIdx=0)
A pair composed of a register and a sub-register index.
bool operator==(const RegSubRegPair &P) const
RegSubRegPair(Register Reg=Register(), unsigned SubReg=0)
bool operator!=(const RegSubRegPair &P) const
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.