46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
55 case VPInterleaveEVLSC:
58 case VPWidenStoreEVLSC:
66 ->getCalledScalarFunction()
68 case VPWidenIntrinsicSC:
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
78 case VPReductionEVLSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
89 case VPWidenSelectSC: {
93 assert((!
I || !
I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
106 case VPInstructionSC:
108 case VPWidenLoadEVLSC:
113 ->mayReadFromMemory();
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
128 case VPReductionEVLSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
134 case VPWidenIntOrFpInductionSC:
137 case VPWidenSelectSC: {
141 assert((!
I || !
I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
160 case VPInstructionSC:
162 case VPWidenCallSC: {
166 case VPWidenIntrinsicSC:
169 case VPReductionEVLSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
176 case VPWidenIntOrFpInductionSC:
178 case VPWidenPointerInductionSC:
180 case VPWidenSelectSC: {
184 assert((!
I || !
I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
188 case VPInterleaveEVLSC:
191 case VPWidenLoadEVLSC:
193 case VPWidenStoreEVLSC:
198 "mayHaveSideffects result for ingredient differs from this "
201 case VPReplicateSC: {
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
211 assert(!Parent &&
"Recipe already in some VPBasicBlock");
213 "Insertion position not in any VPBasicBlock");
219 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
227 "Insertion position not in any VPBasicBlock");
262 UI = IG->getInsertPos();
264 UI = &WidenMem->getIngredient();
267 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
277 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
301 std::optional<unsigned> Opcode;
308 OpR =
Op->getDefiningRecipe();
311 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
334 Opcode =
Widen->getOpcode();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
338 :
Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
340 :
Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
344 if (!ExtBR &&
Widen->getOperand(1)->isLiveIn()) {
347 InputTypeB = InputTypeA;
354 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
355 ExtAType = GetExtendKind(OpR);
359 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
360 ExtAType = GetExtendKind(RedPhiOp1R);
366 return Reduction->computeCost(VF, Ctx);
368 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
369 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
370 PhiType, VF, ExtAType, ExtBType,
371 Opcode, Ctx.CostKind);
375 auto &Builder = State.Builder;
378 "Unhandled partial reduction opcode");
382 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
387 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
388 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
393#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396 O << Indent <<
"PARTIAL-REDUCE ";
404 assert(OpType == Other.OpType &&
"OpType must match");
406 case OperationType::OverflowingBinOp:
407 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
408 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
410 case OperationType::Trunc:
414 case OperationType::DisjointOp:
417 case OperationType::PossiblyExactOp:
418 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
420 case OperationType::GEPOp:
423 case OperationType::FPMathOp:
424 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
425 FMFs.NoInfs &= Other.FMFs.NoInfs;
427 case OperationType::NonNegOp:
430 case OperationType::Cmp:
433 case OperationType::Other:
440 assert(OpType == OperationType::FPMathOp &&
441 "recipe doesn't have fast math flags");
453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
457template <
unsigned PartOpIdx>
460 if (U.getNumOperands() == PartOpIdx + 1)
461 return U.getOperand(PartOpIdx);
465template <
unsigned PartOpIdx>
484 "Set flags not supported for the provided opcode");
485 assert((getNumOperandsForOpcode(Opcode) == -1u ||
487 "number of operands does not match opcode");
491unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
502 case Instruction::Alloca:
503 case Instruction::ExtractValue:
504 case Instruction::Freeze:
505 case Instruction::Load:
518 case Instruction::ICmp:
519 case Instruction::FCmp:
520 case Instruction::Store:
529 case Instruction::Select:
536 case Instruction::Call:
537 case Instruction::GetElementPtr:
538 case Instruction::PHI:
539 case Instruction::Switch:
551bool VPInstruction::canGenerateScalarForFirstLane()
const {
557 case Instruction::Freeze:
558 case Instruction::ICmp:
559 case Instruction::PHI:
560 case Instruction::Select:
586 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
588 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
596 IRBuilderBase &Builder = State.
Builder;
615 case Instruction::ExtractElement: {
618 unsigned IdxToExtract =
626 case Instruction::Freeze: {
630 case Instruction::FCmp:
631 case Instruction::ICmp: {
637 case Instruction::PHI: {
640 case Instruction::Select: {
665 {VIVElem0, ScalarTC},
nullptr, Name);
681 if (!V1->getType()->isVectorTy())
701 "Requested vector length should be an integer.");
708 {AVL, VFArg, State.Builder.getTrue()});
714 assert(Part != 0 &&
"Must have a positive part");
745 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
769 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
799 RecurKind RK = PhiR->getRecurrenceKind();
801 "Unexpected reduction kind");
802 assert(!PhiR->isInLoop() &&
803 "In-loop FindLastIV reduction is not supported yet");
815 for (
unsigned Part = 1; Part <
UF; ++Part)
816 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
830 RecurKind RK = PhiR->getRecurrenceKind();
832 "should be handled by ComputeFindIVResult");
838 for (
unsigned Part = 0; Part <
UF; ++Part)
839 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
841 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
846 Value *ReducedPartRdx = RdxParts[0];
847 if (PhiR->isOrdered()) {
848 ReducedPartRdx = RdxParts[
UF - 1];
851 for (
unsigned Part = 1; Part <
UF; ++Part) {
852 Value *RdxPart = RdxParts[Part];
854 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
860 Opcode = Instruction::Add;
865 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
872 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
879 return ReducedPartRdx;
887 "invalid offset to extract from");
891 assert(
Offset <= 1 &&
"invalid offset to extract from");
905 "can only generate first lane for PtrAdd");
925 Value *Res =
nullptr;
930 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
931 Value *VectorIdx = Idx == 1
933 : Builder.
CreateSub(LaneToExtract, VectorStart);
936 : Builder.CreateExtractElement(
939 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
940 Res = Builder.CreateSelect(Cmp, Ext, Res);
959 Value *Res =
nullptr;
960 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
961 Value *TrailingZeros =
991 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
994 case Instruction::FNeg:
995 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
996 case Instruction::UDiv:
997 case Instruction::SDiv:
998 case Instruction::SRem:
999 case Instruction::URem:
1000 case Instruction::Add:
1001 case Instruction::FAdd:
1002 case Instruction::Sub:
1003 case Instruction::FSub:
1004 case Instruction::Mul:
1005 case Instruction::FMul:
1006 case Instruction::FDiv:
1007 case Instruction::FRem:
1008 case Instruction::Shl:
1009 case Instruction::LShr:
1010 case Instruction::AShr:
1011 case Instruction::And:
1012 case Instruction::Or:
1013 case Instruction::Xor: {
1021 RHSInfo = Ctx.getOperandInfo(RHS);
1032 return Ctx.TTI.getArithmeticInstrCost(
1033 Opcode, ResultTy, Ctx.CostKind,
1034 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1035 RHSInfo, Operands, CtxI, &Ctx.TLI);
1037 case Instruction::Freeze:
1039 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1041 case Instruction::ExtractValue:
1042 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1044 case Instruction::ICmp:
1045 case Instruction::FCmp: {
1049 return Ctx.TTI.getCmpSelInstrCost(
1051 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1052 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1068 "Should only generate a vector value or single scalar, not scalars "
1076 case Instruction::Select: {
1080 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1081 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1086 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1089 case Instruction::ExtractElement:
1099 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1103 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1104 return Ctx.TTI.getArithmeticReductionCost(
1110 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1117 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1118 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1124 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1133 unsigned Multiplier =
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1145 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1146 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1151 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1152 VecTy, Ctx.CostKind, 0);
1162 "unexpected VPInstruction witht underlying value");
1170 getOpcode() == Instruction::ExtractElement ||
1181 case Instruction::PHI:
1192 assert(!State.Lane &&
"VPInstruction executing an Lane");
1195 "Set flags not supported for the provided opcode");
1198 Value *GeneratedValue = generate(State);
1201 assert(GeneratedValue &&
"generate must produce a value");
1202 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1207 !GeneratesPerFirstLaneOnly) ||
1208 State.VF.isScalar()) &&
1209 "scalar value but not only first lane defined");
1210 State.set(
this, GeneratedValue,
1211 GeneratesPerFirstLaneOnly);
1218 case Instruction::ExtractElement:
1219 case Instruction::Freeze:
1220 case Instruction::FCmp:
1221 case Instruction::ICmp:
1222 case Instruction::Select:
1223 case Instruction::PHI:
1257 case Instruction::ExtractElement:
1259 case Instruction::PHI:
1261 case Instruction::FCmp:
1262 case Instruction::ICmp:
1263 case Instruction::Select:
1264 case Instruction::Or:
1265 case Instruction::Freeze:
1305 case Instruction::FCmp:
1306 case Instruction::ICmp:
1307 case Instruction::Select:
1317#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1325 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1337 O <<
"combined load";
1340 O <<
"combined store";
1343 O <<
"active lane mask";
1346 O <<
"EXPLICIT-VECTOR-LENGTH";
1349 O <<
"first-order splice";
1352 O <<
"branch-on-cond";
1355 O <<
"TC > VF ? TC - VF : 0";
1361 O <<
"branch-on-count";
1367 O <<
"buildstructvector";
1373 O <<
"extract-lane";
1376 O <<
"extract-last-element";
1379 O <<
"extract-penultimate-element";
1382 O <<
"compute-anyof-result";
1385 O <<
"compute-find-iv-result";
1388 O <<
"compute-reduction-result";
1403 O <<
"first-active-lane";
1406 O <<
"reduction-start-vector";
1409 O <<
"resume-for-epilogue";
1431 State.set(
this, Cast,
VPLane(0));
1442 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1443 State.set(
this,
VScale,
true);
1452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1455 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1461 O <<
"wide-iv-step ";
1465 O <<
"step-vector " << *ResultTy;
1468 O <<
"vscale " << *ResultTy;
1474 O <<
" to " << *ResultTy;
1481 PHINode *NewPhi = State.Builder.CreatePHI(
1482 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1489 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1494 State.set(
this, NewPhi,
VPLane(0));
1497#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1500 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1515 "PHINodes must be handled by VPIRPhi");
1518 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1530 "can only update exiting operands to phi nodes");
1540#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1543 O << Indent <<
"IR " << I;
1555 auto *PredVPBB = Pred->getExitingBasicBlock();
1556 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1563 if (Phi->getBasicBlockIndex(PredBB) == -1)
1564 Phi->addIncoming(V, PredBB);
1566 Phi->setIncomingValueForBlock(PredBB, V);
1571 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1576 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1577 "Number of phi operands must match number of predecessors");
1578 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1579 R->removeOperand(Position);
1582#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1596#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1602 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1607 std::get<1>(
Op)->printAsOperand(O);
1620 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1622 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1626 for (
const auto &[Kind,
Node] : Metadata)
1627 I.setMetadata(Kind,
Node);
1632 for (
const auto &[KindA, MDA] : Metadata) {
1633 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1634 if (KindA == KindB && MDA == MDB) {
1640 Metadata = std::move(MetadataIntersection);
1644 assert(State.VF.isVector() &&
"not widening");
1645 assert(Variant !=
nullptr &&
"Can't create vector function.");
1656 Arg = State.get(
I.value(),
VPLane(0));
1659 Args.push_back(Arg);
1665 CI->getOperandBundlesAsDefs(OpBundles);
1667 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1670 V->setCallingConv(Variant->getCallingConv());
1672 if (!V->getType()->isVoidTy())
1678 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1679 Variant->getFunctionType()->params(),
1683#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1686 O << Indent <<
"WIDEN-CALL ";
1698 O <<
" @" << CalledFn->
getName() <<
"(";
1704 O <<
" (using library function";
1705 if (Variant->hasName())
1706 O <<
": " << Variant->getName();
1712 assert(State.VF.isVector() &&
"not widening");
1725 Arg = State.get(
I.value(),
VPLane(0));
1731 Args.push_back(Arg);
1735 Module *M = State.Builder.GetInsertBlock()->getModule();
1739 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1744 CI->getOperandBundlesAsDefs(OpBundles);
1746 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1751 if (!V->getType()->isVoidTy())
1768 auto *V =
Op->getUnderlyingValue();
1771 Arguments.push_back(UI->getArgOperand(Idx));
1780 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1786 : Ctx.Types.inferScalarType(
Op));
1791 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1796 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1818#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1821 O << Indent <<
"WIDEN-INTRINSIC ";
1822 if (ResultTy->isVoidTy()) {
1850 Value *Mask =
nullptr;
1852 Mask = State.get(VPMask);
1855 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1859 if (Opcode == Instruction::Sub)
1860 IncAmt = Builder.CreateNeg(IncAmt);
1862 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1864 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1879 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1885 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1898 {PtrTy, IncTy, MaskTy});
1901 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1902 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1905#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1908 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1911 if (Opcode == Instruction::Sub)
1914 assert(Opcode == Instruction::Add);
1927 O << Indent <<
"WIDEN-SELECT ";
1949 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1950 State.set(
this, Sel);
1962 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1963 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1972 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1973 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1977 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1980 return Ctx.TTI.getArithmeticInstrCost(
1981 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1982 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands,
SI);
1991 Pred = Cmp->getPredicate();
1992 return Ctx.TTI.getCmpSelInstrCost(
1993 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1994 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1997VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2010 case OperationType::OverflowingBinOp:
2011 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2012 Opcode == Instruction::Mul ||
2013 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2014 case OperationType::Trunc:
2015 return Opcode == Instruction::Trunc;
2016 case OperationType::DisjointOp:
2017 return Opcode == Instruction::Or;
2018 case OperationType::PossiblyExactOp:
2019 return Opcode == Instruction::AShr;
2020 case OperationType::GEPOp:
2021 return Opcode == Instruction::GetElementPtr ||
2024 case OperationType::FPMathOp:
2025 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2026 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2027 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2028 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2029 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2033 case OperationType::NonNegOp:
2034 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2035 case OperationType::Cmp:
2036 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2037 case OperationType::Other:
2044#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2047 case OperationType::Cmp:
2050 case OperationType::DisjointOp:
2054 case OperationType::PossiblyExactOp:
2058 case OperationType::OverflowingBinOp:
2064 case OperationType::Trunc:
2070 case OperationType::FPMathOp:
2073 case OperationType::GEPOp:
2076 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2081 case OperationType::NonNegOp:
2085 case OperationType::Other:
2093 auto &Builder = State.Builder;
2095 case Instruction::Call:
2096 case Instruction::Br:
2097 case Instruction::PHI:
2098 case Instruction::GetElementPtr:
2099 case Instruction::Select:
2101 case Instruction::UDiv:
2102 case Instruction::SDiv:
2103 case Instruction::SRem:
2104 case Instruction::URem:
2105 case Instruction::Add:
2106 case Instruction::FAdd:
2107 case Instruction::Sub:
2108 case Instruction::FSub:
2109 case Instruction::FNeg:
2110 case Instruction::Mul:
2111 case Instruction::FMul:
2112 case Instruction::FDiv:
2113 case Instruction::FRem:
2114 case Instruction::Shl:
2115 case Instruction::LShr:
2116 case Instruction::AShr:
2117 case Instruction::And:
2118 case Instruction::Or:
2119 case Instruction::Xor: {
2123 Ops.push_back(State.get(VPOp));
2125 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2136 case Instruction::ExtractValue: {
2140 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2141 State.set(
this, Extract);
2144 case Instruction::Freeze: {
2146 Value *Freeze = Builder.CreateFreeze(
Op);
2147 State.set(
this, Freeze);
2150 case Instruction::ICmp:
2151 case Instruction::FCmp: {
2153 bool FCmp = Opcode == Instruction::FCmp;
2159 C = Builder.CreateFCmpFMF(
2181 State.get(
this)->getType() &&
2182 "inferred type and type from generated instructions do not match");
2189 case Instruction::UDiv:
2190 case Instruction::SDiv:
2191 case Instruction::SRem:
2192 case Instruction::URem:
2197 case Instruction::FNeg:
2198 case Instruction::Add:
2199 case Instruction::FAdd:
2200 case Instruction::Sub:
2201 case Instruction::FSub:
2202 case Instruction::Mul:
2203 case Instruction::FMul:
2204 case Instruction::FDiv:
2205 case Instruction::FRem:
2206 case Instruction::Shl:
2207 case Instruction::LShr:
2208 case Instruction::AShr:
2209 case Instruction::And:
2210 case Instruction::Or:
2211 case Instruction::Xor:
2212 case Instruction::Freeze:
2213 case Instruction::ExtractValue:
2214 case Instruction::ICmp:
2215 case Instruction::FCmp:
2222#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2225 O << Indent <<
"WIDEN ";
2234 auto &Builder = State.Builder;
2236 assert(State.VF.isVector() &&
"Not vectorizing?");
2241 State.set(
this, Cast);
2265 if (WidenMemoryRecipe ==
nullptr)
2267 if (!WidenMemoryRecipe->isConsecutive())
2269 if (WidenMemoryRecipe->isReverse())
2271 if (WidenMemoryRecipe->isMasked())
2279 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2282 CCH = ComputeCCH(StoreRecipe);
2285 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2286 Opcode == Instruction::FPExt) {
2297 return Ctx.TTI.getCastInstrCost(
2298 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2302#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2305 O << Indent <<
"WIDEN-CAST ";
2316 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2323 : ConstantFP::get(Ty,
C);
2326#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2331 O <<
" = WIDEN-INDUCTION ";
2335 O <<
" (truncated to " << *TI->getType() <<
")";
2348 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2352#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2357 O <<
" = DERIVED-IV ";
2381 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2388 AddOp = Instruction::Add;
2389 MulOp = Instruction::Mul;
2391 AddOp = InductionOpcode;
2392 MulOp = Instruction::FMul;
2401 Type *VecIVTy =
nullptr;
2402 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2403 if (!FirstLaneOnly && State.VF.isScalable()) {
2407 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2408 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2411 unsigned StartLane = 0;
2412 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2414 StartLane = State.Lane->getKnownLane();
2415 EndLane = StartLane + 1;
2419 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2424 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2427 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2430 if (!FirstLaneOnly && State.VF.isScalable()) {
2431 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2432 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2434 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2435 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2436 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2437 State.set(
this,
Add);
2444 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2446 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2447 Value *StartIdx = Builder.CreateBinOp(
2452 "Expected StartIdx to be folded to a constant when VF is not "
2454 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2455 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2460#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2465 O <<
" = SCALAR-STEPS ";
2471 assert(State.VF.isVector() &&
"not widening");
2478 if (areAllOperandsInvariant()) {
2498 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2499 State.set(
this,
Splat);
2505 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2512 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2519 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2520 "NewGEP is not a pointer vector");
2521 State.set(
this, NewGEP);
2525#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2528 O << Indent <<
"WIDEN-GEP ";
2529 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2531 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2535 O <<
" = getelementptr";
2545 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2546 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2547 ?
DL.getIndexType(Builder.getPtrTy(0))
2548 : Builder.getInt32Ty();
2552 auto &Builder = State.Builder;
2554 bool IsUnitStride = Stride == 1 || Stride == -1;
2556 IsUnitStride, CurrentPart, Builder);
2560 if (IndexTy != RunTimeVF->
getType())
2561 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2563 Value *NumElt = Builder.CreateMul(
2564 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2566 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2568 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2572 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2575 State.set(
this, ResultPtr,
true);
2578#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2583 O <<
" = vector-end-pointer";
2590 auto &Builder = State.Builder;
2593 true, CurrentPart, Builder);
2600 State.set(
this, ResultPtr,
true);
2603#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2608 O <<
" = vector-pointer ";
2619 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2621 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2624 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2628#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2631 O << Indent <<
"BLEND ";
2653 assert(!State.Lane &&
"Reduction being replicated.");
2657 "In-loop AnyOf reductions aren't currently supported");
2663 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2668 if (State.VF.isVector())
2669 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2671 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2677 if (State.VF.isVector())
2681 NewRed = State.Builder.CreateBinOp(
2683 PrevInChain, NewVecOp);
2684 PrevInChain = NewRed;
2685 NextInChain = NewRed;
2690 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2692 NextInChain = State.Builder.CreateBinOp(
2694 PrevInChain, NewRed);
2696 State.set(
this, NextInChain,
true);
2700 assert(!State.Lane &&
"Reduction being replicated.");
2702 auto &Builder = State.Builder;
2714 Mask = State.get(CondOp);
2716 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2726 NewRed = Builder.CreateBinOp(
2730 State.set(
this, NewRed,
true);
2736 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2740 std::optional<FastMathFlags> OptionalFMF =
2747 "Any-of reduction not implemented in VPlan-based cost model currently.");
2753 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2758 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2763 ExpressionTypes ExpressionType,
2766 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2767 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2771 "expression cannot contain recipes with side-effects");
2775 for (
auto *R : ExpressionRecipes)
2776 ExpressionRecipesAsSetOfUsers.
insert(R);
2782 if (R != ExpressionRecipes.back() &&
2783 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2784 return !ExpressionRecipesAsSetOfUsers.contains(U);
2789 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2791 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2796 R->removeFromParent();
2803 for (
auto *R : ExpressionRecipes) {
2804 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2805 auto *
Def =
Op->getDefiningRecipe();
2806 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2809 LiveInPlaceholders.push_back(
new VPValue());
2815 for (
auto *R : ExpressionRecipes)
2816 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2817 R->replaceUsesOfWith(LiveIn, Tmp);
2821 for (
auto *R : ExpressionRecipes)
2824 if (!R->getParent())
2825 R->insertBefore(
this);
2828 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2831 ExpressionRecipes.clear();
2836 Type *RedTy = Ctx.Types.inferScalarType(
this);
2840 "VPExpressionRecipe only supports integer types currently.");
2843 switch (ExpressionType) {
2844 case ExpressionTypes::ExtendedReduction: {
2845 return Ctx.TTI.getExtendedReductionCost(
2849 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2851 case ExpressionTypes::MulAccReduction:
2852 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2855 case ExpressionTypes::ExtNegatedMulAccReduction:
2856 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2857 Opcode = Instruction::Sub;
2859 case ExpressionTypes::ExtMulAccReduction: {
2860 return Ctx.TTI.getMulAccReductionCost(
2863 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2871 return R->mayReadFromMemory() || R->mayWriteToMemory();
2879 "expression cannot contain recipes with side-effects");
2883#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2887 O << Indent <<
"EXPRESSION ";
2893 switch (ExpressionType) {
2894 case ExpressionTypes::ExtendedReduction: {
2903 << *Ext0->getResultType();
2904 if (Red->isConditional()) {
2911 case ExpressionTypes::ExtNegatedMulAccReduction: {
2923 << *Ext0->getResultType() <<
"), (";
2927 << *Ext1->getResultType() <<
")";
2928 if (Red->isConditional()) {
2935 case ExpressionTypes::MulAccReduction:
2936 case ExpressionTypes::ExtMulAccReduction: {
2944 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2946 : ExpressionRecipes[0]);
2954 << *Ext0->getResultType() <<
"), (";
2962 << *Ext1->getResultType() <<
")";
2964 if (Red->isConditional()) {
2976 O << Indent <<
"REDUCE ";
2996 O << Indent <<
"REDUCE ";
3024 assert((!Instr->getType()->isAggregateType() ||
3026 "Expected vectorizable or non-aggregate type.");
3029 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3033 Cloned->
setName(Instr->getName() +
".cloned");
3034 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3038 if (ResultTy != Cloned->
getType())
3049 State.setDebugLocFrom(
DL);
3054 auto InputLane = Lane;
3058 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3062 State.Builder.Insert(Cloned);
3064 State.set(RepRecipe, Cloned, Lane);
3068 State.AC->registerAssumption(
II);
3074 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3075 "Expected a recipe is either within a region or all of its operands "
3076 "are defined outside the vectorized region.");
3083 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3084 "must have already been unrolled");
3090 "uniform recipe shouldn't be predicated");
3091 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3096 State.Lane->isFirstLane()
3099 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3119 Ctx.SkipCostComputation.insert(UI);
3122 case Instruction::GetElementPtr:
3128 case Instruction::Call: {
3134 for (
const VPValue *ArgOp : ArgOps)
3135 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3137 if (CalledFn->isIntrinsic())
3140 switch (CalledFn->getIntrinsicID()) {
3141 case Intrinsic::assume:
3142 case Intrinsic::lifetime_end:
3143 case Intrinsic::lifetime_start:
3144 case Intrinsic::sideeffect:
3145 case Intrinsic::pseudoprobe:
3146 case Intrinsic::experimental_noalias_scope_decl: {
3149 "scalarizing intrinsic should be free");
3156 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3158 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3160 if (CalledFn->isIntrinsic())
3161 ScalarCallCost = std::min(
3165 return ScalarCallCost;
3172 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3174 case Instruction::Add:
3175 case Instruction::Sub:
3176 case Instruction::FAdd:
3177 case Instruction::FSub:
3178 case Instruction::Mul:
3179 case Instruction::FMul:
3180 case Instruction::FDiv:
3181 case Instruction::FRem:
3182 case Instruction::Shl:
3183 case Instruction::LShr:
3184 case Instruction::AShr:
3185 case Instruction::And:
3186 case Instruction::Or:
3187 case Instruction::Xor:
3188 case Instruction::ICmp:
3189 case Instruction::FCmp:
3193 case Instruction::SDiv:
3194 case Instruction::UDiv:
3195 case Instruction::SRem:
3196 case Instruction::URem: {
3203 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3212 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3219 case Instruction::Load:
3220 case Instruction::Store: {
3222 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3223 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3224 Type *ScalarPtrTy = Ctx.Types.inferScalarType(
getOperand(IsLoad ? 0 : 1));
3229 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI);
3230 return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3231 ScalarPtrTy,
nullptr,
nullptr, Ctx.CostKind);
3239 return Ctx.getLegacyCost(UI, VF);
3242#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3245 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3254 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3272 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3275 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3279 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3281 "Expected to replace unreachable terminator with conditional branch.");
3283 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3284 CondBr->setSuccessor(0,
nullptr);
3285 CurrentTerminator->eraseFromParent();
3297 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3302 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3304 "operand must be VPReplicateRecipe");
3315 "Packed operands must generate an insertelement or insertvalue");
3323 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3326 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3327 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3329 if (State.hasVectorValue(
this))
3330 State.reset(
this, VPhi);
3332 State.set(
this, VPhi);
3340 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3341 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3344 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3345 if (State.hasScalarValue(
this, *State.Lane))
3346 State.reset(
this, Phi, *State.Lane);
3348 State.set(
this, Phi, *State.Lane);
3351 State.reset(
getOperand(0), Phi, *State.Lane);
3355#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3358 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3370 ->getAddressSpace();
3373 : Instruction::Store;
3380 "Inconsecutive memory access should not have the order.");
3390 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3392 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty,
Ptr,
IsMasked, Alignment,
3399 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3404 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3410 return Cost += Ctx.TTI.getShuffleCost(
3421 auto &Builder = State.Builder;
3422 Value *Mask =
nullptr;
3423 if (
auto *VPMask =
getMask()) {
3426 Mask = State.get(VPMask);
3428 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3434 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask,
nullptr,
3435 "wide.masked.gather");
3438 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3441 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment,
"wide.load");
3445 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3446 State.set(
this, NewLI);
3449#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3452 O << Indent <<
"WIDEN ";
3464 Value *AllTrueMask =
3465 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3466 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3467 {Operand, AllTrueMask, EVL},
nullptr, Name);
3476 auto &Builder = State.Builder;
3480 Value *Mask =
nullptr;
3482 Mask = State.get(VPMask);
3486 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3491 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3492 nullptr,
"wide.masked.gather");
3494 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3495 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3503 State.set(
this, Res);
3520 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3524 return Cost + Ctx.TTI.getShuffleCost(
3529#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3532 O << Indent <<
"WIDEN ";
3544 auto &Builder = State.Builder;
3546 Value *Mask =
nullptr;
3547 if (
auto *VPMask =
getMask()) {
3550 Mask = State.get(VPMask);
3552 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3555 Value *StoredVal = State.get(StoredVPValue);
3559 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3566 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3568 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3570 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3574#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3577 O << Indent <<
"WIDEN store ";
3587 auto &Builder = State.Builder;
3590 Value *StoredVal = State.get(StoredValue);
3594 Value *Mask =
nullptr;
3596 Mask = State.get(VPMask);
3600 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3603 if (CreateScatter) {
3605 Intrinsic::vp_scatter,
3606 {StoredVal, Addr, Mask, EVL});
3609 Intrinsic::vp_store,
3610 {StoredVal, Addr, Mask, EVL});
3631 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3635 return Cost + Ctx.TTI.getShuffleCost(
3640#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3643 O << Indent <<
"WIDEN vp.store ";
3651 auto VF = DstVTy->getElementCount();
3653 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3654 Type *SrcElemTy = SrcVecTy->getElementType();
3655 Type *DstElemTy = DstVTy->getElementType();
3656 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3657 "Vector elements must have same size");
3661 return Builder.CreateBitOrPointerCast(V, DstVTy);
3668 "Only one type should be a pointer type");
3670 "Only one type should be a floating point type");
3674 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3675 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3681 const Twine &Name) {
3682 unsigned Factor = Vals.
size();
3683 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3687 for (
Value *Val : Vals)
3688 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3693 if (VecTy->isScalableTy()) {
3694 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3695 return Builder.CreateVectorInterleave(Vals, Name);
3702 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3703 return Builder.CreateShuffleVector(
3736 assert(!State.Lane &&
"Interleave group being replicated.");
3738 "Masking gaps for scalable vectors is not yet supported.");
3744 unsigned InterleaveFactor = Group->
getFactor();
3751 auto CreateGroupMask = [&BlockInMask, &State,
3752 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3753 if (State.VF.isScalable()) {
3754 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3755 assert(InterleaveFactor <= 8 &&
3756 "Unsupported deinterleave factor for scalable vectors");
3757 auto *ResBlockInMask = State.get(BlockInMask);
3765 Value *ResBlockInMask = State.get(BlockInMask);
3766 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3769 "interleaved.mask");
3770 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3771 ShuffledMask, MaskForGaps)
3775 const DataLayout &DL = Instr->getDataLayout();
3778 Value *MaskForGaps =
nullptr;
3782 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3786 if (BlockInMask || MaskForGaps) {
3787 Value *GroupMask = CreateGroupMask(MaskForGaps);
3789 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3791 PoisonVec,
"wide.masked.vec");
3793 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3800 if (VecTy->isScalableTy()) {
3803 assert(InterleaveFactor <= 8 &&
3804 "Unsupported deinterleave factor for scalable vectors");
3805 NewLoad = State.Builder.CreateIntrinsic(
3808 nullptr,
"strided.vec");
3811 auto CreateStridedVector = [&InterleaveFactor, &State,
3812 &NewLoad](
unsigned Index) ->
Value * {
3813 assert(Index < InterleaveFactor &&
"Illegal group index");
3814 if (State.VF.isScalable())
3815 return State.Builder.CreateExtractValue(NewLoad, Index);
3821 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3825 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3832 Value *StridedVec = CreateStridedVector(
I);
3835 if (Member->getType() != ScalarTy) {
3842 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3844 State.set(VPDefs[J], StridedVec);
3854 Value *MaskForGaps =
3857 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3861 unsigned StoredIdx = 0;
3862 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3864 "Fail to get a member from an interleaved store group");
3874 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3878 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3882 if (StoredVec->
getType() != SubVT)
3891 if (BlockInMask || MaskForGaps) {
3892 Value *GroupMask = CreateGroupMask(MaskForGaps);
3893 NewStoreInstr = State.Builder.CreateMaskedStore(
3894 IVec, ResAddr, Group->
getAlign(), GroupMask);
3897 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3904#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3908 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
3909 IG->getInsertPos()->printAsOperand(O,
false);
3919 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
3920 if (!IG->getMember(i))
3923 O <<
"\n" << Indent <<
" store ";
3925 O <<
" to index " << i;
3927 O <<
"\n" << Indent <<
" ";
3929 O <<
" = load from index " << i;
3937 assert(!State.Lane &&
"Interleave group being replicated.");
3938 assert(State.VF.isScalable() &&
3939 "Only support scalable VF for EVL tail-folding.");
3941 "Masking gaps for scalable vectors is not yet supported.");
3947 unsigned InterleaveFactor = Group->
getFactor();
3948 assert(InterleaveFactor <= 8 &&
3949 "Unsupported deinterleave/interleave factor for scalable vectors");
3956 Value *InterleaveEVL = State.Builder.CreateMul(
3957 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
3961 Value *GroupMask =
nullptr;
3967 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
3972 CallInst *NewLoad = State.Builder.CreateIntrinsic(
3973 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
3984 NewLoad = State.Builder.CreateIntrinsic(
3987 nullptr,
"strided.vec");
3989 const DataLayout &DL = Instr->getDataLayout();
3990 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3996 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
3998 if (Member->getType() != ScalarTy) {
4016 const DataLayout &DL = Instr->getDataLayout();
4017 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4025 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4027 if (StoredVec->
getType() != SubVT)
4037 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4038 {IVec, ResAddr, GroupMask, InterleaveEVL});
4047#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4051 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4052 IG->getInsertPos()->printAsOperand(O,
false);
4063 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4064 if (!IG->getMember(i))
4067 O <<
"\n" << Indent <<
" vp.store ";
4069 O <<
" to index " << i;
4071 O <<
"\n" << Indent <<
" ";
4073 O <<
" = vp.load from index " << i;
4084 unsigned InsertPosIdx = 0;
4085 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4086 if (
auto *Member = IG->getMember(Idx)) {
4087 if (Member == InsertPos)
4091 Type *ValTy = Ctx.Types.inferScalarType(
4097 unsigned InterleaveFactor = IG->getFactor();
4102 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4103 if (IG->getMember(IF))
4108 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4109 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4111 if (!IG->isReverse())
4114 return Cost + IG->getNumMembers() *
4116 VectorTy, VectorTy, {}, Ctx.CostKind,
4120#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4123 O << Indent <<
"EMIT ";
4125 O <<
" = CANONICAL-INDUCTION ";
4131 return IsScalarAfterVectorization &&
4135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4139 "unexpected number of operands");
4140 O << Indent <<
"EMIT ";
4142 O <<
" = WIDEN-POINTER-INDUCTION ";
4158 O << Indent <<
"EMIT ";
4160 O <<
" = EXPAND SCEV " << *Expr;
4167 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4171 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4174 VStep = Builder.CreateVectorSplat(VF, VStep);
4176 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4178 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4179 State.set(
this, CanonicalVectorIV);
4182#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4185 O << Indent <<
"EMIT ";
4187 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4193 auto &Builder = State.Builder;
4197 Type *VecTy = State.VF.isScalar()
4198 ? VectorInit->getType()
4202 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4203 if (State.VF.isVector()) {
4205 auto *One = ConstantInt::get(IdxTy, 1);
4208 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4209 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4210 VectorInit = Builder.CreateInsertElement(
4216 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4217 Phi->addIncoming(VectorInit, VectorPH);
4218 State.set(
this, Phi);
4225 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4230#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4233 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4250 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4251 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4252 Value *StartV = State.get(StartVPV, ScalarPHI);
4256 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4257 "recipe must be in the vector loop header");
4260 State.set(
this, Phi, IsInLoop);
4262 Phi->addIncoming(StartV, VectorPH);
4265#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4268 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4273 if (VFScaleFactor != 1)
4274 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4281 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4282 State.set(
this, VecPhi);
4285#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4288 O << Indent <<
"WIDEN-PHI ";
4300 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4303 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4304 Phi->addIncoming(StartMask, VectorPH);
4305 State.set(
this, Phi);
4308#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4311 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4319#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4322 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
bool canConstantBeExtended(const ConstantInt *CI, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.