161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
885 initializeVScaleForTuning();
900 bool runtimeChecksRequired();
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
938 void collectValuesToIgnore();
941 void collectElementTypesForWidening();
945 void collectInLoopReductions();
966 "Profitable to scalarize relevant only for VF > 1.");
969 "cost-model should not be used for outer loops (in VPlan-native path)");
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(
I);
981 "cost-model should not be used for outer loops (in VPlan-native path)");
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(
I);
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(
I);
1014 return VF.
isVector() && MinBWs.contains(
I) &&
1036 WideningDecisions[{
I, VF}] = {W,
Cost};
1055 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1058 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1060 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1072 "cost-model should not be used for outer loops (in VPlan-native path)");
1074 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1075 auto Itr = WideningDecisions.find(InstOnVF);
1076 if (Itr == WideningDecisions.end())
1078 return Itr->second.first;
1085 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1086 assert(WideningDecisions.contains(InstOnVF) &&
1087 "The cost is not calculated");
1088 return WideningDecisions[InstOnVF].second;
1101 std::optional<unsigned> MaskPos,
1104 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1110 auto I = CallWideningDecisions.find({CI, VF});
1111 if (
I == CallWideningDecisions.end())
1134 Value *
Op = Trunc->getOperand(0);
1135 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1139 return Legal->isInductionPhi(
Op);
1155 if (VF.
isScalar() || Uniforms.contains(VF))
1158 collectLoopUniforms(VF);
1160 collectLoopScalars(VF);
1168 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1176 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1191 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1198 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1199 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1200 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1211 return ScalarCost < SafeDivisorCost;
1235 std::pair<InstructionCost, InstructionCost>
1263 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1270 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1271 "from latch block\n");
1276 "interleaved group requires scalar epilogue\n");
1279 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 if (!ChosenTailFoldingStyle)
1293 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1294 : ChosenTailFoldingStyle->second;
1302 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1303 if (!
Legal->canFoldTailByMasking()) {
1309 ChosenTailFoldingStyle = {
1310 TTI.getPreferredTailFoldingStyle(
true),
1311 TTI.getPreferredTailFoldingStyle(
false)};
1321 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1335 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1336 "not try to generate VP Intrinsics "
1338 ?
"since interleave count specified is greater than 1.\n"
1339 :
"due to non-interleaving reasons.\n"));
1373 return InLoopReductions.contains(Phi);
1384 TTI.preferPredicatedReductionSelect();
1399 WideningDecisions.clear();
1400 CallWideningDecisions.clear();
1418 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1419 const unsigned IC)
const;
1427 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1429 Type *VectorTy)
const;
1433 bool shouldConsiderInvariant(
Value *
Op);
1439 unsigned NumPredStores = 0;
1443 std::optional<unsigned> VScaleForTuning;
1448 void initializeVScaleForTuning() {
1453 auto Max = Attr.getVScaleRangeMax();
1454 if (Max && Min == Max) {
1455 VScaleForTuning = Max;
1468 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1469 ElementCount UserVF,
1470 bool FoldTailByMasking);
1474 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1475 bool FoldTailByMasking)
const;
1480 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1481 unsigned SmallestType,
1482 unsigned WidestType,
1483 ElementCount MaxSafeVF,
1484 bool FoldTailByMasking);
1488 bool isScalableVectorizationAllowed();
1492 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1498 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1519 ElementCount VF)
const;
1523 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1528 MapVector<Instruction *, uint64_t> MinBWs;
1533 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1537 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1538 PredicatedBBsAfterVectorization;
1551 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1552 ChosenTailFoldingStyle;
1555 std::optional<bool> IsScalableVectorizationAllowed;
1561 std::optional<unsigned> MaxSafeElements;
1567 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1571 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1582 SmallPtrSet<PHINode *, 4> InLoopReductions;
1587 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1595 ScalarCostsTy &ScalarCosts,
1607 void collectLoopUniforms(ElementCount VF);
1616 void collectLoopScalars(ElementCount VF);
1620 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1621 std::pair<InstWidening, InstructionCost>>;
1623 DecisionList WideningDecisions;
1625 using CallDecisionList =
1626 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1628 CallDecisionList CallWideningDecisions;
1632 bool needsExtract(
Value *V, ElementCount VF)
const {
1636 getWideningDecision(
I, VF) == CM_Scalarize ||
1647 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1652 ElementCount VF)
const {
1654 SmallPtrSet<const Value *, 4> UniqueOperands;
1658 !needsExtract(
Op, VF))
1730class GeneratedRTChecks {
1736 Value *SCEVCheckCond =
nullptr;
1743 Value *MemRuntimeCheckCond =
nullptr;
1752 bool CostTooHigh =
false;
1754 Loop *OuterLoop =
nullptr;
1765 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1766 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1774 void create(Loop *L,
const LoopAccessInfo &LAI,
1775 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1795 nullptr,
"vector.scevcheck");
1802 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1803 SCEVCleaner.cleanup();
1808 if (RtPtrChecking.Need) {
1809 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1810 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1813 auto DiffChecks = RtPtrChecking.getDiffChecks();
1815 Value *RuntimeVF =
nullptr;
1818 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1820 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1826 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1829 assert(MemRuntimeCheckCond &&
1830 "no RT checks generated although RtPtrChecking "
1831 "claimed checks are required");
1836 if (!MemCheckBlock && !SCEVCheckBlock)
1846 if (SCEVCheckBlock) {
1849 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1853 if (MemCheckBlock) {
1856 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1862 if (MemCheckBlock) {
1866 if (SCEVCheckBlock) {
1872 OuterLoop =
L->getParentLoop();
1876 if (SCEVCheckBlock || MemCheckBlock)
1888 for (Instruction &
I : *SCEVCheckBlock) {
1889 if (SCEVCheckBlock->getTerminator() == &
I)
1895 if (MemCheckBlock) {
1897 for (Instruction &
I : *MemCheckBlock) {
1898 if (MemCheckBlock->getTerminator() == &
I)
1910 ScalarEvolution *SE = MemCheckExp.
getSE();
1915 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1920 unsigned BestTripCount = 2;
1924 PSE, OuterLoop,
false))
1925 if (EstimatedTC->isFixed())
1926 BestTripCount = EstimatedTC->getFixedValue();
1931 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1932 (InstructionCost::CostType)1);
1934 if (BestTripCount > 1)
1936 <<
"We expect runtime memory checks to be hoisted "
1937 <<
"out of the outer loop. Cost reduced from "
1938 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1940 MemCheckCost = NewMemCheckCost;
1944 RTCheckCost += MemCheckCost;
1947 if (SCEVCheckBlock || MemCheckBlock)
1948 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1956 ~GeneratedRTChecks() {
1957 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1958 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1959 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1960 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1962 SCEVCleaner.markResultUsed();
1964 if (MemChecksUsed) {
1965 MemCheckCleaner.markResultUsed();
1967 auto &SE = *MemCheckExp.
getSE();
1974 I.eraseFromParent();
1977 MemCheckCleaner.cleanup();
1978 SCEVCleaner.cleanup();
1980 if (!SCEVChecksUsed)
1981 SCEVCheckBlock->eraseFromParent();
1983 MemCheckBlock->eraseFromParent();
1988 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
1989 using namespace llvm::PatternMatch;
1991 return {
nullptr,
nullptr};
1993 return {SCEVCheckCond, SCEVCheckBlock};
1998 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
1999 using namespace llvm::PatternMatch;
2000 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2001 return {
nullptr,
nullptr};
2002 return {MemRuntimeCheckCond, MemCheckBlock};
2006 bool hasChecks()
const {
2007 return getSCEVChecks().first || getMemRuntimeChecks().first;
2050 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2056 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2086 for (
Loop *InnerL : L)
2109 ?
B.CreateSExtOrTrunc(Index, StepTy)
2110 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2111 if (CastedIndex != Index) {
2113 Index = CastedIndex;
2123 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2128 return B.CreateAdd(
X,
Y);
2134 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2135 "Types don't match!");
2142 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2143 return B.CreateMul(
X,
Y);
2146 switch (InductionKind) {
2149 "Vector indices not supported for integer inductions yet");
2151 "Index type does not match StartValue type");
2153 return B.CreateSub(StartValue, Index);
2158 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2161 "Vector indices not supported for FP inductions yet");
2164 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2165 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2166 "Original bin op should be defined for FP induction");
2168 Value *MulExp =
B.CreateFMul(Step, Index);
2169 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2180 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2183 if (
F.hasFnAttribute(Attribute::VScaleRange))
2184 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2186 return std::nullopt;
2195 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2197 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2199 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2205 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2208 std::optional<unsigned> MaxVScale =
2212 MaxVF *= *MaxVScale;
2215 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2229 return TTI.enableMaskedInterleavedAccessVectorization();
2242 PreVectorPH = CheckVPIRBB;
2252 "must have incoming values for all operands");
2253 R.addOperand(R.getOperand(NumPredecessors - 2));
2279 auto CreateStep = [&]() ->
Value * {
2286 if (!
VF.isScalable())
2288 return Builder.CreateBinaryIntrinsic(
2294 Value *Step = CreateStep();
2303 CheckMinIters =
Builder.getTrue();
2305 TripCountSCEV, SE.
getSCEV(Step))) {
2308 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2310 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2318 Value *MaxUIntTripCount =
2325 return CheckMinIters;
2334 VPlan *Plan =
nullptr) {
2338 auto IP = IRVPBB->
begin();
2340 R.moveBefore(*IRVPBB, IP);
2344 R.moveBefore(*IRVPBB, IRVPBB->
end());
2353 assert(VectorPH &&
"Invalid loop structure");
2355 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2356 "loops not exiting via the latch without required epilogue?");
2363 Twine(Prefix) +
"scalar.ph");
2369 const SCEV2ValueTy &ExpandedSCEVs) {
2370 const SCEV *Step =
ID.getStep();
2372 return C->getValue();
2374 return U->getValue();
2375 Value *V = ExpandedSCEVs.lookup(Step);
2376 assert(V &&
"SCEV must be expanded at this point");
2386 auto *Cmp = L->getLatchCmpInst();
2388 InstsToIgnore.
insert(Cmp);
2389 for (
const auto &KV : IL) {
2398 [&](
const User *U) { return U == IV || U == Cmp; }))
2399 InstsToIgnore.
insert(IVInst);
2411struct CSEDenseMapInfo {
2422 return DenseMapInfo<Instruction *>::getTombstoneKey();
2425 static unsigned getHashValue(
const Instruction *
I) {
2426 assert(canHandle(
I) &&
"Unknown instruction!");
2431 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2432 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2433 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2435 return LHS->isIdenticalTo(
RHS);
2446 if (!CSEDenseMapInfo::canHandle(&In))
2452 In.replaceAllUsesWith(V);
2453 In.eraseFromParent();
2466 std::optional<unsigned> VScale) {
2470 EstimatedVF *= *VScale;
2471 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2489 for (
auto &ArgOp : CI->
args())
2500 return ScalarCallCost;
2513 assert(
ID &&
"Expected intrinsic call!");
2517 FMF = FPMO->getFastMathFlags();
2523 std::back_inserter(ParamTys),
2524 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2529 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2543 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2558 Builder.SetInsertPoint(NewPhi);
2560 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2565void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2570 "This function should not be visited twice for the same VF");
2593 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2594 assert(WideningDecision != CM_Unknown &&
2595 "Widening decision should be ready at this moment");
2597 if (
Ptr == Store->getValueOperand())
2598 return WideningDecision == CM_Scalarize;
2600 "Ptr is neither a value or pointer operand");
2601 return WideningDecision != CM_GatherScatter;
2606 auto IsLoopVaryingGEP = [&](
Value *
V) {
2617 if (!IsLoopVaryingGEP(
Ptr))
2629 if (IsScalarUse(MemAccess,
Ptr) &&
2633 PossibleNonScalarPtrs.
insert(
I);
2649 for (
auto *BB : TheLoop->
blocks())
2650 for (
auto &
I : *BB) {
2652 EvaluatePtrUse(Load,
Load->getPointerOperand());
2654 EvaluatePtrUse(Store,
Store->getPointerOperand());
2655 EvaluatePtrUse(Store,
Store->getValueOperand());
2658 for (
auto *
I : ScalarPtrs)
2659 if (!PossibleNonScalarPtrs.
count(
I)) {
2667 auto ForcedScalar = ForcedScalars.
find(VF);
2668 if (ForcedScalar != ForcedScalars.
end())
2669 for (
auto *
I : ForcedScalar->second) {
2670 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2679 while (Idx != Worklist.
size()) {
2681 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2685 auto *J = cast<Instruction>(U);
2686 return !TheLoop->contains(J) || Worklist.count(J) ||
2687 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2688 IsScalarUse(J, Src));
2691 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2697 for (
const auto &Induction :
Legal->getInductionVars()) {
2698 auto *Ind = Induction.first;
2703 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2708 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2710 return Induction.second.getKind() ==
2718 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2719 auto *I = cast<Instruction>(U);
2720 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2721 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2730 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2735 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2736 auto *I = cast<Instruction>(U);
2737 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2738 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2740 if (!ScalarIndUpdate)
2745 Worklist.
insert(IndUpdate);
2746 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2747 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2761 switch(
I->getOpcode()) {
2764 case Instruction::Call:
2768 case Instruction::Load:
2769 case Instruction::Store: {
2778 TTI.isLegalMaskedGather(VTy, Alignment))
2780 TTI.isLegalMaskedScatter(VTy, Alignment));
2782 case Instruction::UDiv:
2783 case Instruction::SDiv:
2784 case Instruction::SRem:
2785 case Instruction::URem: {
2806 if (
Legal->blockNeedsPredication(
I->getParent()))
2818 switch(
I->getOpcode()) {
2821 "instruction should have been considered by earlier checks");
2822 case Instruction::Call:
2826 "should have returned earlier for calls not needing a mask");
2828 case Instruction::Load:
2831 case Instruction::Store: {
2839 case Instruction::UDiv:
2840 case Instruction::SDiv:
2841 case Instruction::SRem:
2842 case Instruction::URem:
2844 return !
Legal->isInvariant(
I->getOperand(1));
2848std::pair<InstructionCost, InstructionCost>
2851 assert(
I->getOpcode() == Instruction::UDiv ||
2852 I->getOpcode() == Instruction::SDiv ||
2853 I->getOpcode() == Instruction::SRem ||
2854 I->getOpcode() == Instruction::URem);
2863 ScalarizationCost = 0;
2869 ScalarizationCost +=
2873 ScalarizationCost +=
2875 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2892 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2897 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2899 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2900 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2902 return {ScalarizationCost, SafeDivisorCost};
2909 "Decision should not be set yet.");
2911 assert(Group &&
"Must have a group.");
2912 unsigned InterleaveFactor = Group->getFactor();
2916 auto &
DL =
I->getDataLayout();
2928 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2929 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2934 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2936 if (MemberNI != ScalarNI)
2939 if (MemberNI && ScalarNI &&
2940 ScalarTy->getPointerAddressSpace() !=
2941 MemberTy->getPointerAddressSpace())
2950 bool PredicatedAccessRequiresMasking =
2952 Legal->isMaskRequired(
I);
2953 bool LoadAccessWithGapsRequiresEpilogMasking =
2956 bool StoreAccessWithGapsRequiresMasking =
2958 if (!PredicatedAccessRequiresMasking &&
2959 !LoadAccessWithGapsRequiresEpilogMasking &&
2960 !StoreAccessWithGapsRequiresMasking)
2967 "Masked interleave-groups for predicated accesses are not enabled.");
2969 if (Group->isReverse())
2973 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2974 StoreAccessWithGapsRequiresMasking;
2982 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
2994 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3004 auto &
DL =
I->getDataLayout();
3011void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3018 "This function should not be visited twice for the same VF");
3022 Uniforms[VF].
clear();
3030 auto IsOutOfScope = [&](
Value *V) ->
bool {
3042 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3043 if (IsOutOfScope(
I)) {
3048 if (isPredicatedInst(
I)) {
3050 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3054 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3064 for (BasicBlock *
E : Exiting) {
3068 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3069 AddToWorklistIfAllowed(Cmp);
3078 if (PrevVF.isVector()) {
3079 auto Iter = Uniforms.
find(PrevVF);
3080 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3083 if (!
Legal->isUniformMemOp(*
I, VF))
3093 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3094 InstWidening WideningDecision = getWideningDecision(
I, VF);
3095 assert(WideningDecision != CM_Unknown &&
3096 "Widening decision should be ready at this moment");
3098 if (IsUniformMemOpUse(
I))
3101 return (WideningDecision == CM_Widen ||
3102 WideningDecision == CM_Widen_Reverse ||
3103 WideningDecision == CM_Interleave);
3113 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3121 SetVector<Value *> HasUniformUse;
3125 for (
auto *BB : TheLoop->
blocks())
3126 for (
auto &
I : *BB) {
3128 switch (
II->getIntrinsicID()) {
3129 case Intrinsic::sideeffect:
3130 case Intrinsic::experimental_noalias_scope_decl:
3131 case Intrinsic::assume:
3132 case Intrinsic::lifetime_start:
3133 case Intrinsic::lifetime_end:
3135 AddToWorklistIfAllowed(&
I);
3143 if (IsOutOfScope(EVI->getAggregateOperand())) {
3144 AddToWorklistIfAllowed(EVI);
3150 "Expected aggregate value to be call return value");
3163 if (IsUniformMemOpUse(&
I))
3164 AddToWorklistIfAllowed(&
I);
3166 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3173 for (
auto *V : HasUniformUse) {
3174 if (IsOutOfScope(V))
3177 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3178 auto *UI = cast<Instruction>(U);
3179 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3181 if (UsersAreMemAccesses)
3182 AddToWorklistIfAllowed(
I);
3189 while (Idx != Worklist.
size()) {
3192 for (
auto *OV :
I->operand_values()) {
3194 if (IsOutOfScope(OV))
3199 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3205 auto *J = cast<Instruction>(U);
3206 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3208 AddToWorklistIfAllowed(OI);
3219 for (
const auto &Induction :
Legal->getInductionVars()) {
3220 auto *Ind = Induction.first;
3225 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3226 auto *I = cast<Instruction>(U);
3227 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3228 IsVectorizedMemAccessUse(I, Ind);
3235 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3236 auto *I = cast<Instruction>(U);
3237 return I == Ind || Worklist.count(I) ||
3238 IsVectorizedMemAccessUse(I, IndUpdate);
3240 if (!UniformIndUpdate)
3244 AddToWorklistIfAllowed(Ind);
3245 AddToWorklistIfAllowed(IndUpdate);
3254 if (
Legal->getRuntimePointerChecking()->Need) {
3256 "runtime pointer checks needed. Enable vectorization of this "
3257 "loop with '#pragma clang loop vectorize(enable)' when "
3258 "compiling with -Os/-Oz",
3259 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3263 if (!
PSE.getPredicate().isAlwaysTrue()) {
3265 "runtime SCEV checks needed. Enable vectorization of this "
3266 "loop with '#pragma clang loop vectorize(enable)' when "
3267 "compiling with -Os/-Oz",
3268 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3273 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3275 "runtime stride == 1 checks needed. Enable vectorization of "
3276 "this loop without such check by compiling with -Os/-Oz",
3277 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3284bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3285 if (IsScalableVectorizationAllowed)
3286 return *IsScalableVectorizationAllowed;
3288 IsScalableVectorizationAllowed =
false;
3292 if (Hints->isScalableVectorizationDisabled()) {
3294 "ScalableVectorizationDisabled", ORE, TheLoop);
3298 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3301 std::numeric_limits<ElementCount::ScalarTy>::max());
3310 if (!canVectorizeReductions(MaxScalableVF)) {
3312 "Scalable vectorization not supported for the reduction "
3313 "operations found in this loop.",
3314 "ScalableVFUnfeasible", ORE, TheLoop);
3320 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3325 "for all element types found in this loop.",
3326 "ScalableVFUnfeasible", ORE, TheLoop);
3332 "for safe distance analysis.",
3333 "ScalableVFUnfeasible", ORE, TheLoop);
3337 IsScalableVectorizationAllowed =
true;
3342LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3343 if (!isScalableVectorizationAllowed())
3347 std::numeric_limits<ElementCount::ScalarTy>::max());
3348 if (
Legal->isSafeForAnyVectorWidth())
3349 return MaxScalableVF;
3357 "Max legal vector width too small, scalable vectorization "
3359 "ScalableVFUnfeasible", ORE, TheLoop);
3361 return MaxScalableVF;
3364FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3365 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3367 unsigned SmallestType, WidestType;
3368 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3374 unsigned MaxSafeElementsPowerOf2 =
3376 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3377 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3378 MaxSafeElementsPowerOf2 =
3379 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3382 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3384 if (!
Legal->isSafeForAnyVectorWidth())
3385 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3387 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3389 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3394 auto MaxSafeUserVF =
3395 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3397 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3400 return FixedScalableVFPair(
3406 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3412 <<
" is unsafe, clamping to max safe VF="
3413 << MaxSafeFixedVF <<
".\n");
3415 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3418 <<
"User-specified vectorization factor "
3419 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3420 <<
" is unsafe, clamping to maximum safe vectorization factor "
3421 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3423 return MaxSafeFixedVF;
3428 <<
" is ignored because scalable vectors are not "
3431 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3434 <<
"User-specified vectorization factor "
3435 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3436 <<
" is ignored because the target does not support scalable "
3437 "vectors. The compiler will pick a more suitable value.";
3441 <<
" is unsafe. Ignoring scalable UserVF.\n");
3443 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3446 <<
"User-specified vectorization factor "
3447 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3448 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3449 "more suitable value.";
3454 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3455 <<
" / " << WidestType <<
" bits.\n");
3460 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3461 MaxSafeFixedVF, FoldTailByMasking))
3465 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3466 MaxSafeScalableVF, FoldTailByMasking))
3467 if (MaxVF.isScalable()) {
3468 Result.ScalableVF = MaxVF;
3469 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3478 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3482 "Not inserting runtime ptr check for divergent target",
3483 "runtime pointer checks needed. Not enabled for divergent target",
3484 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3490 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3493 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3496 "loop trip count is one, irrelevant for vectorization",
3507 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3511 "Trip count computation wrapped",
3512 "backedge-taken count is -1, loop trip count wrapped to 0",
3517 switch (ScalarEpilogueStatus) {
3519 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3524 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3525 <<
"LV: Not allowing scalar epilogue, creating predicated "
3526 <<
"vector loop.\n");
3533 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3535 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3551 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3552 "No decisions should have been taken at this point");
3562 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3566 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3567 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3568 *MaxPowerOf2RuntimeVF,
3571 MaxPowerOf2RuntimeVF = std::nullopt;
3574 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3578 !
Legal->hasUncountableEarlyExit())
3580 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3585 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3587 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3588 "Invalid loop count");
3590 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3597 if (MaxPowerOf2RuntimeVF > 0u) {
3599 "MaxFixedVF must be a power of 2");
3600 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3602 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3608 if (ExpectedTC && ExpectedTC->isFixed() &&
3609 ExpectedTC->getFixedValue() <=
3610 TTI.getMinTripCountTailFoldingThreshold()) {
3611 if (MaxPowerOf2RuntimeVF > 0u) {
3617 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3618 "remain for any chosen VF.\n");
3625 "The trip count is below the minial threshold value.",
3626 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3641 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3642 "try to generate VP Intrinsics with scalable vector "
3647 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3657 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3658 "scalar epilogue instead.\n");
3664 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3670 "unable to calculate the loop count due to complex control flow",
3676 "Cannot optimize for size and vectorize at the same time.",
3677 "cannot optimize for size and vectorize at the same time. "
3678 "Enable vectorization of this loop with '#pragma clang loop "
3679 "vectorize(enable)' when compiling with -Os/-Oz",
3691 if (
TTI.shouldConsiderVectorizationRegPressure())
3707 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3709 Legal->hasVectorCallVariants())));
3712ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3713 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3715 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3716 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3717 auto Min = Attr.getVScaleRangeMin();
3724 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3727 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3735 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3736 "exceeding the constant trip count: "
3737 << ClampedUpperTripCount <<
"\n");
3739 FoldTailByMasking ? VF.
isScalable() :
false);
3744ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3745 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3746 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3747 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3753 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3755 "Scalable flags must match");
3763 ComputeScalableMaxVF);
3764 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3766 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3768 if (!MaxVectorElementCount) {
3770 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3771 <<
" vector registers.\n");
3775 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3776 MaxTripCount, FoldTailByMasking);
3779 if (MaxVF != MaxVectorElementCount)
3787 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3789 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3791 if (useMaxBandwidth(RegKind)) {
3794 ComputeScalableMaxVF);
3795 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3797 if (ElementCount MinVF =
3799 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3801 <<
") with target's minimum: " << MinVF <<
'\n');
3806 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3808 if (MaxVectorElementCount != MaxVF) {
3812 invalidateCostModelingDecisions();
3820 const unsigned MaxTripCount,
3822 bool IsEpilogue)
const {
3828 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3829 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3830 if (
A.Width.isScalable())
3831 EstimatedWidthA *= *VScale;
3832 if (
B.Width.isScalable())
3833 EstimatedWidthB *= *VScale;
3840 return CostA < CostB ||
3841 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3847 A.Width.isScalable() && !
B.Width.isScalable();
3858 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3860 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3872 return VectorCost * (MaxTripCount / VF) +
3873 ScalarCost * (MaxTripCount % VF);
3874 return VectorCost *
divideCeil(MaxTripCount, VF);
3877 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3878 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3879 return CmpFn(RTCostA, RTCostB);
3885 bool IsEpilogue)
const {
3887 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3893 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3895 for (
const auto &Plan : VPlans) {
3904 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3905 precomputeCosts(*Plan, VF, CostCtx);
3908 for (
auto &R : *VPBB) {
3909 if (!R.cost(VF, CostCtx).isValid())
3915 if (InvalidCosts.
empty())
3923 for (
auto &Pair : InvalidCosts)
3928 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3929 unsigned NA = Numbering[
A.first];
3930 unsigned NB = Numbering[
B.first];
3945 Subset =
Tail.take_front(1);
3952 [](
const auto *R) {
return Instruction::PHI; })
3953 .Case<VPWidenSelectRecipe>(
3954 [](
const auto *R) {
return Instruction::Select; })
3955 .Case<VPWidenStoreRecipe>(
3956 [](
const auto *R) {
return Instruction::Store; })
3957 .Case<VPWidenLoadRecipe>(
3958 [](
const auto *R) {
return Instruction::Load; })
3959 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3960 [](
const auto *R) {
return Instruction::Call; })
3963 [](
const auto *R) {
return R->getOpcode(); })
3965 return R->getStoredValues().empty() ? Instruction::Load
3966 : Instruction::Store;
3974 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3975 std::string OutString;
3977 assert(!Subset.empty() &&
"Unexpected empty range");
3978 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3979 for (
const auto &Pair : Subset)
3980 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3982 if (Opcode == Instruction::Call) {
3985 Name =
Int->getIntrinsicName();
3989 WidenCall ? WidenCall->getCalledScalarFunction()
3991 ->getLiveInIRValue());
3994 OS <<
" call to " << Name;
3999 Tail =
Tail.drop_front(Subset.size());
4003 Subset =
Tail.take_front(Subset.size() + 1);
4004 }
while (!
Tail.empty());
4026 switch (R.getVPDefID()) {
4027 case VPDef::VPDerivedIVSC:
4028 case VPDef::VPScalarIVStepsSC:
4029 case VPDef::VPReplicateSC:
4030 case VPDef::VPInstructionSC:
4031 case VPDef::VPCanonicalIVPHISC:
4032 case VPDef::VPVectorPointerSC:
4033 case VPDef::VPVectorEndPointerSC:
4034 case VPDef::VPExpandSCEVSC:
4035 case VPDef::VPEVLBasedIVPHISC:
4036 case VPDef::VPPredInstPHISC:
4037 case VPDef::VPBranchOnMaskSC:
4039 case VPDef::VPReductionSC:
4040 case VPDef::VPActiveLaneMaskPHISC:
4041 case VPDef::VPWidenCallSC:
4042 case VPDef::VPWidenCanonicalIVSC:
4043 case VPDef::VPWidenCastSC:
4044 case VPDef::VPWidenGEPSC:
4045 case VPDef::VPWidenIntrinsicSC:
4046 case VPDef::VPWidenSC:
4047 case VPDef::VPWidenSelectSC:
4048 case VPDef::VPBlendSC:
4049 case VPDef::VPFirstOrderRecurrencePHISC:
4050 case VPDef::VPHistogramSC:
4051 case VPDef::VPWidenPHISC:
4052 case VPDef::VPWidenIntOrFpInductionSC:
4053 case VPDef::VPWidenPointerInductionSC:
4054 case VPDef::VPReductionPHISC:
4055 case VPDef::VPInterleaveEVLSC:
4056 case VPDef::VPInterleaveSC:
4057 case VPDef::VPWidenLoadEVLSC:
4058 case VPDef::VPWidenLoadSC:
4059 case VPDef::VPWidenStoreEVLSC:
4060 case VPDef::VPWidenStoreSC:
4066 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4067 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4083 if (R.getNumDefinedValues() == 0 &&
4092 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4094 if (!Visited.
insert({ScalarTy}).second)
4108 [](
auto *VPRB) { return VPRB->isReplicator(); });
4114 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4115 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4118 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4119 "Expected Scalar VF to be a candidate");
4126 if (ForceVectorization &&
4127 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4131 ChosenFactor.
Cost = InstructionCost::getMax();
4134 for (
auto &
P : VPlans) {
4136 P->vectorFactors().end());
4139 if (
any_of(VFs, [
this](ElementCount VF) {
4140 return CM.shouldConsiderRegPressureForVF(VF);
4144 for (
unsigned I = 0;
I < VFs.size();
I++) {
4145 ElementCount VF = VFs[
I];
4153 if (CM.shouldConsiderRegPressureForVF(VF) &&
4161 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind);
4162 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4163 assert(VectorRegion &&
"Expected to have a vector region!");
4166 for (VPRecipeBase &R : *VPBB) {
4170 switch (VPI->getOpcode()) {
4173 case Instruction::Select: {
4174 VPValue *VPV = VPI->getVPSingleValue();
4177 switch (WR->getOpcode()) {
4178 case Instruction::UDiv:
4179 case Instruction::SDiv:
4180 case Instruction::URem:
4181 case Instruction::SRem:
4188 C += VPI->cost(VF, CostCtx);
4192 unsigned Multiplier =
4195 C += VPI->cost(VF * Multiplier, CostCtx);
4199 C += VPI->cost(VF, CostCtx);
4211 <<
" costs: " << (Candidate.Cost / Width));
4214 << CM.getVScaleForTuning().value_or(1) <<
")");
4220 <<
"LV: Not considering vector loop of width " << VF
4221 <<
" because it will not generate any vector instructions.\n");
4228 <<
"LV: Not considering vector loop of width " << VF
4229 <<
" because it would cause replicated blocks to be generated,"
4230 <<
" which isn't allowed when optimizing for size.\n");
4234 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4235 ChosenFactor = Candidate;
4241 "There are conditional stores.",
4242 "store that is conditionally executed prevents vectorization",
4243 "ConditionalStore", ORE, OrigLoop);
4244 ChosenFactor = ScalarCost;
4248 !isMoreProfitable(ChosenFactor, ScalarCost,
4249 !CM.foldTailByMasking()))
dbgs()
4250 <<
"LV: Vectorization seems to be not beneficial, "
4251 <<
"but was forced by a user.\n");
4252 return ChosenFactor;
4256bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4257 ElementCount VF)
const {
4260 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4261 if (!Legal->isReductionVariable(&Phi))
4262 return Legal->isFixedOrderRecurrence(&Phi);
4263 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4264 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4270 for (
const auto &Entry :
Legal->getInductionVars()) {
4273 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4274 for (User *U :
PostInc->users())
4278 for (User *U :
Entry.first->users())
4287 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4301 if (!
TTI.preferEpilogueVectorization())
4306 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4311 :
TTI.getEpilogueVectorizationMinVF();
4319 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4323 if (!CM.isScalarEpilogueAllowed()) {
4324 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4325 "epilogue is allowed.\n");
4331 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4332 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4333 "is not a supported candidate.\n");
4338 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4341 return {ForcedEC, 0, 0};
4343 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4348 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4350 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4354 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4355 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4367 Type *TCType = Legal->getWidestInductionType();
4368 const SCEV *RemainingIterations =
nullptr;
4369 unsigned MaxTripCount = 0;
4373 RemainingIterations =
4377 if (RemainingIterations->
isZero())
4387 << MaxTripCount <<
"\n");
4390 for (
auto &NextVF : ProfitableVFs) {
4397 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4399 (NextVF.Width.isScalable() &&
4401 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4407 if (RemainingIterations && !NextVF.Width.isScalable()) {
4410 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4411 RemainingIterations))
4415 if (Result.Width.isScalar() ||
4416 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4423 << Result.Width <<
"\n");
4427std::pair<unsigned, unsigned>
4429 unsigned MinWidth = -1U;
4430 unsigned MaxWidth = 8;
4436 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4440 MinWidth = std::min(
4444 MaxWidth = std::max(MaxWidth,
4449 MinWidth = std::min<unsigned>(
4450 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4451 MaxWidth = std::max<unsigned>(
4452 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4455 return {MinWidth, MaxWidth};
4463 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4477 if (!
Legal->isReductionVariable(PN))
4480 Legal->getRecurrenceDescriptor(PN);
4490 T = ST->getValueOperand()->getType();
4493 "Expected the load/store/recurrence type to be sized");
4517 if (!CM.isScalarEpilogueAllowed())
4522 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4523 "Unroll factor forced to be 1.\n");
4528 if (!Legal->isSafeForAnyVectorWidth())
4537 const bool HasReductions =
4543 if (LoopCost == 0) {
4545 LoopCost = CM.expectedCost(VF);
4547 LoopCost = cost(Plan, VF);
4548 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4559 for (
auto &Pair : R.MaxLocalUsers) {
4560 Pair.second = std::max(Pair.second, 1U);
4574 unsigned IC = UINT_MAX;
4576 for (
const auto &Pair : R.MaxLocalUsers) {
4577 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4580 << TTI.getRegisterClassName(Pair.first)
4581 <<
" register class\n");
4589 unsigned MaxLocalUsers = Pair.second;
4590 unsigned LoopInvariantRegs = 0;
4591 if (R.LoopInvariantRegs.contains(Pair.first))
4592 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4594 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4598 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4599 std::max(1U, (MaxLocalUsers - 1)));
4602 IC = std::min(IC, TmpIC);
4606 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4622 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4624 unsigned AvailableTC =
4630 if (CM.requiresScalarEpilogue(VF.
isVector()))
4633 unsigned InterleaveCountLB =
bit_floor(std::max(
4634 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4648 unsigned InterleaveCountUB =
bit_floor(std::max(
4649 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4650 MaxInterleaveCount = InterleaveCountLB;
4652 if (InterleaveCountUB != InterleaveCountLB) {
4653 unsigned TailTripCountUB =
4654 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4655 unsigned TailTripCountLB =
4656 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4659 if (TailTripCountUB == TailTripCountLB)
4660 MaxInterleaveCount = InterleaveCountUB;
4668 MaxInterleaveCount = InterleaveCountLB;
4672 assert(MaxInterleaveCount > 0 &&
4673 "Maximum interleave count must be greater than 0");
4677 if (IC > MaxInterleaveCount)
4678 IC = MaxInterleaveCount;
4681 IC = std::max(1u, IC);
4683 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4687 if (VF.
isVector() && HasReductions) {
4688 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4696 bool ScalarInterleavingRequiresPredication =
4698 return Legal->blockNeedsPredication(BB);
4700 bool ScalarInterleavingRequiresRuntimePointerCheck =
4701 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4706 <<
"LV: IC is " << IC <<
'\n'
4707 <<
"LV: VF is " << VF <<
'\n');
4708 const bool AggressivelyInterleaveReductions =
4709 TTI.enableAggressiveInterleaving(HasReductions);
4710 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4711 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4720 unsigned NumStores = 0;
4721 unsigned NumLoads = 0;
4735 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4736 NumStores += StoreOps;
4738 NumLoads += InterleaveR->getNumDefinedValues();
4753 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4754 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4760 bool HasSelectCmpReductions =
4764 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4765 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4766 RedR->getRecurrenceKind()) ||
4767 RecurrenceDescriptor::isFindIVRecurrenceKind(
4768 RedR->getRecurrenceKind()));
4770 if (HasSelectCmpReductions) {
4771 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4780 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4781 bool HasOrderedReductions =
4784 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4786 return RedR && RedR->isOrdered();
4788 if (HasOrderedReductions) {
4790 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4795 SmallIC = std::min(SmallIC,
F);
4796 StoresIC = std::min(StoresIC,
F);
4797 LoadsIC = std::min(LoadsIC,
F);
4801 std::max(StoresIC, LoadsIC) > SmallIC) {
4803 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4804 return std::max(StoresIC, LoadsIC);
4809 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4813 return std::max(IC / 2, SmallIC);
4816 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4822 if (AggressivelyInterleaveReductions) {
4831bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4841 assert((isPredicatedInst(
I)) &&
4842 "Expecting a scalar emulated instruction");
4855 if (InstsToScalarize.contains(VF) ||
4856 PredicatedBBsAfterVectorization.contains(VF))
4862 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4872 ScalarCostsTy ScalarCosts;
4879 !useEmulatedMaskMemRefHack(&
I, VF) &&
4880 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4881 for (
const auto &[
I, IC] : ScalarCosts)
4882 ScalarCostsVF.
insert({
I, IC});
4885 for (
const auto &[
I,
Cost] : ScalarCosts) {
4887 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4890 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4894 PredicatedBBsAfterVectorization[VF].insert(BB);
4896 if (Pred->getSingleSuccessor() == BB)
4897 PredicatedBBsAfterVectorization[VF].insert(Pred);
4905 assert(!isUniformAfterVectorization(PredInst, VF) &&
4906 "Instruction marked uniform-after-vectorization will be predicated");
4924 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4925 isScalarAfterVectorization(
I, VF))
4930 if (isScalarWithPredication(
I, VF))
4943 for (
Use &U :
I->operands())
4945 if (isUniformAfterVectorization(J, VF))
4956 while (!Worklist.
empty()) {
4960 if (ScalarCosts.contains(
I))
4980 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
4983 ScalarCost +=
TTI.getScalarizationOverhead(
4996 for (Use &U :
I->operands())
4999 "Instruction has non-scalar type");
5000 if (CanBeScalarized(J))
5002 else if (needsExtract(J, VF)) {
5018 Discount += VectorCost - ScalarCost;
5019 ScalarCosts[
I] = ScalarCost;
5035 ValuesToIgnoreForVF);
5042 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5055 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5056 << VF <<
" For instruction: " <<
I <<
'\n');
5084 const Loop *TheLoop) {
5092 auto *SE = PSE.
getSE();
5093 unsigned NumOperands = Gep->getNumOperands();
5094 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5095 Value *Opd = Gep->getOperand(Idx);
5097 !
Legal->isInductionVariable(Opd))
5106LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5109 "Scalarization cost of instruction implies vectorization.");
5111 return InstructionCost::getInvalid();
5114 auto *SE = PSE.
getSE();
5145 if (isPredicatedInst(
I)) {
5150 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5156 if (useEmulatedMaskMemRefHack(
I, VF))
5166LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5172 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5174 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5175 "Stride should be 1 or -1 for consecutive memory access");
5178 if (
Legal->isMaskRequired(
I)) {
5187 bool Reverse = ConsecutiveStride < 0;
5195LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5213 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5221 if (!IsLoopInvariantStoreValue)
5228LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5241 Legal->isMaskRequired(
I), Alignment,
5246LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5248 const auto *Group = getInterleavedAccessGroup(
I);
5249 assert(Group &&
"Fail to get an interleaved access group.");
5256 unsigned InterleaveFactor = Group->getFactor();
5257 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5260 SmallVector<unsigned, 4> Indices;
5261 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5262 if (Group->getMember(IF))
5266 bool UseMaskForGaps =
5267 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5270 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5274 if (Group->isReverse()) {
5277 "Reverse masked interleaved access not supported.");
5278 Cost += Group->getNumMembers() *
5285std::optional<InstructionCost>
5292 return std::nullopt;
5310 return std::nullopt;
5321 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5323 return std::nullopt;
5329 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5338 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5341 BaseCost =
TTI.getArithmeticReductionCost(
5349 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5366 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5372 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5384 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5387 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5389 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5397 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5398 return I == RetI ? RedCost : 0;
5400 !
TheLoop->isLoopInvariant(RedOp)) {
5409 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5411 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5412 return I == RetI ? RedCost : 0;
5413 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5417 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5436 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5442 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5443 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5444 ExtraExtCost =
TTI.getCastInstrCost(
5451 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5452 return I == RetI ? RedCost : 0;
5456 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5462 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5463 return I == RetI ? RedCost : 0;
5467 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5471LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5482 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5483 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5486 return getWideningCost(
I, VF);
5490LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5491 ElementCount VF)
const {
5496 return InstructionCost::getInvalid();
5524 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5529 for (
auto *V : filterExtractingOperands(
Ops, VF))
5552 if (
Legal->isUniformMemOp(
I, VF)) {
5553 auto IsLegalToScalarize = [&]() {
5573 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5585 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5591 if (GatherScatterCost < ScalarizationCost)
5601 int ConsecutiveStride =
Legal->isConsecutivePtr(
5603 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5604 "Expected consecutive stride.");
5613 unsigned NumAccesses = 1;
5616 assert(Group &&
"Fail to get an interleaved access group.");
5622 NumAccesses = Group->getNumMembers();
5624 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5629 ? getGatherScatterCost(&
I, VF) * NumAccesses
5633 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5639 if (InterleaveCost <= GatherScatterCost &&
5640 InterleaveCost < ScalarizationCost) {
5642 Cost = InterleaveCost;
5643 }
else if (GatherScatterCost < ScalarizationCost) {
5645 Cost = GatherScatterCost;
5648 Cost = ScalarizationCost;
5655 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5656 if (
auto *
I = Group->getMember(Idx)) {
5658 getMemInstScalarizationCost(
I, VF));
5674 if (
TTI.prefersVectorizedAddressing())
5683 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5691 while (!Worklist.
empty()) {
5693 for (
auto &
Op :
I->operands())
5695 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5696 AddrDefs.
insert(InstOp).second)
5700 for (
auto *
I : AddrDefs) {
5718 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5733 ForcedScalars[VF].insert(
I);
5740 "Trying to set a vectorization decision for a scalar VF");
5742 auto ForcedScalar = ForcedScalars.find(VF);
5757 for (
auto &ArgOp : CI->
args())
5766 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5776 "Unexpected valid cost for scalarizing scalable vectors");
5783 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5784 ForcedScalar->second.contains(CI)) ||
5792 bool MaskRequired =
Legal->isMaskRequired(CI);
5795 for (
Type *ScalarTy : ScalarTys)
5804 std::nullopt, *RedCost);
5815 if (Info.Shape.VF != VF)
5819 if (MaskRequired && !Info.isMasked())
5823 bool ParamsOk =
true;
5825 switch (Param.ParamKind) {
5831 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5868 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5879 if (VectorCost <=
Cost) {
5901 return !OpI || !
TheLoop->contains(OpI) ||
5905 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5917 return InstsToScalarize[VF][
I];
5920 auto ForcedScalar = ForcedScalars.find(VF);
5921 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5922 auto InstSet = ForcedScalar->second;
5923 if (InstSet.count(
I))
5928 Type *RetTy =
I->getType();
5931 auto *SE =
PSE.getSE();
5935 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5940 auto Scalarized = InstsToScalarize.find(VF);
5941 assert(Scalarized != InstsToScalarize.end() &&
5942 "VF not yet analyzed for scalarization profitability");
5943 return !Scalarized->second.count(
I) &&
5945 auto *UI = cast<Instruction>(U);
5946 return !Scalarized->second.count(UI);
5955 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5956 I->getOpcode() == Instruction::PHI ||
5957 (
I->getOpcode() == Instruction::BitCast &&
5958 I->getType()->isPointerTy()) ||
5959 HasSingleCopyAfterVectorization(
I, VF));
5965 !
TTI.getNumberOfParts(VectorTy))
5969 switch (
I->getOpcode()) {
5970 case Instruction::GetElementPtr:
5976 case Instruction::Br: {
5983 bool ScalarPredicatedBB =
false;
5986 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5987 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5989 ScalarPredicatedBB =
true;
5991 if (ScalarPredicatedBB) {
5999 TTI.getScalarizationOverhead(
6007 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6015 case Instruction::Switch: {
6017 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6019 return Switch->getNumCases() *
6020 TTI.getCmpSelInstrCost(
6022 toVectorTy(Switch->getCondition()->getType(), VF),
6026 case Instruction::PHI: {
6043 Type *ResultTy = Phi->getType();
6049 auto *Phi = dyn_cast<PHINode>(U);
6050 if (Phi && Phi->getParent() == TheLoop->getHeader())
6055 auto &ReductionVars =
Legal->getReductionVars();
6056 auto Iter = ReductionVars.find(HeaderUser);
6057 if (Iter != ReductionVars.end() &&
6059 Iter->second.getRecurrenceKind()))
6062 return (Phi->getNumIncomingValues() - 1) *
6063 TTI.getCmpSelInstrCost(
6064 Instruction::Select,
toVectorTy(ResultTy, VF),
6074 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6075 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6079 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6081 case Instruction::UDiv:
6082 case Instruction::SDiv:
6083 case Instruction::URem:
6084 case Instruction::SRem:
6088 ScalarCost : SafeDivisorCost;
6092 case Instruction::Add:
6093 case Instruction::Sub: {
6094 auto Info =
Legal->getHistogramInfo(
I);
6101 if (!RHS || RHS->getZExtValue() != 1)
6103 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6107 Type *ScalarTy =
I->getType();
6111 {PtrTy, ScalarTy, MaskTy});
6114 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6115 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6119 case Instruction::FAdd:
6120 case Instruction::FSub:
6121 case Instruction::Mul:
6122 case Instruction::FMul:
6123 case Instruction::FDiv:
6124 case Instruction::FRem:
6125 case Instruction::Shl:
6126 case Instruction::LShr:
6127 case Instruction::AShr:
6128 case Instruction::And:
6129 case Instruction::Or:
6130 case Instruction::Xor: {
6134 if (
I->getOpcode() == Instruction::Mul &&
6135 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6136 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6137 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6138 PSE.getSCEV(
I->getOperand(1))->isOne())))
6147 Value *Op2 =
I->getOperand(1);
6153 auto Op2Info =
TTI.getOperandInfo(Op2);
6159 return TTI.getArithmeticInstrCost(
6161 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6164 case Instruction::FNeg: {
6165 return TTI.getArithmeticInstrCost(
6167 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6169 I->getOperand(0),
I);
6171 case Instruction::Select: {
6176 const Value *Op0, *Op1;
6187 return TTI.getArithmeticInstrCost(
6189 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6192 Type *CondTy =
SI->getCondition()->getType();
6198 Pred = Cmp->getPredicate();
6199 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6200 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6201 {TTI::OK_AnyValue, TTI::OP_None},
I);
6203 case Instruction::ICmp:
6204 case Instruction::FCmp: {
6205 Type *ValTy =
I->getOperand(0)->getType();
6211 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6212 "if both the operand and the compare are marked for "
6213 "truncation, they must have the same bitwidth");
6218 return TTI.getCmpSelInstrCost(
6221 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6223 case Instruction::Store:
6224 case Instruction::Load: {
6229 "CM decision should be taken at this point");
6236 return getMemoryInstructionCost(
I, VF);
6238 case Instruction::BitCast:
6239 if (
I->getType()->isPointerTy())
6242 case Instruction::ZExt:
6243 case Instruction::SExt:
6244 case Instruction::FPToUI:
6245 case Instruction::FPToSI:
6246 case Instruction::FPExt:
6247 case Instruction::PtrToInt:
6248 case Instruction::IntToPtr:
6249 case Instruction::SIToFP:
6250 case Instruction::UIToFP:
6251 case Instruction::Trunc:
6252 case Instruction::FPTrunc: {
6256 "Expected a load or a store!");
6282 unsigned Opcode =
I->getOpcode();
6285 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6288 CCH = ComputeCCH(Store);
6291 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6292 Opcode == Instruction::FPExt) {
6294 CCH = ComputeCCH(Load);
6302 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6303 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6310 Type *SrcScalarTy =
I->getOperand(0)->getType();
6322 (
I->getOpcode() == Instruction::ZExt ||
6323 I->getOpcode() == Instruction::SExt))
6327 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6329 case Instruction::Call:
6331 case Instruction::ExtractValue:
6333 case Instruction::Alloca:
6341 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6356 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6357 return RequiresScalarEpilogue &&
6371 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6372 return VecValuesToIgnore.contains(U) ||
6373 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6382 if (Group->getInsertPos() == &
I)
6385 DeadInterleavePointerOps.
push_back(PointerOp);
6391 if (Br->isConditional())
6398 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6401 Instruction *UI = cast<Instruction>(U);
6402 return !VecValuesToIgnore.contains(U) &&
6403 (!isAccessInterleaved(UI) ||
6404 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6424 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6436 if ((ThenEmpty && ElseEmpty) ||
6438 ElseBB->
phis().empty()) ||
6440 ThenBB->
phis().empty())) {
6452 return !VecValuesToIgnore.contains(U) &&
6453 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6461 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6470 for (
const auto &Reduction :
Legal->getReductionVars()) {
6477 for (
const auto &Induction :
Legal->getInductionVars()) {
6486 if (!InLoopReductions.empty())
6489 for (
const auto &Reduction :
Legal->getReductionVars()) {
6490 PHINode *Phi = Reduction.first;
6501 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6509 bool InLoop = !ReductionOperations.
empty();
6512 InLoopReductions.insert(Phi);
6515 for (
auto *
I : ReductionOperations) {
6516 InLoopReductionImmediateChains[
I] = LastChain;
6520 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6521 <<
" reduction for phi: " << *Phi <<
"\n");
6534 unsigned WidestType;
6538 TTI.enableScalableVectorization()
6543 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6554 if (!OrigLoop->isInnermost()) {
6564 <<
"overriding computed VF.\n");
6567 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6569 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6570 <<
"not supported by the target.\n");
6572 "Scalable vectorization requested but not supported by the target",
6573 "the scalable user-specified vectorization width for outer-loop "
6574 "vectorization cannot be used because the target does not support "
6575 "scalable vectors.",
6576 "ScalableVFUnfeasible", ORE, OrigLoop);
6581 "VF needs to be a power of two");
6583 <<
"VF " << VF <<
" to build VPlans.\n");
6593 return {VF, 0 , 0 };
6597 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6598 "VPlan-native path.\n");
6603 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6604 CM.collectValuesToIgnore();
6605 CM.collectElementTypesForWidening();
6612 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6616 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6617 "which requires masked-interleaved support.\n");
6618 if (CM.InterleaveInfo.invalidateGroups())
6622 CM.invalidateCostModelingDecisions();
6625 if (CM.foldTailByMasking())
6626 Legal->prepareToFoldTailByMasking();
6633 "UserVF ignored because it may be larger than the maximal safe VF",
6634 "InvalidUserVF", ORE, OrigLoop);
6637 "VF needs to be a power of two");
6640 CM.collectInLoopReductions();
6641 if (CM.selectUserVectorizationFactor(UserVF)) {
6643 buildVPlansWithVPRecipes(UserVF, UserVF);
6648 "InvalidCost", ORE, OrigLoop);
6661 CM.collectInLoopReductions();
6662 for (
const auto &VF : VFCandidates) {
6664 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6683 return CM.isUniformAfterVectorization(
I, VF);
6687 return CM.ValuesToIgnore.contains(UI) ||
6688 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6708 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6710 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6712 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6713 for (
Value *
Op : IVInsts[
I]->operands()) {
6715 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6721 for (User *U :
IV->users()) {
6734 if (TC == VF && !CM.foldTailByMasking())
6738 for (Instruction *IVInst : IVInsts) {
6743 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6744 <<
": induction instruction " << *IVInst <<
"\n";
6746 Cost += InductionCost;
6756 CM.TheLoop->getExitingBlocks(Exiting);
6757 SetVector<Instruction *> ExitInstrs;
6759 for (BasicBlock *EB : Exiting) {
6764 ExitInstrs.
insert(CondI);
6768 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6770 if (!OrigLoop->contains(CondI) ||
6775 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6776 <<
": exit condition instruction " << *CondI <<
"\n";
6782 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6783 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6784 !ExitInstrs.contains(cast<Instruction>(U));
6796 for (BasicBlock *BB : OrigLoop->blocks()) {
6800 if (BB == OrigLoop->getLoopLatch())
6802 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6809 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6815 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6816 <<
": forced scalar " << *ForcedScalar <<
"\n";
6820 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6825 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6826 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6835 ElementCount VF)
const {
6836 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6844 <<
" (Estimated cost per lane: ");
6846 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6869 return &WidenMem->getIngredient();
6878 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6879 VPI->getNumUsers() != 1)
6883 switch (WR->getOpcode()) {
6884 case Instruction::UDiv:
6885 case Instruction::SDiv:
6886 case Instruction::URem:
6887 case Instruction::SRem:
6900 auto *IG =
IR->getInterleaveGroup();
6901 unsigned NumMembers = IG->getNumMembers();
6902 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6936 if (RepR->isSingleScalar() &&
6938 RepR->getUnderlyingInstr(), VF))
6941 if (
Instruction *UI = GetInstructionForCost(&R)) {
6946 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6958 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6960 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6963 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6964 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6966 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6976 VPlan &FirstPlan = *VPlans[0];
6982 ?
"Reciprocal Throughput\n"
6984 ?
"Instruction Latency\n"
6987 ?
"Code Size and Latency\n"
6992 "More than a single plan/VF w/o any plan having scalar VF");
6996 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7001 if (ForceVectorization) {
7008 for (
auto &
P : VPlans) {
7010 P->vectorFactors().end());
7014 return CM.shouldConsiderRegPressureForVF(VF);
7018 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7025 <<
"LV: Not considering vector loop of width " << VF
7026 <<
" because it will not generate any vector instructions.\n");
7032 <<
"LV: Not considering vector loop of width " << VF
7033 <<
" because it would cause replicated blocks to be generated,"
7034 <<
" which isn't allowed when optimizing for size.\n");
7041 if (CM.shouldConsiderRegPressureForVF(VF) &&
7043 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7044 << VF <<
" because it uses too many registers\n");
7048 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7049 BestFactor = CurrentFactor;
7052 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7053 ProfitableVFs.push_back(CurrentFactor);
7069 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7070 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7077 BestFactor.
Width) ||
7080 " VPlan cost model and legacy cost model disagreed");
7082 "when vectorizing, the scalar cost must be computed.");
7092 "RdxResult must be ComputeFindIVResult");
7110 if (!EpiRedResult ||
7116 auto *EpiRedHeaderPhi =
7118 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7119 Value *MainResumeValue;
7123 "unexpected start recipe");
7124 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7126 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7128 [[maybe_unused]]
Value *StartV =
7129 EpiRedResult->getOperand(1)->getLiveInIRValue();
7132 "AnyOf expected to start with ICMP_NE");
7133 assert(Cmp->getOperand(1) == StartV &&
7134 "AnyOf expected to start by comparing main resume value to original "
7136 MainResumeValue = Cmp->getOperand(0);
7139 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7141 Value *Cmp, *OrigResumeV, *CmpOp;
7142 [[maybe_unused]]
bool IsExpectedPattern =
7143 match(MainResumeValue,
7149 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7150 MainResumeValue = OrigResumeV;
7165 "Trying to execute plan with unsupported VF");
7167 "Trying to execute plan with unsupported UF");
7169 ++LoopsEarlyExitVectorized;
7176 bool HasBranchWeights =
7178 if (HasBranchWeights) {
7179 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7181 BestVPlan, BestVF, VScale);
7186 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7199 OrigLoop->getStartLoc(),
7200 OrigLoop->getHeader())
7201 <<
"Created vector loop never executes due to insufficient trip "
7221 BestVPlan, VectorPH, CM.foldTailByMasking(),
7222 CM.requiresScalarEpilogue(BestVF.
isVector()));
7233 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7234 "count during epilogue vectorization");
7238 OrigLoop->getParentLoop(),
7239 Legal->getWidestInductionType());
7241#ifdef EXPENSIVE_CHECKS
7242 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7253 "final VPlan is invalid");
7260 if (!Exit->hasPredecessors())
7282 MDNode *LID = OrigLoop->getLoopID();
7283 unsigned OrigLoopInvocationWeight = 0;
7284 std::optional<unsigned> OrigAverageTripCount =
7296 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7298 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7300 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7301 OrigLoopInvocationWeight,
7303 DisableRuntimeUnroll);
7311 return ExpandedSCEVs;
7326 EPI.EpilogueIterationCountCheck =
7328 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7338 EPI.MainLoopIterationCountCheck =
7347 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7348 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7349 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7350 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7351 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7357 dbgs() <<
"intermediate fn:\n"
7358 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7364 assert(Bypass &&
"Expected valid bypass basic block.");
7368 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7369 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7373 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7399 return TCCheckBlock;
7412 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7420 R.moveBefore(*NewEntry, NewEntry->
end());
7424 Plan.setEntry(NewEntry);
7427 return OriginalScalarPH;
7432 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7433 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7434 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7440 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7448 "Must be called with either a load or store");
7452 CM.getWideningDecision(
I, VF);
7454 "CM decision should be taken at this point.");
7457 if (CM.isScalarAfterVectorization(
I, VF) ||
7458 CM.isProfitableToScalarize(
I, VF))
7467 if (
Legal->isMaskRequired(
I))
7468 Mask = getBlockInMask(Builder.getInsertBlock());
7473 CM.getWideningDecision(
I,
Range.Start);
7481 Ptr->getUnderlyingValue()->stripPointerCasts());
7488 (CM.foldTailByMasking() || !
GEP || !
GEP->isInBounds())
7493 -1, Flags,
I->getDebugLoc());
7496 GEP ?
GEP->getNoWrapFlags()
7500 Builder.insert(VectorPtr);
7504 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7505 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7508 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7509 Reverse, VPIRMetadata(*Store, LVer),
7515static VPWidenIntOrFpInductionRecipe *
7522 "step must be loop invariant");
7529 TruncI->getDebugLoc());
7533 IndDesc, Phi->getDebugLoc());
7536VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7541 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7543 *PSE.
getSE(), *OrigLoop);
7546 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7548 return new VPWidenPointerInductionRecipe(
7551 [&](ElementCount VF) {
7552 return CM.isScalarAfterVectorization(Phi, VF);
7555 Phi->getDebugLoc());
7560VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7569 auto IsOptimizableIVTruncate =
7570 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7571 return [=](ElementCount VF) ->
bool {
7572 return CM.isOptimizableIVTruncate(K, VF);
7577 IsOptimizableIVTruncate(
I),
Range)) {
7580 const InductionDescriptor &
II = *
Legal->getIntOrFpInductionDescriptor(Phi);
7588VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7592 [
this, CI](ElementCount VF) {
7593 return CM.isScalarWithPredication(CI, VF);
7601 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7602 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7603 ID == Intrinsic::pseudoprobe ||
7604 ID == Intrinsic::experimental_noalias_scope_decl))
7610 bool ShouldUseVectorIntrinsic =
7612 [&](ElementCount VF) ->
bool {
7613 return CM.getCallWideningDecision(CI, VF).Kind ==
7617 if (ShouldUseVectorIntrinsic)
7618 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7622 std::optional<unsigned> MaskPos;
7626 [&](ElementCount VF) ->
bool {
7641 LoopVectorizationCostModel::CallWideningDecision Decision =
7642 CM.getCallWideningDecision(CI, VF);
7652 if (ShouldUseVectorCall) {
7653 if (MaskPos.has_value()) {
7661 VPValue *
Mask =
nullptr;
7662 if (
Legal->isMaskRequired(CI))
7663 Mask = getBlockInMask(Builder.getInsertBlock());
7668 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7672 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7678bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7680 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7683 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7684 return CM.isScalarAfterVectorization(
I, VF) ||
7685 CM.isProfitableToScalarize(
I, VF) ||
7686 CM.isScalarWithPredication(
I, VF);
7692VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *
I,
7694 switch (
I->getOpcode()) {
7697 case Instruction::SDiv:
7698 case Instruction::UDiv:
7699 case Instruction::SRem:
7700 case Instruction::URem: {
7703 if (CM.isPredicatedInst(
I)) {
7705 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7708 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7710 return new VPWidenRecipe(*
I,
Ops);
7714 case Instruction::Add:
7715 case Instruction::And:
7716 case Instruction::AShr:
7717 case Instruction::FAdd:
7718 case Instruction::FCmp:
7719 case Instruction::FDiv:
7720 case Instruction::FMul:
7721 case Instruction::FNeg:
7722 case Instruction::FRem:
7723 case Instruction::FSub:
7724 case Instruction::ICmp:
7725 case Instruction::LShr:
7726 case Instruction::Mul:
7727 case Instruction::Or:
7728 case Instruction::Select:
7729 case Instruction::Shl:
7730 case Instruction::Sub:
7731 case Instruction::Xor:
7732 case Instruction::Freeze: {
7738 ScalarEvolution &SE = *PSE.
getSE();
7739 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7740 if (!
Op->isLiveIn())
7742 Value *
V =
Op->getUnderlyingValue();
7751 if (
I->getOpcode() == Instruction::Mul)
7752 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7754 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7756 return new VPWidenRecipe(*
I, NewOps);
7758 case Instruction::ExtractValue: {
7760 Type *I32Ty = IntegerType::getInt32Ty(
I->getContext());
7762 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7763 unsigned Idx = EVI->getIndices()[0];
7764 NewOps.push_back(Plan.
getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7765 return new VPWidenRecipe(*
I, NewOps);
7771VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7774 unsigned Opcode =
HI->Update->getOpcode();
7775 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7776 "Histogram update operation must be an Add or Sub");
7782 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7786 if (
Legal->isMaskRequired(
HI->Store))
7787 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7789 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7796 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7799 bool IsPredicated = CM.isPredicatedInst(
I);
7807 case Intrinsic::assume:
7808 case Intrinsic::lifetime_start:
7809 case Intrinsic::lifetime_end:
7831 VPValue *BlockInMask =
nullptr;
7832 if (!IsPredicated) {
7836 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7847 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7849 "Should not predicate a uniform recipe");
7860 PartialReductionChains;
7861 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7862 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7863 PartialReductionChains);
7872 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7873 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7875 auto ExtendIsOnlyUsedByPartialReductions =
7877 return all_of(Extend->users(), [&](
const User *U) {
7878 return PartialReductionOps.contains(U);
7884 for (
auto Pair : PartialReductionChains) {
7886 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7887 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7888 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7892bool VPRecipeBuilder::getScaledReductions(
7894 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7895 if (!CM.TheLoop->contains(RdxExitInstr))
7902 Value *
Op = Update->getOperand(0);
7903 Value *PhiOp = Update->getOperand(1);
7911 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7912 PHI = Chains.rbegin()->first.Reduction;
7914 Op = Update->getOperand(0);
7915 PhiOp = Update->getOperand(1);
7923 using namespace llvm::PatternMatch;
7930 std::optional<unsigned> BinOpc;
7931 Type *ExtOpTypes[2] = {
nullptr};
7934 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
7935 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
7943 if (!CM.TheLoop->contains(Exts[
I]))
7961 if (!CollectExtInfo(
Ops))
7964 BinOpc = std::make_optional(ExtendUser->
getOpcode());
7968 if (!CollectExtInfo(
Ops))
7971 ExtendUser = Update;
7972 BinOpc = std::nullopt;
7976 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
7978 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
7985 [&](ElementCount VF) {
7987 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
7988 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
7993 Chains.emplace_back(Chain, TargetScaleFactor);
8012 "Non-header phis should have been handled during predication");
8014 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8015 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8019 assert((Legal->isReductionVariable(Phi) ||
8020 Legal->isFixedOrderRecurrence(Phi)) &&
8021 "can only widen reductions and fixed-order recurrences here");
8023 if (Legal->isReductionVariable(Phi)) {
8026 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8029 unsigned ScaleFactor =
8033 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8045 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8047 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8060 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8061 return tryToWidenHistogram(*HistInfo,
Operands);
8067 if (
auto PartialRed =
8072 if (!shouldWiden(Instr,
Range))
8087 return tryToWiden(Instr,
Operands);
8093 unsigned ScaleFactor) {
8095 "Unexpected number of operands for partial reduction");
8108 unsigned ReductionOpcode = Reduction->getOpcode();
8109 if (ReductionOpcode == Instruction::Sub) {
8110 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8112 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8113 Ops.push_back(BinOp);
8116 ReductionOpcode = Instruction::Add;
8120 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8121 assert((ReductionOpcode == Instruction::Add ||
8122 ReductionOpcode == Instruction::Sub) &&
8123 "Expected an ADD or SUB operation for predicated partial "
8124 "reductions (because the neutral element in the mask is zero)!");
8127 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8128 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8131 ScaleFactor, Reduction);
8134void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8139 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8143 OrigLoop, LI, DT, PSE.
getSE());
8148 LVer.prepareNoAliasMetadata();
8154 OrigLoop, *LI,
Legal->getWidestInductionType(),
8157 auto MaxVFTimes2 = MaxVF * 2;
8159 VFRange SubRange = {VF, MaxVFTimes2};
8160 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8161 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8166 *Plan, CM.getMinimalBitwidths());
8169 if (CM.foldTailWithEVL() && !HasScalarVF)
8171 *Plan, CM.getMaxSafeElements());
8173 VPlans.push_back(std::move(Plan));
8188 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8195 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8198 Start, VectorTC, Step);
8211 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8212 return ResumePhiRecipe;
8227 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8238 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8241 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8242 ScalarPhiIRI->addOperand(ResumePhi);
8249 "should only skip truncated wide inductions");
8257 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8259 "Cannot handle loops with uncountable early exits");
8263 "vector.recur.extract");
8264 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8266 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8279 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8280 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8292 "Cannot handle loops with uncountable early exits");
8364 for (
VPUser *U : FOR->users()) {
8378 {},
"vector.recur.extract.for.phi");
8384VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8387 using namespace llvm::VPlanPatternMatch;
8388 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8395 bool RequiresScalarEpilogueCheck =
8397 [
this](ElementCount VF) {
8398 return !CM.requiresScalarEpilogue(VF.
isVector());
8403 CM.foldTailByMasking());
8411 bool IVUpdateMayOverflow =
false;
8412 for (ElementCount VF :
Range)
8420 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8422 auto *IVInc = Plan->getVectorLoopRegion()
8423 ->getExitingBasicBlock()
8426 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8428 "Did not find the canonical IV increment");
8441 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8442 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8444 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8449 "Unsupported interleave factor for scalable vectors");
8452 if (!getDecisionAndClampRange(ApplyIG,
Range))
8454 InterleaveGroups.
insert(IG);
8461 *Plan, CM.foldTailByMasking());
8467 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8468 Builder, BlockMaskCache, LVer);
8469 RecipeBuilder.collectScaledReductions(
Range);
8473 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8475 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8478 auto *MiddleVPBB = Plan->getMiddleBlock();
8482 DenseMap<VPValue *, VPValue *> Old2New;
8487 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8501 UnderlyingValue &&
"unsupported recipe");
8506 Builder.setInsertPoint(SingleDef);
8513 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8515 if (
Legal->isInvariantStoreOfReduction(SI)) {
8517 new VPReplicateRecipe(SI,
R.operands(),
true ,
8518 nullptr , VPIRMetadata(*SI, LVer));
8519 Recipe->insertBefore(*MiddleVPBB, MBIP);
8521 R.eraseFromParent();
8525 VPRecipeBase *Recipe =
8526 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8528 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8530 RecipeBuilder.setRecipe(Instr, Recipe);
8536 Builder.insert(Recipe);
8543 "Unexpected multidef recipe");
8544 R.eraseFromParent();
8553 RecipeBuilder.updateBlockMaskCache(Old2New);
8554 for (VPValue *Old : Old2New.
keys())
8555 Old->getDefiningRecipe()->eraseFromParent();
8558 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8559 "entry block must be set to a VPRegionBlock having a non-empty entry "
8565 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8567 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8570 VPWidenInductionRecipe *WideIV =
8572 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8577 DenseMap<VPValue *, VPValue *> IVEndValues;
8586 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8598 if (!CM.foldTailWithEVL()) {
8599 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8604 for (ElementCount VF :
Range)
8606 Plan->setName(
"Initial VPlan");
8612 InterleaveGroups, RecipeBuilder,
8613 CM.isScalarEpilogueAllowed());
8617 Legal->getLAI()->getSymbolicStrides());
8619 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8620 return Legal->blockNeedsPredication(BB);
8623 BlockNeedsPredication);
8635 bool WithoutRuntimeCheck =
8636 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8638 WithoutRuntimeCheck);
8646VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8651 assert(!OrigLoop->isInnermost());
8655 OrigLoop, *LI,
Legal->getWidestInductionType(),
8664 for (ElementCount VF :
Range)
8669 [
this](PHINode *
P) {
8670 return Legal->getIntOrFpInductionDescriptor(
P);
8677 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8678 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8679 Builder, BlockMaskCache,
nullptr );
8680 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8684 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8686 DenseMap<VPValue *, VPValue *> IVEndValues;
8708void LoopVectorizationPlanner::adjustRecipesForReductions(
8709 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8710 using namespace VPlanPatternMatch;
8711 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8713 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8716 for (VPRecipeBase &R : Header->phis()) {
8718 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8725 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8728 SetVector<VPSingleDefRecipe *> Worklist;
8730 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8731 VPSingleDefRecipe *Cur = Worklist[
I];
8732 for (VPUser *U : Cur->
users()) {
8734 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8735 assert((UserRecipe->getParent() == MiddleVPBB ||
8736 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8737 "U must be either in the loop region, the middle block or the "
8738 "scalar preheader.");
8741 Worklist.
insert(UserRecipe);
8752 VPSingleDefRecipe *PreviousLink = PhiR;
8753 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8755 assert(Blend->getNumIncomingValues() == 2 &&
8756 "Blend must have 2 incoming values");
8757 if (Blend->getIncomingValue(0) == PhiR) {
8758 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8760 assert(Blend->getIncomingValue(1) == PhiR &&
8761 "PhiR must be an operand of the blend");
8762 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8767 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8770 unsigned IndexOfFirstOperand;
8772 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8774 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8778 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8781 CurrentLink->getOperand(2) == PreviousLink &&
8782 "expected a call where the previous link is the added operand");
8788 VPInstruction *FMulRecipe =
new VPInstruction(
8790 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8792 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8794 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8795 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8796 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8797 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8798 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8799 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8801 Sub->setUnderlyingValue(CurrentLinkI);
8802 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8808 "need to have the compare of the select");
8812 "must be a select recipe");
8813 IndexOfFirstOperand = 1;
8816 "Expected to replace a VPWidenSC");
8817 IndexOfFirstOperand = 0;
8822 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8823 ? IndexOfFirstOperand + 1
8824 : IndexOfFirstOperand;
8825 VecOp = CurrentLink->getOperand(VecOpId);
8826 assert(VecOp != PreviousLink &&
8827 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8828 (VecOpId - IndexOfFirstOperand)) ==
8830 "PreviousLink must be the operand other than VecOp");
8833 VPValue *CondOp =
nullptr;
8834 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8838 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8844 auto *RedRecipe =
new VPReductionRecipe(
8845 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8852 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8856 CurrentLink->replaceAllUsesWith(RedRecipe);
8858 PreviousLink = RedRecipe;
8862 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8864 for (VPRecipeBase &R :
8865 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8870 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8881 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8884 std::optional<FastMathFlags> FMFs =
8889 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8890 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8899 if (CM.usePredicatedReductionSelect())
8910 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8916 VPInstruction *FinalReductionResult;
8917 VPBuilder::InsertPointGuard Guard(Builder);
8918 Builder.setInsertPoint(MiddleVPBB, IP);
8923 FinalReductionResult =
8928 FinalReductionResult =
8930 {PhiR,
Start, NewExitingVPV}, ExitDL);
8936 FinalReductionResult =
8938 {PhiR, NewExitingVPV},
Flags, ExitDL);
8945 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8947 "Unexpected truncated min-max recurrence!");
8950 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
8952 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8953 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
8954 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
8955 Extnd->insertAfter(Trunc);
8957 PhiR->
setOperand(1, Extnd->getVPSingleValue());
8962 FinalReductionResult =
8963 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8968 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8970 if (FinalReductionResult == U || Parent->getParent())
8972 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8983 return isa<VPWidenSelectRecipe>(U) ||
8984 (isa<VPReplicateRecipe>(U) &&
8985 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8986 Instruction::Select);
8991 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8993 Builder.setInsertPoint(
Select);
8997 if (
Select->getOperand(1) == PhiR)
8998 Cmp = Builder.createNot(Cmp);
8999 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9000 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9006 OrigLoop->getHeader()->getContext())));
9021 VPBuilder PHBuilder(Plan->getVectorPreheader());
9022 VPValue *Iden = Plan->getOrAddLiveIn(
9025 unsigned ScaleFactor =
9029 auto *ScaleFactorVPV =
9030 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9031 VPValue *StartV = PHBuilder.createNaryOp(
9039 for (VPRecipeBase *R : ToDelete)
9040 R->eraseFromParent();
9045void LoopVectorizationPlanner::attachRuntimeChecks(
9046 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9047 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9048 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9049 assert((!CM.OptForSize ||
9051 "Cannot SCEV check stride or overflow when optimizing for size");
9055 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9056 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9060 "Runtime checks are not supported for outer loops yet");
9062 if (CM.OptForSize) {
9065 "Cannot emit memory checks when optimizing for size, unless forced "
9068 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9069 OrigLoop->getStartLoc(),
9070 OrigLoop->getHeader())
9071 <<
"Code-size may be reduced by not forcing "
9072 "vectorization, or by source-code modifications "
9073 "eliminating the need for runtime checks "
9074 "(e.g., adding 'restrict').";
9088 bool IsIndvarOverflowCheckNeededForVF =
9089 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9091 CM.getTailFoldingStyle() !=
9098 Plan, VF, UF, MinProfitableTripCount,
9099 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9100 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9101 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9106 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9111 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9119 State.set(
this, DerivedIV,
VPLane(0));
9165 if (
TTI->preferPredicateOverEpilogue(&TFI))
9184 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9188 Function *
F = L->getHeader()->getParent();
9194 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9195 &Hints, IAI, PSI, BFI);
9199 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9219 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9221 BFI, PSI, Checks, BestPlan);
9223 << L->getHeader()->getParent()->getName() <<
"\"\n");
9245 if (S->getValueOperand()->getType()->isFloatTy())
9255 while (!Worklist.
empty()) {
9257 if (!L->contains(
I))
9259 if (!Visited.
insert(
I).second)
9269 I->getDebugLoc(), L->getHeader())
9270 <<
"floating point conversion changes vector width. "
9271 <<
"Mixed floating point precision requires an up/down "
9272 <<
"cast that will negatively impact performance.";
9275 for (
Use &
Op :
I->operands())
9291 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9297 << PredVPBB->getName() <<
":\n");
9298 Cost += PredVPBB->cost(VF, CostCtx);
9317 std::optional<unsigned> VScale) {
9333 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9392 uint64_t MinTC = std::max(MinTC1, MinTC2);
9394 MinTC =
alignTo(MinTC, IntVF);
9398 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9405 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9406 "trip count < minimum profitable VF ("
9417 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9419 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9440 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9459 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9460 bool UpdateResumePhis) {
9466 VPValue *OrigStart = VPI->getOperand(1);
9470 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9472 if (UpdateResumePhis)
9478 AddFreezeForFindLastIVReductions(MainPlan,
true);
9479 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9486 auto ResumePhiIter =
9488 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9491 VPPhi *ResumePhi =
nullptr;
9492 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9496 "vec.epilog.resume.val");
9499 if (MainScalarPH->
begin() == MainScalarPH->
end())
9501 else if (&*MainScalarPH->
begin() != ResumePhi)
9516 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9521 Header->
setName(
"vec.epilog.vector.body");
9536 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9541 "Must only have a single non-zero incoming value");
9553 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9554 "all incoming values must be 0");
9560 return isa<VPScalarIVStepsRecipe>(U) ||
9561 isa<VPDerivedIVRecipe>(U) ||
9562 cast<VPRecipeBase>(U)->isScalarCast() ||
9563 cast<VPInstruction>(U)->getOpcode() ==
9566 "the canonical IV should only be used by its increment or "
9567 "ScalarIVSteps when resetting the start value");
9568 IV->setOperand(0, VPV);
9572 Value *ResumeV =
nullptr;
9577 auto *VPI = dyn_cast<VPInstruction>(U);
9579 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9580 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9581 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9584 ->getIncomingValueForBlock(L->getLoopPreheader());
9585 RecurKind RK = ReductionPhi->getRecurrenceKind();
9593 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9598 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9609 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9612 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9613 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9621 "unexpected start value");
9622 VPI->setOperand(0, StartVal);
9634 assert(ResumeV &&
"Must have a resume value");
9648 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9650 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9665 ExpandR->eraseFromParent();
9669 unsigned MainLoopStep =
9671 unsigned EpilogueLoopStep =
9676 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9687 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9692 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9693 if (OrigPhi != OldInduction) {
9694 auto *BinOp =
II.getInductionBinOp();
9700 EndValueFromAdditionalBypass =
9702 II.getStartValue(), Step,
II.getKind(), BinOp);
9703 EndValueFromAdditionalBypass->
setName(
"ind.end");
9705 return EndValueFromAdditionalBypass;
9711 const SCEV2ValueTy &ExpandedSCEVs,
9712 Value *MainVectorTripCount) {
9717 if (Phi.getBasicBlockIndex(Pred) != -1)
9719 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9723 if (ScalarPH->hasPredecessors()) {
9726 for (
const auto &[R, IRPhi] :
9727 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9736 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9738 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9741 Inc->setIncomingValueForBlock(BypassBlock, V);
9764 "expected this to be saved from the previous pass.");
9767 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9770 VecEpilogueIterationCountCheck},
9772 VecEpiloguePreHeader}});
9777 VecEpilogueIterationCountCheck, ScalarPH);
9780 VecEpilogueIterationCountCheck},
9784 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9785 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9786 if (SCEVCheckBlock) {
9788 VecEpilogueIterationCountCheck, ScalarPH);
9790 VecEpilogueIterationCountCheck},
9793 if (MemCheckBlock) {
9795 VecEpilogueIterationCountCheck, ScalarPH);
9808 for (
PHINode *Phi : PhisInBlock) {
9810 Phi->replaceIncomingBlockWith(
9812 VecEpilogueIterationCountCheck);
9819 return EPI.EpilogueIterationCountCheck == IncB;
9824 Phi->removeIncomingValue(SCEVCheckBlock);
9826 Phi->removeIncomingValue(MemCheckBlock);
9830 for (
auto *
I : InstsToMove)
9842 "VPlan-native path is not enabled. Only process inner loops.");
9845 << L->getHeader()->getParent()->getName() <<
"' from "
9846 << L->getLocStr() <<
"\n");
9851 dbgs() <<
"LV: Loop hints:"
9862 Function *
F = L->getHeader()->getParent();
9884 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9891 "early exit is not enabled",
9892 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9898 "faulting load is not supported",
9899 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9908 if (!L->isInnermost())
9912 assert(L->isInnermost() &&
"Inner loop expected.");
9915 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9929 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9931 "requiring a scalar epilogue is unsupported",
9932 "UncountableEarlyExitUnsupported",
ORE, L);
9945 if (ExpectedTC && ExpectedTC->isFixed() &&
9947 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9948 <<
"This loop is worth vectorizing only if no scalar "
9949 <<
"iteration overheads are incurred.");
9951 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9967 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9969 "Can't vectorize when the NoImplicitFloat attribute is used",
9970 "loop not vectorized due to NoImplicitFloat attribute",
9971 "NoImplicitFloat",
ORE, L);
9981 TTI->isFPVectorizationPotentiallyUnsafe()) {
9983 "Potentially unsafe FP op prevents vectorization",
9984 "loop not vectorized due to unsafe FP support.",
9985 "UnsafeFP",
ORE, L);
9990 bool AllowOrderedReductions;
9995 AllowOrderedReductions =
TTI->enableOrderedReductions();
10000 ExactFPMathInst->getDebugLoc(),
10001 ExactFPMathInst->getParent())
10002 <<
"loop not vectorized: cannot prove it is safe to reorder "
10003 "floating-point operations";
10005 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10006 "reorder floating-point operations\n");
10012 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10015 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10023 LVP.
plan(UserVF, UserIC);
10030 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10035 unsigned SelectedIC = std::max(IC, UserIC);
10044 if (Checks.getSCEVChecks().first &&
10045 match(Checks.getSCEVChecks().first,
m_One()))
10047 if (Checks.getMemRuntimeChecks().first &&
10048 match(Checks.getMemRuntimeChecks().first,
m_One()))
10053 bool ForceVectorization =
10057 if (!ForceVectorization &&
10063 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10065 <<
"loop not vectorized: cannot prove it is safe to reorder "
10066 "memory operations";
10075 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10076 bool VectorizeLoop =
true, InterleaveLoop =
true;
10078 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10080 "VectorizationNotBeneficial",
10081 "the cost-model indicates that vectorization is not beneficial"};
10082 VectorizeLoop =
false;
10088 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10089 "interleaving should be avoided up front\n");
10090 IntDiagMsg = {
"InterleavingAvoided",
10091 "Ignoring UserIC, because interleaving was avoided up front"};
10092 InterleaveLoop =
false;
10093 }
else if (IC == 1 && UserIC <= 1) {
10097 "InterleavingNotBeneficial",
10098 "the cost-model indicates that interleaving is not beneficial"};
10099 InterleaveLoop =
false;
10101 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10102 IntDiagMsg.second +=
10103 " and is explicitly disabled or interleave count is set to 1";
10105 }
else if (IC > 1 && UserIC == 1) {
10107 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10109 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10110 "the cost-model indicates that interleaving is beneficial "
10111 "but is explicitly disabled or interleave count is set to 1"};
10112 InterleaveLoop =
false;
10118 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10119 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10120 <<
"to histogram operations.\n");
10122 "HistogramPreventsScalarInterleaving",
10123 "Unable to interleave without vectorization due to constraints on "
10124 "the order of histogram operations"};
10125 InterleaveLoop =
false;
10129 IC = UserIC > 0 ? UserIC : IC;
10133 if (!VectorizeLoop && !InterleaveLoop) {
10137 L->getStartLoc(), L->getHeader())
10138 << VecDiagMsg.second;
10142 L->getStartLoc(), L->getHeader())
10143 << IntDiagMsg.second;
10148 if (!VectorizeLoop && InterleaveLoop) {
10152 L->getStartLoc(), L->getHeader())
10153 << VecDiagMsg.second;
10155 }
else if (VectorizeLoop && !InterleaveLoop) {
10157 <<
") in " << L->getLocStr() <<
'\n');
10160 L->getStartLoc(), L->getHeader())
10161 << IntDiagMsg.second;
10163 }
else if (VectorizeLoop && InterleaveLoop) {
10165 <<
") in " << L->getLocStr() <<
'\n');
10171 using namespace ore;
10176 <<
"interleaved loop (interleaved count: "
10177 << NV(
"InterleaveCount", IC) <<
")";
10194 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10206 PSI, Checks, *BestMainPlan);
10208 *BestMainPlan, MainILV,
DT,
false);
10214 BFI,
PSI, Checks, BestEpiPlan);
10216 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10220 Checks, InstsToMove);
10221 ++LoopsEpilogueVectorized;
10223 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10237 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10238 "DT not preserved correctly");
10253 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10257 bool Changed =
false, CFGChanged =
false;
10264 for (
const auto &L : *
LI)
10276 LoopsAnalyzed += Worklist.
size();
10279 while (!Worklist.
empty()) {
10322 if (
PSI &&
PSI->hasProfileSummary())
10325 if (!Result.MadeAnyChange)
10339 if (Result.MadeCFGChange) {
10355 OS, MapClassName2PassName);
10358 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10359 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks