161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
885 initializeVScaleForTuning();
900 bool runtimeChecksRequired();
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
938 void collectValuesToIgnore();
941 void collectElementTypesForWidening();
945 void collectInLoopReductions();
966 "Profitable to scalarize relevant only for VF > 1.");
969 "cost-model should not be used for outer loops (in VPlan-native path)");
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(
I);
981 "cost-model should not be used for outer loops (in VPlan-native path)");
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(
I);
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(
I);
1014 return VF.
isVector() && MinBWs.contains(
I) &&
1036 WideningDecisions[{
I, VF}] = {W,
Cost};
1055 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1058 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1060 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1072 "cost-model should not be used for outer loops (in VPlan-native path)");
1074 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1075 auto Itr = WideningDecisions.find(InstOnVF);
1076 if (Itr == WideningDecisions.end())
1078 return Itr->second.first;
1085 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1086 assert(WideningDecisions.contains(InstOnVF) &&
1087 "The cost is not calculated");
1088 return WideningDecisions[InstOnVF].second;
1101 std::optional<unsigned> MaskPos,
1104 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1110 auto I = CallWideningDecisions.find({CI, VF});
1111 if (
I == CallWideningDecisions.end())
1134 Value *
Op = Trunc->getOperand(0);
1135 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1139 return Legal->isInductionPhi(
Op);
1155 if (VF.
isScalar() || Uniforms.contains(VF))
1158 collectLoopUniforms(VF);
1160 collectLoopScalars(VF);
1168 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1176 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1191 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1198 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1199 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1200 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1211 return ScalarCost < SafeDivisorCost;
1235 std::pair<InstructionCost, InstructionCost>
1263 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1270 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1271 "from latch block\n");
1276 "interleaved group requires scalar epilogue\n");
1279 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 if (!ChosenTailFoldingStyle)
1293 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1294 : ChosenTailFoldingStyle->second;
1302 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1303 if (!
Legal->canFoldTailByMasking()) {
1309 ChosenTailFoldingStyle = {
1310 TTI.getPreferredTailFoldingStyle(
true),
1311 TTI.getPreferredTailFoldingStyle(
false)};
1321 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1335 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1336 "not try to generate VP Intrinsics "
1338 ?
"since interleave count specified is greater than 1.\n"
1339 :
"due to non-interleaving reasons.\n"));
1373 return InLoopReductions.contains(Phi);
1384 TTI.preferPredicatedReductionSelect();
1399 WideningDecisions.clear();
1400 CallWideningDecisions.clear();
1418 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1419 const unsigned IC)
const;
1427 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1429 Type *VectorTy)
const;
1433 bool shouldConsiderInvariant(
Value *
Op);
1439 unsigned NumPredStores = 0;
1443 std::optional<unsigned> VScaleForTuning;
1448 void initializeVScaleForTuning() {
1453 auto Max = Attr.getVScaleRangeMax();
1454 if (Max && Min == Max) {
1455 VScaleForTuning = Max;
1468 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1469 ElementCount UserVF,
1470 bool FoldTailByMasking);
1474 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1475 bool FoldTailByMasking)
const;
1480 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1481 unsigned SmallestType,
1482 unsigned WidestType,
1483 ElementCount MaxSafeVF,
1484 bool FoldTailByMasking);
1488 bool isScalableVectorizationAllowed();
1492 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1498 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1519 ElementCount VF)
const;
1523 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1528 MapVector<Instruction *, uint64_t> MinBWs;
1533 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1537 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1538 PredicatedBBsAfterVectorization;
1551 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1552 ChosenTailFoldingStyle;
1555 std::optional<bool> IsScalableVectorizationAllowed;
1561 std::optional<unsigned> MaxSafeElements;
1567 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1571 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1582 SmallPtrSet<PHINode *, 4> InLoopReductions;
1587 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1595 ScalarCostsTy &ScalarCosts,
1607 void collectLoopUniforms(ElementCount VF);
1616 void collectLoopScalars(ElementCount VF);
1620 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1621 std::pair<InstWidening, InstructionCost>>;
1623 DecisionList WideningDecisions;
1625 using CallDecisionList =
1626 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1628 CallDecisionList CallWideningDecisions;
1632 bool needsExtract(
Value *V, ElementCount VF)
const {
1636 getWideningDecision(
I, VF) == CM_Scalarize ||
1647 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1652 ElementCount VF)
const {
1654 SmallPtrSet<const Value *, 4> UniqueOperands;
1658 !needsExtract(
Op, VF))
1730class GeneratedRTChecks {
1736 Value *SCEVCheckCond =
nullptr;
1743 Value *MemRuntimeCheckCond =
nullptr;
1752 bool CostTooHigh =
false;
1754 Loop *OuterLoop =
nullptr;
1765 : DT(DT), LI(LI),
TTI(
TTI),
1766 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1767 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1775 void create(Loop *L,
const LoopAccessInfo &LAI,
1776 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1796 nullptr,
"vector.scevcheck");
1803 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1804 SCEVCleaner.cleanup();
1809 if (RtPtrChecking.Need) {
1810 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1811 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1814 auto DiffChecks = RtPtrChecking.getDiffChecks();
1816 Value *RuntimeVF =
nullptr;
1819 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1821 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1827 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1830 assert(MemRuntimeCheckCond &&
1831 "no RT checks generated although RtPtrChecking "
1832 "claimed checks are required");
1837 if (!MemCheckBlock && !SCEVCheckBlock)
1847 if (SCEVCheckBlock) {
1850 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1854 if (MemCheckBlock) {
1857 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1863 if (MemCheckBlock) {
1867 if (SCEVCheckBlock) {
1873 OuterLoop =
L->getParentLoop();
1877 if (SCEVCheckBlock || MemCheckBlock)
1889 for (Instruction &
I : *SCEVCheckBlock) {
1890 if (SCEVCheckBlock->getTerminator() == &
I)
1896 if (MemCheckBlock) {
1898 for (Instruction &
I : *MemCheckBlock) {
1899 if (MemCheckBlock->getTerminator() == &
I)
1911 ScalarEvolution *SE = MemCheckExp.
getSE();
1916 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1921 unsigned BestTripCount = 2;
1925 PSE, OuterLoop,
false))
1926 if (EstimatedTC->isFixed())
1927 BestTripCount = EstimatedTC->getFixedValue();
1932 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1933 (InstructionCost::CostType)1);
1935 if (BestTripCount > 1)
1937 <<
"We expect runtime memory checks to be hoisted "
1938 <<
"out of the outer loop. Cost reduced from "
1939 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1941 MemCheckCost = NewMemCheckCost;
1945 RTCheckCost += MemCheckCost;
1948 if (SCEVCheckBlock || MemCheckBlock)
1949 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1957 ~GeneratedRTChecks() {
1958 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1959 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1960 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1961 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1963 SCEVCleaner.markResultUsed();
1965 if (MemChecksUsed) {
1966 MemCheckCleaner.markResultUsed();
1968 auto &SE = *MemCheckExp.
getSE();
1975 I.eraseFromParent();
1978 MemCheckCleaner.cleanup();
1979 SCEVCleaner.cleanup();
1981 if (!SCEVChecksUsed)
1982 SCEVCheckBlock->eraseFromParent();
1984 MemCheckBlock->eraseFromParent();
1989 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
1990 using namespace llvm::PatternMatch;
1992 return {
nullptr,
nullptr};
1994 return {SCEVCheckCond, SCEVCheckBlock};
1999 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2000 using namespace llvm::PatternMatch;
2001 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2002 return {
nullptr,
nullptr};
2003 return {MemRuntimeCheckCond, MemCheckBlock};
2007 bool hasChecks()
const {
2008 return getSCEVChecks().first || getMemRuntimeChecks().first;
2051 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2057 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2087 for (
Loop *InnerL : L)
2110 ?
B.CreateSExtOrTrunc(Index, StepTy)
2111 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2112 if (CastedIndex != Index) {
2114 Index = CastedIndex;
2124 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2129 return B.CreateAdd(
X,
Y);
2135 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2136 "Types don't match!");
2143 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2144 return B.CreateMul(
X,
Y);
2147 switch (InductionKind) {
2150 "Vector indices not supported for integer inductions yet");
2152 "Index type does not match StartValue type");
2154 return B.CreateSub(StartValue, Index);
2159 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2162 "Vector indices not supported for FP inductions yet");
2165 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2166 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2167 "Original bin op should be defined for FP induction");
2169 Value *MulExp =
B.CreateFMul(Step, Index);
2170 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2181 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2184 if (
F.hasFnAttribute(Attribute::VScaleRange))
2185 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2187 return std::nullopt;
2196 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2198 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2200 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2206 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2209 std::optional<unsigned> MaxVScale =
2213 MaxVF *= *MaxVScale;
2216 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2230 return TTI.enableMaskedInterleavedAccessVectorization();
2243 PreVectorPH = CheckVPIRBB;
2253 "must have incoming values for all operands");
2254 R.addOperand(R.getOperand(NumPredecessors - 2));
2280 auto CreateStep = [&]() ->
Value * {
2287 if (!
VF.isScalable())
2289 return Builder.CreateBinaryIntrinsic(
2295 Value *Step = CreateStep();
2304 CheckMinIters =
Builder.getTrue();
2306 TripCountSCEV, SE.
getSCEV(Step))) {
2309 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2311 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2319 Value *MaxUIntTripCount =
2326 return CheckMinIters;
2335 VPlan *Plan =
nullptr) {
2339 auto IP = IRVPBB->
begin();
2341 R.moveBefore(*IRVPBB, IP);
2345 R.moveBefore(*IRVPBB, IRVPBB->
end());
2354 assert(VectorPH &&
"Invalid loop structure");
2356 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2357 "loops not exiting via the latch without required epilogue?");
2364 Twine(Prefix) +
"scalar.ph");
2370 const SCEV2ValueTy &ExpandedSCEVs) {
2371 const SCEV *Step =
ID.getStep();
2373 return C->getValue();
2375 return U->getValue();
2376 Value *V = ExpandedSCEVs.lookup(Step);
2377 assert(V &&
"SCEV must be expanded at this point");
2387 auto *Cmp = L->getLatchCmpInst();
2389 InstsToIgnore.
insert(Cmp);
2390 for (
const auto &KV : IL) {
2399 [&](
const User *U) { return U == IV || U == Cmp; }))
2400 InstsToIgnore.
insert(IVInst);
2412struct CSEDenseMapInfo {
2423 return DenseMapInfo<Instruction *>::getTombstoneKey();
2426 static unsigned getHashValue(
const Instruction *
I) {
2427 assert(canHandle(
I) &&
"Unknown instruction!");
2432 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2433 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2434 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2436 return LHS->isIdenticalTo(
RHS);
2448 if (!CSEDenseMapInfo::canHandle(&In))
2454 In.replaceAllUsesWith(V);
2455 In.eraseFromParent();
2468 std::optional<unsigned> VScale) {
2472 EstimatedVF *= *VScale;
2473 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2491 for (
auto &ArgOp : CI->
args())
2502 return ScalarCallCost;
2515 assert(
ID &&
"Expected intrinsic call!");
2519 FMF = FPMO->getFastMathFlags();
2525 std::back_inserter(ParamTys),
2526 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2531 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2545 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2560 Builder.SetInsertPoint(NewPhi);
2562 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2567void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2572 "This function should not be visited twice for the same VF");
2595 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2596 assert(WideningDecision != CM_Unknown &&
2597 "Widening decision should be ready at this moment");
2599 if (
Ptr == Store->getValueOperand())
2600 return WideningDecision == CM_Scalarize;
2602 "Ptr is neither a value or pointer operand");
2603 return WideningDecision != CM_GatherScatter;
2608 auto IsLoopVaryingGEP = [&](
Value *
V) {
2619 if (!IsLoopVaryingGEP(
Ptr))
2631 if (IsScalarUse(MemAccess,
Ptr) &&
2635 PossibleNonScalarPtrs.
insert(
I);
2651 for (
auto *BB : TheLoop->
blocks())
2652 for (
auto &
I : *BB) {
2654 EvaluatePtrUse(Load,
Load->getPointerOperand());
2656 EvaluatePtrUse(Store,
Store->getPointerOperand());
2657 EvaluatePtrUse(Store,
Store->getValueOperand());
2660 for (
auto *
I : ScalarPtrs)
2661 if (!PossibleNonScalarPtrs.
count(
I)) {
2669 auto ForcedScalar = ForcedScalars.
find(VF);
2670 if (ForcedScalar != ForcedScalars.
end())
2671 for (
auto *
I : ForcedScalar->second) {
2672 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2681 while (Idx != Worklist.
size()) {
2683 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2687 auto *J = cast<Instruction>(U);
2688 return !TheLoop->contains(J) || Worklist.count(J) ||
2689 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2690 IsScalarUse(J, Src));
2693 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2699 for (
const auto &Induction :
Legal->getInductionVars()) {
2700 auto *Ind = Induction.first;
2705 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2710 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2712 return Induction.second.getKind() ==
2720 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2721 auto *I = cast<Instruction>(U);
2722 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2723 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2732 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2737 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2738 auto *I = cast<Instruction>(U);
2739 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2740 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2742 if (!ScalarIndUpdate)
2747 Worklist.
insert(IndUpdate);
2748 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2749 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2763 switch(
I->getOpcode()) {
2766 case Instruction::Call:
2770 case Instruction::Load:
2771 case Instruction::Store: {
2780 TTI.isLegalMaskedGather(VTy, Alignment))
2782 TTI.isLegalMaskedScatter(VTy, Alignment));
2784 case Instruction::UDiv:
2785 case Instruction::SDiv:
2786 case Instruction::SRem:
2787 case Instruction::URem: {
2808 if (
Legal->blockNeedsPredication(
I->getParent()))
2820 switch(
I->getOpcode()) {
2823 "instruction should have been considered by earlier checks");
2824 case Instruction::Call:
2828 "should have returned earlier for calls not needing a mask");
2830 case Instruction::Load:
2833 case Instruction::Store: {
2841 case Instruction::UDiv:
2842 case Instruction::SDiv:
2843 case Instruction::SRem:
2844 case Instruction::URem:
2846 return !
Legal->isInvariant(
I->getOperand(1));
2850std::pair<InstructionCost, InstructionCost>
2853 assert(
I->getOpcode() == Instruction::UDiv ||
2854 I->getOpcode() == Instruction::SDiv ||
2855 I->getOpcode() == Instruction::SRem ||
2856 I->getOpcode() == Instruction::URem);
2865 ScalarizationCost = 0;
2871 ScalarizationCost +=
2875 ScalarizationCost +=
2877 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2894 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2899 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2901 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2902 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2904 return {ScalarizationCost, SafeDivisorCost};
2911 "Decision should not be set yet.");
2913 assert(Group &&
"Must have a group.");
2914 unsigned InterleaveFactor = Group->getFactor();
2918 auto &
DL =
I->getDataLayout();
2930 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2931 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2936 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2938 if (MemberNI != ScalarNI)
2941 if (MemberNI && ScalarNI &&
2942 ScalarTy->getPointerAddressSpace() !=
2943 MemberTy->getPointerAddressSpace())
2952 bool PredicatedAccessRequiresMasking =
2954 Legal->isMaskRequired(
I);
2955 bool LoadAccessWithGapsRequiresEpilogMasking =
2958 bool StoreAccessWithGapsRequiresMasking =
2960 if (!PredicatedAccessRequiresMasking &&
2961 !LoadAccessWithGapsRequiresEpilogMasking &&
2962 !StoreAccessWithGapsRequiresMasking)
2969 "Masked interleave-groups for predicated accesses are not enabled.");
2971 if (Group->isReverse())
2975 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2976 StoreAccessWithGapsRequiresMasking;
2984 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
2996 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3006 auto &
DL =
I->getDataLayout();
3013void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3020 "This function should not be visited twice for the same VF");
3024 Uniforms[VF].
clear();
3032 auto IsOutOfScope = [&](
Value *V) ->
bool {
3044 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3045 if (IsOutOfScope(
I)) {
3050 if (isPredicatedInst(
I)) {
3052 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3056 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3066 for (BasicBlock *
E : Exiting) {
3070 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3071 AddToWorklistIfAllowed(Cmp);
3080 if (PrevVF.isVector()) {
3081 auto Iter = Uniforms.
find(PrevVF);
3082 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3085 if (!
Legal->isUniformMemOp(*
I, VF))
3095 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3096 InstWidening WideningDecision = getWideningDecision(
I, VF);
3097 assert(WideningDecision != CM_Unknown &&
3098 "Widening decision should be ready at this moment");
3100 if (IsUniformMemOpUse(
I))
3103 return (WideningDecision == CM_Widen ||
3104 WideningDecision == CM_Widen_Reverse ||
3105 WideningDecision == CM_Interleave);
3115 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3123 SetVector<Value *> HasUniformUse;
3127 for (
auto *BB : TheLoop->
blocks())
3128 for (
auto &
I : *BB) {
3130 switch (
II->getIntrinsicID()) {
3131 case Intrinsic::sideeffect:
3132 case Intrinsic::experimental_noalias_scope_decl:
3133 case Intrinsic::assume:
3134 case Intrinsic::lifetime_start:
3135 case Intrinsic::lifetime_end:
3137 AddToWorklistIfAllowed(&
I);
3145 if (IsOutOfScope(EVI->getAggregateOperand())) {
3146 AddToWorklistIfAllowed(EVI);
3152 "Expected aggregate value to be call return value");
3165 if (IsUniformMemOpUse(&
I))
3166 AddToWorklistIfAllowed(&
I);
3168 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3175 for (
auto *V : HasUniformUse) {
3176 if (IsOutOfScope(V))
3179 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3180 auto *UI = cast<Instruction>(U);
3181 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3183 if (UsersAreMemAccesses)
3184 AddToWorklistIfAllowed(
I);
3191 while (Idx != Worklist.
size()) {
3194 for (
auto *OV :
I->operand_values()) {
3196 if (IsOutOfScope(OV))
3201 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3207 auto *J = cast<Instruction>(U);
3208 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3210 AddToWorklistIfAllowed(OI);
3221 for (
const auto &Induction :
Legal->getInductionVars()) {
3222 auto *Ind = Induction.first;
3227 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3228 auto *I = cast<Instruction>(U);
3229 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3230 IsVectorizedMemAccessUse(I, Ind);
3237 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3238 auto *I = cast<Instruction>(U);
3239 return I == Ind || Worklist.count(I) ||
3240 IsVectorizedMemAccessUse(I, IndUpdate);
3242 if (!UniformIndUpdate)
3246 AddToWorklistIfAllowed(Ind);
3247 AddToWorklistIfAllowed(IndUpdate);
3256 if (
Legal->getRuntimePointerChecking()->Need) {
3258 "runtime pointer checks needed. Enable vectorization of this "
3259 "loop with '#pragma clang loop vectorize(enable)' when "
3260 "compiling with -Os/-Oz",
3261 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3265 if (!
PSE.getPredicate().isAlwaysTrue()) {
3267 "runtime SCEV checks needed. Enable vectorization of this "
3268 "loop with '#pragma clang loop vectorize(enable)' when "
3269 "compiling with -Os/-Oz",
3270 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3275 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3277 "runtime stride == 1 checks needed. Enable vectorization of "
3278 "this loop without such check by compiling with -Os/-Oz",
3279 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3286bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3287 if (IsScalableVectorizationAllowed)
3288 return *IsScalableVectorizationAllowed;
3290 IsScalableVectorizationAllowed =
false;
3294 if (Hints->isScalableVectorizationDisabled()) {
3296 "ScalableVectorizationDisabled", ORE, TheLoop);
3300 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3303 std::numeric_limits<ElementCount::ScalarTy>::max());
3312 if (!canVectorizeReductions(MaxScalableVF)) {
3314 "Scalable vectorization not supported for the reduction "
3315 "operations found in this loop.",
3316 "ScalableVFUnfeasible", ORE, TheLoop);
3322 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3327 "for all element types found in this loop.",
3328 "ScalableVFUnfeasible", ORE, TheLoop);
3334 "for safe distance analysis.",
3335 "ScalableVFUnfeasible", ORE, TheLoop);
3339 IsScalableVectorizationAllowed =
true;
3344LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3345 if (!isScalableVectorizationAllowed())
3349 std::numeric_limits<ElementCount::ScalarTy>::max());
3350 if (
Legal->isSafeForAnyVectorWidth())
3351 return MaxScalableVF;
3359 "Max legal vector width too small, scalable vectorization "
3361 "ScalableVFUnfeasible", ORE, TheLoop);
3363 return MaxScalableVF;
3366FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3367 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3369 unsigned SmallestType, WidestType;
3370 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3376 unsigned MaxSafeElementsPowerOf2 =
3378 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3379 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3380 MaxSafeElementsPowerOf2 =
3381 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3384 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3386 if (!
Legal->isSafeForAnyVectorWidth())
3387 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3389 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3391 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3396 auto MaxSafeUserVF =
3397 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3399 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3402 return FixedScalableVFPair(
3408 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3414 <<
" is unsafe, clamping to max safe VF="
3415 << MaxSafeFixedVF <<
".\n");
3417 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3420 <<
"User-specified vectorization factor "
3421 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3422 <<
" is unsafe, clamping to maximum safe vectorization factor "
3423 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3425 return MaxSafeFixedVF;
3430 <<
" is ignored because scalable vectors are not "
3433 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3436 <<
"User-specified vectorization factor "
3437 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3438 <<
" is ignored because the target does not support scalable "
3439 "vectors. The compiler will pick a more suitable value.";
3443 <<
" is unsafe. Ignoring scalable UserVF.\n");
3445 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3448 <<
"User-specified vectorization factor "
3449 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3450 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3451 "more suitable value.";
3456 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3457 <<
" / " << WidestType <<
" bits.\n");
3462 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3463 MaxSafeFixedVF, FoldTailByMasking))
3467 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3468 MaxSafeScalableVF, FoldTailByMasking))
3469 if (MaxVF.isScalable()) {
3470 Result.ScalableVF = MaxVF;
3471 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3480 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3484 "Not inserting runtime ptr check for divergent target",
3485 "runtime pointer checks needed. Not enabled for divergent target",
3486 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3492 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3495 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3498 "loop trip count is one, irrelevant for vectorization",
3509 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3513 "Trip count computation wrapped",
3514 "backedge-taken count is -1, loop trip count wrapped to 0",
3519 switch (ScalarEpilogueStatus) {
3521 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3526 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3527 <<
"LV: Not allowing scalar epilogue, creating predicated "
3528 <<
"vector loop.\n");
3535 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3537 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3553 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3554 "No decisions should have been taken at this point");
3564 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3568 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3569 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3570 *MaxPowerOf2RuntimeVF,
3573 MaxPowerOf2RuntimeVF = std::nullopt;
3576 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3580 !
Legal->hasUncountableEarlyExit())
3582 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3587 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3589 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3590 "Invalid loop count");
3592 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3599 if (MaxPowerOf2RuntimeVF > 0u) {
3601 "MaxFixedVF must be a power of 2");
3602 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3604 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3610 if (ExpectedTC && ExpectedTC->isFixed() &&
3611 ExpectedTC->getFixedValue() <=
3612 TTI.getMinTripCountTailFoldingThreshold()) {
3613 if (MaxPowerOf2RuntimeVF > 0u) {
3619 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3620 "remain for any chosen VF.\n");
3627 "The trip count is below the minial threshold value.",
3628 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3643 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3644 "try to generate VP Intrinsics with scalable vector "
3649 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3659 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3660 "scalar epilogue instead.\n");
3666 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3672 "unable to calculate the loop count due to complex control flow",
3678 "Cannot optimize for size and vectorize at the same time.",
3679 "cannot optimize for size and vectorize at the same time. "
3680 "Enable vectorization of this loop with '#pragma clang loop "
3681 "vectorize(enable)' when compiling with -Os/-Oz",
3693 if (
TTI.shouldConsiderVectorizationRegPressure())
3709 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3711 Legal->hasVectorCallVariants())));
3714ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3715 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3717 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3718 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3719 auto Min = Attr.getVScaleRangeMin();
3726 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3729 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3737 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3738 "exceeding the constant trip count: "
3739 << ClampedUpperTripCount <<
"\n");
3741 FoldTailByMasking ? VF.
isScalable() :
false);
3746ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3747 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3748 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3749 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3755 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3757 "Scalable flags must match");
3765 ComputeScalableMaxVF);
3766 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3768 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3770 if (!MaxVectorElementCount) {
3772 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3773 <<
" vector registers.\n");
3777 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3778 MaxTripCount, FoldTailByMasking);
3781 if (MaxVF != MaxVectorElementCount)
3789 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3791 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3793 if (useMaxBandwidth(RegKind)) {
3796 ComputeScalableMaxVF);
3797 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3799 if (ElementCount MinVF =
3801 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3803 <<
") with target's minimum: " << MinVF <<
'\n');
3808 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3810 if (MaxVectorElementCount != MaxVF) {
3814 invalidateCostModelingDecisions();
3822 const unsigned MaxTripCount,
3824 bool IsEpilogue)
const {
3830 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3831 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3832 if (
A.Width.isScalable())
3833 EstimatedWidthA *= *VScale;
3834 if (
B.Width.isScalable())
3835 EstimatedWidthB *= *VScale;
3842 return CostA < CostB ||
3843 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3849 A.Width.isScalable() && !
B.Width.isScalable();
3860 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3862 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3874 return VectorCost * (MaxTripCount / VF) +
3875 ScalarCost * (MaxTripCount % VF);
3876 return VectorCost *
divideCeil(MaxTripCount, VF);
3879 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3880 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3881 return CmpFn(RTCostA, RTCostB);
3887 bool IsEpilogue)
const {
3889 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3895 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3897 for (
const auto &Plan : VPlans) {
3906 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3908 precomputeCosts(*Plan, VF, CostCtx);
3911 for (
auto &R : *VPBB) {
3912 if (!R.cost(VF, CostCtx).isValid())
3918 if (InvalidCosts.
empty())
3926 for (
auto &Pair : InvalidCosts)
3931 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3932 unsigned NA = Numbering[
A.first];
3933 unsigned NB = Numbering[
B.first];
3948 Subset =
Tail.take_front(1);
3955 [](
const auto *R) {
return Instruction::PHI; })
3956 .Case<VPWidenSelectRecipe>(
3957 [](
const auto *R) {
return Instruction::Select; })
3958 .Case<VPWidenStoreRecipe>(
3959 [](
const auto *R) {
return Instruction::Store; })
3960 .Case<VPWidenLoadRecipe>(
3961 [](
const auto *R) {
return Instruction::Load; })
3962 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3963 [](
const auto *R) {
return Instruction::Call; })
3966 [](
const auto *R) {
return R->getOpcode(); })
3968 return R->getStoredValues().empty() ? Instruction::Load
3969 : Instruction::Store;
3977 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3978 std::string OutString;
3980 assert(!Subset.empty() &&
"Unexpected empty range");
3981 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3982 for (
const auto &Pair : Subset)
3983 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3985 if (Opcode == Instruction::Call) {
3988 Name =
Int->getIntrinsicName();
3992 WidenCall ? WidenCall->getCalledScalarFunction()
3994 ->getLiveInIRValue());
3997 OS <<
" call to " << Name;
4002 Tail =
Tail.drop_front(Subset.size());
4006 Subset =
Tail.take_front(Subset.size() + 1);
4007 }
while (!
Tail.empty());
4029 switch (R.getVPDefID()) {
4030 case VPDef::VPDerivedIVSC:
4031 case VPDef::VPScalarIVStepsSC:
4032 case VPDef::VPReplicateSC:
4033 case VPDef::VPInstructionSC:
4034 case VPDef::VPCanonicalIVPHISC:
4035 case VPDef::VPVectorPointerSC:
4036 case VPDef::VPVectorEndPointerSC:
4037 case VPDef::VPExpandSCEVSC:
4038 case VPDef::VPEVLBasedIVPHISC:
4039 case VPDef::VPPredInstPHISC:
4040 case VPDef::VPBranchOnMaskSC:
4042 case VPDef::VPReductionSC:
4043 case VPDef::VPActiveLaneMaskPHISC:
4044 case VPDef::VPWidenCallSC:
4045 case VPDef::VPWidenCanonicalIVSC:
4046 case VPDef::VPWidenCastSC:
4047 case VPDef::VPWidenGEPSC:
4048 case VPDef::VPWidenIntrinsicSC:
4049 case VPDef::VPWidenSC:
4050 case VPDef::VPWidenSelectSC:
4051 case VPDef::VPBlendSC:
4052 case VPDef::VPFirstOrderRecurrencePHISC:
4053 case VPDef::VPHistogramSC:
4054 case VPDef::VPWidenPHISC:
4055 case VPDef::VPWidenIntOrFpInductionSC:
4056 case VPDef::VPWidenPointerInductionSC:
4057 case VPDef::VPReductionPHISC:
4058 case VPDef::VPInterleaveEVLSC:
4059 case VPDef::VPInterleaveSC:
4060 case VPDef::VPWidenLoadEVLSC:
4061 case VPDef::VPWidenLoadSC:
4062 case VPDef::VPWidenStoreEVLSC:
4063 case VPDef::VPWidenStoreSC:
4069 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4070 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4086 if (R.getNumDefinedValues() == 0 &&
4095 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4097 if (!Visited.
insert({ScalarTy}).second)
4111 [](
auto *VPRB) { return VPRB->isReplicator(); });
4117 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4118 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4121 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4122 "Expected Scalar VF to be a candidate");
4129 if (ForceVectorization &&
4130 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4134 ChosenFactor.
Cost = InstructionCost::getMax();
4137 for (
auto &
P : VPlans) {
4139 P->vectorFactors().end());
4142 if (
any_of(VFs, [
this](ElementCount VF) {
4143 return CM.shouldConsiderRegPressureForVF(VF);
4147 for (
unsigned I = 0;
I < VFs.size();
I++) {
4148 ElementCount VF = VFs[
I];
4156 if (CM.shouldConsiderRegPressureForVF(VF) &&
4164 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4166 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4167 assert(VectorRegion &&
"Expected to have a vector region!");
4170 for (VPRecipeBase &R : *VPBB) {
4174 switch (VPI->getOpcode()) {
4177 case Instruction::Select: {
4178 VPValue *VPV = VPI->getVPSingleValue();
4181 switch (WR->getOpcode()) {
4182 case Instruction::UDiv:
4183 case Instruction::SDiv:
4184 case Instruction::URem:
4185 case Instruction::SRem:
4192 C += VPI->cost(VF, CostCtx);
4196 unsigned Multiplier =
4199 C += VPI->cost(VF * Multiplier, CostCtx);
4203 C += VPI->cost(VF, CostCtx);
4215 <<
" costs: " << (Candidate.Cost / Width));
4218 << CM.getVScaleForTuning().value_or(1) <<
")");
4224 <<
"LV: Not considering vector loop of width " << VF
4225 <<
" because it will not generate any vector instructions.\n");
4232 <<
"LV: Not considering vector loop of width " << VF
4233 <<
" because it would cause replicated blocks to be generated,"
4234 <<
" which isn't allowed when optimizing for size.\n");
4238 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4239 ChosenFactor = Candidate;
4245 "There are conditional stores.",
4246 "store that is conditionally executed prevents vectorization",
4247 "ConditionalStore", ORE, OrigLoop);
4248 ChosenFactor = ScalarCost;
4252 !isMoreProfitable(ChosenFactor, ScalarCost,
4253 !CM.foldTailByMasking()))
dbgs()
4254 <<
"LV: Vectorization seems to be not beneficial, "
4255 <<
"but was forced by a user.\n");
4256 return ChosenFactor;
4260bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4261 ElementCount VF)
const {
4264 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4265 if (!Legal->isReductionVariable(&Phi))
4266 return Legal->isFixedOrderRecurrence(&Phi);
4267 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4268 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4274 for (
const auto &Entry :
Legal->getInductionVars()) {
4277 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4278 for (User *U :
PostInc->users())
4282 for (User *U :
Entry.first->users())
4291 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4305 if (!
TTI.preferEpilogueVectorization())
4310 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4315 :
TTI.getEpilogueVectorizationMinVF();
4323 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4327 if (!CM.isScalarEpilogueAllowed()) {
4328 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4329 "epilogue is allowed.\n");
4335 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4336 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4337 "is not a supported candidate.\n");
4342 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4345 return {ForcedEC, 0, 0};
4347 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4352 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4354 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4358 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4359 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4371 Type *TCType = Legal->getWidestInductionType();
4372 const SCEV *RemainingIterations =
nullptr;
4373 unsigned MaxTripCount = 0;
4377 RemainingIterations =
4381 if (RemainingIterations->
isZero())
4391 << MaxTripCount <<
"\n");
4394 for (
auto &NextVF : ProfitableVFs) {
4401 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4403 (NextVF.Width.isScalable() &&
4405 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4411 if (RemainingIterations && !NextVF.Width.isScalable()) {
4414 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4415 RemainingIterations))
4419 if (Result.Width.isScalar() ||
4420 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4427 << Result.Width <<
"\n");
4431std::pair<unsigned, unsigned>
4433 unsigned MinWidth = -1U;
4434 unsigned MaxWidth = 8;
4440 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4444 MinWidth = std::min(
4448 MaxWidth = std::max(MaxWidth,
4453 MinWidth = std::min<unsigned>(
4454 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4455 MaxWidth = std::max<unsigned>(
4456 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4459 return {MinWidth, MaxWidth};
4467 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4481 if (!
Legal->isReductionVariable(PN))
4484 Legal->getRecurrenceDescriptor(PN);
4494 T = ST->getValueOperand()->getType();
4497 "Expected the load/store/recurrence type to be sized");
4521 if (!CM.isScalarEpilogueAllowed())
4526 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4527 "Unroll factor forced to be 1.\n");
4532 if (!Legal->isSafeForAnyVectorWidth())
4541 const bool HasReductions =
4547 if (LoopCost == 0) {
4549 LoopCost = CM.expectedCost(VF);
4551 LoopCost = cost(Plan, VF);
4552 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4563 for (
auto &Pair : R.MaxLocalUsers) {
4564 Pair.second = std::max(Pair.second, 1U);
4578 unsigned IC = UINT_MAX;
4580 for (
const auto &Pair : R.MaxLocalUsers) {
4581 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4584 << TTI.getRegisterClassName(Pair.first)
4585 <<
" register class\n");
4593 unsigned MaxLocalUsers = Pair.second;
4594 unsigned LoopInvariantRegs = 0;
4595 if (R.LoopInvariantRegs.contains(Pair.first))
4596 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4598 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4602 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4603 std::max(1U, (MaxLocalUsers - 1)));
4606 IC = std::min(IC, TmpIC);
4610 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4626 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4628 unsigned AvailableTC =
4634 if (CM.requiresScalarEpilogue(VF.
isVector()))
4637 unsigned InterleaveCountLB =
bit_floor(std::max(
4638 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4652 unsigned InterleaveCountUB =
bit_floor(std::max(
4653 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4654 MaxInterleaveCount = InterleaveCountLB;
4656 if (InterleaveCountUB != InterleaveCountLB) {
4657 unsigned TailTripCountUB =
4658 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4659 unsigned TailTripCountLB =
4660 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4663 if (TailTripCountUB == TailTripCountLB)
4664 MaxInterleaveCount = InterleaveCountUB;
4672 MaxInterleaveCount = InterleaveCountLB;
4676 assert(MaxInterleaveCount > 0 &&
4677 "Maximum interleave count must be greater than 0");
4681 if (IC > MaxInterleaveCount)
4682 IC = MaxInterleaveCount;
4685 IC = std::max(1u, IC);
4687 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4691 if (VF.
isVector() && HasReductions) {
4692 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4700 bool ScalarInterleavingRequiresPredication =
4702 return Legal->blockNeedsPredication(BB);
4704 bool ScalarInterleavingRequiresRuntimePointerCheck =
4705 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4710 <<
"LV: IC is " << IC <<
'\n'
4711 <<
"LV: VF is " << VF <<
'\n');
4712 const bool AggressivelyInterleaveReductions =
4713 TTI.enableAggressiveInterleaving(HasReductions);
4714 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4715 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4724 unsigned NumStores = 0;
4725 unsigned NumLoads = 0;
4739 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4740 NumStores += StoreOps;
4742 NumLoads += InterleaveR->getNumDefinedValues();
4757 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4758 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4764 bool HasSelectCmpReductions =
4768 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4769 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4770 RedR->getRecurrenceKind()) ||
4771 RecurrenceDescriptor::isFindIVRecurrenceKind(
4772 RedR->getRecurrenceKind()));
4774 if (HasSelectCmpReductions) {
4775 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4784 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4785 bool HasOrderedReductions =
4788 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4790 return RedR && RedR->isOrdered();
4792 if (HasOrderedReductions) {
4794 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4799 SmallIC = std::min(SmallIC,
F);
4800 StoresIC = std::min(StoresIC,
F);
4801 LoadsIC = std::min(LoadsIC,
F);
4805 std::max(StoresIC, LoadsIC) > SmallIC) {
4807 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4808 return std::max(StoresIC, LoadsIC);
4813 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4817 return std::max(IC / 2, SmallIC);
4820 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4826 if (AggressivelyInterleaveReductions) {
4835bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4845 assert((isPredicatedInst(
I)) &&
4846 "Expecting a scalar emulated instruction");
4859 if (InstsToScalarize.contains(VF) ||
4860 PredicatedBBsAfterVectorization.contains(VF))
4866 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4876 ScalarCostsTy ScalarCosts;
4883 !useEmulatedMaskMemRefHack(&
I, VF) &&
4884 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4885 for (
const auto &[
I, IC] : ScalarCosts)
4886 ScalarCostsVF.
insert({
I, IC});
4889 for (
const auto &[
I,
Cost] : ScalarCosts) {
4891 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4894 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4898 PredicatedBBsAfterVectorization[VF].insert(BB);
4900 if (Pred->getSingleSuccessor() == BB)
4901 PredicatedBBsAfterVectorization[VF].insert(Pred);
4909 assert(!isUniformAfterVectorization(PredInst, VF) &&
4910 "Instruction marked uniform-after-vectorization will be predicated");
4928 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4929 isScalarAfterVectorization(
I, VF))
4934 if (isScalarWithPredication(
I, VF))
4947 for (
Use &U :
I->operands())
4949 if (isUniformAfterVectorization(J, VF))
4960 while (!Worklist.
empty()) {
4964 if (ScalarCosts.contains(
I))
4984 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
4987 ScalarCost +=
TTI.getScalarizationOverhead(
5000 for (Use &U :
I->operands())
5003 "Instruction has non-scalar type");
5004 if (CanBeScalarized(J))
5006 else if (needsExtract(J, VF)) {
5022 Discount += VectorCost - ScalarCost;
5023 ScalarCosts[
I] = ScalarCost;
5039 ValuesToIgnoreForVF);
5046 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5059 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5060 << VF <<
" For instruction: " <<
I <<
'\n');
5088 const Loop *TheLoop) {
5096 auto *SE = PSE.
getSE();
5097 unsigned NumOperands = Gep->getNumOperands();
5098 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5099 Value *Opd = Gep->getOperand(Idx);
5101 !
Legal->isInductionVariable(Opd))
5110LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5113 "Scalarization cost of instruction implies vectorization.");
5115 return InstructionCost::getInvalid();
5118 auto *SE = PSE.
getSE();
5149 if (isPredicatedInst(
I)) {
5154 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5160 if (useEmulatedMaskMemRefHack(
I, VF))
5170LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5176 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5178 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5179 "Stride should be 1 or -1 for consecutive memory access");
5182 if (
Legal->isMaskRequired(
I)) {
5191 bool Reverse = ConsecutiveStride < 0;
5199LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5217 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5225 if (!IsLoopInvariantStoreValue)
5232LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5245 Legal->isMaskRequired(
I), Alignment,
5250LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5252 const auto *Group = getInterleavedAccessGroup(
I);
5253 assert(Group &&
"Fail to get an interleaved access group.");
5260 unsigned InterleaveFactor = Group->getFactor();
5261 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5264 SmallVector<unsigned, 4> Indices;
5265 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5266 if (Group->getMember(IF))
5270 bool UseMaskForGaps =
5271 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5274 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5278 if (Group->isReverse()) {
5281 "Reverse masked interleaved access not supported.");
5282 Cost += Group->getNumMembers() *
5289std::optional<InstructionCost>
5296 return std::nullopt;
5314 return std::nullopt;
5325 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5327 return std::nullopt;
5333 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5342 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5345 BaseCost =
TTI.getArithmeticReductionCost(
5353 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5370 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5376 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5388 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5391 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5393 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5401 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5402 return I == RetI ? RedCost : 0;
5404 !
TheLoop->isLoopInvariant(RedOp)) {
5413 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5415 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5416 return I == RetI ? RedCost : 0;
5417 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5421 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5440 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5446 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5447 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5448 ExtraExtCost =
TTI.getCastInstrCost(
5455 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5456 return I == RetI ? RedCost : 0;
5460 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5466 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5467 return I == RetI ? RedCost : 0;
5471 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5475LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5486 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5487 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5490 return getWideningCost(
I, VF);
5494LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5495 ElementCount VF)
const {
5500 return InstructionCost::getInvalid();
5528 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5533 for (
auto *V : filterExtractingOperands(
Ops, VF))
5556 if (
Legal->isUniformMemOp(
I, VF)) {
5557 auto IsLegalToScalarize = [&]() {
5577 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5589 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5595 if (GatherScatterCost < ScalarizationCost)
5605 int ConsecutiveStride =
Legal->isConsecutivePtr(
5607 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5608 "Expected consecutive stride.");
5617 unsigned NumAccesses = 1;
5620 assert(Group &&
"Fail to get an interleaved access group.");
5626 NumAccesses = Group->getNumMembers();
5628 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5633 ? getGatherScatterCost(&
I, VF) * NumAccesses
5637 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5643 if (InterleaveCost <= GatherScatterCost &&
5644 InterleaveCost < ScalarizationCost) {
5646 Cost = InterleaveCost;
5647 }
else if (GatherScatterCost < ScalarizationCost) {
5649 Cost = GatherScatterCost;
5652 Cost = ScalarizationCost;
5659 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5660 if (
auto *
I = Group->getMember(Idx)) {
5662 getMemInstScalarizationCost(
I, VF));
5678 if (
TTI.prefersVectorizedAddressing())
5687 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5695 while (!Worklist.
empty()) {
5697 for (
auto &
Op :
I->operands())
5699 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5700 AddrDefs.
insert(InstOp).second)
5704 for (
auto *
I : AddrDefs) {
5722 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5737 ForcedScalars[VF].insert(
I);
5744 "Trying to set a vectorization decision for a scalar VF");
5746 auto ForcedScalar = ForcedScalars.find(VF);
5761 for (
auto &ArgOp : CI->
args())
5770 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5780 "Unexpected valid cost for scalarizing scalable vectors");
5787 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5788 ForcedScalar->second.contains(CI)) ||
5796 bool MaskRequired =
Legal->isMaskRequired(CI);
5799 for (
Type *ScalarTy : ScalarTys)
5808 std::nullopt, *RedCost);
5819 if (Info.Shape.VF != VF)
5823 if (MaskRequired && !Info.isMasked())
5827 bool ParamsOk =
true;
5829 switch (Param.ParamKind) {
5835 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5872 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5883 if (VectorCost <=
Cost) {
5905 return !OpI || !
TheLoop->contains(OpI) ||
5909 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5921 return InstsToScalarize[VF][
I];
5924 auto ForcedScalar = ForcedScalars.find(VF);
5925 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5926 auto InstSet = ForcedScalar->second;
5927 if (InstSet.count(
I))
5932 Type *RetTy =
I->getType();
5935 auto *SE =
PSE.getSE();
5939 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5944 auto Scalarized = InstsToScalarize.find(VF);
5945 assert(Scalarized != InstsToScalarize.end() &&
5946 "VF not yet analyzed for scalarization profitability");
5947 return !Scalarized->second.count(
I) &&
5949 auto *UI = cast<Instruction>(U);
5950 return !Scalarized->second.count(UI);
5959 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5960 I->getOpcode() == Instruction::PHI ||
5961 (
I->getOpcode() == Instruction::BitCast &&
5962 I->getType()->isPointerTy()) ||
5963 HasSingleCopyAfterVectorization(
I, VF));
5969 !
TTI.getNumberOfParts(VectorTy))
5973 switch (
I->getOpcode()) {
5974 case Instruction::GetElementPtr:
5980 case Instruction::Br: {
5987 bool ScalarPredicatedBB =
false;
5990 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5991 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5993 ScalarPredicatedBB =
true;
5995 if (ScalarPredicatedBB) {
6003 TTI.getScalarizationOverhead(
6011 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6019 case Instruction::Switch: {
6021 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6023 return Switch->getNumCases() *
6024 TTI.getCmpSelInstrCost(
6026 toVectorTy(Switch->getCondition()->getType(), VF),
6030 case Instruction::PHI: {
6047 Type *ResultTy = Phi->getType();
6053 auto *Phi = dyn_cast<PHINode>(U);
6054 if (Phi && Phi->getParent() == TheLoop->getHeader())
6059 auto &ReductionVars =
Legal->getReductionVars();
6060 auto Iter = ReductionVars.find(HeaderUser);
6061 if (Iter != ReductionVars.end() &&
6063 Iter->second.getRecurrenceKind()))
6066 return (Phi->getNumIncomingValues() - 1) *
6067 TTI.getCmpSelInstrCost(
6068 Instruction::Select,
toVectorTy(ResultTy, VF),
6078 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6079 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6083 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6085 case Instruction::UDiv:
6086 case Instruction::SDiv:
6087 case Instruction::URem:
6088 case Instruction::SRem:
6092 ScalarCost : SafeDivisorCost;
6096 case Instruction::Add:
6097 case Instruction::Sub: {
6098 auto Info =
Legal->getHistogramInfo(
I);
6105 if (!RHS || RHS->getZExtValue() != 1)
6107 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6111 Type *ScalarTy =
I->getType();
6115 {PtrTy, ScalarTy, MaskTy});
6118 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6119 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6123 case Instruction::FAdd:
6124 case Instruction::FSub:
6125 case Instruction::Mul:
6126 case Instruction::FMul:
6127 case Instruction::FDiv:
6128 case Instruction::FRem:
6129 case Instruction::Shl:
6130 case Instruction::LShr:
6131 case Instruction::AShr:
6132 case Instruction::And:
6133 case Instruction::Or:
6134 case Instruction::Xor: {
6138 if (
I->getOpcode() == Instruction::Mul &&
6139 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6140 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6141 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6142 PSE.getSCEV(
I->getOperand(1))->isOne())))
6151 Value *Op2 =
I->getOperand(1);
6157 auto Op2Info =
TTI.getOperandInfo(Op2);
6163 return TTI.getArithmeticInstrCost(
6165 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6168 case Instruction::FNeg: {
6169 return TTI.getArithmeticInstrCost(
6171 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6172 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6173 I->getOperand(0),
I);
6175 case Instruction::Select: {
6180 const Value *Op0, *Op1;
6191 return TTI.getArithmeticInstrCost(
6193 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6196 Type *CondTy =
SI->getCondition()->getType();
6202 Pred = Cmp->getPredicate();
6203 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6204 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6205 {TTI::OK_AnyValue, TTI::OP_None},
I);
6207 case Instruction::ICmp:
6208 case Instruction::FCmp: {
6209 Type *ValTy =
I->getOperand(0)->getType();
6215 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6216 "if both the operand and the compare are marked for "
6217 "truncation, they must have the same bitwidth");
6222 return TTI.getCmpSelInstrCost(
6225 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6227 case Instruction::Store:
6228 case Instruction::Load: {
6233 "CM decision should be taken at this point");
6240 return getMemoryInstructionCost(
I, VF);
6242 case Instruction::BitCast:
6243 if (
I->getType()->isPointerTy())
6246 case Instruction::ZExt:
6247 case Instruction::SExt:
6248 case Instruction::FPToUI:
6249 case Instruction::FPToSI:
6250 case Instruction::FPExt:
6251 case Instruction::PtrToInt:
6252 case Instruction::IntToPtr:
6253 case Instruction::SIToFP:
6254 case Instruction::UIToFP:
6255 case Instruction::Trunc:
6256 case Instruction::FPTrunc: {
6260 "Expected a load or a store!");
6286 unsigned Opcode =
I->getOpcode();
6289 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6292 CCH = ComputeCCH(Store);
6295 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6296 Opcode == Instruction::FPExt) {
6298 CCH = ComputeCCH(Load);
6306 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6307 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6314 Type *SrcScalarTy =
I->getOperand(0)->getType();
6326 (
I->getOpcode() == Instruction::ZExt ||
6327 I->getOpcode() == Instruction::SExt))
6331 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6333 case Instruction::Call:
6335 case Instruction::ExtractValue:
6337 case Instruction::Alloca:
6345 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6360 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6361 return RequiresScalarEpilogue &&
6375 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6376 return VecValuesToIgnore.contains(U) ||
6377 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6386 if (Group->getInsertPos() == &
I)
6389 DeadInterleavePointerOps.
push_back(PointerOp);
6395 if (Br->isConditional())
6402 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6405 Instruction *UI = cast<Instruction>(U);
6406 return !VecValuesToIgnore.contains(U) &&
6407 (!isAccessInterleaved(UI) ||
6408 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6428 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6440 if ((ThenEmpty && ElseEmpty) ||
6442 ElseBB->
phis().empty()) ||
6444 ThenBB->
phis().empty())) {
6456 return !VecValuesToIgnore.contains(U) &&
6457 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6465 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6474 for (
const auto &Reduction :
Legal->getReductionVars()) {
6481 for (
const auto &Induction :
Legal->getInductionVars()) {
6490 if (!InLoopReductions.empty())
6493 for (
const auto &Reduction :
Legal->getReductionVars()) {
6494 PHINode *Phi = Reduction.first;
6505 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6513 bool InLoop = !ReductionOperations.
empty();
6516 InLoopReductions.insert(Phi);
6519 for (
auto *
I : ReductionOperations) {
6520 InLoopReductionImmediateChains[
I] = LastChain;
6524 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6525 <<
" reduction for phi: " << *Phi <<
"\n");
6538 unsigned WidestType;
6542 TTI.enableScalableVectorization()
6547 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6558 if (!OrigLoop->isInnermost()) {
6568 <<
"overriding computed VF.\n");
6571 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6573 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6574 <<
"not supported by the target.\n");
6576 "Scalable vectorization requested but not supported by the target",
6577 "the scalable user-specified vectorization width for outer-loop "
6578 "vectorization cannot be used because the target does not support "
6579 "scalable vectors.",
6580 "ScalableVFUnfeasible", ORE, OrigLoop);
6585 "VF needs to be a power of two");
6587 <<
"VF " << VF <<
" to build VPlans.\n");
6597 return {VF, 0 , 0 };
6601 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6602 "VPlan-native path.\n");
6607 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6608 CM.collectValuesToIgnore();
6609 CM.collectElementTypesForWidening();
6616 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6620 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6621 "which requires masked-interleaved support.\n");
6622 if (CM.InterleaveInfo.invalidateGroups())
6626 CM.invalidateCostModelingDecisions();
6629 if (CM.foldTailByMasking())
6630 Legal->prepareToFoldTailByMasking();
6637 "UserVF ignored because it may be larger than the maximal safe VF",
6638 "InvalidUserVF", ORE, OrigLoop);
6641 "VF needs to be a power of two");
6644 CM.collectInLoopReductions();
6645 if (CM.selectUserVectorizationFactor(UserVF)) {
6647 buildVPlansWithVPRecipes(UserVF, UserVF);
6652 "InvalidCost", ORE, OrigLoop);
6665 CM.collectInLoopReductions();
6666 for (
const auto &VF : VFCandidates) {
6668 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6687 return CM.isUniformAfterVectorization(
I, VF);
6691 return CM.ValuesToIgnore.contains(UI) ||
6692 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6712 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6714 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6716 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6717 for (
Value *
Op : IVInsts[
I]->operands()) {
6719 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6725 for (User *U :
IV->users()) {
6738 if (TC == VF && !CM.foldTailByMasking())
6742 for (Instruction *IVInst : IVInsts) {
6747 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6748 <<
": induction instruction " << *IVInst <<
"\n";
6750 Cost += InductionCost;
6760 CM.TheLoop->getExitingBlocks(Exiting);
6761 SetVector<Instruction *> ExitInstrs;
6763 for (BasicBlock *EB : Exiting) {
6768 ExitInstrs.
insert(CondI);
6772 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6774 if (!OrigLoop->contains(CondI) ||
6779 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6780 <<
": exit condition instruction " << *CondI <<
"\n";
6786 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6787 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6788 !ExitInstrs.contains(cast<Instruction>(U));
6800 for (BasicBlock *BB : OrigLoop->blocks()) {
6804 if (BB == OrigLoop->getLoopLatch())
6806 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6813 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6819 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6820 <<
": forced scalar " << *ForcedScalar <<
"\n";
6824 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6829 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6830 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6839 ElementCount VF)
const {
6840 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE());
6848 <<
" (Estimated cost per lane: ");
6850 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6873 return &WidenMem->getIngredient();
6882 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6883 VPI->getNumUsers() != 1)
6887 switch (WR->getOpcode()) {
6888 case Instruction::UDiv:
6889 case Instruction::SDiv:
6890 case Instruction::URem:
6891 case Instruction::SRem:
6904 auto *IG =
IR->getInterleaveGroup();
6905 unsigned NumMembers = IG->getNumMembers();
6906 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6940 if (RepR->isSingleScalar() &&
6942 RepR->getUnderlyingInstr(), VF))
6945 if (
Instruction *UI = GetInstructionForCost(&R)) {
6950 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6962 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6964 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6967 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6968 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6970 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6980 VPlan &FirstPlan = *VPlans[0];
6986 ?
"Reciprocal Throughput\n"
6988 ?
"Instruction Latency\n"
6991 ?
"Code Size and Latency\n"
6996 "More than a single plan/VF w/o any plan having scalar VF");
7000 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7005 if (ForceVectorization) {
7012 for (
auto &
P : VPlans) {
7014 P->vectorFactors().end());
7018 return CM.shouldConsiderRegPressureForVF(VF);
7022 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7029 <<
"LV: Not considering vector loop of width " << VF
7030 <<
" because it will not generate any vector instructions.\n");
7036 <<
"LV: Not considering vector loop of width " << VF
7037 <<
" because it would cause replicated blocks to be generated,"
7038 <<
" which isn't allowed when optimizing for size.\n");
7045 if (CM.shouldConsiderRegPressureForVF(VF) &&
7047 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7048 << VF <<
" because it uses too many registers\n");
7052 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7053 BestFactor = CurrentFactor;
7056 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7057 ProfitableVFs.push_back(CurrentFactor);
7073 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7075 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7082 BestFactor.
Width) ||
7085 " VPlan cost model and legacy cost model disagreed");
7087 "when vectorizing, the scalar cost must be computed.");
7097 "RdxResult must be ComputeFindIVResult");
7115 if (!EpiRedResult ||
7121 auto *EpiRedHeaderPhi =
7123 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7124 Value *MainResumeValue;
7128 "unexpected start recipe");
7129 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7131 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7133 [[maybe_unused]]
Value *StartV =
7134 EpiRedResult->getOperand(1)->getLiveInIRValue();
7137 "AnyOf expected to start with ICMP_NE");
7138 assert(Cmp->getOperand(1) == StartV &&
7139 "AnyOf expected to start by comparing main resume value to original "
7141 MainResumeValue = Cmp->getOperand(0);
7144 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7146 Value *Cmp, *OrigResumeV, *CmpOp;
7147 [[maybe_unused]]
bool IsExpectedPattern =
7148 match(MainResumeValue,
7154 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7155 MainResumeValue = OrigResumeV;
7170 "Trying to execute plan with unsupported VF");
7172 "Trying to execute plan with unsupported UF");
7174 ++LoopsEarlyExitVectorized;
7181 bool HasBranchWeights =
7183 if (HasBranchWeights) {
7184 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7186 BestVPlan, BestVF, VScale);
7191 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7204 OrigLoop->getStartLoc(),
7205 OrigLoop->getHeader())
7206 <<
"Created vector loop never executes due to insufficient trip "
7225 BestVPlan, VectorPH, CM.foldTailByMasking(),
7226 CM.requiresScalarEpilogue(BestVF.
isVector()));
7238 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7239 "count during epilogue vectorization");
7243 OrigLoop->getParentLoop(),
7244 Legal->getWidestInductionType());
7246#ifdef EXPENSIVE_CHECKS
7247 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7258 "final VPlan is invalid");
7265 if (!Exit->hasPredecessors())
7287 MDNode *LID = OrigLoop->getLoopID();
7288 unsigned OrigLoopInvocationWeight = 0;
7289 std::optional<unsigned> OrigAverageTripCount =
7301 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7303 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7305 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7306 OrigLoopInvocationWeight,
7308 DisableRuntimeUnroll);
7316 return ExpandedSCEVs;
7331 EPI.EpilogueIterationCountCheck =
7333 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7343 EPI.MainLoopIterationCountCheck =
7352 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7353 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7354 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7355 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7356 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7362 dbgs() <<
"intermediate fn:\n"
7363 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7369 assert(Bypass &&
"Expected valid bypass basic block.");
7373 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7374 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7378 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7404 return TCCheckBlock;
7417 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7425 R.moveBefore(*NewEntry, NewEntry->
end());
7429 Plan.setEntry(NewEntry);
7432 return OriginalScalarPH;
7437 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7438 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7439 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7445 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7453 "Must be called with either a load or store");
7457 CM.getWideningDecision(
I, VF);
7459 "CM decision should be taken at this point.");
7462 if (CM.isScalarAfterVectorization(
I, VF) ||
7463 CM.isProfitableToScalarize(
I, VF))
7472 if (
Legal->isMaskRequired(
I))
7473 Mask = getBlockInMask(Builder.getInsertBlock());
7478 CM.getWideningDecision(
I,
Range.Start);
7486 Ptr->getUnderlyingValue()->stripPointerCasts());
7494 CM.foldTailByMasking() || !
GEP
7496 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7499 -1, Flags,
I->getDebugLoc());
7502 GEP ?
GEP->getNoWrapFlags()
7506 Builder.insert(VectorPtr);
7510 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7511 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7514 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7515 Reverse, VPIRMetadata(*Store, LVer),
7521static VPWidenIntOrFpInductionRecipe *
7528 "step must be loop invariant");
7535 TruncI->getDebugLoc());
7539 IndDesc, Phi->getDebugLoc());
7542VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7547 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7549 *PSE.
getSE(), *OrigLoop);
7552 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7554 return new VPWidenPointerInductionRecipe(
7557 [&](ElementCount VF) {
7558 return CM.isScalarAfterVectorization(Phi, VF);
7561 Phi->getDebugLoc());
7566VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7575 auto IsOptimizableIVTruncate =
7576 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7577 return [=](ElementCount VF) ->
bool {
7578 return CM.isOptimizableIVTruncate(K, VF);
7583 IsOptimizableIVTruncate(
I),
Range)) {
7586 const InductionDescriptor &
II = *
Legal->getIntOrFpInductionDescriptor(Phi);
7594VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7598 [
this, CI](ElementCount VF) {
7599 return CM.isScalarWithPredication(CI, VF);
7607 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7608 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7609 ID == Intrinsic::pseudoprobe ||
7610 ID == Intrinsic::experimental_noalias_scope_decl))
7616 bool ShouldUseVectorIntrinsic =
7618 [&](ElementCount VF) ->
bool {
7619 return CM.getCallWideningDecision(CI, VF).Kind ==
7623 if (ShouldUseVectorIntrinsic)
7624 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7628 std::optional<unsigned> MaskPos;
7632 [&](ElementCount VF) ->
bool {
7647 LoopVectorizationCostModel::CallWideningDecision Decision =
7648 CM.getCallWideningDecision(CI, VF);
7658 if (ShouldUseVectorCall) {
7659 if (MaskPos.has_value()) {
7667 VPValue *
Mask =
nullptr;
7668 if (
Legal->isMaskRequired(CI))
7669 Mask = getBlockInMask(Builder.getInsertBlock());
7674 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7678 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7684bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7686 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7689 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7690 return CM.isScalarAfterVectorization(
I, VF) ||
7691 CM.isProfitableToScalarize(
I, VF) ||
7692 CM.isScalarWithPredication(
I, VF);
7698VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *
I,
7700 switch (
I->getOpcode()) {
7703 case Instruction::SDiv:
7704 case Instruction::UDiv:
7705 case Instruction::SRem:
7706 case Instruction::URem: {
7709 if (CM.isPredicatedInst(
I)) {
7711 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7714 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7716 return new VPWidenRecipe(*
I,
Ops);
7720 case Instruction::Add:
7721 case Instruction::And:
7722 case Instruction::AShr:
7723 case Instruction::FAdd:
7724 case Instruction::FCmp:
7725 case Instruction::FDiv:
7726 case Instruction::FMul:
7727 case Instruction::FNeg:
7728 case Instruction::FRem:
7729 case Instruction::FSub:
7730 case Instruction::ICmp:
7731 case Instruction::LShr:
7732 case Instruction::Mul:
7733 case Instruction::Or:
7734 case Instruction::Select:
7735 case Instruction::Shl:
7736 case Instruction::Sub:
7737 case Instruction::Xor:
7738 case Instruction::Freeze: {
7744 ScalarEvolution &SE = *PSE.
getSE();
7745 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7746 if (!
Op->isLiveIn())
7748 Value *
V =
Op->getUnderlyingValue();
7757 if (
I->getOpcode() == Instruction::Mul)
7758 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7760 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7762 return new VPWidenRecipe(*
I, NewOps);
7764 case Instruction::ExtractValue: {
7766 Type *I32Ty = IntegerType::getInt32Ty(
I->getContext());
7768 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7769 unsigned Idx = EVI->getIndices()[0];
7770 NewOps.push_back(Plan.
getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7771 return new VPWidenRecipe(*
I, NewOps);
7777VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7780 unsigned Opcode =
HI->Update->getOpcode();
7781 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7782 "Histogram update operation must be an Add or Sub");
7788 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7792 if (
Legal->isMaskRequired(
HI->Store))
7793 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7795 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7802 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7805 bool IsPredicated = CM.isPredicatedInst(
I);
7813 case Intrinsic::assume:
7814 case Intrinsic::lifetime_start:
7815 case Intrinsic::lifetime_end:
7837 VPValue *BlockInMask =
nullptr;
7838 if (!IsPredicated) {
7842 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7853 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7855 "Should not predicate a uniform recipe");
7866 PartialReductionChains;
7867 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7868 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7869 PartialReductionChains);
7878 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7879 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7881 auto ExtendIsOnlyUsedByPartialReductions =
7883 return all_of(Extend->users(), [&](
const User *U) {
7884 return PartialReductionOps.contains(U);
7890 for (
auto Pair : PartialReductionChains) {
7892 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7893 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7894 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7898bool VPRecipeBuilder::getScaledReductions(
7900 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7901 if (!CM.TheLoop->contains(RdxExitInstr))
7908 Value *
Op = Update->getOperand(0);
7909 Value *PhiOp = Update->getOperand(1);
7917 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7918 PHI = Chains.rbegin()->first.Reduction;
7920 Op = Update->getOperand(0);
7921 PhiOp = Update->getOperand(1);
7929 using namespace llvm::PatternMatch;
7936 std::optional<unsigned> BinOpc;
7937 Type *ExtOpTypes[2] = {
nullptr};
7940 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
7941 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
7949 if (!CM.TheLoop->contains(Exts[
I]))
7967 if (!CollectExtInfo(
Ops))
7970 BinOpc = std::make_optional(ExtendUser->
getOpcode());
7974 if (!CollectExtInfo(
Ops))
7977 ExtendUser = Update;
7978 BinOpc = std::nullopt;
7982 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
7984 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
7991 [&](ElementCount VF) {
7993 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
7994 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
7999 Chains.emplace_back(Chain, TargetScaleFactor);
8018 "Non-header phis should have been handled during predication");
8020 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8021 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8025 assert((Legal->isReductionVariable(Phi) ||
8026 Legal->isFixedOrderRecurrence(Phi)) &&
8027 "can only widen reductions and fixed-order recurrences here");
8029 if (Legal->isReductionVariable(Phi)) {
8032 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8035 unsigned ScaleFactor =
8039 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8051 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8053 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8066 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8067 return tryToWidenHistogram(*HistInfo,
Operands);
8073 if (
auto PartialRed =
8078 if (!shouldWiden(Instr,
Range))
8093 return tryToWiden(Instr,
Operands);
8099 unsigned ScaleFactor) {
8101 "Unexpected number of operands for partial reduction");
8114 unsigned ReductionOpcode = Reduction->getOpcode();
8115 if (ReductionOpcode == Instruction::Sub) {
8116 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8118 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8119 Ops.push_back(BinOp);
8122 ReductionOpcode = Instruction::Add;
8126 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8127 assert((ReductionOpcode == Instruction::Add ||
8128 ReductionOpcode == Instruction::Sub) &&
8129 "Expected an ADD or SUB operation for predicated partial "
8130 "reductions (because the neutral element in the mask is zero)!");
8133 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8134 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8137 ScaleFactor, Reduction);
8140void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8145 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8149 OrigLoop, LI, DT, PSE.
getSE());
8154 LVer.prepareNoAliasMetadata();
8160 OrigLoop, *LI,
Legal->getWidestInductionType(),
8163 auto MaxVFTimes2 = MaxVF * 2;
8165 VFRange SubRange = {VF, MaxVFTimes2};
8166 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8167 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8172 *Plan, CM.getMinimalBitwidths());
8175 if (CM.foldTailWithEVL() && !HasScalarVF)
8177 *Plan, CM.getMaxSafeElements());
8179 VPlans.push_back(std::move(Plan));
8194 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8201 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8204 Start, VectorTC, Step);
8217 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8218 return ResumePhiRecipe;
8233 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8244 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8247 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8248 ScalarPhiIRI->addOperand(ResumePhi);
8255 "should only skip truncated wide inductions");
8263 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8265 "Cannot handle loops with uncountable early exits");
8269 "vector.recur.extract");
8270 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8272 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8285 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8286 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8298 "Cannot handle loops with uncountable early exits");
8370 for (
VPUser *U : FOR->users()) {
8384 {},
"vector.recur.extract.for.phi");
8390VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8393 using namespace llvm::VPlanPatternMatch;
8394 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8401 bool RequiresScalarEpilogueCheck =
8403 [
this](ElementCount VF) {
8404 return !CM.requiresScalarEpilogue(VF.
isVector());
8409 CM.foldTailByMasking());
8417 bool IVUpdateMayOverflow =
false;
8418 for (ElementCount VF :
Range)
8426 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8428 auto *IVInc = Plan->getVectorLoopRegion()
8429 ->getExitingBasicBlock()
8432 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8434 "Did not find the canonical IV increment");
8447 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8448 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8450 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8455 "Unsupported interleave factor for scalable vectors");
8458 if (!getDecisionAndClampRange(ApplyIG,
Range))
8460 InterleaveGroups.
insert(IG);
8467 *Plan, CM.foldTailByMasking());
8473 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8474 Builder, BlockMaskCache, LVer);
8475 RecipeBuilder.collectScaledReductions(
Range);
8479 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8481 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8484 auto *MiddleVPBB = Plan->getMiddleBlock();
8488 DenseMap<VPValue *, VPValue *> Old2New;
8493 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8507 UnderlyingValue &&
"unsupported recipe");
8512 Builder.setInsertPoint(SingleDef);
8519 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8521 if (
Legal->isInvariantStoreOfReduction(SI)) {
8523 new VPReplicateRecipe(SI,
R.operands(),
true ,
8524 nullptr , VPIRMetadata(*SI, LVer));
8525 Recipe->insertBefore(*MiddleVPBB, MBIP);
8527 R.eraseFromParent();
8531 VPRecipeBase *Recipe =
8532 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8534 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8536 RecipeBuilder.setRecipe(Instr, Recipe);
8542 Builder.insert(Recipe);
8549 "Unexpected multidef recipe");
8550 R.eraseFromParent();
8559 RecipeBuilder.updateBlockMaskCache(Old2New);
8560 for (VPValue *Old : Old2New.
keys())
8561 Old->getDefiningRecipe()->eraseFromParent();
8564 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8565 "entry block must be set to a VPRegionBlock having a non-empty entry "
8571 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8573 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8576 VPWidenInductionRecipe *WideIV =
8578 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8583 DenseMap<VPValue *, VPValue *> IVEndValues;
8592 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8604 if (!CM.foldTailWithEVL()) {
8605 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8611 for (ElementCount VF :
Range)
8613 Plan->setName(
"Initial VPlan");
8619 InterleaveGroups, RecipeBuilder,
8620 CM.isScalarEpilogueAllowed());
8624 Legal->getLAI()->getSymbolicStrides());
8626 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8627 return Legal->blockNeedsPredication(BB);
8630 BlockNeedsPredication);
8642 bool WithoutRuntimeCheck =
8643 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8645 WithoutRuntimeCheck);
8653VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8658 assert(!OrigLoop->isInnermost());
8662 OrigLoop, *LI,
Legal->getWidestInductionType(),
8671 for (ElementCount VF :
Range)
8676 [
this](PHINode *
P) {
8677 return Legal->getIntOrFpInductionDescriptor(
P);
8684 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8685 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8686 Builder, BlockMaskCache,
nullptr );
8687 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8691 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8693 DenseMap<VPValue *, VPValue *> IVEndValues;
8715void LoopVectorizationPlanner::adjustRecipesForReductions(
8716 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8717 using namespace VPlanPatternMatch;
8718 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8720 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8723 for (VPRecipeBase &R : Header->phis()) {
8725 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8732 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8735 SetVector<VPSingleDefRecipe *> Worklist;
8737 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8738 VPSingleDefRecipe *Cur = Worklist[
I];
8739 for (VPUser *U : Cur->
users()) {
8741 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8742 assert((UserRecipe->getParent() == MiddleVPBB ||
8743 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8744 "U must be either in the loop region, the middle block or the "
8745 "scalar preheader.");
8748 Worklist.
insert(UserRecipe);
8759 VPSingleDefRecipe *PreviousLink = PhiR;
8760 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8762 assert(Blend->getNumIncomingValues() == 2 &&
8763 "Blend must have 2 incoming values");
8764 if (Blend->getIncomingValue(0) == PhiR) {
8765 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8767 assert(Blend->getIncomingValue(1) == PhiR &&
8768 "PhiR must be an operand of the blend");
8769 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8774 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8777 unsigned IndexOfFirstOperand;
8779 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8781 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8785 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8788 CurrentLink->getOperand(2) == PreviousLink &&
8789 "expected a call where the previous link is the added operand");
8795 VPInstruction *FMulRecipe =
new VPInstruction(
8797 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8799 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8801 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8802 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8803 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8804 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8805 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8806 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8808 Sub->setUnderlyingValue(CurrentLinkI);
8809 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8815 "need to have the compare of the select");
8819 "must be a select recipe");
8820 IndexOfFirstOperand = 1;
8823 "Expected to replace a VPWidenSC");
8824 IndexOfFirstOperand = 0;
8829 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8830 ? IndexOfFirstOperand + 1
8831 : IndexOfFirstOperand;
8832 VecOp = CurrentLink->getOperand(VecOpId);
8833 assert(VecOp != PreviousLink &&
8834 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8835 (VecOpId - IndexOfFirstOperand)) ==
8837 "PreviousLink must be the operand other than VecOp");
8840 VPValue *CondOp =
nullptr;
8841 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8845 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8851 auto *RedRecipe =
new VPReductionRecipe(
8852 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8859 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8863 CurrentLink->replaceAllUsesWith(RedRecipe);
8865 PreviousLink = RedRecipe;
8869 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8871 for (VPRecipeBase &R :
8872 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8877 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8888 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8891 std::optional<FastMathFlags> FMFs =
8896 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8897 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8906 if (CM.usePredicatedReductionSelect())
8917 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8923 VPInstruction *FinalReductionResult;
8924 VPBuilder::InsertPointGuard Guard(Builder);
8925 Builder.setInsertPoint(MiddleVPBB, IP);
8930 FinalReductionResult =
8935 FinalReductionResult =
8937 {PhiR,
Start, NewExitingVPV}, ExitDL);
8943 FinalReductionResult =
8945 {PhiR, NewExitingVPV},
Flags, ExitDL);
8952 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8954 "Unexpected truncated min-max recurrence!");
8957 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
8959 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8960 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
8961 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
8962 Extnd->insertAfter(Trunc);
8964 PhiR->
setOperand(1, Extnd->getVPSingleValue());
8969 FinalReductionResult =
8970 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8975 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8977 if (FinalReductionResult == U || Parent->getParent())
8979 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8990 return isa<VPWidenSelectRecipe>(U) ||
8991 (isa<VPReplicateRecipe>(U) &&
8992 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8993 Instruction::Select);
8998 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9000 Builder.setInsertPoint(
Select);
9004 if (
Select->getOperand(1) == PhiR)
9005 Cmp = Builder.createNot(Cmp);
9006 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9007 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9013 OrigLoop->getHeader()->getContext())));
9028 VPBuilder PHBuilder(Plan->getVectorPreheader());
9029 VPValue *Iden = Plan->getOrAddLiveIn(
9032 unsigned ScaleFactor =
9036 auto *ScaleFactorVPV =
9037 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9038 VPValue *StartV = PHBuilder.createNaryOp(
9046 for (VPRecipeBase *R : ToDelete)
9047 R->eraseFromParent();
9052void LoopVectorizationPlanner::attachRuntimeChecks(
9053 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9054 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9055 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9056 assert((!CM.OptForSize ||
9058 "Cannot SCEV check stride or overflow when optimizing for size");
9062 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9063 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9067 "Runtime checks are not supported for outer loops yet");
9069 if (CM.OptForSize) {
9072 "Cannot emit memory checks when optimizing for size, unless forced "
9075 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9076 OrigLoop->getStartLoc(),
9077 OrigLoop->getHeader())
9078 <<
"Code-size may be reduced by not forcing "
9079 "vectorization, or by source-code modifications "
9080 "eliminating the need for runtime checks "
9081 "(e.g., adding 'restrict').";
9095 bool IsIndvarOverflowCheckNeededForVF =
9096 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9098 CM.getTailFoldingStyle() !=
9105 Plan, VF, UF, MinProfitableTripCount,
9106 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9107 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9108 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9113 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9118 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9126 State.set(
this, DerivedIV,
VPLane(0));
9172 if (
TTI->preferPredicateOverEpilogue(&TFI))
9191 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9195 Function *
F = L->getHeader()->getParent();
9201 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9202 &Hints, IAI, PSI, BFI);
9206 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9226 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9228 BFI, PSI, Checks, BestPlan);
9230 << L->getHeader()->getParent()->getName() <<
"\"\n");
9252 if (S->getValueOperand()->getType()->isFloatTy())
9262 while (!Worklist.
empty()) {
9264 if (!L->contains(
I))
9266 if (!Visited.
insert(
I).second)
9276 I->getDebugLoc(), L->getHeader())
9277 <<
"floating point conversion changes vector width. "
9278 <<
"Mixed floating point precision requires an up/down "
9279 <<
"cast that will negatively impact performance.";
9282 for (
Use &
Op :
I->operands())
9298 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9304 << PredVPBB->getName() <<
":\n");
9305 Cost += PredVPBB->cost(VF, CostCtx);
9324 std::optional<unsigned> VScale) {
9340 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9399 uint64_t MinTC = std::max(MinTC1, MinTC2);
9401 MinTC =
alignTo(MinTC, IntVF);
9405 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9412 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9413 "trip count < minimum profitable VF ("
9424 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9426 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9447 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9466 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9467 bool UpdateResumePhis) {
9473 VPValue *OrigStart = VPI->getOperand(1);
9477 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9479 if (UpdateResumePhis)
9485 AddFreezeForFindLastIVReductions(MainPlan,
true);
9486 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9493 auto ResumePhiIter =
9495 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9498 VPPhi *ResumePhi =
nullptr;
9499 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9503 "vec.epilog.resume.val");
9506 if (MainScalarPH->
begin() == MainScalarPH->
end())
9508 else if (&*MainScalarPH->
begin() != ResumePhi)
9523 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9528 Header->
setName(
"vec.epilog.vector.body");
9543 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9548 "Must only have a single non-zero incoming value");
9560 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9561 "all incoming values must be 0");
9567 return isa<VPScalarIVStepsRecipe>(U) ||
9568 isa<VPDerivedIVRecipe>(U) ||
9569 cast<VPRecipeBase>(U)->isScalarCast() ||
9570 cast<VPInstruction>(U)->getOpcode() ==
9573 "the canonical IV should only be used by its increment or "
9574 "ScalarIVSteps when resetting the start value");
9575 IV->setOperand(0, VPV);
9579 Value *ResumeV =
nullptr;
9584 auto *VPI = dyn_cast<VPInstruction>(U);
9586 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9587 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9588 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9591 ->getIncomingValueForBlock(L->getLoopPreheader());
9592 RecurKind RK = ReductionPhi->getRecurrenceKind();
9600 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9605 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9616 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9619 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9620 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9628 "unexpected start value");
9629 VPI->setOperand(0, StartVal);
9641 assert(ResumeV &&
"Must have a resume value");
9655 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9657 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9672 ExpandR->eraseFromParent();
9676 unsigned MainLoopStep =
9678 unsigned EpilogueLoopStep =
9683 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9694 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9699 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9700 if (OrigPhi != OldInduction) {
9701 auto *BinOp =
II.getInductionBinOp();
9707 EndValueFromAdditionalBypass =
9709 II.getStartValue(), Step,
II.getKind(), BinOp);
9710 EndValueFromAdditionalBypass->
setName(
"ind.end");
9712 return EndValueFromAdditionalBypass;
9718 const SCEV2ValueTy &ExpandedSCEVs,
9719 Value *MainVectorTripCount) {
9724 if (Phi.getBasicBlockIndex(Pred) != -1)
9726 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9730 if (ScalarPH->hasPredecessors()) {
9733 for (
const auto &[R, IRPhi] :
9734 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9743 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9745 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9748 Inc->setIncomingValueForBlock(BypassBlock, V);
9771 "expected this to be saved from the previous pass.");
9774 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9777 VecEpilogueIterationCountCheck},
9779 VecEpiloguePreHeader}});
9784 VecEpilogueIterationCountCheck, ScalarPH);
9787 VecEpilogueIterationCountCheck},
9791 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9792 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9793 if (SCEVCheckBlock) {
9795 VecEpilogueIterationCountCheck, ScalarPH);
9797 VecEpilogueIterationCountCheck},
9800 if (MemCheckBlock) {
9802 VecEpilogueIterationCountCheck, ScalarPH);
9815 for (
PHINode *Phi : PhisInBlock) {
9817 Phi->replaceIncomingBlockWith(
9819 VecEpilogueIterationCountCheck);
9826 return EPI.EpilogueIterationCountCheck == IncB;
9831 Phi->removeIncomingValue(SCEVCheckBlock);
9833 Phi->removeIncomingValue(MemCheckBlock);
9837 for (
auto *
I : InstsToMove)
9849 "VPlan-native path is not enabled. Only process inner loops.");
9852 << L->getHeader()->getParent()->getName() <<
"' from "
9853 << L->getLocStr() <<
"\n");
9858 dbgs() <<
"LV: Loop hints:"
9869 Function *
F = L->getHeader()->getParent();
9891 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9898 "early exit is not enabled",
9899 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9905 "faulting load is not supported",
9906 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9915 if (!L->isInnermost())
9919 assert(L->isInnermost() &&
"Inner loop expected.");
9922 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9936 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9938 "requiring a scalar epilogue is unsupported",
9939 "UncountableEarlyExitUnsupported",
ORE, L);
9952 if (ExpectedTC && ExpectedTC->isFixed() &&
9954 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9955 <<
"This loop is worth vectorizing only if no scalar "
9956 <<
"iteration overheads are incurred.");
9958 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9974 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9976 "Can't vectorize when the NoImplicitFloat attribute is used",
9977 "loop not vectorized due to NoImplicitFloat attribute",
9978 "NoImplicitFloat",
ORE, L);
9988 TTI->isFPVectorizationPotentiallyUnsafe()) {
9990 "Potentially unsafe FP op prevents vectorization",
9991 "loop not vectorized due to unsafe FP support.",
9992 "UnsafeFP",
ORE, L);
9997 bool AllowOrderedReductions;
10002 AllowOrderedReductions =
TTI->enableOrderedReductions();
10007 ExactFPMathInst->getDebugLoc(),
10008 ExactFPMathInst->getParent())
10009 <<
"loop not vectorized: cannot prove it is safe to reorder "
10010 "floating-point operations";
10012 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10013 "reorder floating-point operations\n");
10019 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10022 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10030 LVP.
plan(UserVF, UserIC);
10037 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10042 unsigned SelectedIC = std::max(IC, UserIC);
10051 if (Checks.getSCEVChecks().first &&
10052 match(Checks.getSCEVChecks().first,
m_One()))
10054 if (Checks.getMemRuntimeChecks().first &&
10055 match(Checks.getMemRuntimeChecks().first,
m_One()))
10060 bool ForceVectorization =
10064 if (!ForceVectorization &&
10070 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10072 <<
"loop not vectorized: cannot prove it is safe to reorder "
10073 "memory operations";
10082 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10083 bool VectorizeLoop =
true, InterleaveLoop =
true;
10085 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10087 "VectorizationNotBeneficial",
10088 "the cost-model indicates that vectorization is not beneficial"};
10089 VectorizeLoop =
false;
10095 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10096 "interleaving should be avoided up front\n");
10097 IntDiagMsg = {
"InterleavingAvoided",
10098 "Ignoring UserIC, because interleaving was avoided up front"};
10099 InterleaveLoop =
false;
10100 }
else if (IC == 1 && UserIC <= 1) {
10104 "InterleavingNotBeneficial",
10105 "the cost-model indicates that interleaving is not beneficial"};
10106 InterleaveLoop =
false;
10108 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10109 IntDiagMsg.second +=
10110 " and is explicitly disabled or interleave count is set to 1";
10112 }
else if (IC > 1 && UserIC == 1) {
10114 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10116 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10117 "the cost-model indicates that interleaving is beneficial "
10118 "but is explicitly disabled or interleave count is set to 1"};
10119 InterleaveLoop =
false;
10125 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10126 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10127 <<
"to histogram operations.\n");
10129 "HistogramPreventsScalarInterleaving",
10130 "Unable to interleave without vectorization due to constraints on "
10131 "the order of histogram operations"};
10132 InterleaveLoop =
false;
10136 IC = UserIC > 0 ? UserIC : IC;
10140 if (!VectorizeLoop && !InterleaveLoop) {
10144 L->getStartLoc(), L->getHeader())
10145 << VecDiagMsg.second;
10149 L->getStartLoc(), L->getHeader())
10150 << IntDiagMsg.second;
10155 if (!VectorizeLoop && InterleaveLoop) {
10159 L->getStartLoc(), L->getHeader())
10160 << VecDiagMsg.second;
10162 }
else if (VectorizeLoop && !InterleaveLoop) {
10164 <<
") in " << L->getLocStr() <<
'\n');
10167 L->getStartLoc(), L->getHeader())
10168 << IntDiagMsg.second;
10170 }
else if (VectorizeLoop && InterleaveLoop) {
10172 <<
") in " << L->getLocStr() <<
'\n');
10178 using namespace ore;
10183 <<
"interleaved loop (interleaved count: "
10184 << NV(
"InterleaveCount", IC) <<
")";
10201 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10213 PSI, Checks, *BestMainPlan);
10215 *BestMainPlan, MainILV,
DT,
false);
10221 BFI,
PSI, Checks, BestEpiPlan);
10223 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10227 Checks, InstsToMove);
10228 ++LoopsEpilogueVectorized;
10230 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10244 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10245 "DT not preserved correctly");
10260 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10264 bool Changed =
false, CFGChanged =
false;
10271 for (
const auto &L : *
LI)
10283 LoopsAnalyzed += Worklist.
size();
10286 while (!Worklist.
empty()) {
10329 if (
PSI &&
PSI->hasProfileSummary())
10332 if (!Result.MadeAnyChange)
10346 if (Result.MadeCFGChange) {
10362 OS, MapClassName2PassName);
10365 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10366 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks