46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
55 case VPInterleaveEVLSC:
58 case VPWidenStoreEVLSC:
66 ->getCalledScalarFunction()
68 case VPWidenIntrinsicSC:
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
78 case VPReductionEVLSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
89 case VPWidenSelectSC: {
93 assert((!
I || !
I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
106 case VPInstructionSC:
108 case VPWidenLoadEVLSC:
113 ->mayReadFromMemory();
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
128 case VPReductionEVLSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
134 case VPWidenIntOrFpInductionSC:
137 case VPWidenSelectSC: {
141 assert((!
I || !
I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
160 case VPInstructionSC:
162 case VPWidenCallSC: {
166 case VPWidenIntrinsicSC:
169 case VPReductionEVLSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
176 case VPWidenIntOrFpInductionSC:
178 case VPWidenPointerInductionSC:
180 case VPWidenSelectSC: {
184 assert((!
I || !
I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
188 case VPInterleaveEVLSC:
191 case VPWidenLoadEVLSC:
193 case VPWidenStoreEVLSC:
198 "mayHaveSideffects result for ingredient differs from this "
201 case VPReplicateSC: {
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
211 assert(!Parent &&
"Recipe already in some VPBasicBlock");
213 "Insertion position not in any VPBasicBlock");
219 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
227 "Insertion position not in any VPBasicBlock");
262 UI = IG->getInsertPos();
264 UI = &WidenMem->getIngredient();
267 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
277 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
301 std::optional<unsigned> Opcode;
308 OpR =
Op->getDefiningRecipe();
311 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
334 Opcode =
Widen->getOpcode();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
338 :
Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
340 :
Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
346 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
347 ExtAType = GetExtendKind(OpR);
351 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
352 ExtAType = GetExtendKind(RedPhiOp1R);
358 return Reduction->computeCost(VF, Ctx);
360 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
361 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
362 PhiType, VF, ExtAType, ExtBType,
363 Opcode, Ctx.CostKind);
367 auto &Builder = State.Builder;
370 "Unhandled partial reduction opcode");
374 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
379 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
380 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
388 O << Indent <<
"PARTIAL-REDUCE ";
396 assert(OpType == Other.OpType &&
"OpType must match");
398 case OperationType::OverflowingBinOp:
399 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
400 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
402 case OperationType::Trunc:
406 case OperationType::DisjointOp:
409 case OperationType::PossiblyExactOp:
410 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
412 case OperationType::GEPOp:
415 case OperationType::FPMathOp:
416 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
417 FMFs.NoInfs &= Other.FMFs.NoInfs;
419 case OperationType::NonNegOp:
422 case OperationType::Cmp:
425 case OperationType::Other:
432 assert(OpType == OperationType::FPMathOp &&
433 "recipe doesn't have fast math flags");
445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
449template <
unsigned PartOpIdx>
452 if (U.getNumOperands() == PartOpIdx + 1)
453 return U.getOperand(PartOpIdx);
457template <
unsigned PartOpIdx>
476 "Set flags not supported for the provided opcode");
477 assert((getNumOperandsForOpcode(Opcode) == -1u ||
479 "number of operands does not match opcode");
483unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
494 case Instruction::Alloca:
495 case Instruction::ExtractValue:
496 case Instruction::Freeze:
497 case Instruction::Load:
510 case Instruction::ICmp:
511 case Instruction::FCmp:
512 case Instruction::Store:
521 case Instruction::Select:
528 case Instruction::Call:
529 case Instruction::GetElementPtr:
530 case Instruction::PHI:
531 case Instruction::Switch:
543bool VPInstruction::canGenerateScalarForFirstLane()
const {
549 case Instruction::Freeze:
550 case Instruction::ICmp:
551 case Instruction::PHI:
552 case Instruction::Select:
578 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
580 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
588 IRBuilderBase &Builder = State.
Builder;
607 case Instruction::ExtractElement: {
610 unsigned IdxToExtract =
618 case Instruction::Freeze: {
622 case Instruction::FCmp:
623 case Instruction::ICmp: {
629 case Instruction::PHI: {
632 case Instruction::Select: {
657 {VIVElem0, ScalarTC},
nullptr, Name);
673 if (!V1->getType()->isVectorTy())
693 "Requested vector length should be an integer.");
700 {AVL, VFArg, State.Builder.getTrue()});
706 assert(Part != 0 &&
"Must have a positive part");
737 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
761 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
791 RecurKind RK = PhiR->getRecurrenceKind();
793 "Unexpected reduction kind");
794 assert(!PhiR->isInLoop() &&
795 "In-loop FindLastIV reduction is not supported yet");
807 for (
unsigned Part = 1; Part <
UF; ++Part)
808 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
822 RecurKind RK = PhiR->getRecurrenceKind();
824 "should be handled by ComputeFindIVResult");
830 for (
unsigned Part = 0; Part <
UF; ++Part)
831 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
833 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
838 Value *ReducedPartRdx = RdxParts[0];
839 if (PhiR->isOrdered()) {
840 ReducedPartRdx = RdxParts[
UF - 1];
843 for (
unsigned Part = 1; Part <
UF; ++Part) {
844 Value *RdxPart = RdxParts[Part];
846 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
852 Opcode = Instruction::Add;
857 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
864 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
871 return ReducedPartRdx;
879 "invalid offset to extract from");
883 assert(
Offset <= 1 &&
"invalid offset to extract from");
897 "can only generate first lane for PtrAdd");
917 Value *Res =
nullptr;
922 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
923 Value *VectorIdx = Idx == 1
925 : Builder.
CreateSub(LaneToExtract, VectorStart);
942 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
949 getRuntimeVF(State.Builder, State.Builder.getInt64Ty(), State.VF);
951 Value *Res =
nullptr;
952 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
953 Value *TrailingZeros =
955 ? Builder.CreateZExt(
956 Builder.CreateICmpEQ(State.get(
getOperand(Idx)),
958 Builder.getInt64Ty())
959 : Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(),
962 Value *Current = Builder.CreateAdd(
963 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
965 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
966 Res = Builder.CreateSelect(Cmp, Current, Res);
983 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
986 case Instruction::FNeg:
987 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
988 case Instruction::UDiv:
989 case Instruction::SDiv:
990 case Instruction::SRem:
991 case Instruction::URem:
992 case Instruction::Add:
993 case Instruction::FAdd:
994 case Instruction::Sub:
995 case Instruction::FSub:
996 case Instruction::Mul:
997 case Instruction::FMul:
998 case Instruction::FDiv:
999 case Instruction::FRem:
1000 case Instruction::Shl:
1001 case Instruction::LShr:
1002 case Instruction::AShr:
1003 case Instruction::And:
1004 case Instruction::Or:
1005 case Instruction::Xor: {
1013 RHSInfo = Ctx.getOperandInfo(RHS);
1024 return Ctx.TTI.getArithmeticInstrCost(
1025 Opcode, ResultTy, Ctx.CostKind,
1026 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1027 RHSInfo, Operands, CtxI, &Ctx.TLI);
1029 case Instruction::Freeze:
1031 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1033 case Instruction::ExtractValue:
1034 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1036 case Instruction::ICmp:
1037 case Instruction::FCmp: {
1041 return Ctx.TTI.getCmpSelInstrCost(
1043 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1044 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1060 "Should only generate a vector value or single scalar, not scalars "
1068 case Instruction::Select: {
1072 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1073 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1078 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1081 case Instruction::ExtractElement:
1091 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1095 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1096 return Ctx.TTI.getArithmeticReductionCost(
1102 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1109 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1110 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1116 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1125 unsigned Multiplier =
1130 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1137 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1143 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1144 VecTy, Ctx.CostKind, 0);
1154 "unexpected VPInstruction witht underlying value");
1162 getOpcode() == Instruction::ExtractElement ||
1173 case Instruction::PHI:
1184 assert(!State.Lane &&
"VPInstruction executing an Lane");
1187 "Set flags not supported for the provided opcode");
1190 Value *GeneratedValue = generate(State);
1193 assert(GeneratedValue &&
"generate must produce a value");
1194 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1199 !GeneratesPerFirstLaneOnly) ||
1200 State.VF.isScalar()) &&
1201 "scalar value but not only first lane defined");
1202 State.set(
this, GeneratedValue,
1203 GeneratesPerFirstLaneOnly);
1210 case Instruction::ExtractElement:
1211 case Instruction::Freeze:
1212 case Instruction::FCmp:
1213 case Instruction::ICmp:
1214 case Instruction::Select:
1215 case Instruction::PHI:
1249 case Instruction::ExtractElement:
1251 case Instruction::PHI:
1253 case Instruction::FCmp:
1254 case Instruction::ICmp:
1255 case Instruction::Select:
1256 case Instruction::Or:
1257 case Instruction::Freeze:
1297 case Instruction::FCmp:
1298 case Instruction::ICmp:
1299 case Instruction::Select:
1309#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1317 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1329 O <<
"combined load";
1332 O <<
"combined store";
1335 O <<
"active lane mask";
1338 O <<
"EXPLICIT-VECTOR-LENGTH";
1341 O <<
"first-order splice";
1344 O <<
"branch-on-cond";
1347 O <<
"TC > VF ? TC - VF : 0";
1353 O <<
"branch-on-count";
1359 O <<
"buildstructvector";
1365 O <<
"extract-lane";
1368 O <<
"extract-last-element";
1371 O <<
"extract-penultimate-element";
1374 O <<
"compute-anyof-result";
1377 O <<
"compute-find-iv-result";
1380 O <<
"compute-reduction-result";
1395 O <<
"first-active-lane";
1398 O <<
"reduction-start-vector";
1401 O <<
"resume-for-epilogue";
1423 State.set(
this, Cast,
VPLane(0));
1434 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1435 State.set(
this,
VScale,
true);
1444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1447 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1453 O <<
"wide-iv-step ";
1457 O <<
"step-vector " << *ResultTy;
1460 O <<
"vscale " << *ResultTy;
1466 O <<
" to " << *ResultTy;
1473 PHINode *NewPhi = State.Builder.CreatePHI(
1474 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1481 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1486 State.set(
this, NewPhi,
VPLane(0));
1489#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1507 "PHINodes must be handled by VPIRPhi");
1510 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1522 "can only update exiting operands to phi nodes");
1532#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1535 O << Indent <<
"IR " << I;
1547 auto *PredVPBB = Pred->getExitingBasicBlock();
1548 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1555 if (Phi->getBasicBlockIndex(PredBB) == -1)
1556 Phi->addIncoming(V, PredBB);
1558 Phi->setIncomingValueForBlock(PredBB, V);
1563 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1568 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1569 "Number of phi operands must match number of predecessors");
1570 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1571 R->removeOperand(Position);
1574#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1594 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1599 std::get<1>(
Op)->printAsOperand(O);
1612 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1614 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1618 for (
const auto &[Kind,
Node] : Metadata)
1619 I.setMetadata(Kind,
Node);
1624 for (
const auto &[KindA, MDA] : Metadata) {
1625 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1626 if (KindA == KindB && MDA == MDB) {
1632 Metadata = std::move(MetadataIntersection);
1636 assert(State.VF.isVector() &&
"not widening");
1637 assert(Variant !=
nullptr &&
"Can't create vector function.");
1648 Arg = State.get(
I.value(),
VPLane(0));
1651 Args.push_back(Arg);
1657 CI->getOperandBundlesAsDefs(OpBundles);
1659 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1662 V->setCallingConv(Variant->getCallingConv());
1664 if (!V->getType()->isVoidTy())
1670 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1671 Variant->getFunctionType()->params(),
1675#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1678 O << Indent <<
"WIDEN-CALL ";
1690 O <<
" @" << CalledFn->
getName() <<
"(";
1696 O <<
" (using library function";
1697 if (Variant->hasName())
1698 O <<
": " << Variant->getName();
1704 assert(State.VF.isVector() &&
"not widening");
1717 Arg = State.get(
I.value(),
VPLane(0));
1723 Args.push_back(Arg);
1727 Module *M = State.Builder.GetInsertBlock()->getModule();
1731 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1736 CI->getOperandBundlesAsDefs(OpBundles);
1738 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1743 if (!V->getType()->isVoidTy())
1760 auto *V =
Op->getUnderlyingValue();
1763 Arguments.push_back(UI->getArgOperand(Idx));
1772 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1778 : Ctx.Types.inferScalarType(
Op));
1783 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1788 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1810#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1813 O << Indent <<
"WIDEN-INTRINSIC ";
1814 if (ResultTy->isVoidTy()) {
1842 Value *Mask =
nullptr;
1844 Mask = State.get(VPMask);
1847 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1851 if (Opcode == Instruction::Sub)
1852 IncAmt = Builder.CreateNeg(IncAmt);
1854 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1856 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1871 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1877 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1890 {PtrTy, IncTy, MaskTy});
1893 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1894 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1897#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1900 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1903 if (Opcode == Instruction::Sub)
1906 assert(Opcode == Instruction::Add);
1919 O << Indent <<
"WIDEN-SELECT ";
1941 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1942 State.set(
this, Sel);
1954 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1955 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1964 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1965 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1969 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1972 return Ctx.TTI.getArithmeticInstrCost(
1973 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1974 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands,
SI);
1983 Pred = Cmp->getPredicate();
1984 return Ctx.TTI.getCmpSelInstrCost(
1985 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1986 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1989VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2002 case OperationType::OverflowingBinOp:
2003 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2004 Opcode == Instruction::Mul ||
2005 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2006 case OperationType::Trunc:
2007 return Opcode == Instruction::Trunc;
2008 case OperationType::DisjointOp:
2009 return Opcode == Instruction::Or;
2010 case OperationType::PossiblyExactOp:
2011 return Opcode == Instruction::AShr;
2012 case OperationType::GEPOp:
2013 return Opcode == Instruction::GetElementPtr ||
2016 case OperationType::FPMathOp:
2017 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2018 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2019 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2020 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2021 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2025 case OperationType::NonNegOp:
2026 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2027 case OperationType::Cmp:
2028 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2029 case OperationType::Other:
2036#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2039 case OperationType::Cmp:
2042 case OperationType::DisjointOp:
2046 case OperationType::PossiblyExactOp:
2050 case OperationType::OverflowingBinOp:
2056 case OperationType::Trunc:
2062 case OperationType::FPMathOp:
2065 case OperationType::GEPOp:
2068 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2073 case OperationType::NonNegOp:
2077 case OperationType::Other:
2085 auto &Builder = State.Builder;
2087 case Instruction::Call:
2088 case Instruction::Br:
2089 case Instruction::PHI:
2090 case Instruction::GetElementPtr:
2091 case Instruction::Select:
2093 case Instruction::UDiv:
2094 case Instruction::SDiv:
2095 case Instruction::SRem:
2096 case Instruction::URem:
2097 case Instruction::Add:
2098 case Instruction::FAdd:
2099 case Instruction::Sub:
2100 case Instruction::FSub:
2101 case Instruction::FNeg:
2102 case Instruction::Mul:
2103 case Instruction::FMul:
2104 case Instruction::FDiv:
2105 case Instruction::FRem:
2106 case Instruction::Shl:
2107 case Instruction::LShr:
2108 case Instruction::AShr:
2109 case Instruction::And:
2110 case Instruction::Or:
2111 case Instruction::Xor: {
2115 Ops.push_back(State.get(VPOp));
2117 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2128 case Instruction::ExtractValue: {
2132 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2133 State.set(
this, Extract);
2136 case Instruction::Freeze: {
2138 Value *Freeze = Builder.CreateFreeze(
Op);
2139 State.set(
this, Freeze);
2142 case Instruction::ICmp:
2143 case Instruction::FCmp: {
2145 bool FCmp = Opcode == Instruction::FCmp;
2151 C = Builder.CreateFCmpFMF(
2173 State.get(
this)->getType() &&
2174 "inferred type and type from generated instructions do not match");
2181 case Instruction::UDiv:
2182 case Instruction::SDiv:
2183 case Instruction::SRem:
2184 case Instruction::URem:
2189 case Instruction::FNeg:
2190 case Instruction::Add:
2191 case Instruction::FAdd:
2192 case Instruction::Sub:
2193 case Instruction::FSub:
2194 case Instruction::Mul:
2195 case Instruction::FMul:
2196 case Instruction::FDiv:
2197 case Instruction::FRem:
2198 case Instruction::Shl:
2199 case Instruction::LShr:
2200 case Instruction::AShr:
2201 case Instruction::And:
2202 case Instruction::Or:
2203 case Instruction::Xor:
2204 case Instruction::Freeze:
2205 case Instruction::ExtractValue:
2206 case Instruction::ICmp:
2207 case Instruction::FCmp:
2214#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2217 O << Indent <<
"WIDEN ";
2226 auto &Builder = State.Builder;
2228 assert(State.VF.isVector() &&
"Not vectorizing?");
2233 State.set(
this, Cast);
2257 if (WidenMemoryRecipe ==
nullptr)
2259 if (!WidenMemoryRecipe->isConsecutive())
2261 if (WidenMemoryRecipe->isReverse())
2263 if (WidenMemoryRecipe->isMasked())
2271 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2274 CCH = ComputeCCH(StoreRecipe);
2277 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2278 Opcode == Instruction::FPExt) {
2289 return Ctx.TTI.getCastInstrCost(
2290 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2294#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2297 O << Indent <<
"WIDEN-CAST ";
2308 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2315 : ConstantFP::get(Ty,
C);
2318#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2323 O <<
" = WIDEN-INDUCTION ";
2327 O <<
" (truncated to " << *TI->getType() <<
")";
2340 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2344#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2349 O <<
" = DERIVED-IV ";
2373 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2380 AddOp = Instruction::Add;
2381 MulOp = Instruction::Mul;
2383 AddOp = InductionOpcode;
2384 MulOp = Instruction::FMul;
2393 Type *VecIVTy =
nullptr;
2394 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2395 if (!FirstLaneOnly && State.VF.isScalable()) {
2399 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2400 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2403 unsigned StartLane = 0;
2404 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2406 StartLane = State.Lane->getKnownLane();
2407 EndLane = StartLane + 1;
2411 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2416 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2419 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2422 if (!FirstLaneOnly && State.VF.isScalable()) {
2423 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2424 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2426 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2427 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2428 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2429 State.set(
this,
Add);
2436 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2438 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2439 Value *StartIdx = Builder.CreateBinOp(
2444 "Expected StartIdx to be folded to a constant when VF is not "
2446 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2447 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2457 O <<
" = SCALAR-STEPS ";
2463 assert(State.VF.isVector() &&
"not widening");
2470 if (areAllOperandsInvariant()) {
2490 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2491 State.set(
this,
Splat);
2497 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2504 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2511 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2512 "NewGEP is not a pointer vector");
2513 State.set(
this, NewGEP);
2517#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2520 O << Indent <<
"WIDEN-GEP ";
2521 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2523 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2527 O <<
" = getelementptr";
2537 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2538 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2539 ?
DL.getIndexType(Builder.getPtrTy(0))
2540 : Builder.getInt32Ty();
2544 auto &Builder = State.Builder;
2546 bool IsUnitStride = Stride == 1 || Stride == -1;
2548 IsUnitStride, CurrentPart, Builder);
2552 if (IndexTy != RunTimeVF->
getType())
2553 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2555 Value *NumElt = Builder.CreateMul(
2556 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2558 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2560 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2564 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2567 State.set(
this, ResultPtr,
true);
2570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2575 O <<
" = vector-end-pointer";
2582 auto &Builder = State.Builder;
2585 true, CurrentPart, Builder);
2592 State.set(
this, ResultPtr,
true);
2595#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2600 O <<
" = vector-pointer ";
2611 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2613 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2616 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2620#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2623 O << Indent <<
"BLEND ";
2645 assert(!State.Lane &&
"Reduction being replicated.");
2649 "In-loop AnyOf reductions aren't currently supported");
2655 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2660 if (State.VF.isVector())
2661 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2663 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2669 if (State.VF.isVector())
2673 NewRed = State.Builder.CreateBinOp(
2675 PrevInChain, NewVecOp);
2676 PrevInChain = NewRed;
2677 NextInChain = NewRed;
2682 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2684 NextInChain = State.Builder.CreateBinOp(
2686 PrevInChain, NewRed);
2688 State.set(
this, NextInChain,
true);
2692 assert(!State.Lane &&
"Reduction being replicated.");
2694 auto &Builder = State.Builder;
2706 Mask = State.get(CondOp);
2708 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2718 NewRed = Builder.CreateBinOp(
2722 State.set(
this, NewRed,
true);
2728 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2732 std::optional<FastMathFlags> OptionalFMF =
2739 "Any-of reduction not implemented in VPlan-based cost model currently.");
2745 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2750 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2755 ExpressionTypes ExpressionType,
2759 ExpressionRecipes.begin(), ExpressionRecipes.end())
2762 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2766 "expression cannot contain recipes with side-effects");
2770 for (
auto *R : ExpressionRecipes)
2771 ExpressionRecipesAsSetOfUsers.
insert(R);
2777 if (R != ExpressionRecipes.back() &&
2778 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2779 return !ExpressionRecipesAsSetOfUsers.contains(U);
2784 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2786 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2791 R->removeFromParent();
2798 for (
auto *R : ExpressionRecipes) {
2799 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2800 auto *
Def =
Op->getDefiningRecipe();
2801 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2804 LiveInPlaceholders.push_back(
new VPValue());
2805 R->setOperand(Idx, LiveInPlaceholders.back());
2811 for (
auto *R : ExpressionRecipes)
2812 R->insertBefore(
this);
2815 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2818 ExpressionRecipes.clear();
2823 Type *RedTy = Ctx.Types.inferScalarType(
this);
2827 "VPExpressionRecipe only supports integer types currently.");
2830 switch (ExpressionType) {
2831 case ExpressionTypes::ExtendedReduction: {
2832 return Ctx.TTI.getExtendedReductionCost(
2836 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2838 case ExpressionTypes::MulAccReduction:
2839 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2842 case ExpressionTypes::ExtNegatedMulAccReduction:
2843 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2844 Opcode = Instruction::Sub;
2846 case ExpressionTypes::ExtMulAccReduction: {
2847 return Ctx.TTI.getMulAccReductionCost(
2850 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2858 return R->mayReadFromMemory() || R->mayWriteToMemory();
2866 "expression cannot contain recipes with side-effects");
2870#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2874 O << Indent <<
"EXPRESSION ";
2880 switch (ExpressionType) {
2881 case ExpressionTypes::ExtendedReduction: {
2890 << *Ext0->getResultType();
2891 if (Red->isConditional()) {
2898 case ExpressionTypes::ExtNegatedMulAccReduction: {
2910 << *Ext0->getResultType() <<
"), (";
2914 << *Ext1->getResultType() <<
")";
2915 if (Red->isConditional()) {
2922 case ExpressionTypes::MulAccReduction:
2923 case ExpressionTypes::ExtMulAccReduction: {
2931 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2933 : ExpressionRecipes[0]);
2941 << *Ext0->getResultType() <<
"), (";
2949 << *Ext1->getResultType() <<
")";
2951 if (Red->isConditional()) {
2963 O << Indent <<
"REDUCE ";
2983 O << Indent <<
"REDUCE ";
3011 assert((!Instr->getType()->isAggregateType() ||
3013 "Expected vectorizable or non-aggregate type.");
3016 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3020 Cloned->
setName(Instr->getName() +
".cloned");
3021 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3025 if (ResultTy != Cloned->
getType())
3036 State.setDebugLocFrom(
DL);
3041 auto InputLane = Lane;
3045 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3049 State.Builder.Insert(Cloned);
3051 State.set(RepRecipe, Cloned, Lane);
3055 State.AC->registerAssumption(
II);
3061 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3062 "Expected a recipe is either within a region or all of its operands "
3063 "are defined outside the vectorized region.");
3070 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3071 "must have already been unrolled");
3077 "uniform recipe shouldn't be predicated");
3078 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3083 State.Lane->isFirstLane()
3086 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3104 auto *PtrR =
Ptr->getDefiningRecipe();
3107 Instruction::GetElementPtr) ||
3114 if (!Opd->isDefinedOutsideLoopRegions() &&
3128 while (!WorkList.
empty()) {
3130 if (!Cur || !Seen.
insert(Cur).second)
3133 for (
VPUser *U : Cur->users()) {
3135 if (InterleaveR->getAddr() == Cur)
3138 if (RepR->getOpcode() == Instruction::Load &&
3139 RepR->getOperand(0) == Cur)
3141 if (RepR->getOpcode() == Instruction::Store &&
3142 RepR->getOperand(1) == Cur)
3146 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3161 Ctx.SkipCostComputation.insert(UI);
3164 case Instruction::GetElementPtr:
3170 case Instruction::Call: {
3176 for (
const VPValue *ArgOp : ArgOps)
3177 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3179 if (CalledFn->isIntrinsic())
3182 switch (CalledFn->getIntrinsicID()) {
3183 case Intrinsic::assume:
3184 case Intrinsic::lifetime_end:
3185 case Intrinsic::lifetime_start:
3186 case Intrinsic::sideeffect:
3187 case Intrinsic::pseudoprobe:
3188 case Intrinsic::experimental_noalias_scope_decl: {
3191 "scalarizing intrinsic should be free");
3198 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3200 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3202 if (CalledFn->isIntrinsic())
3203 ScalarCallCost = std::min(
3207 return ScalarCallCost;
3214 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3216 case Instruction::Add:
3217 case Instruction::Sub:
3218 case Instruction::FAdd:
3219 case Instruction::FSub:
3220 case Instruction::Mul:
3221 case Instruction::FMul:
3222 case Instruction::FDiv:
3223 case Instruction::FRem:
3224 case Instruction::Shl:
3225 case Instruction::LShr:
3226 case Instruction::AShr:
3227 case Instruction::And:
3228 case Instruction::Or:
3229 case Instruction::Xor:
3230 case Instruction::ICmp:
3231 case Instruction::FCmp:
3235 case Instruction::SDiv:
3236 case Instruction::UDiv:
3237 case Instruction::SRem:
3238 case Instruction::URem: {
3245 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3254 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3261 case Instruction::Load:
3262 case Instruction::Store: {
3272 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3279 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3280 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3285 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3290 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3291 PtrTy, &Ctx.SE,
nullptr, Ctx.CostKind);
3301 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3303 bool EfficientVectorLoadStore =
3304 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3305 if (!(IsLoad && !PreferVectorizedAddressing) &&
3306 !(!IsLoad && EfficientVectorLoadStore))
3309 if (!EfficientVectorLoadStore)
3310 ResultTy = Ctx.Types.inferScalarType(
this);
3314 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3318 return Ctx.getLegacyCost(UI, VF);
3321#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3324 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3333 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3351 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3354 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3358 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3360 "Expected to replace unreachable terminator with conditional branch.");
3362 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3363 CondBr->setSuccessor(0,
nullptr);
3364 CurrentTerminator->eraseFromParent();
3376 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3381 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3383 "operand must be VPReplicateRecipe");
3394 "Packed operands must generate an insertelement or insertvalue");
3402 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3405 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3406 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3408 if (State.hasVectorValue(
this))
3409 State.reset(
this, VPhi);
3411 State.set(
this, VPhi);
3419 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3420 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3423 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3424 if (State.hasScalarValue(
this, *State.Lane))
3425 State.reset(
this, Phi, *State.Lane);
3427 State.set(
this, Phi, *State.Lane);
3430 State.reset(
getOperand(0), Phi, *State.Lane);
3434#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3437 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3449 ->getAddressSpace();
3452 : Instruction::Store;
3459 "Inconsecutive memory access should not have the order.");
3469 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3471 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty,
Ptr,
IsMasked, Alignment,
3478 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3483 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3489 return Cost += Ctx.TTI.getShuffleCost(
3500 auto &Builder = State.Builder;
3501 Value *Mask =
nullptr;
3502 if (
auto *VPMask =
getMask()) {
3505 Mask = State.get(VPMask);
3507 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3513 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask,
nullptr,
3514 "wide.masked.gather");
3517 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3520 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment,
"wide.load");
3524 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3525 State.set(
this, NewLI);
3528#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3531 O << Indent <<
"WIDEN ";
3543 Value *AllTrueMask =
3544 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3545 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3546 {Operand, AllTrueMask, EVL},
nullptr, Name);
3555 auto &Builder = State.Builder;
3559 Value *Mask =
nullptr;
3561 Mask = State.get(VPMask);
3565 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3570 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3571 nullptr,
"wide.masked.gather");
3573 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3574 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3582 State.set(
this, Res);
3599 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3603 return Cost + Ctx.TTI.getShuffleCost(
3608#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3611 O << Indent <<
"WIDEN ";
3623 auto &Builder = State.Builder;
3625 Value *Mask =
nullptr;
3626 if (
auto *VPMask =
getMask()) {
3629 Mask = State.get(VPMask);
3631 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3634 Value *StoredVal = State.get(StoredVPValue);
3638 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3645 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3647 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3649 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3653#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3656 O << Indent <<
"WIDEN store ";
3666 auto &Builder = State.Builder;
3669 Value *StoredVal = State.get(StoredValue);
3673 Value *Mask =
nullptr;
3675 Mask = State.get(VPMask);
3679 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3682 if (CreateScatter) {
3684 Intrinsic::vp_scatter,
3685 {StoredVal, Addr, Mask, EVL});
3688 Intrinsic::vp_store,
3689 {StoredVal, Addr, Mask, EVL});
3710 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3714 return Cost + Ctx.TTI.getShuffleCost(
3719#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3722 O << Indent <<
"WIDEN vp.store ";
3730 auto VF = DstVTy->getElementCount();
3732 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3733 Type *SrcElemTy = SrcVecTy->getElementType();
3734 Type *DstElemTy = DstVTy->getElementType();
3735 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3736 "Vector elements must have same size");
3740 return Builder.CreateBitOrPointerCast(V, DstVTy);
3747 "Only one type should be a pointer type");
3749 "Only one type should be a floating point type");
3753 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3754 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3760 const Twine &Name) {
3761 unsigned Factor = Vals.
size();
3762 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3766 for (
Value *Val : Vals)
3767 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3772 if (VecTy->isScalableTy()) {
3773 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3774 return Builder.CreateVectorInterleave(Vals, Name);
3781 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3782 return Builder.CreateShuffleVector(
3815 assert(!State.Lane &&
"Interleave group being replicated.");
3817 "Masking gaps for scalable vectors is not yet supported.");
3823 unsigned InterleaveFactor = Group->
getFactor();
3830 auto CreateGroupMask = [&BlockInMask, &State,
3831 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3832 if (State.VF.isScalable()) {
3833 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3834 assert(InterleaveFactor <= 8 &&
3835 "Unsupported deinterleave factor for scalable vectors");
3836 auto *ResBlockInMask = State.get(BlockInMask);
3844 Value *ResBlockInMask = State.get(BlockInMask);
3845 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3848 "interleaved.mask");
3849 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3850 ShuffledMask, MaskForGaps)
3854 const DataLayout &DL = Instr->getDataLayout();
3857 Value *MaskForGaps =
nullptr;
3861 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3865 if (BlockInMask || MaskForGaps) {
3866 Value *GroupMask = CreateGroupMask(MaskForGaps);
3868 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3870 PoisonVec,
"wide.masked.vec");
3872 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3879 if (VecTy->isScalableTy()) {
3882 assert(InterleaveFactor <= 8 &&
3883 "Unsupported deinterleave factor for scalable vectors");
3884 NewLoad = State.Builder.CreateIntrinsic(
3887 nullptr,
"strided.vec");
3890 auto CreateStridedVector = [&InterleaveFactor, &State,
3891 &NewLoad](
unsigned Index) ->
Value * {
3892 assert(Index < InterleaveFactor &&
"Illegal group index");
3893 if (State.VF.isScalable())
3894 return State.Builder.CreateExtractValue(NewLoad, Index);
3900 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3904 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3911 Value *StridedVec = CreateStridedVector(
I);
3914 if (Member->getType() != ScalarTy) {
3921 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3923 State.set(VPDefs[J], StridedVec);
3933 Value *MaskForGaps =
3936 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3940 unsigned StoredIdx = 0;
3941 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3943 "Fail to get a member from an interleaved store group");
3953 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3957 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3961 if (StoredVec->
getType() != SubVT)
3970 if (BlockInMask || MaskForGaps) {
3971 Value *GroupMask = CreateGroupMask(MaskForGaps);
3972 NewStoreInstr = State.Builder.CreateMaskedStore(
3973 IVec, ResAddr, Group->
getAlign(), GroupMask);
3976 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3983#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3987 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
3988 IG->getInsertPos()->printAsOperand(O,
false);
3998 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
3999 if (!IG->getMember(i))
4002 O <<
"\n" << Indent <<
" store ";
4004 O <<
" to index " << i;
4006 O <<
"\n" << Indent <<
" ";
4008 O <<
" = load from index " << i;
4016 assert(!State.Lane &&
"Interleave group being replicated.");
4017 assert(State.VF.isScalable() &&
4018 "Only support scalable VF for EVL tail-folding.");
4020 "Masking gaps for scalable vectors is not yet supported.");
4026 unsigned InterleaveFactor = Group->
getFactor();
4027 assert(InterleaveFactor <= 8 &&
4028 "Unsupported deinterleave/interleave factor for scalable vectors");
4035 Value *InterleaveEVL = State.Builder.CreateMul(
4036 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4040 Value *GroupMask =
nullptr;
4046 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4051 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4052 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4063 NewLoad = State.Builder.CreateIntrinsic(
4066 nullptr,
"strided.vec");
4068 const DataLayout &DL = Instr->getDataLayout();
4069 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4075 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4077 if (Member->getType() != ScalarTy) {
4095 const DataLayout &DL = Instr->getDataLayout();
4096 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4104 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4106 if (StoredVec->
getType() != SubVT)
4116 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4117 {IVec, ResAddr, GroupMask, InterleaveEVL});
4126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4130 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4131 IG->getInsertPos()->printAsOperand(O,
false);
4142 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4143 if (!IG->getMember(i))
4146 O <<
"\n" << Indent <<
" vp.store ";
4148 O <<
" to index " << i;
4150 O <<
"\n" << Indent <<
" ";
4152 O <<
" = vp.load from index " << i;
4163 unsigned InsertPosIdx = 0;
4164 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4165 if (
auto *Member = IG->getMember(Idx)) {
4166 if (Member == InsertPos)
4170 Type *ValTy = Ctx.Types.inferScalarType(
4176 unsigned InterleaveFactor = IG->getFactor();
4181 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4182 if (IG->getMember(IF))
4187 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4188 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4190 if (!IG->isReverse())
4193 return Cost + IG->getNumMembers() *
4195 VectorTy, VectorTy, {}, Ctx.CostKind,
4199#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4202 O << Indent <<
"EMIT ";
4204 O <<
" = CANONICAL-INDUCTION ";
4210 return IsScalarAfterVectorization &&
4214#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4218 "unexpected number of operands");
4219 O << Indent <<
"EMIT ";
4221 O <<
" = WIDEN-POINTER-INDUCTION ";
4237 O << Indent <<
"EMIT ";
4239 O <<
" = EXPAND SCEV " << *Expr;
4246 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4250 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4253 VStep = Builder.CreateVectorSplat(VF, VStep);
4255 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4257 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4258 State.set(
this, CanonicalVectorIV);
4261#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4264 O << Indent <<
"EMIT ";
4266 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4272 auto &Builder = State.Builder;
4276 Type *VecTy = State.VF.isScalar()
4277 ? VectorInit->getType()
4281 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4282 if (State.VF.isVector()) {
4284 auto *One = ConstantInt::get(IdxTy, 1);
4287 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4288 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4289 VectorInit = Builder.CreateInsertElement(
4295 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4296 Phi->addIncoming(VectorInit, VectorPH);
4297 State.set(
this, Phi);
4304 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4309#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4312 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4329 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4330 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4331 Value *StartV = State.get(StartVPV, ScalarPHI);
4335 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4336 "recipe must be in the vector loop header");
4339 State.set(
this, Phi, IsInLoop);
4341 Phi->addIncoming(StartV, VectorPH);
4344#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4347 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4352 if (VFScaleFactor != 1)
4353 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4360 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4361 State.set(
this, VecPhi);
4364#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4367 O << Indent <<
"WIDEN-PHI ";
4379 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4382 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4383 Phi->addIncoming(StartMask, VectorPH);
4384 State.set(
this, Phi);
4387#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4390 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4398#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4401 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static bool shouldUseAddressAccessSCEV(const VPValue *Ptr)
Returns true if Ptr is a pointer computation for which the legacy cost model computes a SCEV expressi...
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Vector takeVector()
Clear the SetVector and return the underlying vector.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.