161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
885 initializeVScaleForTuning();
900 bool runtimeChecksRequired();
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
938 void collectValuesToIgnore();
941 void collectElementTypesForWidening();
945 void collectInLoopReductions();
966 "Profitable to scalarize relevant only for VF > 1.");
969 "cost-model should not be used for outer loops (in VPlan-native path)");
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(
I);
981 "cost-model should not be used for outer loops (in VPlan-native path)");
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(
I);
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(
I);
1014 return VF.
isVector() && MinBWs.contains(
I) &&
1036 WideningDecisions[{
I, VF}] = {W,
Cost};
1055 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1058 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1060 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1072 "cost-model should not be used for outer loops (in VPlan-native path)");
1074 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1075 auto Itr = WideningDecisions.find(InstOnVF);
1076 if (Itr == WideningDecisions.end())
1078 return Itr->second.first;
1085 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1086 assert(WideningDecisions.contains(InstOnVF) &&
1087 "The cost is not calculated");
1088 return WideningDecisions[InstOnVF].second;
1101 std::optional<unsigned> MaskPos,
1104 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1110 auto I = CallWideningDecisions.find({CI, VF});
1111 if (
I == CallWideningDecisions.end())
1134 Value *
Op = Trunc->getOperand(0);
1135 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1139 return Legal->isInductionPhi(
Op);
1155 if (VF.
isScalar() || Uniforms.contains(VF))
1158 collectLoopUniforms(VF);
1160 collectLoopScalars(VF);
1168 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1176 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1191 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1198 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1199 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1200 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1211 return ScalarCost < SafeDivisorCost;
1235 std::pair<InstructionCost, InstructionCost>
1263 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1270 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1271 "from latch block\n");
1276 "interleaved group requires scalar epilogue\n");
1279 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1291 if (!ChosenTailFoldingStyle)
1293 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1294 : ChosenTailFoldingStyle->second;
1302 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1303 if (!
Legal->canFoldTailByMasking()) {
1309 ChosenTailFoldingStyle = {
1310 TTI.getPreferredTailFoldingStyle(
true),
1311 TTI.getPreferredTailFoldingStyle(
false)};
1321 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1335 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1336 "not try to generate VP Intrinsics "
1338 ?
"since interleave count specified is greater than 1.\n"
1339 :
"due to non-interleaving reasons.\n"));
1373 return InLoopReductions.contains(Phi);
1384 TTI.preferPredicatedReductionSelect();
1399 WideningDecisions.clear();
1400 CallWideningDecisions.clear();
1418 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1419 const unsigned IC)
const;
1427 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1429 Type *VectorTy)
const;
1433 bool shouldConsiderInvariant(
Value *
Op);
1439 unsigned NumPredStores = 0;
1443 std::optional<unsigned> VScaleForTuning;
1448 void initializeVScaleForTuning() {
1453 auto Max = Attr.getVScaleRangeMax();
1454 if (Max && Min == Max) {
1455 VScaleForTuning = Max;
1468 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1469 ElementCount UserVF,
1470 bool FoldTailByMasking);
1474 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1475 bool FoldTailByMasking)
const;
1480 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1481 unsigned SmallestType,
1482 unsigned WidestType,
1483 ElementCount MaxSafeVF,
1484 bool FoldTailByMasking);
1488 bool isScalableVectorizationAllowed();
1492 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1498 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1519 ElementCount VF)
const;
1523 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1528 MapVector<Instruction *, uint64_t> MinBWs;
1533 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1537 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1538 PredicatedBBsAfterVectorization;
1551 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1552 ChosenTailFoldingStyle;
1555 std::optional<bool> IsScalableVectorizationAllowed;
1561 std::optional<unsigned> MaxSafeElements;
1567 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1571 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1582 SmallPtrSet<PHINode *, 4> InLoopReductions;
1587 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1595 ScalarCostsTy &ScalarCosts,
1607 void collectLoopUniforms(ElementCount VF);
1616 void collectLoopScalars(ElementCount VF);
1620 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1621 std::pair<InstWidening, InstructionCost>>;
1623 DecisionList WideningDecisions;
1625 using CallDecisionList =
1626 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1628 CallDecisionList CallWideningDecisions;
1632 bool needsExtract(
Value *V, ElementCount VF)
const {
1636 getWideningDecision(
I, VF) == CM_Scalarize ||
1647 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1652 ElementCount VF)
const {
1654 SmallPtrSet<const Value *, 4> UniqueOperands;
1658 !needsExtract(
Op, VF))
1730class GeneratedRTChecks {
1736 Value *SCEVCheckCond =
nullptr;
1743 Value *MemRuntimeCheckCond =
nullptr;
1752 bool CostTooHigh =
false;
1754 Loop *OuterLoop =
nullptr;
1765 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1766 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1774 void create(Loop *L,
const LoopAccessInfo &LAI,
1775 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1795 nullptr,
"vector.scevcheck");
1802 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1803 SCEVCleaner.cleanup();
1808 if (RtPtrChecking.Need) {
1809 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1810 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1813 auto DiffChecks = RtPtrChecking.getDiffChecks();
1815 Value *RuntimeVF =
nullptr;
1818 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1820 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1826 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1829 assert(MemRuntimeCheckCond &&
1830 "no RT checks generated although RtPtrChecking "
1831 "claimed checks are required");
1836 if (!MemCheckBlock && !SCEVCheckBlock)
1846 if (SCEVCheckBlock) {
1849 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1853 if (MemCheckBlock) {
1856 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1862 if (MemCheckBlock) {
1866 if (SCEVCheckBlock) {
1872 OuterLoop =
L->getParentLoop();
1876 if (SCEVCheckBlock || MemCheckBlock)
1888 for (Instruction &
I : *SCEVCheckBlock) {
1889 if (SCEVCheckBlock->getTerminator() == &
I)
1895 if (MemCheckBlock) {
1897 for (Instruction &
I : *MemCheckBlock) {
1898 if (MemCheckBlock->getTerminator() == &
I)
1910 ScalarEvolution *SE = MemCheckExp.
getSE();
1915 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1920 unsigned BestTripCount = 2;
1924 PSE, OuterLoop,
false))
1925 if (EstimatedTC->isFixed())
1926 BestTripCount = EstimatedTC->getFixedValue();
1931 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1932 (InstructionCost::CostType)1);
1934 if (BestTripCount > 1)
1936 <<
"We expect runtime memory checks to be hoisted "
1937 <<
"out of the outer loop. Cost reduced from "
1938 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1940 MemCheckCost = NewMemCheckCost;
1944 RTCheckCost += MemCheckCost;
1947 if (SCEVCheckBlock || MemCheckBlock)
1948 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1956 ~GeneratedRTChecks() {
1957 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1958 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1959 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1960 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1962 SCEVCleaner.markResultUsed();
1964 if (MemChecksUsed) {
1965 MemCheckCleaner.markResultUsed();
1967 auto &SE = *MemCheckExp.
getSE();
1974 I.eraseFromParent();
1977 MemCheckCleaner.cleanup();
1978 SCEVCleaner.cleanup();
1980 if (!SCEVChecksUsed)
1981 SCEVCheckBlock->eraseFromParent();
1983 MemCheckBlock->eraseFromParent();
1988 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
1989 using namespace llvm::PatternMatch;
1991 return {
nullptr,
nullptr};
1993 return {SCEVCheckCond, SCEVCheckBlock};
1998 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
1999 using namespace llvm::PatternMatch;
2000 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2001 return {
nullptr,
nullptr};
2002 return {MemRuntimeCheckCond, MemCheckBlock};
2006 bool hasChecks()
const {
2007 return getSCEVChecks().first || getMemRuntimeChecks().first;
2050 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2056 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2086 for (
Loop *InnerL : L)
2109 ?
B.CreateSExtOrTrunc(Index, StepTy)
2110 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2111 if (CastedIndex != Index) {
2113 Index = CastedIndex;
2123 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2128 return B.CreateAdd(
X,
Y);
2134 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2135 "Types don't match!");
2142 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2143 return B.CreateMul(
X,
Y);
2146 switch (InductionKind) {
2149 "Vector indices not supported for integer inductions yet");
2151 "Index type does not match StartValue type");
2153 return B.CreateSub(StartValue, Index);
2158 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2161 "Vector indices not supported for FP inductions yet");
2164 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2165 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2166 "Original bin op should be defined for FP induction");
2168 Value *MulExp =
B.CreateFMul(Step, Index);
2169 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2180 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2183 if (
F.hasFnAttribute(Attribute::VScaleRange))
2184 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2186 return std::nullopt;
2195 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2197 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2199 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2205 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2208 std::optional<unsigned> MaxVScale =
2212 MaxVF *= *MaxVScale;
2215 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2229 return TTI.enableMaskedInterleavedAccessVectorization();
2242 PreVectorPH = CheckVPIRBB;
2252 "must have incoming values for all operands");
2253 R.addOperand(R.getOperand(NumPredecessors - 2));
2279 auto CreateStep = [&]() ->
Value * {
2286 if (!
VF.isScalable())
2288 return Builder.CreateBinaryIntrinsic(
2294 Value *Step = CreateStep();
2303 CheckMinIters =
Builder.getTrue();
2305 TripCountSCEV, SE.
getSCEV(Step))) {
2308 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2310 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2318 Value *MaxUIntTripCount =
2325 return CheckMinIters;
2334 VPlan *Plan =
nullptr) {
2338 auto IP = IRVPBB->
begin();
2340 R.moveBefore(*IRVPBB, IP);
2344 R.moveBefore(*IRVPBB, IRVPBB->
end());
2353 assert(VectorPH &&
"Invalid loop structure");
2355 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2356 "loops not exiting via the latch without required epilogue?");
2363 Twine(Prefix) +
"scalar.ph");
2369 const SCEV2ValueTy &ExpandedSCEVs) {
2370 const SCEV *Step =
ID.getStep();
2372 return C->getValue();
2374 return U->getValue();
2375 Value *V = ExpandedSCEVs.lookup(Step);
2376 assert(V &&
"SCEV must be expanded at this point");
2386 auto *Cmp = L->getLatchCmpInst();
2388 InstsToIgnore.
insert(Cmp);
2389 for (
const auto &KV : IL) {
2398 [&](
const User *U) { return U == IV || U == Cmp; }))
2399 InstsToIgnore.
insert(IVInst);
2411struct CSEDenseMapInfo {
2422 return DenseMapInfo<Instruction *>::getTombstoneKey();
2425 static unsigned getHashValue(
const Instruction *
I) {
2426 assert(canHandle(
I) &&
"Unknown instruction!");
2431 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2432 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2433 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2435 return LHS->isIdenticalTo(
RHS);
2447 if (!CSEDenseMapInfo::canHandle(&In))
2453 In.replaceAllUsesWith(V);
2454 In.eraseFromParent();
2467 std::optional<unsigned> VScale) {
2471 EstimatedVF *= *VScale;
2472 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2490 for (
auto &ArgOp : CI->
args())
2501 return ScalarCallCost;
2514 assert(
ID &&
"Expected intrinsic call!");
2518 FMF = FPMO->getFastMathFlags();
2524 std::back_inserter(ParamTys),
2525 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2530 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2544 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2559 Builder.SetInsertPoint(NewPhi);
2561 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2566void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2571 "This function should not be visited twice for the same VF");
2594 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2595 assert(WideningDecision != CM_Unknown &&
2596 "Widening decision should be ready at this moment");
2598 if (
Ptr == Store->getValueOperand())
2599 return WideningDecision == CM_Scalarize;
2601 "Ptr is neither a value or pointer operand");
2602 return WideningDecision != CM_GatherScatter;
2607 auto IsLoopVaryingGEP = [&](
Value *
V) {
2618 if (!IsLoopVaryingGEP(
Ptr))
2630 if (IsScalarUse(MemAccess,
Ptr) &&
2634 PossibleNonScalarPtrs.
insert(
I);
2650 for (
auto *BB : TheLoop->
blocks())
2651 for (
auto &
I : *BB) {
2653 EvaluatePtrUse(Load,
Load->getPointerOperand());
2655 EvaluatePtrUse(Store,
Store->getPointerOperand());
2656 EvaluatePtrUse(Store,
Store->getValueOperand());
2659 for (
auto *
I : ScalarPtrs)
2660 if (!PossibleNonScalarPtrs.
count(
I)) {
2668 auto ForcedScalar = ForcedScalars.
find(VF);
2669 if (ForcedScalar != ForcedScalars.
end())
2670 for (
auto *
I : ForcedScalar->second) {
2671 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2680 while (Idx != Worklist.
size()) {
2682 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2686 auto *J = cast<Instruction>(U);
2687 return !TheLoop->contains(J) || Worklist.count(J) ||
2688 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2689 IsScalarUse(J, Src));
2692 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2698 for (
const auto &Induction :
Legal->getInductionVars()) {
2699 auto *Ind = Induction.first;
2704 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2709 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2711 return Induction.second.getKind() ==
2719 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2720 auto *I = cast<Instruction>(U);
2721 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2722 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2731 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2736 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2737 auto *I = cast<Instruction>(U);
2738 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2739 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2741 if (!ScalarIndUpdate)
2746 Worklist.
insert(IndUpdate);
2747 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2748 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2762 switch(
I->getOpcode()) {
2765 case Instruction::Call:
2769 case Instruction::Load:
2770 case Instruction::Store: {
2779 TTI.isLegalMaskedGather(VTy, Alignment))
2781 TTI.isLegalMaskedScatter(VTy, Alignment));
2783 case Instruction::UDiv:
2784 case Instruction::SDiv:
2785 case Instruction::SRem:
2786 case Instruction::URem: {
2807 if (
Legal->blockNeedsPredication(
I->getParent()))
2819 switch(
I->getOpcode()) {
2822 "instruction should have been considered by earlier checks");
2823 case Instruction::Call:
2827 "should have returned earlier for calls not needing a mask");
2829 case Instruction::Load:
2832 case Instruction::Store: {
2840 case Instruction::UDiv:
2841 case Instruction::SDiv:
2842 case Instruction::SRem:
2843 case Instruction::URem:
2845 return !
Legal->isInvariant(
I->getOperand(1));
2849std::pair<InstructionCost, InstructionCost>
2852 assert(
I->getOpcode() == Instruction::UDiv ||
2853 I->getOpcode() == Instruction::SDiv ||
2854 I->getOpcode() == Instruction::SRem ||
2855 I->getOpcode() == Instruction::URem);
2864 ScalarizationCost = 0;
2870 ScalarizationCost +=
2874 ScalarizationCost +=
2876 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2893 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2898 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2900 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2901 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2903 return {ScalarizationCost, SafeDivisorCost};
2910 "Decision should not be set yet.");
2912 assert(Group &&
"Must have a group.");
2913 unsigned InterleaveFactor = Group->getFactor();
2917 auto &
DL =
I->getDataLayout();
2929 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2930 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2935 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2937 if (MemberNI != ScalarNI)
2940 if (MemberNI && ScalarNI &&
2941 ScalarTy->getPointerAddressSpace() !=
2942 MemberTy->getPointerAddressSpace())
2951 bool PredicatedAccessRequiresMasking =
2953 Legal->isMaskRequired(
I);
2954 bool LoadAccessWithGapsRequiresEpilogMasking =
2957 bool StoreAccessWithGapsRequiresMasking =
2959 if (!PredicatedAccessRequiresMasking &&
2960 !LoadAccessWithGapsRequiresEpilogMasking &&
2961 !StoreAccessWithGapsRequiresMasking)
2968 "Masked interleave-groups for predicated accesses are not enabled.");
2970 if (Group->isReverse())
2974 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2975 StoreAccessWithGapsRequiresMasking;
2983 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
2995 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3005 auto &
DL =
I->getDataLayout();
3012void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3019 "This function should not be visited twice for the same VF");
3023 Uniforms[VF].
clear();
3031 auto IsOutOfScope = [&](
Value *V) ->
bool {
3043 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3044 if (IsOutOfScope(
I)) {
3049 if (isPredicatedInst(
I)) {
3051 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3055 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3065 for (BasicBlock *
E : Exiting) {
3069 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3070 AddToWorklistIfAllowed(Cmp);
3079 if (PrevVF.isVector()) {
3080 auto Iter = Uniforms.
find(PrevVF);
3081 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3084 if (!
Legal->isUniformMemOp(*
I, VF))
3094 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3095 InstWidening WideningDecision = getWideningDecision(
I, VF);
3096 assert(WideningDecision != CM_Unknown &&
3097 "Widening decision should be ready at this moment");
3099 if (IsUniformMemOpUse(
I))
3102 return (WideningDecision == CM_Widen ||
3103 WideningDecision == CM_Widen_Reverse ||
3104 WideningDecision == CM_Interleave);
3114 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3122 SetVector<Value *> HasUniformUse;
3126 for (
auto *BB : TheLoop->
blocks())
3127 for (
auto &
I : *BB) {
3129 switch (
II->getIntrinsicID()) {
3130 case Intrinsic::sideeffect:
3131 case Intrinsic::experimental_noalias_scope_decl:
3132 case Intrinsic::assume:
3133 case Intrinsic::lifetime_start:
3134 case Intrinsic::lifetime_end:
3136 AddToWorklistIfAllowed(&
I);
3144 if (IsOutOfScope(EVI->getAggregateOperand())) {
3145 AddToWorklistIfAllowed(EVI);
3151 "Expected aggregate value to be call return value");
3164 if (IsUniformMemOpUse(&
I))
3165 AddToWorklistIfAllowed(&
I);
3167 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3174 for (
auto *V : HasUniformUse) {
3175 if (IsOutOfScope(V))
3178 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3179 auto *UI = cast<Instruction>(U);
3180 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3182 if (UsersAreMemAccesses)
3183 AddToWorklistIfAllowed(
I);
3190 while (Idx != Worklist.
size()) {
3193 for (
auto *OV :
I->operand_values()) {
3195 if (IsOutOfScope(OV))
3200 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3206 auto *J = cast<Instruction>(U);
3207 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3209 AddToWorklistIfAllowed(OI);
3220 for (
const auto &Induction :
Legal->getInductionVars()) {
3221 auto *Ind = Induction.first;
3226 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3227 auto *I = cast<Instruction>(U);
3228 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3229 IsVectorizedMemAccessUse(I, Ind);
3236 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3237 auto *I = cast<Instruction>(U);
3238 return I == Ind || Worklist.count(I) ||
3239 IsVectorizedMemAccessUse(I, IndUpdate);
3241 if (!UniformIndUpdate)
3245 AddToWorklistIfAllowed(Ind);
3246 AddToWorklistIfAllowed(IndUpdate);
3255 if (
Legal->getRuntimePointerChecking()->Need) {
3257 "runtime pointer checks needed. Enable vectorization of this "
3258 "loop with '#pragma clang loop vectorize(enable)' when "
3259 "compiling with -Os/-Oz",
3260 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3264 if (!
PSE.getPredicate().isAlwaysTrue()) {
3266 "runtime SCEV checks needed. Enable vectorization of this "
3267 "loop with '#pragma clang loop vectorize(enable)' when "
3268 "compiling with -Os/-Oz",
3269 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3274 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3276 "runtime stride == 1 checks needed. Enable vectorization of "
3277 "this loop without such check by compiling with -Os/-Oz",
3278 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3285bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3286 if (IsScalableVectorizationAllowed)
3287 return *IsScalableVectorizationAllowed;
3289 IsScalableVectorizationAllowed =
false;
3293 if (Hints->isScalableVectorizationDisabled()) {
3295 "ScalableVectorizationDisabled", ORE, TheLoop);
3299 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3302 std::numeric_limits<ElementCount::ScalarTy>::max());
3311 if (!canVectorizeReductions(MaxScalableVF)) {
3313 "Scalable vectorization not supported for the reduction "
3314 "operations found in this loop.",
3315 "ScalableVFUnfeasible", ORE, TheLoop);
3321 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3326 "for all element types found in this loop.",
3327 "ScalableVFUnfeasible", ORE, TheLoop);
3333 "for safe distance analysis.",
3334 "ScalableVFUnfeasible", ORE, TheLoop);
3338 IsScalableVectorizationAllowed =
true;
3343LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3344 if (!isScalableVectorizationAllowed())
3348 std::numeric_limits<ElementCount::ScalarTy>::max());
3349 if (
Legal->isSafeForAnyVectorWidth())
3350 return MaxScalableVF;
3358 "Max legal vector width too small, scalable vectorization "
3360 "ScalableVFUnfeasible", ORE, TheLoop);
3362 return MaxScalableVF;
3365FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3366 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3368 unsigned SmallestType, WidestType;
3369 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3375 unsigned MaxSafeElementsPowerOf2 =
3377 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3378 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3379 MaxSafeElementsPowerOf2 =
3380 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3383 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3385 if (!
Legal->isSafeForAnyVectorWidth())
3386 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3388 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3390 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3395 auto MaxSafeUserVF =
3396 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3398 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3401 return FixedScalableVFPair(
3407 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3413 <<
" is unsafe, clamping to max safe VF="
3414 << MaxSafeFixedVF <<
".\n");
3416 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3419 <<
"User-specified vectorization factor "
3420 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3421 <<
" is unsafe, clamping to maximum safe vectorization factor "
3422 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3424 return MaxSafeFixedVF;
3429 <<
" is ignored because scalable vectors are not "
3432 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3435 <<
"User-specified vectorization factor "
3436 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3437 <<
" is ignored because the target does not support scalable "
3438 "vectors. The compiler will pick a more suitable value.";
3442 <<
" is unsafe. Ignoring scalable UserVF.\n");
3444 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3447 <<
"User-specified vectorization factor "
3448 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3449 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3450 "more suitable value.";
3455 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3456 <<
" / " << WidestType <<
" bits.\n");
3461 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3462 MaxSafeFixedVF, FoldTailByMasking))
3466 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3467 MaxSafeScalableVF, FoldTailByMasking))
3468 if (MaxVF.isScalable()) {
3469 Result.ScalableVF = MaxVF;
3470 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3479 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3483 "Not inserting runtime ptr check for divergent target",
3484 "runtime pointer checks needed. Not enabled for divergent target",
3485 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3491 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3494 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3497 "loop trip count is one, irrelevant for vectorization",
3508 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3512 "Trip count computation wrapped",
3513 "backedge-taken count is -1, loop trip count wrapped to 0",
3518 switch (ScalarEpilogueStatus) {
3520 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3525 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3526 <<
"LV: Not allowing scalar epilogue, creating predicated "
3527 <<
"vector loop.\n");
3534 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3536 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3552 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3553 "No decisions should have been taken at this point");
3563 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3567 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3568 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3569 *MaxPowerOf2RuntimeVF,
3572 MaxPowerOf2RuntimeVF = std::nullopt;
3575 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3579 !
Legal->hasUncountableEarlyExit())
3581 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3586 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3588 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3589 "Invalid loop count");
3591 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3598 if (MaxPowerOf2RuntimeVF > 0u) {
3600 "MaxFixedVF must be a power of 2");
3601 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3603 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3609 if (ExpectedTC && ExpectedTC->isFixed() &&
3610 ExpectedTC->getFixedValue() <=
3611 TTI.getMinTripCountTailFoldingThreshold()) {
3612 if (MaxPowerOf2RuntimeVF > 0u) {
3618 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3619 "remain for any chosen VF.\n");
3626 "The trip count is below the minial threshold value.",
3627 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3642 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3643 "try to generate VP Intrinsics with scalable vector "
3648 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3658 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3659 "scalar epilogue instead.\n");
3665 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3671 "unable to calculate the loop count due to complex control flow",
3677 "Cannot optimize for size and vectorize at the same time.",
3678 "cannot optimize for size and vectorize at the same time. "
3679 "Enable vectorization of this loop with '#pragma clang loop "
3680 "vectorize(enable)' when compiling with -Os/-Oz",
3692 if (
TTI.shouldConsiderVectorizationRegPressure())
3708 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3710 Legal->hasVectorCallVariants())));
3713ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3714 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3716 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3717 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3718 auto Min = Attr.getVScaleRangeMin();
3725 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3728 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3736 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3737 "exceeding the constant trip count: "
3738 << ClampedUpperTripCount <<
"\n");
3740 FoldTailByMasking ? VF.
isScalable() :
false);
3745ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3746 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3747 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3748 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3754 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3756 "Scalable flags must match");
3764 ComputeScalableMaxVF);
3765 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3767 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3769 if (!MaxVectorElementCount) {
3771 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3772 <<
" vector registers.\n");
3776 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3777 MaxTripCount, FoldTailByMasking);
3780 if (MaxVF != MaxVectorElementCount)
3788 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3790 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3792 if (useMaxBandwidth(RegKind)) {
3795 ComputeScalableMaxVF);
3796 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3798 if (ElementCount MinVF =
3800 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3802 <<
") with target's minimum: " << MinVF <<
'\n');
3807 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3809 if (MaxVectorElementCount != MaxVF) {
3813 invalidateCostModelingDecisions();
3821 const unsigned MaxTripCount,
3823 bool IsEpilogue)
const {
3829 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3830 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3831 if (
A.Width.isScalable())
3832 EstimatedWidthA *= *VScale;
3833 if (
B.Width.isScalable())
3834 EstimatedWidthB *= *VScale;
3841 return CostA < CostB ||
3842 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3848 A.Width.isScalable() && !
B.Width.isScalable();
3859 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3861 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3873 return VectorCost * (MaxTripCount / VF) +
3874 ScalarCost * (MaxTripCount % VF);
3875 return VectorCost *
divideCeil(MaxTripCount, VF);
3878 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3879 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3880 return CmpFn(RTCostA, RTCostB);
3886 bool IsEpilogue)
const {
3888 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3894 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3896 for (
const auto &Plan : VPlans) {
3905 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3907 precomputeCosts(*Plan, VF, CostCtx);
3910 for (
auto &R : *VPBB) {
3911 if (!R.cost(VF, CostCtx).isValid())
3917 if (InvalidCosts.
empty())
3925 for (
auto &Pair : InvalidCosts)
3930 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3931 unsigned NA = Numbering[
A.first];
3932 unsigned NB = Numbering[
B.first];
3947 Subset =
Tail.take_front(1);
3954 [](
const auto *R) {
return Instruction::PHI; })
3955 .Case<VPWidenSelectRecipe>(
3956 [](
const auto *R) {
return Instruction::Select; })
3957 .Case<VPWidenStoreRecipe>(
3958 [](
const auto *R) {
return Instruction::Store; })
3959 .Case<VPWidenLoadRecipe>(
3960 [](
const auto *R) {
return Instruction::Load; })
3961 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3962 [](
const auto *R) {
return Instruction::Call; })
3965 [](
const auto *R) {
return R->getOpcode(); })
3967 return R->getStoredValues().empty() ? Instruction::Load
3968 : Instruction::Store;
3976 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3977 std::string OutString;
3979 assert(!Subset.empty() &&
"Unexpected empty range");
3980 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3981 for (
const auto &Pair : Subset)
3982 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3984 if (Opcode == Instruction::Call) {
3987 Name =
Int->getIntrinsicName();
3991 WidenCall ? WidenCall->getCalledScalarFunction()
3993 ->getLiveInIRValue());
3996 OS <<
" call to " << Name;
4001 Tail =
Tail.drop_front(Subset.size());
4005 Subset =
Tail.take_front(Subset.size() + 1);
4006 }
while (!
Tail.empty());
4028 switch (R.getVPDefID()) {
4029 case VPDef::VPDerivedIVSC:
4030 case VPDef::VPScalarIVStepsSC:
4031 case VPDef::VPReplicateSC:
4032 case VPDef::VPInstructionSC:
4033 case VPDef::VPCanonicalIVPHISC:
4034 case VPDef::VPVectorPointerSC:
4035 case VPDef::VPVectorEndPointerSC:
4036 case VPDef::VPExpandSCEVSC:
4037 case VPDef::VPEVLBasedIVPHISC:
4038 case VPDef::VPPredInstPHISC:
4039 case VPDef::VPBranchOnMaskSC:
4041 case VPDef::VPReductionSC:
4042 case VPDef::VPActiveLaneMaskPHISC:
4043 case VPDef::VPWidenCallSC:
4044 case VPDef::VPWidenCanonicalIVSC:
4045 case VPDef::VPWidenCastSC:
4046 case VPDef::VPWidenGEPSC:
4047 case VPDef::VPWidenIntrinsicSC:
4048 case VPDef::VPWidenSC:
4049 case VPDef::VPWidenSelectSC:
4050 case VPDef::VPBlendSC:
4051 case VPDef::VPFirstOrderRecurrencePHISC:
4052 case VPDef::VPHistogramSC:
4053 case VPDef::VPWidenPHISC:
4054 case VPDef::VPWidenIntOrFpInductionSC:
4055 case VPDef::VPWidenPointerInductionSC:
4056 case VPDef::VPReductionPHISC:
4057 case VPDef::VPInterleaveEVLSC:
4058 case VPDef::VPInterleaveSC:
4059 case VPDef::VPWidenLoadEVLSC:
4060 case VPDef::VPWidenLoadSC:
4061 case VPDef::VPWidenStoreEVLSC:
4062 case VPDef::VPWidenStoreSC:
4068 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4069 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4085 if (R.getNumDefinedValues() == 0 &&
4094 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4096 if (!Visited.
insert({ScalarTy}).second)
4110 [](
auto *VPRB) { return VPRB->isReplicator(); });
4116 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4117 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4120 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4121 "Expected Scalar VF to be a candidate");
4128 if (ForceVectorization &&
4129 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4133 ChosenFactor.
Cost = InstructionCost::getMax();
4136 for (
auto &
P : VPlans) {
4138 P->vectorFactors().end());
4141 if (
any_of(VFs, [
this](ElementCount VF) {
4142 return CM.shouldConsiderRegPressureForVF(VF);
4146 for (
unsigned I = 0;
I < VFs.size();
I++) {
4147 ElementCount VF = VFs[
I];
4155 if (CM.shouldConsiderRegPressureForVF(VF) &&
4163 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4165 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4166 assert(VectorRegion &&
"Expected to have a vector region!");
4169 for (VPRecipeBase &R : *VPBB) {
4173 switch (VPI->getOpcode()) {
4176 case Instruction::Select: {
4177 VPValue *VPV = VPI->getVPSingleValue();
4180 switch (WR->getOpcode()) {
4181 case Instruction::UDiv:
4182 case Instruction::SDiv:
4183 case Instruction::URem:
4184 case Instruction::SRem:
4191 C += VPI->cost(VF, CostCtx);
4195 unsigned Multiplier =
4198 C += VPI->cost(VF * Multiplier, CostCtx);
4202 C += VPI->cost(VF, CostCtx);
4214 <<
" costs: " << (Candidate.Cost / Width));
4217 << CM.getVScaleForTuning().value_or(1) <<
")");
4223 <<
"LV: Not considering vector loop of width " << VF
4224 <<
" because it will not generate any vector instructions.\n");
4231 <<
"LV: Not considering vector loop of width " << VF
4232 <<
" because it would cause replicated blocks to be generated,"
4233 <<
" which isn't allowed when optimizing for size.\n");
4237 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4238 ChosenFactor = Candidate;
4244 "There are conditional stores.",
4245 "store that is conditionally executed prevents vectorization",
4246 "ConditionalStore", ORE, OrigLoop);
4247 ChosenFactor = ScalarCost;
4251 !isMoreProfitable(ChosenFactor, ScalarCost,
4252 !CM.foldTailByMasking()))
dbgs()
4253 <<
"LV: Vectorization seems to be not beneficial, "
4254 <<
"but was forced by a user.\n");
4255 return ChosenFactor;
4259bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4260 ElementCount VF)
const {
4263 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4264 if (!Legal->isReductionVariable(&Phi))
4265 return Legal->isFixedOrderRecurrence(&Phi);
4266 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4267 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4273 for (
const auto &Entry :
Legal->getInductionVars()) {
4276 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4277 for (User *U :
PostInc->users())
4281 for (User *U :
Entry.first->users())
4290 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4304 if (!
TTI.preferEpilogueVectorization())
4309 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4314 :
TTI.getEpilogueVectorizationMinVF();
4322 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4326 if (!CM.isScalarEpilogueAllowed()) {
4327 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4328 "epilogue is allowed.\n");
4334 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4335 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4336 "is not a supported candidate.\n");
4341 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4344 return {ForcedEC, 0, 0};
4346 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4351 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4353 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4357 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4358 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4370 Type *TCType = Legal->getWidestInductionType();
4371 const SCEV *RemainingIterations =
nullptr;
4372 unsigned MaxTripCount = 0;
4376 RemainingIterations =
4380 if (RemainingIterations->
isZero())
4390 << MaxTripCount <<
"\n");
4393 for (
auto &NextVF : ProfitableVFs) {
4400 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4402 (NextVF.Width.isScalable() &&
4404 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4410 if (RemainingIterations && !NextVF.Width.isScalable()) {
4413 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4414 RemainingIterations))
4418 if (Result.Width.isScalar() ||
4419 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4426 << Result.Width <<
"\n");
4430std::pair<unsigned, unsigned>
4432 unsigned MinWidth = -1U;
4433 unsigned MaxWidth = 8;
4439 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4443 MinWidth = std::min(
4447 MaxWidth = std::max(MaxWidth,
4452 MinWidth = std::min<unsigned>(
4453 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4454 MaxWidth = std::max<unsigned>(
4455 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4458 return {MinWidth, MaxWidth};
4466 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4480 if (!
Legal->isReductionVariable(PN))
4483 Legal->getRecurrenceDescriptor(PN);
4493 T = ST->getValueOperand()->getType();
4496 "Expected the load/store/recurrence type to be sized");
4520 if (!CM.isScalarEpilogueAllowed())
4525 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4526 "Unroll factor forced to be 1.\n");
4531 if (!Legal->isSafeForAnyVectorWidth())
4540 const bool HasReductions =
4546 if (LoopCost == 0) {
4548 LoopCost = CM.expectedCost(VF);
4550 LoopCost = cost(Plan, VF);
4551 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4562 for (
auto &Pair : R.MaxLocalUsers) {
4563 Pair.second = std::max(Pair.second, 1U);
4577 unsigned IC = UINT_MAX;
4579 for (
const auto &Pair : R.MaxLocalUsers) {
4580 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4583 << TTI.getRegisterClassName(Pair.first)
4584 <<
" register class\n");
4592 unsigned MaxLocalUsers = Pair.second;
4593 unsigned LoopInvariantRegs = 0;
4594 if (R.LoopInvariantRegs.contains(Pair.first))
4595 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4597 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4601 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4602 std::max(1U, (MaxLocalUsers - 1)));
4605 IC = std::min(IC, TmpIC);
4609 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4625 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4627 unsigned AvailableTC =
4633 if (CM.requiresScalarEpilogue(VF.
isVector()))
4636 unsigned InterleaveCountLB =
bit_floor(std::max(
4637 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4651 unsigned InterleaveCountUB =
bit_floor(std::max(
4652 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4653 MaxInterleaveCount = InterleaveCountLB;
4655 if (InterleaveCountUB != InterleaveCountLB) {
4656 unsigned TailTripCountUB =
4657 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4658 unsigned TailTripCountLB =
4659 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4662 if (TailTripCountUB == TailTripCountLB)
4663 MaxInterleaveCount = InterleaveCountUB;
4671 MaxInterleaveCount = InterleaveCountLB;
4675 assert(MaxInterleaveCount > 0 &&
4676 "Maximum interleave count must be greater than 0");
4680 if (IC > MaxInterleaveCount)
4681 IC = MaxInterleaveCount;
4684 IC = std::max(1u, IC);
4686 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4690 if (VF.
isVector() && HasReductions) {
4691 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4699 bool ScalarInterleavingRequiresPredication =
4701 return Legal->blockNeedsPredication(BB);
4703 bool ScalarInterleavingRequiresRuntimePointerCheck =
4704 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4709 <<
"LV: IC is " << IC <<
'\n'
4710 <<
"LV: VF is " << VF <<
'\n');
4711 const bool AggressivelyInterleaveReductions =
4712 TTI.enableAggressiveInterleaving(HasReductions);
4713 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4714 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4723 unsigned NumStores = 0;
4724 unsigned NumLoads = 0;
4738 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4739 NumStores += StoreOps;
4741 NumLoads += InterleaveR->getNumDefinedValues();
4756 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4757 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4763 bool HasSelectCmpReductions =
4767 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4768 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4769 RedR->getRecurrenceKind()) ||
4770 RecurrenceDescriptor::isFindIVRecurrenceKind(
4771 RedR->getRecurrenceKind()));
4773 if (HasSelectCmpReductions) {
4774 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4783 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4784 bool HasOrderedReductions =
4787 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4789 return RedR && RedR->isOrdered();
4791 if (HasOrderedReductions) {
4793 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4798 SmallIC = std::min(SmallIC,
F);
4799 StoresIC = std::min(StoresIC,
F);
4800 LoadsIC = std::min(LoadsIC,
F);
4804 std::max(StoresIC, LoadsIC) > SmallIC) {
4806 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4807 return std::max(StoresIC, LoadsIC);
4812 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4816 return std::max(IC / 2, SmallIC);
4819 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4825 if (AggressivelyInterleaveReductions) {
4834bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4844 assert((isPredicatedInst(
I)) &&
4845 "Expecting a scalar emulated instruction");
4858 if (InstsToScalarize.contains(VF) ||
4859 PredicatedBBsAfterVectorization.contains(VF))
4865 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4875 ScalarCostsTy ScalarCosts;
4882 !useEmulatedMaskMemRefHack(&
I, VF) &&
4883 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4884 for (
const auto &[
I, IC] : ScalarCosts)
4885 ScalarCostsVF.
insert({
I, IC});
4888 for (
const auto &[
I,
Cost] : ScalarCosts) {
4890 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4893 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4897 PredicatedBBsAfterVectorization[VF].insert(BB);
4899 if (Pred->getSingleSuccessor() == BB)
4900 PredicatedBBsAfterVectorization[VF].insert(Pred);
4908 assert(!isUniformAfterVectorization(PredInst, VF) &&
4909 "Instruction marked uniform-after-vectorization will be predicated");
4927 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4928 isScalarAfterVectorization(
I, VF))
4933 if (isScalarWithPredication(
I, VF))
4946 for (
Use &U :
I->operands())
4948 if (isUniformAfterVectorization(J, VF))
4959 while (!Worklist.
empty()) {
4963 if (ScalarCosts.contains(
I))
4983 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
4986 ScalarCost +=
TTI.getScalarizationOverhead(
4999 for (Use &U :
I->operands())
5002 "Instruction has non-scalar type");
5003 if (CanBeScalarized(J))
5005 else if (needsExtract(J, VF)) {
5021 Discount += VectorCost - ScalarCost;
5022 ScalarCosts[
I] = ScalarCost;
5038 ValuesToIgnoreForVF);
5045 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5058 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5059 << VF <<
" For instruction: " <<
I <<
'\n');
5087 const Loop *TheLoop) {
5095 auto *SE = PSE.
getSE();
5096 unsigned NumOperands = Gep->getNumOperands();
5097 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5098 Value *Opd = Gep->getOperand(Idx);
5100 !
Legal->isInductionVariable(Opd))
5109LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5112 "Scalarization cost of instruction implies vectorization.");
5114 return InstructionCost::getInvalid();
5117 auto *SE = PSE.
getSE();
5148 if (isPredicatedInst(
I)) {
5153 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5159 if (useEmulatedMaskMemRefHack(
I, VF))
5169LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5175 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5177 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5178 "Stride should be 1 or -1 for consecutive memory access");
5181 if (
Legal->isMaskRequired(
I)) {
5190 bool Reverse = ConsecutiveStride < 0;
5198LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5216 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5224 if (!IsLoopInvariantStoreValue)
5231LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5244 Legal->isMaskRequired(
I), Alignment,
5249LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5251 const auto *Group = getInterleavedAccessGroup(
I);
5252 assert(Group &&
"Fail to get an interleaved access group.");
5259 unsigned InterleaveFactor = Group->getFactor();
5260 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5263 SmallVector<unsigned, 4> Indices;
5264 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5265 if (Group->getMember(IF))
5269 bool UseMaskForGaps =
5270 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5273 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5277 if (Group->isReverse()) {
5280 "Reverse masked interleaved access not supported.");
5281 Cost += Group->getNumMembers() *
5288std::optional<InstructionCost>
5295 return std::nullopt;
5313 return std::nullopt;
5324 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5326 return std::nullopt;
5332 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5341 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5344 BaseCost =
TTI.getArithmeticReductionCost(
5352 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5369 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5375 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5387 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5390 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5392 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5400 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5401 return I == RetI ? RedCost : 0;
5403 !
TheLoop->isLoopInvariant(RedOp)) {
5412 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5414 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5415 return I == RetI ? RedCost : 0;
5416 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5420 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5439 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5445 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5446 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5447 ExtraExtCost =
TTI.getCastInstrCost(
5454 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5455 return I == RetI ? RedCost : 0;
5459 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5465 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5466 return I == RetI ? RedCost : 0;
5470 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5474LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5485 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5486 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5489 return getWideningCost(
I, VF);
5493LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5494 ElementCount VF)
const {
5499 return InstructionCost::getInvalid();
5527 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5532 for (
auto *V : filterExtractingOperands(
Ops, VF))
5555 if (
Legal->isUniformMemOp(
I, VF)) {
5556 auto IsLegalToScalarize = [&]() {
5576 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5588 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5594 if (GatherScatterCost < ScalarizationCost)
5604 int ConsecutiveStride =
Legal->isConsecutivePtr(
5606 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5607 "Expected consecutive stride.");
5616 unsigned NumAccesses = 1;
5619 assert(Group &&
"Fail to get an interleaved access group.");
5625 NumAccesses = Group->getNumMembers();
5627 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5632 ? getGatherScatterCost(&
I, VF) * NumAccesses
5636 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5642 if (InterleaveCost <= GatherScatterCost &&
5643 InterleaveCost < ScalarizationCost) {
5645 Cost = InterleaveCost;
5646 }
else if (GatherScatterCost < ScalarizationCost) {
5648 Cost = GatherScatterCost;
5651 Cost = ScalarizationCost;
5658 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5659 if (
auto *
I = Group->getMember(Idx)) {
5661 getMemInstScalarizationCost(
I, VF));
5677 if (
TTI.prefersVectorizedAddressing())
5686 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5694 while (!Worklist.
empty()) {
5696 for (
auto &
Op :
I->operands())
5698 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5699 AddrDefs.
insert(InstOp).second)
5703 for (
auto *
I : AddrDefs) {
5721 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5736 ForcedScalars[VF].insert(
I);
5743 "Trying to set a vectorization decision for a scalar VF");
5745 auto ForcedScalar = ForcedScalars.find(VF);
5760 for (
auto &ArgOp : CI->
args())
5769 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5779 "Unexpected valid cost for scalarizing scalable vectors");
5786 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5787 ForcedScalar->second.contains(CI)) ||
5795 bool MaskRequired =
Legal->isMaskRequired(CI);
5798 for (
Type *ScalarTy : ScalarTys)
5807 std::nullopt, *RedCost);
5818 if (Info.Shape.VF != VF)
5822 if (MaskRequired && !Info.isMasked())
5826 bool ParamsOk =
true;
5828 switch (Param.ParamKind) {
5834 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5871 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5882 if (VectorCost <=
Cost) {
5904 return !OpI || !
TheLoop->contains(OpI) ||
5908 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5920 return InstsToScalarize[VF][
I];
5923 auto ForcedScalar = ForcedScalars.find(VF);
5924 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5925 auto InstSet = ForcedScalar->second;
5926 if (InstSet.count(
I))
5931 Type *RetTy =
I->getType();
5934 auto *SE =
PSE.getSE();
5938 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5943 auto Scalarized = InstsToScalarize.find(VF);
5944 assert(Scalarized != InstsToScalarize.end() &&
5945 "VF not yet analyzed for scalarization profitability");
5946 return !Scalarized->second.count(
I) &&
5948 auto *UI = cast<Instruction>(U);
5949 return !Scalarized->second.count(UI);
5958 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5959 I->getOpcode() == Instruction::PHI ||
5960 (
I->getOpcode() == Instruction::BitCast &&
5961 I->getType()->isPointerTy()) ||
5962 HasSingleCopyAfterVectorization(
I, VF));
5968 !
TTI.getNumberOfParts(VectorTy))
5972 switch (
I->getOpcode()) {
5973 case Instruction::GetElementPtr:
5979 case Instruction::Br: {
5986 bool ScalarPredicatedBB =
false;
5989 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5990 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5992 ScalarPredicatedBB =
true;
5994 if (ScalarPredicatedBB) {
6002 TTI.getScalarizationOverhead(
6010 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6018 case Instruction::Switch: {
6020 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6022 return Switch->getNumCases() *
6023 TTI.getCmpSelInstrCost(
6025 toVectorTy(Switch->getCondition()->getType(), VF),
6029 case Instruction::PHI: {
6046 Type *ResultTy = Phi->getType();
6052 auto *Phi = dyn_cast<PHINode>(U);
6053 if (Phi && Phi->getParent() == TheLoop->getHeader())
6058 auto &ReductionVars =
Legal->getReductionVars();
6059 auto Iter = ReductionVars.find(HeaderUser);
6060 if (Iter != ReductionVars.end() &&
6062 Iter->second.getRecurrenceKind()))
6065 return (Phi->getNumIncomingValues() - 1) *
6066 TTI.getCmpSelInstrCost(
6067 Instruction::Select,
toVectorTy(ResultTy, VF),
6077 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6078 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6082 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6084 case Instruction::UDiv:
6085 case Instruction::SDiv:
6086 case Instruction::URem:
6087 case Instruction::SRem:
6091 ScalarCost : SafeDivisorCost;
6095 case Instruction::Add:
6096 case Instruction::Sub: {
6097 auto Info =
Legal->getHistogramInfo(
I);
6104 if (!RHS || RHS->getZExtValue() != 1)
6106 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6110 Type *ScalarTy =
I->getType();
6114 {PtrTy, ScalarTy, MaskTy});
6117 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6118 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6122 case Instruction::FAdd:
6123 case Instruction::FSub:
6124 case Instruction::Mul:
6125 case Instruction::FMul:
6126 case Instruction::FDiv:
6127 case Instruction::FRem:
6128 case Instruction::Shl:
6129 case Instruction::LShr:
6130 case Instruction::AShr:
6131 case Instruction::And:
6132 case Instruction::Or:
6133 case Instruction::Xor: {
6137 if (
I->getOpcode() == Instruction::Mul &&
6138 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6139 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6140 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6141 PSE.getSCEV(
I->getOperand(1))->isOne())))
6150 Value *Op2 =
I->getOperand(1);
6156 auto Op2Info =
TTI.getOperandInfo(Op2);
6162 return TTI.getArithmeticInstrCost(
6164 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6167 case Instruction::FNeg: {
6168 return TTI.getArithmeticInstrCost(
6170 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6171 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6172 I->getOperand(0),
I);
6174 case Instruction::Select: {
6179 const Value *Op0, *Op1;
6190 return TTI.getArithmeticInstrCost(
6192 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6195 Type *CondTy =
SI->getCondition()->getType();
6201 Pred = Cmp->getPredicate();
6202 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6203 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6204 {TTI::OK_AnyValue, TTI::OP_None},
I);
6206 case Instruction::ICmp:
6207 case Instruction::FCmp: {
6208 Type *ValTy =
I->getOperand(0)->getType();
6214 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6215 "if both the operand and the compare are marked for "
6216 "truncation, they must have the same bitwidth");
6221 return TTI.getCmpSelInstrCost(
6224 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6226 case Instruction::Store:
6227 case Instruction::Load: {
6232 "CM decision should be taken at this point");
6239 return getMemoryInstructionCost(
I, VF);
6241 case Instruction::BitCast:
6242 if (
I->getType()->isPointerTy())
6245 case Instruction::ZExt:
6246 case Instruction::SExt:
6247 case Instruction::FPToUI:
6248 case Instruction::FPToSI:
6249 case Instruction::FPExt:
6250 case Instruction::PtrToInt:
6251 case Instruction::IntToPtr:
6252 case Instruction::SIToFP:
6253 case Instruction::UIToFP:
6254 case Instruction::Trunc:
6255 case Instruction::FPTrunc: {
6259 "Expected a load or a store!");
6285 unsigned Opcode =
I->getOpcode();
6288 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6291 CCH = ComputeCCH(Store);
6294 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6295 Opcode == Instruction::FPExt) {
6297 CCH = ComputeCCH(Load);
6305 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6306 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6313 Type *SrcScalarTy =
I->getOperand(0)->getType();
6325 (
I->getOpcode() == Instruction::ZExt ||
6326 I->getOpcode() == Instruction::SExt))
6330 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6332 case Instruction::Call:
6334 case Instruction::ExtractValue:
6336 case Instruction::Alloca:
6344 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6359 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6360 return RequiresScalarEpilogue &&
6374 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6375 return VecValuesToIgnore.contains(U) ||
6376 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6385 if (Group->getInsertPos() == &
I)
6388 DeadInterleavePointerOps.
push_back(PointerOp);
6394 if (Br->isConditional())
6401 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6404 Instruction *UI = cast<Instruction>(U);
6405 return !VecValuesToIgnore.contains(U) &&
6406 (!isAccessInterleaved(UI) ||
6407 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6427 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6439 if ((ThenEmpty && ElseEmpty) ||
6441 ElseBB->
phis().empty()) ||
6443 ThenBB->
phis().empty())) {
6455 return !VecValuesToIgnore.contains(U) &&
6456 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6464 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6473 for (
const auto &Reduction :
Legal->getReductionVars()) {
6480 for (
const auto &Induction :
Legal->getInductionVars()) {
6489 if (!InLoopReductions.empty())
6492 for (
const auto &Reduction :
Legal->getReductionVars()) {
6493 PHINode *Phi = Reduction.first;
6504 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6512 bool InLoop = !ReductionOperations.
empty();
6515 InLoopReductions.insert(Phi);
6518 for (
auto *
I : ReductionOperations) {
6519 InLoopReductionImmediateChains[
I] = LastChain;
6523 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6524 <<
" reduction for phi: " << *Phi <<
"\n");
6537 unsigned WidestType;
6541 TTI.enableScalableVectorization()
6546 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6557 if (!OrigLoop->isInnermost()) {
6567 <<
"overriding computed VF.\n");
6570 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6572 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6573 <<
"not supported by the target.\n");
6575 "Scalable vectorization requested but not supported by the target",
6576 "the scalable user-specified vectorization width for outer-loop "
6577 "vectorization cannot be used because the target does not support "
6578 "scalable vectors.",
6579 "ScalableVFUnfeasible", ORE, OrigLoop);
6584 "VF needs to be a power of two");
6586 <<
"VF " << VF <<
" to build VPlans.\n");
6596 return {VF, 0 , 0 };
6600 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6601 "VPlan-native path.\n");
6606 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6607 CM.collectValuesToIgnore();
6608 CM.collectElementTypesForWidening();
6615 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6619 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6620 "which requires masked-interleaved support.\n");
6621 if (CM.InterleaveInfo.invalidateGroups())
6625 CM.invalidateCostModelingDecisions();
6628 if (CM.foldTailByMasking())
6629 Legal->prepareToFoldTailByMasking();
6636 "UserVF ignored because it may be larger than the maximal safe VF",
6637 "InvalidUserVF", ORE, OrigLoop);
6640 "VF needs to be a power of two");
6643 CM.collectInLoopReductions();
6644 if (CM.selectUserVectorizationFactor(UserVF)) {
6646 buildVPlansWithVPRecipes(UserVF, UserVF);
6651 "InvalidCost", ORE, OrigLoop);
6664 CM.collectInLoopReductions();
6665 for (
const auto &VF : VFCandidates) {
6667 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6686 return CM.isUniformAfterVectorization(
I, VF);
6690 return CM.ValuesToIgnore.contains(UI) ||
6691 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6711 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6713 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6715 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6716 for (
Value *
Op : IVInsts[
I]->operands()) {
6718 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6724 for (User *U :
IV->users()) {
6737 if (TC == VF && !CM.foldTailByMasking())
6741 for (Instruction *IVInst : IVInsts) {
6746 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6747 <<
": induction instruction " << *IVInst <<
"\n";
6749 Cost += InductionCost;
6759 CM.TheLoop->getExitingBlocks(Exiting);
6760 SetVector<Instruction *> ExitInstrs;
6762 for (BasicBlock *EB : Exiting) {
6767 ExitInstrs.
insert(CondI);
6771 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6773 if (!OrigLoop->contains(CondI) ||
6778 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6779 <<
": exit condition instruction " << *CondI <<
"\n";
6785 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6786 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6787 !ExitInstrs.contains(cast<Instruction>(U));
6799 for (BasicBlock *BB : OrigLoop->blocks()) {
6803 if (BB == OrigLoop->getLoopLatch())
6805 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6812 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6818 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6819 <<
": forced scalar " << *ForcedScalar <<
"\n";
6823 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6828 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6829 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6838 ElementCount VF)
const {
6839 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE());
6847 <<
" (Estimated cost per lane: ");
6849 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6872 return &WidenMem->getIngredient();
6881 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6882 VPI->getNumUsers() != 1)
6886 switch (WR->getOpcode()) {
6887 case Instruction::UDiv:
6888 case Instruction::SDiv:
6889 case Instruction::URem:
6890 case Instruction::SRem:
6903 auto *IG =
IR->getInterleaveGroup();
6904 unsigned NumMembers = IG->getNumMembers();
6905 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6939 if (RepR->isSingleScalar() &&
6941 RepR->getUnderlyingInstr(), VF))
6944 if (
Instruction *UI = GetInstructionForCost(&R)) {
6949 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6961 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6963 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6966 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6967 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6969 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6979 VPlan &FirstPlan = *VPlans[0];
6985 ?
"Reciprocal Throughput\n"
6987 ?
"Instruction Latency\n"
6990 ?
"Code Size and Latency\n"
6995 "More than a single plan/VF w/o any plan having scalar VF");
6999 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7004 if (ForceVectorization) {
7011 for (
auto &
P : VPlans) {
7013 P->vectorFactors().end());
7017 return CM.shouldConsiderRegPressureForVF(VF);
7021 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7028 <<
"LV: Not considering vector loop of width " << VF
7029 <<
" because it will not generate any vector instructions.\n");
7035 <<
"LV: Not considering vector loop of width " << VF
7036 <<
" because it would cause replicated blocks to be generated,"
7037 <<
" which isn't allowed when optimizing for size.\n");
7044 if (CM.shouldConsiderRegPressureForVF(VF) &&
7046 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7047 << VF <<
" because it uses too many registers\n");
7051 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7052 BestFactor = CurrentFactor;
7055 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7056 ProfitableVFs.push_back(CurrentFactor);
7072 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7074 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7081 BestFactor.
Width) ||
7084 " VPlan cost model and legacy cost model disagreed");
7086 "when vectorizing, the scalar cost must be computed.");
7096 "RdxResult must be ComputeFindIVResult");
7114 if (!EpiRedResult ||
7120 auto *EpiRedHeaderPhi =
7122 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7123 Value *MainResumeValue;
7127 "unexpected start recipe");
7128 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7130 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7132 [[maybe_unused]]
Value *StartV =
7133 EpiRedResult->getOperand(1)->getLiveInIRValue();
7136 "AnyOf expected to start with ICMP_NE");
7137 assert(Cmp->getOperand(1) == StartV &&
7138 "AnyOf expected to start by comparing main resume value to original "
7140 MainResumeValue = Cmp->getOperand(0);
7143 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7145 Value *Cmp, *OrigResumeV, *CmpOp;
7146 [[maybe_unused]]
bool IsExpectedPattern =
7147 match(MainResumeValue,
7153 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7154 MainResumeValue = OrigResumeV;
7169 "Trying to execute plan with unsupported VF");
7171 "Trying to execute plan with unsupported UF");
7173 ++LoopsEarlyExitVectorized;
7180 bool HasBranchWeights =
7182 if (HasBranchWeights) {
7183 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7185 BestVPlan, BestVF, VScale);
7190 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7203 OrigLoop->getStartLoc(),
7204 OrigLoop->getHeader())
7205 <<
"Created vector loop never executes due to insufficient trip "
7224 BestVPlan, VectorPH, CM.foldTailByMasking(),
7225 CM.requiresScalarEpilogue(BestVF.
isVector()));
7237 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7238 "count during epilogue vectorization");
7242 OrigLoop->getParentLoop(),
7243 Legal->getWidestInductionType());
7245#ifdef EXPENSIVE_CHECKS
7246 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7257 "final VPlan is invalid");
7264 if (!Exit->hasPredecessors())
7286 MDNode *LID = OrigLoop->getLoopID();
7287 unsigned OrigLoopInvocationWeight = 0;
7288 std::optional<unsigned> OrigAverageTripCount =
7300 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7302 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7304 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7305 OrigLoopInvocationWeight,
7307 DisableRuntimeUnroll);
7315 return ExpandedSCEVs;
7330 EPI.EpilogueIterationCountCheck =
7332 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7342 EPI.MainLoopIterationCountCheck =
7351 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7352 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7353 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7354 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7355 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7361 dbgs() <<
"intermediate fn:\n"
7362 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7368 assert(Bypass &&
"Expected valid bypass basic block.");
7372 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7373 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7377 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7403 return TCCheckBlock;
7416 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7424 R.moveBefore(*NewEntry, NewEntry->
end());
7428 Plan.setEntry(NewEntry);
7431 return OriginalScalarPH;
7436 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7437 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7438 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7444 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7452 "Must be called with either a load or store");
7456 CM.getWideningDecision(
I, VF);
7458 "CM decision should be taken at this point.");
7461 if (CM.isScalarAfterVectorization(
I, VF) ||
7462 CM.isProfitableToScalarize(
I, VF))
7471 if (
Legal->isMaskRequired(
I))
7472 Mask = getBlockInMask(Builder.getInsertBlock());
7477 CM.getWideningDecision(
I,
Range.Start);
7485 Ptr->getUnderlyingValue()->stripPointerCasts());
7492 (CM.foldTailByMasking() || !
GEP || !
GEP->isInBounds())
7497 -1, Flags,
I->getDebugLoc());
7500 GEP ?
GEP->getNoWrapFlags()
7504 Builder.insert(VectorPtr);
7508 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7509 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7512 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7513 Reverse, VPIRMetadata(*Store, LVer),
7519static VPWidenIntOrFpInductionRecipe *
7526 "step must be loop invariant");
7533 TruncI->getDebugLoc());
7537 IndDesc, Phi->getDebugLoc());
7540VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7545 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7547 *PSE.
getSE(), *OrigLoop);
7550 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7552 return new VPWidenPointerInductionRecipe(
7555 [&](ElementCount VF) {
7556 return CM.isScalarAfterVectorization(Phi, VF);
7559 Phi->getDebugLoc());
7564VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7573 auto IsOptimizableIVTruncate =
7574 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7575 return [=](ElementCount VF) ->
bool {
7576 return CM.isOptimizableIVTruncate(K, VF);
7581 IsOptimizableIVTruncate(
I),
Range)) {
7584 const InductionDescriptor &
II = *
Legal->getIntOrFpInductionDescriptor(Phi);
7592VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7596 [
this, CI](ElementCount VF) {
7597 return CM.isScalarWithPredication(CI, VF);
7605 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7606 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7607 ID == Intrinsic::pseudoprobe ||
7608 ID == Intrinsic::experimental_noalias_scope_decl))
7614 bool ShouldUseVectorIntrinsic =
7616 [&](ElementCount VF) ->
bool {
7617 return CM.getCallWideningDecision(CI, VF).Kind ==
7621 if (ShouldUseVectorIntrinsic)
7622 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7626 std::optional<unsigned> MaskPos;
7630 [&](ElementCount VF) ->
bool {
7645 LoopVectorizationCostModel::CallWideningDecision Decision =
7646 CM.getCallWideningDecision(CI, VF);
7656 if (ShouldUseVectorCall) {
7657 if (MaskPos.has_value()) {
7665 VPValue *
Mask =
nullptr;
7666 if (
Legal->isMaskRequired(CI))
7667 Mask = getBlockInMask(Builder.getInsertBlock());
7672 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7676 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7682bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7684 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7687 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7688 return CM.isScalarAfterVectorization(
I, VF) ||
7689 CM.isProfitableToScalarize(
I, VF) ||
7690 CM.isScalarWithPredication(
I, VF);
7696VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *
I,
7698 switch (
I->getOpcode()) {
7701 case Instruction::SDiv:
7702 case Instruction::UDiv:
7703 case Instruction::SRem:
7704 case Instruction::URem: {
7707 if (CM.isPredicatedInst(
I)) {
7709 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7712 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7714 return new VPWidenRecipe(*
I,
Ops);
7718 case Instruction::Add:
7719 case Instruction::And:
7720 case Instruction::AShr:
7721 case Instruction::FAdd:
7722 case Instruction::FCmp:
7723 case Instruction::FDiv:
7724 case Instruction::FMul:
7725 case Instruction::FNeg:
7726 case Instruction::FRem:
7727 case Instruction::FSub:
7728 case Instruction::ICmp:
7729 case Instruction::LShr:
7730 case Instruction::Mul:
7731 case Instruction::Or:
7732 case Instruction::Select:
7733 case Instruction::Shl:
7734 case Instruction::Sub:
7735 case Instruction::Xor:
7736 case Instruction::Freeze: {
7742 ScalarEvolution &SE = *PSE.
getSE();
7743 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7744 if (!
Op->isLiveIn())
7746 Value *
V =
Op->getUnderlyingValue();
7755 if (
I->getOpcode() == Instruction::Mul)
7756 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7758 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7760 return new VPWidenRecipe(*
I, NewOps);
7762 case Instruction::ExtractValue: {
7764 Type *I32Ty = IntegerType::getInt32Ty(
I->getContext());
7766 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7767 unsigned Idx = EVI->getIndices()[0];
7768 NewOps.push_back(Plan.
getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7769 return new VPWidenRecipe(*
I, NewOps);
7775VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7778 unsigned Opcode =
HI->Update->getOpcode();
7779 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7780 "Histogram update operation must be an Add or Sub");
7786 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7790 if (
Legal->isMaskRequired(
HI->Store))
7791 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7793 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7800 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7803 bool IsPredicated = CM.isPredicatedInst(
I);
7811 case Intrinsic::assume:
7812 case Intrinsic::lifetime_start:
7813 case Intrinsic::lifetime_end:
7835 VPValue *BlockInMask =
nullptr;
7836 if (!IsPredicated) {
7840 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7851 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7853 "Should not predicate a uniform recipe");
7864 PartialReductionChains;
7865 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7866 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7867 PartialReductionChains);
7876 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7877 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7879 auto ExtendIsOnlyUsedByPartialReductions =
7881 return all_of(Extend->users(), [&](
const User *U) {
7882 return PartialReductionOps.contains(U);
7888 for (
auto Pair : PartialReductionChains) {
7890 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7891 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7892 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7896bool VPRecipeBuilder::getScaledReductions(
7898 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7899 if (!CM.TheLoop->contains(RdxExitInstr))
7906 Value *
Op = Update->getOperand(0);
7907 Value *PhiOp = Update->getOperand(1);
7915 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7916 PHI = Chains.rbegin()->first.Reduction;
7918 Op = Update->getOperand(0);
7919 PhiOp = Update->getOperand(1);
7927 using namespace llvm::PatternMatch;
7934 std::optional<unsigned> BinOpc;
7935 Type *ExtOpTypes[2] = {
nullptr};
7938 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
7939 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
7947 if (!CM.TheLoop->contains(Exts[
I]))
7965 if (!CollectExtInfo(
Ops))
7968 BinOpc = std::make_optional(ExtendUser->
getOpcode());
7972 if (!CollectExtInfo(
Ops))
7975 ExtendUser = Update;
7976 BinOpc = std::nullopt;
7980 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
7982 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
7989 [&](ElementCount VF) {
7991 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
7992 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
7997 Chains.emplace_back(Chain, TargetScaleFactor);
8016 "Non-header phis should have been handled during predication");
8018 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8019 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8023 assert((Legal->isReductionVariable(Phi) ||
8024 Legal->isFixedOrderRecurrence(Phi)) &&
8025 "can only widen reductions and fixed-order recurrences here");
8027 if (Legal->isReductionVariable(Phi)) {
8030 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8033 unsigned ScaleFactor =
8037 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8049 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8051 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8064 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8065 return tryToWidenHistogram(*HistInfo,
Operands);
8071 if (
auto PartialRed =
8076 if (!shouldWiden(Instr,
Range))
8091 return tryToWiden(Instr,
Operands);
8097 unsigned ScaleFactor) {
8099 "Unexpected number of operands for partial reduction");
8112 unsigned ReductionOpcode = Reduction->getOpcode();
8113 if (ReductionOpcode == Instruction::Sub) {
8114 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8116 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8117 Ops.push_back(BinOp);
8120 ReductionOpcode = Instruction::Add;
8124 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8125 assert((ReductionOpcode == Instruction::Add ||
8126 ReductionOpcode == Instruction::Sub) &&
8127 "Expected an ADD or SUB operation for predicated partial "
8128 "reductions (because the neutral element in the mask is zero)!");
8131 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8132 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8135 ScaleFactor, Reduction);
8138void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8143 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8147 OrigLoop, LI, DT, PSE.
getSE());
8152 LVer.prepareNoAliasMetadata();
8158 OrigLoop, *LI,
Legal->getWidestInductionType(),
8161 auto MaxVFTimes2 = MaxVF * 2;
8163 VFRange SubRange = {VF, MaxVFTimes2};
8164 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8165 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8170 *Plan, CM.getMinimalBitwidths());
8173 if (CM.foldTailWithEVL() && !HasScalarVF)
8175 *Plan, CM.getMaxSafeElements());
8177 VPlans.push_back(std::move(Plan));
8192 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8199 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8202 Start, VectorTC, Step);
8215 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8216 return ResumePhiRecipe;
8231 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8242 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8245 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8246 ScalarPhiIRI->addOperand(ResumePhi);
8253 "should only skip truncated wide inductions");
8261 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8263 "Cannot handle loops with uncountable early exits");
8267 "vector.recur.extract");
8268 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8270 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8283 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8284 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8296 "Cannot handle loops with uncountable early exits");
8368 for (
VPUser *U : FOR->users()) {
8382 {},
"vector.recur.extract.for.phi");
8388VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8391 using namespace llvm::VPlanPatternMatch;
8392 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8399 bool RequiresScalarEpilogueCheck =
8401 [
this](ElementCount VF) {
8402 return !CM.requiresScalarEpilogue(VF.
isVector());
8407 CM.foldTailByMasking());
8415 bool IVUpdateMayOverflow =
false;
8416 for (ElementCount VF :
Range)
8424 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8426 auto *IVInc = Plan->getVectorLoopRegion()
8427 ->getExitingBasicBlock()
8430 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8432 "Did not find the canonical IV increment");
8445 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8446 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8448 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8453 "Unsupported interleave factor for scalable vectors");
8456 if (!getDecisionAndClampRange(ApplyIG,
Range))
8458 InterleaveGroups.
insert(IG);
8465 *Plan, CM.foldTailByMasking());
8471 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8472 Builder, BlockMaskCache, LVer);
8473 RecipeBuilder.collectScaledReductions(
Range);
8477 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8479 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8482 auto *MiddleVPBB = Plan->getMiddleBlock();
8486 DenseMap<VPValue *, VPValue *> Old2New;
8491 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8505 UnderlyingValue &&
"unsupported recipe");
8510 Builder.setInsertPoint(SingleDef);
8517 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8519 if (
Legal->isInvariantStoreOfReduction(SI)) {
8521 new VPReplicateRecipe(SI,
R.operands(),
true ,
8522 nullptr , VPIRMetadata(*SI, LVer));
8523 Recipe->insertBefore(*MiddleVPBB, MBIP);
8525 R.eraseFromParent();
8529 VPRecipeBase *Recipe =
8530 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8532 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8534 RecipeBuilder.setRecipe(Instr, Recipe);
8540 Builder.insert(Recipe);
8547 "Unexpected multidef recipe");
8548 R.eraseFromParent();
8557 RecipeBuilder.updateBlockMaskCache(Old2New);
8558 for (VPValue *Old : Old2New.
keys())
8559 Old->getDefiningRecipe()->eraseFromParent();
8562 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8563 "entry block must be set to a VPRegionBlock having a non-empty entry "
8569 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8571 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8574 VPWidenInductionRecipe *WideIV =
8576 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8581 DenseMap<VPValue *, VPValue *> IVEndValues;
8590 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8602 if (!CM.foldTailWithEVL()) {
8603 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8609 for (ElementCount VF :
Range)
8611 Plan->setName(
"Initial VPlan");
8617 InterleaveGroups, RecipeBuilder,
8618 CM.isScalarEpilogueAllowed());
8622 Legal->getLAI()->getSymbolicStrides());
8624 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8625 return Legal->blockNeedsPredication(BB);
8628 BlockNeedsPredication);
8640 bool WithoutRuntimeCheck =
8641 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8643 WithoutRuntimeCheck);
8651VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8656 assert(!OrigLoop->isInnermost());
8660 OrigLoop, *LI,
Legal->getWidestInductionType(),
8669 for (ElementCount VF :
Range)
8674 [
this](PHINode *
P) {
8675 return Legal->getIntOrFpInductionDescriptor(
P);
8682 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8683 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8684 Builder, BlockMaskCache,
nullptr );
8685 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8689 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8691 DenseMap<VPValue *, VPValue *> IVEndValues;
8713void LoopVectorizationPlanner::adjustRecipesForReductions(
8714 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8715 using namespace VPlanPatternMatch;
8716 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8718 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8721 for (VPRecipeBase &R : Header->phis()) {
8723 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8730 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8733 SetVector<VPSingleDefRecipe *> Worklist;
8735 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8736 VPSingleDefRecipe *Cur = Worklist[
I];
8737 for (VPUser *U : Cur->
users()) {
8739 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8740 assert((UserRecipe->getParent() == MiddleVPBB ||
8741 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8742 "U must be either in the loop region, the middle block or the "
8743 "scalar preheader.");
8746 Worklist.
insert(UserRecipe);
8757 VPSingleDefRecipe *PreviousLink = PhiR;
8758 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8760 assert(Blend->getNumIncomingValues() == 2 &&
8761 "Blend must have 2 incoming values");
8762 if (Blend->getIncomingValue(0) == PhiR) {
8763 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8765 assert(Blend->getIncomingValue(1) == PhiR &&
8766 "PhiR must be an operand of the blend");
8767 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8772 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8775 unsigned IndexOfFirstOperand;
8777 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8779 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8783 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8786 CurrentLink->getOperand(2) == PreviousLink &&
8787 "expected a call where the previous link is the added operand");
8793 VPInstruction *FMulRecipe =
new VPInstruction(
8795 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8797 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8799 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8800 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8801 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8802 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8803 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8804 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8806 Sub->setUnderlyingValue(CurrentLinkI);
8807 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8813 "need to have the compare of the select");
8817 "must be a select recipe");
8818 IndexOfFirstOperand = 1;
8821 "Expected to replace a VPWidenSC");
8822 IndexOfFirstOperand = 0;
8827 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8828 ? IndexOfFirstOperand + 1
8829 : IndexOfFirstOperand;
8830 VecOp = CurrentLink->getOperand(VecOpId);
8831 assert(VecOp != PreviousLink &&
8832 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8833 (VecOpId - IndexOfFirstOperand)) ==
8835 "PreviousLink must be the operand other than VecOp");
8838 VPValue *CondOp =
nullptr;
8839 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8843 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8849 auto *RedRecipe =
new VPReductionRecipe(
8850 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8857 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8861 CurrentLink->replaceAllUsesWith(RedRecipe);
8863 PreviousLink = RedRecipe;
8867 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8869 for (VPRecipeBase &R :
8870 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8875 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8886 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8889 std::optional<FastMathFlags> FMFs =
8894 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8895 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8904 if (CM.usePredicatedReductionSelect())
8915 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8921 VPInstruction *FinalReductionResult;
8922 VPBuilder::InsertPointGuard Guard(Builder);
8923 Builder.setInsertPoint(MiddleVPBB, IP);
8928 FinalReductionResult =
8933 FinalReductionResult =
8935 {PhiR,
Start, NewExitingVPV}, ExitDL);
8941 FinalReductionResult =
8943 {PhiR, NewExitingVPV},
Flags, ExitDL);
8950 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8952 "Unexpected truncated min-max recurrence!");
8955 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
8957 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8958 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
8959 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
8960 Extnd->insertAfter(Trunc);
8962 PhiR->
setOperand(1, Extnd->getVPSingleValue());
8967 FinalReductionResult =
8968 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8973 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8975 if (FinalReductionResult == U || Parent->getParent())
8977 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8988 return isa<VPWidenSelectRecipe>(U) ||
8989 (isa<VPReplicateRecipe>(U) &&
8990 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8991 Instruction::Select);
8996 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8998 Builder.setInsertPoint(
Select);
9002 if (
Select->getOperand(1) == PhiR)
9003 Cmp = Builder.createNot(Cmp);
9004 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9005 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9011 OrigLoop->getHeader()->getContext())));
9026 VPBuilder PHBuilder(Plan->getVectorPreheader());
9027 VPValue *Iden = Plan->getOrAddLiveIn(
9030 unsigned ScaleFactor =
9034 auto *ScaleFactorVPV =
9035 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9036 VPValue *StartV = PHBuilder.createNaryOp(
9044 for (VPRecipeBase *R : ToDelete)
9045 R->eraseFromParent();
9050void LoopVectorizationPlanner::attachRuntimeChecks(
9051 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9052 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9053 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9054 assert((!CM.OptForSize ||
9056 "Cannot SCEV check stride or overflow when optimizing for size");
9060 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9061 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9065 "Runtime checks are not supported for outer loops yet");
9067 if (CM.OptForSize) {
9070 "Cannot emit memory checks when optimizing for size, unless forced "
9073 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9074 OrigLoop->getStartLoc(),
9075 OrigLoop->getHeader())
9076 <<
"Code-size may be reduced by not forcing "
9077 "vectorization, or by source-code modifications "
9078 "eliminating the need for runtime checks "
9079 "(e.g., adding 'restrict').";
9093 bool IsIndvarOverflowCheckNeededForVF =
9094 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9096 CM.getTailFoldingStyle() !=
9103 Plan, VF, UF, MinProfitableTripCount,
9104 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9105 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9106 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9111 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9116 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9124 State.set(
this, DerivedIV,
VPLane(0));
9170 if (
TTI->preferPredicateOverEpilogue(&TFI))
9189 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9193 Function *
F = L->getHeader()->getParent();
9199 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9200 &Hints, IAI, PSI, BFI);
9204 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9224 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9226 BFI, PSI, Checks, BestPlan);
9228 << L->getHeader()->getParent()->getName() <<
"\"\n");
9250 if (S->getValueOperand()->getType()->isFloatTy())
9260 while (!Worklist.
empty()) {
9262 if (!L->contains(
I))
9264 if (!Visited.
insert(
I).second)
9274 I->getDebugLoc(), L->getHeader())
9275 <<
"floating point conversion changes vector width. "
9276 <<
"Mixed floating point precision requires an up/down "
9277 <<
"cast that will negatively impact performance.";
9280 for (
Use &
Op :
I->operands())
9296 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9302 << PredVPBB->getName() <<
":\n");
9303 Cost += PredVPBB->cost(VF, CostCtx);
9322 std::optional<unsigned> VScale) {
9338 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9397 uint64_t MinTC = std::max(MinTC1, MinTC2);
9399 MinTC =
alignTo(MinTC, IntVF);
9403 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9410 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9411 "trip count < minimum profitable VF ("
9422 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9424 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9445 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9464 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9465 bool UpdateResumePhis) {
9471 VPValue *OrigStart = VPI->getOperand(1);
9475 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9477 if (UpdateResumePhis)
9483 AddFreezeForFindLastIVReductions(MainPlan,
true);
9484 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9491 auto ResumePhiIter =
9493 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9496 VPPhi *ResumePhi =
nullptr;
9497 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9501 "vec.epilog.resume.val");
9504 if (MainScalarPH->
begin() == MainScalarPH->
end())
9506 else if (&*MainScalarPH->
begin() != ResumePhi)
9521 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9526 Header->
setName(
"vec.epilog.vector.body");
9541 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9546 "Must only have a single non-zero incoming value");
9558 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9559 "all incoming values must be 0");
9565 return isa<VPScalarIVStepsRecipe>(U) ||
9566 isa<VPDerivedIVRecipe>(U) ||
9567 cast<VPRecipeBase>(U)->isScalarCast() ||
9568 cast<VPInstruction>(U)->getOpcode() ==
9571 "the canonical IV should only be used by its increment or "
9572 "ScalarIVSteps when resetting the start value");
9573 IV->setOperand(0, VPV);
9577 Value *ResumeV =
nullptr;
9582 auto *VPI = dyn_cast<VPInstruction>(U);
9584 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9585 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9586 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9589 ->getIncomingValueForBlock(L->getLoopPreheader());
9590 RecurKind RK = ReductionPhi->getRecurrenceKind();
9598 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9603 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9614 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9617 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9618 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9626 "unexpected start value");
9627 VPI->setOperand(0, StartVal);
9639 assert(ResumeV &&
"Must have a resume value");
9653 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9655 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9670 ExpandR->eraseFromParent();
9674 unsigned MainLoopStep =
9676 unsigned EpilogueLoopStep =
9681 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9692 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9697 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9698 if (OrigPhi != OldInduction) {
9699 auto *BinOp =
II.getInductionBinOp();
9705 EndValueFromAdditionalBypass =
9707 II.getStartValue(), Step,
II.getKind(), BinOp);
9708 EndValueFromAdditionalBypass->
setName(
"ind.end");
9710 return EndValueFromAdditionalBypass;
9716 const SCEV2ValueTy &ExpandedSCEVs,
9717 Value *MainVectorTripCount) {
9722 if (Phi.getBasicBlockIndex(Pred) != -1)
9724 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9728 if (ScalarPH->hasPredecessors()) {
9731 for (
const auto &[R, IRPhi] :
9732 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9741 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9743 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9746 Inc->setIncomingValueForBlock(BypassBlock, V);
9769 "expected this to be saved from the previous pass.");
9772 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9775 VecEpilogueIterationCountCheck},
9777 VecEpiloguePreHeader}});
9782 VecEpilogueIterationCountCheck, ScalarPH);
9785 VecEpilogueIterationCountCheck},
9789 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9790 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9791 if (SCEVCheckBlock) {
9793 VecEpilogueIterationCountCheck, ScalarPH);
9795 VecEpilogueIterationCountCheck},
9798 if (MemCheckBlock) {
9800 VecEpilogueIterationCountCheck, ScalarPH);
9813 for (
PHINode *Phi : PhisInBlock) {
9815 Phi->replaceIncomingBlockWith(
9817 VecEpilogueIterationCountCheck);
9824 return EPI.EpilogueIterationCountCheck == IncB;
9829 Phi->removeIncomingValue(SCEVCheckBlock);
9831 Phi->removeIncomingValue(MemCheckBlock);
9835 for (
auto *
I : InstsToMove)
9847 "VPlan-native path is not enabled. Only process inner loops.");
9850 << L->getHeader()->getParent()->getName() <<
"' from "
9851 << L->getLocStr() <<
"\n");
9856 dbgs() <<
"LV: Loop hints:"
9867 Function *
F = L->getHeader()->getParent();
9889 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9896 "early exit is not enabled",
9897 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9903 "faulting load is not supported",
9904 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9913 if (!L->isInnermost())
9917 assert(L->isInnermost() &&
"Inner loop expected.");
9920 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9934 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9936 "requiring a scalar epilogue is unsupported",
9937 "UncountableEarlyExitUnsupported",
ORE, L);
9950 if (ExpectedTC && ExpectedTC->isFixed() &&
9952 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9953 <<
"This loop is worth vectorizing only if no scalar "
9954 <<
"iteration overheads are incurred.");
9956 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9972 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9974 "Can't vectorize when the NoImplicitFloat attribute is used",
9975 "loop not vectorized due to NoImplicitFloat attribute",
9976 "NoImplicitFloat",
ORE, L);
9986 TTI->isFPVectorizationPotentiallyUnsafe()) {
9988 "Potentially unsafe FP op prevents vectorization",
9989 "loop not vectorized due to unsafe FP support.",
9990 "UnsafeFP",
ORE, L);
9995 bool AllowOrderedReductions;
10000 AllowOrderedReductions =
TTI->enableOrderedReductions();
10005 ExactFPMathInst->getDebugLoc(),
10006 ExactFPMathInst->getParent())
10007 <<
"loop not vectorized: cannot prove it is safe to reorder "
10008 "floating-point operations";
10010 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10011 "reorder floating-point operations\n");
10017 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10020 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10028 LVP.
plan(UserVF, UserIC);
10035 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10040 unsigned SelectedIC = std::max(IC, UserIC);
10049 if (Checks.getSCEVChecks().first &&
10050 match(Checks.getSCEVChecks().first,
m_One()))
10052 if (Checks.getMemRuntimeChecks().first &&
10053 match(Checks.getMemRuntimeChecks().first,
m_One()))
10058 bool ForceVectorization =
10062 if (!ForceVectorization &&
10068 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10070 <<
"loop not vectorized: cannot prove it is safe to reorder "
10071 "memory operations";
10080 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10081 bool VectorizeLoop =
true, InterleaveLoop =
true;
10083 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10085 "VectorizationNotBeneficial",
10086 "the cost-model indicates that vectorization is not beneficial"};
10087 VectorizeLoop =
false;
10093 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10094 "interleaving should be avoided up front\n");
10095 IntDiagMsg = {
"InterleavingAvoided",
10096 "Ignoring UserIC, because interleaving was avoided up front"};
10097 InterleaveLoop =
false;
10098 }
else if (IC == 1 && UserIC <= 1) {
10102 "InterleavingNotBeneficial",
10103 "the cost-model indicates that interleaving is not beneficial"};
10104 InterleaveLoop =
false;
10106 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10107 IntDiagMsg.second +=
10108 " and is explicitly disabled or interleave count is set to 1";
10110 }
else if (IC > 1 && UserIC == 1) {
10112 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10114 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10115 "the cost-model indicates that interleaving is beneficial "
10116 "but is explicitly disabled or interleave count is set to 1"};
10117 InterleaveLoop =
false;
10123 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10124 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10125 <<
"to histogram operations.\n");
10127 "HistogramPreventsScalarInterleaving",
10128 "Unable to interleave without vectorization due to constraints on "
10129 "the order of histogram operations"};
10130 InterleaveLoop =
false;
10134 IC = UserIC > 0 ? UserIC : IC;
10138 if (!VectorizeLoop && !InterleaveLoop) {
10142 L->getStartLoc(), L->getHeader())
10143 << VecDiagMsg.second;
10147 L->getStartLoc(), L->getHeader())
10148 << IntDiagMsg.second;
10153 if (!VectorizeLoop && InterleaveLoop) {
10157 L->getStartLoc(), L->getHeader())
10158 << VecDiagMsg.second;
10160 }
else if (VectorizeLoop && !InterleaveLoop) {
10162 <<
") in " << L->getLocStr() <<
'\n');
10165 L->getStartLoc(), L->getHeader())
10166 << IntDiagMsg.second;
10168 }
else if (VectorizeLoop && InterleaveLoop) {
10170 <<
") in " << L->getLocStr() <<
'\n');
10176 using namespace ore;
10181 <<
"interleaved loop (interleaved count: "
10182 << NV(
"InterleaveCount", IC) <<
")";
10199 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10211 PSI, Checks, *BestMainPlan);
10213 *BestMainPlan, MainILV,
DT,
false);
10219 BFI,
PSI, Checks, BestEpiPlan);
10221 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10225 Checks, InstsToMove);
10226 ++LoopsEpilogueVectorized;
10228 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10242 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10243 "DT not preserved correctly");
10258 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10262 bool Changed =
false, CFGChanged =
false;
10269 for (
const auto &L : *
LI)
10281 LoopsAnalyzed += Worklist.
size();
10284 while (!Worklist.
empty()) {
10327 if (
PSI &&
PSI->hasProfileSummary())
10330 if (!Result.MadeAnyChange)
10344 if (Result.MadeCFGChange) {
10360 OS, MapClassName2PassName);
10363 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10364 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks