LLVM 21.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanHelpers.h"
23#include "VPlanPatternMatch.h"
24#include "VPlanTransforms.h"
25#include "VPlanUtils.h"
27#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Twine.h"
33#include "llvm/IR/BasicBlock.h"
34#include "llvm/IR/CFG.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Value.h"
42#include "llvm/Support/Debug.h"
47#include <cassert>
48#include <string>
49
50using namespace llvm;
51using namespace llvm::VPlanPatternMatch;
52
53namespace llvm {
55}
56
58
60 "vplan-print-in-dot-format", cl::Hidden,
61 cl::desc("Use dot format instead of plain text when dumping VPlans"));
62
63#define DEBUG_TYPE "loop-vectorize"
64
65#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
67 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
70 V.print(OS, SlotTracker);
71 return OS;
72}
73#endif
74
76 const ElementCount &VF) const {
77 switch (LaneKind) {
79 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
80 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
81 Builder.getInt32(VF.getKnownMinValue() - Lane));
83 return Builder.getInt32(Lane);
84 }
85 llvm_unreachable("Unknown lane kind");
86}
87
88VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
89 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
90 if (Def)
91 Def->addDefinedValue(this);
92}
93
95 assert(Users.empty() && "trying to delete a VPValue with remaining users");
96 if (Def)
97 Def->removeDefinedValue(this);
98}
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
103 R->print(OS, "", SlotTracker);
104 else
106}
107
108void VPValue::dump() const {
109 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
111 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113 dbgs() << "\n";
114}
115
116void VPDef::dump() const {
117 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
119 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
120 print(dbgs(), "", SlotTracker);
121 dbgs() << "\n";
122}
123#endif
124
126 return cast_or_null<VPRecipeBase>(Def);
127}
128
130 return cast_or_null<VPRecipeBase>(Def);
131}
132
133// Get the top-most entry block of \p Start. This is the entry block of the
134// containing VPlan. This function is templated to support both const and non-const blocks
135template <typename T> static T *getPlanEntry(T *Start) {
136 T *Next = Start;
137 T *Current = Start;
138 while ((Next = Next->getParent()))
139 Current = Next;
140
141 SmallSetVector<T *, 8> WorkList;
142 WorkList.insert(Current);
143
144 for (unsigned i = 0; i < WorkList.size(); i++) {
145 T *Current = WorkList[i];
146 if (Current->getNumPredecessors() == 0)
147 return Current;
148 auto &Predecessors = Current->getPredecessors();
149 WorkList.insert(Predecessors.begin(), Predecessors.end());
150 }
151
152 llvm_unreachable("VPlan without any entry node without predecessors");
153}
154
155VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
156
157const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
158
159/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
161 const VPBlockBase *Block = this;
162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
163 Block = Region->getEntry();
164 return cast<VPBasicBlock>(Block);
165}
166
168 VPBlockBase *Block = this;
169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
170 Block = Region->getEntry();
171 return cast<VPBasicBlock>(Block);
172}
173
174void VPBlockBase::setPlan(VPlan *ParentPlan) {
175 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
176 Plan = ParentPlan;
177}
178
179/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
181 const VPBlockBase *Block = this;
182 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183 Block = Region->getExiting();
184 return cast<VPBasicBlock>(Block);
185}
186
188 VPBlockBase *Block = this;
189 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190 Block = Region->getExiting();
191 return cast<VPBasicBlock>(Block);
192}
193
195 if (!Successors.empty() || !Parent)
196 return this;
197 assert(Parent->getExiting() == this &&
198 "Block w/o successors not the exiting block of its parent.");
199 return Parent->getEnclosingBlockWithSuccessors();
200}
201
203 if (!Predecessors.empty() || !Parent)
204 return this;
205 assert(Parent->getEntry() == this &&
206 "Block w/o predecessors not the entry of its parent.");
207 return Parent->getEnclosingBlockWithPredecessors();
208}
209
211 iterator It = begin();
212 while (It != end() && It->isPhi())
213 It++;
214 return It;
215}
216
218 ElementCount VF, unsigned UF, LoopInfo *LI,
219 DominatorTree *DT, IRBuilderBase &Builder,
220 InnerLoopVectorizer *ILV, VPlan *Plan,
221 Loop *CurrentParentLoop, Type *CanonicalIVTy)
222 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
223 CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
224 TypeAnalysis(CanonicalIVTy) {}
225
227 if (Def->isLiveIn())
228 return Def->getLiveInIRValue();
229
230 if (hasScalarValue(Def, Lane))
231 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
232
233 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
235 return Data.VPV2Scalars[Def][0];
236 }
237
239 auto *VecPart = Data.VPV2Vector[Def];
240 if (!VecPart->getType()->isVectorTy()) {
241 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
242 return VecPart;
243 }
244 // TODO: Cache created scalar values.
245 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
246 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
247 // set(Def, Extract, Instance);
248 return Extract;
249}
250
251Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
252 if (NeedsScalar) {
253 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
255 (hasScalarValue(Def, VPLane(0)) &&
256 Data.VPV2Scalars[Def].size() == 1)) &&
257 "Trying to access a single scalar per part but has multiple scalars "
258 "per part.");
259 return get(Def, VPLane(0));
260 }
261
262 // If Values have been set for this Def return the one relevant for \p Part.
263 if (hasVectorValue(Def))
264 return Data.VPV2Vector[Def];
265
266 auto GetBroadcastInstrs = [this, Def](Value *V) {
267 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
268 if (VF.isScalar())
269 return V;
270 // Place the code for broadcasting invariant variables in the new preheader.
272 if (SafeToHoist) {
273 BasicBlock *LoopVectorPreHeader =
275 if (LoopVectorPreHeader)
276 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
277 }
278
279 // Place the code for broadcasting invariant variables in the new preheader.
280 // Broadcast the scalar into all locations in the vector.
281 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
282
283 return Shuf;
284 };
285
286 if (!hasScalarValue(Def, {0})) {
287 assert(Def->isLiveIn() && "expected a live-in");
288 Value *IRV = Def->getLiveInIRValue();
289 Value *B = GetBroadcastInstrs(IRV);
290 set(Def, B);
291 return B;
292 }
293
294 Value *ScalarValue = get(Def, VPLane(0));
295 // If we aren't vectorizing, we can just copy the scalar map values over
296 // to the vector map.
297 if (VF.isScalar()) {
298 set(Def, ScalarValue);
299 return ScalarValue;
300 }
301
302 bool IsUniform = vputils::isUniformAfterVectorization(Def);
303
304 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
305 // Check if there is a scalar value for the selected lane.
306 if (!hasScalarValue(Def, LastLane)) {
307 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
308 // VPExpandSCEVRecipes can also be uniform.
310 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
311 "unexpected recipe found to be invariant");
312 IsUniform = true;
313 LastLane = 0;
314 }
315
316 auto *LastInst = cast<Instruction>(get(Def, LastLane));
317 // Set the insert point after the last scalarized instruction or after the
318 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
319 // will directly follow the scalar definitions.
320 auto OldIP = Builder.saveIP();
321 auto NewIP = isa<PHINode>(LastInst)
322 ? LastInst->getParent()->getFirstNonPHIIt()
323 : std::next(BasicBlock::iterator(LastInst));
324 Builder.SetInsertPoint(&*NewIP);
325
326 // However, if we are vectorizing, we need to construct the vector values.
327 // If the value is known to be uniform after vectorization, we can just
328 // broadcast the scalar value corresponding to lane zero. Otherwise, we
329 // construct the vector values using insertelement instructions. Since the
330 // resulting vectors are stored in State, we will only generate the
331 // insertelements once.
332 Value *VectorValue = nullptr;
333 if (IsUniform) {
334 VectorValue = GetBroadcastInstrs(ScalarValue);
335 set(Def, VectorValue);
336 } else {
337 // Initialize packing with insertelements to start from undef.
338 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
339 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
340 set(Def, Undef);
341 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
343 VectorValue = get(Def);
344 }
345 Builder.restoreIP(OldIP);
346 return VectorValue;
347}
348
350 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
351 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
352}
353
355 const Instruction *Orig) {
356 // If the loop was versioned with memchecks, add the corresponding no-alias
357 // metadata.
358 if (LVer && isa<LoadInst, StoreInst>(Orig))
359 LVer->annotateInstWithNoAlias(To, Orig);
360}
361
363 // No source instruction to transfer metadata from?
364 if (!From)
365 return;
366
367 if (Instruction *ToI = dyn_cast<Instruction>(To)) {
369 addNewMetadata(ToI, From);
370 }
371}
372
374 const DILocation *DIL = DL;
375 // When a FSDiscriminator is enabled, we don't need to add the multiply
376 // factors to the discriminators.
377 if (DIL &&
379 ->getParent()
382 // FIXME: For scalable vectors, assume vscale=1.
383 unsigned UF = Plan->getUF();
384 auto NewDIL =
386 if (NewDIL)
388 else
389 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
390 << DIL->getFilename() << " Line: " << DIL->getLine());
391 } else
393}
394
396 const VPLane &Lane) {
397 Value *ScalarInst = get(Def, Lane);
398 Value *VectorValue = get(Def);
399 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
400 Lane.getAsRuntimeExpr(Builder, VF));
401 set(Def, VectorValue);
402}
403
404BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) {
405 auto &CFG = State.CFG;
406 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
407 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
408 BasicBlock *PrevBB = CFG.PrevBB;
409 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
410 PrevBB->getParent(), CFG.ExitBB);
411 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
412
413 return NewBB;
414}
415
417 auto &CFG = State.CFG;
418 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
419 // Hook up the new basic block to its predecessors.
420 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
421 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
422 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
423 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
424
425 assert(PredBB && "Predecessor basic-block not found building successor.");
426 auto *PredBBTerminator = PredBB->getTerminator();
427 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
428
429 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
430 if (isa<UnreachableInst>(PredBBTerminator)) {
431 assert(PredVPSuccessors.size() == 1 &&
432 "Predecessor ending w/o branch must have single successor.");
433 DebugLoc DL = PredBBTerminator->getDebugLoc();
434 PredBBTerminator->eraseFromParent();
435 auto *Br = BranchInst::Create(NewBB, PredBB);
436 Br->setDebugLoc(DL);
437 } else if (TermBr && !TermBr->isConditional()) {
438 TermBr->setSuccessor(0, NewBB);
439 } else {
440 // Set each forward successor here when it is created, excluding
441 // backedges. A backward successor is set when the branch is created.
442 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
443 assert((TermBr && (!TermBr->getSuccessor(idx) ||
444 (isa<VPIRBasicBlock>(this) &&
445 TermBr->getSuccessor(idx) == NewBB))) &&
446 "Trying to reset an existing successor block.");
447 TermBr->setSuccessor(idx, NewBB);
448 }
449 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
450 }
451}
452
454 assert(getHierarchicalSuccessors().size() <= 2 &&
455 "VPIRBasicBlock can have at most two successors at the moment!");
456 State->Builder.SetInsertPoint(IRBB->getTerminator());
457 State->CFG.PrevBB = IRBB;
458 State->CFG.VPBB2IRBB[this] = IRBB;
459 executeRecipes(State, IRBB);
460 // Create a branch instruction to terminate IRBB if one was not created yet
461 // and is needed.
462 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
463 auto *Br = State->Builder.CreateBr(IRBB);
464 Br->setOperand(0, nullptr);
465 IRBB->getTerminator()->eraseFromParent();
466 } else {
467 assert(
468 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
469 "other blocks must be terminated by a branch");
470 }
471
472 connectToPredecessors(*State);
473}
474
476 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
477 for (VPRecipeBase &R : Recipes)
478 NewBlock->appendRecipe(R.clone());
479 return NewBlock;
480}
481
483 bool Replica = bool(State->Lane);
484 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
485
486 auto IsReplicateRegion = [](VPBlockBase *BB) {
487 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
488 return R && R->isReplicator();
489 };
490
491 // 1. Create an IR basic block.
492 if ((Replica && this == getParent()->getEntry()) ||
493 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
494 // Reuse the previous basic block if the current VPBB is either
495 // * the entry to a replicate region, or
496 // * the exit of a replicate region.
497 State->CFG.VPBB2IRBB[this] = NewBB;
498 } else {
499 NewBB = createEmptyBasicBlock(*State);
500
501 State->Builder.SetInsertPoint(NewBB);
502 // Temporarily terminate with unreachable until CFG is rewired.
503 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
504 // Register NewBB in its loop. In innermost loops its the same for all
505 // BB's.
506 Loop *ParentLoop = State->CurrentParentLoop;
507 // If this block has a sole successor that is an exit block then it needs
508 // adding to the same parent loop as the exit block.
509 VPBlockBase *SuccVPBB = getSingleSuccessor();
510 if (SuccVPBB && State->Plan->isExitBlock(SuccVPBB))
511 ParentLoop = State->LI->getLoopFor(
512 cast<VPIRBasicBlock>(SuccVPBB)->getIRBasicBlock());
513 if (ParentLoop)
514 ParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
515 State->Builder.SetInsertPoint(Terminator);
516
517 State->CFG.PrevBB = NewBB;
518 State->CFG.VPBB2IRBB[this] = NewBB;
519 connectToPredecessors(*State);
520 }
521
522 // 2. Fill the IR basic block with IR instructions.
523 executeRecipes(State, NewBB);
524}
525
527 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
528 for (VPRecipeBase &R : *this)
529 NewBlock->appendRecipe(R.clone());
530 return NewBlock;
531}
532
534 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
535 << " in BB:" << BB->getName() << '\n');
536
537 State->CFG.PrevVPBB = this;
538
539 for (VPRecipeBase &Recipe : Recipes)
540 Recipe.execute(*State);
541
542 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
543}
544
546 assert((SplitAt == end() || SplitAt->getParent() == this) &&
547 "can only split at a position in the same block");
548
550 // Create new empty block after the block to split.
551 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
553
554 // Finally, move the recipes starting at SplitAt to new block.
555 for (VPRecipeBase &ToMove :
556 make_early_inc_range(make_range(SplitAt, this->end())))
557 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
558
559 return SplitBlock;
560}
561
562/// Return the enclosing loop region for region \p P. The templated version is
563/// used to support both const and non-const block arguments.
564template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
565 if (P && P->isReplicator()) {
566 P = P->getParent();
567 // Multiple loop regions can be nested, but replicate regions can only be
568 // nested inside a loop region or must be outside any other region.
569 assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
570 "unexpected nested replicate regions");
571 }
572 return P;
573}
574
577}
578
581}
582
583static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
584 if (VPBB->empty()) {
585 assert(
586 VPBB->getNumSuccessors() < 2 &&
587 "block with multiple successors doesn't have a recipe as terminator");
588 return false;
589 }
590
591 const VPRecipeBase *R = &VPBB->back();
592 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
595 (void)IsCondBranch;
596
597 if (VPBB->getNumSuccessors() >= 2 ||
598 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
599 assert(IsCondBranch && "block with multiple successors not terminated by "
600 "conditional branch recipe");
601
602 return true;
603 }
604
605 assert(
606 !IsCondBranch &&
607 "block with 0 or 1 successors terminated by conditional branch recipe");
608 return false;
609}
610
612 if (hasConditionalTerminator(this))
613 return &back();
614 return nullptr;
615}
616
618 if (hasConditionalTerminator(this))
619 return &back();
620 return nullptr;
621}
622
624 return getParent() && getParent()->getExitingBasicBlock() == this;
625}
626
627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
629 VPSlotTracker SlotTracker(getPlan());
630 print(O, "", SlotTracker);
631}
632
633void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
634 if (getSuccessors().empty()) {
635 O << Indent << "No successors\n";
636 } else {
637 O << Indent << "Successor(s): ";
638 ListSeparator LS;
639 for (auto *Succ : getSuccessors())
640 O << LS << Succ->getName();
641 O << '\n';
642 }
643}
644
645void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
646 VPSlotTracker &SlotTracker) const {
647 O << Indent << getName() << ":\n";
648
649 auto RecipeIndent = Indent + " ";
650 for (const VPRecipeBase &Recipe : *this) {
651 Recipe.print(O, RecipeIndent, SlotTracker);
652 O << '\n';
653 }
654
655 printSuccessors(O, Indent);
656}
657#endif
658
659static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
660
661// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
662// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
663// Remapping of operands must be done separately. Returns a pair with the new
664// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
665// region, return nullptr for the exiting block.
666static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
668 VPBlockBase *Exiting = nullptr;
669 bool InRegion = Entry->getParent();
670 // First, clone blocks reachable from Entry.
671 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
672 VPBlockBase *NewBB = BB->clone();
673 Old2NewVPBlocks[BB] = NewBB;
674 if (InRegion && BB->getNumSuccessors() == 0) {
675 assert(!Exiting && "Multiple exiting blocks?");
676 Exiting = BB;
677 }
678 }
679 assert((!InRegion || Exiting) && "regions must have a single exiting block");
680
681 // Second, update the predecessors & successors of the cloned blocks.
682 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
683 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
685 for (VPBlockBase *Pred : BB->getPredecessors()) {
686 NewPreds.push_back(Old2NewVPBlocks[Pred]);
687 }
688 NewBB->setPredecessors(NewPreds);
690 for (VPBlockBase *Succ : BB->successors()) {
691 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
692 }
693 NewBB->setSuccessors(NewSuccs);
694 }
695
696#if !defined(NDEBUG)
697 // Verify that the order of predecessors and successors matches in the cloned
698 // version.
699 for (const auto &[OldBB, NewBB] :
701 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
702 for (const auto &[OldPred, NewPred] :
703 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
704 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
705
706 for (const auto &[OldSucc, NewSucc] :
707 zip(OldBB->successors(), NewBB->successors()))
708 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
709 }
710#endif
711
712 return std::make_pair(Old2NewVPBlocks[Entry],
713 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
714}
715
717 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
718 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
719 getName(), isReplicator());
720 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
721 Block->setParent(NewRegion);
722 return NewRegion;
723}
724
727 RPOT(Entry);
728
729 if (!isReplicator()) {
730 // Create and register the new vector loop.
731 Loop *PrevLoop = State->CurrentParentLoop;
732 State->CurrentParentLoop = State->LI->AllocateLoop();
733 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
734 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
735
736 // Insert the new loop into the loop nest and register the new basic blocks
737 // before calling any utilities such as SCEV that require valid LoopInfo.
738 if (ParentLoop)
739 ParentLoop->addChildLoop(State->CurrentParentLoop);
740 else
741 State->LI->addTopLevelLoop(State->CurrentParentLoop);
742
743 // Visit the VPBlocks connected to "this", starting from it.
744 for (VPBlockBase *Block : RPOT) {
745 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
746 Block->execute(State);
747 }
748
749 State->CurrentParentLoop = PrevLoop;
750 return;
751 }
752
753 assert(!State->Lane && "Replicating a Region with non-null instance.");
754
755 // Enter replicating mode.
756 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
757 State->Lane = VPLane(0);
758 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
759 ++Lane) {
761 // Visit the VPBlocks connected to \p this, starting from it.
762 for (VPBlockBase *Block : RPOT) {
763 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
764 Block->execute(State);
765 }
766 }
767
768 // Exit replicating mode.
769 State->Lane.reset();
770}
771
774 for (VPRecipeBase &R : Recipes)
775 Cost += R.cost(VF, Ctx);
776 return Cost;
777}
778
780 if (!isReplicator()) {
782 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
783 Cost += Block->cost(VF, Ctx);
784 InstructionCost BackedgeCost =
785 ForceTargetInstructionCost.getNumOccurrences()
786 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
787 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
788 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
789 << ": vector loop backedge\n");
790 Cost += BackedgeCost;
791 return Cost;
792 }
793
794 // Compute the cost of a replicate region. Replicating isn't supported for
795 // scalable vectors, return an invalid cost for them.
796 // TODO: Discard scalable VPlans with replicate recipes earlier after
797 // construction.
798 if (VF.isScalable())
800
801 // First compute the cost of the conditionally executed recipes, followed by
802 // account for the branching cost, except if the mask is a header mask or
803 // uniform condition.
804 using namespace llvm::VPlanPatternMatch;
805 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
806 InstructionCost ThenCost = Then->cost(VF, Ctx);
807
808 // For the scalar case, we may not always execute the original predicated
809 // block, Thus, scale the block's cost by the probability of executing it.
810 if (VF.isScalar())
811 return ThenCost / getReciprocalPredBlockProb();
812
813 return ThenCost;
814}
815
816#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
818 VPSlotTracker &SlotTracker) const {
819 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
820 auto NewIndent = Indent + " ";
821 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
822 O << '\n';
823 BlockBase->print(O, NewIndent, SlotTracker);
824 }
825 O << Indent << "}\n";
826
827 printSuccessors(O, Indent);
828}
829#endif
830
831VPlan::VPlan(Loop *L) {
832 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
833 ScalarHeader = createVPIRBasicBlock(L->getHeader());
834}
835
837 VPValue DummyValue;
838
839 for (auto *VPB : CreatedBlocks) {
840 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
841 // Replace all operands of recipes and all VPValues defined in VPBB with
842 // DummyValue so the block can be deleted.
843 for (VPRecipeBase &R : *VPBB) {
844 for (auto *Def : R.definedValues())
845 Def->replaceAllUsesWith(&DummyValue);
846
847 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
848 R.setOperand(I, &DummyValue);
849 }
850 }
851 delete VPB;
852 }
853 for (VPValue *VPV : VPLiveInsToFree)
854 delete VPV;
855 if (BackedgeTakenCount)
856 delete BackedgeTakenCount;
857}
858
861 bool RequiresScalarEpilogueCheck,
862 bool TailFolded, Loop *TheLoop) {
863 auto Plan = std::make_unique<VPlan>(TheLoop);
864 VPBlockBase *ScalarHeader = Plan->getScalarHeader();
865
866 // Connect entry only to vector preheader initially. Entry will also be
867 // connected to the scalar preheader later, during skeleton creation when
868 // runtime guards are added as needed. Note that when executing the VPlan for
869 // an epilogue vector loop, the original entry block here will be replaced by
870 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
871 // generating code for the main vector loop.
872 VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
873 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
874
875 // Create SCEV and VPValue for the trip count.
876 // We use the symbolic max backedge-taken-count, which works also when
877 // vectorizing loops with uncountable early exits.
878 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
879 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
880 "Invalid loop count");
881 ScalarEvolution &SE = *PSE.getSE();
882 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
883 InductionTy, TheLoop);
884 Plan->TripCount =
886
887 // Create VPRegionBlock, with empty header and latch blocks, to be filled
888 // during processing later.
889 VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
890 VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
891 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
892 auto *TopRegion = Plan->createVPRegionBlock(
893 HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
894
895 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
896 VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
897 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
898
899 VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
900 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
901 if (!RequiresScalarEpilogueCheck) {
902 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
903 return Plan;
904 }
905
906 // If needed, add a check in the middle block to see if we have completed
907 // all of the iterations in the first vector loop. Three cases:
908 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
909 // Thus if tail is to be folded, we know we don't need to run the
910 // remainder and we can set the condition to true.
911 // 2) If we require a scalar epilogue, there is no conditional branch as
912 // we unconditionally branch to the scalar preheader. Do nothing.
913 // 3) Otherwise, construct a runtime check.
914 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
915 auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
916 // The connection order corresponds to the operands of the conditional branch.
917 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
918 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
919
920 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
921 // Here we use the same DebugLoc as the scalar loop latch terminator instead
922 // of the corresponding compare because they may have ended up with
923 // different line numbers and we want to avoid awkward line stepping while
924 // debugging. Eg. if the compare has got a line number inside the loop.
925 VPBuilder Builder(MiddleVPBB);
926 VPValue *Cmp =
927 TailFolded
929 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
930 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
932 ScalarLatchTerm->getDebugLoc(), "cmp.n");
933 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
934 ScalarLatchTerm->getDebugLoc());
935 return Plan;
936}
937
938void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
939 VPTransformState &State) {
940 Type *TCTy = TripCountV->getType();
941 // Check if the backedge taken count is needed, and if so build it.
942 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
944 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
945 "trip.count.minus.1");
946 BackedgeTakenCount->setUnderlyingValue(TCMO);
947 }
948
949 VectorTripCount.setUnderlyingValue(VectorTripCountV);
950
952 // FIXME: Model VF * UF computation completely in VPlan.
953 assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
954 "VFxUF expected to always have users");
955 unsigned UF = getUF();
956 if (VF.getNumUsers()) {
957 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
958 VF.setUnderlyingValue(RuntimeVF);
959 VFxUF.setUnderlyingValue(
960 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
961 : RuntimeVF);
962 } else {
963 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
964 }
965}
966
968 return isa<VPIRBasicBlock>(VPBB) && VPBB->getNumSuccessors() == 0;
969}
970
971/// Generate the code inside the preheader and body of the vectorized loop.
972/// Assumes a single pre-header basic-block was created for this. Introduce
973/// additional basic-blocks as needed, and fill them all.
975 // Initialize CFG state.
976 State->CFG.PrevVPBB = nullptr;
977 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
978
979 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
980 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
981 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
982 State->CFG.DTU.applyUpdates(
983 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
984
985 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
986 << ", UF=" << getUF() << '\n');
987 setName("Final VPlan");
988 LLVM_DEBUG(dump());
989
990 // Disconnect the middle block from its single successor (the scalar loop
991 // header) in both the CFG and DT. The branch will be recreated during VPlan
992 // execution.
993 BasicBlock *MiddleBB = State->CFG.ExitBB;
994 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
995 auto *BrInst = new UnreachableInst(MiddleBB->getContext());
996 BrInst->insertBefore(MiddleBB->getTerminator()->getIterator());
997 MiddleBB->getTerminator()->eraseFromParent();
998 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
999 // Disconnect scalar preheader and scalar header, as the dominator tree edge
1000 // will be updated as part of VPlan execution. This allows keeping the DTU
1001 // logic generic during VPlan execution.
1002 State->CFG.DTU.applyUpdates(
1003 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1004
1006 Entry);
1007 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
1008 // successor blocks including the middle, exit and scalar preheader blocks.
1009 for (VPBlockBase *Block : RPOT)
1010 Block->execute(State);
1011
1012 State->CFG.DTU.flush();
1013
1014 auto *LoopRegion = getVectorLoopRegion();
1015 if (!LoopRegion)
1016 return;
1017
1018 VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
1019 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1020
1021 // Fix the latch value of canonical, reduction and first-order recurrences
1022 // phis in the vector loop.
1023 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1024 for (VPRecipeBase &R : Header->phis()) {
1025 // Skip phi-like recipes that generate their backedege values themselves.
1026 if (isa<VPWidenPHIRecipe>(&R))
1027 continue;
1028
1029 if (isa<VPWidenInductionRecipe>(&R)) {
1030 PHINode *Phi = nullptr;
1031 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1032 Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1033 } else {
1034 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1035 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1036 "recipe generating only scalars should have been replaced");
1037 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1038 Phi = cast<PHINode>(GEP->getPointerOperand());
1039 }
1040
1041 Phi->setIncomingBlock(1, VectorLatchBB);
1042
1043 // Move the last step to the end of the latch block. This ensures
1044 // consistent placement of all induction updates.
1045 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1046 Inc->moveBefore(std::prev(VectorLatchBB->getTerminator()->getIterator()));
1047
1048 // Use the steps for the last part as backedge value for the induction.
1049 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1050 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1051 continue;
1052 }
1053
1054 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1055 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1056 (isa<VPReductionPHIRecipe>(PhiR) &&
1057 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1058 Value *Phi = State->get(PhiR, NeedsScalar);
1059 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1060 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1061 }
1062}
1063
1065 // For now only return the cost of the vector loop region, ignoring any other
1066 // blocks, like the preheader or middle blocks.
1067 return getVectorLoopRegion()->cost(VF, Ctx);
1068}
1069
1071 // TODO: Cache if possible.
1072 for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1073 if (auto *R = dyn_cast<VPRegionBlock>(B))
1074 return R->isReplicator() ? nullptr : R;
1075 return nullptr;
1076}
1077
1079 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1080 if (auto *R = dyn_cast<VPRegionBlock>(B))
1081 return R->isReplicator() ? nullptr : R;
1082 return nullptr;
1083}
1084
1085#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1088
1089 if (VF.getNumUsers() > 0) {
1090 O << "\nLive-in ";
1091 VF.printAsOperand(O, SlotTracker);
1092 O << " = VF";
1093 }
1094
1095 if (VFxUF.getNumUsers() > 0) {
1096 O << "\nLive-in ";
1097 VFxUF.printAsOperand(O, SlotTracker);
1098 O << " = VF * UF";
1099 }
1100
1101 if (VectorTripCount.getNumUsers() > 0) {
1102 O << "\nLive-in ";
1103 VectorTripCount.printAsOperand(O, SlotTracker);
1104 O << " = vector-trip-count";
1105 }
1106
1107 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1108 O << "\nLive-in ";
1109 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1110 O << " = backedge-taken count";
1111 }
1112
1113 O << "\n";
1114 if (TripCount->isLiveIn())
1115 O << "Live-in ";
1116 TripCount->printAsOperand(O, SlotTracker);
1117 O << " = original trip-count";
1118 O << "\n";
1119}
1120
1124
1125 O << "VPlan '" << getName() << "' {";
1126
1127 printLiveIns(O);
1128
1130 RPOT(getEntry());
1131 for (const VPBlockBase *Block : RPOT) {
1132 O << '\n';
1133 Block->print(O, "", SlotTracker);
1134 }
1135
1136 O << "}\n";
1137}
1138
1139std::string VPlan::getName() const {
1140 std::string Out;
1141 raw_string_ostream RSO(Out);
1142 RSO << Name << " for ";
1143 if (!VFs.empty()) {
1144 RSO << "VF={" << VFs[0];
1145 for (ElementCount VF : drop_begin(VFs))
1146 RSO << "," << VF;
1147 RSO << "},";
1148 }
1149
1150 if (UFs.empty()) {
1151 RSO << "UF>=1";
1152 } else {
1153 RSO << "UF={" << UFs[0];
1154 for (unsigned UF : drop_begin(UFs))
1155 RSO << "," << UF;
1156 RSO << "}";
1157 }
1158
1159 return Out;
1160}
1161
1164 VPlanPrinter Printer(O, *this);
1165 Printer.dump();
1166}
1167
1169void VPlan::dump() const { print(dbgs()); }
1170#endif
1171
1172static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1173 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1174 // Update the operands of all cloned recipes starting at NewEntry. This
1175 // traverses all reachable blocks. This is done in two steps, to handle cycles
1176 // in PHI recipes.
1178 OldDeepRPOT(Entry);
1180 NewDeepRPOT(NewEntry);
1181 // First, collect all mappings from old to new VPValues defined by cloned
1182 // recipes.
1183 for (const auto &[OldBB, NewBB] :
1184 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1185 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1186 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1187 "blocks must have the same number of recipes");
1188 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1189 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1190 "recipes must have the same number of operands");
1191 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1192 "recipes must define the same number of operands");
1193 for (const auto &[OldV, NewV] :
1194 zip(OldR.definedValues(), NewR.definedValues()))
1195 Old2NewVPValues[OldV] = NewV;
1196 }
1197 }
1198
1199 // Update all operands to use cloned VPValues.
1200 for (VPBasicBlock *NewBB :
1201 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1202 for (VPRecipeBase &NewR : *NewBB)
1203 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1204 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1205 NewR.setOperand(I, NewOp);
1206 }
1207 }
1208}
1209
1211 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1212 // Clone blocks.
1213 const auto &[NewEntry, __] = cloneFrom(Entry);
1214
1215 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1216 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1217 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1218 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1219 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1220 }));
1221 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1222 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1223 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1224 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1225 Old2NewVPValues[OldLiveIn] =
1226 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1227 }
1228 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1229 Old2NewVPValues[&VF] = &NewPlan->VF;
1230 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1231 if (BackedgeTakenCount) {
1232 NewPlan->BackedgeTakenCount = new VPValue();
1233 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1234 }
1235 assert(TripCount && "trip count must be set");
1236 if (TripCount->isLiveIn())
1237 Old2NewVPValues[TripCount] =
1238 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1239 // else NewTripCount will be created and inserted into Old2NewVPValues when
1240 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1241
1242 remapOperands(Entry, NewEntry, Old2NewVPValues);
1243
1244 // Initialize remaining fields of cloned VPlan.
1245 NewPlan->VFs = VFs;
1246 NewPlan->UFs = UFs;
1247 // TODO: Adjust names.
1248 NewPlan->Name = Name;
1249 assert(Old2NewVPValues.contains(TripCount) &&
1250 "TripCount must have been added to Old2NewVPValues");
1251 NewPlan->TripCount = Old2NewVPValues[TripCount];
1252
1253 // Transfer all cloned blocks (the second half of all current blocks) from
1254 // current to new VPlan.
1255 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1256 for (unsigned I :
1257 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1258 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1259 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1260
1261 return NewPlan;
1262}
1263
1265 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1266 CreatedBlocks.push_back(VPIRBB);
1267 return VPIRBB;
1268}
1269
1271 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1272 for (Instruction &I :
1273 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1274 VPIRBB->appendRecipe(new VPIRInstruction(I));
1275 return VPIRBB;
1276}
1277
1278#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1279
1280Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1281 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1282 Twine(getOrCreateBID(Block));
1283}
1284
1285Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1286 const std::string &Name = Block->getName();
1287 if (!Name.empty())
1288 return Name;
1289 return "VPB" + Twine(getOrCreateBID(Block));
1290}
1291
1293 Depth = 1;
1294 bumpIndent(0);
1295 OS << "digraph VPlan {\n";
1296 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1297 if (!Plan.getName().empty())
1298 OS << "\\n" << DOT::EscapeString(Plan.getName());
1299
1300 {
1301 // Print live-ins.
1302 std::string Str;
1303 raw_string_ostream SS(Str);
1304 Plan.printLiveIns(SS);
1306 StringRef(Str).rtrim('\n').split(Lines, "\n");
1307 for (auto Line : Lines)
1308 OS << DOT::EscapeString(Line.str()) << "\\n";
1309 }
1310
1311 OS << "\"]\n";
1312 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1313 OS << "edge [fontname=Courier, fontsize=30]\n";
1314 OS << "compound=true\n";
1315
1317 dumpBlock(Block);
1318
1319 OS << "}\n";
1320}
1321
1322void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1323 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1324 dumpBasicBlock(BasicBlock);
1325 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1326 dumpRegion(Region);
1327 else
1328 llvm_unreachable("Unsupported kind of VPBlock.");
1329}
1330
1331void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1332 bool Hidden, const Twine &Label) {
1333 // Due to "dot" we print an edge between two regions as an edge between the
1334 // exiting basic block and the entry basic of the respective regions.
1335 const VPBlockBase *Tail = From->getExitingBasicBlock();
1336 const VPBlockBase *Head = To->getEntryBasicBlock();
1337 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1338 OS << " [ label=\"" << Label << '\"';
1339 if (Tail != From)
1340 OS << " ltail=" << getUID(From);
1341 if (Head != To)
1342 OS << " lhead=" << getUID(To);
1343 if (Hidden)
1344 OS << "; splines=none";
1345 OS << "]\n";
1346}
1347
1348void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1349 auto &Successors = Block->getSuccessors();
1350 if (Successors.size() == 1)
1351 drawEdge(Block, Successors.front(), false, "");
1352 else if (Successors.size() == 2) {
1353 drawEdge(Block, Successors.front(), false, "T");
1354 drawEdge(Block, Successors.back(), false, "F");
1355 } else {
1356 unsigned SuccessorNumber = 0;
1357 for (auto *Successor : Successors)
1358 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1359 }
1360}
1361
1362void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1363 // Implement dot-formatted dump by performing plain-text dump into the
1364 // temporary storage followed by some post-processing.
1365 OS << Indent << getUID(BasicBlock) << " [label =\n";
1366 bumpIndent(1);
1367 std::string Str;
1369 // Use no indentation as we need to wrap the lines into quotes ourselves.
1370 BasicBlock->print(SS, "", SlotTracker);
1371
1372 // We need to process each line of the output separately, so split
1373 // single-string plain-text dump.
1375 StringRef(Str).rtrim('\n').split(Lines, "\n");
1376
1377 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1378 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1379 };
1380
1381 // Don't need the "+" after the last line.
1382 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1383 EmitLine(Line, " +\n");
1384 EmitLine(Lines.back(), "\n");
1385
1386 bumpIndent(-1);
1387 OS << Indent << "]\n";
1388
1390}
1391
1392void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1393 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1394 bumpIndent(1);
1395 OS << Indent << "fontname=Courier\n"
1396 << Indent << "label=\""
1397 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1398 << DOT::EscapeString(Region->getName()) << "\"\n";
1399 // Dump the blocks of the region.
1400 assert(Region->getEntry() && "Region contains no inner blocks.");
1402 dumpBlock(Block);
1403 bumpIndent(-1);
1404 OS << Indent << "}\n";
1406}
1407
1409 if (auto *Inst = dyn_cast<Instruction>(V)) {
1410 if (!Inst->getType()->isVoidTy()) {
1411 Inst->printAsOperand(O, false);
1412 O << " = ";
1413 }
1414 O << Inst->getOpcodeName() << " ";
1415 unsigned E = Inst->getNumOperands();
1416 if (E > 0) {
1417 Inst->getOperand(0)->printAsOperand(O, false);
1418 for (unsigned I = 1; I < E; ++I)
1419 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1420 }
1421 } else // !Inst
1422 V->printAsOperand(O, false);
1423}
1424
1425#endif
1426
1427/// Returns true if there is a vector loop region and \p VPV is defined in a
1428/// loop region.
1429static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1430 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1431 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1433}
1434
1436 return !isDefinedInsideLoopRegions(this);
1437}
1439 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1440}
1441
1443 VPValue *New,
1444 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1445 // Note that this early exit is required for correctness; the implementation
1446 // below relies on the number of users for this VPValue to decrease, which
1447 // isn't the case if this == New.
1448 if (this == New)
1449 return;
1450
1451 for (unsigned J = 0; J < getNumUsers();) {
1452 VPUser *User = Users[J];
1453 bool RemovedUser = false;
1454 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1455 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1456 continue;
1457
1458 RemovedUser = true;
1459 User->setOperand(I, New);
1460 }
1461 // If a user got removed after updating the current user, the next user to
1462 // update will be moved to the current position, so we only need to
1463 // increment the index if the number of users did not change.
1464 if (!RemovedUser)
1465 J++;
1466 }
1467}
1468
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1471 OS << Tracker.getOrCreateName(this);
1472}
1473
1475 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1476 Op->printAsOperand(O, SlotTracker);
1477 });
1478}
1479#endif
1480
1481void VPSlotTracker::assignName(const VPValue *V) {
1482 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1483 auto *UV = V->getUnderlyingValue();
1484 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1485 if (!UV && !(VPI && !VPI->getName().empty())) {
1486 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1487 NextSlot++;
1488 return;
1489 }
1490
1491 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1492 // appending ".Number" to the name if there are multiple uses.
1493 std::string Name;
1494 if (UV) {
1496 UV->printAsOperand(S, false);
1497 } else
1498 Name = VPI->getName();
1499
1500 assert(!Name.empty() && "Name cannot be empty.");
1501 StringRef Prefix = UV ? "ir<" : "vp<%";
1502 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1503
1504 // First assign the base name for V.
1505 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1506 // Integer or FP constants with different types will result in he same string
1507 // due to stripping types.
1508 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1509 return;
1510
1511 // If it is already used by C > 0 other VPValues, increase the version counter
1512 // C and use it for V.
1513 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1514 if (!UseInserted) {
1515 C->second++;
1516 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1517 }
1518}
1519
1520void VPSlotTracker::assignNames(const VPlan &Plan) {
1521 if (Plan.VF.getNumUsers() > 0)
1522 assignName(&Plan.VF);
1523 if (Plan.VFxUF.getNumUsers() > 0)
1524 assignName(&Plan.VFxUF);
1525 assignName(&Plan.VectorTripCount);
1526 if (Plan.BackedgeTakenCount)
1527 assignName(Plan.BackedgeTakenCount);
1528 for (VPValue *LI : Plan.VPLiveInsToFree)
1529 assignName(LI);
1530
1533 for (const VPBasicBlock *VPBB :
1534 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1535 assignNames(VPBB);
1536}
1537
1538void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1539 for (const VPRecipeBase &Recipe : *VPBB)
1540 for (VPValue *Def : Recipe.definedValues())
1541 assignName(Def);
1542}
1543
1544std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1545 std::string Name = VPValue2Name.lookup(V);
1546 if (!Name.empty())
1547 return Name;
1548
1549 // If no name was assigned, no VPlan was provided when creating the slot
1550 // tracker or it is not reachable from the provided VPlan. This can happen,
1551 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1552 // in a debugger.
1553 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1554 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1555 // here.
1556 const VPRecipeBase *DefR = V->getDefiningRecipe();
1557 (void)DefR;
1558 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1559 "VPValue defined by a recipe in a VPlan?");
1560
1561 // Use the underlying value's name, if there is one.
1562 if (auto *UV = V->getUnderlyingValue()) {
1563 std::string Name;
1565 UV->printAsOperand(S, false);
1566 return (Twine("ir<") + Name + ">").str();
1567 }
1568
1569 return "<badref>";
1570}
1571
1573 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1574 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1575 bool PredicateAtRangeStart = Predicate(Range.Start);
1576
1577 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1578 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1579 Range.End = TmpVF;
1580 break;
1581 }
1582
1583 return PredicateAtRangeStart;
1584}
1585
1586/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1587/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1588/// of VF's starting at a given VF and extending it as much as possible. Each
1589/// vectorization decision can potentially shorten this sub-range during
1590/// buildVPlan().
1592 ElementCount MaxVF) {
1593 auto MaxVFTimes2 = MaxVF * 2;
1594 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1595 VFRange SubRange = {VF, MaxVFTimes2};
1596 auto Plan = buildVPlan(SubRange);
1598 // Update the name of the latch of the top-level vector loop region region
1599 // after optimizations which includes block folding.
1600 Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1601 VPlans.push_back(std::move(Plan));
1602 VF = SubRange.End;
1603 }
1604}
1605
1607 assert(count_if(VPlans,
1608 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1609 1 &&
1610 "Multiple VPlans for VF.");
1611
1612 for (const VPlanPtr &Plan : VPlans) {
1613 if (Plan->hasVF(VF))
1614 return *Plan.get();
1615 }
1616 llvm_unreachable("No plan found!");
1617}
1618
1619#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1621 if (VPlans.empty()) {
1622 O << "LV: No VPlans built.\n";
1623 return;
1624 }
1625 for (const auto &Plan : VPlans)
1627 Plan->printDOT(O);
1628 else
1629 Plan->print(O);
1630}
1631#endif
1632
1635 if (!V->isLiveIn())
1636 return {};
1637
1638 return TTI::getOperandInfo(V->getLiveInIRValue());
1639}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
std::string Name
Flatten the CFG
static void dumpEdges(CFGMST< Edge, BBInfo > &MST, GCOVFunction &GF)
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
Definition: IVUsers.cpp:48
This file provides a LoopVectorizationPlanner class.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:135
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:564
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition: VPlan.cpp:1429
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:583
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1172
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:666
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static const uint32_t IV[8]
Definition: blake3_impl.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:474
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:461
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4901
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:213
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:511
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:220
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
size_t size() const
Definition: BasicBlock.h:482
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:240
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
unsigned size() const
Definition: DenseMap.h:99
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1878
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2511
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2499
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1306
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1163
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:545
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:193
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:239
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:296
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:505
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1387
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1158
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:308
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:199
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1404
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2705
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
static InstructionCost getInvalid(CostType Val=0)
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1606
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1591
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1572
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1620
void annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst)
Add the noalias annotations to VersionedInst.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5337
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:698
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:700
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:803
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
unsigned getNumOperands() const
Definition: User.h:250
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3200
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3275
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3227
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:482
iterator end()
Definition: VPlan.h:3237
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3235
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:526
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:772
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:210
void connectToPredecessors(VPTransformState &State)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:416
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:575
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:545
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:533
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:645
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:623
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:611
const VPRecipeBase & back() const
Definition: VPlan.h:3249
bool empty() const
Definition: VPlan.h:3246
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:78
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:294
VPRegionBlock * getParent()
Definition: VPlan.h:170
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:180
void setName(const Twine &newName)
Definition: VPlan.h:163
size_t getNumSuccessors() const
Definition: VPlan.h:216
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:198
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Print plain-text dump of this VPBlockBase to O, prefixing all lines with Indent.
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:633
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:285
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:202
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:201
VPlan * getPlan()
Definition: VPlan.cpp:155
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:174
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:236
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:194
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:160
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:116
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlanUtils.h:88
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:142
VPlan-based builder utility analogous to IRBuilder.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:298
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:116
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Recipe to expand a SCEV expression.
Definition: VPlan.h:2858
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3342
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:453
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:475
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Definition: VPlan.h:1036
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:845
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlanHelpers.h:116
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:75
static VPLane getFirstLane()
Definition: VPlanHelpers.h:141
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:366
VPBasicBlock * getParent()
Definition: VPlan.h:391
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3377
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:716
const VPBlockBase * getEntry() const
Definition: VPlan.h:3413
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3445
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:779
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:817
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:725
const VPBlockBase * getExiting() const
Definition: VPlan.h:3425
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition: VPlan.h:3438
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3143
This class can be used to assign names to VPValues.
Definition: VPlanHelpers.h:389
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1544
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:206
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1474
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
Definition: VPlan.cpp:1435
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:125
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1470
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:108
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:88
virtual ~VPValue()
Definition: VPlan.cpp:94
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:101
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1438
unsigned getNumUsers() const
Definition: VPlanValue.h:117
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1442
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:69
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:1807
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlanHelpers.h:418
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1292
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3476
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1163
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1139
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
Definition: VPlan.cpp:938
VPBasicBlock * getEntry()
Definition: VPlan.h:3589
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition: VPlan.h:3772
VPValue & getVectorTripCount()
The vector trip count.
Definition: VPlan.h:3654
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3633
bool isExitBlock(VPBlockBase *VPBB)
Returns true if VPBB is an exit block.
Definition: VPlan.cpp:967
unsigned getUF() const
Definition: VPlan.h:3685
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
Definition: VPlan.cpp:859
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition: VPlan.cpp:1264
bool hasVF(ElementCount VF)
Definition: VPlan.h:3670
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1070
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1064
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition: VPlan.h:3762
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1270
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:3703
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1169
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:974
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1122
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:3621
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1086
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition: VPlan.h:3594
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1210
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinaryVPInstruction_match< Op0_t, Op1_t, VPInstruction::BranchOnCount > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
UnaryVPInstruction_match< Op0_t, VPInstruction::BranchOnCond > m_BranchOnCond(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
@ SS
Definition: X86.h:212
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
Definition: VPlanUtils.h:41
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:16
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:854
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2207
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:215
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
cl::opt< bool > EnableFSDiscriminator
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
Definition: VPlan.cpp:54
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:74
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
InstructionCost Cost
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
Definition: VPlanHelpers.h:57
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlanHelpers.h:62
ElementCount End
Definition: VPlanHelpers.h:67
Struct to hold various analysis needed for cost computations.
Definition: VPlanHelpers.h:356
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1634
TargetTransformInfo::TargetCostKind CostKind
Definition: VPlanHelpers.h:363
const TargetTransformInfo & TTI
Definition: VPlanHelpers.h:357
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlanHelpers.h:304
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlanHelpers.h:312
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlanHelpers.h:300
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlanHelpers.h:308
BasicBlock * getPreheaderBBFor(VPRecipeBase *R)
Returns the BasicBlock* mapped to the pre-header of the loop region containing R.
Definition: VPlan.cpp:349
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlanHelpers.h:315
DenseMap< VPValue *, Value * > VPV2Vector
Definition: VPlanHelpers.h:215
DenseMap< VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlanHelpers.h:217
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlanHelpers.h:196
bool hasScalarValue(VPValue *Def, VPLane Lane)
Definition: VPlanHelpers.h:229
bool hasVectorValue(VPValue *Def)
Definition: VPlanHelpers.h:227
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlanHelpers.h:326
struct llvm::VPTransformState::DataState Data
void addMetadata(Value *To, Instruction *From)
Add metadata from one instruction to another.
Definition: VPlan.cpp:362
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Definition: VPlan.cpp:395
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:251
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
Definition: VPlanHelpers.h:345
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
Definition: VPlan.cpp:354
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlanHelpers.h:210
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition: VPlan.cpp:217
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlanHelpers.h:329
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlanHelpers.h:335
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlanHelpers.h:205
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:373
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
Definition: VPlanHelpers.h:338
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlanHelpers.h:239
void print(raw_ostream &O) const
Definition: VPlan.cpp:1408
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...