LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cstdint>
150#include <functional>
151#include <iterator>
152#include <limits>
153#include <memory>
154#include <string>
155#include <tuple>
156#include <utility>
157
158using namespace llvm;
159using namespace SCEVPatternMatch;
160
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
163
164#ifndef NDEBUG
165const char VerboseDebug[] = DEBUG_TYPE "-verbose";
166#endif
167
168STATISTIC(LoopsVectorized, "Number of loops vectorized");
169STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
172
174 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
175 cl::desc("Enable vectorization of epilogue loops."));
176
178 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
179 cl::desc("When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
181 "loops."));
182
184 "epilogue-vectorization-minimum-VF", cl::Hidden,
185 cl::desc("Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
187
188/// Loops with a known constant trip count below this number are vectorized only
189/// if no scalar iteration overheads are incurred.
191 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
192 cl::desc("Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
194 "are incurred."));
195
197 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
198 cl::desc("The maximum allowed number of runtime memory checks"));
199
200// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201// that predication is preferred, and this lists all options. I.e., the
202// vectorizer will try to fold the tail-loop (epilogue) into the vector body
203// and predicate the instructions accordingly. If tail-folding fails, there are
204// different fallback strategies depending on these values:
211} // namespace PreferPredicateTy
212
214 "prefer-predicate-over-epilogue",
217 cl::desc("Tail-folding and predication preferences over creating a scalar "
218 "epilogue loop."),
220 "scalar-epilogue",
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
225 "folding fails."),
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
230
232 "force-tail-folding-style", cl::desc("Force the tail folding style"),
235 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
251
253 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
254 cl::desc("Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
256
258 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
259 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
260
261/// An interleave-group may need masking if it resides in a block that needs
262/// predication, or in order to mask away gaps.
264 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
266
268 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
269 cl::desc("A flag that overrides the target's number of scalar registers."));
270
272 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
273 cl::desc("A flag that overrides the target's number of vector registers."));
274
276 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
277 cl::desc("A flag that overrides the target's max interleave factor for "
278 "scalar loops."));
279
281 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
282 cl::desc("A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
284
286 "force-target-instruction-cost", cl::init(0), cl::Hidden,
287 cl::desc("A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
290
292 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
293 cl::desc(
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
296
298 "small-loop-cost", cl::init(20), cl::Hidden,
299 cl::desc(
300 "The cost of a loop that is considered 'small' by the interleaver."));
301
303 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
304 cl::desc("Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
307
308// Runtime interleave loops for load/store throughput.
310 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
311 cl::desc(
312 "Enable runtime interleaving until load/store ports are saturated"));
313
314/// The number of stores in a loop that are allowed to need predication.
316 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
317 cl::desc("Max number of stores to be predicated behind an if."));
318
320 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
321 cl::desc("Count the induction variable only once when interleaving"));
322
324 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
325 cl::desc("Enable if predication of stores during vectorization."));
326
328 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
329 cl::desc("The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
331
332static cl::opt<bool>
333 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
335 cl::desc("Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
337
339 "force-ordered-reductions", cl::init(false), cl::Hidden,
340 cl::desc("Enable the vectorisation of loops with in-order (strict) "
341 "FP reductions"));
342
344 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
345 cl::desc(
346 "Prefer predicating a reduction operation over an after loop select."));
347
349 "enable-vplan-native-path", cl::Hidden,
350 cl::desc("Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
352
354 llvm::VerifyEachVPlan("vplan-verify-each",
355#ifdef EXPENSIVE_CHECKS
356 cl::init(true),
357#else
358 cl::init(false),
359#endif
361 cl::desc("Verfiy VPlans after VPlan transforms."));
362
363// This flag enables the stress testing of the VPlan H-CFG construction in the
364// VPlan-native vectorization path. It must be used in conjuction with
365// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
366// verification of the H-CFGs built.
368 "vplan-build-stress-test", cl::init(false), cl::Hidden,
369 cl::desc(
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
373
375 "interleave-loops", cl::init(true), cl::Hidden,
376 cl::desc("Enable loop interleaving in Loop vectorization passes"));
378 "vectorize-loops", cl::init(true), cl::Hidden,
379 cl::desc("Run the Loop vectorization passes"));
380
382 "force-widen-divrem-via-safe-divisor", cl::Hidden,
383 cl::desc(
384 "Override cost based safe divisor widening for div/rem instructions"));
385
387 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
389 cl::desc("Try wider VFs if they enable the use of vector variants"));
390
392 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
393 cl::desc(
394 "Enable vectorization of early exit loops with uncountable exits."));
395
397 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
398 cl::desc("Discard VFs if their register pressure is too high."));
399
400// Likelyhood of bypassing the vectorized loop because there are zero trips left
401// after prolog. See `emitIterationCountCheck`.
402static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
403
404/// A helper function that returns true if the given type is irregular. The
405/// type is irregular if its allocated size doesn't equal the store size of an
406/// element of the corresponding vector type.
407static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
408 // Determine if an array of N elements of type Ty is "bitcast compatible"
409 // with a <N x Ty> vector.
410 // This is only true if there is no padding between the array elements.
411 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
412}
413
414/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
415/// ElementCount to include loops whose trip count is a function of vscale.
417 const Loop *L) {
418 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
419 return ElementCount::getFixed(ExpectedTC);
420
421 const SCEV *BTC = SE->getBackedgeTakenCount(L);
423 return ElementCount::getFixed(0);
424
425 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
426 if (isa<SCEVVScale>(ExitCount))
428
429 const APInt *Scale;
430 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
431 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
432 if (Scale->getActiveBits() <= 32)
434
435 return ElementCount::getFixed(0);
436}
437
438/// Returns "best known" trip count, which is either a valid positive trip count
439/// or std::nullopt when an estimate cannot be made (including when the trip
440/// count would overflow), for the specified loop \p L as defined by the
441/// following procedure:
442/// 1) Returns exact trip count if it is known.
443/// 2) Returns expected trip count according to profile data if any.
444/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
445/// 4) Returns std::nullopt if all of the above failed.
446static std::optional<ElementCount>
448 bool CanUseConstantMax = true) {
449 // Check if exact trip count is known.
450 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
451 return ExpectedTC;
452
453 // Check if there is an expected trip count available from profile data.
455 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
456 return ElementCount::getFixed(*EstimatedTC);
457
458 if (!CanUseConstantMax)
459 return std::nullopt;
460
461 // Check if upper bound estimate is known.
462 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
463 return ElementCount::getFixed(ExpectedTC);
464
465 return std::nullopt;
466}
467
468namespace {
469// Forward declare GeneratedRTChecks.
470class GeneratedRTChecks;
471
472using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
473} // namespace
474
475namespace llvm {
476
478
479/// InnerLoopVectorizer vectorizes loops which contain only one basic
480/// block to a specified vectorization factor (VF).
481/// This class performs the widening of scalars into vectors, or multiple
482/// scalars. This class also implements the following features:
483/// * It inserts an epilogue loop for handling loops that don't have iteration
484/// counts that are known to be a multiple of the vectorization factor.
485/// * It handles the code generation for reduction variables.
486/// * Scalarization (implementation using scalars) of un-vectorizable
487/// instructions.
488/// InnerLoopVectorizer does not perform any vectorization-legality
489/// checks, and relies on the caller to check for the different legality
490/// aspects. The InnerLoopVectorizer relies on the
491/// LoopVectorizationLegality class to provide information about the induction
492/// and reduction variables that were found to a given vectorization factor.
494public:
498 ElementCount VecWidth, unsigned UnrollFactor,
500 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks,
501 VPlan &Plan)
502 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
503 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
507
508 virtual ~InnerLoopVectorizer() = default;
509
510 /// Creates a basic block for the scalar preheader. Both
511 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
512 /// the method to create additional blocks and checks needed for epilogue
513 /// vectorization.
515
516 /// Fix the vectorized code, taking care of header phi's, and more.
518
519 /// Fix the non-induction PHIs in \p Plan.
521
522 /// Returns the original loop trip count.
523 Value *getTripCount() const { return TripCount; }
524
525 /// Used to set the trip count after ILV's construction and after the
526 /// preheader block has been executed. Note that this always holds the trip
527 /// count of the original loop for both main loop and epilogue vectorization.
528 void setTripCount(Value *TC) { TripCount = TC; }
529
530protected:
532
533 /// Create and return a new IR basic block for the scalar preheader whose name
534 /// is prefixed with \p Prefix.
536
537 /// Allow subclasses to override and print debug traces before/after vplan
538 /// execution, when trace information is requested.
539 virtual void printDebugTracesAtStart() {}
540 virtual void printDebugTracesAtEnd() {}
541
542 /// The original loop.
544
545 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
546 /// dynamic knowledge to simplify SCEV expressions and converts them to a
547 /// more usable form.
549
550 /// Loop Info.
552
553 /// Dominator Tree.
555
556 /// Target Transform Info.
558
559 /// Assumption Cache.
561
562 /// The vectorization SIMD factor to use. Each vector will have this many
563 /// vector elements.
565
566 /// The vectorization unroll factor to use. Each scalar is vectorized to this
567 /// many different vector instructions.
568 unsigned UF;
569
570 /// The builder that we use
572
573 // --- Vectorization state ---
574
575 /// Trip count of the original loop.
576 Value *TripCount = nullptr;
577
578 /// The profitablity analysis.
580
581 /// BFI and PSI are used to check for profile guided size optimizations.
584
585 /// Structure to hold information about generated runtime checks, responsible
586 /// for cleaning the checks, if vectorization turns out unprofitable.
587 GeneratedRTChecks &RTChecks;
588
590
591 /// The vector preheader block of \p Plan, used as target for check blocks
592 /// introduced during skeleton creation.
594};
595
596/// Encapsulate information regarding vectorization of a loop and its epilogue.
597/// This information is meant to be updated and used across two stages of
598/// epilogue vectorization.
601 unsigned MainLoopUF = 0;
603 unsigned EpilogueUF = 0;
606 Value *TripCount = nullptr;
609
611 ElementCount EVF, unsigned EUF,
613 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
615 assert(EUF == 1 &&
616 "A high UF for the epilogue loop is likely not beneficial.");
617 }
618};
619
620/// An extension of the inner loop vectorizer that creates a skeleton for a
621/// vectorized loop that has its epilogue (residual) also vectorized.
622/// The idea is to run the vplan on a given loop twice, firstly to setup the
623/// skeleton and vectorize the main loop, and secondly to complete the skeleton
624/// from the first step and vectorize the epilogue. This is achieved by
625/// deriving two concrete strategy classes from this base class and invoking
626/// them in succession from the loop vectorizer planner.
628public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
668 /// Implements the interface for creating a vectorized skeleton using the
669 /// *main loop* strategy (i.e., the first pass of VPlan execution).
671
672protected:
673 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
674 /// vector preheader and its predecessor, also connecting the new block to the
675 /// scalar preheader.
676 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
677
678 // Create a check to see if the main vector loop should be executed
680 unsigned UF) const;
681
682 /// Emits an iteration count bypass check once for the main loop (when \p
683 /// ForEpilogue is false) and once for the epilogue loop (when \p
684 /// ForEpilogue is true).
686 bool ForEpilogue);
687 void printDebugTracesAtStart() override;
688 void printDebugTracesAtEnd() override;
689};
690
691// A specialized derived class of inner loop vectorizer that performs
692// vectorization of *epilogue* loops in the process of vectorizing loops and
693// their epilogues.
695public:
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
883 Hints(Hints), InterleaveInfo(IAI) {
884 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
885 initializeVScaleForTuning();
887 // Query this against the original loop and save it here because the profile
888 // of the original loop header may change as the transformation happens.
889 OptForSize = llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
891 }
892
893 /// \return An upper bound for the vectorization factors (both fixed and
894 /// scalable). If the factors are 0, vectorization and interleaving should be
895 /// avoided up front.
896 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
897
898 /// \return True if runtime checks are required for vectorization, and false
899 /// otherwise.
900 bool runtimeChecksRequired();
901
902 /// Setup cost-based decisions for user vectorization factor.
903 /// \return true if the UserVF is a feasible VF to be chosen.
906 return expectedCost(UserVF).isValid();
907 }
908
909 /// \return True if maximizing vector bandwidth is enabled by the target or
910 /// user options, for the given register kind.
911 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
912
913 /// \return True if register pressure should be considered for the given VF.
914 bool shouldConsiderRegPressureForVF(ElementCount VF);
915
916 /// \return The size (in bits) of the smallest and widest types in the code
917 /// that needs to be vectorized. We ignore values that remain scalar such as
918 /// 64 bit loop indices.
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
920
921 /// Memory access instruction may be vectorized in more than one way.
922 /// Form of instruction after vectorization depends on cost.
923 /// This function takes cost-based decisions for Load/Store instructions
924 /// and collects them in a map. This decisions map is used for building
925 /// the lists of loop-uniform and loop-scalar instructions.
926 /// The calculated cost is saved with widening decision in order to
927 /// avoid redundant calculations.
928 void setCostBasedWideningDecision(ElementCount VF);
929
930 /// A call may be vectorized in different ways depending on whether we have
931 /// vectorized variants available and whether the target supports masking.
932 /// This function analyzes all calls in the function at the supplied VF,
933 /// makes a decision based on the costs of available options, and stores that
934 /// decision in a map for use in planning and plan execution.
935 void setVectorizedCallDecision(ElementCount VF);
936
937 /// Collect values we want to ignore in the cost model.
938 void collectValuesToIgnore();
939
940 /// Collect all element types in the loop for which widening is needed.
941 void collectElementTypesForWidening();
942
943 /// Split reductions into those that happen in the loop, and those that happen
944 /// outside. In loop reductions are collected into InLoopReductions.
945 void collectInLoopReductions();
946
947 /// Returns true if we should use strict in-order reductions for the given
948 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
949 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
950 /// of FP operations.
951 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
952 return !Hints->allowReordering() && RdxDesc.isOrdered();
953 }
954
955 /// \returns The smallest bitwidth each instruction can be represented with.
956 /// The vector equivalents of these instructions should be truncated to this
957 /// type.
959 return MinBWs;
960 }
961
962 /// \returns True if it is more profitable to scalarize instruction \p I for
963 /// vectorization factor \p VF.
965 assert(VF.isVector() &&
966 "Profitable to scalarize relevant only for VF > 1.");
967 assert(
968 TheLoop->isInnermost() &&
969 "cost-model should not be used for outer loops (in VPlan-native path)");
970
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(I);
975 }
976
977 /// Returns true if \p I is known to be uniform after vectorization.
979 assert(
980 TheLoop->isInnermost() &&
981 "cost-model should not be used for outer loops (in VPlan-native path)");
982 // Pseudo probe needs to be duplicated for each unrolled iteration and
983 // vector lane so that profiled loop trip count can be accurately
984 // accumulated instead of being under counted.
986 return false;
987
988 if (VF.isScalar())
989 return true;
990
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(I);
995 }
996
997 /// Returns true if \p I is known to be scalar after vectorization.
999 assert(
1000 TheLoop->isInnermost() &&
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 if (VF.isScalar())
1003 return true;
1004
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(I);
1009 }
1010
1011 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1012 /// for vectorization factor \p VF.
1014 return VF.isVector() && MinBWs.contains(I) &&
1015 !isProfitableToScalarize(I, VF) &&
1017 }
1018
1019 /// Decision that was taken during cost calculation for memory instruction.
1022 CM_Widen, // For consecutive accesses with stride +1.
1023 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1029 };
1030
1031 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1032 /// instruction \p I and vector width \p VF.
1035 assert(VF.isVector() && "Expected VF >=2");
1036 WideningDecisions[{I, VF}] = {W, Cost};
1037 }
1038
1039 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1040 /// interleaving group \p Grp and vector width \p VF.
1044 assert(VF.isVector() && "Expected VF >=2");
1045 /// Broadcast this decicion to all instructions inside the group.
1046 /// When interleaving, the cost will only be assigned one instruction, the
1047 /// insert position. For other cases, add the appropriate fraction of the
1048 /// total cost to each instruction. This ensures accurate costs are used,
1049 /// even if the insert position instruction is not used.
1050 InstructionCost InsertPosCost = Cost;
1051 InstructionCost OtherMemberCost = 0;
1052 if (W != CM_Interleave)
1053 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1054 ;
1055 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1056 if (auto *I = Grp->getMember(Idx)) {
1057 if (Grp->getInsertPos() == I)
1058 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1059 else
1060 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1061 }
1062 }
1063 }
1064
1065 /// Return the cost model decision for the given instruction \p I and vector
1066 /// width \p VF. Return CM_Unknown if this instruction did not pass
1067 /// through the cost modeling.
1069 assert(VF.isVector() && "Expected VF to be a vector VF");
1070 assert(
1071 TheLoop->isInnermost() &&
1072 "cost-model should not be used for outer loops (in VPlan-native path)");
1073
1074 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1075 auto Itr = WideningDecisions.find(InstOnVF);
1076 if (Itr == WideningDecisions.end())
1077 return CM_Unknown;
1078 return Itr->second.first;
1079 }
1080
1081 /// Return the vectorization cost for the given instruction \p I and vector
1082 /// width \p VF.
1084 assert(VF.isVector() && "Expected VF >=2");
1085 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1086 assert(WideningDecisions.contains(InstOnVF) &&
1087 "The cost is not calculated");
1088 return WideningDecisions[InstOnVF].second;
1089 }
1090
1098
1100 Function *Variant, Intrinsic::ID IID,
1101 std::optional<unsigned> MaskPos,
1103 assert(!VF.isScalar() && "Expected vector VF");
1104 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1105 }
1106
1108 ElementCount VF) const {
1109 assert(!VF.isScalar() && "Expected vector VF");
1110 auto I = CallWideningDecisions.find({CI, VF});
1111 if (I == CallWideningDecisions.end())
1112 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1113 return I->second;
1114 }
1115
1116 /// Return True if instruction \p I is an optimizable truncate whose operand
1117 /// is an induction variable. Such a truncate will be removed by adding a new
1118 /// induction variable with the destination type.
1120 // If the instruction is not a truncate, return false.
1121 auto *Trunc = dyn_cast<TruncInst>(I);
1122 if (!Trunc)
1123 return false;
1124
1125 // Get the source and destination types of the truncate.
1126 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1127 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1128
1129 // If the truncate is free for the given types, return false. Replacing a
1130 // free truncate with an induction variable would add an induction variable
1131 // update instruction to each iteration of the loop. We exclude from this
1132 // check the primary induction variable since it will need an update
1133 // instruction regardless.
1134 Value *Op = Trunc->getOperand(0);
1135 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1136 return false;
1137
1138 // If the truncated value is not an induction variable, return false.
1139 return Legal->isInductionPhi(Op);
1140 }
1141
1142 /// Collects the instructions to scalarize for each predicated instruction in
1143 /// the loop.
1144 void collectInstsToScalarize(ElementCount VF);
1145
1146 /// Collect values that will not be widened, including Uniforms, Scalars, and
1147 /// Instructions to Scalarize for the given \p VF.
1148 /// The sets depend on CM decision for Load/Store instructions
1149 /// that may be vectorized as interleave, gather-scatter or scalarized.
1150 /// Also make a decision on what to do about call instructions in the loop
1151 /// at that VF -- scalarize, call a known vector routine, or call a
1152 /// vector intrinsic.
1154 // Do the analysis once.
1155 if (VF.isScalar() || Uniforms.contains(VF))
1156 return;
1158 collectLoopUniforms(VF);
1160 collectLoopScalars(VF);
1162 }
1163
1164 /// Returns true if the target machine supports masked store operation
1165 /// for the given \p DataType and kind of access to \p Ptr.
1166 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1167 unsigned AddressSpace) const {
1168 return Legal->isConsecutivePtr(DataType, Ptr) &&
1169 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1170 }
1171
1172 /// Returns true if the target machine supports masked load operation
1173 /// for the given \p DataType and kind of access to \p Ptr.
1174 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1175 unsigned AddressSpace) const {
1176 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1178 }
1179
1180 /// Returns true if the target machine can represent \p V as a masked gather
1181 /// or scatter operation.
1183 bool LI = isa<LoadInst>(V);
1184 bool SI = isa<StoreInst>(V);
1185 if (!LI && !SI)
1186 return false;
1187 auto *Ty = getLoadStoreType(V);
1189 if (VF.isVector())
1190 Ty = VectorType::get(Ty, VF);
1191 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1192 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1193 }
1194
1195 /// Returns true if the target machine supports all of the reduction
1196 /// variables found for the given VF.
1198 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1199 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1200 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1201 }));
1202 }
1203
1204 /// Given costs for both strategies, return true if the scalar predication
1205 /// lowering should be used for div/rem. This incorporates an override
1206 /// option so it is not simply a cost comparison.
1208 InstructionCost SafeDivisorCost) const {
1209 switch (ForceSafeDivisor) {
1210 case cl::BOU_UNSET:
1211 return ScalarCost < SafeDivisorCost;
1212 case cl::BOU_TRUE:
1213 return false;
1214 case cl::BOU_FALSE:
1215 return true;
1216 }
1217 llvm_unreachable("impossible case value");
1218 }
1219
1220 /// Returns true if \p I is an instruction which requires predication and
1221 /// for which our chosen predication strategy is scalarization (i.e. we
1222 /// don't have an alternate strategy such as masking available).
1223 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1224 bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1225
1226 /// Returns true if \p I is an instruction that needs to be predicated
1227 /// at runtime. The result is independent of the predication mechanism.
1228 /// Superset of instructions that return true for isScalarWithPredication.
1229 bool isPredicatedInst(Instruction *I) const;
1230
1231 /// Return the costs for our two available strategies for lowering a
1232 /// div/rem operation which requires speculating at least one lane.
1233 /// First result is for scalarization (will be invalid for scalable
1234 /// vectors); second is for the safe-divisor strategy.
1235 std::pair<InstructionCost, InstructionCost>
1236 getDivRemSpeculationCost(Instruction *I,
1237 ElementCount VF) const;
1238
1239 /// Returns true if \p I is a memory instruction with consecutive memory
1240 /// access that can be widened.
1241 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1242
1243 /// Returns true if \p I is a memory instruction in an interleaved-group
1244 /// of memory accesses that can be vectorized with wide vector loads/stores
1245 /// and shuffles.
1246 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1247
1248 /// Check if \p Instr belongs to any interleaved access group.
1250 return InterleaveInfo.isInterleaved(Instr);
1251 }
1252
1253 /// Get the interleaved access group that \p Instr belongs to.
1256 return InterleaveInfo.getInterleaveGroup(Instr);
1257 }
1258
1259 /// Returns true if we're required to use a scalar epilogue for at least
1260 /// the final iteration of the original loop.
1261 bool requiresScalarEpilogue(bool IsVectorizing) const {
1262 if (!isScalarEpilogueAllowed()) {
1263 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1264 return false;
1265 }
1266 // If we might exit from anywhere but the latch and early exit vectorization
1267 // is disabled, we must run the exiting iteration in scalar form.
1268 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1269 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1270 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1271 "from latch block\n");
1272 return true;
1273 }
1274 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1275 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1276 "interleaved group requires scalar epilogue\n");
1277 return true;
1278 }
1279 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1280 return false;
1281 }
1282
1283 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1284 /// loop hint annotation.
1286 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1287 }
1288
1289 /// Returns the TailFoldingStyle that is best for the current loop.
1290 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1291 if (!ChosenTailFoldingStyle)
1293 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1294 : ChosenTailFoldingStyle->second;
1295 }
1296
1297 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1298 /// overflow or not.
1299 /// \param IsScalableVF true if scalable vector factors enabled.
1300 /// \param UserIC User specific interleave count.
1301 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1302 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1303 if (!Legal->canFoldTailByMasking()) {
1304 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1305 return;
1306 }
1307
1308 // Default to TTI preference, but allow command line override.
1309 ChosenTailFoldingStyle = {
1310 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1311 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1312 if (ForceTailFoldingStyle.getNumOccurrences())
1313 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1314 ForceTailFoldingStyle.getValue()};
1315
1316 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1317 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1318 return;
1319 // Override EVL styles if needed.
1320 // FIXME: Investigate opportunity for fixed vector factor.
1321 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1322 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1323 if (EVLIsLegal)
1324 return;
1325 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1326 // if it's allowed, or DataWithoutLaneMask otherwise.
1327 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1328 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1329 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1330 else
1331 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1333
1334 LLVM_DEBUG(
1335 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1336 "not try to generate VP Intrinsics "
1337 << (UserIC > 1
1338 ? "since interleave count specified is greater than 1.\n"
1339 : "due to non-interleaving reasons.\n"));
1340 }
1341
1342 /// Returns true if all loop blocks should be masked to fold tail loop.
1343 bool foldTailByMasking() const {
1344 // TODO: check if it is possible to check for None style independent of
1345 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1347 }
1348
1349 /// Return maximum safe number of elements to be processed per vector
1350 /// iteration, which do not prevent store-load forwarding and are safe with
1351 /// regard to the memory dependencies. Required for EVL-based VPlans to
1352 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1353 /// MaxSafeElements).
1354 /// TODO: need to consider adjusting cost model to use this value as a
1355 /// vectorization factor for EVL-based vectorization.
1356 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1357
1358 /// Returns true if the instructions in this block requires predication
1359 /// for any reason, e.g. because tail folding now requires a predicate
1360 /// or because the block in the original loop was predicated.
1362 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1363 }
1364
1365 /// Returns true if VP intrinsics with explicit vector length support should
1366 /// be generated in the tail folded loop.
1370
1371 /// Returns true if the Phi is part of an inloop reduction.
1372 bool isInLoopReduction(PHINode *Phi) const {
1373 return InLoopReductions.contains(Phi);
1374 }
1375
1376 /// Returns true if the predicated reduction select should be used to set the
1377 /// incoming value for the reduction phi.
1379 // Force to use predicated reduction select since the EVL of the
1380 // second-to-last iteration might not be VF*UF.
1381 if (foldTailWithEVL())
1382 return true;
1384 TTI.preferPredicatedReductionSelect();
1385 }
1386
1387 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1388 /// with factor VF. Return the cost of the instruction, including
1389 /// scalarization overhead if it's needed.
1390 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1391
1392 /// Estimate cost of a call instruction CI if it were vectorized with factor
1393 /// VF. Return the cost of the instruction, including scalarization overhead
1394 /// if it's needed.
1395 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1396
1397 /// Invalidates decisions already taken by the cost model.
1399 WideningDecisions.clear();
1400 CallWideningDecisions.clear();
1401 Uniforms.clear();
1402 Scalars.clear();
1403 }
1404
1405 /// Returns the expected execution cost. The unit of the cost does
1406 /// not matter because we use the 'cost' units to compare different
1407 /// vector widths. The cost that is returned is *not* normalized by
1408 /// the factor width.
1409 InstructionCost expectedCost(ElementCount VF);
1410
1411 bool hasPredStores() const { return NumPredStores > 0; }
1412
1413 /// Returns true if epilogue vectorization is considered profitable, and
1414 /// false otherwise.
1415 /// \p VF is the vectorization factor chosen for the original loop.
1416 /// \p Multiplier is an aditional scaling factor applied to VF before
1417 /// comparing to EpilogueVectorizationMinVF.
1418 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1419 const unsigned IC) const;
1420
1421 /// Returns the execution time cost of an instruction for a given vector
1422 /// width. Vector width of one means scalar.
1423 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1424
1425 /// Return the cost of instructions in an inloop reduction pattern, if I is
1426 /// part of that pattern.
1427 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1428 ElementCount VF,
1429 Type *VectorTy) const;
1430
1431 /// Returns true if \p Op should be considered invariant and if it is
1432 /// trivially hoistable.
1433 bool shouldConsiderInvariant(Value *Op);
1434
1435 /// Return the value of vscale used for tuning the cost model.
1436 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1437
1438private:
1439 unsigned NumPredStores = 0;
1440
1441 /// Used to store the value of vscale used for tuning the cost model. It is
1442 /// initialized during object construction.
1443 std::optional<unsigned> VScaleForTuning;
1444
1445 /// Initializes the value of vscale used for tuning the cost model. If
1446 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1447 /// return the value returned by the corresponding TTI method.
1448 void initializeVScaleForTuning() {
1449 const Function *Fn = TheLoop->getHeader()->getParent();
1450 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1451 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1452 auto Min = Attr.getVScaleRangeMin();
1453 auto Max = Attr.getVScaleRangeMax();
1454 if (Max && Min == Max) {
1455 VScaleForTuning = Max;
1456 return;
1457 }
1458 }
1459
1460 VScaleForTuning = TTI.getVScaleForTuning();
1461 }
1462
1463 /// \return An upper bound for the vectorization factors for both
1464 /// fixed and scalable vectorization, where the minimum-known number of
1465 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1466 /// disabled or unsupported, then the scalable part will be equal to
1467 /// ElementCount::getScalable(0).
1468 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1469 ElementCount UserVF,
1470 bool FoldTailByMasking);
1471
1472 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1473 /// MaxTripCount.
1474 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1475 bool FoldTailByMasking) const;
1476
1477 /// \return the maximized element count based on the targets vector
1478 /// registers and the loop trip-count, but limited to a maximum safe VF.
1479 /// This is a helper function of computeFeasibleMaxVF.
1480 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1481 unsigned SmallestType,
1482 unsigned WidestType,
1483 ElementCount MaxSafeVF,
1484 bool FoldTailByMasking);
1485
1486 /// Checks if scalable vectorization is supported and enabled. Caches the
1487 /// result to avoid repeated debug dumps for repeated queries.
1488 bool isScalableVectorizationAllowed();
1489
1490 /// \return the maximum legal scalable VF, based on the safe max number
1491 /// of elements.
1492 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1493
1494 /// Calculate vectorization cost of memory instruction \p I.
1495 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1496
1497 /// The cost computation for scalarized memory instruction.
1498 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1499
1500 /// The cost computation for interleaving group of memory instructions.
1501 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1502
1503 /// The cost computation for Gather/Scatter instruction.
1504 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1505
1506 /// The cost computation for widening instruction \p I with consecutive
1507 /// memory access.
1508 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1509
1510 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1511 /// Load: scalar load + broadcast.
1512 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1513 /// element)
1514 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1515
1516 /// Estimate the overhead of scalarizing an instruction. This is a
1517 /// convenience wrapper for the type-based getScalarizationOverhead API.
1519 ElementCount VF) const;
1520
1521 /// Returns true if an artificially high cost for emulated masked memrefs
1522 /// should be used.
1523 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1524
1525 /// Map of scalar integer values to the smallest bitwidth they can be legally
1526 /// represented as. The vector equivalents of these values should be truncated
1527 /// to this type.
1528 MapVector<Instruction *, uint64_t> MinBWs;
1529
1530 /// A type representing the costs for instructions if they were to be
1531 /// scalarized rather than vectorized. The entries are Instruction-Cost
1532 /// pairs.
1533 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1534
1535 /// A set containing all BasicBlocks that are known to present after
1536 /// vectorization as a predicated block.
1537 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1538 PredicatedBBsAfterVectorization;
1539
1540 /// Records whether it is allowed to have the original scalar loop execute at
1541 /// least once. This may be needed as a fallback loop in case runtime
1542 /// aliasing/dependence checks fail, or to handle the tail/remainder
1543 /// iterations when the trip count is unknown or doesn't divide by the VF,
1544 /// or as a peel-loop to handle gaps in interleave-groups.
1545 /// Under optsize and when the trip count is very small we don't allow any
1546 /// iterations to execute in the scalar loop.
1547 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1548
1549 /// Control finally chosen tail folding style. The first element is used if
1550 /// the IV update may overflow, the second element - if it does not.
1551 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1552 ChosenTailFoldingStyle;
1553
1554 /// true if scalable vectorization is supported and enabled.
1555 std::optional<bool> IsScalableVectorizationAllowed;
1556
1557 /// Maximum safe number of elements to be processed per vector iteration,
1558 /// which do not prevent store-load forwarding and are safe with regard to the
1559 /// memory dependencies. Required for EVL-based veectorization, where this
1560 /// value is used as the upper bound of the safe AVL.
1561 std::optional<unsigned> MaxSafeElements;
1562
1563 /// A map holding scalar costs for different vectorization factors. The
1564 /// presence of a cost for an instruction in the mapping indicates that the
1565 /// instruction will be scalarized when vectorizing with the associated
1566 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1567 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1568
1569 /// Holds the instructions known to be uniform after vectorization.
1570 /// The data is collected per VF.
1571 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1572
1573 /// Holds the instructions known to be scalar after vectorization.
1574 /// The data is collected per VF.
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1576
1577 /// Holds the instructions (address computations) that are forced to be
1578 /// scalarized.
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1580
1581 /// PHINodes of the reductions that should be expanded in-loop.
1582 SmallPtrSet<PHINode *, 4> InLoopReductions;
1583
1584 /// A Map of inloop reduction operations and their immediate chain operand.
1585 /// FIXME: This can be removed once reductions can be costed correctly in
1586 /// VPlan. This was added to allow quick lookup of the inloop operations.
1587 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1588
1589 /// Returns the expected difference in cost from scalarizing the expression
1590 /// feeding a predicated instruction \p PredInst. The instructions to
1591 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1592 /// non-negative return value implies the expression will be scalarized.
1593 /// Currently, only single-use chains are considered for scalarization.
1594 InstructionCost computePredInstDiscount(Instruction *PredInst,
1595 ScalarCostsTy &ScalarCosts,
1596 ElementCount VF);
1597
1598 /// Collect the instructions that are uniform after vectorization. An
1599 /// instruction is uniform if we represent it with a single scalar value in
1600 /// the vectorized loop corresponding to each vector iteration. Examples of
1601 /// uniform instructions include pointer operands of consecutive or
1602 /// interleaved memory accesses. Note that although uniformity implies an
1603 /// instruction will be scalar, the reverse is not true. In general, a
1604 /// scalarized instruction will be represented by VF scalar values in the
1605 /// vectorized loop, each corresponding to an iteration of the original
1606 /// scalar loop.
1607 void collectLoopUniforms(ElementCount VF);
1608
1609 /// Collect the instructions that are scalar after vectorization. An
1610 /// instruction is scalar if it is known to be uniform or will be scalarized
1611 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1612 /// to the list if they are used by a load/store instruction that is marked as
1613 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1614 /// VF values in the vectorized loop, each corresponding to an iteration of
1615 /// the original scalar loop.
1616 void collectLoopScalars(ElementCount VF);
1617
1618 /// Keeps cost model vectorization decision and cost for instructions.
1619 /// Right now it is used for memory instructions only.
1620 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1621 std::pair<InstWidening, InstructionCost>>;
1622
1623 DecisionList WideningDecisions;
1624
1625 using CallDecisionList =
1626 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1627
1628 CallDecisionList CallWideningDecisions;
1629
1630 /// Returns true if \p V is expected to be vectorized and it needs to be
1631 /// extracted.
1632 bool needsExtract(Value *V, ElementCount VF) const {
1634 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1635 TheLoop->isLoopInvariant(I) ||
1636 getWideningDecision(I, VF) == CM_Scalarize ||
1637 (isa<CallInst>(I) &&
1638 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1639 return false;
1640
1641 // Assume we can vectorize V (and hence we need extraction) if the
1642 // scalars are not computed yet. This can happen, because it is called
1643 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1644 // the scalars are collected. That should be a safe assumption in most
1645 // cases, because we check if the operands have vectorizable types
1646 // beforehand in LoopVectorizationLegality.
1647 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1648 };
1649
1650 /// Returns a range containing only operands needing to be extracted.
1651 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1652 ElementCount VF) const {
1653
1654 SmallPtrSet<const Value *, 4> UniqueOperands;
1656 for (Value *Op : Ops) {
1657 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1658 !needsExtract(Op, VF))
1659 continue;
1660 Res.push_back(Op);
1661 }
1662 return Res;
1663 }
1664
1665public:
1666 /// The loop that we evaluate.
1668
1669 /// Predicated scalar evolution analysis.
1671
1672 /// Loop Info analysis.
1674
1675 /// Vectorization legality.
1677
1678 /// Vector target information.
1680
1681 /// Target Library Info.
1683
1684 /// Demanded bits analysis.
1686
1687 /// Assumption cache.
1689
1690 /// Interface to emit optimization remarks.
1692
1694
1695 /// Loop Vectorize Hint.
1697
1698 /// The interleave access information contains groups of interleaved accesses
1699 /// with the same stride and close to each other.
1701
1702 /// Values to ignore in the cost model.
1704
1705 /// Values to ignore in the cost model when VF > 1.
1707
1708 /// All element types found in the loop.
1710
1711 /// The kind of cost that we are calculating
1713
1714 /// Whether this loop should be optimized for size based on function attribute
1715 /// or profile information.
1717
1718 /// The highest VF possible for this loop, without using MaxBandwidth.
1720};
1721} // end namespace llvm
1722
1723namespace {
1724/// Helper struct to manage generating runtime checks for vectorization.
1725///
1726/// The runtime checks are created up-front in temporary blocks to allow better
1727/// estimating the cost and un-linked from the existing IR. After deciding to
1728/// vectorize, the checks are moved back. If deciding not to vectorize, the
1729/// temporary blocks are completely removed.
1730class GeneratedRTChecks {
1731 /// Basic block which contains the generated SCEV checks, if any.
1732 BasicBlock *SCEVCheckBlock = nullptr;
1733
1734 /// The value representing the result of the generated SCEV checks. If it is
1735 /// nullptr no SCEV checks have been generated.
1736 Value *SCEVCheckCond = nullptr;
1737
1738 /// Basic block which contains the generated memory runtime checks, if any.
1739 BasicBlock *MemCheckBlock = nullptr;
1740
1741 /// The value representing the result of the generated memory runtime checks.
1742 /// If it is nullptr no memory runtime checks have been generated.
1743 Value *MemRuntimeCheckCond = nullptr;
1744
1745 DominatorTree *DT;
1746 LoopInfo *LI;
1748
1749 SCEVExpander SCEVExp;
1750 SCEVExpander MemCheckExp;
1751
1752 bool CostTooHigh = false;
1753
1754 Loop *OuterLoop = nullptr;
1755
1757
1758 /// The kind of cost that we are calculating
1760
1761public:
1762 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1765 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"),
1766 MemCheckExp(*PSE.getSE(), DL, "scev.check"), PSE(PSE),
1767 CostKind(CostKind) {}
1768
1769 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1770 /// accurately estimate the cost of the runtime checks. The blocks are
1771 /// un-linked from the IR and are added back during vector code generation. If
1772 /// there is no vector code generation, the check blocks are removed
1773 /// completely.
1774 void create(Loop *L, const LoopAccessInfo &LAI,
1775 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1776
1777 // Hard cutoff to limit compile-time increase in case a very large number of
1778 // runtime checks needs to be generated.
1779 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1780 // profile info.
1781 CostTooHigh =
1783 if (CostTooHigh)
1784 return;
1785
1786 BasicBlock *LoopHeader = L->getHeader();
1787 BasicBlock *Preheader = L->getLoopPreheader();
1788
1789 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1790 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1791 // may be used by SCEVExpander. The blocks will be un-linked from their
1792 // predecessors and removed from LI & DT at the end of the function.
1793 if (!UnionPred.isAlwaysTrue()) {
1794 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1795 nullptr, "vector.scevcheck");
1796
1797 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1798 &UnionPred, SCEVCheckBlock->getTerminator());
1799 if (isa<Constant>(SCEVCheckCond)) {
1800 // Clean up directly after expanding the predicate to a constant, to
1801 // avoid further expansions re-using anything left over from SCEVExp.
1802 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1803 SCEVCleaner.cleanup();
1804 }
1805 }
1806
1807 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1808 if (RtPtrChecking.Need) {
1809 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1810 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1811 "vector.memcheck");
1812
1813 auto DiffChecks = RtPtrChecking.getDiffChecks();
1814 if (DiffChecks) {
1815 Value *RuntimeVF = nullptr;
1816 MemRuntimeCheckCond = addDiffRuntimeChecks(
1817 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1818 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1819 if (!RuntimeVF)
1820 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1821 return RuntimeVF;
1822 },
1823 IC);
1824 } else {
1825 MemRuntimeCheckCond = addRuntimeChecks(
1826 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1828 }
1829 assert(MemRuntimeCheckCond &&
1830 "no RT checks generated although RtPtrChecking "
1831 "claimed checks are required");
1832 }
1833
1834 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1835
1836 if (!MemCheckBlock && !SCEVCheckBlock)
1837 return;
1838
1839 // Unhook the temporary block with the checks, update various places
1840 // accordingly.
1841 if (SCEVCheckBlock)
1842 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1843 if (MemCheckBlock)
1844 MemCheckBlock->replaceAllUsesWith(Preheader);
1845
1846 if (SCEVCheckBlock) {
1847 SCEVCheckBlock->getTerminator()->moveBefore(
1848 Preheader->getTerminator()->getIterator());
1849 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1850 UI->setDebugLoc(DebugLoc::getTemporary());
1851 Preheader->getTerminator()->eraseFromParent();
1852 }
1853 if (MemCheckBlock) {
1854 MemCheckBlock->getTerminator()->moveBefore(
1855 Preheader->getTerminator()->getIterator());
1856 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1857 UI->setDebugLoc(DebugLoc::getTemporary());
1858 Preheader->getTerminator()->eraseFromParent();
1859 }
1860
1861 DT->changeImmediateDominator(LoopHeader, Preheader);
1862 if (MemCheckBlock) {
1863 DT->eraseNode(MemCheckBlock);
1864 LI->removeBlock(MemCheckBlock);
1865 }
1866 if (SCEVCheckBlock) {
1867 DT->eraseNode(SCEVCheckBlock);
1868 LI->removeBlock(SCEVCheckBlock);
1869 }
1870
1871 // Outer loop is used as part of the later cost calculations.
1872 OuterLoop = L->getParentLoop();
1873 }
1874
1876 if (SCEVCheckBlock || MemCheckBlock)
1877 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1878
1879 if (CostTooHigh) {
1881 Cost.setInvalid();
1882 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1883 return Cost;
1884 }
1885
1886 InstructionCost RTCheckCost = 0;
1887 if (SCEVCheckBlock)
1888 for (Instruction &I : *SCEVCheckBlock) {
1889 if (SCEVCheckBlock->getTerminator() == &I)
1890 continue;
1892 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1893 RTCheckCost += C;
1894 }
1895 if (MemCheckBlock) {
1896 InstructionCost MemCheckCost = 0;
1897 for (Instruction &I : *MemCheckBlock) {
1898 if (MemCheckBlock->getTerminator() == &I)
1899 continue;
1901 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1902 MemCheckCost += C;
1903 }
1904
1905 // If the runtime memory checks are being created inside an outer loop
1906 // we should find out if these checks are outer loop invariant. If so,
1907 // the checks will likely be hoisted out and so the effective cost will
1908 // reduce according to the outer loop trip count.
1909 if (OuterLoop) {
1910 ScalarEvolution *SE = MemCheckExp.getSE();
1911 // TODO: If profitable, we could refine this further by analysing every
1912 // individual memory check, since there could be a mixture of loop
1913 // variant and invariant checks that mean the final condition is
1914 // variant.
1915 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1916 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1917 // It seems reasonable to assume that we can reduce the effective
1918 // cost of the checks even when we know nothing about the trip
1919 // count. Assume that the outer loop executes at least twice.
1920 unsigned BestTripCount = 2;
1921
1922 // Get the best known TC estimate.
1923 if (auto EstimatedTC = getSmallBestKnownTC(
1924 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1925 if (EstimatedTC->isFixed())
1926 BestTripCount = EstimatedTC->getFixedValue();
1927
1928 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1929
1930 // Let's ensure the cost is always at least 1.
1931 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1932 (InstructionCost::CostType)1);
1933
1934 if (BestTripCount > 1)
1936 << "We expect runtime memory checks to be hoisted "
1937 << "out of the outer loop. Cost reduced from "
1938 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1939
1940 MemCheckCost = NewMemCheckCost;
1941 }
1942 }
1943
1944 RTCheckCost += MemCheckCost;
1945 }
1946
1947 if (SCEVCheckBlock || MemCheckBlock)
1948 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
1949 << "\n");
1950
1951 return RTCheckCost;
1952 }
1953
1954 /// Remove the created SCEV & memory runtime check blocks & instructions, if
1955 /// unused.
1956 ~GeneratedRTChecks() {
1957 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1958 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1959 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
1960 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
1961 if (SCEVChecksUsed)
1962 SCEVCleaner.markResultUsed();
1963
1964 if (MemChecksUsed) {
1965 MemCheckCleaner.markResultUsed();
1966 } else {
1967 auto &SE = *MemCheckExp.getSE();
1968 // Memory runtime check generation creates compares that use expanded
1969 // values. Remove them before running the SCEVExpanderCleaners.
1970 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1971 if (MemCheckExp.isInsertedInstruction(&I))
1972 continue;
1973 SE.forgetValue(&I);
1974 I.eraseFromParent();
1975 }
1976 }
1977 MemCheckCleaner.cleanup();
1978 SCEVCleaner.cleanup();
1979
1980 if (!SCEVChecksUsed)
1981 SCEVCheckBlock->eraseFromParent();
1982 if (!MemChecksUsed)
1983 MemCheckBlock->eraseFromParent();
1984 }
1985
1986 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
1987 /// outside VPlan.
1988 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
1989 using namespace llvm::PatternMatch;
1990 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
1991 return {nullptr, nullptr};
1992
1993 return {SCEVCheckCond, SCEVCheckBlock};
1994 }
1995
1996 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
1997 /// outside VPlan.
1998 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
1999 using namespace llvm::PatternMatch;
2000 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2001 return {nullptr, nullptr};
2002 return {MemRuntimeCheckCond, MemCheckBlock};
2003 }
2004
2005 /// Return true if any runtime checks have been added
2006 bool hasChecks() const {
2007 return getSCEVChecks().first || getMemRuntimeChecks().first;
2008 }
2009};
2010} // namespace
2011
2017
2022
2023// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2024// vectorization. The loop needs to be annotated with #pragma omp simd
2025// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2026// vector length information is not provided, vectorization is not considered
2027// explicit. Interleave hints are not allowed either. These limitations will be
2028// relaxed in the future.
2029// Please, note that we are currently forced to abuse the pragma 'clang
2030// vectorize' semantics. This pragma provides *auto-vectorization hints*
2031// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2032// provides *explicit vectorization hints* (LV can bypass legal checks and
2033// assume that vectorization is legal). However, both hints are implemented
2034// using the same metadata (llvm.loop.vectorize, processed by
2035// LoopVectorizeHints). This will be fixed in the future when the native IR
2036// representation for pragma 'omp simd' is introduced.
2037static bool isExplicitVecOuterLoop(Loop *OuterLp,
2039 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2040 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2041
2042 // Only outer loops with an explicit vectorization hint are supported.
2043 // Unannotated outer loops are ignored.
2045 return false;
2046
2047 Function *Fn = OuterLp->getHeader()->getParent();
2048 if (!Hints.allowVectorization(Fn, OuterLp,
2049 true /*VectorizeOnlyWhenForced*/)) {
2050 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2051 return false;
2052 }
2053
2054 if (Hints.getInterleave() > 1) {
2055 // TODO: Interleave support is future work.
2056 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2057 "outer loops.\n");
2058 Hints.emitRemarkWithHints();
2059 return false;
2060 }
2061
2062 return true;
2063}
2064
2068 // Collect inner loops and outer loops without irreducible control flow. For
2069 // now, only collect outer loops that have explicit vectorization hints. If we
2070 // are stress testing the VPlan H-CFG construction, we collect the outermost
2071 // loop of every loop nest.
2072 if (L.isInnermost() || VPlanBuildStressTest ||
2074 LoopBlocksRPO RPOT(&L);
2075 RPOT.perform(LI);
2077 V.push_back(&L);
2078 // TODO: Collect inner loops inside marked outer loops in case
2079 // vectorization fails for the outer loop. Do not invoke
2080 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2081 // already known to be reducible. We can use an inherited attribute for
2082 // that.
2083 return;
2084 }
2085 }
2086 for (Loop *InnerL : L)
2087 collectSupportedLoops(*InnerL, LI, ORE, V);
2088}
2089
2090//===----------------------------------------------------------------------===//
2091// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2092// LoopVectorizationCostModel and LoopVectorizationPlanner.
2093//===----------------------------------------------------------------------===//
2094
2095/// Compute the transformed value of Index at offset StartValue using step
2096/// StepValue.
2097/// For integer induction, returns StartValue + Index * StepValue.
2098/// For pointer induction, returns StartValue[Index * StepValue].
2099/// FIXME: The newly created binary instructions should contain nsw/nuw
2100/// flags, which can be found from the original scalar operations.
2101static Value *
2103 Value *Step,
2105 const BinaryOperator *InductionBinOp) {
2106 using namespace llvm::PatternMatch;
2107 Type *StepTy = Step->getType();
2108 Value *CastedIndex = StepTy->isIntegerTy()
2109 ? B.CreateSExtOrTrunc(Index, StepTy)
2110 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2111 if (CastedIndex != Index) {
2112 CastedIndex->setName(CastedIndex->getName() + ".cast");
2113 Index = CastedIndex;
2114 }
2115
2116 // Note: the IR at this point is broken. We cannot use SE to create any new
2117 // SCEV and then expand it, hoping that SCEV's simplification will give us
2118 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2119 // lead to various SCEV crashes. So all we can do is to use builder and rely
2120 // on InstCombine for future simplifications. Here we handle some trivial
2121 // cases only.
2122 auto CreateAdd = [&B](Value *X, Value *Y) {
2123 assert(X->getType() == Y->getType() && "Types don't match!");
2124 if (match(X, m_ZeroInt()))
2125 return Y;
2126 if (match(Y, m_ZeroInt()))
2127 return X;
2128 return B.CreateAdd(X, Y);
2129 };
2130
2131 // We allow X to be a vector type, in which case Y will potentially be
2132 // splatted into a vector with the same element count.
2133 auto CreateMul = [&B](Value *X, Value *Y) {
2134 assert(X->getType()->getScalarType() == Y->getType() &&
2135 "Types don't match!");
2136 if (match(X, m_One()))
2137 return Y;
2138 if (match(Y, m_One()))
2139 return X;
2140 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2141 if (XVTy && !isa<VectorType>(Y->getType()))
2142 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2143 return B.CreateMul(X, Y);
2144 };
2145
2146 switch (InductionKind) {
2148 assert(!isa<VectorType>(Index->getType()) &&
2149 "Vector indices not supported for integer inductions yet");
2150 assert(Index->getType() == StartValue->getType() &&
2151 "Index type does not match StartValue type");
2152 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2153 return B.CreateSub(StartValue, Index);
2154 auto *Offset = CreateMul(Index, Step);
2155 return CreateAdd(StartValue, Offset);
2156 }
2158 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2160 assert(!isa<VectorType>(Index->getType()) &&
2161 "Vector indices not supported for FP inductions yet");
2162 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2163 assert(InductionBinOp &&
2164 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2165 InductionBinOp->getOpcode() == Instruction::FSub) &&
2166 "Original bin op should be defined for FP induction");
2167
2168 Value *MulExp = B.CreateFMul(Step, Index);
2169 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2170 "induction");
2171 }
2173 return nullptr;
2174 }
2175 llvm_unreachable("invalid enum");
2176}
2177
2178static std::optional<unsigned> getMaxVScale(const Function &F,
2179 const TargetTransformInfo &TTI) {
2180 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2181 return MaxVScale;
2182
2183 if (F.hasFnAttribute(Attribute::VScaleRange))
2184 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2185
2186 return std::nullopt;
2187}
2188
2189/// For the given VF and UF and maximum trip count computed for the loop, return
2190/// whether the induction variable might overflow in the vectorized loop. If not,
2191/// then we know a runtime overflow check always evaluates to false and can be
2192/// removed.
2194 const LoopVectorizationCostModel *Cost,
2195 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2196 // Always be conservative if we don't know the exact unroll factor.
2197 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2198
2199 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2200 APInt MaxUIntTripCount = IdxTy->getMask();
2201
2202 // We know the runtime overflow check is known false iff the (max) trip-count
2203 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2204 // the vector loop induction variable.
2205 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2206 uint64_t MaxVF = VF.getKnownMinValue();
2207 if (VF.isScalable()) {
2208 std::optional<unsigned> MaxVScale =
2209 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2210 if (!MaxVScale)
2211 return false;
2212 MaxVF *= *MaxVScale;
2213 }
2214
2215 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2216 }
2217
2218 return false;
2219}
2220
2221// Return whether we allow using masked interleave-groups (for dealing with
2222// strided loads/stores that reside in predicated blocks, or for dealing
2223// with gaps).
2225 // If an override option has been passed in for interleaved accesses, use it.
2226 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2228
2229 return TTI.enableMaskedInterleavedAccessVectorization();
2230}
2231
2233 BasicBlock *CheckIRBB) {
2234 // Note: The block with the minimum trip-count check is already connected
2235 // during earlier VPlan construction.
2236 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2237 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2238 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2239 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2240 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2241 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2242 PreVectorPH = CheckVPIRBB;
2243 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2244 PreVectorPH->swapSuccessors();
2245
2246 // We just connected a new block to the scalar preheader. Update all
2247 // VPPhis by adding an incoming value for it, replicating the last value.
2248 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2249 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2250 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2251 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2252 "must have incoming values for all operands");
2253 R.addOperand(R.getOperand(NumPredecessors - 2));
2254 }
2255}
2256
2258 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2259 // Generate code to check if the loop's trip count is less than VF * UF, or
2260 // equal to it in case a scalar epilogue is required; this implies that the
2261 // vector trip count is zero. This check also covers the case where adding one
2262 // to the backedge-taken count overflowed leading to an incorrect trip count
2263 // of zero. In this case we will also jump to the scalar loop.
2264 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2266
2267 // Reuse existing vector loop preheader for TC checks.
2268 // Note that new preheader block is generated for vector loop.
2269 BasicBlock *const TCCheckBlock = VectorPH;
2271 TCCheckBlock->getContext(),
2272 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2273 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2274
2275 // If tail is to be folded, vector loop takes care of all iterations.
2277 Type *CountTy = Count->getType();
2278 Value *CheckMinIters = Builder.getFalse();
2279 auto CreateStep = [&]() -> Value * {
2280 // Create step with max(MinProTripCount, UF * VF).
2281 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2282 return createStepForVF(Builder, CountTy, VF, UF);
2283
2284 Value *MinProfTC =
2285 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2286 if (!VF.isScalable())
2287 return MinProfTC;
2288 return Builder.CreateBinaryIntrinsic(
2289 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2290 };
2291
2292 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2293 if (Style == TailFoldingStyle::None) {
2294 Value *Step = CreateStep();
2295 ScalarEvolution &SE = *PSE.getSE();
2296 // TODO: Emit unconditional branch to vector preheader instead of
2297 // conditional branch with known condition.
2298 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2299 // Check if the trip count is < the step.
2300 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2301 // TODO: Ensure step is at most the trip count when determining max VF and
2302 // UF, w/o tail folding.
2303 CheckMinIters = Builder.getTrue();
2305 TripCountSCEV, SE.getSCEV(Step))) {
2306 // Generate the minimum iteration check only if we cannot prove the
2307 // check is known to be true, or known to be false.
2308 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2309 } // else step known to be < trip count, use CheckMinIters preset to false.
2310 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2313 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2314 // an overflow to zero when updating induction variables and so an
2315 // additional overflow check is required before entering the vector loop.
2316
2317 // Get the maximum unsigned value for the type.
2318 Value *MaxUIntTripCount =
2319 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2320 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2321
2322 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2323 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2324 }
2325 return CheckMinIters;
2326}
2327
2328/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2329/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2330/// predecessors and successors of VPBB, if any, are rewired to the new
2331/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2333 BasicBlock *IRBB,
2334 VPlan *Plan = nullptr) {
2335 if (!Plan)
2336 Plan = VPBB->getPlan();
2337 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2338 auto IP = IRVPBB->begin();
2339 for (auto &R : make_early_inc_range(VPBB->phis()))
2340 R.moveBefore(*IRVPBB, IP);
2341
2342 for (auto &R :
2344 R.moveBefore(*IRVPBB, IRVPBB->end());
2345
2346 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2347 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2348 return IRVPBB;
2349}
2350
2352 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2353 assert(VectorPH && "Invalid loop structure");
2354 assert((OrigLoop->getUniqueLatchExitBlock() ||
2355 Cost->requiresScalarEpilogue(VF.isVector())) &&
2356 "loops not exiting via the latch without required epilogue?");
2357
2358 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2359 // wrapping the newly created scalar preheader here at the moment, because the
2360 // Plan's scalar preheader may be unreachable at this point. Instead it is
2361 // replaced in executePlan.
2362 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2363 Twine(Prefix) + "scalar.ph");
2364}
2365
2366/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2367/// expansion results.
2369 const SCEV2ValueTy &ExpandedSCEVs) {
2370 const SCEV *Step = ID.getStep();
2371 if (auto *C = dyn_cast<SCEVConstant>(Step))
2372 return C->getValue();
2373 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2374 return U->getValue();
2375 Value *V = ExpandedSCEVs.lookup(Step);
2376 assert(V && "SCEV must be expanded at this point");
2377 return V;
2378}
2379
2380/// Knowing that loop \p L executes a single vector iteration, add instructions
2381/// that will get simplified and thus should not have any cost to \p
2382/// InstsToIgnore.
2385 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2386 auto *Cmp = L->getLatchCmpInst();
2387 if (Cmp)
2388 InstsToIgnore.insert(Cmp);
2389 for (const auto &KV : IL) {
2390 // Extract the key by hand so that it can be used in the lambda below. Note
2391 // that captured structured bindings are a C++20 extension.
2392 const PHINode *IV = KV.first;
2393
2394 // Get next iteration value of the induction variable.
2395 Instruction *IVInst =
2396 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2397 if (all_of(IVInst->users(),
2398 [&](const User *U) { return U == IV || U == Cmp; }))
2399 InstsToIgnore.insert(IVInst);
2400 }
2401}
2402
2404 // Create a new IR basic block for the scalar preheader.
2405 BasicBlock *ScalarPH = createScalarPreheader("");
2406 return ScalarPH->getSinglePredecessor();
2407}
2408
2409namespace {
2410
2411struct CSEDenseMapInfo {
2412 static bool canHandle(const Instruction *I) {
2415 }
2416
2417 static inline Instruction *getEmptyKey() {
2419 }
2420
2421 static inline Instruction *getTombstoneKey() {
2422 return DenseMapInfo<Instruction *>::getTombstoneKey();
2423 }
2424
2425 static unsigned getHashValue(const Instruction *I) {
2426 assert(canHandle(I) && "Unknown instruction!");
2427 return hash_combine(I->getOpcode(),
2428 hash_combine_range(I->operand_values()));
2429 }
2430
2431 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2432 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2433 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2434 return LHS == RHS;
2435 return LHS->isIdenticalTo(RHS);
2436 }
2437};
2438
2439} // end anonymous namespace
2440
2441/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2442/// removal, in favor of the VPlan-based one.
2443static void legacyCSE(BasicBlock *BB) {
2444 // Perform simple cse.
2446 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2447 if (!CSEDenseMapInfo::canHandle(&In))
2448 continue;
2449
2450 // Check if we can replace this instruction with any of the
2451 // visited instructions.
2452 if (Instruction *V = CSEMap.lookup(&In)) {
2453 In.replaceAllUsesWith(V);
2454 In.eraseFromParent();
2455 continue;
2456 }
2457
2458 CSEMap[&In] = &In;
2459 }
2460}
2461
2462/// This function attempts to return a value that represents the ElementCount
2463/// at runtime. For fixed-width VFs we know this precisely at compile
2464/// time, but for scalable VFs we calculate it based on an estimate of the
2465/// vscale value.
2467 std::optional<unsigned> VScale) {
2468 unsigned EstimatedVF = VF.getKnownMinValue();
2469 if (VF.isScalable())
2470 if (VScale)
2471 EstimatedVF *= *VScale;
2472 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2473 return EstimatedVF;
2474}
2475
2478 ElementCount VF) const {
2479 // We only need to calculate a cost if the VF is scalar; for actual vectors
2480 // we should already have a pre-calculated cost at each VF.
2481 if (!VF.isScalar())
2482 return getCallWideningDecision(CI, VF).Cost;
2483
2484 Type *RetTy = CI->getType();
2486 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2487 return *RedCost;
2488
2490 for (auto &ArgOp : CI->args())
2491 Tys.push_back(ArgOp->getType());
2492
2493 InstructionCost ScalarCallCost =
2494 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2495
2496 // If this is an intrinsic we may have a lower cost for it.
2499 return std::min(ScalarCallCost, IntrinsicCost);
2500 }
2501 return ScalarCallCost;
2502}
2503
2505 if (VF.isScalar() || !canVectorizeTy(Ty))
2506 return Ty;
2507 return toVectorizedTy(Ty, VF);
2508}
2509
2512 ElementCount VF) const {
2514 assert(ID && "Expected intrinsic call!");
2515 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2516 FastMathFlags FMF;
2517 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2518 FMF = FPMO->getFastMathFlags();
2519
2522 SmallVector<Type *> ParamTys;
2523 std::transform(FTy->param_begin(), FTy->param_end(),
2524 std::back_inserter(ParamTys),
2525 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2526
2527 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2530 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2531}
2532
2534 // Fix widened non-induction PHIs by setting up the PHI operands.
2535 fixNonInductionPHIs(State);
2536
2537 // Don't apply optimizations below when no (vector) loop remains, as they all
2538 // require one at the moment.
2539 VPBasicBlock *HeaderVPBB =
2540 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2541 if (!HeaderVPBB)
2542 return;
2543
2544 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2545
2546 // Remove redundant induction instructions.
2547 legacyCSE(HeaderBB);
2548}
2549
2551 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2553 for (VPRecipeBase &P : VPBB->phis()) {
2555 if (!VPPhi)
2556 continue;
2557 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2558 // Make sure the builder has a valid insert point.
2559 Builder.SetInsertPoint(NewPhi);
2560 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2561 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2562 }
2563 }
2564}
2565
2566void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2567 // We should not collect Scalars more than once per VF. Right now, this
2568 // function is called from collectUniformsAndScalars(), which already does
2569 // this check. Collecting Scalars for VF=1 does not make any sense.
2570 assert(VF.isVector() && !Scalars.contains(VF) &&
2571 "This function should not be visited twice for the same VF");
2572
2573 // This avoids any chances of creating a REPLICATE recipe during planning
2574 // since that would result in generation of scalarized code during execution,
2575 // which is not supported for scalable vectors.
2576 if (VF.isScalable()) {
2577 Scalars[VF].insert_range(Uniforms[VF]);
2578 return;
2579 }
2580
2582
2583 // These sets are used to seed the analysis with pointers used by memory
2584 // accesses that will remain scalar.
2586 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2587 auto *Latch = TheLoop->getLoopLatch();
2588
2589 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2590 // The pointer operands of loads and stores will be scalar as long as the
2591 // memory access is not a gather or scatter operation. The value operand of a
2592 // store will remain scalar if the store is scalarized.
2593 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2594 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2595 assert(WideningDecision != CM_Unknown &&
2596 "Widening decision should be ready at this moment");
2597 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2598 if (Ptr == Store->getValueOperand())
2599 return WideningDecision == CM_Scalarize;
2600 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2601 "Ptr is neither a value or pointer operand");
2602 return WideningDecision != CM_GatherScatter;
2603 };
2604
2605 // A helper that returns true if the given value is a getelementptr
2606 // instruction contained in the loop.
2607 auto IsLoopVaryingGEP = [&](Value *V) {
2608 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2609 };
2610
2611 // A helper that evaluates a memory access's use of a pointer. If the use will
2612 // be a scalar use and the pointer is only used by memory accesses, we place
2613 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2614 // PossibleNonScalarPtrs.
2615 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2616 // We only care about bitcast and getelementptr instructions contained in
2617 // the loop.
2618 if (!IsLoopVaryingGEP(Ptr))
2619 return;
2620
2621 // If the pointer has already been identified as scalar (e.g., if it was
2622 // also identified as uniform), there's nothing to do.
2623 auto *I = cast<Instruction>(Ptr);
2624 if (Worklist.count(I))
2625 return;
2626
2627 // If the use of the pointer will be a scalar use, and all users of the
2628 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2629 // place the pointer in PossibleNonScalarPtrs.
2630 if (IsScalarUse(MemAccess, Ptr) &&
2632 ScalarPtrs.insert(I);
2633 else
2634 PossibleNonScalarPtrs.insert(I);
2635 };
2636
2637 // We seed the scalars analysis with three classes of instructions: (1)
2638 // instructions marked uniform-after-vectorization and (2) bitcast,
2639 // getelementptr and (pointer) phi instructions used by memory accesses
2640 // requiring a scalar use.
2641 //
2642 // (1) Add to the worklist all instructions that have been identified as
2643 // uniform-after-vectorization.
2644 Worklist.insert_range(Uniforms[VF]);
2645
2646 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2647 // memory accesses requiring a scalar use. The pointer operands of loads and
2648 // stores will be scalar unless the operation is a gather or scatter.
2649 // The value operand of a store will remain scalar if the store is scalarized.
2650 for (auto *BB : TheLoop->blocks())
2651 for (auto &I : *BB) {
2652 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2653 EvaluatePtrUse(Load, Load->getPointerOperand());
2654 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2655 EvaluatePtrUse(Store, Store->getPointerOperand());
2656 EvaluatePtrUse(Store, Store->getValueOperand());
2657 }
2658 }
2659 for (auto *I : ScalarPtrs)
2660 if (!PossibleNonScalarPtrs.count(I)) {
2661 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2662 Worklist.insert(I);
2663 }
2664
2665 // Insert the forced scalars.
2666 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2667 // induction variable when the PHI user is scalarized.
2668 auto ForcedScalar = ForcedScalars.find(VF);
2669 if (ForcedScalar != ForcedScalars.end())
2670 for (auto *I : ForcedScalar->second) {
2671 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2672 Worklist.insert(I);
2673 }
2674
2675 // Expand the worklist by looking through any bitcasts and getelementptr
2676 // instructions we've already identified as scalar. This is similar to the
2677 // expansion step in collectLoopUniforms(); however, here we're only
2678 // expanding to include additional bitcasts and getelementptr instructions.
2679 unsigned Idx = 0;
2680 while (Idx != Worklist.size()) {
2681 Instruction *Dst = Worklist[Idx++];
2682 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2683 continue;
2684 auto *Src = cast<Instruction>(Dst->getOperand(0));
2685 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2686 auto *J = cast<Instruction>(U);
2687 return !TheLoop->contains(J) || Worklist.count(J) ||
2688 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2689 IsScalarUse(J, Src));
2690 })) {
2691 Worklist.insert(Src);
2692 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2693 }
2694 }
2695
2696 // An induction variable will remain scalar if all users of the induction
2697 // variable and induction variable update remain scalar.
2698 for (const auto &Induction : Legal->getInductionVars()) {
2699 auto *Ind = Induction.first;
2700 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2701
2702 // If tail-folding is applied, the primary induction variable will be used
2703 // to feed a vector compare.
2704 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2705 continue;
2706
2707 // Returns true if \p Indvar is a pointer induction that is used directly by
2708 // load/store instruction \p I.
2709 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2710 Instruction *I) {
2711 return Induction.second.getKind() ==
2714 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2715 };
2716
2717 // Determine if all users of the induction variable are scalar after
2718 // vectorization.
2719 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2720 auto *I = cast<Instruction>(U);
2721 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2722 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2723 });
2724 if (!ScalarInd)
2725 continue;
2726
2727 // If the induction variable update is a fixed-order recurrence, neither the
2728 // induction variable or its update should be marked scalar after
2729 // vectorization.
2730 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2731 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2732 continue;
2733
2734 // Determine if all users of the induction variable update instruction are
2735 // scalar after vectorization.
2736 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2737 auto *I = cast<Instruction>(U);
2738 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2739 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2740 });
2741 if (!ScalarIndUpdate)
2742 continue;
2743
2744 // The induction variable and its update instruction will remain scalar.
2745 Worklist.insert(Ind);
2746 Worklist.insert(IndUpdate);
2747 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2748 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2749 << "\n");
2750 }
2751
2752 Scalars[VF].insert_range(Worklist);
2753}
2754
2756 Instruction *I, ElementCount VF) const {
2757 if (!isPredicatedInst(I))
2758 return false;
2759
2760 // Do we have a non-scalar lowering for this predicated
2761 // instruction? No - it is scalar with predication.
2762 switch(I->getOpcode()) {
2763 default:
2764 return true;
2765 case Instruction::Call:
2766 if (VF.isScalar())
2767 return true;
2769 case Instruction::Load:
2770 case Instruction::Store: {
2772 auto *Ty = getLoadStoreType(I);
2773 unsigned AS = getLoadStoreAddressSpace(I);
2774 Type *VTy = Ty;
2775 if (VF.isVector())
2776 VTy = VectorType::get(Ty, VF);
2777 const Align Alignment = getLoadStoreAlignment(I);
2778 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2779 TTI.isLegalMaskedGather(VTy, Alignment))
2780 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2781 TTI.isLegalMaskedScatter(VTy, Alignment));
2782 }
2783 case Instruction::UDiv:
2784 case Instruction::SDiv:
2785 case Instruction::SRem:
2786 case Instruction::URem: {
2787 // We have the option to use the safe-divisor idiom to avoid predication.
2788 // The cost based decision here will always select safe-divisor for
2789 // scalable vectors as scalarization isn't legal.
2790 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2791 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2792 }
2793 }
2794}
2795
2796// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2798 // TODO: We can use the loop-preheader as context point here and get
2799 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2801 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2803 return false;
2804
2805 // If the instruction was executed conditionally in the original scalar loop,
2806 // predication is needed with a mask whose lanes are all possibly inactive.
2807 if (Legal->blockNeedsPredication(I->getParent()))
2808 return true;
2809
2810 // If we're not folding the tail by masking, predication is unnecessary.
2811 if (!foldTailByMasking())
2812 return false;
2813
2814 // All that remain are instructions with side-effects originally executed in
2815 // the loop unconditionally, but now execute under a tail-fold mask (only)
2816 // having at least one active lane (the first). If the side-effects of the
2817 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2818 // - it will cause the same side-effects as when masked.
2819 switch(I->getOpcode()) {
2820 default:
2822 "instruction should have been considered by earlier checks");
2823 case Instruction::Call:
2824 // Side-effects of a Call are assumed to be non-invariant, needing a
2825 // (fold-tail) mask.
2826 assert(Legal->isMaskRequired(I) &&
2827 "should have returned earlier for calls not needing a mask");
2828 return true;
2829 case Instruction::Load:
2830 // If the address is loop invariant no predication is needed.
2831 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2832 case Instruction::Store: {
2833 // For stores, we need to prove both speculation safety (which follows from
2834 // the same argument as loads), but also must prove the value being stored
2835 // is correct. The easiest form of the later is to require that all values
2836 // stored are the same.
2837 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2838 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2839 }
2840 case Instruction::UDiv:
2841 case Instruction::SDiv:
2842 case Instruction::SRem:
2843 case Instruction::URem:
2844 // If the divisor is loop-invariant no predication is needed.
2845 return !Legal->isInvariant(I->getOperand(1));
2846 }
2847}
2848
2849std::pair<InstructionCost, InstructionCost>
2851 ElementCount VF) const {
2852 assert(I->getOpcode() == Instruction::UDiv ||
2853 I->getOpcode() == Instruction::SDiv ||
2854 I->getOpcode() == Instruction::SRem ||
2855 I->getOpcode() == Instruction::URem);
2857
2858 // Scalarization isn't legal for scalable vector types
2859 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2860 if (!VF.isScalable()) {
2861 // Get the scalarization cost and scale this amount by the probability of
2862 // executing the predicated block. If the instruction is not predicated,
2863 // we fall through to the next case.
2864 ScalarizationCost = 0;
2865
2866 // These instructions have a non-void type, so account for the phi nodes
2867 // that we will create. This cost is likely to be zero. The phi node
2868 // cost, if any, should be scaled by the block probability because it
2869 // models a copy at the end of each predicated block.
2870 ScalarizationCost +=
2871 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2872
2873 // The cost of the non-predicated instruction.
2874 ScalarizationCost +=
2875 VF.getFixedValue() *
2876 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2877
2878 // The cost of insertelement and extractelement instructions needed for
2879 // scalarization.
2880 ScalarizationCost += getScalarizationOverhead(I, VF);
2881
2882 // Scale the cost by the probability of executing the predicated blocks.
2883 // This assumes the predicated block for each vector lane is equally
2884 // likely.
2885 ScalarizationCost = ScalarizationCost / getPredBlockCostDivisor(CostKind);
2886 }
2887
2888 InstructionCost SafeDivisorCost = 0;
2889 auto *VecTy = toVectorTy(I->getType(), VF);
2890 // The cost of the select guard to ensure all lanes are well defined
2891 // after we speculate above any internal control flow.
2892 SafeDivisorCost +=
2893 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2894 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2896
2897 SmallVector<const Value *, 4> Operands(I->operand_values());
2898 SafeDivisorCost += TTI.getArithmeticInstrCost(
2899 I->getOpcode(), VecTy, CostKind,
2900 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2901 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2902 Operands, I);
2903 return {ScalarizationCost, SafeDivisorCost};
2904}
2905
2907 Instruction *I, ElementCount VF) const {
2908 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2910 "Decision should not be set yet.");
2911 auto *Group = getInterleavedAccessGroup(I);
2912 assert(Group && "Must have a group.");
2913 unsigned InterleaveFactor = Group->getFactor();
2914
2915 // If the instruction's allocated size doesn't equal its type size, it
2916 // requires padding and will be scalarized.
2917 auto &DL = I->getDataLayout();
2918 auto *ScalarTy = getLoadStoreType(I);
2919 if (hasIrregularType(ScalarTy, DL))
2920 return false;
2921
2922 // For scalable vectors, the interleave factors must be <= 8 since we require
2923 // the (de)interleaveN intrinsics instead of shufflevectors.
2924 if (VF.isScalable() && InterleaveFactor > 8)
2925 return false;
2926
2927 // If the group involves a non-integral pointer, we may not be able to
2928 // losslessly cast all values to a common type.
2929 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
2930 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2931 Instruction *Member = Group->getMember(Idx);
2932 if (!Member)
2933 continue;
2934 auto *MemberTy = getLoadStoreType(Member);
2935 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
2936 // Don't coerce non-integral pointers to integers or vice versa.
2937 if (MemberNI != ScalarNI)
2938 // TODO: Consider adding special nullptr value case here
2939 return false;
2940 if (MemberNI && ScalarNI &&
2941 ScalarTy->getPointerAddressSpace() !=
2942 MemberTy->getPointerAddressSpace())
2943 return false;
2944 }
2945
2946 // Check if masking is required.
2947 // A Group may need masking for one of two reasons: it resides in a block that
2948 // needs predication, or it was decided to use masking to deal with gaps
2949 // (either a gap at the end of a load-access that may result in a speculative
2950 // load, or any gaps in a store-access).
2951 bool PredicatedAccessRequiresMasking =
2952 blockNeedsPredicationForAnyReason(I->getParent()) &&
2953 Legal->isMaskRequired(I);
2954 bool LoadAccessWithGapsRequiresEpilogMasking =
2955 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
2957 bool StoreAccessWithGapsRequiresMasking =
2958 isa<StoreInst>(I) && !Group->isFull();
2959 if (!PredicatedAccessRequiresMasking &&
2960 !LoadAccessWithGapsRequiresEpilogMasking &&
2961 !StoreAccessWithGapsRequiresMasking)
2962 return true;
2963
2964 // If masked interleaving is required, we expect that the user/target had
2965 // enabled it, because otherwise it either wouldn't have been created or
2966 // it should have been invalidated by the CostModel.
2968 "Masked interleave-groups for predicated accesses are not enabled.");
2969
2970 if (Group->isReverse())
2971 return false;
2972
2973 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
2974 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2975 StoreAccessWithGapsRequiresMasking;
2976 if (VF.isScalable() && NeedsMaskForGaps)
2977 return false;
2978
2979 auto *Ty = getLoadStoreType(I);
2980 const Align Alignment = getLoadStoreAlignment(I);
2981 unsigned AS = getLoadStoreAddressSpace(I);
2982 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
2983 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
2984}
2985
2987 Instruction *I, ElementCount VF) {
2988 // Get and ensure we have a valid memory instruction.
2989 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
2990
2992 auto *ScalarTy = getLoadStoreType(I);
2993
2994 // In order to be widened, the pointer should be consecutive, first of all.
2995 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
2996 return false;
2997
2998 // If the instruction is a store located in a predicated block, it will be
2999 // scalarized.
3000 if (isScalarWithPredication(I, VF))
3001 return false;
3002
3003 // If the instruction's allocated size doesn't equal it's type size, it
3004 // requires padding and will be scalarized.
3005 auto &DL = I->getDataLayout();
3006 if (hasIrregularType(ScalarTy, DL))
3007 return false;
3008
3009 return true;
3010}
3011
3012void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3013 // We should not collect Uniforms more than once per VF. Right now,
3014 // this function is called from collectUniformsAndScalars(), which
3015 // already does this check. Collecting Uniforms for VF=1 does not make any
3016 // sense.
3017
3018 assert(VF.isVector() && !Uniforms.contains(VF) &&
3019 "This function should not be visited twice for the same VF");
3020
3021 // Visit the list of Uniforms. If we find no uniform value, we won't
3022 // analyze again. Uniforms.count(VF) will return 1.
3023 Uniforms[VF].clear();
3024
3025 // Now we know that the loop is vectorizable!
3026 // Collect instructions inside the loop that will remain uniform after
3027 // vectorization.
3028
3029 // Global values, params and instructions outside of current loop are out of
3030 // scope.
3031 auto IsOutOfScope = [&](Value *V) -> bool {
3033 return (!I || !TheLoop->contains(I));
3034 };
3035
3036 // Worklist containing uniform instructions demanding lane 0.
3037 SetVector<Instruction *> Worklist;
3038
3039 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3040 // that require predication must not be considered uniform after
3041 // vectorization, because that would create an erroneous replicating region
3042 // where only a single instance out of VF should be formed.
3043 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3044 if (IsOutOfScope(I)) {
3045 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3046 << *I << "\n");
3047 return;
3048 }
3049 if (isPredicatedInst(I)) {
3050 LLVM_DEBUG(
3051 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3052 << "\n");
3053 return;
3054 }
3055 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3056 Worklist.insert(I);
3057 };
3058
3059 // Start with the conditional branches exiting the loop. If the branch
3060 // condition is an instruction contained in the loop that is only used by the
3061 // branch, it is uniform. Note conditions from uncountable early exits are not
3062 // uniform.
3064 TheLoop->getExitingBlocks(Exiting);
3065 for (BasicBlock *E : Exiting) {
3066 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3067 continue;
3068 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3069 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3070 AddToWorklistIfAllowed(Cmp);
3071 }
3072
3073 auto PrevVF = VF.divideCoefficientBy(2);
3074 // Return true if all lanes perform the same memory operation, and we can
3075 // thus choose to execute only one.
3076 auto IsUniformMemOpUse = [&](Instruction *I) {
3077 // If the value was already known to not be uniform for the previous
3078 // (smaller VF), it cannot be uniform for the larger VF.
3079 if (PrevVF.isVector()) {
3080 auto Iter = Uniforms.find(PrevVF);
3081 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3082 return false;
3083 }
3084 if (!Legal->isUniformMemOp(*I, VF))
3085 return false;
3086 if (isa<LoadInst>(I))
3087 // Loading the same address always produces the same result - at least
3088 // assuming aliasing and ordering which have already been checked.
3089 return true;
3090 // Storing the same value on every iteration.
3091 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3092 };
3093
3094 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3095 InstWidening WideningDecision = getWideningDecision(I, VF);
3096 assert(WideningDecision != CM_Unknown &&
3097 "Widening decision should be ready at this moment");
3098
3099 if (IsUniformMemOpUse(I))
3100 return true;
3101
3102 return (WideningDecision == CM_Widen ||
3103 WideningDecision == CM_Widen_Reverse ||
3104 WideningDecision == CM_Interleave);
3105 };
3106
3107 // Returns true if Ptr is the pointer operand of a memory access instruction
3108 // I, I is known to not require scalarization, and the pointer is not also
3109 // stored.
3110 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3111 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3112 return false;
3113 return getLoadStorePointerOperand(I) == Ptr &&
3114 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3115 };
3116
3117 // Holds a list of values which are known to have at least one uniform use.
3118 // Note that there may be other uses which aren't uniform. A "uniform use"
3119 // here is something which only demands lane 0 of the unrolled iterations;
3120 // it does not imply that all lanes produce the same value (e.g. this is not
3121 // the usual meaning of uniform)
3122 SetVector<Value *> HasUniformUse;
3123
3124 // Scan the loop for instructions which are either a) known to have only
3125 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3126 for (auto *BB : TheLoop->blocks())
3127 for (auto &I : *BB) {
3128 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3129 switch (II->getIntrinsicID()) {
3130 case Intrinsic::sideeffect:
3131 case Intrinsic::experimental_noalias_scope_decl:
3132 case Intrinsic::assume:
3133 case Intrinsic::lifetime_start:
3134 case Intrinsic::lifetime_end:
3135 if (TheLoop->hasLoopInvariantOperands(&I))
3136 AddToWorklistIfAllowed(&I);
3137 break;
3138 default:
3139 break;
3140 }
3141 }
3142
3143 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3144 if (IsOutOfScope(EVI->getAggregateOperand())) {
3145 AddToWorklistIfAllowed(EVI);
3146 continue;
3147 }
3148 // Only ExtractValue instructions where the aggregate value comes from a
3149 // call are allowed to be non-uniform.
3150 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3151 "Expected aggregate value to be call return value");
3152 }
3153
3154 // If there's no pointer operand, there's nothing to do.
3156 if (!Ptr)
3157 continue;
3158
3159 // If the pointer can be proven to be uniform, always add it to the
3160 // worklist.
3161 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3162 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3163
3164 if (IsUniformMemOpUse(&I))
3165 AddToWorklistIfAllowed(&I);
3166
3167 if (IsVectorizedMemAccessUse(&I, Ptr))
3168 HasUniformUse.insert(Ptr);
3169 }
3170
3171 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3172 // demanding) users. Since loops are assumed to be in LCSSA form, this
3173 // disallows uses outside the loop as well.
3174 for (auto *V : HasUniformUse) {
3175 if (IsOutOfScope(V))
3176 continue;
3177 auto *I = cast<Instruction>(V);
3178 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3179 auto *UI = cast<Instruction>(U);
3180 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3181 });
3182 if (UsersAreMemAccesses)
3183 AddToWorklistIfAllowed(I);
3184 }
3185
3186 // Expand Worklist in topological order: whenever a new instruction
3187 // is added , its users should be already inside Worklist. It ensures
3188 // a uniform instruction will only be used by uniform instructions.
3189 unsigned Idx = 0;
3190 while (Idx != Worklist.size()) {
3191 Instruction *I = Worklist[Idx++];
3192
3193 for (auto *OV : I->operand_values()) {
3194 // isOutOfScope operands cannot be uniform instructions.
3195 if (IsOutOfScope(OV))
3196 continue;
3197 // First order recurrence Phi's should typically be considered
3198 // non-uniform.
3199 auto *OP = dyn_cast<PHINode>(OV);
3200 if (OP && Legal->isFixedOrderRecurrence(OP))
3201 continue;
3202 // If all the users of the operand are uniform, then add the
3203 // operand into the uniform worklist.
3204 auto *OI = cast<Instruction>(OV);
3205 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3206 auto *J = cast<Instruction>(U);
3207 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3208 }))
3209 AddToWorklistIfAllowed(OI);
3210 }
3211 }
3212
3213 // For an instruction to be added into Worklist above, all its users inside
3214 // the loop should also be in Worklist. However, this condition cannot be
3215 // true for phi nodes that form a cyclic dependence. We must process phi
3216 // nodes separately. An induction variable will remain uniform if all users
3217 // of the induction variable and induction variable update remain uniform.
3218 // The code below handles both pointer and non-pointer induction variables.
3219 BasicBlock *Latch = TheLoop->getLoopLatch();
3220 for (const auto &Induction : Legal->getInductionVars()) {
3221 auto *Ind = Induction.first;
3222 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3223
3224 // Determine if all users of the induction variable are uniform after
3225 // vectorization.
3226 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3227 auto *I = cast<Instruction>(U);
3228 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3229 IsVectorizedMemAccessUse(I, Ind);
3230 });
3231 if (!UniformInd)
3232 continue;
3233
3234 // Determine if all users of the induction variable update instruction are
3235 // uniform after vectorization.
3236 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3237 auto *I = cast<Instruction>(U);
3238 return I == Ind || Worklist.count(I) ||
3239 IsVectorizedMemAccessUse(I, IndUpdate);
3240 });
3241 if (!UniformIndUpdate)
3242 continue;
3243
3244 // The induction variable and its update instruction will remain uniform.
3245 AddToWorklistIfAllowed(Ind);
3246 AddToWorklistIfAllowed(IndUpdate);
3247 }
3248
3249 Uniforms[VF].insert_range(Worklist);
3250}
3251
3253 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3254
3255 if (Legal->getRuntimePointerChecking()->Need) {
3256 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3257 "runtime pointer checks needed. Enable vectorization of this "
3258 "loop with '#pragma clang loop vectorize(enable)' when "
3259 "compiling with -Os/-Oz",
3260 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3261 return true;
3262 }
3263
3264 if (!PSE.getPredicate().isAlwaysTrue()) {
3265 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3266 "runtime SCEV checks needed. Enable vectorization of this "
3267 "loop with '#pragma clang loop vectorize(enable)' when "
3268 "compiling with -Os/-Oz",
3269 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3270 return true;
3271 }
3272
3273 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3274 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3275 reportVectorizationFailure("Runtime stride check for small trip count",
3276 "runtime stride == 1 checks needed. Enable vectorization of "
3277 "this loop without such check by compiling with -Os/-Oz",
3278 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3279 return true;
3280 }
3281
3282 return false;
3283}
3284
3285bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3286 if (IsScalableVectorizationAllowed)
3287 return *IsScalableVectorizationAllowed;
3288
3289 IsScalableVectorizationAllowed = false;
3290 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3291 return false;
3292
3293 if (Hints->isScalableVectorizationDisabled()) {
3294 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3295 "ScalableVectorizationDisabled", ORE, TheLoop);
3296 return false;
3297 }
3298
3299 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3300
3301 auto MaxScalableVF = ElementCount::getScalable(
3302 std::numeric_limits<ElementCount::ScalarTy>::max());
3303
3304 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3305 // FIXME: While for scalable vectors this is currently sufficient, this should
3306 // be replaced by a more detailed mechanism that filters out specific VFs,
3307 // instead of invalidating vectorization for a whole set of VFs based on the
3308 // MaxVF.
3309
3310 // Disable scalable vectorization if the loop contains unsupported reductions.
3311 if (!canVectorizeReductions(MaxScalableVF)) {
3313 "Scalable vectorization not supported for the reduction "
3314 "operations found in this loop.",
3315 "ScalableVFUnfeasible", ORE, TheLoop);
3316 return false;
3317 }
3318
3319 // Disable scalable vectorization if the loop contains any instructions
3320 // with element types not supported for scalable vectors.
3321 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3322 return !Ty->isVoidTy() &&
3324 })) {
3325 reportVectorizationInfo("Scalable vectorization is not supported "
3326 "for all element types found in this loop.",
3327 "ScalableVFUnfeasible", ORE, TheLoop);
3328 return false;
3329 }
3330
3331 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3332 reportVectorizationInfo("The target does not provide maximum vscale value "
3333 "for safe distance analysis.",
3334 "ScalableVFUnfeasible", ORE, TheLoop);
3335 return false;
3336 }
3337
3338 IsScalableVectorizationAllowed = true;
3339 return true;
3340}
3341
3342ElementCount
3343LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3344 if (!isScalableVectorizationAllowed())
3345 return ElementCount::getScalable(0);
3346
3347 auto MaxScalableVF = ElementCount::getScalable(
3348 std::numeric_limits<ElementCount::ScalarTy>::max());
3349 if (Legal->isSafeForAnyVectorWidth())
3350 return MaxScalableVF;
3351
3352 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3353 // Limit MaxScalableVF by the maximum safe dependence distance.
3354 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3355
3356 if (!MaxScalableVF)
3358 "Max legal vector width too small, scalable vectorization "
3359 "unfeasible.",
3360 "ScalableVFUnfeasible", ORE, TheLoop);
3361
3362 return MaxScalableVF;
3363}
3364
3365FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3366 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3367 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3368 unsigned SmallestType, WidestType;
3369 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3370
3371 // Get the maximum safe dependence distance in bits computed by LAA.
3372 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3373 // the memory accesses that is most restrictive (involved in the smallest
3374 // dependence distance).
3375 unsigned MaxSafeElementsPowerOf2 =
3376 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3377 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3378 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3379 MaxSafeElementsPowerOf2 =
3380 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3381 }
3382 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3383 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3384
3385 if (!Legal->isSafeForAnyVectorWidth())
3386 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3387
3388 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3389 << ".\n");
3390 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3391 << ".\n");
3392
3393 // First analyze the UserVF, fall back if the UserVF should be ignored.
3394 if (UserVF) {
3395 auto MaxSafeUserVF =
3396 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3397
3398 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3399 // If `VF=vscale x N` is safe, then so is `VF=N`
3400 if (UserVF.isScalable())
3401 return FixedScalableVFPair(
3402 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3403
3404 return UserVF;
3405 }
3406
3407 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3408
3409 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3410 // is better to ignore the hint and let the compiler choose a suitable VF.
3411 if (!UserVF.isScalable()) {
3412 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3413 << " is unsafe, clamping to max safe VF="
3414 << MaxSafeFixedVF << ".\n");
3415 ORE->emit([&]() {
3416 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3417 TheLoop->getStartLoc(),
3418 TheLoop->getHeader())
3419 << "User-specified vectorization factor "
3420 << ore::NV("UserVectorizationFactor", UserVF)
3421 << " is unsafe, clamping to maximum safe vectorization factor "
3422 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3423 });
3424 return MaxSafeFixedVF;
3425 }
3426
3428 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3429 << " is ignored because scalable vectors are not "
3430 "available.\n");
3431 ORE->emit([&]() {
3432 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3433 TheLoop->getStartLoc(),
3434 TheLoop->getHeader())
3435 << "User-specified vectorization factor "
3436 << ore::NV("UserVectorizationFactor", UserVF)
3437 << " is ignored because the target does not support scalable "
3438 "vectors. The compiler will pick a more suitable value.";
3439 });
3440 } else {
3441 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3442 << " is unsafe. Ignoring scalable UserVF.\n");
3443 ORE->emit([&]() {
3444 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3445 TheLoop->getStartLoc(),
3446 TheLoop->getHeader())
3447 << "User-specified vectorization factor "
3448 << ore::NV("UserVectorizationFactor", UserVF)
3449 << " is unsafe. Ignoring the hint to let the compiler pick a "
3450 "more suitable value.";
3451 });
3452 }
3453 }
3454
3455 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3456 << " / " << WidestType << " bits.\n");
3457
3458 FixedScalableVFPair Result(ElementCount::getFixed(1),
3460 if (auto MaxVF =
3461 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3462 MaxSafeFixedVF, FoldTailByMasking))
3463 Result.FixedVF = MaxVF;
3464
3465 if (auto MaxVF =
3466 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3467 MaxSafeScalableVF, FoldTailByMasking))
3468 if (MaxVF.isScalable()) {
3469 Result.ScalableVF = MaxVF;
3470 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3471 << "\n");
3472 }
3473
3474 return Result;
3475}
3476
3477FixedScalableVFPair
3479 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3480 // TODO: It may be useful to do since it's still likely to be dynamically
3481 // uniform if the target can skip.
3483 "Not inserting runtime ptr check for divergent target",
3484 "runtime pointer checks needed. Not enabled for divergent target",
3485 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3487 }
3488
3489 ScalarEvolution *SE = PSE.getSE();
3491 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3492 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3493 if (TC != ElementCount::getFixed(MaxTC))
3494 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3495 if (TC.isScalar()) {
3496 reportVectorizationFailure("Single iteration (non) loop",
3497 "loop trip count is one, irrelevant for vectorization",
3498 "SingleIterationLoop", ORE, TheLoop);
3500 }
3501
3502 // If BTC matches the widest induction type and is -1 then the trip count
3503 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3504 // to vectorize.
3505 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3506 if (!isa<SCEVCouldNotCompute>(BTC) &&
3507 BTC->getType()->getScalarSizeInBits() >=
3508 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3510 SE->getMinusOne(BTC->getType()))) {
3512 "Trip count computation wrapped",
3513 "backedge-taken count is -1, loop trip count wrapped to 0",
3514 "TripCountWrapped", ORE, TheLoop);
3516 }
3517
3518 switch (ScalarEpilogueStatus) {
3520 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3522 [[fallthrough]];
3524 LLVM_DEBUG(
3525 dbgs() << "LV: vector predicate hint/switch found.\n"
3526 << "LV: Not allowing scalar epilogue, creating predicated "
3527 << "vector loop.\n");
3528 break;
3530 // fallthrough as a special case of OptForSize
3532 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3533 LLVM_DEBUG(
3534 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3535 else
3536 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3537 << "count.\n");
3538
3539 // Bail if runtime checks are required, which are not good when optimising
3540 // for size.
3543
3544 break;
3545 }
3546
3547 // Now try the tail folding
3548
3549 // Invalidate interleave groups that require an epilogue if we can't mask
3550 // the interleave-group.
3552 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3553 "No decisions should have been taken at this point");
3554 // Note: There is no need to invalidate any cost modeling decisions here, as
3555 // none were taken so far.
3556 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3557 }
3558
3559 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3560
3561 // Avoid tail folding if the trip count is known to be a multiple of any VF
3562 // we choose.
3563 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3564 MaxFactors.FixedVF.getFixedValue();
3565 if (MaxFactors.ScalableVF) {
3566 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3567 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3568 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3569 *MaxPowerOf2RuntimeVF,
3570 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3571 } else
3572 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3573 }
3574
3575 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3576 // Return false if the loop is neither a single-latch-exit loop nor an
3577 // early-exit loop as tail-folding is not supported in that case.
3578 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3579 !Legal->hasUncountableEarlyExit())
3580 return false;
3581 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3582 ScalarEvolution *SE = PSE.getSE();
3583 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3584 // with uncountable exits. For countable loops, the symbolic maximum must
3585 // remain identical to the known back-edge taken count.
3586 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3587 assert((Legal->hasUncountableEarlyExit() ||
3588 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3589 "Invalid loop count");
3590 const SCEV *ExitCount = SE->getAddExpr(
3591 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3592 const SCEV *Rem = SE->getURemExpr(
3593 SE->applyLoopGuards(ExitCount, TheLoop),
3594 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3595 return Rem->isZero();
3596 };
3597
3598 if (MaxPowerOf2RuntimeVF > 0u) {
3599 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3600 "MaxFixedVF must be a power of 2");
3601 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3602 // Accept MaxFixedVF if we do not have a tail.
3603 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3604 return MaxFactors;
3605 }
3606 }
3607
3608 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3609 if (ExpectedTC && ExpectedTC->isFixed() &&
3610 ExpectedTC->getFixedValue() <=
3611 TTI.getMinTripCountTailFoldingThreshold()) {
3612 if (MaxPowerOf2RuntimeVF > 0u) {
3613 // If we have a low-trip-count, and the fixed-width VF is known to divide
3614 // the trip count but the scalable factor does not, use the fixed-width
3615 // factor in preference to allow the generation of a non-predicated loop.
3616 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3617 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3618 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3619 "remain for any chosen VF.\n");
3620 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3621 return MaxFactors;
3622 }
3623 }
3624
3626 "The trip count is below the minial threshold value.",
3627 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3628 ORE, TheLoop);
3630 }
3631
3632 // If we don't know the precise trip count, or if the trip count that we
3633 // found modulo the vectorization factor is not zero, try to fold the tail
3634 // by masking.
3635 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3636 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3637 setTailFoldingStyles(ContainsScalableVF, UserIC);
3638 if (foldTailByMasking()) {
3640 LLVM_DEBUG(
3641 dbgs()
3642 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3643 "try to generate VP Intrinsics with scalable vector "
3644 "factors only.\n");
3645 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3646 // for now.
3647 // TODO: extend it for fixed vectors, if required.
3648 assert(ContainsScalableVF && "Expected scalable vector factor.");
3649
3650 MaxFactors.FixedVF = ElementCount::getFixed(1);
3651 }
3652 return MaxFactors;
3653 }
3654
3655 // If there was a tail-folding hint/switch, but we can't fold the tail by
3656 // masking, fallback to a vectorization with a scalar epilogue.
3657 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3658 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3659 "scalar epilogue instead.\n");
3660 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3661 return MaxFactors;
3662 }
3663
3664 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3665 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3667 }
3668
3669 if (TC.isZero()) {
3671 "unable to calculate the loop count due to complex control flow",
3672 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3674 }
3675
3677 "Cannot optimize for size and vectorize at the same time.",
3678 "cannot optimize for size and vectorize at the same time. "
3679 "Enable vectorization of this loop with '#pragma clang loop "
3680 "vectorize(enable)' when compiling with -Os/-Oz",
3681 "NoTailLoopWithOptForSize", ORE, TheLoop);
3683}
3684
3686 ElementCount VF) {
3687 if (ConsiderRegPressure.getNumOccurrences())
3688 return ConsiderRegPressure;
3689
3690 // TODO: We should eventually consider register pressure for all targets. The
3691 // TTI hook is temporary whilst target-specific issues are being fixed.
3692 if (TTI.shouldConsiderVectorizationRegPressure())
3693 return true;
3694
3695 if (!useMaxBandwidth(VF.isScalable()
3698 return false;
3699 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3701 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3703}
3704
3707 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3708 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3710 Legal->hasVectorCallVariants())));
3711}
3712
3713ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3714 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3715 unsigned EstimatedVF = VF.getKnownMinValue();
3716 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3717 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3718 auto Min = Attr.getVScaleRangeMin();
3719 EstimatedVF *= Min;
3720 }
3721
3722 // When a scalar epilogue is required, at least one iteration of the scalar
3723 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3724 // max VF that results in a dead vector loop.
3725 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3726 MaxTripCount -= 1;
3727
3728 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3729 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3730 // If upper bound loop trip count (TC) is known at compile time there is no
3731 // point in choosing VF greater than TC (as done in the loop below). Select
3732 // maximum power of two which doesn't exceed TC. If VF is
3733 // scalable, we only fall back on a fixed VF when the TC is less than or
3734 // equal to the known number of lanes.
3735 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3736 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3737 "exceeding the constant trip count: "
3738 << ClampedUpperTripCount << "\n");
3739 return ElementCount::get(ClampedUpperTripCount,
3740 FoldTailByMasking ? VF.isScalable() : false);
3741 }
3742 return VF;
3743}
3744
3745ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3746 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3747 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3748 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3749 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3750 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3752
3753 // Convenience function to return the minimum of two ElementCounts.
3754 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3755 assert((LHS.isScalable() == RHS.isScalable()) &&
3756 "Scalable flags must match");
3757 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3758 };
3759
3760 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3761 // Note that both WidestRegister and WidestType may not be a powers of 2.
3762 auto MaxVectorElementCount = ElementCount::get(
3763 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3764 ComputeScalableMaxVF);
3765 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3766 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3767 << (MaxVectorElementCount * WidestType) << " bits.\n");
3768
3769 if (!MaxVectorElementCount) {
3770 LLVM_DEBUG(dbgs() << "LV: The target has no "
3771 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3772 << " vector registers.\n");
3773 return ElementCount::getFixed(1);
3774 }
3775
3776 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3777 MaxTripCount, FoldTailByMasking);
3778 // If the MaxVF was already clamped, there's no point in trying to pick a
3779 // larger one.
3780 if (MaxVF != MaxVectorElementCount)
3781 return MaxVF;
3782
3784 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3786
3787 if (MaxVF.isScalable())
3788 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3789 else
3790 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3791
3792 if (useMaxBandwidth(RegKind)) {
3793 auto MaxVectorElementCountMaxBW = ElementCount::get(
3794 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3795 ComputeScalableMaxVF);
3796 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3797
3798 if (ElementCount MinVF =
3799 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3800 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3801 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3802 << ") with target's minimum: " << MinVF << '\n');
3803 MaxVF = MinVF;
3804 }
3805 }
3806
3807 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3808
3809 if (MaxVectorElementCount != MaxVF) {
3810 // Invalidate any widening decisions we might have made, in case the loop
3811 // requires prediction (decided later), but we have already made some
3812 // load/store widening decisions.
3813 invalidateCostModelingDecisions();
3814 }
3815 }
3816 return MaxVF;
3817}
3818
3819bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3820 const VectorizationFactor &B,
3821 const unsigned MaxTripCount,
3822 bool HasTail,
3823 bool IsEpilogue) const {
3824 InstructionCost CostA = A.Cost;
3825 InstructionCost CostB = B.Cost;
3826
3827 // Improve estimate for the vector width if it is scalable.
3828 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3829 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3830 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3831 if (A.Width.isScalable())
3832 EstimatedWidthA *= *VScale;
3833 if (B.Width.isScalable())
3834 EstimatedWidthB *= *VScale;
3835 }
3836
3837 // When optimizing for size choose whichever is smallest, which will be the
3838 // one with the smallest cost for the whole loop. On a tie pick the larger
3839 // vector width, on the assumption that throughput will be greater.
3840 if (CM.CostKind == TTI::TCK_CodeSize)
3841 return CostA < CostB ||
3842 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3843
3844 // Assume vscale may be larger than 1 (or the value being tuned for),
3845 // so that scalable vectorization is slightly favorable over fixed-width
3846 // vectorization.
3847 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3848 A.Width.isScalable() && !B.Width.isScalable();
3849
3850 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3851 const InstructionCost &RHS) {
3852 return PreferScalable ? LHS <= RHS : LHS < RHS;
3853 };
3854
3855 // To avoid the need for FP division:
3856 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3857 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3858 if (!MaxTripCount)
3859 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3860
3861 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3862 InstructionCost VectorCost,
3863 InstructionCost ScalarCost) {
3864 // If the trip count is a known (possibly small) constant, the trip count
3865 // will be rounded up to an integer number of iterations under
3866 // FoldTailByMasking. The total cost in that case will be
3867 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3868 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3869 // some extra overheads, but for the purpose of comparing the costs of
3870 // different VFs we can use this to compare the total loop-body cost
3871 // expected after vectorization.
3872 if (HasTail)
3873 return VectorCost * (MaxTripCount / VF) +
3874 ScalarCost * (MaxTripCount % VF);
3875 return VectorCost * divideCeil(MaxTripCount, VF);
3876 };
3877
3878 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3879 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3880 return CmpFn(RTCostA, RTCostB);
3881}
3882
3883bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3884 const VectorizationFactor &B,
3885 bool HasTail,
3886 bool IsEpilogue) const {
3887 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3888 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3889 IsEpilogue);
3890}
3891
3894 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3895 SmallVector<RecipeVFPair> InvalidCosts;
3896 for (const auto &Plan : VPlans) {
3897 for (ElementCount VF : Plan->vectorFactors()) {
3898 // The VPlan-based cost model is designed for computing vector cost.
3899 // Querying VPlan-based cost model with a scarlar VF will cause some
3900 // errors because we expect the VF is vector for most of the widen
3901 // recipes.
3902 if (VF.isScalar())
3903 continue;
3904
3905 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3906 precomputeCosts(*Plan, VF, CostCtx);
3907 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3909 for (auto &R : *VPBB) {
3910 if (!R.cost(VF, CostCtx).isValid())
3911 InvalidCosts.emplace_back(&R, VF);
3912 }
3913 }
3914 }
3915 }
3916 if (InvalidCosts.empty())
3917 return;
3918
3919 // Emit a report of VFs with invalid costs in the loop.
3920
3921 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3923 unsigned I = 0;
3924 for (auto &Pair : InvalidCosts)
3925 if (Numbering.try_emplace(Pair.first, I).second)
3926 ++I;
3927
3928 // Sort the list, first on recipe(number) then on VF.
3929 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
3930 unsigned NA = Numbering[A.first];
3931 unsigned NB = Numbering[B.first];
3932 if (NA != NB)
3933 return NA < NB;
3934 return ElementCount::isKnownLT(A.second, B.second);
3935 });
3936
3937 // For a list of ordered recipe-VF pairs:
3938 // [(load, VF1), (load, VF2), (store, VF1)]
3939 // group the recipes together to emit separate remarks for:
3940 // load (VF1, VF2)
3941 // store (VF1)
3942 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
3943 auto Subset = ArrayRef<RecipeVFPair>();
3944 do {
3945 if (Subset.empty())
3946 Subset = Tail.take_front(1);
3947
3948 VPRecipeBase *R = Subset.front().first;
3949
3950 unsigned Opcode =
3953 [](const auto *R) { return Instruction::PHI; })
3954 .Case<VPWidenSelectRecipe>(
3955 [](const auto *R) { return Instruction::Select; })
3956 .Case<VPWidenStoreRecipe>(
3957 [](const auto *R) { return Instruction::Store; })
3958 .Case<VPWidenLoadRecipe>(
3959 [](const auto *R) { return Instruction::Load; })
3960 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3961 [](const auto *R) { return Instruction::Call; })
3964 [](const auto *R) { return R->getOpcode(); })
3965 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
3966 return R->getStoredValues().empty() ? Instruction::Load
3967 : Instruction::Store;
3968 });
3969
3970 // If the next recipe is different, or if there are no other pairs,
3971 // emit a remark for the collated subset. e.g.
3972 // [(load, VF1), (load, VF2))]
3973 // to emit:
3974 // remark: invalid costs for 'load' at VF=(VF1, VF2)
3975 if (Subset == Tail || Tail[Subset.size()].first != R) {
3976 std::string OutString;
3977 raw_string_ostream OS(OutString);
3978 assert(!Subset.empty() && "Unexpected empty range");
3979 OS << "Recipe with invalid costs prevented vectorization at VF=(";
3980 for (const auto &Pair : Subset)
3981 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
3982 OS << "):";
3983 if (Opcode == Instruction::Call) {
3984 StringRef Name = "";
3985 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
3986 Name = Int->getIntrinsicName();
3987 } else {
3988 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
3989 Function *CalledFn =
3990 WidenCall ? WidenCall->getCalledScalarFunction()
3991 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
3992 ->getLiveInIRValue());
3993 Name = CalledFn->getName();
3994 }
3995 OS << " call to " << Name;
3996 } else
3997 OS << " " << Instruction::getOpcodeName(Opcode);
3998 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
3999 R->getDebugLoc());
4000 Tail = Tail.drop_front(Subset.size());
4001 Subset = {};
4002 } else
4003 // Grow the subset by one element
4004 Subset = Tail.take_front(Subset.size() + 1);
4005 } while (!Tail.empty());
4006}
4007
4008/// Check if any recipe of \p Plan will generate a vector value, which will be
4009/// assigned a vector register.
4011 const TargetTransformInfo &TTI) {
4012 assert(VF.isVector() && "Checking a scalar VF?");
4013 VPTypeAnalysis TypeInfo(Plan);
4014 DenseSet<VPRecipeBase *> EphemeralRecipes;
4015 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4016 // Set of already visited types.
4017 DenseSet<Type *> Visited;
4020 for (VPRecipeBase &R : *VPBB) {
4021 if (EphemeralRecipes.contains(&R))
4022 continue;
4023 // Continue early if the recipe is considered to not produce a vector
4024 // result. Note that this includes VPInstruction where some opcodes may
4025 // produce a vector, to preserve existing behavior as VPInstructions model
4026 // aspects not directly mapped to existing IR instructions.
4027 switch (R.getVPDefID()) {
4028 case VPDef::VPDerivedIVSC:
4029 case VPDef::VPScalarIVStepsSC:
4030 case VPDef::VPReplicateSC:
4031 case VPDef::VPInstructionSC:
4032 case VPDef::VPCanonicalIVPHISC:
4033 case VPDef::VPVectorPointerSC:
4034 case VPDef::VPVectorEndPointerSC:
4035 case VPDef::VPExpandSCEVSC:
4036 case VPDef::VPEVLBasedIVPHISC:
4037 case VPDef::VPPredInstPHISC:
4038 case VPDef::VPBranchOnMaskSC:
4039 continue;
4040 case VPDef::VPReductionSC:
4041 case VPDef::VPActiveLaneMaskPHISC:
4042 case VPDef::VPWidenCallSC:
4043 case VPDef::VPWidenCanonicalIVSC:
4044 case VPDef::VPWidenCastSC:
4045 case VPDef::VPWidenGEPSC:
4046 case VPDef::VPWidenIntrinsicSC:
4047 case VPDef::VPWidenSC:
4048 case VPDef::VPWidenSelectSC:
4049 case VPDef::VPBlendSC:
4050 case VPDef::VPFirstOrderRecurrencePHISC:
4051 case VPDef::VPHistogramSC:
4052 case VPDef::VPWidenPHISC:
4053 case VPDef::VPWidenIntOrFpInductionSC:
4054 case VPDef::VPWidenPointerInductionSC:
4055 case VPDef::VPReductionPHISC:
4056 case VPDef::VPInterleaveEVLSC:
4057 case VPDef::VPInterleaveSC:
4058 case VPDef::VPWidenLoadEVLSC:
4059 case VPDef::VPWidenLoadSC:
4060 case VPDef::VPWidenStoreEVLSC:
4061 case VPDef::VPWidenStoreSC:
4062 break;
4063 default:
4064 llvm_unreachable("unhandled recipe");
4065 }
4066
4067 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4068 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4069 if (!NumLegalParts)
4070 return false;
4071 if (VF.isScalable()) {
4072 // <vscale x 1 x iN> is assumed to be profitable over iN because
4073 // scalable registers are a distinct register class from scalar
4074 // ones. If we ever find a target which wants to lower scalable
4075 // vectors back to scalars, we'll need to update this code to
4076 // explicitly ask TTI about the register class uses for each part.
4077 return NumLegalParts <= VF.getKnownMinValue();
4078 }
4079 // Two or more elements that share a register - are vectorized.
4080 return NumLegalParts < VF.getFixedValue();
4081 };
4082
4083 // If no def nor is a store, e.g., branches, continue - no value to check.
4084 if (R.getNumDefinedValues() == 0 &&
4086 continue;
4087 // For multi-def recipes, currently only interleaved loads, suffice to
4088 // check first def only.
4089 // For stores check their stored value; for interleaved stores suffice
4090 // the check first stored value only. In all cases this is the second
4091 // operand.
4092 VPValue *ToCheck =
4093 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4094 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4095 if (!Visited.insert({ScalarTy}).second)
4096 continue;
4097 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4098 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4099 return true;
4100 }
4101 }
4102
4103 return false;
4104}
4105
4106static bool hasReplicatorRegion(VPlan &Plan) {
4108 Plan.getVectorLoopRegion()->getEntry())),
4109 [](auto *VPRB) { return VPRB->isReplicator(); });
4110}
4111
4112#ifndef NDEBUG
4113VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4114 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4115 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4116 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4117 assert(
4118 any_of(VPlans,
4119 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4120 "Expected Scalar VF to be a candidate");
4121
4122 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4123 ExpectedCost);
4124 VectorizationFactor ChosenFactor = ScalarCost;
4125
4126 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4127 if (ForceVectorization &&
4128 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4129 // Ignore scalar width, because the user explicitly wants vectorization.
4130 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4131 // evaluation.
4132 ChosenFactor.Cost = InstructionCost::getMax();
4133 }
4134
4135 for (auto &P : VPlans) {
4136 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4137 P->vectorFactors().end());
4138
4140 if (any_of(VFs, [this](ElementCount VF) {
4141 return CM.shouldConsiderRegPressureForVF(VF);
4142 }))
4143 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4144
4145 for (unsigned I = 0; I < VFs.size(); I++) {
4146 ElementCount VF = VFs[I];
4147 // The cost for scalar VF=1 is already calculated, so ignore it.
4148 if (VF.isScalar())
4149 continue;
4150
4151 /// If the register pressure needs to be considered for VF,
4152 /// don't consider the VF as valid if it exceeds the number
4153 /// of registers for the target.
4154 if (CM.shouldConsiderRegPressureForVF(VF) &&
4155 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4156 continue;
4157
4158 InstructionCost C = CM.expectedCost(VF);
4159
4160 // Add on other costs that are modelled in VPlan, but not in the legacy
4161 // cost model.
4162 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind);
4163 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4164 assert(VectorRegion && "Expected to have a vector region!");
4165 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4166 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4167 for (VPRecipeBase &R : *VPBB) {
4168 auto *VPI = dyn_cast<VPInstruction>(&R);
4169 if (!VPI)
4170 continue;
4171 switch (VPI->getOpcode()) {
4172 // Selects are only modelled in the legacy cost model for safe
4173 // divisors.
4174 case Instruction::Select: {
4175 VPValue *VPV = VPI->getVPSingleValue();
4176 if (VPV->getNumUsers() == 1) {
4177 if (auto *WR = dyn_cast<VPWidenRecipe>(*VPV->user_begin())) {
4178 switch (WR->getOpcode()) {
4179 case Instruction::UDiv:
4180 case Instruction::SDiv:
4181 case Instruction::URem:
4182 case Instruction::SRem:
4183 continue;
4184 default:
4185 break;
4186 }
4187 }
4188 }
4189 C += VPI->cost(VF, CostCtx);
4190 break;
4191 }
4193 unsigned Multiplier =
4194 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4195 ->getZExtValue();
4196 C += VPI->cost(VF * Multiplier, CostCtx);
4197 break;
4198 }
4200 C += VPI->cost(VF, CostCtx);
4201 break;
4202 default:
4203 break;
4204 }
4205 }
4206 }
4207
4208 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4209 unsigned Width =
4210 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4211 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4212 << " costs: " << (Candidate.Cost / Width));
4213 if (VF.isScalable())
4214 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4215 << CM.getVScaleForTuning().value_or(1) << ")");
4216 LLVM_DEBUG(dbgs() << ".\n");
4217
4218 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4219 LLVM_DEBUG(
4220 dbgs()
4221 << "LV: Not considering vector loop of width " << VF
4222 << " because it will not generate any vector instructions.\n");
4223 continue;
4224 }
4225
4226 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4227 LLVM_DEBUG(
4228 dbgs()
4229 << "LV: Not considering vector loop of width " << VF
4230 << " because it would cause replicated blocks to be generated,"
4231 << " which isn't allowed when optimizing for size.\n");
4232 continue;
4233 }
4234
4235 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4236 ChosenFactor = Candidate;
4237 }
4238 }
4239
4240 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4242 "There are conditional stores.",
4243 "store that is conditionally executed prevents vectorization",
4244 "ConditionalStore", ORE, OrigLoop);
4245 ChosenFactor = ScalarCost;
4246 }
4247
4248 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4249 !isMoreProfitable(ChosenFactor, ScalarCost,
4250 !CM.foldTailByMasking())) dbgs()
4251 << "LV: Vectorization seems to be not beneficial, "
4252 << "but was forced by a user.\n");
4253 return ChosenFactor;
4254}
4255#endif
4256
4257bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4258 ElementCount VF) const {
4259 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4260 // reductions need special handling and are currently unsupported.
4261 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4262 if (!Legal->isReductionVariable(&Phi))
4263 return Legal->isFixedOrderRecurrence(&Phi);
4264 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4265 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4266 }))
4267 return false;
4268
4269 // Phis with uses outside of the loop require special handling and are
4270 // currently unsupported.
4271 for (const auto &Entry : Legal->getInductionVars()) {
4272 // Look for uses of the value of the induction at the last iteration.
4273 Value *PostInc =
4274 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4275 for (User *U : PostInc->users())
4276 if (!OrigLoop->contains(cast<Instruction>(U)))
4277 return false;
4278 // Look for uses of penultimate value of the induction.
4279 for (User *U : Entry.first->users())
4280 if (!OrigLoop->contains(cast<Instruction>(U)))
4281 return false;
4282 }
4283
4284 // Epilogue vectorization code has not been auditted to ensure it handles
4285 // non-latch exits properly. It may be fine, but it needs auditted and
4286 // tested.
4287 // TODO: Add support for loops with an early exit.
4288 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4289 return false;
4290
4291 return true;
4292}
4293
4295 const ElementCount VF, const unsigned IC) const {
4296 // FIXME: We need a much better cost-model to take different parameters such
4297 // as register pressure, code size increase and cost of extra branches into
4298 // account. For now we apply a very crude heuristic and only consider loops
4299 // with vectorization factors larger than a certain value.
4300
4301 // Allow the target to opt out entirely.
4302 if (!TTI.preferEpilogueVectorization())
4303 return false;
4304
4305 // We also consider epilogue vectorization unprofitable for targets that don't
4306 // consider interleaving beneficial (eg. MVE).
4307 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4308 return false;
4309
4310 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4312 : TTI.getEpilogueVectorizationMinVF();
4313 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4314}
4315
4317 const ElementCount MainLoopVF, unsigned IC) {
4320 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4321 return Result;
4322 }
4323
4324 if (!CM.isScalarEpilogueAllowed()) {
4325 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4326 "epilogue is allowed.\n");
4327 return Result;
4328 }
4329
4330 // Not really a cost consideration, but check for unsupported cases here to
4331 // simplify the logic.
4332 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4333 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4334 "is not a supported candidate.\n");
4335 return Result;
4336 }
4337
4339 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4341 if (hasPlanWithVF(ForcedEC))
4342 return {ForcedEC, 0, 0};
4343
4344 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4345 "viable.\n");
4346 return Result;
4347 }
4348
4349 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4350 LLVM_DEBUG(
4351 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4352 return Result;
4353 }
4354
4355 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4356 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4357 "this loop\n");
4358 return Result;
4359 }
4360
4361 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4362 // the main loop handles 8 lanes per iteration. We could still benefit from
4363 // vectorizing the epilogue loop with VF=4.
4364 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4365 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4366
4367 ScalarEvolution &SE = *PSE.getSE();
4368 Type *TCType = Legal->getWidestInductionType();
4369 const SCEV *RemainingIterations = nullptr;
4370 unsigned MaxTripCount = 0;
4371 const SCEV *TC =
4372 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4373 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4374 RemainingIterations =
4375 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4376
4377 // No iterations left to process in the epilogue.
4378 if (RemainingIterations->isZero())
4379 return Result;
4380
4381 if (MainLoopVF.isFixed()) {
4382 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4383 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4384 SE.getConstant(TCType, MaxTripCount))) {
4385 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4386 }
4387 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4388 << MaxTripCount << "\n");
4389 }
4390
4391 for (auto &NextVF : ProfitableVFs) {
4392 // Skip candidate VFs without a corresponding VPlan.
4393 if (!hasPlanWithVF(NextVF.Width))
4394 continue;
4395
4396 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4397 // vectors) or > the VF of the main loop (fixed vectors).
4398 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4399 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4400 (NextVF.Width.isScalable() &&
4401 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4402 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4403 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4404 continue;
4405
4406 // If NextVF is greater than the number of remaining iterations, the
4407 // epilogue loop would be dead. Skip such factors.
4408 if (RemainingIterations && !NextVF.Width.isScalable()) {
4409 if (SE.isKnownPredicate(
4411 SE.getConstant(TCType, NextVF.Width.getFixedValue()),
4412 RemainingIterations))
4413 continue;
4414 }
4415
4416 if (Result.Width.isScalar() ||
4417 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4418 /*IsEpilogue*/ true))
4419 Result = NextVF;
4420 }
4421
4422 if (Result != VectorizationFactor::Disabled())
4423 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4424 << Result.Width << "\n");
4425 return Result;
4426}
4427
4428std::pair<unsigned, unsigned>
4430 unsigned MinWidth = -1U;
4431 unsigned MaxWidth = 8;
4432 const DataLayout &DL = TheFunction->getDataLayout();
4433 // For in-loop reductions, no element types are added to ElementTypesInLoop
4434 // if there are no loads/stores in the loop. In this case, check through the
4435 // reduction variables to determine the maximum width.
4436 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4437 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4438 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4439 // When finding the min width used by the recurrence we need to account
4440 // for casts on the input operands of the recurrence.
4441 MinWidth = std::min(
4442 MinWidth,
4443 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4445 MaxWidth = std::max(MaxWidth,
4447 }
4448 } else {
4449 for (Type *T : ElementTypesInLoop) {
4450 MinWidth = std::min<unsigned>(
4451 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4452 MaxWidth = std::max<unsigned>(
4453 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4454 }
4455 }
4456 return {MinWidth, MaxWidth};
4457}
4458
4460 ElementTypesInLoop.clear();
4461 // For each block.
4462 for (BasicBlock *BB : TheLoop->blocks()) {
4463 // For each instruction in the loop.
4464 for (Instruction &I : BB->instructionsWithoutDebug()) {
4465 Type *T = I.getType();
4466
4467 // Skip ignored values.
4468 if (ValuesToIgnore.count(&I))
4469 continue;
4470
4471 // Only examine Loads, Stores and PHINodes.
4472 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4473 continue;
4474
4475 // Examine PHI nodes that are reduction variables. Update the type to
4476 // account for the recurrence type.
4477 if (auto *PN = dyn_cast<PHINode>(&I)) {
4478 if (!Legal->isReductionVariable(PN))
4479 continue;
4480 const RecurrenceDescriptor &RdxDesc =
4481 Legal->getRecurrenceDescriptor(PN);
4483 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4484 RdxDesc.getRecurrenceType()))
4485 continue;
4486 T = RdxDesc.getRecurrenceType();
4487 }
4488
4489 // Examine the stored values.
4490 if (auto *ST = dyn_cast<StoreInst>(&I))
4491 T = ST->getValueOperand()->getType();
4492
4493 assert(T->isSized() &&
4494 "Expected the load/store/recurrence type to be sized");
4495
4496 ElementTypesInLoop.insert(T);
4497 }
4498 }
4499}
4500
4501unsigned
4503 InstructionCost LoopCost) {
4504 // -- The interleave heuristics --
4505 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4506 // There are many micro-architectural considerations that we can't predict
4507 // at this level. For example, frontend pressure (on decode or fetch) due to
4508 // code size, or the number and capabilities of the execution ports.
4509 //
4510 // We use the following heuristics to select the interleave count:
4511 // 1. If the code has reductions, then we interleave to break the cross
4512 // iteration dependency.
4513 // 2. If the loop is really small, then we interleave to reduce the loop
4514 // overhead.
4515 // 3. We don't interleave if we think that we will spill registers to memory
4516 // due to the increased register pressure.
4517
4518 if (!CM.isScalarEpilogueAllowed())
4519 return 1;
4520
4523 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4524 "Unroll factor forced to be 1.\n");
4525 return 1;
4526 }
4527
4528 // We used the distance for the interleave count.
4529 if (!Legal->isSafeForAnyVectorWidth())
4530 return 1;
4531
4532 // We don't attempt to perform interleaving for loops with uncountable early
4533 // exits because the VPInstruction::AnyOf code cannot currently handle
4534 // multiple parts.
4535 if (Plan.hasEarlyExit())
4536 return 1;
4537
4538 const bool HasReductions =
4541
4542 // If we did not calculate the cost for VF (because the user selected the VF)
4543 // then we calculate the cost of VF here.
4544 if (LoopCost == 0) {
4545 if (VF.isScalar())
4546 LoopCost = CM.expectedCost(VF);
4547 else
4548 LoopCost = cost(Plan, VF);
4549 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4550
4551 // Loop body is free and there is no need for interleaving.
4552 if (LoopCost == 0)
4553 return 1;
4554 }
4555
4556 VPRegisterUsage R =
4557 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4558 // We divide by these constants so assume that we have at least one
4559 // instruction that uses at least one register.
4560 for (auto &Pair : R.MaxLocalUsers) {
4561 Pair.second = std::max(Pair.second, 1U);
4562 }
4563
4564 // We calculate the interleave count using the following formula.
4565 // Subtract the number of loop invariants from the number of available
4566 // registers. These registers are used by all of the interleaved instances.
4567 // Next, divide the remaining registers by the number of registers that is
4568 // required by the loop, in order to estimate how many parallel instances
4569 // fit without causing spills. All of this is rounded down if necessary to be
4570 // a power of two. We want power of two interleave count to simplify any
4571 // addressing operations or alignment considerations.
4572 // We also want power of two interleave counts to ensure that the induction
4573 // variable of the vector loop wraps to zero, when tail is folded by masking;
4574 // this currently happens when OptForSize, in which case IC is set to 1 above.
4575 unsigned IC = UINT_MAX;
4576
4577 for (const auto &Pair : R.MaxLocalUsers) {
4578 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4579 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4580 << " registers of "
4581 << TTI.getRegisterClassName(Pair.first)
4582 << " register class\n");
4583 if (VF.isScalar()) {
4584 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4585 TargetNumRegisters = ForceTargetNumScalarRegs;
4586 } else {
4587 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4588 TargetNumRegisters = ForceTargetNumVectorRegs;
4589 }
4590 unsigned MaxLocalUsers = Pair.second;
4591 unsigned LoopInvariantRegs = 0;
4592 if (R.LoopInvariantRegs.contains(Pair.first))
4593 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4594
4595 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4596 MaxLocalUsers);
4597 // Don't count the induction variable as interleaved.
4599 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4600 std::max(1U, (MaxLocalUsers - 1)));
4601 }
4602
4603 IC = std::min(IC, TmpIC);
4604 }
4605
4606 // Clamp the interleave ranges to reasonable counts.
4607 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4608
4609 // Check if the user has overridden the max.
4610 if (VF.isScalar()) {
4611 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4612 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4613 } else {
4614 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4615 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4616 }
4617
4618 // Try to get the exact trip count, or an estimate based on profiling data or
4619 // ConstantMax from PSE, failing that.
4620 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4621
4622 // For fixed length VFs treat a scalable trip count as unknown.
4623 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4624 // Re-evaluate trip counts and VFs to be in the same numerical space.
4625 unsigned AvailableTC =
4626 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4627 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4628
4629 // At least one iteration must be scalar when this constraint holds. So the
4630 // maximum available iterations for interleaving is one less.
4631 if (CM.requiresScalarEpilogue(VF.isVector()))
4632 --AvailableTC;
4633
4634 unsigned InterleaveCountLB = bit_floor(std::max(
4635 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4636
4637 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4638 // If the best known trip count is exact, we select between two
4639 // prospective ICs, where
4640 //
4641 // 1) the aggressive IC is capped by the trip count divided by VF
4642 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4643 //
4644 // The final IC is selected in a way that the epilogue loop trip count is
4645 // minimized while maximizing the IC itself, so that we either run the
4646 // vector loop at least once if it generates a small epilogue loop, or
4647 // else we run the vector loop at least twice.
4648
4649 unsigned InterleaveCountUB = bit_floor(std::max(
4650 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4651 MaxInterleaveCount = InterleaveCountLB;
4652
4653 if (InterleaveCountUB != InterleaveCountLB) {
4654 unsigned TailTripCountUB =
4655 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4656 unsigned TailTripCountLB =
4657 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4658 // If both produce same scalar tail, maximize the IC to do the same work
4659 // in fewer vector loop iterations
4660 if (TailTripCountUB == TailTripCountLB)
4661 MaxInterleaveCount = InterleaveCountUB;
4662 }
4663 } else {
4664 // If trip count is an estimated compile time constant, limit the
4665 // IC to be capped by the trip count divided by VF * 2, such that the
4666 // vector loop runs at least twice to make interleaving seem profitable
4667 // when there is an epilogue loop present. Since exact Trip count is not
4668 // known we choose to be conservative in our IC estimate.
4669 MaxInterleaveCount = InterleaveCountLB;
4670 }
4671 }
4672
4673 assert(MaxInterleaveCount > 0 &&
4674 "Maximum interleave count must be greater than 0");
4675
4676 // Clamp the calculated IC to be between the 1 and the max interleave count
4677 // that the target and trip count allows.
4678 if (IC > MaxInterleaveCount)
4679 IC = MaxInterleaveCount;
4680 else
4681 // Make sure IC is greater than 0.
4682 IC = std::max(1u, IC);
4683
4684 assert(IC > 0 && "Interleave count must be greater than 0.");
4685
4686 // Interleave if we vectorized this loop and there is a reduction that could
4687 // benefit from interleaving.
4688 if (VF.isVector() && HasReductions) {
4689 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4690 return IC;
4691 }
4692
4693 // For any scalar loop that either requires runtime checks or predication we
4694 // are better off leaving this to the unroller. Note that if we've already
4695 // vectorized the loop we will have done the runtime check and so interleaving
4696 // won't require further checks.
4697 bool ScalarInterleavingRequiresPredication =
4698 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4699 return Legal->blockNeedsPredication(BB);
4700 }));
4701 bool ScalarInterleavingRequiresRuntimePointerCheck =
4702 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4703
4704 // We want to interleave small loops in order to reduce the loop overhead and
4705 // potentially expose ILP opportunities.
4706 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4707 << "LV: IC is " << IC << '\n'
4708 << "LV: VF is " << VF << '\n');
4709 const bool AggressivelyInterleaveReductions =
4710 TTI.enableAggressiveInterleaving(HasReductions);
4711 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4712 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4713 // We assume that the cost overhead is 1 and we use the cost model
4714 // to estimate the cost of the loop and interleave until the cost of the
4715 // loop overhead is about 5% of the cost of the loop.
4716 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4717 SmallLoopCost / LoopCost.getValue()));
4718
4719 // Interleave until store/load ports (estimated by max interleave count) are
4720 // saturated.
4721 unsigned NumStores = 0;
4722 unsigned NumLoads = 0;
4725 for (VPRecipeBase &R : *VPBB) {
4727 NumLoads++;
4728 continue;
4729 }
4731 NumStores++;
4732 continue;
4733 }
4734
4735 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4736 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4737 NumStores += StoreOps;
4738 else
4739 NumLoads += InterleaveR->getNumDefinedValues();
4740 continue;
4741 }
4742 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4743 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4744 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4745 continue;
4746 }
4747 if (isa<VPHistogramRecipe>(&R)) {
4748 NumLoads++;
4749 NumStores++;
4750 continue;
4751 }
4752 }
4753 }
4754 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4755 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4756
4757 // There is little point in interleaving for reductions containing selects
4758 // and compares when VF=1 since it may just create more overhead than it's
4759 // worth for loops with small trip counts. This is because we still have to
4760 // do the final reduction after the loop.
4761 bool HasSelectCmpReductions =
4762 HasReductions &&
4764 [](VPRecipeBase &R) {
4765 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4766 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4767 RedR->getRecurrenceKind()) ||
4768 RecurrenceDescriptor::isFindIVRecurrenceKind(
4769 RedR->getRecurrenceKind()));
4770 });
4771 if (HasSelectCmpReductions) {
4772 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4773 return 1;
4774 }
4775
4776 // If we have a scalar reduction (vector reductions are already dealt with
4777 // by this point), we can increase the critical path length if the loop
4778 // we're interleaving is inside another loop. For tree-wise reductions
4779 // set the limit to 2, and for ordered reductions it's best to disable
4780 // interleaving entirely.
4781 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4782 bool HasOrderedReductions =
4784 [](VPRecipeBase &R) {
4785 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4786
4787 return RedR && RedR->isOrdered();
4788 });
4789 if (HasOrderedReductions) {
4790 LLVM_DEBUG(
4791 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4792 return 1;
4793 }
4794
4795 unsigned F = MaxNestedScalarReductionIC;
4796 SmallIC = std::min(SmallIC, F);
4797 StoresIC = std::min(StoresIC, F);
4798 LoadsIC = std::min(LoadsIC, F);
4799 }
4800
4802 std::max(StoresIC, LoadsIC) > SmallIC) {
4803 LLVM_DEBUG(
4804 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4805 return std::max(StoresIC, LoadsIC);
4806 }
4807
4808 // If there are scalar reductions and TTI has enabled aggressive
4809 // interleaving for reductions, we will interleave to expose ILP.
4810 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4811 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4812 // Interleave no less than SmallIC but not as aggressive as the normal IC
4813 // to satisfy the rare situation when resources are too limited.
4814 return std::max(IC / 2, SmallIC);
4815 }
4816
4817 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4818 return SmallIC;
4819 }
4820
4821 // Interleave if this is a large loop (small loops are already dealt with by
4822 // this point) that could benefit from interleaving.
4823 if (AggressivelyInterleaveReductions) {
4824 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4825 return IC;
4826 }
4827
4828 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4829 return 1;
4830}
4831
4832bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4833 ElementCount VF) {
4834 // TODO: Cost model for emulated masked load/store is completely
4835 // broken. This hack guides the cost model to use an artificially
4836 // high enough value to practically disable vectorization with such
4837 // operations, except where previously deployed legality hack allowed
4838 // using very low cost values. This is to avoid regressions coming simply
4839 // from moving "masked load/store" check from legality to cost model.
4840 // Masked Load/Gather emulation was previously never allowed.
4841 // Limited number of Masked Store/Scatter emulation was allowed.
4842 assert((isPredicatedInst(I)) &&
4843 "Expecting a scalar emulated instruction");
4844 return isa<LoadInst>(I) ||
4845 (isa<StoreInst>(I) &&
4846 NumPredStores > NumberOfStoresToPredicate);
4847}
4848
4850 assert(VF.isVector() && "Expected VF >= 2");
4851
4852 // If we've already collected the instructions to scalarize or the predicated
4853 // BBs after vectorization, there's nothing to do. Collection may already have
4854 // occurred if we have a user-selected VF and are now computing the expected
4855 // cost for interleaving.
4856 if (InstsToScalarize.contains(VF) ||
4857 PredicatedBBsAfterVectorization.contains(VF))
4858 return;
4859
4860 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4861 // not profitable to scalarize any instructions, the presence of VF in the
4862 // map will indicate that we've analyzed it already.
4863 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4864
4865 // Find all the instructions that are scalar with predication in the loop and
4866 // determine if it would be better to not if-convert the blocks they are in.
4867 // If so, we also record the instructions to scalarize.
4868 for (BasicBlock *BB : TheLoop->blocks()) {
4870 continue;
4871 for (Instruction &I : *BB)
4872 if (isScalarWithPredication(&I, VF)) {
4873 ScalarCostsTy ScalarCosts;
4874 // Do not apply discount logic for:
4875 // 1. Scalars after vectorization, as there will only be a single copy
4876 // of the instruction.
4877 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4878 // 3. Emulated masked memrefs, if a hacked cost is needed.
4879 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4880 !useEmulatedMaskMemRefHack(&I, VF) &&
4881 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4882 for (const auto &[I, IC] : ScalarCosts)
4883 ScalarCostsVF.insert({I, IC});
4884 // Check if we decided to scalarize a call. If so, update the widening
4885 // decision of the call to CM_Scalarize with the computed scalar cost.
4886 for (const auto &[I, Cost] : ScalarCosts) {
4887 auto *CI = dyn_cast<CallInst>(I);
4888 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4889 continue;
4890 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4891 CallWideningDecisions[{CI, VF}].Cost = Cost;
4892 }
4893 }
4894 // Remember that BB will remain after vectorization.
4895 PredicatedBBsAfterVectorization[VF].insert(BB);
4896 for (auto *Pred : predecessors(BB)) {
4897 if (Pred->getSingleSuccessor() == BB)
4898 PredicatedBBsAfterVectorization[VF].insert(Pred);
4899 }
4900 }
4901 }
4902}
4903
4904InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
4905 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
4906 assert(!isUniformAfterVectorization(PredInst, VF) &&
4907 "Instruction marked uniform-after-vectorization will be predicated");
4908
4909 // Initialize the discount to zero, meaning that the scalar version and the
4910 // vector version cost the same.
4911 InstructionCost Discount = 0;
4912
4913 // Holds instructions to analyze. The instructions we visit are mapped in
4914 // ScalarCosts. Those instructions are the ones that would be scalarized if
4915 // we find that the scalar version costs less.
4917
4918 // Returns true if the given instruction can be scalarized.
4919 auto CanBeScalarized = [&](Instruction *I) -> bool {
4920 // We only attempt to scalarize instructions forming a single-use chain
4921 // from the original predicated block that would otherwise be vectorized.
4922 // Although not strictly necessary, we give up on instructions we know will
4923 // already be scalar to avoid traversing chains that are unlikely to be
4924 // beneficial.
4925 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
4926 isScalarAfterVectorization(I, VF))
4927 return false;
4928
4929 // If the instruction is scalar with predication, it will be analyzed
4930 // separately. We ignore it within the context of PredInst.
4931 if (isScalarWithPredication(I, VF))
4932 return false;
4933
4934 // If any of the instruction's operands are uniform after vectorization,
4935 // the instruction cannot be scalarized. This prevents, for example, a
4936 // masked load from being scalarized.
4937 //
4938 // We assume we will only emit a value for lane zero of an instruction
4939 // marked uniform after vectorization, rather than VF identical values.
4940 // Thus, if we scalarize an instruction that uses a uniform, we would
4941 // create uses of values corresponding to the lanes we aren't emitting code
4942 // for. This behavior can be changed by allowing getScalarValue to clone
4943 // the lane zero values for uniforms rather than asserting.
4944 for (Use &U : I->operands())
4945 if (auto *J = dyn_cast<Instruction>(U.get()))
4946 if (isUniformAfterVectorization(J, VF))
4947 return false;
4948
4949 // Otherwise, we can scalarize the instruction.
4950 return true;
4951 };
4952
4953 // Compute the expected cost discount from scalarizing the entire expression
4954 // feeding the predicated instruction. We currently only consider expressions
4955 // that are single-use instruction chains.
4956 Worklist.push_back(PredInst);
4957 while (!Worklist.empty()) {
4958 Instruction *I = Worklist.pop_back_val();
4959
4960 // If we've already analyzed the instruction, there's nothing to do.
4961 if (ScalarCosts.contains(I))
4962 continue;
4963
4964 // Cannot scalarize fixed-order recurrence phis at the moment.
4965 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
4966 continue;
4967
4968 // Compute the cost of the vector instruction. Note that this cost already
4969 // includes the scalarization overhead of the predicated instruction.
4970 InstructionCost VectorCost = getInstructionCost(I, VF);
4971
4972 // Compute the cost of the scalarized instruction. This cost is the cost of
4973 // the instruction as if it wasn't if-converted and instead remained in the
4974 // predicated block. We will scale this cost by block probability after
4975 // computing the scalarization overhead.
4976 InstructionCost ScalarCost =
4977 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
4978
4979 // Compute the scalarization overhead of needed insertelement instructions
4980 // and phi nodes.
4981 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
4982 Type *WideTy = toVectorizedTy(I->getType(), VF);
4983 for (Type *VectorTy : getContainedTypes(WideTy)) {
4984 ScalarCost += TTI.getScalarizationOverhead(
4986 /*Insert=*/true,
4987 /*Extract=*/false, CostKind);
4988 }
4989 ScalarCost +=
4990 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
4991 }
4992
4993 // Compute the scalarization overhead of needed extractelement
4994 // instructions. For each of the instruction's operands, if the operand can
4995 // be scalarized, add it to the worklist; otherwise, account for the
4996 // overhead.
4997 for (Use &U : I->operands())
4998 if (auto *J = dyn_cast<Instruction>(U.get())) {
4999 assert(canVectorizeTy(J->getType()) &&
5000 "Instruction has non-scalar type");
5001 if (CanBeScalarized(J))
5002 Worklist.push_back(J);
5003 else if (needsExtract(J, VF)) {
5004 Type *WideTy = toVectorizedTy(J->getType(), VF);
5005 for (Type *VectorTy : getContainedTypes(WideTy)) {
5006 ScalarCost += TTI.getScalarizationOverhead(
5007 cast<VectorType>(VectorTy),
5008 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5009 /*Extract*/ true, CostKind);
5010 }
5011 }
5012 }
5013
5014 // Scale the total scalar cost by block probability.
5015 ScalarCost /= getPredBlockCostDivisor(CostKind);
5016
5017 // Compute the discount. A non-negative discount means the vector version
5018 // of the instruction costs more, and scalarizing would be beneficial.
5019 Discount += VectorCost - ScalarCost;
5020 ScalarCosts[I] = ScalarCost;
5021 }
5022
5023 return Discount;
5024}
5025
5028
5029 // If the vector loop gets executed exactly once with the given VF, ignore the
5030 // costs of comparison and induction instructions, as they'll get simplified
5031 // away.
5032 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5033 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5034 if (TC == VF && !foldTailByMasking())
5036 ValuesToIgnoreForVF);
5037
5038 // For each block.
5039 for (BasicBlock *BB : TheLoop->blocks()) {
5040 InstructionCost BlockCost;
5041
5042 // For each instruction in the old loop.
5043 for (Instruction &I : BB->instructionsWithoutDebug()) {
5044 // Skip ignored values.
5045 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5046 (VF.isVector() && VecValuesToIgnore.count(&I)))
5047 continue;
5048
5050
5051 // Check if we should override the cost.
5052 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0)
5054
5055 BlockCost += C;
5056 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5057 << VF << " For instruction: " << I << '\n');
5058 }
5059
5060 // If we are vectorizing a predicated block, it will have been
5061 // if-converted. This means that the block's instructions (aside from
5062 // stores and instructions that may divide by zero) will now be
5063 // unconditionally executed. For the scalar case, we may not always execute
5064 // the predicated block, if it is an if-else block. Thus, scale the block's
5065 // cost by the probability of executing it. blockNeedsPredication from
5066 // Legal is used so as to not include all blocks in tail folded loops.
5067 if (VF.isScalar() && Legal->blockNeedsPredication(BB))
5068 BlockCost /= getPredBlockCostDivisor(CostKind);
5069
5070 Cost += BlockCost;
5071 }
5072
5073 return Cost;
5074}
5075
5076/// Gets Address Access SCEV after verifying that the access pattern
5077/// is loop invariant except the induction variable dependence.
5078///
5079/// This SCEV can be sent to the Target in order to estimate the address
5080/// calculation cost.
5082 Value *Ptr,
5085 const Loop *TheLoop) {
5086
5087 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5088 if (!Gep)
5089 return nullptr;
5090
5091 // We are looking for a gep with all loop invariant indices except for one
5092 // which should be an induction variable.
5093 auto *SE = PSE.getSE();
5094 unsigned NumOperands = Gep->getNumOperands();
5095 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5096 Value *Opd = Gep->getOperand(Idx);
5097 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5098 !Legal->isInductionVariable(Opd))
5099 return nullptr;
5100 }
5101
5102 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5103 return PSE.getSCEV(Ptr);
5104}
5105
5107LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5108 ElementCount VF) {
5109 assert(VF.isVector() &&
5110 "Scalarization cost of instruction implies vectorization.");
5111 if (VF.isScalable())
5112 return InstructionCost::getInvalid();
5113
5114 Type *ValTy = getLoadStoreType(I);
5115 auto *SE = PSE.getSE();
5116
5117 unsigned AS = getLoadStoreAddressSpace(I);
5119 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5120 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5121 // that it is being called from this specific place.
5122
5123 // Figure out whether the access is strided and get the stride value
5124 // if it's known in compile time
5125 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5126
5127 // Get the cost of the scalar memory instruction and address computation.
5129 PtrTy, SE, PtrSCEV, CostKind);
5130
5131 // Don't pass *I here, since it is scalar but will actually be part of a
5132 // vectorized loop where the user of it is a vectorized instruction.
5133 const Align Alignment = getLoadStoreAlignment(I);
5134 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5135 Cost += VF.getFixedValue() *
5136 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5137 AS, CostKind, OpInfo);
5138
5139 // Get the overhead of the extractelement and insertelement instructions
5140 // we might create due to scalarization.
5142
5143 // If we have a predicated load/store, it will need extra i1 extracts and
5144 // conditional branches, but may not be executed for each vector lane. Scale
5145 // the cost by the probability of executing the predicated block.
5146 if (isPredicatedInst(I)) {
5148
5149 // Add the cost of an i1 extract and a branch
5150 auto *VecI1Ty =
5151 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5153 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5154 /*Insert=*/false, /*Extract=*/true, CostKind);
5155 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5156
5157 if (useEmulatedMaskMemRefHack(I, VF))
5158 // Artificially setting to a high enough value to practically disable
5159 // vectorization with such operations.
5160 Cost = 3000000;
5161 }
5162
5163 return Cost;
5164}
5165
5167LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5168 ElementCount VF) {
5169 Type *ValTy = getLoadStoreType(I);
5170 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5172 unsigned AS = getLoadStoreAddressSpace(I);
5173 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5174
5175 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5176 "Stride should be 1 or -1 for consecutive memory access");
5177 const Align Alignment = getLoadStoreAlignment(I);
5179 if (Legal->isMaskRequired(I)) {
5180 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5181 CostKind);
5182 } else {
5183 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5184 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5185 CostKind, OpInfo, I);
5186 }
5187
5188 bool Reverse = ConsecutiveStride < 0;
5189 if (Reverse)
5191 VectorTy, {}, CostKind, 0);
5192 return Cost;
5193}
5194
5196LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5197 ElementCount VF) {
5198 assert(Legal->isUniformMemOp(*I, VF));
5199
5200 Type *ValTy = getLoadStoreType(I);
5202 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5203 const Align Alignment = getLoadStoreAlignment(I);
5204 unsigned AS = getLoadStoreAddressSpace(I);
5205 if (isa<LoadInst>(I)) {
5206 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5207 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5208 CostKind) +
5210 VectorTy, {}, CostKind);
5211 }
5212 StoreInst *SI = cast<StoreInst>(I);
5213
5214 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5215 // TODO: We have existing tests that request the cost of extracting element
5216 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5217 // the actual generated code, which involves extracting the last element of
5218 // a scalable vector where the lane to extract is unknown at compile time.
5220 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5221 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5222 if (!IsLoopInvariantStoreValue)
5223 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5224 VectorTy, CostKind, 0);
5225 return Cost;
5226}
5227
5229LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5230 ElementCount VF) {
5231 Type *ValTy = getLoadStoreType(I);
5232 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5233 const Align Alignment = getLoadStoreAlignment(I);
5235 Type *PtrTy = Ptr->getType();
5236
5237 if (!Legal->isUniform(Ptr, VF))
5238 PtrTy = toVectorTy(PtrTy, VF);
5239
5240 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5241 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5242 Legal->isMaskRequired(I), Alignment,
5243 CostKind, I);
5244}
5245
5247LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5248 ElementCount VF) {
5249 const auto *Group = getInterleavedAccessGroup(I);
5250 assert(Group && "Fail to get an interleaved access group.");
5251
5252 Instruction *InsertPos = Group->getInsertPos();
5253 Type *ValTy = getLoadStoreType(InsertPos);
5254 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5255 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5256
5257 unsigned InterleaveFactor = Group->getFactor();
5258 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5259
5260 // Holds the indices of existing members in the interleaved group.
5261 SmallVector<unsigned, 4> Indices;
5262 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5263 if (Group->getMember(IF))
5264 Indices.push_back(IF);
5265
5266 // Calculate the cost of the whole interleaved group.
5267 bool UseMaskForGaps =
5268 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5269 (isa<StoreInst>(I) && !Group->isFull());
5271 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5272 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5273 UseMaskForGaps);
5274
5275 if (Group->isReverse()) {
5276 // TODO: Add support for reversed masked interleaved access.
5277 assert(!Legal->isMaskRequired(I) &&
5278 "Reverse masked interleaved access not supported.");
5279 Cost += Group->getNumMembers() *
5281 VectorTy, {}, CostKind, 0);
5282 }
5283 return Cost;
5284}
5285
5286std::optional<InstructionCost>
5288 ElementCount VF,
5289 Type *Ty) const {
5290 using namespace llvm::PatternMatch;
5291 // Early exit for no inloop reductions
5292 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5293 return std::nullopt;
5294 auto *VectorTy = cast<VectorType>(Ty);
5295
5296 // We are looking for a pattern of, and finding the minimal acceptable cost:
5297 // reduce(mul(ext(A), ext(B))) or
5298 // reduce(mul(A, B)) or
5299 // reduce(ext(A)) or
5300 // reduce(A).
5301 // The basic idea is that we walk down the tree to do that, finding the root
5302 // reduction instruction in InLoopReductionImmediateChains. From there we find
5303 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5304 // of the components. If the reduction cost is lower then we return it for the
5305 // reduction instruction and 0 for the other instructions in the pattern. If
5306 // it is not we return an invalid cost specifying the orignal cost method
5307 // should be used.
5308 Instruction *RetI = I;
5309 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5310 if (!RetI->hasOneUser())
5311 return std::nullopt;
5312 RetI = RetI->user_back();
5313 }
5314
5315 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5316 RetI->user_back()->getOpcode() == Instruction::Add) {
5317 RetI = RetI->user_back();
5318 }
5319
5320 // Test if the found instruction is a reduction, and if not return an invalid
5321 // cost specifying the parent to use the original cost modelling.
5322 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5323 if (!LastChain)
5324 return std::nullopt;
5325
5326 // Find the reduction this chain is a part of and calculate the basic cost of
5327 // the reduction on its own.
5328 Instruction *ReductionPhi = LastChain;
5329 while (!isa<PHINode>(ReductionPhi))
5330 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5331
5332 const RecurrenceDescriptor &RdxDesc =
5333 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5334
5335 InstructionCost BaseCost;
5336 RecurKind RK = RdxDesc.getRecurrenceKind();
5339 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5340 RdxDesc.getFastMathFlags(), CostKind);
5341 } else {
5342 BaseCost = TTI.getArithmeticReductionCost(
5343 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5344 }
5345
5346 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5347 // normal fmul instruction to the cost of the fadd reduction.
5348 if (RK == RecurKind::FMulAdd)
5349 BaseCost +=
5350 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5351
5352 // If we're using ordered reductions then we can just return the base cost
5353 // here, since getArithmeticReductionCost calculates the full ordered
5354 // reduction cost when FP reassociation is not allowed.
5355 if (useOrderedReductions(RdxDesc))
5356 return BaseCost;
5357
5358 // Get the operand that was not the reduction chain and match it to one of the
5359 // patterns, returning the better cost if it is found.
5360 Instruction *RedOp = RetI->getOperand(1) == LastChain
5363
5364 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5365
5366 Instruction *Op0, *Op1;
5367 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5368 match(RedOp,
5370 match(Op0, m_ZExtOrSExt(m_Value())) &&
5371 Op0->getOpcode() == Op1->getOpcode() &&
5372 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5373 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5374 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5375
5376 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5377 // Note that the extend opcodes need to all match, or if A==B they will have
5378 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5379 // which is equally fine.
5380 bool IsUnsigned = isa<ZExtInst>(Op0);
5381 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5382 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5383
5384 InstructionCost ExtCost =
5385 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5387 InstructionCost MulCost =
5388 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5389 InstructionCost Ext2Cost =
5390 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5392
5393 InstructionCost RedCost = TTI.getMulAccReductionCost(
5394 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5395 CostKind);
5396
5397 if (RedCost.isValid() &&
5398 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5399 return I == RetI ? RedCost : 0;
5400 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5401 !TheLoop->isLoopInvariant(RedOp)) {
5402 // Matched reduce(ext(A))
5403 bool IsUnsigned = isa<ZExtInst>(RedOp);
5404 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5405 InstructionCost RedCost = TTI.getExtendedReductionCost(
5406 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5407 RdxDesc.getFastMathFlags(), CostKind);
5408
5409 InstructionCost ExtCost =
5410 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5412 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5413 return I == RetI ? RedCost : 0;
5414 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5415 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5416 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5417 Op0->getOpcode() == Op1->getOpcode() &&
5418 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5419 bool IsUnsigned = isa<ZExtInst>(Op0);
5420 Type *Op0Ty = Op0->getOperand(0)->getType();
5421 Type *Op1Ty = Op1->getOperand(0)->getType();
5422 Type *LargestOpTy =
5423 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5424 : Op0Ty;
5425 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5426
5427 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5428 // different sizes. We take the largest type as the ext to reduce, and add
5429 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5430 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5431 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5433 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5434 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5436 InstructionCost MulCost =
5437 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5438
5439 InstructionCost RedCost = TTI.getMulAccReductionCost(
5440 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5441 CostKind);
5442 InstructionCost ExtraExtCost = 0;
5443 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5444 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5445 ExtraExtCost = TTI.getCastInstrCost(
5446 ExtraExtOp->getOpcode(), ExtType,
5447 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5449 }
5450
5451 if (RedCost.isValid() &&
5452 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5453 return I == RetI ? RedCost : 0;
5454 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5455 // Matched reduce.add(mul())
5456 InstructionCost MulCost =
5457 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5458
5459 InstructionCost RedCost = TTI.getMulAccReductionCost(
5460 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5461 CostKind);
5462
5463 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5464 return I == RetI ? RedCost : 0;
5465 }
5466 }
5467
5468 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5469}
5470
5472LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5473 ElementCount VF) {
5474 // Calculate scalar cost only. Vectorization cost should be ready at this
5475 // moment.
5476 if (VF.isScalar()) {
5477 Type *ValTy = getLoadStoreType(I);
5479 const Align Alignment = getLoadStoreAlignment(I);
5480 unsigned AS = getLoadStoreAddressSpace(I);
5481
5482 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5483 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5484 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5485 OpInfo, I);
5486 }
5487 return getWideningCost(I, VF);
5488}
5489
5491LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5492 ElementCount VF) const {
5493
5494 // There is no mechanism yet to create a scalable scalarization loop,
5495 // so this is currently Invalid.
5496 if (VF.isScalable())
5497 return InstructionCost::getInvalid();
5498
5499 if (VF.isScalar())
5500 return 0;
5501
5503 Type *RetTy = toVectorizedTy(I->getType(), VF);
5504 if (!RetTy->isVoidTy() &&
5506
5507 for (Type *VectorTy : getContainedTypes(RetTy)) {
5510 /*Insert=*/true,
5511 /*Extract=*/false, CostKind);
5512 }
5513 }
5514
5515 // Some targets keep addresses scalar.
5517 return Cost;
5518
5519 // Some targets support efficient element stores.
5521 return Cost;
5522
5523 // Collect operands to consider.
5524 CallInst *CI = dyn_cast<CallInst>(I);
5525 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5526
5527 // Skip operands that do not require extraction/scalarization and do not incur
5528 // any overhead.
5530 for (auto *V : filterExtractingOperands(Ops, VF))
5531 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5533}
5534
5536 if (VF.isScalar())
5537 return;
5538 NumPredStores = 0;
5539 for (BasicBlock *BB : TheLoop->blocks()) {
5540 // For each instruction in the old loop.
5541 for (Instruction &I : *BB) {
5543 if (!Ptr)
5544 continue;
5545
5546 // TODO: We should generate better code and update the cost model for
5547 // predicated uniform stores. Today they are treated as any other
5548 // predicated store (see added test cases in
5549 // invariant-store-vectorization.ll).
5551 NumPredStores++;
5552
5553 if (Legal->isUniformMemOp(I, VF)) {
5554 auto IsLegalToScalarize = [&]() {
5555 if (!VF.isScalable())
5556 // Scalarization of fixed length vectors "just works".
5557 return true;
5558
5559 // We have dedicated lowering for unpredicated uniform loads and
5560 // stores. Note that even with tail folding we know that at least
5561 // one lane is active (i.e. generalized predication is not possible
5562 // here), and the logic below depends on this fact.
5563 if (!foldTailByMasking())
5564 return true;
5565
5566 // For scalable vectors, a uniform memop load is always
5567 // uniform-by-parts and we know how to scalarize that.
5568 if (isa<LoadInst>(I))
5569 return true;
5570
5571 // A uniform store isn't neccessarily uniform-by-part
5572 // and we can't assume scalarization.
5573 auto &SI = cast<StoreInst>(I);
5574 return TheLoop->isLoopInvariant(SI.getValueOperand());
5575 };
5576
5577 const InstructionCost GatherScatterCost =
5579 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5580
5581 // Load: Scalar load + broadcast
5582 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5583 // FIXME: This cost is a significant under-estimate for tail folded
5584 // memory ops.
5585 const InstructionCost ScalarizationCost =
5586 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5588
5589 // Choose better solution for the current VF, Note that Invalid
5590 // costs compare as maximumal large. If both are invalid, we get
5591 // scalable invalid which signals a failure and a vectorization abort.
5592 if (GatherScatterCost < ScalarizationCost)
5593 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5594 else
5595 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5596 continue;
5597 }
5598
5599 // We assume that widening is the best solution when possible.
5600 if (memoryInstructionCanBeWidened(&I, VF)) {
5601 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5602 int ConsecutiveStride = Legal->isConsecutivePtr(
5604 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5605 "Expected consecutive stride.");
5606 InstWidening Decision =
5607 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5608 setWideningDecision(&I, VF, Decision, Cost);
5609 continue;
5610 }
5611
5612 // Choose between Interleaving, Gather/Scatter or Scalarization.
5614 unsigned NumAccesses = 1;
5615 if (isAccessInterleaved(&I)) {
5616 const auto *Group = getInterleavedAccessGroup(&I);
5617 assert(Group && "Fail to get an interleaved access group.");
5618
5619 // Make one decision for the whole group.
5620 if (getWideningDecision(&I, VF) != CM_Unknown)
5621 continue;
5622
5623 NumAccesses = Group->getNumMembers();
5625 InterleaveCost = getInterleaveGroupCost(&I, VF);
5626 }
5627
5628 InstructionCost GatherScatterCost =
5630 ? getGatherScatterCost(&I, VF) * NumAccesses
5632
5633 InstructionCost ScalarizationCost =
5634 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5635
5636 // Choose better solution for the current VF,
5637 // write down this decision and use it during vectorization.
5639 InstWidening Decision;
5640 if (InterleaveCost <= GatherScatterCost &&
5641 InterleaveCost < ScalarizationCost) {
5642 Decision = CM_Interleave;
5643 Cost = InterleaveCost;
5644 } else if (GatherScatterCost < ScalarizationCost) {
5645 Decision = CM_GatherScatter;
5646 Cost = GatherScatterCost;
5647 } else {
5648 Decision = CM_Scalarize;
5649 Cost = ScalarizationCost;
5650 }
5651 // If the instructions belongs to an interleave group, the whole group
5652 // receives the same decision. The whole group receives the cost, but
5653 // the cost will actually be assigned to one instruction.
5654 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5655 if (Decision == CM_Scalarize) {
5656 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5657 if (auto *I = Group->getMember(Idx)) {
5658 setWideningDecision(I, VF, Decision,
5659 getMemInstScalarizationCost(I, VF));
5660 }
5661 }
5662 } else {
5663 setWideningDecision(Group, VF, Decision, Cost);
5664 }
5665 } else
5666 setWideningDecision(&I, VF, Decision, Cost);
5667 }
5668 }
5669
5670 // Make sure that any load of address and any other address computation
5671 // remains scalar unless there is gather/scatter support. This avoids
5672 // inevitable extracts into address registers, and also has the benefit of
5673 // activating LSR more, since that pass can't optimize vectorized
5674 // addresses.
5675 if (TTI.prefersVectorizedAddressing())
5676 return;
5677
5678 // Start with all scalar pointer uses.
5680 for (BasicBlock *BB : TheLoop->blocks())
5681 for (Instruction &I : *BB) {
5682 Instruction *PtrDef =
5684 if (PtrDef && TheLoop->contains(PtrDef) &&
5686 AddrDefs.insert(PtrDef);
5687 }
5688
5689 // Add all instructions used to generate the addresses.
5691 append_range(Worklist, AddrDefs);
5692 while (!Worklist.empty()) {
5693 Instruction *I = Worklist.pop_back_val();
5694 for (auto &Op : I->operands())
5695 if (auto *InstOp = dyn_cast<Instruction>(Op))
5696 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
5697 AddrDefs.insert(InstOp).second)
5698 Worklist.push_back(InstOp);
5699 }
5700
5701 for (auto *I : AddrDefs) {
5702 if (isa<LoadInst>(I)) {
5703 // Setting the desired widening decision should ideally be handled in
5704 // by cost functions, but since this involves the task of finding out
5705 // if the loaded register is involved in an address computation, it is
5706 // instead changed here when we know this is the case.
5707 InstWidening Decision = getWideningDecision(I, VF);
5708 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5709 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5710 Decision == CM_Scalarize))
5711 // Scalarize a widened load of address or update the cost of a scalar
5712 // load of an address.
5714 I, VF, CM_Scalarize,
5715 (VF.getKnownMinValue() *
5716 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5717 else if (const auto *Group = getInterleavedAccessGroup(I)) {
5718 // Scalarize an interleave group of address loads.
5719 for (unsigned I = 0; I < Group->getFactor(); ++I) {
5720 if (Instruction *Member = Group->getMember(I))
5722 Member, VF, CM_Scalarize,
5723 (VF.getKnownMinValue() *
5724 getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
5725 }
5726 }
5727 } else {
5728 // Cannot scalarize fixed-order recurrence phis at the moment.
5729 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5730 continue;
5731
5732 // Make sure I gets scalarized and a cost estimate without
5733 // scalarization overhead.
5734 ForcedScalars[VF].insert(I);
5735 }
5736 }
5737}
5738
5740 assert(!VF.isScalar() &&
5741 "Trying to set a vectorization decision for a scalar VF");
5742
5743 auto ForcedScalar = ForcedScalars.find(VF);
5744 for (BasicBlock *BB : TheLoop->blocks()) {
5745 // For each instruction in the old loop.
5746 for (Instruction &I : *BB) {
5748
5749 if (!CI)
5750 continue;
5751
5755 Function *ScalarFunc = CI->getCalledFunction();
5756 Type *ScalarRetTy = CI->getType();
5757 SmallVector<Type *, 4> Tys, ScalarTys;
5758 for (auto &ArgOp : CI->args())
5759 ScalarTys.push_back(ArgOp->getType());
5760
5761 // Estimate cost of scalarized vector call. The source operands are
5762 // assumed to be vectors, so we need to extract individual elements from
5763 // there, execute VF scalar calls, and then gather the result into the
5764 // vector return value.
5765 if (VF.isFixed()) {
5766 InstructionCost ScalarCallCost =
5767 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5768
5769 // Compute costs of unpacking argument values for the scalar calls and
5770 // packing the return values to a vector.
5771 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5772 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5773 } else {
5774 // There is no point attempting to calculate the scalar cost for a
5775 // scalable VF as we know it will be Invalid.
5777 "Unexpected valid cost for scalarizing scalable vectors");
5778 ScalarCost = InstructionCost::getInvalid();
5779 }
5780
5781 // Honor ForcedScalars and UniformAfterVectorization decisions.
5782 // TODO: For calls, it might still be more profitable to widen. Use
5783 // VPlan-based cost model to compare different options.
5784 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5785 ForcedScalar->second.contains(CI)) ||
5786 isUniformAfterVectorization(CI, VF))) {
5787 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5788 Intrinsic::not_intrinsic, std::nullopt,
5789 ScalarCost);
5790 continue;
5791 }
5792
5793 bool MaskRequired = Legal->isMaskRequired(CI);
5794 // Compute corresponding vector type for return value and arguments.
5795 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5796 for (Type *ScalarTy : ScalarTys)
5797 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5798
5799 // An in-loop reduction using an fmuladd intrinsic is a special case;
5800 // we don't want the normal cost for that intrinsic.
5802 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5805 std::nullopt, *RedCost);
5806 continue;
5807 }
5808
5809 // Find the cost of vectorizing the call, if we can find a suitable
5810 // vector variant of the function.
5811 VFInfo FuncInfo;
5812 Function *VecFunc = nullptr;
5813 // Search through any available variants for one we can use at this VF.
5814 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5815 // Must match requested VF.
5816 if (Info.Shape.VF != VF)
5817 continue;
5818
5819 // Must take a mask argument if one is required
5820 if (MaskRequired && !Info.isMasked())
5821 continue;
5822
5823 // Check that all parameter kinds are supported
5824 bool ParamsOk = true;
5825 for (VFParameter Param : Info.Shape.Parameters) {
5826 switch (Param.ParamKind) {
5828 break;
5830 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5831 // Make sure the scalar parameter in the loop is invariant.
5832 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5833 TheLoop))
5834 ParamsOk = false;
5835 break;
5836 }
5838 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5839 // Find the stride for the scalar parameter in this loop and see if
5840 // it matches the stride for the variant.
5841 // TODO: do we need to figure out the cost of an extract to get the
5842 // first lane? Or do we hope that it will be folded away?
5843 ScalarEvolution *SE = PSE.getSE();
5844 if (!match(SE->getSCEV(ScalarParam),
5846 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5848 ParamsOk = false;
5849 break;
5850 }
5852 break;
5853 default:
5854 ParamsOk = false;
5855 break;
5856 }
5857 }
5858
5859 if (!ParamsOk)
5860 continue;
5861
5862 // Found a suitable candidate, stop here.
5863 VecFunc = CI->getModule()->getFunction(Info.VectorName);
5864 FuncInfo = Info;
5865 break;
5866 }
5867
5868 if (TLI && VecFunc && !CI->isNoBuiltin())
5869 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
5870
5871 // Find the cost of an intrinsic; some targets may have instructions that
5872 // perform the operation without needing an actual call.
5874 if (IID != Intrinsic::not_intrinsic)
5876
5877 InstructionCost Cost = ScalarCost;
5878 InstWidening Decision = CM_Scalarize;
5879
5880 if (VectorCost <= Cost) {
5881 Cost = VectorCost;
5882 Decision = CM_VectorCall;
5883 }
5884
5885 if (IntrinsicCost <= Cost) {
5887 Decision = CM_IntrinsicCall;
5888 }
5889
5890 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
5892 }
5893 }
5894}
5895
5897 if (!Legal->isInvariant(Op))
5898 return false;
5899 // Consider Op invariant, if it or its operands aren't predicated
5900 // instruction in the loop. In that case, it is not trivially hoistable.
5901 auto *OpI = dyn_cast<Instruction>(Op);
5902 return !OpI || !TheLoop->contains(OpI) ||
5903 (!isPredicatedInst(OpI) &&
5904 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
5905 all_of(OpI->operands(),
5906 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
5907}
5908
5911 ElementCount VF) {
5912 // If we know that this instruction will remain uniform, check the cost of
5913 // the scalar version.
5915 VF = ElementCount::getFixed(1);
5916
5917 if (VF.isVector() && isProfitableToScalarize(I, VF))
5918 return InstsToScalarize[VF][I];
5919
5920 // Forced scalars do not have any scalarization overhead.
5921 auto ForcedScalar = ForcedScalars.find(VF);
5922 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
5923 auto InstSet = ForcedScalar->second;
5924 if (InstSet.count(I))
5926 VF.getKnownMinValue();
5927 }
5928
5929 Type *RetTy = I->getType();
5931 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5932 auto *SE = PSE.getSE();
5933
5934 Type *VectorTy;
5935 if (isScalarAfterVectorization(I, VF)) {
5936 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
5937 [this](Instruction *I, ElementCount VF) -> bool {
5938 if (VF.isScalar())
5939 return true;
5940
5941 auto Scalarized = InstsToScalarize.find(VF);
5942 assert(Scalarized != InstsToScalarize.end() &&
5943 "VF not yet analyzed for scalarization profitability");
5944 return !Scalarized->second.count(I) &&
5945 llvm::all_of(I->users(), [&](User *U) {
5946 auto *UI = cast<Instruction>(U);
5947 return !Scalarized->second.count(UI);
5948 });
5949 };
5950
5951 // With the exception of GEPs and PHIs, after scalarization there should
5952 // only be one copy of the instruction generated in the loop. This is
5953 // because the VF is either 1, or any instructions that need scalarizing
5954 // have already been dealt with by the time we get here. As a result,
5955 // it means we don't have to multiply the instruction cost by VF.
5956 assert(I->getOpcode() == Instruction::GetElementPtr ||
5957 I->getOpcode() == Instruction::PHI ||
5958 (I->getOpcode() == Instruction::BitCast &&
5959 I->getType()->isPointerTy()) ||
5960 HasSingleCopyAfterVectorization(I, VF));
5961 VectorTy = RetTy;
5962 } else
5963 VectorTy = toVectorizedTy(RetTy, VF);
5964
5965 if (VF.isVector() && VectorTy->isVectorTy() &&
5966 !TTI.getNumberOfParts(VectorTy))
5968
5969 // TODO: We need to estimate the cost of intrinsic calls.
5970 switch (I->getOpcode()) {
5971 case Instruction::GetElementPtr:
5972 // We mark this instruction as zero-cost because the cost of GEPs in
5973 // vectorized code depends on whether the corresponding memory instruction
5974 // is scalarized or not. Therefore, we handle GEPs with the memory
5975 // instruction cost.
5976 return 0;
5977 case Instruction::Br: {
5978 // In cases of scalarized and predicated instructions, there will be VF
5979 // predicated blocks in the vectorized loop. Each branch around these
5980 // blocks requires also an extract of its vector compare i1 element.
5981 // Note that the conditional branch from the loop latch will be replaced by
5982 // a single branch controlling the loop, so there is no extra overhead from
5983 // scalarization.
5984 bool ScalarPredicatedBB = false;
5986 if (VF.isVector() && BI->isConditional() &&
5987 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
5988 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
5989 BI->getParent() != TheLoop->getLoopLatch())
5990 ScalarPredicatedBB = true;
5991
5992 if (ScalarPredicatedBB) {
5993 // Not possible to scalarize scalable vector with predicated instructions.
5994 if (VF.isScalable())
5996 // Return cost for branches around scalarized and predicated blocks.
5997 auto *VecI1Ty =
5999 return (
6000 TTI.getScalarizationOverhead(
6001 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6002 /*Insert*/ false, /*Extract*/ true, CostKind) +
6003 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6004 }
6005
6006 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6007 // The back-edge branch will remain, as will all scalar branches.
6008 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6009
6010 // This branch will be eliminated by if-conversion.
6011 return 0;
6012 // Note: We currently assume zero cost for an unconditional branch inside
6013 // a predicated block since it will become a fall-through, although we
6014 // may decide in the future to call TTI for all branches.
6015 }
6016 case Instruction::Switch: {
6017 if (VF.isScalar())
6018 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6019 auto *Switch = cast<SwitchInst>(I);
6020 return Switch->getNumCases() *
6021 TTI.getCmpSelInstrCost(
6022 Instruction::ICmp,
6023 toVectorTy(Switch->getCondition()->getType(), VF),
6024 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6026 }
6027 case Instruction::PHI: {
6028 auto *Phi = cast<PHINode>(I);
6029
6030 // First-order recurrences are replaced by vector shuffles inside the loop.
6031 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6033 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6034 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6035 cast<VectorType>(VectorTy),
6036 cast<VectorType>(VectorTy), Mask, CostKind,
6037 VF.getKnownMinValue() - 1);
6038 }
6039
6040 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6041 // converted into select instructions. We require N - 1 selects per phi
6042 // node, where N is the number of incoming values.
6043 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6044 Type *ResultTy = Phi->getType();
6045
6046 // All instructions in an Any-of reduction chain are narrowed to bool.
6047 // Check if that is the case for this phi node.
6048 auto *HeaderUser = cast_if_present<PHINode>(
6049 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6050 auto *Phi = dyn_cast<PHINode>(U);
6051 if (Phi && Phi->getParent() == TheLoop->getHeader())
6052 return Phi;
6053 return nullptr;
6054 }));
6055 if (HeaderUser) {
6056 auto &ReductionVars = Legal->getReductionVars();
6057 auto Iter = ReductionVars.find(HeaderUser);
6058 if (Iter != ReductionVars.end() &&
6060 Iter->second.getRecurrenceKind()))
6061 ResultTy = Type::getInt1Ty(Phi->getContext());
6062 }
6063 return (Phi->getNumIncomingValues() - 1) *
6064 TTI.getCmpSelInstrCost(
6065 Instruction::Select, toVectorTy(ResultTy, VF),
6066 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6068 }
6069
6070 // When tail folding with EVL, if the phi is part of an out of loop
6071 // reduction then it will be transformed into a wide vp_merge.
6072 if (VF.isVector() && foldTailWithEVL() &&
6073 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6075 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6076 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6077 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6078 }
6079
6080 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6081 }
6082 case Instruction::UDiv:
6083 case Instruction::SDiv:
6084 case Instruction::URem:
6085 case Instruction::SRem:
6086 if (VF.isVector() && isPredicatedInst(I)) {
6087 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6088 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6089 ScalarCost : SafeDivisorCost;
6090 }
6091 // We've proven all lanes safe to speculate, fall through.
6092 [[fallthrough]];
6093 case Instruction::Add:
6094 case Instruction::Sub: {
6095 auto Info = Legal->getHistogramInfo(I);
6096 if (Info && VF.isVector()) {
6097 const HistogramInfo *HGram = Info.value();
6098 // Assume that a non-constant update value (or a constant != 1) requires
6099 // a multiply, and add that into the cost.
6101 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6102 if (!RHS || RHS->getZExtValue() != 1)
6103 MulCost =
6104 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6105
6106 // Find the cost of the histogram operation itself.
6107 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6108 Type *ScalarTy = I->getType();
6109 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6110 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6111 Type::getVoidTy(I->getContext()),
6112 {PtrTy, ScalarTy, MaskTy});
6113
6114 // Add the costs together with the add/sub operation.
6115 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6116 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6117 }
6118 [[fallthrough]];
6119 }
6120 case Instruction::FAdd:
6121 case Instruction::FSub:
6122 case Instruction::Mul:
6123 case Instruction::FMul:
6124 case Instruction::FDiv:
6125 case Instruction::FRem:
6126 case Instruction::Shl:
6127 case Instruction::LShr:
6128 case Instruction::AShr:
6129 case Instruction::And:
6130 case Instruction::Or:
6131 case Instruction::Xor: {
6132 // If we're speculating on the stride being 1, the multiplication may
6133 // fold away. We can generalize this for all operations using the notion
6134 // of neutral elements. (TODO)
6135 if (I->getOpcode() == Instruction::Mul &&
6136 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6137 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6138 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6139 PSE.getSCEV(I->getOperand(1))->isOne())))
6140 return 0;
6141
6142 // Detect reduction patterns
6143 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6144 return *RedCost;
6145
6146 // Certain instructions can be cheaper to vectorize if they have a constant
6147 // second vector operand. One example of this are shifts on x86.
6148 Value *Op2 = I->getOperand(1);
6149 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6150 PSE.getSE()->isSCEVable(Op2->getType()) &&
6151 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6152 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6153 }
6154 auto Op2Info = TTI.getOperandInfo(Op2);
6155 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6158
6159 SmallVector<const Value *, 4> Operands(I->operand_values());
6160 return TTI.getArithmeticInstrCost(
6161 I->getOpcode(), VectorTy, CostKind,
6162 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6163 Op2Info, Operands, I, TLI);
6164 }
6165 case Instruction::FNeg: {
6166 return TTI.getArithmeticInstrCost(
6167 I->getOpcode(), VectorTy, CostKind,
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6169 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6170 I->getOperand(0), I);
6171 }
6172 case Instruction::Select: {
6174 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6175 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6176
6177 const Value *Op0, *Op1;
6178 using namespace llvm::PatternMatch;
6179 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6180 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6181 // select x, y, false --> x & y
6182 // select x, true, y --> x | y
6183 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6184 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6185 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6186 Op1->getType()->getScalarSizeInBits() == 1);
6187
6188 return TTI.getArithmeticInstrCost(
6189 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6190 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6191 }
6192
6193 Type *CondTy = SI->getCondition()->getType();
6194 if (!ScalarCond)
6195 CondTy = VectorType::get(CondTy, VF);
6196
6198 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6199 Pred = Cmp->getPredicate();
6200 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6201 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6202 {TTI::OK_AnyValue, TTI::OP_None}, I);
6203 }
6204 case Instruction::ICmp:
6205 case Instruction::FCmp: {
6206 Type *ValTy = I->getOperand(0)->getType();
6207
6209 [[maybe_unused]] Instruction *Op0AsInstruction =
6210 dyn_cast<Instruction>(I->getOperand(0));
6211 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6212 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6213 "if both the operand and the compare are marked for "
6214 "truncation, they must have the same bitwidth");
6215 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6216 }
6217
6218 VectorTy = toVectorTy(ValTy, VF);
6219 return TTI.getCmpSelInstrCost(
6220 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6221 cast<CmpInst>(I)->getPredicate(), CostKind,
6222 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6223 }
6224 case Instruction::Store:
6225 case Instruction::Load: {
6226 ElementCount Width = VF;
6227 if (Width.isVector()) {
6228 InstWidening Decision = getWideningDecision(I, Width);
6229 assert(Decision != CM_Unknown &&
6230 "CM decision should be taken at this point");
6233 if (Decision == CM_Scalarize)
6234 Width = ElementCount::getFixed(1);
6235 }
6236 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6237 return getMemoryInstructionCost(I, VF);
6238 }
6239 case Instruction::BitCast:
6240 if (I->getType()->isPointerTy())
6241 return 0;
6242 [[fallthrough]];
6243 case Instruction::ZExt:
6244 case Instruction::SExt:
6245 case Instruction::FPToUI:
6246 case Instruction::FPToSI:
6247 case Instruction::FPExt:
6248 case Instruction::PtrToInt:
6249 case Instruction::IntToPtr:
6250 case Instruction::SIToFP:
6251 case Instruction::UIToFP:
6252 case Instruction::Trunc:
6253 case Instruction::FPTrunc: {
6254 // Computes the CastContextHint from a Load/Store instruction.
6255 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6257 "Expected a load or a store!");
6258
6259 if (VF.isScalar() || !TheLoop->contains(I))
6261
6262 switch (getWideningDecision(I, VF)) {
6274 llvm_unreachable("Instr did not go through cost modelling?");
6277 llvm_unreachable_internal("Instr has invalid widening decision");
6278 }
6279
6280 llvm_unreachable("Unhandled case!");
6281 };
6282
6283 unsigned Opcode = I->getOpcode();
6285 // For Trunc, the context is the only user, which must be a StoreInst.
6286 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6287 if (I->hasOneUse())
6288 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6289 CCH = ComputeCCH(Store);
6290 }
6291 // For Z/Sext, the context is the operand, which must be a LoadInst.
6292 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6293 Opcode == Instruction::FPExt) {
6294 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6295 CCH = ComputeCCH(Load);
6296 }
6297
6298 // We optimize the truncation of induction variables having constant
6299 // integer steps. The cost of these truncations is the same as the scalar
6300 // operation.
6301 if (isOptimizableIVTruncate(I, VF)) {
6302 auto *Trunc = cast<TruncInst>(I);
6303 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6304 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6305 }
6306
6307 // Detect reduction patterns
6308 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6309 return *RedCost;
6310
6311 Type *SrcScalarTy = I->getOperand(0)->getType();
6312 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6313 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6314 SrcScalarTy =
6315 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6316 Type *SrcVecTy =
6317 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6318
6320 // If the result type is <= the source type, there will be no extend
6321 // after truncating the users to the minimal required bitwidth.
6322 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6323 (I->getOpcode() == Instruction::ZExt ||
6324 I->getOpcode() == Instruction::SExt))
6325 return 0;
6326 }
6327
6328 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6329 }
6330 case Instruction::Call:
6331 return getVectorCallCost(cast<CallInst>(I), VF);
6332 case Instruction::ExtractValue:
6333 return TTI.getInstructionCost(I, CostKind);
6334 case Instruction::Alloca:
6335 // We cannot easily widen alloca to a scalable alloca, as
6336 // the result would need to be a vector of pointers.
6337 if (VF.isScalable())
6339 [[fallthrough]];
6340 default:
6341 // This opcode is unknown. Assume that it is the same as 'mul'.
6342 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6343 } // end of switch.
6344}
6345
6347 // Ignore ephemeral values.
6349
6350 SmallVector<Value *, 4> DeadInterleavePointerOps;
6352
6353 // If a scalar epilogue is required, users outside the loop won't use
6354 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6355 // that is the case.
6356 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6357 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6358 return RequiresScalarEpilogue &&
6359 !TheLoop->contains(cast<Instruction>(U)->getParent());
6360 };
6361
6363 DFS.perform(LI);
6364 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6365 for (Instruction &I : reverse(*BB)) {
6366 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6367 continue;
6368
6369 // Add instructions that would be trivially dead and are only used by
6370 // values already ignored to DeadOps to seed worklist.
6372 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6373 return VecValuesToIgnore.contains(U) ||
6374 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6375 }))
6376 DeadOps.push_back(&I);
6377
6378 // For interleave groups, we only create a pointer for the start of the
6379 // interleave group. Queue up addresses of group members except the insert
6380 // position for further processing.
6381 if (isAccessInterleaved(&I)) {
6382 auto *Group = getInterleavedAccessGroup(&I);
6383 if (Group->getInsertPos() == &I)
6384 continue;
6385 Value *PointerOp = getLoadStorePointerOperand(&I);
6386 DeadInterleavePointerOps.push_back(PointerOp);
6387 }
6388
6389 // Queue branches for analysis. They are dead, if their successors only
6390 // contain dead instructions.
6391 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6392 if (Br->isConditional())
6393 DeadOps.push_back(&I);
6394 }
6395 }
6396
6397 // Mark ops feeding interleave group members as free, if they are only used
6398 // by other dead computations.
6399 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6400 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6401 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6402 Instruction *UI = cast<Instruction>(U);
6403 return !VecValuesToIgnore.contains(U) &&
6404 (!isAccessInterleaved(UI) ||
6405 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6406 }))
6407 continue;
6408 VecValuesToIgnore.insert(Op);
6409 append_range(DeadInterleavePointerOps, Op->operands());
6410 }
6411
6412 // Mark ops that would be trivially dead and are only used by ignored
6413 // instructions as free.
6414 BasicBlock *Header = TheLoop->getHeader();
6415
6416 // Returns true if the block contains only dead instructions. Such blocks will
6417 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6418 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6419 auto IsEmptyBlock = [this](BasicBlock *BB) {
6420 return all_of(*BB, [this](Instruction &I) {
6421 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6422 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6423 });
6424 };
6425 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6426 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6427
6428 // Check if the branch should be considered dead.
6429 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6430 BasicBlock *ThenBB = Br->getSuccessor(0);
6431 BasicBlock *ElseBB = Br->getSuccessor(1);
6432 // Don't considers branches leaving the loop for simplification.
6433 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6434 continue;
6435 bool ThenEmpty = IsEmptyBlock(ThenBB);
6436 bool ElseEmpty = IsEmptyBlock(ElseBB);
6437 if ((ThenEmpty && ElseEmpty) ||
6438 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6439 ElseBB->phis().empty()) ||
6440 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6441 ThenBB->phis().empty())) {
6442 VecValuesToIgnore.insert(Br);
6443 DeadOps.push_back(Br->getCondition());
6444 }
6445 continue;
6446 }
6447
6448 // Skip any op that shouldn't be considered dead.
6449 if (!Op || !TheLoop->contains(Op) ||
6450 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6452 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6453 return !VecValuesToIgnore.contains(U) &&
6454 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6455 }))
6456 continue;
6457
6458 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6459 // which applies for both scalar and vector versions. Otherwise it is only
6460 // dead in vector versions, so only add it to VecValuesToIgnore.
6461 if (all_of(Op->users(),
6462 [this](User *U) { return ValuesToIgnore.contains(U); }))
6463 ValuesToIgnore.insert(Op);
6464
6465 VecValuesToIgnore.insert(Op);
6466 append_range(DeadOps, Op->operands());
6467 }
6468
6469 // Ignore type-promoting instructions we identified during reduction
6470 // detection.
6471 for (const auto &Reduction : Legal->getReductionVars()) {
6472 const RecurrenceDescriptor &RedDes = Reduction.second;
6473 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6474 VecValuesToIgnore.insert_range(Casts);
6475 }
6476 // Ignore type-casting instructions we identified during induction
6477 // detection.
6478 for (const auto &Induction : Legal->getInductionVars()) {
6479 const InductionDescriptor &IndDes = Induction.second;
6480 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6481 VecValuesToIgnore.insert_range(Casts);
6482 }
6483}
6484
6486 // Avoid duplicating work finding in-loop reductions.
6487 if (!InLoopReductions.empty())
6488 return;
6489
6490 for (const auto &Reduction : Legal->getReductionVars()) {
6491 PHINode *Phi = Reduction.first;
6492 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6493
6494 // We don't collect reductions that are type promoted (yet).
6495 if (RdxDesc.getRecurrenceType() != Phi->getType())
6496 continue;
6497
6498 // If the target would prefer this reduction to happen "in-loop", then we
6499 // want to record it as such.
6500 RecurKind Kind = RdxDesc.getRecurrenceKind();
6501 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6502 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6503 continue;
6504
6505 // Check that we can correctly put the reductions into the loop, by
6506 // finding the chain of operations that leads from the phi to the loop
6507 // exit value.
6508 SmallVector<Instruction *, 4> ReductionOperations =
6509 RdxDesc.getReductionOpChain(Phi, TheLoop);
6510 bool InLoop = !ReductionOperations.empty();
6511
6512 if (InLoop) {
6513 InLoopReductions.insert(Phi);
6514 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6515 Instruction *LastChain = Phi;
6516 for (auto *I : ReductionOperations) {
6517 InLoopReductionImmediateChains[I] = LastChain;
6518 LastChain = I;
6519 }
6520 }
6521 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6522 << " reduction for phi: " << *Phi << "\n");
6523 }
6524}
6525
6526// This function will select a scalable VF if the target supports scalable
6527// vectors and a fixed one otherwise.
6528// TODO: we could return a pair of values that specify the max VF and
6529// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6530// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6531// doesn't have a cost model that can choose which plan to execute if
6532// more than one is generated.
6535 unsigned WidestType;
6536 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6537
6539 TTI.enableScalableVectorization()
6542
6543 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6544 unsigned N = RegSize.getKnownMinValue() / WidestType;
6545 return ElementCount::get(N, RegSize.isScalable());
6546}
6547
6550 ElementCount VF = UserVF;
6551 // Outer loop handling: They may require CFG and instruction level
6552 // transformations before even evaluating whether vectorization is profitable.
6553 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6554 // the vectorization pipeline.
6555 if (!OrigLoop->isInnermost()) {
6556 // If the user doesn't provide a vectorization factor, determine a
6557 // reasonable one.
6558 if (UserVF.isZero()) {
6559 VF = determineVPlanVF(TTI, CM);
6560 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6561
6562 // Make sure we have a VF > 1 for stress testing.
6563 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6564 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6565 << "overriding computed VF.\n");
6566 VF = ElementCount::getFixed(4);
6567 }
6568 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6570 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6571 << "not supported by the target.\n");
6573 "Scalable vectorization requested but not supported by the target",
6574 "the scalable user-specified vectorization width for outer-loop "
6575 "vectorization cannot be used because the target does not support "
6576 "scalable vectors.",
6577 "ScalableVFUnfeasible", ORE, OrigLoop);
6579 }
6580 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6582 "VF needs to be a power of two");
6583 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6584 << "VF " << VF << " to build VPlans.\n");
6585 buildVPlans(VF, VF);
6586
6587 if (VPlans.empty())
6589
6590 // For VPlan build stress testing, we bail out after VPlan construction.
6593
6594 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6595 }
6596
6597 LLVM_DEBUG(
6598 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6599 "VPlan-native path.\n");
6601}
6602
6603void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6604 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6605 CM.collectValuesToIgnore();
6606 CM.collectElementTypesForWidening();
6607
6608 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6609 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6610 return;
6611
6612 // Invalidate interleave groups if all blocks of loop will be predicated.
6613 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6615 LLVM_DEBUG(
6616 dbgs()
6617 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6618 "which requires masked-interleaved support.\n");
6619 if (CM.InterleaveInfo.invalidateGroups())
6620 // Invalidating interleave groups also requires invalidating all decisions
6621 // based on them, which includes widening decisions and uniform and scalar
6622 // values.
6623 CM.invalidateCostModelingDecisions();
6624 }
6625
6626 if (CM.foldTailByMasking())
6627 Legal->prepareToFoldTailByMasking();
6628
6629 ElementCount MaxUserVF =
6630 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6631 if (UserVF) {
6632 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6634 "UserVF ignored because it may be larger than the maximal safe VF",
6635 "InvalidUserVF", ORE, OrigLoop);
6636 } else {
6638 "VF needs to be a power of two");
6639 // Collect the instructions (and their associated costs) that will be more
6640 // profitable to scalarize.
6641 CM.collectInLoopReductions();
6642 if (CM.selectUserVectorizationFactor(UserVF)) {
6643 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6644 buildVPlansWithVPRecipes(UserVF, UserVF);
6646 return;
6647 }
6648 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6649 "InvalidCost", ORE, OrigLoop);
6650 }
6651 }
6652
6653 // Collect the Vectorization Factor Candidates.
6654 SmallVector<ElementCount> VFCandidates;
6655 for (auto VF = ElementCount::getFixed(1);
6656 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6657 VFCandidates.push_back(VF);
6658 for (auto VF = ElementCount::getScalable(1);
6659 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6660 VFCandidates.push_back(VF);
6661
6662 CM.collectInLoopReductions();
6663 for (const auto &VF : VFCandidates) {
6664 // Collect Uniform and Scalar instructions after vectorization with VF.
6665 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6666 }
6667
6668 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6669 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6670
6672}
6673
6675 ElementCount VF) const {
6676 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6677 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6679 return Cost;
6680}
6681
6683 ElementCount VF) const {
6684 return CM.isUniformAfterVectorization(I, VF);
6685}
6686
6687bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6688 return CM.ValuesToIgnore.contains(UI) ||
6689 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6690 SkipCostComputation.contains(UI);
6691}
6692
6694LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6695 VPCostContext &CostCtx) const {
6697 // Cost modeling for inductions is inaccurate in the legacy cost model
6698 // compared to the recipes that are generated. To match here initially during
6699 // VPlan cost model bring up directly use the induction costs from the legacy
6700 // cost model. Note that we do this as pre-processing; the VPlan may not have
6701 // any recipes associated with the original induction increment instruction
6702 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6703 // the cost of induction phis and increments (both that are represented by
6704 // recipes and those that are not), to avoid distinguishing between them here,
6705 // and skip all recipes that represent induction phis and increments (the
6706 // former case) later on, if they exist, to avoid counting them twice.
6707 // Similarly we pre-compute the cost of any optimized truncates.
6708 // TODO: Switch to more accurate costing based on VPlan.
6709 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6711 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6712 SmallVector<Instruction *> IVInsts = {IVInc};
6713 for (unsigned I = 0; I != IVInsts.size(); I++) {
6714 for (Value *Op : IVInsts[I]->operands()) {
6715 auto *OpI = dyn_cast<Instruction>(Op);
6716 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6717 continue;
6718 IVInsts.push_back(OpI);
6719 }
6720 }
6721 IVInsts.push_back(IV);
6722 for (User *U : IV->users()) {
6723 auto *CI = cast<Instruction>(U);
6724 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6725 continue;
6726 IVInsts.push_back(CI);
6727 }
6728
6729 // If the vector loop gets executed exactly once with the given VF, ignore
6730 // the costs of comparison and induction instructions, as they'll get
6731 // simplified away.
6732 // TODO: Remove this code after stepping away from the legacy cost model and
6733 // adding code to simplify VPlans before calculating their costs.
6734 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6735 if (TC == VF && !CM.foldTailByMasking())
6736 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6737 CostCtx.SkipCostComputation);
6738
6739 for (Instruction *IVInst : IVInsts) {
6740 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6741 continue;
6742 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6743 LLVM_DEBUG({
6744 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6745 << ": induction instruction " << *IVInst << "\n";
6746 });
6747 Cost += InductionCost;
6748 CostCtx.SkipCostComputation.insert(IVInst);
6749 }
6750 }
6751
6752 /// Compute the cost of all exiting conditions of the loop using the legacy
6753 /// cost model. This is to match the legacy behavior, which adds the cost of
6754 /// all exit conditions. Note that this over-estimates the cost, as there will
6755 /// be a single condition to control the vector loop.
6757 CM.TheLoop->getExitingBlocks(Exiting);
6758 SetVector<Instruction *> ExitInstrs;
6759 // Collect all exit conditions.
6760 for (BasicBlock *EB : Exiting) {
6761 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6762 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6763 continue;
6764 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6765 ExitInstrs.insert(CondI);
6766 }
6767 }
6768 // Compute the cost of all instructions only feeding the exit conditions.
6769 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6770 Instruction *CondI = ExitInstrs[I];
6771 if (!OrigLoop->contains(CondI) ||
6772 !CostCtx.SkipCostComputation.insert(CondI).second)
6773 continue;
6774 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6775 LLVM_DEBUG({
6776 dbgs() << "Cost of " << CondICost << " for VF " << VF
6777 << ": exit condition instruction " << *CondI << "\n";
6778 });
6779 Cost += CondICost;
6780 for (Value *Op : CondI->operands()) {
6781 auto *OpI = dyn_cast<Instruction>(Op);
6782 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6783 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6784 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6785 !ExitInstrs.contains(cast<Instruction>(U));
6786 }))
6787 continue;
6788 ExitInstrs.insert(OpI);
6789 }
6790 }
6791
6792 // Pre-compute the costs for branches except for the backedge, as the number
6793 // of replicate regions in a VPlan may not directly match the number of
6794 // branches, which would lead to different decisions.
6795 // TODO: Compute cost of branches for each replicate region in the VPlan,
6796 // which is more accurate than the legacy cost model.
6797 for (BasicBlock *BB : OrigLoop->blocks()) {
6798 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6799 continue;
6800 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6801 if (BB == OrigLoop->getLoopLatch())
6802 continue;
6803 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6804 Cost += BranchCost;
6805 }
6806
6807 // Pre-compute costs for instructions that are forced-scalar or profitable to
6808 // scalarize. Their costs will be computed separately in the legacy cost
6809 // model.
6810 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6811 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6812 continue;
6813 CostCtx.SkipCostComputation.insert(ForcedScalar);
6814 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6815 LLVM_DEBUG({
6816 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6817 << ": forced scalar " << *ForcedScalar << "\n";
6818 });
6819 Cost += ForcedCost;
6820 }
6821 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6822 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6823 continue;
6824 CostCtx.SkipCostComputation.insert(Scalarized);
6825 LLVM_DEBUG({
6826 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6827 << ": profitable to scalarize " << *Scalarized << "\n";
6828 });
6829 Cost += ScalarCost;
6830 }
6831
6832 return Cost;
6833}
6834
6835InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6836 ElementCount VF) const {
6837 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6838 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6839
6840 // Now compute and add the VPlan-based cost.
6841 Cost += Plan.cost(VF, CostCtx);
6842#ifndef NDEBUG
6843 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6844 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6845 << " (Estimated cost per lane: ");
6846 if (Cost.isValid()) {
6847 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6848 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
6849 } else /* No point dividing an invalid cost - it will still be invalid */
6850 LLVM_DEBUG(dbgs() << "Invalid");
6851 LLVM_DEBUG(dbgs() << ")\n");
6852#endif
6853 return Cost;
6854}
6855
6856#ifndef NDEBUG
6857/// Return true if the original loop \ TheLoop contains any instructions that do
6858/// not have corresponding recipes in \p Plan and are not marked to be ignored
6859/// in \p CostCtx. This means the VPlan contains simplification that the legacy
6860/// cost-model did not account for.
6862 VPCostContext &CostCtx,
6863 Loop *TheLoop,
6864 ElementCount VF) {
6865 // First collect all instructions for the recipes in Plan.
6866 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
6867 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
6868 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6869 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6870 return &WidenMem->getIngredient();
6871 return nullptr;
6872 };
6873
6874 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
6875 // the select doesn't need to be considered for the vector loop cost; go with
6876 // the more accurate VPlan-based cost model.
6877 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
6878 auto *VPI = dyn_cast<VPInstruction>(&R);
6879 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6880 VPI->getNumUsers() != 1)
6881 continue;
6882
6883 if (auto *WR = dyn_cast<VPWidenRecipe>(*VPI->user_begin())) {
6884 switch (WR->getOpcode()) {
6885 case Instruction::UDiv:
6886 case Instruction::SDiv:
6887 case Instruction::URem:
6888 case Instruction::SRem:
6889 return true;
6890 default:
6891 break;
6892 }
6893 }
6894 }
6895
6896 DenseSet<Instruction *> SeenInstrs;
6897 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
6899 for (VPRecipeBase &R : *VPBB) {
6900 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
6901 auto *IG = IR->getInterleaveGroup();
6902 unsigned NumMembers = IG->getNumMembers();
6903 for (unsigned I = 0; I != NumMembers; ++I) {
6904 if (Instruction *M = IG->getMember(I))
6905 SeenInstrs.insert(M);
6906 }
6907 continue;
6908 }
6909 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
6910 // cost model won't cost it whilst the legacy will.
6911 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
6912 using namespace VPlanPatternMatch;
6913 if (none_of(FOR->users(),
6914 match_fn(m_VPInstruction<
6916 return true;
6917 }
6918 // The VPlan-based cost model is more accurate for partial reduction and
6919 // comparing against the legacy cost isn't desirable.
6921 return true;
6922
6923 // The VPlan-based cost model can analyze if recipes are scalar
6924 // recursively, but the legacy cost model cannot.
6925 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
6926 auto *AddrI = dyn_cast<Instruction>(
6927 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
6928 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
6929 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
6930 return true;
6931 }
6932
6933 /// If a VPlan transform folded a recipe to one producing a single-scalar,
6934 /// but the original instruction wasn't uniform-after-vectorization in the
6935 /// legacy cost model, the legacy cost overestimates the actual cost.
6936 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
6937 if (RepR->isSingleScalar() &&
6939 RepR->getUnderlyingInstr(), VF))
6940 return true;
6941 }
6942 if (Instruction *UI = GetInstructionForCost(&R)) {
6943 // If we adjusted the predicate of the recipe, the cost in the legacy
6944 // cost model may be different.
6945 using namespace VPlanPatternMatch;
6946 CmpPredicate Pred;
6947 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6948 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
6949 cast<CmpInst>(UI)->getPredicate())
6950 return true;
6951 SeenInstrs.insert(UI);
6952 }
6953 }
6954 }
6955
6956 // Return true if the loop contains any instructions that are not also part of
6957 // the VPlan or are skipped for VPlan-based cost computations. This indicates
6958 // that the VPlan contains extra simplifications.
6959 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
6960 TheLoop](BasicBlock *BB) {
6961 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6962 // Skip induction phis when checking for simplifications, as they may not
6963 // be lowered directly be lowered to a corresponding PHI recipe.
6964 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6965 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6966 return false;
6967 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6968 });
6969 });
6970}
6971#endif
6972
6974 if (VPlans.empty())
6976 // If there is a single VPlan with a single VF, return it directly.
6977 VPlan &FirstPlan = *VPlans[0];
6978 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
6979 return {*FirstPlan.vectorFactors().begin(), 0, 0};
6980
6981 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
6982 << (CM.CostKind == TTI::TCK_RecipThroughput
6983 ? "Reciprocal Throughput\n"
6984 : CM.CostKind == TTI::TCK_Latency
6985 ? "Instruction Latency\n"
6986 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
6987 : CM.CostKind == TTI::TCK_SizeAndLatency
6988 ? "Code Size and Latency\n"
6989 : "Unknown\n"));
6990
6992 assert(hasPlanWithVF(ScalarVF) &&
6993 "More than a single plan/VF w/o any plan having scalar VF");
6994
6995 // TODO: Compute scalar cost using VPlan-based cost model.
6996 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
6997 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
6998 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
6999 VectorizationFactor BestFactor = ScalarFactor;
7000
7001 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7002 if (ForceVectorization) {
7003 // Ignore scalar width, because the user explicitly wants vectorization.
7004 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7005 // evaluation.
7006 BestFactor.Cost = InstructionCost::getMax();
7007 }
7008
7009 for (auto &P : VPlans) {
7010 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7011 P->vectorFactors().end());
7012
7014 if (any_of(VFs, [this](ElementCount VF) {
7015 return CM.shouldConsiderRegPressureForVF(VF);
7016 }))
7017 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7018
7019 for (unsigned I = 0; I < VFs.size(); I++) {
7020 ElementCount VF = VFs[I];
7021 if (VF.isScalar())
7022 continue;
7023 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7024 LLVM_DEBUG(
7025 dbgs()
7026 << "LV: Not considering vector loop of width " << VF
7027 << " because it will not generate any vector instructions.\n");
7028 continue;
7029 }
7030 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7031 LLVM_DEBUG(
7032 dbgs()
7033 << "LV: Not considering vector loop of width " << VF
7034 << " because it would cause replicated blocks to be generated,"
7035 << " which isn't allowed when optimizing for size.\n");
7036 continue;
7037 }
7038
7039 InstructionCost Cost = cost(*P, VF);
7040 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7041
7042 if (CM.shouldConsiderRegPressureForVF(VF) &&
7043 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7044 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7045 << VF << " because it uses too many registers\n");
7046 continue;
7047 }
7048
7049 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7050 BestFactor = CurrentFactor;
7051
7052 // If profitable add it to ProfitableVF list.
7053 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7054 ProfitableVFs.push_back(CurrentFactor);
7055 }
7056 }
7057
7058#ifndef NDEBUG
7059 // Select the optimal vectorization factor according to the legacy cost-model.
7060 // This is now only used to verify the decisions by the new VPlan-based
7061 // cost-model and will be retired once the VPlan-based cost-model is
7062 // stabilized.
7063 VectorizationFactor LegacyVF = selectVectorizationFactor();
7064 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7065
7066 // Pre-compute the cost and use it to check if BestPlan contains any
7067 // simplifications not accounted for in the legacy cost model. If that's the
7068 // case, don't trigger the assertion, as the extra simplifications may cause a
7069 // different VF to be picked by the VPlan-based cost model.
7070 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7071 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7072 // Verify that the VPlan-based and legacy cost models agree, except for VPlans
7073 // with early exits and plans with additional VPlan simplifications. The
7074 // legacy cost model doesn't properly model costs for such loops.
7075 assert((BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7077 CostCtx, OrigLoop,
7078 BestFactor.Width) ||
7080 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7081 " VPlan cost model and legacy cost model disagreed");
7082 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7083 "when vectorizing, the scalar cost must be computed.");
7084#endif
7085
7086 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7087 return BestFactor;
7088}
7089
7091 using namespace VPlanPatternMatch;
7093 "RdxResult must be ComputeFindIVResult");
7094 VPValue *StartVPV = RdxResult->getOperand(1);
7095 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7096 return StartVPV->getLiveInIRValue();
7097}
7098
7099// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7100// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7101// from the main vector loop.
7103 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7104 // Get the VPInstruction computing the reduction result in the middle block.
7105 // The first operand may not be from the middle block if it is not connected
7106 // to the scalar preheader. In that case, there's nothing to fix.
7107 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7110 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7111 if (!EpiRedResult ||
7112 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7113 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7114 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7115 return;
7116
7117 auto *EpiRedHeaderPhi =
7118 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7119 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7120 Value *MainResumeValue;
7121 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7122 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7123 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7124 "unexpected start recipe");
7125 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7126 } else
7127 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7129 [[maybe_unused]] Value *StartV =
7130 EpiRedResult->getOperand(1)->getLiveInIRValue();
7131 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7132 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7133 "AnyOf expected to start with ICMP_NE");
7134 assert(Cmp->getOperand(1) == StartV &&
7135 "AnyOf expected to start by comparing main resume value to original "
7136 "start value");
7137 MainResumeValue = Cmp->getOperand(0);
7139 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7140 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7141 using namespace llvm::PatternMatch;
7142 Value *Cmp, *OrigResumeV, *CmpOp;
7143 [[maybe_unused]] bool IsExpectedPattern =
7144 match(MainResumeValue,
7145 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7146 m_Value(OrigResumeV))) &&
7148 m_Value(CmpOp))) &&
7149 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7150 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7151 MainResumeValue = OrigResumeV;
7152 }
7153 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7154
7155 // When fixing reductions in the epilogue loop we should already have
7156 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7157 // over the incoming values correctly.
7158 EpiResumePhi.setIncomingValueForBlock(
7159 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7160}
7161
7163 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7164 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7165 assert(BestVPlan.hasVF(BestVF) &&
7166 "Trying to execute plan with unsupported VF");
7167 assert(BestVPlan.hasUF(BestUF) &&
7168 "Trying to execute plan with unsupported UF");
7169 if (BestVPlan.hasEarlyExit())
7170 ++LoopsEarlyExitVectorized;
7171 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7172 // cost model is complete for better cost estimates.
7177 bool HasBranchWeights =
7178 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7179 if (HasBranchWeights) {
7180 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7182 BestVPlan, BestVF, VScale);
7183 }
7184
7185 // Checks are the same for all VPlans, added to BestVPlan only for
7186 // compactness.
7187 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7188
7189 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7190 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7191
7192 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7195 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7196 BestVPlan.getScalarPreheader()) {
7197 // TODO: The vector loop would be dead, should not even try to vectorize.
7198 ORE->emit([&]() {
7199 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7200 OrigLoop->getStartLoc(),
7201 OrigLoop->getHeader())
7202 << "Created vector loop never executes due to insufficient trip "
7203 "count.";
7204 });
7206 }
7207
7209 BestVPlan, BestVF,
7210 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector));
7212
7214 // Regions are dissolved after optimizing for VF and UF, which completely
7215 // removes unneeded loop regions first.
7217 // Canonicalize EVL loops after regions are dissolved.
7221 BestVPlan, VectorPH, CM.foldTailByMasking(),
7222 CM.requiresScalarEpilogue(BestVF.isVector()));
7223 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7224 VPlanTransforms::cse(BestVPlan);
7226
7227 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7228 // making any changes to the CFG.
7229 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7230 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7231 if (!ILV.getTripCount())
7232 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7233 else
7234 assert(VectorizingEpilogue && "should only re-use the existing trip "
7235 "count during epilogue vectorization");
7236
7237 // Perform the actual loop transformation.
7238 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7239 OrigLoop->getParentLoop(),
7240 Legal->getWidestInductionType());
7241
7242#ifdef EXPENSIVE_CHECKS
7243 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7244#endif
7245
7246 // 1. Set up the skeleton for vectorization, including vector pre-header and
7247 // middle block. The vector loop is created during VPlan execution.
7248 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7250 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7252
7253 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7254 "final VPlan is invalid");
7255
7256 // After vectorization, the exit blocks of the original loop will have
7257 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7258 // looked through single-entry phis.
7259 ScalarEvolution &SE = *PSE.getSE();
7260 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7261 if (!Exit->hasPredecessors())
7262 continue;
7263 for (VPRecipeBase &PhiR : Exit->phis())
7265 OrigLoop, cast<PHINode>(&cast<VPIRPhi>(PhiR).getInstruction()));
7266 }
7267 // Forget the original loop and block dispositions.
7268 SE.forgetLoop(OrigLoop);
7270
7272
7273 //===------------------------------------------------===//
7274 //
7275 // Notice: any optimization or new instruction that go
7276 // into the code below should also be implemented in
7277 // the cost-model.
7278 //
7279 //===------------------------------------------------===//
7280
7281 // Retrieve loop information before executing the plan, which may remove the
7282 // original loop, if it becomes unreachable.
7283 MDNode *LID = OrigLoop->getLoopID();
7284 unsigned OrigLoopInvocationWeight = 0;
7285 std::optional<unsigned> OrigAverageTripCount =
7286 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7287
7288 BestVPlan.execute(&State);
7289
7290 // 2.6. Maintain Loop Hints
7291 // Keep all loop hints from the original loop on the vector loop (we'll
7292 // replace the vectorizer-specific hints below).
7293 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7294 // Add metadata to disable runtime unrolling a scalar loop when there
7295 // are no runtime checks about strides and memory. A scalar loop that is
7296 // rarely used is not worth unrolling.
7297 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7299 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7300 : nullptr,
7301 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7302 OrigLoopInvocationWeight,
7303 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7304 DisableRuntimeUnroll);
7305
7306 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7307 // predication, updating analyses.
7308 ILV.fixVectorizedLoop(State);
7309
7311
7312 return ExpandedSCEVs;
7313}
7314
7315//===--------------------------------------------------------------------===//
7316// EpilogueVectorizerMainLoop
7317//===--------------------------------------------------------------------===//
7318
7319/// This function is partially responsible for generating the control flow
7320/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7322 BasicBlock *ScalarPH = createScalarPreheader("");
7323 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7324
7325 // Generate the code to check the minimum iteration count of the vector
7326 // epilogue (see below).
7327 EPI.EpilogueIterationCountCheck =
7328 emitIterationCountCheck(VectorPH, ScalarPH, true);
7329 EPI.EpilogueIterationCountCheck->setName("iter.check");
7330
7331 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7332 ->getSuccessor(1);
7333 // Generate the iteration count check for the main loop, *after* the check
7334 // for the epilogue loop, so that the path-length is shorter for the case
7335 // that goes directly through the vector epilogue. The longer-path length for
7336 // the main loop is compensated for, by the gain from vectorizing the larger
7337 // trip count. Note: the branch will get updated later on when we vectorize
7338 // the epilogue.
7339 EPI.MainLoopIterationCountCheck =
7340 emitIterationCountCheck(VectorPH, ScalarPH, false);
7341
7342 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7343 ->getSuccessor(1);
7344}
7345
7347 LLVM_DEBUG({
7348 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7349 << "Main Loop VF:" << EPI.MainLoopVF
7350 << ", Main Loop UF:" << EPI.MainLoopUF
7351 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7352 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7353 });
7354}
7355
7358 dbgs() << "intermediate fn:\n"
7359 << *OrigLoop->getHeader()->getParent() << "\n";
7360 });
7361}
7362
7364 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7365 assert(Bypass && "Expected valid bypass basic block.");
7368 Value *CheckMinIters = createIterationCountCheck(
7369 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7370 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7371
7372 BasicBlock *const TCCheckBlock = VectorPH;
7373 if (!ForEpilogue)
7374 TCCheckBlock->setName("vector.main.loop.iter.check");
7375
7376 // Create new preheader for vector loop.
7377 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7378 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7379 "vector.ph");
7380 if (ForEpilogue) {
7381 // Save the trip count so we don't have to regenerate it in the
7382 // vec.epilog.iter.check. This is safe to do because the trip count
7383 // generated here dominates the vector epilog iter check.
7384 EPI.TripCount = Count;
7385 } else {
7387 }
7388
7389 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7390 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7391 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7392 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7393
7394 // When vectorizing the main loop, its trip-count check is placed in a new
7395 // block, whereas the overall trip-count check is placed in the VPlan entry
7396 // block. When vectorizing the epilogue loop, its trip-count check is placed
7397 // in the VPlan entry block.
7398 if (!ForEpilogue)
7399 introduceCheckBlockInVPlan(TCCheckBlock);
7400 return TCCheckBlock;
7401}
7402
7403//===--------------------------------------------------------------------===//
7404// EpilogueVectorizerEpilogueLoop
7405//===--------------------------------------------------------------------===//
7406
7407/// This function creates a new scalar preheader, using the previous one as
7408/// entry block to the epilogue VPlan. The minimum iteration check is being
7409/// represented in VPlan.
7411 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7412 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7413 OriginalScalarPH->setName("vec.epilog.iter.check");
7414 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7415 VPBasicBlock *OldEntry = Plan.getEntry();
7416 for (auto &R : make_early_inc_range(*OldEntry)) {
7417 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7418 // defining.
7419 if (isa<VPIRInstruction>(&R))
7420 continue;
7421 R.moveBefore(*NewEntry, NewEntry->end());
7422 }
7423
7424 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7425 Plan.setEntry(NewEntry);
7426 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7427
7428 return OriginalScalarPH;
7429}
7430
7432 LLVM_DEBUG({
7433 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7434 << "Epilogue Loop VF:" << EPI.EpilogueVF
7435 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7436 });
7437}
7438
7441 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7442 });
7443}
7444
7446VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands,
7447 VFRange &Range) {
7449 "Must be called with either a load or store");
7450
7451 auto WillWiden = [&](ElementCount VF) -> bool {
7453 CM.getWideningDecision(I, VF);
7455 "CM decision should be taken at this point.");
7457 return true;
7458 if (CM.isScalarAfterVectorization(I, VF) ||
7459 CM.isProfitableToScalarize(I, VF))
7460 return false;
7462 };
7463
7465 return nullptr;
7466
7467 VPValue *Mask = nullptr;
7468 if (Legal->isMaskRequired(I))
7469 Mask = getBlockInMask(Builder.getInsertBlock());
7470
7471 // Determine if the pointer operand of the access is either consecutive or
7472 // reverse consecutive.
7474 CM.getWideningDecision(I, Range.Start);
7476 bool Consecutive =
7478
7480 if (Consecutive) {
7482 Ptr->getUnderlyingValue()->stripPointerCasts());
7483 VPSingleDefRecipe *VectorPtr;
7484 if (Reverse) {
7485 // When folding the tail, we may compute an address that we don't in the
7486 // original scalar loop and it may not be inbounds. Drop Inbounds in that
7487 // case.
7488 GEPNoWrapFlags Flags =
7489 (CM.foldTailByMasking() || !GEP || !GEP->isInBounds())
7491 : GEPNoWrapFlags::inBounds();
7492 VectorPtr =
7494 /*Stride*/ -1, Flags, I->getDebugLoc());
7495 } else {
7496 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7497 GEP ? GEP->getNoWrapFlags()
7499 I->getDebugLoc());
7500 }
7501 Builder.insert(VectorPtr);
7502 Ptr = VectorPtr;
7503 }
7504 if (LoadInst *Load = dyn_cast<LoadInst>(I))
7505 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7506 VPIRMetadata(*Load, LVer), I->getDebugLoc());
7507
7508 StoreInst *Store = cast<StoreInst>(I);
7509 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive,
7510 Reverse, VPIRMetadata(*Store, LVer),
7511 I->getDebugLoc());
7512}
7513
7514/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
7515/// insert a recipe to expand the step for the induction recipe.
7516static VPWidenIntOrFpInductionRecipe *
7518 VPValue *Start, const InductionDescriptor &IndDesc,
7519 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) {
7520 assert(IndDesc.getStartValue() ==
7521 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
7522 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
7523 "step must be loop invariant");
7524
7525 VPValue *Step =
7527 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
7528 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7529 IndDesc, TruncI,
7530 TruncI->getDebugLoc());
7531 }
7532 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
7533 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7534 IndDesc, Phi->getDebugLoc());
7535}
7536
7537VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7538 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) {
7539
7540 // Check if this is an integer or fp induction. If so, build the recipe that
7541 // produces its scalar and vector values.
7542 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
7543 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
7544 *PSE.getSE(), *OrigLoop);
7545
7546 // Check if this is pointer induction. If so, build the recipe for it.
7547 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
7548 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep());
7549 return new VPWidenPointerInductionRecipe(
7550 Phi, Operands[0], Step, &Plan.getVFxUF(), *II,
7552 [&](ElementCount VF) {
7553 return CM.isScalarAfterVectorization(Phi, VF);
7554 },
7555 Range),
7556 Phi->getDebugLoc());
7557 }
7558 return nullptr;
7559}
7560
7561VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7562 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range) {
7563 // Optimize the special case where the source is a constant integer
7564 // induction variable. Notice that we can only optimize the 'trunc' case
7565 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7566 // (c) other casts depend on pointer size.
7567
7568 // Determine whether \p K is a truncation based on an induction variable that
7569 // can be optimized.
7570 auto IsOptimizableIVTruncate =
7571 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7572 return [=](ElementCount VF) -> bool {
7573 return CM.isOptimizableIVTruncate(K, VF);
7574 };
7575 };
7576
7578 IsOptimizableIVTruncate(I), Range)) {
7579
7580 auto *Phi = cast<PHINode>(I->getOperand(0));
7581 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
7582 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue());
7583 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
7584 *OrigLoop);
7585 }
7586 return nullptr;
7587}
7588
7589VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7591 VFRange &Range) {
7593 [this, CI](ElementCount VF) {
7594 return CM.isScalarWithPredication(CI, VF);
7595 },
7596 Range);
7597
7598 if (IsPredicated)
7599 return nullptr;
7600
7602 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7603 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7604 ID == Intrinsic::pseudoprobe ||
7605 ID == Intrinsic::experimental_noalias_scope_decl))
7606 return nullptr;
7607
7609
7610 // Is it beneficial to perform intrinsic call compared to lib call?
7611 bool ShouldUseVectorIntrinsic =
7613 [&](ElementCount VF) -> bool {
7614 return CM.getCallWideningDecision(CI, VF).Kind ==
7616 },
7617 Range);
7618 if (ShouldUseVectorIntrinsic)
7619 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(),
7620 CI->getDebugLoc());
7621
7622 Function *Variant = nullptr;
7623 std::optional<unsigned> MaskPos;
7624 // Is better to call a vectorized version of the function than to to scalarize
7625 // the call?
7626 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7627 [&](ElementCount VF) -> bool {
7628 // The following case may be scalarized depending on the VF.
7629 // The flag shows whether we can use a usual Call for vectorized
7630 // version of the instruction.
7631
7632 // If we've found a variant at a previous VF, then stop looking. A
7633 // vectorized variant of a function expects input in a certain shape
7634 // -- basically the number of input registers, the number of lanes
7635 // per register, and whether there's a mask required.
7636 // We store a pointer to the variant in the VPWidenCallRecipe, so
7637 // once we have an appropriate variant it's only valid for that VF.
7638 // This will force a different vplan to be generated for each VF that
7639 // finds a valid variant.
7640 if (Variant)
7641 return false;
7642 LoopVectorizationCostModel::CallWideningDecision Decision =
7643 CM.getCallWideningDecision(CI, VF);
7645 Variant = Decision.Variant;
7646 MaskPos = Decision.MaskPos;
7647 return true;
7648 }
7649
7650 return false;
7651 },
7652 Range);
7653 if (ShouldUseVectorCall) {
7654 if (MaskPos.has_value()) {
7655 // We have 2 cases that would require a mask:
7656 // 1) The block needs to be predicated, either due to a conditional
7657 // in the scalar loop or use of an active lane mask with
7658 // tail-folding, and we use the appropriate mask for the block.
7659 // 2) No mask is required for the block, but the only available
7660 // vector variant at this VF requires a mask, so we synthesize an
7661 // all-true mask.
7662 VPValue *Mask = nullptr;
7663 if (Legal->isMaskRequired(CI))
7664 Mask = getBlockInMask(Builder.getInsertBlock());
7665 else
7666 Mask = Plan.getOrAddLiveIn(
7667 ConstantInt::getTrue(IntegerType::getInt1Ty(CI->getContext())));
7668
7669 Ops.insert(Ops.begin() + *MaskPos, Mask);
7670 }
7671
7672 Ops.push_back(Operands.back());
7673 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc());
7674 }
7675
7676 return nullptr;
7677}
7678
7679bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7681 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7682 // Instruction should be widened, unless it is scalar after vectorization,
7683 // scalarization is profitable or it is predicated.
7684 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7685 return CM.isScalarAfterVectorization(I, VF) ||
7686 CM.isProfitableToScalarize(I, VF) ||
7687 CM.isScalarWithPredication(I, VF);
7688 };
7690 Range);
7691}
7692
7693VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
7695 switch (I->getOpcode()) {
7696 default:
7697 return nullptr;
7698 case Instruction::SDiv:
7699 case Instruction::UDiv:
7700 case Instruction::SRem:
7701 case Instruction::URem: {
7702 // If not provably safe, use a select to form a safe divisor before widening the
7703 // div/rem operation itself. Otherwise fall through to general handling below.
7704 if (CM.isPredicatedInst(I)) {
7706 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7707 VPValue *One =
7708 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false));
7709 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc());
7710 Ops[1] = SafeRHS;
7711 return new VPWidenRecipe(*I, Ops);
7712 }
7713 [[fallthrough]];
7714 }
7715 case Instruction::Add:
7716 case Instruction::And:
7717 case Instruction::AShr:
7718 case Instruction::FAdd:
7719 case Instruction::FCmp:
7720 case Instruction::FDiv:
7721 case Instruction::FMul:
7722 case Instruction::FNeg:
7723 case Instruction::FRem:
7724 case Instruction::FSub:
7725 case Instruction::ICmp:
7726 case Instruction::LShr:
7727 case Instruction::Mul:
7728 case Instruction::Or:
7729 case Instruction::Select:
7730 case Instruction::Shl:
7731 case Instruction::Sub:
7732 case Instruction::Xor:
7733 case Instruction::Freeze: {
7735 if (Instruction::isBinaryOp(I->getOpcode())) {
7736 // The legacy cost model uses SCEV to check if some of the operands are
7737 // constants. To match the legacy cost model's behavior, use SCEV to try
7738 // to replace operands with constants.
7739 ScalarEvolution &SE = *PSE.getSE();
7740 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
7741 if (!Op->isLiveIn())
7742 return Op;
7743 Value *V = Op->getUnderlyingValue();
7744 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
7745 return Op;
7746 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
7747 if (!C)
7748 return Op;
7749 return Plan.getOrAddLiveIn(C->getValue());
7750 };
7751 // For Mul, the legacy cost model checks both operands.
7752 if (I->getOpcode() == Instruction::Mul)
7753 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7754 // For other binops, the legacy cost model only checks the second operand.
7755 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7756 }
7757 return new VPWidenRecipe(*I, NewOps);
7758 }
7759 case Instruction::ExtractValue: {
7761 Type *I32Ty = IntegerType::getInt32Ty(I->getContext());
7762 auto *EVI = cast<ExtractValueInst>(I);
7763 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7764 unsigned Idx = EVI->getIndices()[0];
7765 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx, false)));
7766 return new VPWidenRecipe(*I, NewOps);
7767 }
7768 };
7769}
7770
7771VPHistogramRecipe *
7772VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7774 // FIXME: Support other operations.
7775 unsigned Opcode = HI->Update->getOpcode();
7776 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7777 "Histogram update operation must be an Add or Sub");
7778
7780 // Bucket address.
7781 HGramOps.push_back(Operands[1]);
7782 // Increment value.
7783 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7784
7785 // In case of predicated execution (due to tail-folding, or conditional
7786 // execution, or both), pass the relevant mask.
7787 if (Legal->isMaskRequired(HI->Store))
7788 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7789
7790 return new VPHistogramRecipe(Opcode, HGramOps, HI->Store->getDebugLoc());
7791}
7792
7793VPReplicateRecipe *
7795 VFRange &Range) {
7797 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7798 Range);
7799
7800 bool IsPredicated = CM.isPredicatedInst(I);
7801
7802 // Even if the instruction is not marked as uniform, there are certain
7803 // intrinsic calls that can be effectively treated as such, so we check for
7804 // them here. Conservatively, we only do this for scalable vectors, since
7805 // for fixed-width VFs we can always fall back on full scalarization.
7806 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7807 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7808 case Intrinsic::assume:
7809 case Intrinsic::lifetime_start:
7810 case Intrinsic::lifetime_end:
7811 // For scalable vectors if one of the operands is variant then we still
7812 // want to mark as uniform, which will generate one instruction for just
7813 // the first lane of the vector. We can't scalarize the call in the same
7814 // way as for fixed-width vectors because we don't know how many lanes
7815 // there are.
7816 //
7817 // The reasons for doing it this way for scalable vectors are:
7818 // 1. For the assume intrinsic generating the instruction for the first
7819 // lane is still be better than not generating any at all. For
7820 // example, the input may be a splat across all lanes.
7821 // 2. For the lifetime start/end intrinsics the pointer operand only
7822 // does anything useful when the input comes from a stack object,
7823 // which suggests it should always be uniform. For non-stack objects
7824 // the effect is to poison the object, which still allows us to
7825 // remove the call.
7826 IsUniform = true;
7827 break;
7828 default:
7829 break;
7830 }
7831 }
7832 VPValue *BlockInMask = nullptr;
7833 if (!IsPredicated) {
7834 // Finalize the recipe for Instr, first if it is not predicated.
7835 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7836 } else {
7837 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7838 // Instructions marked for predication are replicated and a mask operand is
7839 // added initially. Masked replicate recipes will later be placed under an
7840 // if-then construct to prevent side-effects. Generate recipes to compute
7841 // the block mask for this region.
7842 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7843 }
7844
7845 // Note that there is some custom logic to mark some intrinsics as uniform
7846 // manually above for scalable vectors, which this assert needs to account for
7847 // as well.
7848 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7849 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7850 "Should not predicate a uniform recipe");
7851 auto *Recipe = new VPReplicateRecipe(I, Operands, IsUniform, BlockInMask,
7852 VPIRMetadata(*I, LVer));
7853 return Recipe;
7854}
7855
7856/// Find all possible partial reductions in the loop and track all of those that
7857/// are valid so recipes can be formed later.
7859 // Find all possible partial reductions.
7861 PartialReductionChains;
7862 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7863 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(), Range,
7864 PartialReductionChains);
7865 }
7866
7867 // A partial reduction is invalid if any of its extends are used by
7868 // something that isn't another partial reduction. This is because the
7869 // extends are intended to be lowered along with the reduction itself.
7870
7871 // Build up a set of partial reduction ops for efficient use checking.
7872 SmallPtrSet<User *, 4> PartialReductionOps;
7873 for (const auto &[PartialRdx, _] : PartialReductionChains)
7874 PartialReductionOps.insert(PartialRdx.ExtendUser);
7875
7876 auto ExtendIsOnlyUsedByPartialReductions =
7877 [&PartialReductionOps](Instruction *Extend) {
7878 return all_of(Extend->users(), [&](const User *U) {
7879 return PartialReductionOps.contains(U);
7880 });
7881 };
7882
7883 // Check if each use of a chain's two extends is a partial reduction
7884 // and only add those that don't have non-partial reduction users.
7885 for (auto Pair : PartialReductionChains) {
7886 PartialReductionChain Chain = Pair.first;
7887 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
7888 (!Chain.ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
7889 ScaledReductionMap.try_emplace(Chain.Reduction, Pair.second);
7890 }
7891}
7892
7893bool VPRecipeBuilder::getScaledReductions(
7894 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
7895 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7896 if (!CM.TheLoop->contains(RdxExitInstr))
7897 return false;
7898
7899 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
7900 if (!Update)
7901 return false;
7902
7903 Value *Op = Update->getOperand(0);
7904 Value *PhiOp = Update->getOperand(1);
7905 if (Op == PHI)
7906 std::swap(Op, PhiOp);
7907
7908 // Try and get a scaled reduction from the first non-phi operand.
7909 // If one is found, we use the discovered reduction instruction in
7910 // place of the accumulator for costing.
7911 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
7912 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
7913 PHI = Chains.rbegin()->first.Reduction;
7914
7915 Op = Update->getOperand(0);
7916 PhiOp = Update->getOperand(1);
7917 if (Op == PHI)
7918 std::swap(Op, PhiOp);
7919 }
7920 }
7921 if (PhiOp != PHI)
7922 return false;
7923
7924 using namespace llvm::PatternMatch;
7925
7926 // If the update is a binary operator, check both of its operands to see if
7927 // they are extends. Otherwise, see if the update comes directly from an
7928 // extend.
7929 Instruction *Exts[2] = {nullptr};
7930 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
7931 std::optional<unsigned> BinOpc;
7932 Type *ExtOpTypes[2] = {nullptr};
7934
7935 auto CollectExtInfo = [this, &Exts, &ExtOpTypes,
7936 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
7937 for (const auto &[I, OpI] : enumerate(Ops)) {
7938 Value *ExtOp;
7939 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
7940 return false;
7941 Exts[I] = cast<Instruction>(OpI);
7942
7943 // TODO: We should be able to support live-ins.
7944 if (!CM.TheLoop->contains(Exts[I]))
7945 return false;
7946
7947 ExtOpTypes[I] = ExtOp->getType();
7948 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
7949 }
7950 return true;
7951 };
7952
7953 if (ExtendUser) {
7954 if (!ExtendUser->hasOneUse())
7955 return false;
7956
7957 // Use the side-effect of match to replace BinOp only if the pattern is
7958 // matched, we don't care at this point whether it actually matched.
7959 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
7960
7961 SmallVector<Value *> Ops(ExtendUser->operands());
7962 if (!CollectExtInfo(Ops))
7963 return false;
7964
7965 BinOpc = std::make_optional(ExtendUser->getOpcode());
7966 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
7967 // We already know the operands for Update are Op and PhiOp.
7969 if (!CollectExtInfo(Ops))
7970 return false;
7971
7972 ExtendUser = Update;
7973 BinOpc = std::nullopt;
7974 } else
7975 return false;
7976
7977 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
7978
7979 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
7980 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
7981 if (!PHISize.hasKnownScalarFactor(ASize))
7982 return false;
7983 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
7984
7986 [&](ElementCount VF) {
7988 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
7989 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
7990 CM.CostKind);
7991 return Cost.isValid();
7992 },
7993 Range)) {
7994 Chains.emplace_back(Chain, TargetScaleFactor);
7995 return true;
7996 }
7997
7998 return false;
7999}
8000
8002 VFRange &Range) {
8003 // First, check for specific widening recipes that deal with inductions, Phi
8004 // nodes, calls and memory operations.
8005 VPRecipeBase *Recipe;
8006 Instruction *Instr = R->getUnderlyingInstr();
8007 SmallVector<VPValue *, 4> Operands(R->operands());
8008 if (auto *PhiR = dyn_cast<VPPhi>(R)) {
8009 VPBasicBlock *Parent = PhiR->getParent();
8010 [[maybe_unused]] VPRegionBlock *LoopRegionOf =
8011 Parent->getEnclosingLoopRegion();
8012 assert(LoopRegionOf && LoopRegionOf->getEntry() == Parent &&
8013 "Non-header phis should have been handled during predication");
8014 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8015 assert(Operands.size() == 2 && "Must have 2 operands for header phis");
8016 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8017 return Recipe;
8018
8019 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8020 assert((Legal->isReductionVariable(Phi) ||
8021 Legal->isFixedOrderRecurrence(Phi)) &&
8022 "can only widen reductions and fixed-order recurrences here");
8023 VPValue *StartV = Operands[0];
8024 if (Legal->isReductionVariable(Phi)) {
8025 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(Phi);
8026 assert(RdxDesc.getRecurrenceStartValue() ==
8027 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8028
8029 // If the PHI is used by a partial reduction, set the scale factor.
8030 unsigned ScaleFactor =
8031 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1);
8032 PhiRecipe = new VPReductionPHIRecipe(
8033 Phi, RdxDesc.getRecurrenceKind(), *StartV, CM.isInLoopReduction(Phi),
8034 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8035 } else {
8036 // TODO: Currently fixed-order recurrences are modeled as chains of
8037 // first-order recurrences. If there are no users of the intermediate
8038 // recurrences in the chain, the fixed order recurrence should be modeled
8039 // directly, enabling more efficient codegen.
8040 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8041 }
8042 // Add backedge value.
8043 PhiRecipe->addOperand(Operands[1]);
8044 return PhiRecipe;
8045 }
8046 assert(!R->isPhi() && "only VPPhi nodes expected at this point");
8047
8048 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8049 cast<TruncInst>(Instr), Operands, Range)))
8050 return Recipe;
8051
8052 // All widen recipes below deal only with VF > 1.
8054 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8055 return nullptr;
8056
8057 if (auto *CI = dyn_cast<CallInst>(Instr))
8058 return tryToWidenCall(CI, Operands, Range);
8059
8060 if (StoreInst *SI = dyn_cast<StoreInst>(Instr))
8061 if (auto HistInfo = Legal->getHistogramInfo(SI))
8062 return tryToWidenHistogram(*HistInfo, Operands);
8063
8064 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8065 return tryToWidenMemory(Instr, Operands, Range);
8066
8067 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr)) {
8068 if (auto PartialRed =
8069 tryToCreatePartialReduction(Instr, Operands, ScaleFactor.value()))
8070 return PartialRed;
8071 }
8072
8073 if (!shouldWiden(Instr, Range))
8074 return nullptr;
8075
8076 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr))
8077 return new VPWidenGEPRecipe(GEP, Operands);
8078
8079 if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8080 return new VPWidenSelectRecipe(*SI, Operands);
8081 }
8082
8083 if (auto *CI = dyn_cast<CastInst>(Instr)) {
8084 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(),
8085 *CI);
8086 }
8087
8088 return tryToWiden(Instr, Operands);
8089}
8090
8094 unsigned ScaleFactor) {
8095 assert(Operands.size() == 2 &&
8096 "Unexpected number of operands for partial reduction");
8097
8098 VPValue *BinOp = Operands[0];
8100 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8101 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8102 isa<VPPartialReductionRecipe>(BinOpRecipe))
8103 std::swap(BinOp, Accumulator);
8104
8105 if (ScaleFactor !=
8106 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()))
8107 return nullptr;
8108
8109 unsigned ReductionOpcode = Reduction->getOpcode();
8110 if (ReductionOpcode == Instruction::Sub) {
8111 auto *const Zero = ConstantInt::get(Reduction->getType(), 0);
8113 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8114 Ops.push_back(BinOp);
8115 BinOp = new VPWidenRecipe(*Reduction, Ops);
8116 Builder.insert(BinOp->getDefiningRecipe());
8117 ReductionOpcode = Instruction::Add;
8118 }
8119
8120 VPValue *Cond = nullptr;
8121 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8122 assert((ReductionOpcode == Instruction::Add ||
8123 ReductionOpcode == Instruction::Sub) &&
8124 "Expected an ADD or SUB operation for predicated partial "
8125 "reductions (because the neutral element in the mask is zero)!");
8126 Cond = getBlockInMask(Builder.getInsertBlock());
8127 VPValue *Zero =
8128 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8129 BinOp = Builder.createSelect(Cond, BinOp, Zero, Reduction->getDebugLoc());
8130 }
8131 return new VPPartialReductionRecipe(ReductionOpcode, Accumulator, BinOp, Cond,
8132 ScaleFactor, Reduction);
8133}
8134
8135void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8136 ElementCount MaxVF) {
8137 if (ElementCount::isKnownGT(MinVF, MaxVF))
8138 return;
8139
8140 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8141
8142 const LoopAccessInfo *LAI = Legal->getLAI();
8144 OrigLoop, LI, DT, PSE.getSE());
8145 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8147 // Only use noalias metadata when using memory checks guaranteeing no
8148 // overlap across all iterations.
8149 LVer.prepareNoAliasMetadata();
8150 }
8151
8152 // Create initial base VPlan0, to serve as common starting point for all
8153 // candidates built later for specific VF ranges.
8154 auto VPlan0 = VPlanTransforms::buildVPlan0(
8155 OrigLoop, *LI, Legal->getWidestInductionType(),
8156 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8157
8158 auto MaxVFTimes2 = MaxVF * 2;
8159 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8160 VFRange SubRange = {VF, MaxVFTimes2};
8161 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8162 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8163 bool HasScalarVF = Plan->hasScalarVFOnly();
8164 // Now optimize the initial VPlan.
8165 if (!HasScalarVF)
8167 *Plan, CM.getMinimalBitwidths());
8169 // TODO: try to put it close to addActiveLaneMask().
8170 if (CM.foldTailWithEVL() && !HasScalarVF)
8172 *Plan, CM.getMaxSafeElements());
8173 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8174 VPlans.push_back(std::move(Plan));
8175 }
8176 VF = SubRange.End;
8177 }
8178}
8179
8180/// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the
8181/// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute
8182/// the end value of the induction.
8184 VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder,
8185 VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC) {
8186 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8187 // Truncated wide inductions resume from the last lane of their vector value
8188 // in the last vector iteration which is handled elsewhere.
8189 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8190 return nullptr;
8191
8192 VPValue *Start = WideIV->getStartValue();
8193 VPValue *Step = WideIV->getStepValue();
8195 VPValue *EndValue = VectorTC;
8196 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8197 EndValue = VectorPHBuilder.createDerivedIV(
8198 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
8199 Start, VectorTC, Step);
8200 }
8201
8202 // EndValue is derived from the vector trip count (which has the same type as
8203 // the widest induction) and thus may be wider than the induction here.
8204 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV);
8205 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) {
8206 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue,
8207 ScalarTypeOfWideIV,
8208 WideIV->getDebugLoc());
8209 }
8210
8211 auto *ResumePhiRecipe = ScalarPHBuilder.createScalarPhi(
8212 {EndValue, Start}, WideIV->getDebugLoc(), "bc.resume.val");
8213 return ResumePhiRecipe;
8214}
8215
8216/// Create resume phis in the scalar preheader for first-order recurrences,
8217/// reductions and inductions, and update the VPIRInstructions wrapping the
8218/// original phis in the scalar header. End values for inductions are added to
8219/// \p IVEndValues.
8220static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan,
8221 DenseMap<VPValue *, VPValue *> &IVEndValues) {
8222 VPTypeAnalysis TypeInfo(Plan);
8223 auto *ScalarPH = Plan.getScalarPreheader();
8224 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getPredecessors()[0]);
8225 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8226 VPBuilder VectorPHBuilder(
8227 cast<VPBasicBlock>(VectorRegion->getSinglePredecessor()));
8228 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8229 VPBuilder ScalarPHBuilder(ScalarPH);
8230 for (VPRecipeBase &ScalarPhiR : Plan.getScalarHeader()->phis()) {
8231 auto *ScalarPhiIRI = cast<VPIRPhi>(&ScalarPhiR);
8232
8233 // TODO: Extract final value from induction recipe initially, optimize to
8234 // pre-computed end value together in optimizeInductionExitUsers.
8235 auto *VectorPhiR =
8236 cast<VPHeaderPHIRecipe>(Builder.getRecipe(&ScalarPhiIRI->getIRPhi()));
8237 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8239 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8240 &Plan.getVectorTripCount())) {
8241 assert(isa<VPPhi>(ResumePhi) && "Expected a phi");
8242 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8243 ScalarPhiIRI->addOperand(ResumePhi);
8244 continue;
8245 }
8246 // TODO: Also handle truncated inductions here. Computing end-values
8247 // separately should be done as VPlan-to-VPlan optimization, after
8248 // legalizing all resume values to use the last lane from the loop.
8249 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8250 "should only skip truncated wide inductions");
8251 continue;
8252 }
8253
8254 // The backedge value provides the value to resume coming out of a loop,
8255 // which for FORs is a vector whose last element needs to be extracted. The
8256 // start value provides the value if the loop is bypassed.
8257 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8258 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8259 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8260 "Cannot handle loops with uncountable early exits");
8261 if (IsFOR)
8262 ResumeFromVectorLoop = MiddleBuilder.createNaryOp(
8263 VPInstruction::ExtractLastElement, {ResumeFromVectorLoop}, {},
8264 "vector.recur.extract");
8265 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx";
8266 auto *ResumePhiR = ScalarPHBuilder.createScalarPhi(
8267 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8268 ScalarPhiIRI->addOperand(ResumePhiR);
8269 }
8270}
8271
8272/// Handle users in the exit block for first order reductions in the original
8273/// exit block. The penultimate value of recurrences is fed to their LCSSA phi
8274/// users in the original exit block using the VPIRInstruction wrapping to the
8275/// LCSSA phi.
8277 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8278 auto *ScalarPHVPBB = Plan.getScalarPreheader();
8279 auto *MiddleVPBB = Plan.getMiddleBlock();
8280 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8281 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8282
8283 auto IsScalableOne = [](ElementCount VF) -> bool {
8284 return VF == ElementCount::getScalable(1);
8285 };
8286
8287 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) {
8288 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8289 if (!FOR)
8290 continue;
8291
8292 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8293 "Cannot handle loops with uncountable early exits");
8294
8295 // This is the second phase of vectorizing first-order recurrences, creating
8296 // extract for users outside the loop. An overview of the transformation is
8297 // described below. Suppose we have the following loop with some use after
8298 // the loop of the last a[i-1],
8299 //
8300 // for (int i = 0; i < n; ++i) {
8301 // t = a[i - 1];
8302 // b[i] = a[i] - t;
8303 // }
8304 // use t;
8305 //
8306 // There is a first-order recurrence on "a". For this loop, the shorthand
8307 // scalar IR looks like:
8308 //
8309 // scalar.ph:
8310 // s.init = a[-1]
8311 // br scalar.body
8312 //
8313 // scalar.body:
8314 // i = phi [0, scalar.ph], [i+1, scalar.body]
8315 // s1 = phi [s.init, scalar.ph], [s2, scalar.body]
8316 // s2 = a[i]
8317 // b[i] = s2 - s1
8318 // br cond, scalar.body, exit.block
8319 //
8320 // exit.block:
8321 // use = lcssa.phi [s1, scalar.body]
8322 //
8323 // In this example, s1 is a recurrence because it's value depends on the
8324 // previous iteration. In the first phase of vectorization, we created a
8325 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts
8326 // for users in the scalar preheader and exit block.
8327 //
8328 // vector.ph:
8329 // v_init = vector(..., ..., ..., a[-1])
8330 // br vector.body
8331 //
8332 // vector.body
8333 // i = phi [0, vector.ph], [i+4, vector.body]
8334 // v1 = phi [v_init, vector.ph], [v2, vector.body]
8335 // v2 = a[i, i+1, i+2, i+3]
8336 // b[i] = v2 - v1
8337 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2))
8338 // b[i, i+1, i+2, i+3] = v2 - v1
8339 // br cond, vector.body, middle.block
8340 //
8341 // middle.block:
8342 // vector.recur.extract.for.phi = v2(2)
8343 // vector.recur.extract = v2(3)
8344 // br cond, scalar.ph, exit.block
8345 //
8346 // scalar.ph:
8347 // scalar.recur.init = phi [vector.recur.extract, middle.block],
8348 // [s.init, otherwise]
8349 // br scalar.body
8350 //
8351 // scalar.body:
8352 // i = phi [0, scalar.ph], [i+1, scalar.body]
8353 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body]
8354 // s2 = a[i]
8355 // b[i] = s2 - s1
8356 // br cond, scalar.body, exit.block
8357 //
8358 // exit.block:
8359 // lo = lcssa.phi [s1, scalar.body],
8360 // [vector.recur.extract.for.phi, middle.block]
8361 //
8362 // Now update VPIRInstructions modeling LCSSA phis in the exit block.
8363 // Extract the penultimate value of the recurrence and use it as operand for
8364 // the VPIRInstruction modeling the phi.
8365 for (VPUser *U : FOR->users()) {
8366 using namespace llvm::VPlanPatternMatch;
8367 if (!match(U, m_ExtractLastElement(m_Specific(FOR))))
8368 continue;
8369 // For VF vscale x 1, if vscale = 1, we are unable to extract the
8370 // penultimate value of the recurrence. Instead we rely on the existing
8371 // extract of the last element from the result of
8372 // VPInstruction::FirstOrderRecurrenceSplice.
8373 // TODO: Consider vscale_range info and UF.
8375 Range))
8376 return;
8377 VPValue *PenultimateElement = MiddleBuilder.createNaryOp(
8378 VPInstruction::ExtractPenultimateElement, {FOR->getBackedgeValue()},
8379 {}, "vector.recur.extract.for.phi");
8380 cast<VPInstruction>(U)->replaceAllUsesWith(PenultimateElement);
8381 }
8382 }
8383}
8384
8385VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8386 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8387
8388 using namespace llvm::VPlanPatternMatch;
8389 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8390
8391 // ---------------------------------------------------------------------------
8392 // Build initial VPlan: Scan the body of the loop in a topological order to
8393 // visit each basic block after having visited its predecessor basic blocks.
8394 // ---------------------------------------------------------------------------
8395
8396 bool RequiresScalarEpilogueCheck =
8398 [this](ElementCount VF) {
8399 return !CM.requiresScalarEpilogue(VF.isVector());
8400 },
8401 Range);
8402 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8403 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8404 CM.foldTailByMasking());
8405
8407
8408 // Don't use getDecisionAndClampRange here, because we don't know the UF
8409 // so this function is better to be conservative, rather than to split
8410 // it up into different VPlans.
8411 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8412 bool IVUpdateMayOverflow = false;
8413 for (ElementCount VF : Range)
8414 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8415
8416 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8417 // Use NUW for the induction increment if we proved that it won't overflow in
8418 // the vector loop or when not folding the tail. In the later case, we know
8419 // that the canonical induction increment will not overflow as the vector trip
8420 // count is >= increment and a multiple of the increment.
8421 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8422 if (!HasNUW) {
8423 auto *IVInc = Plan->getVectorLoopRegion()
8424 ->getExitingBasicBlock()
8425 ->getTerminator()
8426 ->getOperand(0);
8427 assert(match(IVInc, m_VPInstruction<Instruction::Add>(
8428 m_Specific(Plan->getCanonicalIV()), m_VPValue())) &&
8429 "Did not find the canonical IV increment");
8430 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8431 }
8432
8433 // ---------------------------------------------------------------------------
8434 // Pre-construction: record ingredients whose recipes we'll need to further
8435 // process after constructing the initial VPlan.
8436 // ---------------------------------------------------------------------------
8437
8438 // For each interleave group which is relevant for this (possibly trimmed)
8439 // Range, add it to the set of groups to be later applied to the VPlan and add
8440 // placeholders for its members' Recipes which we'll be replacing with a
8441 // single VPInterleaveRecipe.
8442 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8443 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8444 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8445 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8447 // For scalable vectors, the interleave factors must be <= 8 since we
8448 // require the (de)interleaveN intrinsics instead of shufflevectors.
8449 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8450 "Unsupported interleave factor for scalable vectors");
8451 return Result;
8452 };
8453 if (!getDecisionAndClampRange(ApplyIG, Range))
8454 continue;
8455 InterleaveGroups.insert(IG);
8456 }
8457
8458 // ---------------------------------------------------------------------------
8459 // Predicate and linearize the top-level loop region.
8460 // ---------------------------------------------------------------------------
8461 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8462 *Plan, CM.foldTailByMasking());
8463
8464 // ---------------------------------------------------------------------------
8465 // Construct wide recipes and apply predication for original scalar
8466 // VPInstructions in the loop.
8467 // ---------------------------------------------------------------------------
8468 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8469 Builder, BlockMaskCache, LVer);
8470 RecipeBuilder.collectScaledReductions(Range);
8471
8472 // Scan the body of the loop in a topological order to visit each basic block
8473 // after having visited its predecessor basic blocks.
8474 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8475 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8476 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8477 HeaderVPBB);
8478
8479 auto *MiddleVPBB = Plan->getMiddleBlock();
8480 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8481 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8482 // temporarily to update created block masks.
8483 DenseMap<VPValue *, VPValue *> Old2New;
8484 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8485 // Convert input VPInstructions to widened recipes.
8486 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8487 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8488 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8489 // Skip recipes that do not need transforming, including canonical IV,
8490 // wide canonical IV and VPInstructions without underlying values. The
8491 // latter are added above for masking.
8492 // FIXME: Migrate code relying on the underlying instruction from VPlan0
8493 // to construct recipes below to not use the underlying instruction.
8495 &R) ||
8496 (isa<VPInstruction>(&R) && !UnderlyingValue))
8497 continue;
8498
8499 // FIXME: VPlan0, which models a copy of the original scalar loop, should
8500 // not use VPWidenPHIRecipe to model the phis.
8502 UnderlyingValue && "unsupported recipe");
8503
8504 // TODO: Gradually replace uses of underlying instruction by analyses on
8505 // VPlan.
8506 Instruction *Instr = cast<Instruction>(UnderlyingValue);
8507 Builder.setInsertPoint(SingleDef);
8508
8509 // The stores with invariant address inside the loop will be deleted, and
8510 // in the exit block, a uniform store recipe will be created for the final
8511 // invariant store of the reduction.
8512 StoreInst *SI;
8513 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8514 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8515 // Only create recipe for the final invariant store of the reduction.
8516 if (Legal->isInvariantStoreOfReduction(SI)) {
8517 auto *Recipe =
8518 new VPReplicateRecipe(SI, R.operands(), true /* IsUniform */,
8519 nullptr /*Mask*/, VPIRMetadata(*SI, LVer));
8520 Recipe->insertBefore(*MiddleVPBB, MBIP);
8521 }
8522 R.eraseFromParent();
8523 continue;
8524 }
8525
8526 VPRecipeBase *Recipe =
8527 RecipeBuilder.tryToCreateWidenRecipe(SingleDef, Range);
8528 if (!Recipe)
8529 Recipe = RecipeBuilder.handleReplication(Instr, R.operands(), Range);
8530
8531 RecipeBuilder.setRecipe(Instr, Recipe);
8532 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8533 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8534 // moved to the phi section in the header.
8535 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8536 } else {
8537 Builder.insert(Recipe);
8538 }
8539 if (Recipe->getNumDefinedValues() == 1) {
8540 SingleDef->replaceAllUsesWith(Recipe->getVPSingleValue());
8541 Old2New[SingleDef] = Recipe->getVPSingleValue();
8542 } else {
8543 assert(Recipe->getNumDefinedValues() == 0 &&
8544 "Unexpected multidef recipe");
8545 R.eraseFromParent();
8546 }
8547 }
8548 }
8549
8550 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8551 // TODO: Include the masks as operands in the predicated VPlan directly
8552 // to remove the need to keep a map of masks beyond the predication
8553 // transform.
8554 RecipeBuilder.updateBlockMaskCache(Old2New);
8555 for (VPValue *Old : Old2New.keys())
8556 Old->getDefiningRecipe()->eraseFromParent();
8557
8558 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8559 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8560 "entry block must be set to a VPRegionBlock having a non-empty entry "
8561 "VPBasicBlock");
8562
8563 // Update wide induction increments to use the same step as the corresponding
8564 // wide induction. This enables detecting induction increments directly in
8565 // VPlan and removes redundant splats.
8566 for (const auto &[Phi, ID] : Legal->getInductionVars()) {
8567 auto *IVInc = cast<Instruction>(
8568 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8569 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add)
8570 continue;
8571 VPWidenInductionRecipe *WideIV =
8572 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
8573 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc);
8574 R->setOperand(1, WideIV->getStepValue());
8575 }
8576
8578 DenseMap<VPValue *, VPValue *> IVEndValues;
8579 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8580
8581 // ---------------------------------------------------------------------------
8582 // Transform initial VPlan: Apply previously taken decisions, in order, to
8583 // bring the VPlan to its final state.
8584 // ---------------------------------------------------------------------------
8585
8586 // Adjust the recipes for any inloop reductions.
8587 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8588
8589 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8590 // NaNs if possible, bail out otherwise.
8592 *Plan))
8593 return nullptr;
8594
8595 // Transform recipes to abstract recipes if it is legal and beneficial and
8596 // clamp the range for better cost estimation.
8597 // TODO: Enable following transform when the EVL-version of extended-reduction
8598 // and mulacc-reduction are implemented.
8599 if (!CM.foldTailWithEVL()) {
8600 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8602 CostCtx, Range);
8603 }
8604
8605 for (ElementCount VF : Range)
8606 Plan->addVF(VF);
8607 Plan->setName("Initial VPlan");
8608
8609 // Interleave memory: for each Interleave Group we marked earlier as relevant
8610 // for this VPlan, replace the Recipes widening its memory instructions with a
8611 // single VPInterleaveRecipe at its insertion point.
8613 InterleaveGroups, RecipeBuilder,
8614 CM.isScalarEpilogueAllowed());
8615
8616 // Replace VPValues for known constant strides.
8618 Legal->getLAI()->getSymbolicStrides());
8619
8620 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8621 return Legal->blockNeedsPredication(BB);
8622 };
8624 BlockNeedsPredication);
8625
8626 // Sink users of fixed-order recurrence past the recipe defining the previous
8627 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8629 *Plan, Builder))
8630 return nullptr;
8631
8632 if (useActiveLaneMask(Style)) {
8633 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8634 // TailFoldingStyle is visible there.
8635 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8636 bool WithoutRuntimeCheck =
8637 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8638 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8639 WithoutRuntimeCheck);
8640 }
8641 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8642
8643 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8644 return Plan;
8645}
8646
8647VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8648 // Outer loop handling: They may require CFG and instruction level
8649 // transformations before even evaluating whether vectorization is profitable.
8650 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8651 // the vectorization pipeline.
8652 assert(!OrigLoop->isInnermost());
8653 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8654
8655 auto Plan = VPlanTransforms::buildVPlan0(
8656 OrigLoop, *LI, Legal->getWidestInductionType(),
8657 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8659 /*HasUncountableExit*/ false);
8660 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8661 /*TailFolded*/ false);
8662
8664
8665 for (ElementCount VF : Range)
8666 Plan->addVF(VF);
8667
8669 Plan,
8670 [this](PHINode *P) {
8671 return Legal->getIntOrFpInductionDescriptor(P);
8672 },
8673 *TLI))
8674 return nullptr;
8675
8676 // Collect mapping of IR header phis to header phi recipes, to be used in
8677 // addScalarResumePhis.
8678 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8679 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8680 Builder, BlockMaskCache, nullptr /*LVer*/);
8681 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8683 continue;
8684 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8685 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8686 }
8687 DenseMap<VPValue *, VPValue *> IVEndValues;
8688 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8689 // values.
8690 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8691
8692 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8693 return Plan;
8694}
8695
8696// Adjust the recipes for reductions. For in-loop reductions the chain of
8697// instructions leading from the loop exit instr to the phi need to be converted
8698// to reductions, with one operand being vector and the other being the scalar
8699// reduction chain. For other reductions, a select is introduced between the phi
8700// and users outside the vector region when folding the tail.
8701//
8702// A ComputeReductionResult recipe is added to the middle block, also for
8703// in-loop reductions which compute their result in-loop, because generating
8704// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8705//
8706// Adjust AnyOf reductions; replace the reduction phi for the selected value
8707// with a boolean reduction phi node to check if the condition is true in any
8708// iteration. The final value is selected by the final ComputeReductionResult.
8709void LoopVectorizationPlanner::adjustRecipesForReductions(
8710 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8711 using namespace VPlanPatternMatch;
8712 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8713 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8714 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8716
8717 for (VPRecipeBase &R : Header->phis()) {
8718 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8719 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8720 continue;
8721
8722 RecurKind Kind = PhiR->getRecurrenceKind();
8723 assert(
8726 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8727
8728 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8729 SetVector<VPSingleDefRecipe *> Worklist;
8730 Worklist.insert(PhiR);
8731 for (unsigned I = 0; I != Worklist.size(); ++I) {
8732 VPSingleDefRecipe *Cur = Worklist[I];
8733 for (VPUser *U : Cur->users()) {
8734 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8735 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8736 assert((UserRecipe->getParent() == MiddleVPBB ||
8737 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8738 "U must be either in the loop region, the middle block or the "
8739 "scalar preheader.");
8740 continue;
8741 }
8742 Worklist.insert(UserRecipe);
8743 }
8744 }
8745
8746 // Visit operation "Links" along the reduction chain top-down starting from
8747 // the phi until LoopExitValue. We keep track of the previous item
8748 // (PreviousLink) to tell which of the two operands of a Link will remain
8749 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8750 // the select instructions. Blend recipes of in-loop reduction phi's will
8751 // get folded to their non-phi operand, as the reduction recipe handles the
8752 // condition directly.
8753 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8754 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8755 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8756 assert(Blend->getNumIncomingValues() == 2 &&
8757 "Blend must have 2 incoming values");
8758 if (Blend->getIncomingValue(0) == PhiR) {
8759 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8760 } else {
8761 assert(Blend->getIncomingValue(1) == PhiR &&
8762 "PhiR must be an operand of the blend");
8763 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8764 }
8765 continue;
8766 }
8767
8768 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8769
8770 // Index of the first operand which holds a non-mask vector operand.
8771 unsigned IndexOfFirstOperand;
8772 // Recognize a call to the llvm.fmuladd intrinsic.
8773 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8774 VPValue *VecOp;
8775 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8776 if (IsFMulAdd) {
8777 assert(
8779 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8780 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8781 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8782 CurrentLink->getOperand(2) == PreviousLink &&
8783 "expected a call where the previous link is the added operand");
8784
8785 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8786 // need to create an fmul recipe (multiplying the first two operands of
8787 // the fmuladd together) to use as the vector operand for the fadd
8788 // reduction.
8789 VPInstruction *FMulRecipe = new VPInstruction(
8790 Instruction::FMul,
8791 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8792 CurrentLinkI->getFastMathFlags());
8793 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8794 VecOp = FMulRecipe;
8795 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8796 CurrentLinkI->getOpcode() == Instruction::Sub) {
8797 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8798 auto *Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8799 VPWidenRecipe *Sub = new VPWidenRecipe(
8800 Instruction::Sub, {Zero, CurrentLink->getOperand(1)}, {},
8801 VPIRMetadata(), CurrentLinkI->getDebugLoc());
8802 Sub->setUnderlyingValue(CurrentLinkI);
8803 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8804 VecOp = Sub;
8805 } else {
8807 if (isa<VPWidenRecipe>(CurrentLink)) {
8808 assert(isa<CmpInst>(CurrentLinkI) &&
8809 "need to have the compare of the select");
8810 continue;
8811 }
8812 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8813 "must be a select recipe");
8814 IndexOfFirstOperand = 1;
8815 } else {
8816 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8817 "Expected to replace a VPWidenSC");
8818 IndexOfFirstOperand = 0;
8819 }
8820 // Note that for non-commutable operands (cmp-selects), the semantics of
8821 // the cmp-select are captured in the recurrence kind.
8822 unsigned VecOpId =
8823 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8824 ? IndexOfFirstOperand + 1
8825 : IndexOfFirstOperand;
8826 VecOp = CurrentLink->getOperand(VecOpId);
8827 assert(VecOp != PreviousLink &&
8828 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8829 (VecOpId - IndexOfFirstOperand)) ==
8830 PreviousLink &&
8831 "PreviousLink must be the operand other than VecOp");
8832 }
8833
8834 VPValue *CondOp = nullptr;
8835 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8836 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8837
8838 // TODO: Retrieve FMFs from recipes directly.
8839 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8840 cast<PHINode>(PhiR->getUnderlyingInstr()));
8841 // Non-FP RdxDescs will have all fast math flags set, so clear them.
8842 FastMathFlags FMFs = isa<FPMathOperator>(CurrentLinkI)
8843 ? RdxDesc.getFastMathFlags()
8844 : FastMathFlags();
8845 auto *RedRecipe = new VPReductionRecipe(
8846 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8847 PhiR->isOrdered(), CurrentLinkI->getDebugLoc());
8848 // Append the recipe to the end of the VPBasicBlock because we need to
8849 // ensure that it comes after all of it's inputs, including CondOp.
8850 // Delete CurrentLink as it will be invalid if its operand is replaced
8851 // with a reduction defined at the bottom of the block in the next link.
8852 if (LinkVPBB->getNumSuccessors() == 0)
8853 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8854 else
8855 LinkVPBB->appendRecipe(RedRecipe);
8856
8857 CurrentLink->replaceAllUsesWith(RedRecipe);
8858 ToDelete.push_back(CurrentLink);
8859 PreviousLink = RedRecipe;
8860 }
8861 }
8862 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8863 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8864 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8865 for (VPRecipeBase &R :
8866 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8867 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8868 if (!PhiR)
8869 continue;
8870
8871 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8873 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8874 // If tail is folded by masking, introduce selects between the phi
8875 // and the users outside the vector region of each reduction, at the
8876 // beginning of the dedicated latch block.
8877 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8878 auto *NewExitingVPV = PhiR->getBackedgeValue();
8879 // Don't output selects for partial reductions because they have an output
8880 // with fewer lanes than the VF. So the operands of the select would have
8881 // different numbers of lanes. Partial reductions mask the input instead.
8882 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8883 !isa<VPPartialReductionRecipe>(OrigExitingVPV->getDefiningRecipe())) {
8884 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8885 std::optional<FastMathFlags> FMFs =
8886 PhiTy->isFloatingPointTy()
8887 ? std::make_optional(RdxDesc.getFastMathFlags())
8888 : std::nullopt;
8889 NewExitingVPV =
8890 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8891 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8892 return isa<VPInstruction>(&U) &&
8893 (cast<VPInstruction>(&U)->getOpcode() ==
8895 cast<VPInstruction>(&U)->getOpcode() ==
8897 cast<VPInstruction>(&U)->getOpcode() ==
8899 });
8900 if (CM.usePredicatedReductionSelect())
8901 PhiR->setOperand(1, NewExitingVPV);
8902 }
8903
8904 // We want code in the middle block to appear to execute on the location of
8905 // the scalar loop's latch terminator because: (a) it is all compiler
8906 // generated, (b) these instructions are always executed after evaluating
8907 // the latch conditional branch, and (c) other passes may add new
8908 // predecessors which terminate on this line. This is the easiest way to
8909 // ensure we don't accidentally cause an extra step back into the loop while
8910 // debugging.
8911 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8912
8913 // TODO: At the moment ComputeReductionResult also drives creation of the
8914 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8915 // even for in-loop reductions, until the reduction resume value handling is
8916 // also modeled in VPlan.
8917 VPInstruction *FinalReductionResult;
8918 VPBuilder::InsertPointGuard Guard(Builder);
8919 Builder.setInsertPoint(MiddleVPBB, IP);
8920 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8922 VPValue *Start = PhiR->getStartValue();
8923 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8924 FinalReductionResult =
8925 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8926 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8927 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8928 VPValue *Start = PhiR->getStartValue();
8929 FinalReductionResult =
8930 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8931 {PhiR, Start, NewExitingVPV}, ExitDL);
8932 } else {
8933 VPIRFlags Flags =
8935 ? VPIRFlags(RdxDesc.getFastMathFlags())
8936 : VPIRFlags();
8937 FinalReductionResult =
8938 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8939 {PhiR, NewExitingVPV}, Flags, ExitDL);
8940 }
8941 // If the vector reduction can be performed in a smaller type, we truncate
8942 // then extend the loop exit value to enable InstCombine to evaluate the
8943 // entire expression in the smaller type.
8944 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8946 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8948 "Unexpected truncated min-max recurrence!");
8949 Type *RdxTy = RdxDesc.getRecurrenceType();
8950 auto *Trunc =
8951 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
8952 Instruction::CastOps ExtendOpc =
8953 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8954 auto *Extnd = new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
8955 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
8956 Extnd->insertAfter(Trunc);
8957 if (PhiR->getOperand(1) == NewExitingVPV)
8958 PhiR->setOperand(1, Extnd->getVPSingleValue());
8959
8960 // Update ComputeReductionResult with the truncated exiting value and
8961 // extend its result.
8962 FinalReductionResult->setOperand(1, Trunc);
8963 FinalReductionResult =
8964 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8965 }
8966
8967 // Update all users outside the vector region. Also replace redundant
8968 // ExtractLastElement.
8969 for (auto *U : to_vector(OrigExitingVPV->users())) {
8970 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8971 if (FinalReductionResult == U || Parent->getParent())
8972 continue;
8973 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8975 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8976 }
8977
8978 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8979 // with a boolean reduction phi node to check if the condition is true in
8980 // any iteration. The final value is selected by the final
8981 // ComputeReductionResult.
8982 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8983 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8984 return isa<VPWidenSelectRecipe>(U) ||
8985 (isa<VPReplicateRecipe>(U) &&
8986 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8987 Instruction::Select);
8988 }));
8989 VPValue *Cmp = Select->getOperand(0);
8990 // If the compare is checking the reduction PHI node, adjust it to check
8991 // the start value.
8992 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8993 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8994 Builder.setInsertPoint(Select);
8995
8996 // If the true value of the select is the reduction phi, the new value is
8997 // selected if the negated condition is true in any iteration.
8998 if (Select->getOperand(1) == PhiR)
8999 Cmp = Builder.createNot(Cmp);
9000 VPValue *Or = Builder.createOr(PhiR, Cmp);
9001 Select->getVPSingleValue()->replaceAllUsesWith(Or);
9002 // Delete Select now that it has invalid types.
9003 ToDelete.push_back(Select);
9004
9005 // Convert the reduction phi to operate on bools.
9006 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse(
9007 OrigLoop->getHeader()->getContext())));
9008 continue;
9009 }
9010
9012 RdxDesc.getRecurrenceKind())) {
9013 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
9014 // the sentinel value after generating the ResumePhi recipe, which uses
9015 // the original start value.
9016 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
9017 }
9018 RecurKind RK = RdxDesc.getRecurrenceKind();
9022 VPBuilder PHBuilder(Plan->getVectorPreheader());
9023 VPValue *Iden = Plan->getOrAddLiveIn(
9024 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
9025 // If the PHI is used by a partial reduction, set the scale factor.
9026 unsigned ScaleFactor =
9027 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
9028 .value_or(1);
9029 Type *I32Ty = IntegerType::getInt32Ty(PhiTy->getContext());
9030 auto *ScaleFactorVPV =
9031 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9032 VPValue *StartV = PHBuilder.createNaryOp(
9034 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
9035 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
9036 : FastMathFlags());
9037 PhiR->setOperand(0, StartV);
9038 }
9039 }
9040 for (VPRecipeBase *R : ToDelete)
9041 R->eraseFromParent();
9042
9044}
9045
9046void LoopVectorizationPlanner::attachRuntimeChecks(
9047 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9048 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9049 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9050 assert((!CM.OptForSize ||
9051 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9052 "Cannot SCEV check stride or overflow when optimizing for size");
9053 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9054 HasBranchWeights);
9055 }
9056 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9057 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9058 // VPlan-native path does not do any analysis for runtime checks
9059 // currently.
9060 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9061 "Runtime checks are not supported for outer loops yet");
9062
9063 if (CM.OptForSize) {
9064 assert(
9065 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9066 "Cannot emit memory checks when optimizing for size, unless forced "
9067 "to vectorize.");
9068 ORE->emit([&]() {
9069 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9070 OrigLoop->getStartLoc(),
9071 OrigLoop->getHeader())
9072 << "Code-size may be reduced by not forcing "
9073 "vectorization, or by source-code modifications "
9074 "eliminating the need for runtime checks "
9075 "(e.g., adding 'restrict').";
9076 });
9077 }
9078 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9079 HasBranchWeights);
9080 }
9081}
9082
9084 VPlan &Plan, ElementCount VF, unsigned UF,
9085 ElementCount MinProfitableTripCount) const {
9086 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9087 // an overflow to zero when updating induction variables and so an
9088 // additional overflow check is required before entering the vector loop.
9089 bool IsIndvarOverflowCheckNeededForVF =
9090 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9091 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9092 CM.getTailFoldingStyle() !=
9094 const uint32_t *BranchWeigths =
9095 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9097 : nullptr;
9099 Plan, VF, UF, MinProfitableTripCount,
9100 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9101 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9102 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9103 *PSE.getSE());
9104}
9105
9107 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9108
9109 // Fast-math-flags propagate from the original induction instruction.
9110 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9111 if (FPBinOp)
9112 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9113
9114 Value *Step = State.get(getStepValue(), VPLane(0));
9115 Value *Index = State.get(getOperand(1), VPLane(0));
9116 Value *DerivedIV = emitTransformedIndex(
9117 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9119 DerivedIV->setName(Name);
9120 State.set(this, DerivedIV, VPLane(0));
9121}
9122
9123// Determine how to lower the scalar epilogue, which depends on 1) optimising
9124// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9125// predication, and 4) a TTI hook that analyses whether the loop is suitable
9126// for predication.
9131 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9132 // don't look at hints or options, and don't request a scalar epilogue.
9133 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9134 // LoopAccessInfo (due to code dependency and not being able to reliably get
9135 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9136 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9137 // versioning when the vectorization is forced, unlike hasOptSize. So revert
9138 // back to the old way and vectorize with versioning when forced. See D81345.)
9139 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9143
9144 // 2) If set, obey the directives
9145 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9153 };
9154 }
9155
9156 // 3) If set, obey the hints
9157 switch (Hints.getPredicate()) {
9162 };
9163
9164 // 4) if the TTI hook indicates this is profitable, request predication.
9165 TailFoldingInfo TFI(TLI, &LVL, IAI);
9166 if (TTI->preferPredicateOverEpilogue(&TFI))
9168
9170}
9171
9172// Process the loop in the VPlan-native vectorization path. This path builds
9173// VPlan upfront in the vectorization pipeline, which allows to apply
9174// VPlan-to-VPlan transformations from the very beginning without modifying the
9175// input LLVM IR.
9182 LoopVectorizationRequirements &Requirements) {
9183
9185 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9186 return false;
9187 }
9188 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9189 Function *F = L->getHeader()->getParent();
9190 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9191
9193 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
9194
9195 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9196 &Hints, IAI, PSI, BFI);
9197 // Use the planner for outer loop vectorization.
9198 // TODO: CM is not used at this point inside the planner. Turn CM into an
9199 // optional argument if we don't need it in the future.
9200 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9201 ORE);
9202
9203 // Get user vectorization factor.
9204 ElementCount UserVF = Hints.getWidth();
9205
9207
9208 // Plan how to best vectorize, return the best VF and its cost.
9209 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9210
9211 // If we are stress testing VPlan builds, do not attempt to generate vector
9212 // code. Masked vector code generation support will follow soon.
9213 // Also, do not attempt to vectorize if no vector code will be produced.
9215 return false;
9216
9217 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9218
9219 {
9220 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9221 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9222 BFI, PSI, Checks, BestPlan);
9223 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9224 << L->getHeader()->getParent()->getName() << "\"\n");
9225 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9227
9228 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9229 }
9230
9231 reportVectorization(ORE, L, VF, 1);
9232
9233 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9234 return true;
9235}
9236
9237// Emit a remark if there are stores to floats that required a floating point
9238// extension. If the vectorized loop was generated with floating point there
9239// will be a performance penalty from the conversion overhead and the change in
9240// the vector width.
9243 for (BasicBlock *BB : L->getBlocks()) {
9244 for (Instruction &Inst : *BB) {
9245 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9246 if (S->getValueOperand()->getType()->isFloatTy())
9247 Worklist.push_back(S);
9248 }
9249 }
9250 }
9251
9252 // Traverse the floating point stores upwards searching, for floating point
9253 // conversions.
9256 while (!Worklist.empty()) {
9257 auto *I = Worklist.pop_back_val();
9258 if (!L->contains(I))
9259 continue;
9260 if (!Visited.insert(I).second)
9261 continue;
9262
9263 // Emit a remark if the floating point store required a floating
9264 // point conversion.
9265 // TODO: More work could be done to identify the root cause such as a
9266 // constant or a function return type and point the user to it.
9267 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9268 ORE->emit([&]() {
9269 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9270 I->getDebugLoc(), L->getHeader())
9271 << "floating point conversion changes vector width. "
9272 << "Mixed floating point precision requires an up/down "
9273 << "cast that will negatively impact performance.";
9274 });
9275
9276 for (Use &Op : I->operands())
9277 if (auto *OpI = dyn_cast<Instruction>(Op))
9278 Worklist.push_back(OpI);
9279 }
9280}
9281
9282/// For loops with uncountable early exits, find the cost of doing work when
9283/// exiting the loop early, such as calculating the final exit values of
9284/// variables used outside the loop.
9285/// TODO: This is currently overly pessimistic because the loop may not take
9286/// the early exit, but better to keep this conservative for now. In future,
9287/// it might be possible to relax this by using branch probabilities.
9289 VPlan &Plan, ElementCount VF) {
9290 InstructionCost Cost = 0;
9291 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9292 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9293 // If the predecessor is not the middle.block, then it must be the
9294 // vector.early.exit block, which may contain work to calculate the exit
9295 // values of variables used outside the loop.
9296 if (PredVPBB != Plan.getMiddleBlock()) {
9297 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9298 << PredVPBB->getName() << ":\n");
9299 Cost += PredVPBB->cost(VF, CostCtx);
9300 }
9301 }
9302 }
9303 return Cost;
9304}
9305
9306/// This function determines whether or not it's still profitable to vectorize
9307/// the loop given the extra work we have to do outside of the loop:
9308/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9309/// to vectorize.
9310/// 2. In the case of loops with uncountable early exits, we may have to do
9311/// extra work when exiting the loop early, such as calculating the final
9312/// exit values of variables used outside the loop.
9313static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9314 VectorizationFactor &VF, Loop *L,
9316 VPCostContext &CostCtx, VPlan &Plan,
9318 std::optional<unsigned> VScale) {
9319 InstructionCost TotalCost = Checks.getCost();
9320 if (!TotalCost.isValid())
9321 return false;
9322
9323 // Add on the cost of any work required in the vector early exit block, if
9324 // one exists.
9325 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9326
9327 // When interleaving only scalar and vector cost will be equal, which in turn
9328 // would lead to a divide by 0. Fall back to hard threshold.
9329 if (VF.Width.isScalar()) {
9330 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9331 if (TotalCost > VectorizeMemoryCheckThreshold) {
9332 LLVM_DEBUG(
9333 dbgs()
9334 << "LV: Interleaving only is not profitable due to runtime checks\n");
9335 return false;
9336 }
9337 return true;
9338 }
9339
9340 // The scalar cost should only be 0 when vectorizing with a user specified
9341 // VF/IC. In those cases, runtime checks should always be generated.
9342 uint64_t ScalarC = VF.ScalarCost.getValue();
9343 if (ScalarC == 0)
9344 return true;
9345
9346 // First, compute the minimum iteration count required so that the vector
9347 // loop outperforms the scalar loop.
9348 // The total cost of the scalar loop is
9349 // ScalarC * TC
9350 // where
9351 // * TC is the actual trip count of the loop.
9352 // * ScalarC is the cost of a single scalar iteration.
9353 //
9354 // The total cost of the vector loop is
9355 // RtC + VecC * (TC / VF) + EpiC
9356 // where
9357 // * RtC is the cost of the generated runtime checks plus the cost of
9358 // performing any additional work in the vector.early.exit block for loops
9359 // with uncountable early exits.
9360 // * VecC is the cost of a single vector iteration.
9361 // * TC is the actual trip count of the loop
9362 // * VF is the vectorization factor
9363 // * EpiCost is the cost of the generated epilogue, including the cost
9364 // of the remaining scalar operations.
9365 //
9366 // Vectorization is profitable once the total vector cost is less than the
9367 // total scalar cost:
9368 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9369 //
9370 // Now we can compute the minimum required trip count TC as
9371 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9372 //
9373 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9374 // the computations are performed on doubles, not integers and the result
9375 // is rounded up, hence we get an upper estimate of the TC.
9376 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9377 uint64_t RtC = TotalCost.getValue();
9378 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9379 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9380
9381 // Second, compute a minimum iteration count so that the cost of the
9382 // runtime checks is only a fraction of the total scalar loop cost. This
9383 // adds a loop-dependent bound on the overhead incurred if the runtime
9384 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9385 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9386 // cost, compute
9387 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9388 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9389
9390 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9391 // epilogue is allowed, choose the next closest multiple of VF. This should
9392 // partly compensate for ignoring the epilogue cost.
9393 uint64_t MinTC = std::max(MinTC1, MinTC2);
9394 if (SEL == CM_ScalarEpilogueAllowed)
9395 MinTC = alignTo(MinTC, IntVF);
9397
9398 LLVM_DEBUG(
9399 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9400 << VF.MinProfitableTripCount << "\n");
9401
9402 // Skip vectorization if the expected trip count is less than the minimum
9403 // required trip count.
9404 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9405 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9406 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9407 "trip count < minimum profitable VF ("
9408 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9409 << ")\n");
9410
9411 return false;
9412 }
9413 }
9414 return true;
9415}
9416
9418 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9420 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9422
9423/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9424/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9425/// don't have a corresponding wide induction in \p EpiPlan.
9426static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9427 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9428 // will need their resume-values computed in the main vector loop. Others
9429 // can be removed from the main VPlan.
9430 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9431 for (VPRecipeBase &R :
9434 continue;
9435 EpiWidenedPhis.insert(
9436 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9437 }
9438 for (VPRecipeBase &R :
9439 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9440 auto *VPIRInst = cast<VPIRPhi>(&R);
9441 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9442 continue;
9443 // There is no corresponding wide induction in the epilogue plan that would
9444 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9445 // together with the corresponding ResumePhi. The resume values for the
9446 // scalar loop will be created during execution of EpiPlan.
9447 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9448 VPIRInst->eraseFromParent();
9449 ResumePhi->eraseFromParent();
9450 }
9452
9453 using namespace VPlanPatternMatch;
9454 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9455 // introduce multiple uses of undef/poison. If the reduction start value may
9456 // be undef or poison it needs to be frozen and the frozen start has to be
9457 // used when computing the reduction result. We also need to use the frozen
9458 // value in the resume phi generated by the main vector loop, as this is also
9459 // used to compute the reduction result after the epilogue vector loop.
9460 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9461 bool UpdateResumePhis) {
9462 VPBuilder Builder(Plan.getEntry());
9463 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9464 auto *VPI = dyn_cast<VPInstruction>(&R);
9465 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9466 continue;
9467 VPValue *OrigStart = VPI->getOperand(1);
9469 continue;
9470 VPInstruction *Freeze =
9471 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9472 VPI->setOperand(1, Freeze);
9473 if (UpdateResumePhis)
9474 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9475 return Freeze != &U && isa<VPPhi>(&U);
9476 });
9477 }
9478 };
9479 AddFreezeForFindLastIVReductions(MainPlan, true);
9480 AddFreezeForFindLastIVReductions(EpiPlan, false);
9481
9482 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9483 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9484 // If there is a suitable resume value for the canonical induction in the
9485 // scalar (which will become vector) epilogue loop, use it and move it to the
9486 // beginning of the scalar preheader. Otherwise create it below.
9487 auto ResumePhiIter =
9488 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9489 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9490 m_ZeroInt()));
9491 });
9492 VPPhi *ResumePhi = nullptr;
9493 if (ResumePhiIter == MainScalarPH->phis().end()) {
9494 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9495 ResumePhi = ScalarPHBuilder.createScalarPhi(
9496 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {},
9497 "vec.epilog.resume.val");
9498 } else {
9499 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9500 if (MainScalarPH->begin() == MainScalarPH->end())
9501 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9502 else if (&*MainScalarPH->begin() != ResumePhi)
9503 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9504 }
9505 // Add a user to to make sure the resume phi won't get removed.
9506 VPBuilder(MainScalarPH)
9508}
9509
9510/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9511/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9512/// reductions require creating new instructions to compute the resume values.
9513/// They are collected in a vector and returned. They must be moved to the
9514/// preheader of the vector epilogue loop, after created by the execution of \p
9515/// Plan.
9517 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9519 ScalarEvolution &SE) {
9520 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9521 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9522 Header->setName("vec.epilog.vector.body");
9523
9525 SmallVector<Instruction *> InstsToMove;
9526 // Ensure that the start values for all header phi recipes are updated before
9527 // vectorizing the epilogue loop.
9528 for (VPRecipeBase &R : Header->phis()) {
9529 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
9530 // When vectorizing the epilogue loop, the canonical induction start
9531 // value needs to be changed from zero to the value after the main
9532 // vector loop. Find the resume value created during execution of the main
9533 // VPlan. It must be the first phi in the loop preheader.
9534 // FIXME: Improve modeling for canonical IV start values in the epilogue
9535 // loop.
9536 using namespace llvm::PatternMatch;
9537 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9538 for (Value *Inc : EPResumeVal->incoming_values()) {
9539 if (match(Inc, m_SpecificInt(0)))
9540 continue;
9541 assert(!EPI.VectorTripCount &&
9542 "Must only have a single non-zero incoming value");
9543 EPI.VectorTripCount = Inc;
9544 }
9545 // If we didn't find a non-zero vector trip count, all incoming values
9546 // must be zero, which also means the vector trip count is zero. Pick the
9547 // first zero as vector trip count.
9548 // TODO: We should not choose VF * UF so the main vector loop is known to
9549 // be dead.
9550 if (!EPI.VectorTripCount) {
9551 assert(
9552 EPResumeVal->getNumIncomingValues() > 0 &&
9553 all_of(EPResumeVal->incoming_values(),
9554 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9555 "all incoming values must be 0");
9556 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9557 }
9558 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9559 assert(all_of(IV->users(),
9560 [](const VPUser *U) {
9561 return isa<VPScalarIVStepsRecipe>(U) ||
9562 isa<VPDerivedIVRecipe>(U) ||
9563 cast<VPRecipeBase>(U)->isScalarCast() ||
9564 cast<VPInstruction>(U)->getOpcode() ==
9565 Instruction::Add;
9566 }) &&
9567 "the canonical IV should only be used by its increment or "
9568 "ScalarIVSteps when resetting the start value");
9569 IV->setOperand(0, VPV);
9570 continue;
9571 }
9572
9573 Value *ResumeV = nullptr;
9574 // TODO: Move setting of resume values to prepareToExecute.
9575 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9576 auto *RdxResult =
9577 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9578 auto *VPI = dyn_cast<VPInstruction>(U);
9579 return VPI &&
9580 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9581 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9582 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9583 }));
9584 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9585 ->getIncomingValueForBlock(L->getLoopPreheader());
9586 RecurKind RK = ReductionPhi->getRecurrenceKind();
9588 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9589 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9590 // start value; compare the final value from the main vector loop
9591 // to the start value.
9592 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9593 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9594 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9595 if (auto *I = dyn_cast<Instruction>(ResumeV))
9596 InstsToMove.push_back(I);
9598 Value *StartV = getStartValueFromReductionResult(RdxResult);
9599 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9601
9602 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9603 // an adjustment to the resume value. The resume value is adjusted to
9604 // the sentinel value when the final value from the main vector loop
9605 // equals the start value. This ensures correctness when the start value
9606 // might not be less than the minimum value of a monotonically
9607 // increasing induction variable.
9608 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9609 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9610 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9611 if (auto *I = dyn_cast<Instruction>(Cmp))
9612 InstsToMove.push_back(I);
9613 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9614 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9615 if (auto *I = dyn_cast<Instruction>(ResumeV))
9616 InstsToMove.push_back(I);
9617 } else {
9618 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9619 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9620 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9621 assert(VPI->getOpcode() == VPInstruction::ReductionStartVector &&
9622 "unexpected start value");
9623 VPI->setOperand(0, StartVal);
9624 continue;
9625 }
9626 }
9627 } else {
9628 // Retrieve the induction resume values for wide inductions from
9629 // their original phi nodes in the scalar loop.
9630 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9631 // Hook up to the PHINode generated by a ResumePhi recipe of main
9632 // loop VPlan, which feeds the scalar loop.
9633 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9634 }
9635 assert(ResumeV && "Must have a resume value");
9636 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9637 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9638 }
9639
9640 // For some VPValues in the epilogue plan we must re-use the generated IR
9641 // values from the main plan. Replace them with live-in VPValues.
9642 // TODO: This is a workaround needed for epilogue vectorization and it
9643 // should be removed once induction resume value creation is done
9644 // directly in VPlan.
9645 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9646 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9647 // epilogue plan. This ensures all users use the same frozen value.
9648 auto *VPI = dyn_cast<VPInstruction>(&R);
9649 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9650 VPI->replaceAllUsesWith(Plan.getOrAddLiveIn(
9651 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9652 continue;
9653 }
9654
9655 // Re-use the trip count and steps expanded for the main loop, as
9656 // skeleton creation needs it as a value that dominates both the scalar
9657 // and vector epilogue loops
9658 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9659 if (!ExpandR)
9660 continue;
9661 VPValue *ExpandedVal =
9662 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9663 ExpandR->replaceAllUsesWith(ExpandedVal);
9664 if (Plan.getTripCount() == ExpandR)
9665 Plan.resetTripCount(ExpandedVal);
9666 ExpandR->eraseFromParent();
9667 }
9668
9669 auto VScale = CM.getVScaleForTuning();
9670 unsigned MainLoopStep =
9671 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9672 unsigned EpilogueLoopStep =
9673 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9675 Plan, EPI.TripCount, EPI.VectorTripCount,
9677 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9678
9679 return InstsToMove;
9680}
9681
9682// Generate bypass values from the additional bypass block. Note that when the
9683// vectorized epilogue is skipped due to iteration count check, then the
9684// resume value for the induction variable comes from the trip count of the
9685// main vector loop, passed as the second argument.
9687 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9688 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9689 Instruction *OldInduction) {
9690 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9691 // For the primary induction the additional bypass end value is known.
9692 // Otherwise it is computed.
9693 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9694 if (OrigPhi != OldInduction) {
9695 auto *BinOp = II.getInductionBinOp();
9696 // Fast-math-flags propagate from the original induction instruction.
9698 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9699
9700 // Compute the end value for the additional bypass.
9701 EndValueFromAdditionalBypass =
9702 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9703 II.getStartValue(), Step, II.getKind(), BinOp);
9704 EndValueFromAdditionalBypass->setName("ind.end");
9705 }
9706 return EndValueFromAdditionalBypass;
9707}
9708
9710 VPlan &BestEpiPlan,
9712 const SCEV2ValueTy &ExpandedSCEVs,
9713 Value *MainVectorTripCount) {
9714 // Fix reduction resume values from the additional bypass block.
9715 BasicBlock *PH = L->getLoopPreheader();
9716 for (auto *Pred : predecessors(PH)) {
9717 for (PHINode &Phi : PH->phis()) {
9718 if (Phi.getBasicBlockIndex(Pred) != -1)
9719 continue;
9720 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9721 }
9722 }
9723 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9724 if (ScalarPH->hasPredecessors()) {
9725 // If ScalarPH has predecessors, we may need to update its reduction
9726 // resume values.
9727 for (const auto &[R, IRPhi] :
9728 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9730 BypassBlock);
9731 }
9732 }
9733
9734 // Fix induction resume values from the additional bypass block.
9735 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9736 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9737 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9739 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9740 LVL.getPrimaryInduction());
9741 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9742 Inc->setIncomingValueForBlock(BypassBlock, V);
9743 }
9744}
9745
9746/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9747// loop, after both plans have executed, updating branches from the iteration
9748// and runtime checks of the main loop, as well as updating various phis. \p
9749// InstsToMove contains instructions that need to be moved to the preheader of
9750// the epilogue vector loop.
9752 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9754 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9755 ArrayRef<Instruction *> InstsToMove) {
9756 BasicBlock *VecEpilogueIterationCountCheck =
9757 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9758
9759 BasicBlock *VecEpiloguePreHeader =
9760 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9761 ->getSuccessor(1);
9762 // Adjust the control flow taking the state info from the main loop
9763 // vectorization into account.
9765 "expected this to be saved from the previous pass.");
9766 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9768 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9769
9771 VecEpilogueIterationCountCheck},
9773 VecEpiloguePreHeader}});
9774
9775 BasicBlock *ScalarPH =
9776 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9778 VecEpilogueIterationCountCheck, ScalarPH);
9779 DTU.applyUpdates(
9781 VecEpilogueIterationCountCheck},
9783
9784 // Adjust the terminators of runtime check blocks and phis using them.
9785 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9786 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9787 if (SCEVCheckBlock) {
9788 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9789 VecEpilogueIterationCountCheck, ScalarPH);
9790 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9791 VecEpilogueIterationCountCheck},
9792 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9793 }
9794 if (MemCheckBlock) {
9795 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9796 VecEpilogueIterationCountCheck, ScalarPH);
9797 DTU.applyUpdates(
9798 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9799 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9800 }
9801
9802 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9803 // or reductions which merge control-flow from the latch block and the
9804 // middle block. Update the incoming values here and move the Phi into the
9805 // preheader.
9806 SmallVector<PHINode *, 4> PhisInBlock(
9807 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9808
9809 for (PHINode *Phi : PhisInBlock) {
9810 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9811 Phi->replaceIncomingBlockWith(
9812 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9813 VecEpilogueIterationCountCheck);
9814
9815 // If the phi doesn't have an incoming value from the
9816 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9817 // incoming value and also those from other check blocks. This is needed
9818 // for reduction phis only.
9819 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9820 return EPI.EpilogueIterationCountCheck == IncB;
9821 }))
9822 continue;
9823 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9824 if (SCEVCheckBlock)
9825 Phi->removeIncomingValue(SCEVCheckBlock);
9826 if (MemCheckBlock)
9827 Phi->removeIncomingValue(MemCheckBlock);
9828 }
9829
9830 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9831 for (auto *I : InstsToMove)
9832 I->moveBefore(IP);
9833
9834 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9835 // after executing the main loop. We need to update the resume values of
9836 // inductions and reductions during epilogue vectorization.
9837 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9838 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9839}
9840
9842 assert((EnableVPlanNativePath || L->isInnermost()) &&
9843 "VPlan-native path is not enabled. Only process inner loops.");
9844
9845 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9846 << L->getHeader()->getParent()->getName() << "' from "
9847 << L->getLocStr() << "\n");
9848
9849 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9850
9851 LLVM_DEBUG(
9852 dbgs() << "LV: Loop hints:"
9853 << " force="
9855 ? "disabled"
9857 ? "enabled"
9858 : "?"))
9859 << " width=" << Hints.getWidth()
9860 << " interleave=" << Hints.getInterleave() << "\n");
9861
9862 // Function containing loop
9863 Function *F = L->getHeader()->getParent();
9864
9865 // Looking at the diagnostic output is the only way to determine if a loop
9866 // was vectorized (other than looking at the IR or machine code), so it
9867 // is important to generate an optimization remark for each loop. Most of
9868 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9869 // generated as OptimizationRemark and OptimizationRemarkMissed are
9870 // less verbose reporting vectorized loops and unvectorized loops that may
9871 // benefit from vectorization, respectively.
9872
9873 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9874 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9875 return false;
9876 }
9877
9878 PredicatedScalarEvolution PSE(*SE, *L);
9879
9880 // Check if it is legal to vectorize the loop.
9881 LoopVectorizationRequirements Requirements;
9882 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9883 &Requirements, &Hints, DB, AC, BFI, PSI, AA);
9885 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9886 Hints.emitRemarkWithHints();
9887 return false;
9888 }
9889
9891 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9892 "early exit is not enabled",
9893 "UncountableEarlyExitLoopsDisabled", ORE, L);
9894 return false;
9895 }
9896
9897 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9898 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9899 "faulting load is not supported",
9900 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9901 return false;
9902 }
9903
9904 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9905 // here. They may require CFG and instruction level transformations before
9906 // even evaluating whether vectorization is profitable. Since we cannot modify
9907 // the incoming IR, we need to build VPlan upfront in the vectorization
9908 // pipeline.
9909 if (!L->isInnermost())
9910 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9911 ORE, BFI, PSI, Hints, Requirements);
9912
9913 assert(L->isInnermost() && "Inner loop expected.");
9914
9915 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9916 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9917
9918 // If an override option has been passed in for interleaved accesses, use it.
9919 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9920 UseInterleaved = EnableInterleavedMemAccesses;
9921
9922 // Analyze interleaved memory accesses.
9923 if (UseInterleaved)
9925
9926 if (LVL.hasUncountableEarlyExit()) {
9927 BasicBlock *LoopLatch = L->getLoopLatch();
9928 if (IAI.requiresScalarEpilogue() ||
9930 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9931 reportVectorizationFailure("Auto-vectorization of early exit loops "
9932 "requiring a scalar epilogue is unsupported",
9933 "UncountableEarlyExitUnsupported", ORE, L);
9934 return false;
9935 }
9936 }
9937
9938 // Check the function attributes and profiles to find out if this function
9939 // should be optimized for size.
9941 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
9942
9943 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9944 // count by optimizing for size, to minimize overheads.
9945 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9946 if (ExpectedTC && ExpectedTC->isFixed() &&
9947 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9948 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9949 << "This loop is worth vectorizing only if no scalar "
9950 << "iteration overheads are incurred.");
9952 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9953 else {
9954 LLVM_DEBUG(dbgs() << "\n");
9955 // Predicate tail-folded loops are efficient even when the loop
9956 // iteration count is low. However, setting the epilogue policy to
9957 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9958 // with runtime checks. It's more effective to let
9959 // `isOutsideLoopWorkProfitable` determine if vectorization is
9960 // beneficial for the loop.
9963 }
9964 }
9965
9966 // Check the function attributes to see if implicit floats or vectors are
9967 // allowed.
9968 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9970 "Can't vectorize when the NoImplicitFloat attribute is used",
9971 "loop not vectorized due to NoImplicitFloat attribute",
9972 "NoImplicitFloat", ORE, L);
9973 Hints.emitRemarkWithHints();
9974 return false;
9975 }
9976
9977 // Check if the target supports potentially unsafe FP vectorization.
9978 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9979 // for the target we're vectorizing for, to make sure none of the
9980 // additional fp-math flags can help.
9981 if (Hints.isPotentiallyUnsafe() &&
9982 TTI->isFPVectorizationPotentiallyUnsafe()) {
9984 "Potentially unsafe FP op prevents vectorization",
9985 "loop not vectorized due to unsafe FP support.",
9986 "UnsafeFP", ORE, L);
9987 Hints.emitRemarkWithHints();
9988 return false;
9989 }
9990
9991 bool AllowOrderedReductions;
9992 // If the flag is set, use that instead and override the TTI behaviour.
9993 if (ForceOrderedReductions.getNumOccurrences() > 0)
9994 AllowOrderedReductions = ForceOrderedReductions;
9995 else
9996 AllowOrderedReductions = TTI->enableOrderedReductions();
9997 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9998 ORE->emit([&]() {
9999 auto *ExactFPMathInst = Requirements.getExactFPInst();
10000 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10001 ExactFPMathInst->getDebugLoc(),
10002 ExactFPMathInst->getParent())
10003 << "loop not vectorized: cannot prove it is safe to reorder "
10004 "floating-point operations";
10005 });
10006 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10007 "reorder floating-point operations\n");
10008 Hints.emitRemarkWithHints();
10009 return false;
10010 }
10011
10012 // Use the cost model.
10013 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10014 F, &Hints, IAI, PSI, BFI);
10015 // Use the planner for vectorization.
10016 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
10017 ORE);
10018
10019 // Get user vectorization factor and interleave count.
10020 ElementCount UserVF = Hints.getWidth();
10021 unsigned UserIC = Hints.getInterleave();
10022
10023 // Plan how to best vectorize.
10024 LVP.plan(UserVF, UserIC);
10026 unsigned IC = 1;
10027
10028 if (ORE->allowExtraAnalysis(LV_NAME))
10030
10031 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
10032 if (LVP.hasPlanWithVF(VF.Width)) {
10033 // Select the interleave count.
10034 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10035
10036 unsigned SelectedIC = std::max(IC, UserIC);
10037 // Optimistically generate runtime checks if they are needed. Drop them if
10038 // they turn out to not be profitable.
10039 if (VF.Width.isVector() || SelectedIC > 1) {
10040 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10041
10042 // Bail out early if either the SCEV or memory runtime checks are known to
10043 // fail. In that case, the vector loop would never execute.
10044 using namespace llvm::PatternMatch;
10045 if (Checks.getSCEVChecks().first &&
10046 match(Checks.getSCEVChecks().first, m_One()))
10047 return false;
10048 if (Checks.getMemRuntimeChecks().first &&
10049 match(Checks.getMemRuntimeChecks().first, m_One()))
10050 return false;
10051 }
10052
10053 // Check if it is profitable to vectorize with runtime checks.
10054 bool ForceVectorization =
10056 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10057 CM.CostKind);
10058 if (!ForceVectorization &&
10059 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10060 LVP.getPlanFor(VF.Width), SEL,
10061 CM.getVScaleForTuning())) {
10062 ORE->emit([&]() {
10064 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10065 L->getHeader())
10066 << "loop not vectorized: cannot prove it is safe to reorder "
10067 "memory operations";
10068 });
10069 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10070 Hints.emitRemarkWithHints();
10071 return false;
10072 }
10073 }
10074
10075 // Identify the diagnostic messages that should be produced.
10076 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10077 bool VectorizeLoop = true, InterleaveLoop = true;
10078 if (VF.Width.isScalar()) {
10079 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10080 VecDiagMsg = {
10081 "VectorizationNotBeneficial",
10082 "the cost-model indicates that vectorization is not beneficial"};
10083 VectorizeLoop = false;
10084 }
10085
10086 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10087 // Tell the user interleaving was avoided up-front, despite being explicitly
10088 // requested.
10089 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10090 "interleaving should be avoided up front\n");
10091 IntDiagMsg = {"InterleavingAvoided",
10092 "Ignoring UserIC, because interleaving was avoided up front"};
10093 InterleaveLoop = false;
10094 } else if (IC == 1 && UserIC <= 1) {
10095 // Tell the user interleaving is not beneficial.
10096 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10097 IntDiagMsg = {
10098 "InterleavingNotBeneficial",
10099 "the cost-model indicates that interleaving is not beneficial"};
10100 InterleaveLoop = false;
10101 if (UserIC == 1) {
10102 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10103 IntDiagMsg.second +=
10104 " and is explicitly disabled or interleave count is set to 1";
10105 }
10106 } else if (IC > 1 && UserIC == 1) {
10107 // Tell the user interleaving is beneficial, but it explicitly disabled.
10108 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10109 "disabled.\n");
10110 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10111 "the cost-model indicates that interleaving is beneficial "
10112 "but is explicitly disabled or interleave count is set to 1"};
10113 InterleaveLoop = false;
10114 }
10115
10116 // If there is a histogram in the loop, do not just interleave without
10117 // vectorizing. The order of operations will be incorrect without the
10118 // histogram intrinsics, which are only used for recipes with VF > 1.
10119 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10120 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10121 << "to histogram operations.\n");
10122 IntDiagMsg = {
10123 "HistogramPreventsScalarInterleaving",
10124 "Unable to interleave without vectorization due to constraints on "
10125 "the order of histogram operations"};
10126 InterleaveLoop = false;
10127 }
10128
10129 // Override IC if user provided an interleave count.
10130 IC = UserIC > 0 ? UserIC : IC;
10131
10132 // Emit diagnostic messages, if any.
10133 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10134 if (!VectorizeLoop && !InterleaveLoop) {
10135 // Do not vectorize or interleaving the loop.
10136 ORE->emit([&]() {
10137 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10138 L->getStartLoc(), L->getHeader())
10139 << VecDiagMsg.second;
10140 });
10141 ORE->emit([&]() {
10142 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10143 L->getStartLoc(), L->getHeader())
10144 << IntDiagMsg.second;
10145 });
10146 return false;
10147 }
10148
10149 if (!VectorizeLoop && InterleaveLoop) {
10150 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10151 ORE->emit([&]() {
10152 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10153 L->getStartLoc(), L->getHeader())
10154 << VecDiagMsg.second;
10155 });
10156 } else if (VectorizeLoop && !InterleaveLoop) {
10157 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10158 << ") in " << L->getLocStr() << '\n');
10159 ORE->emit([&]() {
10160 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10161 L->getStartLoc(), L->getHeader())
10162 << IntDiagMsg.second;
10163 });
10164 } else if (VectorizeLoop && InterleaveLoop) {
10165 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10166 << ") in " << L->getLocStr() << '\n');
10167 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10168 }
10169
10170 // Report the vectorization decision.
10171 if (VF.Width.isScalar()) {
10172 using namespace ore;
10173 assert(IC > 1);
10174 ORE->emit([&]() {
10175 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10176 L->getHeader())
10177 << "interleaved loop (interleaved count: "
10178 << NV("InterleaveCount", IC) << ")";
10179 });
10180 } else {
10181 // Report the vectorization decision.
10182 reportVectorization(ORE, L, VF, IC);
10183 }
10184 if (ORE->allowExtraAnalysis(LV_NAME))
10186
10187 // If we decided that it is *legal* to interleave or vectorize the loop, then
10188 // do it.
10189
10190 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10191 // Consider vectorizing the epilogue too if it's profitable.
10192 VectorizationFactor EpilogueVF =
10194 if (EpilogueVF.Width.isVector()) {
10195 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10196
10197 // The first pass vectorizes the main loop and creates a scalar epilogue
10198 // to be vectorized by executing the plan (potentially with a different
10199 // factor) again shortly afterwards.
10200 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10201 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10202 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10203 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10204 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10205 BestEpiPlan);
10206 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM, BFI,
10207 PSI, Checks, *BestMainPlan);
10208 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10209 *BestMainPlan, MainILV, DT, false);
10210 ++LoopsVectorized;
10211
10212 // Second pass vectorizes the epilogue and adjusts the control flow
10213 // edges from the first pass.
10214 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10215 BFI, PSI, Checks, BestEpiPlan);
10217 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10218 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10219 true);
10220 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10221 Checks, InstsToMove);
10222 ++LoopsEpilogueVectorized;
10223 } else {
10224 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, BFI, PSI,
10225 Checks, BestPlan);
10226 // TODO: Move to general VPlan pipeline once epilogue loops are also
10227 // supported.
10230 IC, PSE);
10231 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10233
10234 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10235 ++LoopsVectorized;
10236 }
10237
10238 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10239 "DT not preserved correctly");
10240 assert(!verifyFunction(*F, &dbgs()));
10241
10242 return true;
10243}
10244
10246
10247 // Don't attempt if
10248 // 1. the target claims to have no vector registers, and
10249 // 2. interleaving won't help ILP.
10250 //
10251 // The second condition is necessary because, even if the target has no
10252 // vector registers, loop vectorization may still enable scalar
10253 // interleaving.
10254 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10255 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10256 return LoopVectorizeResult(false, false);
10257
10258 bool Changed = false, CFGChanged = false;
10259
10260 // The vectorizer requires loops to be in simplified form.
10261 // Since simplification may add new inner loops, it has to run before the
10262 // legality and profitability checks. This means running the loop vectorizer
10263 // will simplify all loops, regardless of whether anything end up being
10264 // vectorized.
10265 for (const auto &L : *LI)
10266 Changed |= CFGChanged |=
10267 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10268
10269 // Build up a worklist of inner-loops to vectorize. This is necessary as
10270 // the act of vectorizing or partially unrolling a loop creates new loops
10271 // and can invalidate iterators across the loops.
10272 SmallVector<Loop *, 8> Worklist;
10273
10274 for (Loop *L : *LI)
10275 collectSupportedLoops(*L, LI, ORE, Worklist);
10276
10277 LoopsAnalyzed += Worklist.size();
10278
10279 // Now walk the identified inner loops.
10280 while (!Worklist.empty()) {
10281 Loop *L = Worklist.pop_back_val();
10282
10283 // For the inner loops we actually process, form LCSSA to simplify the
10284 // transform.
10285 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10286
10287 Changed |= CFGChanged |= processLoop(L);
10288
10289 if (Changed) {
10290 LAIs->clear();
10291
10292#ifndef NDEBUG
10293 if (VerifySCEV)
10294 SE->verify();
10295#endif
10296 }
10297 }
10298
10299 // Process each loop nest in the function.
10300 return LoopVectorizeResult(Changed, CFGChanged);
10301}
10302
10305 LI = &AM.getResult<LoopAnalysis>(F);
10306 // There are no loops in the function. Return before computing other
10307 // expensive analyses.
10308 if (LI->empty())
10309 return PreservedAnalyses::all();
10318 AA = &AM.getResult<AAManager>(F);
10319
10320 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10321 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10322 BFI = nullptr;
10323 if (PSI && PSI->hasProfileSummary())
10325 LoopVectorizeResult Result = runImpl(F);
10326 if (!Result.MadeAnyChange)
10327 return PreservedAnalyses::all();
10329
10330 if (isAssignmentTrackingEnabled(*F.getParent())) {
10331 for (auto &BB : F)
10333 }
10334
10335 PA.preserve<LoopAnalysis>();
10339
10340 if (Result.MadeCFGChange) {
10341 // Making CFG changes likely means a loop got vectorized. Indicate that
10342 // extra simplification passes should be run.
10343 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10344 // be run if runtime checks have been added.
10347 } else {
10349 }
10350 return PA;
10351}
10352
10354 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10355 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10356 OS, MapClassName2PassName);
10357
10358 OS << '<';
10359 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10360 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10361 OS << '>';
10362}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getTemporary()
Definition DebugLoc.h:161
static DebugLoc getUnknown()
Definition DebugLoc.h:162
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:237
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:158
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:275
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:762
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
ProfileSummaryInfo * PSI
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:343
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1602
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1653
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1586
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1567
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1731
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1077
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:119
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:102
void insert_range(Range &&R)
Definition SetVector.h:175
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:261
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:21
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3764
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3839
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3791
iterator end()
Definition VPlan.h:3801
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3799
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3852
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3830
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:232
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:253
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:191
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:218
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:424
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:397
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3641
VPValue * getStartValue() const
Definition VPlan.h:3640
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1977
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2025
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2014
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3917
Helper to manage IR metadata for recipes.
Definition VPlan.h:942
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:983
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1016
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1063
@ FirstOrderRecurrenceSplice
Definition VPlan.h:989
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1054
unsigned getOpcode() const
Definition VPlan.h:1119
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2576
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
Definition VPlan.h:2753
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1290
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
Definition VPlan.h:2331
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
Definition VPlan.h:2391
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2385
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3952
const VPBlockBase * getEntry() const
Definition VPlan.h:3988
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2856
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:243
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:238
void addOperand(VPValue *Operand)
Definition VPlanValue.h:232
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:176
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1403
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1407
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1841
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1482
A recipe for handling GEP instructions.
Definition VPlan.h:1769
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2042
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2070
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2087
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2117
A common base class for widening memory operations.
Definition VPlan.h:3133
A recipe for widened phis.
Definition VPlan.h:2253
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1439
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4055
bool hasVF(ElementCount VF) const
Definition VPlan.h:4264
VPBasicBlock * getEntry()
Definition VPlan.h:4154
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4244
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4250
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4247
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4216
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4271
bool hasUF(unsigned UF) const
Definition VPlan.h:4282
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4206
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1037
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4427
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1019
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4230
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4179
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4306
bool hasScalarVFOnly() const
Definition VPlan.h:4275
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4197
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:943
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4360
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4202
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4159
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1179
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:156
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr bool isZero() const
Definition TypeSize.h:154
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:689
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1657
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:682
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1767
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:126
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Definition VPlan.cpp:56
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:299
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
BlockFrequencyInfo * BFI
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2296
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1723
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks