LLVM 22.0.0git
VPlanTransforms.cpp
Go to the documentation of this file.
1//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a set of utility VPlan to VPlan transformations.
11///
12//===----------------------------------------------------------------------===//
13
14#include "VPlanTransforms.h"
15#include "VPRecipeBuilder.h"
16#include "VPlan.h"
17#include "VPlanAnalysis.h"
18#include "VPlanCFG.h"
19#include "VPlanDominatorTree.h"
20#include "VPlanHelpers.h"
21#include "VPlanPatternMatch.h"
22#include "VPlanUtils.h"
23#include "VPlanVerifier.h"
24#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/TypeSwitch.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/MDBuilder.h"
39
40using namespace llvm;
41using namespace VPlanPatternMatch;
42
44 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
45 cl::desc("Enable use of wide get active lane mask instructions"));
46
48 VPlanPtr &Plan,
50 GetIntOrFpInductionDescriptor,
51 const TargetLibraryInfo &TLI) {
52
54 Plan->getVectorLoopRegion());
56 // Skip blocks outside region
57 if (!VPBB->getParent())
58 break;
59 VPRecipeBase *Term = VPBB->getTerminator();
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
61 // Introduce each ingredient into VPlan.
62 for (VPRecipeBase &Ingredient :
63 make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
64
65 VPValue *VPV = Ingredient.getVPSingleValue();
66 if (!VPV->getUnderlyingValue())
67 continue;
68
70
71 VPRecipeBase *NewRecipe = nullptr;
72 if (auto *PhiR = dyn_cast<VPPhi>(&Ingredient)) {
73 auto *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
74 const auto *II = GetIntOrFpInductionDescriptor(Phi);
75 if (!II) {
76 NewRecipe = new VPWidenPHIRecipe(Phi, nullptr, PhiR->getDebugLoc());
77 for (VPValue *Op : PhiR->operands())
78 NewRecipe->addOperand(Op);
79 } else {
80 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
81 VPValue *Step =
83 NewRecipe = new VPWidenIntOrFpInductionRecipe(
84 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc());
85 }
86 } else {
87 assert(isa<VPInstruction>(&Ingredient) &&
88 "only VPInstructions expected here");
89 assert(!isa<PHINode>(Inst) && "phis should be handled above");
90 // Create VPWidenMemoryRecipe for loads and stores.
91 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
92 NewRecipe = new VPWidenLoadRecipe(
93 *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
94 false /*Consecutive*/, false /*Reverse*/, VPIRMetadata(*Load),
95 Ingredient.getDebugLoc());
96 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
97 NewRecipe = new VPWidenStoreRecipe(
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
100 VPIRMetadata(*Store), Ingredient.getDebugLoc());
102 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
103 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
104 Intrinsic::ID VectorID = getVectorIntrinsicIDForCall(CI, &TLI);
105 if (VectorID == Intrinsic::not_intrinsic)
106 return false;
107 NewRecipe = new VPWidenIntrinsicRecipe(
108 *CI, getVectorIntrinsicIDForCall(CI, &TLI),
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
110 CI->getDebugLoc());
111 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
112 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
113 } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
114 NewRecipe = new VPWidenCastRecipe(
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
116 } else {
117 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
118 }
119 }
120
121 NewRecipe->insertBefore(&Ingredient);
122 if (NewRecipe->getNumDefinedValues() == 1)
123 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
124 else
125 assert(NewRecipe->getNumDefinedValues() == 0 &&
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
128 }
129 }
130 return true;
131}
132
133static bool sinkScalarOperands(VPlan &Plan) {
134 auto Iter = vp_depth_first_deep(Plan.getEntry());
135 bool Changed = false;
136 // First, collect the operands of all recipes in replicate blocks as seeds for
137 // sinking.
140 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
141 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
142 continue;
143 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
144 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
145 continue;
146 for (auto &Recipe : *VPBB) {
147 for (VPValue *Op : Recipe.operands())
148 if (auto *Def =
149 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
150 WorkList.insert({VPBB, Def});
151 }
152 }
153
154 bool ScalarVFOnly = Plan.hasScalarVFOnly();
155 // Try to sink each replicate or scalar IV steps recipe in the worklist.
156 for (unsigned I = 0; I != WorkList.size(); ++I) {
157 VPBasicBlock *SinkTo;
158 VPSingleDefRecipe *SinkCandidate;
159 std::tie(SinkTo, SinkCandidate) = WorkList[I];
160 if (SinkCandidate->getParent() == SinkTo ||
161 SinkCandidate->mayHaveSideEffects() ||
162 SinkCandidate->mayReadOrWriteMemory())
163 continue;
164 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
165 if (!ScalarVFOnly && RepR->isSingleScalar())
166 continue;
167 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
168 continue;
169
170 bool NeedsDuplicating = false;
171 // All recipe users of the sink candidate must be in the same block SinkTo
172 // or all users outside of SinkTo must be uniform-after-vectorization (
173 // i.e., only first lane is used) . In the latter case, we need to duplicate
174 // SinkCandidate.
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](VPUser *U) {
177 auto *UI = cast<VPRecipeBase>(U);
178 if (UI->getParent() == SinkTo)
179 return true;
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
181 // We only know how to duplicate VPReplicateRecipes and
182 // VPScalarIVStepsRecipes for now.
183 return NeedsDuplicating &&
185 };
186 if (!all_of(SinkCandidate->users(), CanSinkWithUser))
187 continue;
188
189 if (NeedsDuplicating) {
190 if (ScalarVFOnly)
191 continue;
192 VPSingleDefRecipe *Clone;
193 if (auto *SinkCandidateRepR =
194 dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
195 // TODO: Handle converting to uniform recipes as separate transform,
196 // then cloning should be sufficient here.
197 Instruction *I = SinkCandidate->getUnderlyingInstr();
198 Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true,
199 nullptr /*Mask*/, *SinkCandidateRepR);
200 // TODO: add ".cloned" suffix to name of Clone's VPValue.
201 } else {
202 Clone = SinkCandidate->clone();
203 }
204
205 Clone->insertBefore(SinkCandidate);
206 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
207 return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
208 });
209 }
210 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
211 for (VPValue *Op : SinkCandidate->operands())
212 if (auto *Def =
213 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
214 WorkList.insert({SinkTo, Def});
215 Changed = true;
216 }
217 return Changed;
218}
219
220/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
221/// the mask.
223 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
224 if (!EntryBB || EntryBB->size() != 1 ||
225 !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
226 return nullptr;
227
228 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
229}
230
231/// If \p R is a triangle region, return the 'then' block of the triangle.
233 auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
234 if (EntryBB->getNumSuccessors() != 2)
235 return nullptr;
236
237 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
238 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
239 if (!Succ0 || !Succ1)
240 return nullptr;
241
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
243 return nullptr;
244 if (Succ0->getSingleSuccessor() == Succ1)
245 return Succ0;
246 if (Succ1->getSingleSuccessor() == Succ0)
247 return Succ1;
248 return nullptr;
249}
250
251// Merge replicate regions in their successor region, if a replicate region
252// is connected to a successor replicate region with the same predicate by a
253// single, empty VPBasicBlock.
255 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions;
256
257 // Collect replicate regions followed by an empty block, followed by another
258 // replicate region with matching masks to process front. This is to avoid
259 // iterator invalidation issues while merging regions.
262 vp_depth_first_deep(Plan.getEntry()))) {
263 if (!Region1->isReplicator())
264 continue;
265 auto *MiddleBasicBlock =
266 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
268 continue;
269
270 auto *Region2 =
271 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
272 if (!Region2 || !Region2->isReplicator())
273 continue;
274
275 VPValue *Mask1 = getPredicatedMask(Region1);
276 VPValue *Mask2 = getPredicatedMask(Region2);
277 if (!Mask1 || Mask1 != Mask2)
278 continue;
279
280 assert(Mask1 && Mask2 && "both region must have conditions");
281 WorkList.push_back(Region1);
282 }
283
284 // Move recipes from Region1 to its successor region, if both are triangles.
285 for (VPRegionBlock *Region1 : WorkList) {
286 if (TransformedRegions.contains(Region1))
287 continue;
288 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
289 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
290
291 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
292 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
293 if (!Then1 || !Then2)
294 continue;
295
296 // Note: No fusion-preventing memory dependencies are expected in either
297 // region. Such dependencies should be rejected during earlier dependence
298 // checks, which guarantee accesses can be re-ordered for vectorization.
299 //
300 // Move recipes to the successor region.
301 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
302 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
303
304 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
305 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
306
307 // Move VPPredInstPHIRecipes from the merge block to the successor region's
308 // merge block. Update all users inside the successor region to use the
309 // original values.
310 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
311 VPValue *PredInst1 =
312 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
314 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
315 return cast<VPRecipeBase>(&U)->getParent() == Then2;
316 });
317
318 // Remove phi recipes that are unused after merging the regions.
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
321 continue;
322 }
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
324 }
325
326 // Remove the dead recipes in Region1's entry block.
327 for (VPRecipeBase &R :
328 make_early_inc_range(reverse(*Region1->getEntryBasicBlock())))
329 R.eraseFromParent();
330
331 // Finally, remove the first region.
332 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
333 VPBlockUtils::disconnectBlocks(Pred, Region1);
334 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
335 }
336 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
337 TransformedRegions.insert(Region1);
338 }
339
340 return !TransformedRegions.empty();
341}
342
344 VPlan &Plan) {
345 Instruction *Instr = PredRecipe->getUnderlyingInstr();
346 // Build the triangular if-then region.
347 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() && "Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->getMask();
350 auto *MaskDef = BlockInMask->getDefiningRecipe();
351 auto *BOMRecipe = new VPBranchOnMaskRecipe(
352 BlockInMask, MaskDef ? MaskDef->getDebugLoc() : DebugLoc::getUnknown());
353 auto *Entry =
354 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
355
356 // Replace predicated replicate recipe with a replicate recipe without a
357 // mask but in the replicate region.
358 auto *RecipeWithoutMask = new VPReplicateRecipe(
359 PredRecipe->getUnderlyingInstr(),
360 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
361 PredRecipe->isSingleScalar(), nullptr /*Mask*/, *PredRecipe);
362 auto *Pred =
363 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
364
365 VPPredInstPHIRecipe *PHIRecipe = nullptr;
366 if (PredRecipe->getNumUsers() != 0) {
367 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask,
368 RecipeWithoutMask->getDebugLoc());
369 PredRecipe->replaceAllUsesWith(PHIRecipe);
370 PHIRecipe->setOperand(0, RecipeWithoutMask);
371 }
372 PredRecipe->eraseFromParent();
373 auto *Exiting =
374 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
376 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true);
377
378 // Note: first set Entry as region entry and then connect successors starting
379 // from it in order, to propagate the "parent" of each VPBasicBlock.
380 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
381 VPBlockUtils::connectBlocks(Pred, Exiting);
382
383 return Region;
384}
385
386static void addReplicateRegions(VPlan &Plan) {
389 vp_depth_first_deep(Plan.getEntry()))) {
390 for (VPRecipeBase &R : *VPBB)
391 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
392 if (RepR->isPredicated())
393 WorkList.push_back(RepR);
394 }
395 }
396
397 unsigned BBNum = 0;
398 for (VPReplicateRecipe *RepR : WorkList) {
399 VPBasicBlock *CurrentBlock = RepR->getParent();
400 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
401
402 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
403 SplitBlock->setName(
404 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
405 // Record predicated instructions for above packing optimizations.
407 Region->setParent(CurrentBlock->getParent());
409
410 VPRegionBlock *ParentRegion = Region->getParent();
411 if (ParentRegion && ParentRegion->getExiting() == CurrentBlock)
412 ParentRegion->setExiting(SplitBlock);
413 }
414}
415
416/// Remove redundant VPBasicBlocks by merging them into their predecessor if
417/// the predecessor has a single successor.
421 vp_depth_first_deep(Plan.getEntry()))) {
422 // Don't fold the blocks in the skeleton of the Plan into their single
423 // predecessors for now.
424 // TODO: Remove restriction once more of the skeleton is modeled in VPlan.
425 if (!VPBB->getParent())
426 continue;
427 auto *PredVPBB =
428 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
430 isa<VPIRBasicBlock>(PredVPBB))
431 continue;
432 WorkList.push_back(VPBB);
433 }
434
435 for (VPBasicBlock *VPBB : WorkList) {
436 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
437 for (VPRecipeBase &R : make_early_inc_range(*VPBB))
438 R.moveBefore(*PredVPBB, PredVPBB->end());
439 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (auto *Succ : to_vector(VPBB->successors())) {
445 VPBlockUtils::connectBlocks(PredVPBB, Succ);
446 }
447 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
448 }
449 return !WorkList.empty();
450}
451
453 // Convert masked VPReplicateRecipes to if-then region blocks.
455
456 bool ShouldSimplify = true;
457 while (ShouldSimplify) {
458 ShouldSimplify = sinkScalarOperands(Plan);
459 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
460 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
461 }
462}
463
464/// Remove redundant casts of inductions.
465///
466/// Such redundant casts are casts of induction variables that can be ignored,
467/// because we already proved that the casted phi is equal to the uncasted phi
468/// in the vectorized loop. There is no need to vectorize the cast - the same
469/// value can be used for both the phi and casts in the vector loop.
471 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
473 if (!IV || IV->getTruncInst())
474 continue;
475
476 // A sequence of IR Casts has potentially been recorded for IV, which
477 // *must be bypassed* when the IV is vectorized, because the vectorized IV
478 // will produce the desired casted value. This sequence forms a def-use
479 // chain and is provided in reverse order, ending with the cast that uses
480 // the IV phi. Search for the recipe of the last cast in the chain and
481 // replace it with the original IV. Note that only the final cast is
482 // expected to have users outside the cast-chain and the dead casts left
483 // over will be cleaned up later.
484 auto &Casts = IV->getInductionDescriptor().getCastInsts();
485 VPValue *FindMyCast = IV;
486 for (Instruction *IRCast : reverse(Casts)) {
487 VPSingleDefRecipe *FoundUserCast = nullptr;
488 for (auto *U : FindMyCast->users()) {
489 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
492 break;
493 }
494 }
495 FindMyCast = FoundUserCast;
496 }
497 FindMyCast->replaceAllUsesWith(IV);
498 }
499}
500
501/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
502/// recipe, if it exists.
504 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
505 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
506 for (VPUser *U : CanonicalIV->users()) {
508 if (WidenNewIV)
509 break;
510 }
511
512 if (!WidenNewIV)
513 return;
514
516 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
517 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
518
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
520 continue;
521
522 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
523 // everything WidenNewIV's users need. That is, WidenOriginalIV will
524 // generate a vector phi or all users of WidenNewIV demand the first lane
525 // only.
526 if (!vputils::onlyScalarValuesUsed(WidenOriginalIV) ||
527 vputils::onlyFirstLaneUsed(WidenNewIV)) {
528 WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
529 WidenNewIV->eraseFromParent();
530 return;
531 }
532 }
533}
534
535/// Returns true if \p R is dead and can be removed.
536static bool isDeadRecipe(VPRecipeBase &R) {
537 // Do remove conditional assume instructions as their conditions may be
538 // flattened.
539 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
543 return true;
544
545 if (R.mayHaveSideEffects())
546 return false;
547
548 // Recipe is dead if no user keeps the recipe alive.
549 return all_of(R.definedValues(),
550 [](VPValue *V) { return V->getNumUsers() == 0; });
551}
552
555 vp_post_order_deep(Plan.getEntry()))) {
556 // The recipes in the block are processed in reverse order, to catch chains
557 // of dead recipes.
558 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
559 if (isDeadRecipe(R)) {
560 R.eraseFromParent();
561 continue;
562 }
563
564 // Check if R is a dead VPPhi <-> update cycle and remove it.
565 auto *PhiR = dyn_cast<VPPhi>(&R);
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
567 continue;
568 VPValue *Incoming = PhiR->getOperand(1);
569 if (*PhiR->user_begin() != Incoming->getDefiningRecipe() ||
570 Incoming->getNumUsers() != 1)
571 continue;
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
575 }
576 }
577}
578
581 Instruction::BinaryOps InductionOpcode,
582 FPMathOperator *FPBinOp, Instruction *TruncI,
583 VPValue *StartV, VPValue *Step, DebugLoc DL,
584 VPBuilder &Builder) {
586 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
587 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV(
588 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx");
589
590 // Truncate base induction if needed.
591 VPTypeAnalysis TypeInfo(Plan);
592 Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
593 if (TruncI) {
594 Type *TruncTy = TruncI->getType();
595 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
596 "Not truncating.");
597 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL);
599 ResultTy = TruncTy;
600 }
601
602 // Truncate step if needed.
603 Type *StepTy = TypeInfo.inferScalarType(Step);
604 if (ResultTy != StepTy) {
605 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
606 "Not truncating.");
607 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
608 auto *VecPreheader =
610 VPBuilder::InsertPointGuard Guard(Builder);
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL);
613 }
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
615 &Plan.getVF(), DL);
616}
617
620 for (unsigned I = 0; I != Users.size(); ++I) {
622 if (isa<VPHeaderPHIRecipe>(Cur))
623 continue;
624 for (VPValue *V : Cur->definedValues())
625 Users.insert_range(V->users());
626 }
627 return Users.takeVector();
628}
629
630/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
631/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
632/// VPWidenPointerInductionRecipe will generate vectors only. If some users
633/// require vectors while other require scalars, the scalar uses need to extract
634/// the scalars from the generated vectors (Note that this is different to how
635/// int/fp inductions are handled). Legalize extract-from-ends using uniform
636/// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so
637/// the correct end value is available. Also optimize
638/// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by
639/// providing them scalar steps built on the canonical scalar IV and update the
640/// original IV's users. This is an optional optimization to reduce the needs of
641/// vector extracts.
644 bool HasOnlyVectorVFs = !Plan.hasScalarVFOnly();
645 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
646 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
647 auto *PhiR = dyn_cast<VPWidenInductionRecipe>(&Phi);
648 if (!PhiR)
649 continue;
650
651 // Try to narrow wide and replicating recipes to uniform recipes, based on
652 // VPlan analysis.
653 // TODO: Apply to all recipes in the future, to replace legacy uniformity
654 // analysis.
655 auto Users = collectUsersRecursively(PhiR);
656 for (VPUser *U : reverse(Users)) {
657 auto *Def = dyn_cast<VPSingleDefRecipe>(U);
658 auto *RepR = dyn_cast<VPReplicateRecipe>(U);
659 // Skip recipes that shouldn't be narrowed.
660 if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Def) ||
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
663 continue;
664
665 // Skip recipes that may have other lanes than their first used.
667 continue;
668
669 auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(),
670 Def->operands(), /*IsUniform*/ true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
673 }
674
675 // Replace wide pointer inductions which have only their scalars used by
676 // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
677 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
678 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
679 continue;
680
681 const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
682 VPValue *StartV =
683 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
684 VPValue *StepV = PtrIV->getOperand(1);
686 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
688
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
690 PtrIV->getDebugLoc(), "next.gep");
691
692 PtrIV->replaceAllUsesWith(PtrAdd);
693 continue;
694 }
695
696 // Replace widened induction with scalar steps for users that only use
697 // scalars.
698 auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(&Phi);
699 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
700 return U->usesScalars(WideIV);
701 }))
702 continue;
703
704 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
706 Plan, ID.getKind(), ID.getInductionOpcode(),
707 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
710
711 // Update scalar users of IV to use Step instead.
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
714 else
715 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
716 return U.usesScalars(WideIV);
717 });
718 }
719}
720
721/// Check if \p VPV is an untruncated wide induction, either before or after the
722/// increment. If so return the header IV (before the increment), otherwise
723/// return null.
725 ScalarEvolution &SE) {
726 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(VPV);
727 if (WideIV) {
728 // VPV itself is a wide induction, separately compute the end value for exit
729 // users if it is not a truncated IV.
730 auto *IntOrFpIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
732 }
733
734 // Check if VPV is an optimizable induction increment.
735 VPRecipeBase *Def = VPV->getDefiningRecipe();
736 if (!Def || Def->getNumOperands() != 2)
737 return nullptr;
738 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0));
739 if (!WideIV)
740 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1));
741 if (!WideIV)
742 return nullptr;
743
744 auto IsWideIVInc = [&]() {
745 auto &ID = WideIV->getInductionDescriptor();
746
747 // Check if VPV increments the induction by the induction step.
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (ID.getInductionOpcode()) {
750 case Instruction::Add:
751 return match(VPV, m_c_Add(m_Specific(WideIV), m_Specific(IVStep)));
752 case Instruction::FAdd:
754 m_Specific(IVStep)));
755 case Instruction::FSub:
756 return match(VPV, m_Binary<Instruction::FSub>(m_Specific(WideIV),
757 m_Specific(IVStep)));
758 case Instruction::Sub: {
759 // IVStep will be the negated step of the subtraction. Check if Step == -1
760 // * IVStep.
761 VPValue *Step;
762 if (!match(VPV, m_Sub(m_VPValue(), m_VPValue(Step))))
763 return false;
764 const SCEV *IVStepSCEV = vputils::getSCEVExprForVPValue(IVStep, SE);
765 const SCEV *StepSCEV = vputils::getSCEVExprForVPValue(Step, SE);
766 return !isa<SCEVCouldNotCompute>(IVStepSCEV) &&
767 !isa<SCEVCouldNotCompute>(StepSCEV) &&
768 IVStepSCEV == SE.getNegativeSCEV(StepSCEV);
769 }
770 default:
771 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
772 match(VPV, m_GetElementPtr(m_Specific(WideIV),
773 m_Specific(WideIV->getStepValue())));
774 }
775 llvm_unreachable("should have been covered by switch above");
776 };
777 return IsWideIVInc() ? WideIV : nullptr;
778}
779
780/// Attempts to optimize the induction variable exit values for users in the
781/// early exit block.
783 VPTypeAnalysis &TypeInfo,
784 VPBlockBase *PredVPBB,
785 VPValue *Op,
786 ScalarEvolution &SE) {
787 VPValue *Incoming, *Mask;
790 m_VPValue(Mask)),
792 return nullptr;
793
794 auto *WideIV = getOptimizableIVOf(Incoming, SE);
795 if (!WideIV)
796 return nullptr;
797
798 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
800 return nullptr;
801
802 // Calculate the final index.
803 VPValue *EndValue = Plan.getCanonicalIV();
804 auto CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
805 VPBuilder B(cast<VPBasicBlock>(PredVPBB));
806
807 DebugLoc DL = cast<VPInstruction>(Op)->getDebugLoc();
808 VPValue *FirstActiveLane =
809 B.createNaryOp(VPInstruction::FirstActiveLane, Mask, DL);
810 Type *FirstActiveLaneType = TypeInfo.inferScalarType(FirstActiveLane);
811 FirstActiveLane = B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType, DL);
813 EndValue = B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane}, DL);
814
815 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
816 // changed it means the exit is using the incremented value, so we need to
817 // add the step.
818 if (Incoming != WideIV) {
819 VPValue *One = Plan.getOrAddLiveIn(ConstantInt::get(CanonicalIVType, 1));
820 EndValue = B.createNaryOp(Instruction::Add, {EndValue, One}, DL);
821 }
822
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
824 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue = B.createDerivedIV(
828 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
829 Start, EndValue, Step);
830 }
831
832 return EndValue;
833}
834
835/// Attempts to optimize the induction variable exit values for users in the
836/// exit block coming from the latch in the original scalar loop.
838 VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op,
842 return nullptr;
843
844 auto *WideIV = getOptimizableIVOf(Incoming, SE);
845 if (!WideIV)
846 return nullptr;
847
848 VPValue *EndValue = EndValues.lookup(WideIV);
849 assert(EndValue && "end value must have been pre-computed");
850
851 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
852 // changed it means the exit is using the incremented value, so we don't
853 // need to subtract the step.
854 if (Incoming != WideIV)
855 return EndValue;
856
857 // Otherwise, subtract the step from the EndValue.
858 VPBuilder B(cast<VPBasicBlock>(PredVPBB)->getTerminator());
859 VPValue *Step = WideIV->getStepValue();
860 Type *ScalarTy = TypeInfo.inferScalarType(WideIV);
861 if (ScalarTy->isIntegerTy())
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {}, "ind.escape");
863 if (ScalarTy->isPointerTy()) {
864 Type *StepTy = TypeInfo.inferScalarType(Step);
865 auto *Zero = Plan.getOrAddLiveIn(ConstantInt::get(StepTy, 0));
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
868 DebugLoc::getUnknown(), "ind.escape");
869 }
870 if (ScalarTy->isFloatingPointTy()) {
871 const auto &ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
874 ? Instruction::FSub
875 : Instruction::FAdd,
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
877 }
878 llvm_unreachable("all possible induction types must be handled");
879 return nullptr;
880}
881
883 VPlan &Plan, DenseMap<VPValue *, VPValue *> &EndValues,
884 ScalarEvolution &SE) {
885 VPBlockBase *MiddleVPBB = Plan.getMiddleBlock();
886 VPTypeAnalysis TypeInfo(Plan);
887 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) {
888 for (VPRecipeBase &R : ExitVPBB->phis()) {
889 auto *ExitIRI = cast<VPIRPhi>(&R);
890
891 for (auto [Idx, PredVPBB] : enumerate(ExitVPBB->getPredecessors())) {
892 VPValue *Escape = nullptr;
893 if (PredVPBB == MiddleVPBB)
894 Escape = optimizeLatchExitInductionUser(Plan, TypeInfo, PredVPBB,
895 ExitIRI->getOperand(Idx),
896 EndValues, SE);
897 else
898 Escape = optimizeEarlyExitInductionUser(Plan, TypeInfo, PredVPBB,
899 ExitIRI->getOperand(Idx), SE);
900 if (Escape)
901 ExitIRI->setOperand(Idx, Escape);
902 }
903 }
904 }
905}
906
907/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
908/// them with already existing recipes expanding the same SCEV expression.
911
912 for (VPRecipeBase &R :
914 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
915 if (!ExpR)
916 continue;
917
918 const auto &[V, Inserted] = SCEV2VPV.try_emplace(ExpR->getSCEV(), ExpR);
919 if (Inserted)
920 continue;
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
923 }
924}
925
927 SmallVector<VPValue *> WorkList;
929 WorkList.push_back(V);
930
931 while (!WorkList.empty()) {
932 VPValue *Cur = WorkList.pop_back_val();
933 if (!Seen.insert(Cur).second)
934 continue;
936 if (!R)
937 continue;
938 if (!isDeadRecipe(*R))
939 continue;
940 WorkList.append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
942 }
943}
944
945/// Try to fold \p R using InstSimplifyFolder. Will succeed and return a
946/// non-nullptr Value for a handled \p Opcode if corresponding \p Operands are
947/// foldable live-ins.
948static Value *tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode,
950 const DataLayout &DL, VPTypeAnalysis &TypeInfo) {
952 for (VPValue *Op : Operands) {
953 if (!Op->isLiveIn() || !Op->getLiveInIRValue())
954 return nullptr;
955 Ops.push_back(Op->getLiveInIRValue());
956 }
957
958 InstSimplifyFolder Folder(DL);
959 if (Instruction::isBinaryOp(Opcode))
960 return Folder.FoldBinOp(static_cast<Instruction::BinaryOps>(Opcode), Ops[0],
961 Ops[1]);
962 if (Instruction::isCast(Opcode))
963 return Folder.FoldCast(static_cast<Instruction::CastOps>(Opcode), Ops[0],
964 TypeInfo.inferScalarType(R.getVPSingleValue()));
965 switch (Opcode) {
967 return Folder.FoldSelect(Ops[0], Ops[1],
970 return Folder.FoldBinOp(Instruction::BinaryOps::Xor, Ops[0],
972 case Instruction::Select:
973 return Folder.FoldSelect(Ops[0], Ops[1], Ops[2]);
974 case Instruction::ICmp:
975 case Instruction::FCmp:
976 return Folder.FoldCmp(cast<VPRecipeWithIRFlags>(R).getPredicate(), Ops[0],
977 Ops[1]);
978 case Instruction::GetElementPtr: {
979 auto &RFlags = cast<VPRecipeWithIRFlags>(R);
980 auto *GEP = cast<GetElementPtrInst>(RFlags.getUnderlyingInstr());
981 return Folder.FoldGEP(GEP->getSourceElementType(), Ops[0], drop_begin(Ops),
982 RFlags.getGEPNoWrapFlags());
983 }
986 return Folder.FoldGEP(IntegerType::getInt8Ty(TypeInfo.getContext()), Ops[0],
987 Ops[1],
988 cast<VPRecipeWithIRFlags>(R).getGEPNoWrapFlags());
989 // An extract of a live-in is an extract of a broadcast, so return the
990 // broadcasted element.
991 case Instruction::ExtractElement:
992 assert(!Ops[0]->getType()->isVectorTy() && "Live-ins should be scalar");
993 return Ops[0];
994 }
995 return nullptr;
996}
997
998/// Try to simplify recipe \p R.
999static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
1000 VPlan *Plan = R.getParent()->getPlan();
1001
1002 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
1003 if (!Def)
1004 return;
1005
1006 // Simplification of live-in IR values for SingleDef recipes using
1007 // InstSimplifyFolder.
1011 const DataLayout &DL =
1013 Value *V = tryToFoldLiveIns(*I, I->getOpcode(), I->operands(), DL,
1014 TypeInfo);
1015 if (V)
1016 I->replaceAllUsesWith(Plan->getOrAddLiveIn(V));
1017 return V;
1018 })
1019 .Default([](auto *) { return false; }))
1020 return;
1021
1022 // Fold PredPHI LiveIn -> LiveIn.
1023 if (auto *PredPHI = dyn_cast<VPPredInstPHIRecipe>(&R)) {
1024 VPValue *Op = PredPHI->getOperand(0);
1025 if (Op->isLiveIn())
1026 PredPHI->replaceAllUsesWith(Op);
1027 }
1028
1029 VPValue *A;
1030 if (match(Def, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
1031 Type *TruncTy = TypeInfo.inferScalarType(Def);
1032 Type *ATy = TypeInfo.inferScalarType(A);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(A);
1035 } else {
1036 // Don't replace a scalarizing recipe with a widened cast.
1037 if (isa<VPReplicateRecipe>(Def))
1038 return;
1039 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
1040
1041 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
1042 ? Instruction::SExt
1043 : Instruction::ZExt;
1044 auto *VPC =
1045 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
1046 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1047 // UnderlyingExt has distinct return type, used to retain legacy cost.
1048 VPC->setUnderlyingValue(UnderlyingExt);
1049 }
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1052 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
1053 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1056 }
1057 }
1058#ifndef NDEBUG
1059 // Verify that the cached type info is for both A and its users is still
1060 // accurate by comparing it to freshly computed types.
1061 VPTypeAnalysis TypeInfo2(*Plan);
1062 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
1063 for (VPUser *U : A->users()) {
1064 auto *R = cast<VPRecipeBase>(U);
1065 for (VPValue *VPV : R->definedValues())
1066 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
1067 }
1068#endif
1069 }
1070
1071 // Simplify (X && Y) || (X && !Y) -> X.
1072 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
1073 // && (Y || Z) and (X || !X) into true. This requires queuing newly created
1074 // recipes to be visited during simplification.
1075 VPValue *X, *Y, *Z;
1076 if (match(Def,
1079 Def->replaceAllUsesWith(X);
1080 Def->eraseFromParent();
1081 return;
1082 }
1083
1084 // x | 1 -> 1
1085 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_AllOnes())))
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1087
1088 // x | 0 -> x
1089 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_ZeroInt())))
1090 return Def->replaceAllUsesWith(X);
1091
1092 // x & 0 -> 0
1093 if (match(Def, m_c_BinaryAnd(m_VPValue(X), m_ZeroInt())))
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1095
1096 // x && false -> false
1097 if (match(Def, m_LogicalAnd(m_VPValue(X), m_False())))
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1099
1100 // (x && y) || (x && z) -> x && (y || z)
1101 VPBuilder Builder(Def);
1104 // Simplify only if one of the operands has one use to avoid creating an
1105 // extra recipe.
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(X, Builder.createOr(Y, Z)));
1110
1111 // x && !x -> 0
1113 return Def->replaceAllUsesWith(Plan->getOrAddLiveIn(
1115
1116 if (match(Def, m_Select(m_VPValue(), m_VPValue(X), m_Deferred(X))))
1117 return Def->replaceAllUsesWith(X);
1118
1119 // select !c, x, y -> select c, y, x
1120 VPValue *C;
1121 if (match(Def, m_Select(m_Not(m_VPValue(C)), m_VPValue(X), m_VPValue(Y)))) {
1122 Def->setOperand(0, C);
1123 Def->setOperand(1, Y);
1124 Def->setOperand(2, X);
1125 return;
1126 }
1127
1128 // Reassociate (x && y) && z -> x && (y && z) if x has multiple users. With
1129 // tail folding it is likely that x is a header mask and can be simplified
1130 // further.
1132 m_VPValue(Z))) &&
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(X, Builder.createLogicalAnd(Y, Z)));
1136
1137 if (match(Def, m_c_Mul(m_VPValue(A), m_One())))
1138 return Def->replaceAllUsesWith(A);
1139
1140 if (match(Def, m_c_Mul(m_VPValue(A), m_ZeroInt())))
1141 return Def->replaceAllUsesWith(R.getOperand(0) == A ? R.getOperand(1)
1142 : R.getOperand(0));
1143
1144 if (match(Def, m_Not(m_VPValue(A)))) {
1145 if (match(A, m_Not(m_VPValue(A))))
1146 return Def->replaceAllUsesWith(A);
1147
1148 // Try to fold Not into compares by adjusting the predicate in-place.
1149 CmpPredicate Pred;
1150 if (match(A, m_Cmp(Pred, m_VPValue(), m_VPValue()))) {
1151 auto *Cmp = cast<VPRecipeWithIRFlags>(A);
1152 if (all_of(Cmp->users(), [&Cmp](VPUser *U) {
1153 return match(U, m_CombineOr(m_Not(m_Specific(Cmp)),
1154 m_Select(m_Specific(Cmp), m_VPValue(),
1155 m_VPValue())));
1156 })) {
1157 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
1158 for (VPUser *U : to_vector(Cmp->users())) {
1159 auto *R = cast<VPSingleDefRecipe>(U);
1160 if (match(R, m_Select(m_Specific(Cmp), m_VPValue(X), m_VPValue(Y)))) {
1161 // select (cmp pred), x, y -> select (cmp inv_pred), y, x
1162 R->setOperand(1, Y);
1163 R->setOperand(2, X);
1164 } else {
1165 // not (cmp pred) -> cmp inv_pred
1166 assert(match(R, m_Not(m_Specific(Cmp))) && "Unexpected user");
1167 R->replaceAllUsesWith(Cmp);
1168 }
1169 }
1170 // If Cmp doesn't have a debug location, use the one from the negation,
1171 // to preserve the location.
1172 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1173 Cmp->setDebugLoc(R.getDebugLoc());
1174 }
1175 }
1176 }
1177
1178 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0.
1179 if ((match(Def, m_DerivedIV(m_ZeroInt(), m_VPValue(A), m_One())) ||
1180 match(Def, m_DerivedIV(m_ZeroInt(), m_ZeroInt(), m_VPValue()))) &&
1181 TypeInfo.inferScalarType(Def->getOperand(1)) ==
1182 TypeInfo.inferScalarType(Def))
1183 return Def->replaceAllUsesWith(Def->getOperand(1));
1184
1186 m_One()))) {
1187 Type *WideStepTy = TypeInfo.inferScalarType(Def);
1188 if (TypeInfo.inferScalarType(X) != WideStepTy)
1189 X = Builder.createWidenCast(Instruction::Trunc, X, WideStepTy);
1190 Def->replaceAllUsesWith(X);
1191 return;
1192 }
1193
1194 // For i1 vp.merges produced by AnyOf reductions:
1195 // vp.merge true, (or x, y), x, evl -> vp.merge y, true, x, evl
1197 m_VPValue(X), m_VPValue())) &&
1199 TypeInfo.inferScalarType(R.getVPSingleValue())->isIntegerTy(1)) {
1200 Def->setOperand(1, Def->getOperand(0));
1201 Def->setOperand(0, Y);
1202 return;
1203 }
1204
1205 if (auto *Phi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Def)) {
1206 if (Phi->getOperand(0) == Phi->getOperand(1))
1207 Def->replaceAllUsesWith(Phi->getOperand(0));
1208 return;
1209 }
1210
1211 // Look through ExtractLastElement (BuildVector ....).
1213 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1214 Def->replaceAllUsesWith(
1215 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1216 return;
1217 }
1218
1219 // Look through ExtractPenultimateElement (BuildVector ....).
1221 m_BuildVector()))) {
1222 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1223 Def->replaceAllUsesWith(
1224 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1225 return;
1226 }
1227
1228 if (auto *Phi = dyn_cast<VPPhi>(Def)) {
1229 if (Phi->getNumOperands() == 1)
1230 Phi->replaceAllUsesWith(Phi->getOperand(0));
1231 return;
1232 }
1233
1234 // Some simplifications can only be applied after unrolling. Perform them
1235 // below.
1236 if (!Plan->isUnrolled())
1237 return;
1238
1239 // VPVectorPointer for part 0 can be replaced by their start pointer.
1240 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(&R)) {
1241 if (VecPtr->isFirstPart()) {
1242 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1243 return;
1244 }
1245 }
1246
1247 // VPScalarIVSteps for part 0 can be replaced by their start value, if only
1248 // the first lane is demanded.
1249 if (auto *Steps = dyn_cast<VPScalarIVStepsRecipe>(Def)) {
1250 if (Steps->isPart0() && vputils::onlyFirstLaneUsed(Steps)) {
1251 Steps->replaceAllUsesWith(Steps->getOperand(0));
1252 return;
1253 }
1254 }
1255 // Simplify redundant ReductionStartVector recipes after unrolling.
1256 VPValue *StartV;
1258 m_VPValue(StartV), m_VPValue(), m_VPValue()))) {
1259 Def->replaceUsesWithIf(StartV, [](const VPUser &U, unsigned Idx) {
1260 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&U);
1261 return PhiR && PhiR->isInLoop();
1262 });
1263 return;
1264 }
1265
1267 Def->replaceAllUsesWith(A);
1268 return;
1269 }
1270
1271 if (match(Def,
1275 cast<VPReplicateRecipe>(A)->isSingleScalar())) &&
1276 all_of(A->users(),
1277 [Def, A](VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1278 return Def->replaceAllUsesWith(A);
1279 }
1280}
1281
1284 Plan.getEntry());
1285 VPTypeAnalysis TypeInfo(Plan);
1287 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1288 simplifyRecipe(R, TypeInfo);
1289 }
1290 }
1291}
1292
1294 if (Plan.hasScalarVFOnly())
1295 return;
1296
1297 // Try to narrow wide and replicating recipes to single scalar recipes,
1298 // based on VPlan analysis. Only process blocks in the loop region for now,
1299 // without traversing into nested regions, as recipes in replicate regions
1300 // cannot be converted yet.
1303 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
1305 continue;
1306 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1307 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1308 continue;
1309
1310 auto *RepOrWidenR = cast<VPSingleDefRecipe>(&R);
1311 if (RepR && isa<StoreInst>(RepR->getUnderlyingInstr()) &&
1312 vputils::isSingleScalar(RepR->getOperand(1))) {
1313 auto *Clone = new VPReplicateRecipe(
1314 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1315 true /*IsSingleScalar*/, nullptr /*Mask*/, *RepR /*Metadata*/);
1316 Clone->insertBefore(RepOrWidenR);
1318 {Clone->getOperand(0)});
1319 Ext->insertBefore(Clone);
1320 Clone->setOperand(0, Ext);
1321 RepR->eraseFromParent();
1322 continue;
1323 }
1324
1325 // Skip recipes that aren't single scalars or don't have only their
1326 // scalar results used. In the latter case, we would introduce extra
1327 // broadcasts.
1328 if (!vputils::isSingleScalar(RepOrWidenR) ||
1329 !all_of(RepOrWidenR->users(), [RepOrWidenR](const VPUser *U) {
1330 return U->usesScalars(RepOrWidenR) ||
1331 match(cast<VPRecipeBase>(U),
1332 m_ExtractLastElement(m_VPValue()));
1333 }))
1334 continue;
1335
1336 auto *Clone = new VPReplicateRecipe(RepOrWidenR->getUnderlyingInstr(),
1337 RepOrWidenR->operands(),
1338 true /*IsSingleScalar*/);
1339 Clone->insertBefore(RepOrWidenR);
1340 RepOrWidenR->replaceAllUsesWith(Clone);
1341 }
1342 }
1343}
1344
1345/// Try to see if all of \p Blend's masks share a common value logically and'ed
1346/// and remove it from the masks.
1348 if (Blend->isNormalized())
1349 return;
1350 VPValue *CommonEdgeMask;
1351 if (!match(Blend->getMask(0),
1352 m_LogicalAnd(m_VPValue(CommonEdgeMask), m_VPValue())))
1353 return;
1354 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1355 if (!match(Blend->getMask(I),
1356 m_LogicalAnd(m_Specific(CommonEdgeMask), m_VPValue())))
1357 return;
1358 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1359 Blend->setMask(I, Blend->getMask(I)->getDefiningRecipe()->getOperand(1));
1360}
1361
1362/// Normalize and simplify VPBlendRecipes. Should be run after simplifyRecipes
1363/// to make sure the masks are simplified.
1364static void simplifyBlends(VPlan &Plan) {
1367 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1368 auto *Blend = dyn_cast<VPBlendRecipe>(&R);
1369 if (!Blend)
1370 continue;
1371
1372 removeCommonBlendMask(Blend);
1373
1374 // Try to remove redundant blend recipes.
1375 SmallPtrSet<VPValue *, 4> UniqueValues;
1376 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
1377 UniqueValues.insert(Blend->getIncomingValue(0));
1378 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
1379 if (!match(Blend->getMask(I), m_False()))
1380 UniqueValues.insert(Blend->getIncomingValue(I));
1381
1382 if (UniqueValues.size() == 1) {
1383 Blend->replaceAllUsesWith(*UniqueValues.begin());
1384 Blend->eraseFromParent();
1385 continue;
1386 }
1387
1388 if (Blend->isNormalized())
1389 continue;
1390
1391 // Normalize the blend so its first incoming value is used as the initial
1392 // value with the others blended into it.
1393
1394 unsigned StartIndex = 0;
1395 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1396 // If a value's mask is used only by the blend then is can be deadcoded.
1397 // TODO: Find the most expensive mask that can be deadcoded, or a mask
1398 // that's used by multiple blends where it can be removed from them all.
1399 VPValue *Mask = Blend->getMask(I);
1400 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
1401 StartIndex = I;
1402 break;
1403 }
1404 }
1405
1406 SmallVector<VPValue *, 4> OperandsWithMask;
1407 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
1408
1409 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1410 if (I == StartIndex)
1411 continue;
1412 OperandsWithMask.push_back(Blend->getIncomingValue(I));
1413 OperandsWithMask.push_back(Blend->getMask(I));
1414 }
1415
1416 auto *NewBlend =
1417 new VPBlendRecipe(cast_or_null<PHINode>(Blend->getUnderlyingValue()),
1418 OperandsWithMask, Blend->getDebugLoc());
1419 NewBlend->insertBefore(&R);
1420
1421 VPValue *DeadMask = Blend->getMask(StartIndex);
1422 Blend->replaceAllUsesWith(NewBlend);
1423 Blend->eraseFromParent();
1425
1426 /// Simplify BLEND %a, %b, Not(%mask) -> BLEND %b, %a, %mask.
1427 VPValue *NewMask;
1428 if (NewBlend->getNumOperands() == 3 &&
1429 match(NewBlend->getMask(1), m_Not(m_VPValue(NewMask)))) {
1430 VPValue *Inc0 = NewBlend->getOperand(0);
1431 VPValue *Inc1 = NewBlend->getOperand(1);
1432 VPValue *OldMask = NewBlend->getOperand(2);
1433 NewBlend->setOperand(0, Inc1);
1434 NewBlend->setOperand(1, Inc0);
1435 NewBlend->setOperand(2, NewMask);
1436 if (OldMask->getNumUsers() == 0)
1437 cast<VPInstruction>(OldMask)->eraseFromParent();
1438 }
1439 }
1440 }
1441}
1442
1443/// Optimize the width of vector induction variables in \p Plan based on a known
1444/// constant Trip Count, \p BestVF and \p BestUF.
1446 ElementCount BestVF,
1447 unsigned BestUF) {
1448 // Only proceed if we have not completely removed the vector region.
1449 if (!Plan.getVectorLoopRegion())
1450 return false;
1451
1452 if (!Plan.getTripCount()->isLiveIn())
1453 return false;
1456 if (!TC || !BestVF.isFixed())
1457 return false;
1458
1459 // Calculate the minimum power-of-2 bit width that can fit the known TC, VF
1460 // and UF. Returns at least 8.
1461 auto ComputeBitWidth = [](APInt TC, uint64_t Align) {
1462 APInt AlignedTC =
1465 APInt MaxVal = AlignedTC - 1;
1466 return std::max<unsigned>(PowerOf2Ceil(MaxVal.getActiveBits()), 8);
1467 };
1468 unsigned NewBitWidth =
1469 ComputeBitWidth(TC->getValue(), BestVF.getKnownMinValue() * BestUF);
1470
1471 LLVMContext &Ctx = Plan.getContext();
1472 auto *NewIVTy = IntegerType::get(Ctx, NewBitWidth);
1473
1474 bool MadeChange = false;
1475
1476 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1477 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
1478 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1479
1480 // Currently only handle canonical IVs as it is trivial to replace the start
1481 // and stop values, and we currently only perform the optimization when the
1482 // IV has a single use.
1483 if (!WideIV || !WideIV->isCanonical() ||
1484 WideIV->hasMoreThanOneUniqueUser() ||
1485 NewIVTy == WideIV->getScalarType())
1486 continue;
1487
1488 // Currently only handle cases where the single user is a header-mask
1489 // comparison with the backedge-taken-count.
1490 if (!match(*WideIV->user_begin(),
1491 m_ICmp(m_Specific(WideIV),
1494 continue;
1495
1496 // Update IV operands and comparison bound to use new narrower type.
1497 auto *NewStart = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1498 WideIV->setStartValue(NewStart);
1499 auto *NewStep = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1500 WideIV->setStepValue(NewStep);
1501
1502 auto *NewBTC = new VPWidenCastRecipe(
1503 Instruction::Trunc, Plan.getOrCreateBackedgeTakenCount(), NewIVTy);
1504 Plan.getVectorPreheader()->appendRecipe(NewBTC);
1505 auto *Cmp = cast<VPInstruction>(*WideIV->user_begin());
1506 Cmp->setOperand(1, NewBTC);
1507
1508 MadeChange = true;
1509 }
1510
1511 return MadeChange;
1512}
1513
1514/// Return true if \p Cond is known to be true for given \p BestVF and \p
1515/// BestUF.
1517 ElementCount BestVF, unsigned BestUF,
1518 ScalarEvolution &SE) {
1520 return any_of(Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1521 &SE](VPValue *C) {
1522 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1523 });
1524
1525 auto *CanIV = Plan.getCanonicalIV();
1527 m_Specific(CanIV->getBackedgeValue()),
1528 m_Specific(&Plan.getVectorTripCount()))))
1529 return false;
1530
1531 // The compare checks CanIV + VFxUF == vector trip count. The vector trip
1532 // count is not conveniently available as SCEV so far, so we compare directly
1533 // against the original trip count. This is stricter than necessary, as we
1534 // will only return true if the trip count == vector trip count.
1535 const SCEV *VectorTripCount =
1537 if (isa<SCEVCouldNotCompute>(VectorTripCount))
1538 VectorTripCount = vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
1539 assert(!isa<SCEVCouldNotCompute>(VectorTripCount) &&
1540 "Trip count SCEV must be computable");
1541 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1542 const SCEV *C = SE.getElementCount(VectorTripCount->getType(), NumElements);
1543 return SE.isKnownPredicate(CmpInst::ICMP_EQ, VectorTripCount, C);
1544}
1545
1546/// Try to replace multiple active lane masks used for control flow with
1547/// a single, wide active lane mask instruction followed by multiple
1548/// extract subvector intrinsics. This applies to the active lane mask
1549/// instructions both in the loop and in the preheader.
1550/// Incoming values of all ActiveLaneMaskPHIs are updated to use the
1551/// new extracts from the first active lane mask, which has it's last
1552/// operand (multiplier) set to UF.
1554 unsigned UF) {
1555 if (!EnableWideActiveLaneMask || !VF.isVector() || UF == 1)
1556 return false;
1557
1558 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1559 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1560 auto *Term = &ExitingVPBB->back();
1561
1562 using namespace llvm::VPlanPatternMatch;
1564 m_VPValue(), m_VPValue(), m_VPValue())))))
1565 return false;
1566
1567 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1568 LLVMContext &Ctx = Plan.getContext();
1569
1570 auto ExtractFromALM = [&](VPInstruction *ALM,
1571 SmallVectorImpl<VPValue *> &Extracts) {
1572 DebugLoc DL = ALM->getDebugLoc();
1573 for (unsigned Part = 0; Part < UF; ++Part) {
1575 Ops.append({ALM, Plan.getOrAddLiveIn(
1576 ConstantInt::get(IntegerType::getInt64Ty(Ctx),
1577 VF.getKnownMinValue() * Part))});
1578 auto *Ext = new VPWidenIntrinsicRecipe(Intrinsic::vector_extract, Ops,
1580 Extracts[Part] = Ext;
1581 Ext->insertAfter(ALM);
1582 }
1583 };
1584
1585 // Create a list of each active lane mask phi, ordered by unroll part.
1587 for (VPRecipeBase &R : Header->phis()) {
1589 if (!Phi)
1590 continue;
1591 VPValue *Index = nullptr;
1592 match(Phi->getBackedgeValue(),
1594 assert(Index && "Expected index from ActiveLaneMask instruction");
1595
1596 auto *II = dyn_cast<VPInstruction>(Index);
1597 if (II && II->getOpcode() == VPInstruction::CanonicalIVIncrementForPart) {
1598 auto Part = cast<ConstantInt>(II->getOperand(1)->getLiveInIRValue());
1599 Phis[Part->getZExtValue()] = Phi;
1600 } else
1601 // Anything other than a CanonicalIVIncrementForPart is part 0
1602 Phis[0] = Phi;
1603 }
1604
1605 assert(all_of(Phis, [](VPActiveLaneMaskPHIRecipe *Phi) { return Phi; }) &&
1606 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1607
1608 auto *EntryALM = cast<VPInstruction>(Phis[0]->getStartValue());
1609 auto *LoopALM = cast<VPInstruction>(Phis[0]->getBackedgeValue());
1610
1611 assert((EntryALM->getOpcode() == VPInstruction::ActiveLaneMask &&
1612 LoopALM->getOpcode() == VPInstruction::ActiveLaneMask) &&
1613 "Expected incoming values of Phi to be ActiveLaneMasks");
1614
1615 // When using wide lane masks, the return type of the get.active.lane.mask
1616 // intrinsic is VF x UF (last operand).
1617 VPValue *ALMMultiplier =
1618 Plan.getOrAddLiveIn(ConstantInt::get(IntegerType::getInt64Ty(Ctx), UF));
1619 EntryALM->setOperand(2, ALMMultiplier);
1620 LoopALM->setOperand(2, ALMMultiplier);
1621
1622 // Create UF x extract vectors and insert into preheader.
1623 SmallVector<VPValue *> EntryExtracts(UF);
1624 ExtractFromALM(EntryALM, EntryExtracts);
1625
1626 // Create UF x extract vectors and insert before the loop compare & branch,
1627 // updating the compare to use the first extract.
1628 SmallVector<VPValue *> LoopExtracts(UF);
1629 ExtractFromALM(LoopALM, LoopExtracts);
1630 VPInstruction *Not = cast<VPInstruction>(Term->getOperand(0));
1631 Not->setOperand(0, LoopExtracts[0]);
1632
1633 // Update the incoming values of active lane mask phis.
1634 for (unsigned Part = 0; Part < UF; ++Part) {
1635 Phis[Part]->setStartValue(EntryExtracts[Part]);
1636 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1637 }
1638
1639 return true;
1640}
1641
1642/// Try to simplify the branch condition of \p Plan. This may restrict the
1643/// resulting plan to \p BestVF and \p BestUF.
1645 unsigned BestUF,
1647 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1648 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1649 auto *Term = &ExitingVPBB->back();
1650 VPValue *Cond;
1651 ScalarEvolution &SE = *PSE.getSE();
1652 if (match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) ||
1654 m_VPValue(), m_VPValue(), m_VPValue()))))) {
1655 // Try to simplify the branch condition if TC <= VF * UF when the latch
1656 // terminator is BranchOnCount or BranchOnCond where the input is
1657 // Not(ActiveLaneMask).
1658 const SCEV *TripCount =
1660 assert(!isa<SCEVCouldNotCompute>(TripCount) &&
1661 "Trip count SCEV must be computable");
1662 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1663 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
1664 if (TripCount->isZero() ||
1665 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
1666 return false;
1667 } else if (match(Term, m_BranchOnCond(m_VPValue(Cond)))) {
1668 // For BranchOnCond, check if we can prove the condition to be true using VF
1669 // and UF.
1670 if (!isConditionTrueViaVFAndUF(Cond, Plan, BestVF, BestUF, SE))
1671 return false;
1672 } else {
1673 return false;
1674 }
1675
1676 // The vector loop region only executes once. If possible, completely remove
1677 // the region, otherwise replace the terminator controlling the latch with
1678 // (BranchOnCond true).
1679 // TODO: VPWidenIntOrFpInductionRecipe is only partially supported; add
1680 // support for other non-canonical widen induction recipes (e.g.,
1681 // VPWidenPointerInductionRecipe).
1682 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1683 if (all_of(Header->phis(), [](VPRecipeBase &Phi) {
1684 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1685 return R->isCanonical();
1686 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1687 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1688 })) {
1689 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) {
1690 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&HeaderR)) {
1691 VPBuilder Builder(Plan.getVectorPreheader());
1692 VPValue *StepV = Builder.createNaryOp(VPInstruction::StepVector, {},
1693 R->getScalarType());
1694 HeaderR.getVPSingleValue()->replaceAllUsesWith(StepV);
1695 HeaderR.eraseFromParent();
1696 continue;
1697 }
1698 auto *Phi = cast<VPPhiAccessors>(&HeaderR);
1699 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1700 HeaderR.eraseFromParent();
1701 }
1702
1703 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor();
1704 VPBlockBase *Exit = VectorRegion->getSingleSuccessor();
1705 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion);
1706 VPBlockUtils::disconnectBlocks(VectorRegion, Exit);
1707
1708 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry()))
1709 B->setParent(nullptr);
1710
1711 VPBlockUtils::connectBlocks(Preheader, Header);
1712 VPBlockUtils::connectBlocks(ExitingVPBB, Exit);
1714 } else {
1715 // The vector region contains header phis for which we cannot remove the
1716 // loop region yet.
1717 auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getTrue()},
1718 Term->getDebugLoc());
1719 ExitingVPBB->appendRecipe(BOC);
1720 }
1721
1722 Term->eraseFromParent();
1723
1724 return true;
1725}
1726
1728 unsigned BestUF,
1730 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
1731 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
1732
1733 bool MadeChange = tryToReplaceALMWithWideALM(Plan, BestVF, BestUF);
1734 MadeChange |= simplifyBranchConditionForVFAndUF(Plan, BestVF, BestUF, PSE);
1735 MadeChange |= optimizeVectorInductionWidthForTCAndVFUF(Plan, BestVF, BestUF);
1736
1737 if (MadeChange) {
1738 Plan.setVF(BestVF);
1739 assert(Plan.getUF() == BestUF && "BestUF must match the Plan's UF");
1740 }
1741 // TODO: Further simplifications are possible
1742 // 1. Replace inductions with constants.
1743 // 2. Replace vector loop region with VPBasicBlock.
1744}
1745
1746/// Sink users of \p FOR after the recipe defining the previous value \p
1747/// Previous of the recurrence. \returns true if all users of \p FOR could be
1748/// re-arranged as needed or false if it is not possible.
1749static bool
1751 VPRecipeBase *Previous,
1752 VPDominatorTree &VPDT) {
1753 // Collect recipes that need sinking.
1756 Seen.insert(Previous);
1757 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
1758 // The previous value must not depend on the users of the recurrence phi. In
1759 // that case, FOR is not a fixed order recurrence.
1760 if (SinkCandidate == Previous)
1761 return false;
1762
1763 if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
1764 !Seen.insert(SinkCandidate).second ||
1765 VPDT.properlyDominates(Previous, SinkCandidate))
1766 return true;
1767
1768 if (SinkCandidate->mayHaveSideEffects())
1769 return false;
1770
1771 WorkList.push_back(SinkCandidate);
1772 return true;
1773 };
1774
1775 // Recursively sink users of FOR after Previous.
1776 WorkList.push_back(FOR);
1777 for (unsigned I = 0; I != WorkList.size(); ++I) {
1778 VPRecipeBase *Current = WorkList[I];
1779 assert(Current->getNumDefinedValues() == 1 &&
1780 "only recipes with a single defined value expected");
1781
1782 for (VPUser *User : Current->getVPSingleValue()->users()) {
1783 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
1784 return false;
1785 }
1786 }
1787
1788 // Keep recipes to sink ordered by dominance so earlier instructions are
1789 // processed first.
1790 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1791 return VPDT.properlyDominates(A, B);
1792 });
1793
1794 for (VPRecipeBase *SinkCandidate : WorkList) {
1795 if (SinkCandidate == FOR)
1796 continue;
1797
1798 SinkCandidate->moveAfter(Previous);
1799 Previous = SinkCandidate;
1800 }
1801 return true;
1802}
1803
1804/// Try to hoist \p Previous and its operands before all users of \p FOR.
1806 VPRecipeBase *Previous,
1807 VPDominatorTree &VPDT) {
1808 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
1809 return false;
1810
1811 // Collect recipes that need hoisting.
1812 SmallVector<VPRecipeBase *> HoistCandidates;
1814 VPRecipeBase *HoistPoint = nullptr;
1815 // Find the closest hoist point by looking at all users of FOR and selecting
1816 // the recipe dominating all other users.
1817 for (VPUser *U : FOR->users()) {
1818 auto *R = cast<VPRecipeBase>(U);
1819 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
1820 HoistPoint = R;
1821 }
1822 assert(all_of(FOR->users(),
1823 [&VPDT, HoistPoint](VPUser *U) {
1824 auto *R = cast<VPRecipeBase>(U);
1825 return HoistPoint == R ||
1826 VPDT.properlyDominates(HoistPoint, R);
1827 }) &&
1828 "HoistPoint must dominate all users of FOR");
1829
1830 auto NeedsHoisting = [HoistPoint, &VPDT,
1831 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
1832 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1833 if (!HoistCandidate)
1834 return nullptr;
1835 VPRegionBlock *EnclosingLoopRegion =
1836 HoistCandidate->getParent()->getEnclosingLoopRegion();
1837 assert((!HoistCandidate->getParent()->getParent() ||
1838 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
1839 "CFG in VPlan should still be flat, without replicate regions");
1840 // Hoist candidate was already visited, no need to hoist.
1841 if (!Visited.insert(HoistCandidate).second)
1842 return nullptr;
1843
1844 // Candidate is outside loop region or a header phi, dominates FOR users w/o
1845 // hoisting.
1846 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
1847 return nullptr;
1848
1849 // If we reached a recipe that dominates HoistPoint, we don't need to
1850 // hoist the recipe.
1851 if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
1852 return nullptr;
1853 return HoistCandidate;
1854 };
1855 auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
1856 // Avoid hoisting candidates with side-effects, as we do not yet analyze
1857 // associated dependencies.
1858 return !HoistCandidate->mayHaveSideEffects();
1859 };
1860
1861 if (!NeedsHoisting(Previous->getVPSingleValue()))
1862 return true;
1863
1864 // Recursively try to hoist Previous and its operands before all users of FOR.
1865 HoistCandidates.push_back(Previous);
1866
1867 for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
1868 VPRecipeBase *Current = HoistCandidates[I];
1869 assert(Current->getNumDefinedValues() == 1 &&
1870 "only recipes with a single defined value expected");
1871 if (!CanHoist(Current))
1872 return false;
1873
1874 for (VPValue *Op : Current->operands()) {
1875 // If we reach FOR, it means the original Previous depends on some other
1876 // recurrence that in turn depends on FOR. If that is the case, we would
1877 // also need to hoist recipes involving the other FOR, which may break
1878 // dependencies.
1879 if (Op == FOR)
1880 return false;
1881
1882 if (auto *R = NeedsHoisting(Op))
1883 HoistCandidates.push_back(R);
1884 }
1885 }
1886
1887 // Order recipes to hoist by dominance so earlier instructions are processed
1888 // first.
1889 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1890 return VPDT.properlyDominates(A, B);
1891 });
1892
1893 for (VPRecipeBase *HoistCandidate : HoistCandidates) {
1894 HoistCandidate->moveBefore(*HoistPoint->getParent(),
1895 HoistPoint->getIterator());
1896 }
1897
1898 return true;
1899}
1900
1902 VPBuilder &LoopBuilder) {
1903 VPDominatorTree VPDT;
1904 VPDT.recalculate(Plan);
1905
1907 for (VPRecipeBase &R :
1910 RecurrencePhis.push_back(FOR);
1911
1912 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
1914 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1915 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
1916 // to terminate.
1917 while (auto *PrevPhi =
1919 assert(PrevPhi->getParent() == FOR->getParent());
1920 assert(SeenPhis.insert(PrevPhi).second);
1921 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1922 }
1923
1924 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
1925 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
1926 return false;
1927
1928 // Introduce a recipe to combine the incoming and previous values of a
1929 // fixed-order recurrence.
1930 VPBasicBlock *InsertBlock = Previous->getParent();
1931 if (isa<VPHeaderPHIRecipe>(Previous))
1932 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
1933 else
1934 LoopBuilder.setInsertPoint(InsertBlock,
1935 std::next(Previous->getIterator()));
1936
1937 auto *RecurSplice =
1939 {FOR, FOR->getBackedgeValue()});
1940
1941 FOR->replaceAllUsesWith(RecurSplice);
1942 // Set the first operand of RecurSplice to FOR again, after replacing
1943 // all users.
1944 RecurSplice->setOperand(0, FOR);
1945 }
1946 return true;
1947}
1948
1950 for (VPRecipeBase &R :
1952 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
1953 if (!PhiR)
1954 continue;
1955 RecurKind RK = PhiR->getRecurrenceKind();
1956 if (RK != RecurKind::Add && RK != RecurKind::Mul && RK != RecurKind::Sub &&
1958 continue;
1959
1960 for (VPUser *U : collectUsersRecursively(PhiR))
1961 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
1962 RecWithFlags->dropPoisonGeneratingFlags();
1963 }
1964 }
1965}
1966
1967namespace {
1968struct VPCSEDenseMapInfo : public DenseMapInfo<VPSingleDefRecipe *> {
1969 static bool isSentinel(const VPSingleDefRecipe *Def) {
1970 return Def == getEmptyKey() || Def == getTombstoneKey();
1971 }
1972
1973 /// Get any instruction opcode or intrinsic ID data embedded in recipe \p R.
1974 /// Returns an optional pair, where the first element indicates whether it is
1975 /// an intrinsic ID.
1976 static std::optional<std::pair<bool, unsigned>>
1977 getOpcodeOrIntrinsicID(const VPSingleDefRecipe *R) {
1978 return TypeSwitch<const VPSingleDefRecipe *,
1979 std::optional<std::pair<bool, unsigned>>>(R)
1982 [](auto *I) { return std::make_pair(false, I->getOpcode()); })
1983 .Case<VPWidenIntrinsicRecipe>([](auto *I) {
1984 return std::make_pair(true, I->getVectorIntrinsicID());
1985 })
1986 .Default([](auto *) { return std::nullopt; });
1987 }
1988
1989 /// If recipe \p R will lower to a GEP with a non-i8 source element type,
1990 /// return that source element type.
1991 static Type *getGEPSourceElementType(const VPSingleDefRecipe *R) {
1992 // All VPInstructions that lower to GEPs must have the i8 source element
1993 // type (as they are PtrAdds), so we omit it.
1994 return TypeSwitch<const VPSingleDefRecipe *, Type *>(R)
1995 .Case<VPReplicateRecipe, VPWidenGEPRecipe>([](auto *I) -> Type * {
1996 if (auto *GEP = dyn_cast<GetElementPtrInst>(I->getUnderlyingValue()))
1997 return GEP->getSourceElementType();
1998 return nullptr;
1999 })
2000 .Case<VPVectorPointerRecipe>(
2001 [](auto *I) { return I->getSourceElementType(); })
2002 .Default([](auto *) { return nullptr; });
2003 }
2004
2005 /// Returns true if recipe \p Def can be safely handed for CSE.
2006 static bool canHandle(const VPSingleDefRecipe *Def) {
2007 // We can extend the list of handled recipes in the future,
2008 // provided we account for the data embedded in them while checking for
2009 // equality or hashing. We assign VPVectorEndPointerRecipe the GEP opcode,
2010 // as it is essentially a GEP with different semantics.
2011 auto C = isa<VPVectorPointerRecipe>(Def)
2012 ? std::make_pair(false, Instruction::GetElementPtr)
2013 : getOpcodeOrIntrinsicID(Def);
2014
2015 // The issue with (Insert|Extract)Value is that the index of the
2016 // insert/extract is not a proper operand in LLVM IR, and hence also not in
2017 // VPlan.
2018 if (!C || (!C->first && (C->second == Instruction::InsertValue ||
2019 C->second == Instruction::ExtractValue)))
2020 return false;
2021
2022 // During CSE, we can only handle recipes that don't read from memory: if
2023 // they read from memory, there could be an intervening write to memory
2024 // before the next instance is CSE'd, leading to an incorrect result.
2025 return !Def->mayReadFromMemory();
2026 }
2027
2028 /// Hash the underlying data of \p Def.
2029 static unsigned getHashValue(const VPSingleDefRecipe *Def) {
2030 const VPlan *Plan = Def->getParent()->getPlan();
2031 VPTypeAnalysis TypeInfo(*Plan);
2032 hash_code Result = hash_combine(
2033 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2034 getGEPSourceElementType(Def), TypeInfo.inferScalarType(Def),
2036 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(Def))
2037 if (RFlags->hasPredicate())
2038 return hash_combine(Result, RFlags->getPredicate());
2039 return Result;
2040 }
2041
2042 /// Check equality of underlying data of \p L and \p R.
2043 static bool isEqual(const VPSingleDefRecipe *L, const VPSingleDefRecipe *R) {
2044 if (isSentinel(L) || isSentinel(R))
2045 return L == R;
2046 if (L->getVPDefID() != R->getVPDefID() ||
2047 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2048 getGEPSourceElementType(L) != getGEPSourceElementType(R) ||
2050 !equal(L->operands(), R->operands()))
2051 return false;
2052 if (auto *LFlags = dyn_cast<VPRecipeWithIRFlags>(L))
2053 if (LFlags->hasPredicate() &&
2054 LFlags->getPredicate() !=
2055 cast<VPRecipeWithIRFlags>(R)->getPredicate())
2056 return false;
2057 const VPlan *Plan = L->getParent()->getPlan();
2058 VPTypeAnalysis TypeInfo(*Plan);
2059 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2060 }
2061};
2062} // end anonymous namespace
2063
2064/// Perform a common-subexpression-elimination of VPSingleDefRecipes on the \p
2065/// Plan.
2067 VPDominatorTree VPDT(Plan);
2069
2071 vp_depth_first_deep(Plan.getEntry()))) {
2072 for (VPRecipeBase &R : *VPBB) {
2073 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
2074 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2075 continue;
2076 if (VPSingleDefRecipe *V = CSEMap.lookup(Def)) {
2077 // V must dominate Def for a valid replacement.
2078 if (!VPDT.dominates(V->getParent(), VPBB))
2079 continue;
2080 // Only keep flags present on both V and Def.
2081 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(V))
2082 RFlags->intersectFlags(*cast<VPRecipeWithIRFlags>(Def));
2083 Def->replaceAllUsesWith(V);
2084 continue;
2085 }
2086 CSEMap[Def] = Def;
2087 }
2088 }
2089}
2090
2091/// Move loop-invariant recipes out of the vector loop region in \p Plan.
2092static void licm(VPlan &Plan) {
2093 VPBasicBlock *Preheader = Plan.getVectorPreheader();
2094
2095 // Return true if we do not know how to (mechanically) hoist a given recipe
2096 // out of a loop region. Does not address legality concerns such as aliasing
2097 // or speculation safety.
2098 auto CannotHoistRecipe = [](VPRecipeBase &R) {
2099 // Allocas cannot be hoisted.
2100 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
2101 return RepR && RepR->getOpcode() == Instruction::Alloca;
2102 };
2103
2104 // Hoist any loop invariant recipes from the vector loop region to the
2105 // preheader. Preform a shallow traversal of the vector loop region, to
2106 // exclude recipes in replicate regions.
2107 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2109 vp_depth_first_shallow(LoopRegion->getEntry()))) {
2110 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2111 if (CannotHoistRecipe(R))
2112 continue;
2113 // TODO: Relax checks in the future, e.g. we could also hoist reads, if
2114 // their memory location is not modified in the vector loop.
2115 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2116 any_of(R.operands(), [](VPValue *Op) {
2117 return !Op->isDefinedOutsideLoopRegions();
2118 }))
2119 continue;
2120 R.moveBefore(*Preheader, Preheader->end());
2121 }
2122 }
2123}
2124
2126 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
2127 // Keep track of created truncates, so they can be re-used. Note that we
2128 // cannot use RAUW after creating a new truncate, as this would could make
2129 // other uses have different types for their operands, making them invalidly
2130 // typed.
2132 VPTypeAnalysis TypeInfo(Plan);
2133 VPBasicBlock *PH = Plan.getVectorPreheader();
2136 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2139 &R))
2140 continue;
2141
2142 VPValue *ResultVPV = R.getVPSingleValue();
2143 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
2144 unsigned NewResSizeInBits = MinBWs.lookup(UI);
2145 if (!NewResSizeInBits)
2146 continue;
2147
2148 // If the value wasn't vectorized, we must maintain the original scalar
2149 // type. Skip those here, after incrementing NumProcessedRecipes. Also
2150 // skip casts which do not need to be handled explicitly here, as
2151 // redundant casts will be removed during recipe simplification.
2153 continue;
2154
2155 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
2156 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
2157 assert(OldResTy->isIntegerTy() && "only integer types supported");
2158 (void)OldResSizeInBits;
2159
2160 auto *NewResTy = IntegerType::get(Plan.getContext(), NewResSizeInBits);
2161
2162 // Any wrapping introduced by shrinking this operation shouldn't be
2163 // considered undefined behavior. So, we can't unconditionally copy
2164 // arithmetic wrapping flags to VPW.
2165 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
2166 VPW->dropPoisonGeneratingFlags();
2167
2168 if (OldResSizeInBits != NewResSizeInBits &&
2169 !match(&R, m_ICmp(m_VPValue(), m_VPValue()))) {
2170 // Extend result to original width.
2171 auto *Ext =
2172 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
2173 Ext->insertAfter(&R);
2174 ResultVPV->replaceAllUsesWith(Ext);
2175 Ext->setOperand(0, ResultVPV);
2176 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
2177 } else {
2178 assert(match(&R, m_ICmp(m_VPValue(), m_VPValue())) &&
2179 "Only ICmps should not need extending the result.");
2180 }
2181
2182 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
2184 continue;
2185
2186 // Shrink operands by introducing truncates as needed.
2187 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
2188 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2189 auto *Op = R.getOperand(Idx);
2190 unsigned OpSizeInBits =
2192 if (OpSizeInBits == NewResSizeInBits)
2193 continue;
2194 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
2195 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.try_emplace(Op);
2196 VPWidenCastRecipe *NewOp =
2197 IterIsEmpty
2198 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
2199 : ProcessedIter->second;
2200 R.setOperand(Idx, NewOp);
2201 if (!IterIsEmpty)
2202 continue;
2203 ProcessedIter->second = NewOp;
2204 if (!Op->isLiveIn()) {
2205 NewOp->insertBefore(&R);
2206 } else {
2207 PH->appendRecipe(NewOp);
2208 }
2209 }
2210
2211 }
2212 }
2213}
2214
2218 VPValue *Cond;
2219 if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.getEntry() ||
2220 !match(&VPBB->back(), m_BranchOnCond(m_VPValue(Cond))))
2221 continue;
2222
2223 unsigned RemovedIdx;
2224 if (match(Cond, m_True()))
2225 RemovedIdx = 1;
2226 else if (match(Cond, m_False()))
2227 RemovedIdx = 0;
2228 else
2229 continue;
2230
2231 VPBasicBlock *RemovedSucc =
2232 cast<VPBasicBlock>(VPBB->getSuccessors()[RemovedIdx]);
2233 assert(count(RemovedSucc->getPredecessors(), VPBB) == 1 &&
2234 "There must be a single edge between VPBB and its successor");
2235 // Values coming from VPBB into phi recipes of RemoveSucc are removed from
2236 // these recipes.
2237 for (VPRecipeBase &R : RemovedSucc->phis())
2238 cast<VPPhiAccessors>(&R)->removeIncomingValueFor(VPBB);
2239
2240 // Disconnect blocks and remove the terminator. RemovedSucc will be deleted
2241 // automatically on VPlan destruction if it becomes unreachable.
2242 VPBlockUtils::disconnectBlocks(VPBB, RemovedSucc);
2243 VPBB->back().eraseFromParent();
2244 }
2245}
2246
2265
2266// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
2267// the loop terminator with a branch-on-cond recipe with the negated
2268// active-lane-mask as operand. Note that this turns the loop into an
2269// uncountable one. Only the existing terminator is replaced, all other existing
2270// recipes/users remain unchanged, except for poison-generating flags being
2271// dropped from the canonical IV increment. Return the created
2272// VPActiveLaneMaskPHIRecipe.
2273//
2274// The function uses the following definitions:
2275//
2276// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
2277// calculate-trip-count-minus-VF (original TC) : original TC
2278// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
2279// CanonicalIVPhi : CanonicalIVIncrement
2280// %StartV is the canonical induction start value.
2281//
2282// The function adds the following recipes:
2283//
2284// vector.ph:
2285// %TripCount = calculate-trip-count-minus-VF (original TC)
2286// [if DataWithControlFlowWithoutRuntimeCheck]
2287// %EntryInc = canonical-iv-increment-for-part %StartV
2288// %EntryALM = active-lane-mask %EntryInc, %TripCount
2289//
2290// vector.body:
2291// ...
2292// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
2293// ...
2294// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
2295// %ALM = active-lane-mask %InLoopInc, TripCount
2296// %Negated = Not %ALM
2297// branch-on-cond %Negated
2298//
2301 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
2302 VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
2303 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2304 VPValue *StartV = CanonicalIVPHI->getStartValue();
2305
2306 auto *CanonicalIVIncrement =
2307 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2308 // TODO: Check if dropping the flags is needed if
2309 // !DataAndControlFlowWithoutRuntimeCheck.
2310 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2311 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2312 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
2313 // we have to take unrolling into account. Each part needs to start at
2314 // Part * VF
2315 auto *VecPreheader = Plan.getVectorPreheader();
2316 VPBuilder Builder(VecPreheader);
2317
2318 // Create the ActiveLaneMask instruction using the correct start values.
2319 VPValue *TC = Plan.getTripCount();
2320
2321 VPValue *TripCount, *IncrementValue;
2323 // When the loop is guarded by a runtime overflow check for the loop
2324 // induction variable increment by VF, we can increment the value before
2325 // the get.active.lane mask and use the unmodified tripcount.
2326 IncrementValue = CanonicalIVIncrement;
2327 TripCount = TC;
2328 } else {
2329 // When avoiding a runtime check, the active.lane.mask inside the loop
2330 // uses a modified trip count and the induction variable increment is
2331 // done after the active.lane.mask intrinsic is called.
2332 IncrementValue = CanonicalIVPHI;
2333 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
2334 {TC}, DL);
2335 }
2336 auto *EntryIncrement = Builder.createOverflowingOp(
2337 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
2338 "index.part.next");
2339
2340 // Create the active lane mask instruction in the VPlan preheader.
2341 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2342 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2343 auto *EntryALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2344 {EntryIncrement, TC, ALMMultiplier}, DL,
2345 "active.lane.mask.entry");
2346
2347 // Now create the ActiveLaneMaskPhi recipe in the main loop using the
2348 // preheader ActiveLaneMask instruction.
2349 auto *LaneMaskPhi =
2351 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2352
2353 // Create the active lane mask for the next iteration of the loop before the
2354 // original terminator.
2355 VPRecipeBase *OriginalTerminator = EB->getTerminator();
2356 Builder.setInsertPoint(OriginalTerminator);
2357 auto *InLoopIncrement =
2358 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
2359 {IncrementValue}, {false, false}, DL);
2360 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2361 {InLoopIncrement, TripCount, ALMMultiplier},
2362 DL, "active.lane.mask.next");
2363 LaneMaskPhi->addOperand(ALM);
2364
2365 // Replace the original terminator with BranchOnCond. We have to invert the
2366 // mask here because a true condition means jumping to the exit block.
2367 auto *NotMask = Builder.createNot(ALM, DL);
2368 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
2369 OriginalTerminator->eraseFromParent();
2370 return LaneMaskPhi;
2371}
2372
2373/// Collect the header mask with the pattern:
2374/// (ICMP_ULE, WideCanonicalIV, backedge-taken-count)
2375/// TODO: Introduce explicit recipe for header-mask instead of searching
2376/// for the header-mask pattern manually.
2378 SmallVector<VPValue *> WideCanonicalIVs;
2379 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2383 "Must have at most one VPWideCanonicalIVRecipe");
2384 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
2385 auto *WideCanonicalIV =
2386 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2387 WideCanonicalIVs.push_back(WideCanonicalIV);
2388 }
2389
2390 // Also include VPWidenIntOrFpInductionRecipes that represent a widened
2391 // version of the canonical induction.
2392 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
2393 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
2394 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
2395 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2396 WideCanonicalIVs.push_back(WidenOriginalIV);
2397 }
2398
2399 // Walk users of wide canonical IVs and find the single compare of the form
2400 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
2401 VPSingleDefRecipe *HeaderMask = nullptr;
2402 for (auto *Wide : WideCanonicalIVs) {
2403 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
2404 auto *VPI = dyn_cast<VPInstruction>(U);
2405 if (!VPI || !vputils::isHeaderMask(VPI, Plan))
2406 continue;
2407
2408 assert(VPI->getOperand(0) == Wide &&
2409 "WidenCanonicalIV must be the first operand of the compare");
2410 assert(!HeaderMask && "Multiple header masks found?");
2411 HeaderMask = VPI;
2412 }
2413 }
2414 return HeaderMask;
2415}
2416
2418 VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
2421 UseActiveLaneMaskForControlFlow) &&
2422 "DataAndControlFlowWithoutRuntimeCheck implies "
2423 "UseActiveLaneMaskForControlFlow");
2424
2425 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2427 assert(FoundWidenCanonicalIVUser &&
2428 "Must have widened canonical IV when tail folding!");
2429 VPSingleDefRecipe *HeaderMask = findHeaderMask(Plan);
2430 auto *WideCanonicalIV =
2431 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2432 VPSingleDefRecipe *LaneMask;
2433 if (UseActiveLaneMaskForControlFlow) {
2436 } else {
2437 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
2438 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2439 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2440 LaneMask =
2441 B.createNaryOp(VPInstruction::ActiveLaneMask,
2442 {WideCanonicalIV, Plan.getTripCount(), ALMMultiplier},
2443 nullptr, "active.lane.mask");
2444 }
2445
2446 // Walk users of WideCanonicalIV and replace the header mask of the form
2447 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an active-lane-mask,
2448 // removing the old one to ensure there is always only a single header mask.
2449 HeaderMask->replaceAllUsesWith(LaneMask);
2450 HeaderMask->eraseFromParent();
2451}
2452
2453/// Try to optimize a \p CurRecipe masked by \p HeaderMask to a corresponding
2454/// EVL-based recipe without the header mask. Returns nullptr if no EVL-based
2455/// recipe could be created.
2456/// \p HeaderMask Header Mask.
2457/// \p CurRecipe Recipe to be transform.
2458/// \p TypeInfo VPlan-based type analysis.
2459/// \p AllOneMask The vector mask parameter of vector-predication intrinsics.
2460/// \p EVL The explicit vector length parameter of vector-predication
2461/// intrinsics.
2463 VPRecipeBase &CurRecipe,
2464 VPTypeAnalysis &TypeInfo,
2465 VPValue &AllOneMask, VPValue &EVL) {
2466 // FIXME: Don't transform recipes to EVL recipes if they're not masked by the
2467 // header mask.
2468 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
2469 assert(OrigMask && "Unmasked recipe when folding tail");
2470 // HeaderMask will be handled using EVL.
2471 VPValue *Mask;
2472 if (match(OrigMask, m_LogicalAnd(m_Specific(HeaderMask), m_VPValue(Mask))))
2473 return Mask;
2474 return HeaderMask == OrigMask ? nullptr : OrigMask;
2475 };
2476
2477 /// Adjust any end pointers so that they point to the end of EVL lanes not VF.
2478 auto GetNewAddr = [&CurRecipe, &EVL](VPValue *Addr) -> VPValue * {
2479 auto *EndPtr = dyn_cast<VPVectorEndPointerRecipe>(Addr);
2480 if (!EndPtr)
2481 return Addr;
2482 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2483 "VPVectorEndPointerRecipe with non-VF VF operand?");
2484 assert(
2485 all_of(EndPtr->users(),
2486 [](VPUser *U) {
2487 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2488 }) &&
2489 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2490 VPVectorEndPointerRecipe *EVLAddr = EndPtr->clone();
2491 EVLAddr->insertBefore(&CurRecipe);
2492 EVLAddr->setOperand(1, &EVL);
2493 return EVLAddr;
2494 };
2495
2498 VPValue *NewMask = GetNewMask(L->getMask());
2499 VPValue *NewAddr = GetNewAddr(L->getAddr());
2500 return new VPWidenLoadEVLRecipe(*L, NewAddr, EVL, NewMask);
2501 })
2502 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
2503 VPValue *NewMask = GetNewMask(S->getMask());
2504 VPValue *NewAddr = GetNewAddr(S->getAddr());
2505 return new VPWidenStoreEVLRecipe(*S, NewAddr, EVL, NewMask);
2506 })
2507 .Case<VPInterleaveRecipe>([&](VPInterleaveRecipe *IR) {
2508 VPValue *NewMask = GetNewMask(IR->getMask());
2509 return new VPInterleaveEVLRecipe(*IR, EVL, NewMask);
2510 })
2511 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
2512 VPValue *NewMask = GetNewMask(Red->getCondOp());
2513 return new VPReductionEVLRecipe(*Red, EVL, NewMask);
2514 })
2515 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
2516 VPValue *LHS, *RHS;
2517 // Transform select with a header mask condition
2518 // select(header_mask, LHS, RHS)
2519 // into vector predication merge.
2520 // vp.merge(all-true, LHS, RHS, EVL)
2521 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
2522 m_VPValue(RHS))))
2523 return nullptr;
2524 // Use all true as the condition because this transformation is
2525 // limited to selects whose condition is a header mask.
2526 return new VPWidenIntrinsicRecipe(
2527 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL},
2528 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
2529 })
2530 .Default([&](VPRecipeBase *R) { return nullptr; });
2531}
2532
2533/// Replace recipes with their EVL variants.
2535 VPTypeAnalysis TypeInfo(Plan);
2536 VPValue *AllOneMask = Plan.getTrue();
2537 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2538 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
2539
2540 assert(all_of(Plan.getVF().users(),
2543 "User of VF that we can't transform to EVL.");
2544 Plan.getVF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2546 });
2547
2548 assert(all_of(Plan.getVFxUF().users(),
2549 [&Plan](VPUser *U) {
2550 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2551 m_Specific(&Plan.getVFxUF()))) ||
2552 isa<VPWidenPointerInductionRecipe>(U);
2553 }) &&
2554 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2555 "increment of the canonical induction.");
2556 Plan.getVFxUF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2557 // Only replace uses in VPWidenPointerInductionRecipe; The increment of the
2558 // canonical induction must not be updated.
2560 });
2561
2562 // Defer erasing recipes till the end so that we don't invalidate the
2563 // VPTypeAnalysis cache.
2565
2566 // Create a scalar phi to track the previous EVL if fixed-order recurrence is
2567 // contained.
2568 bool ContainsFORs =
2570 if (ContainsFORs) {
2571 // TODO: Use VPInstruction::ExplicitVectorLength to get maximum EVL.
2572 VPValue *MaxEVL = &Plan.getVF();
2573 // Emit VPScalarCastRecipe in preheader if VF is not a 32 bits integer.
2574 VPBuilder Builder(LoopRegion->getPreheaderVPBB());
2575 MaxEVL = Builder.createScalarZExtOrTrunc(
2576 MaxEVL, Type::getInt32Ty(Plan.getContext()),
2577 TypeInfo.inferScalarType(MaxEVL), DebugLoc::getUnknown());
2578
2579 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2580 VPValue *PrevEVL = Builder.createScalarPhi(
2581 {MaxEVL, &EVL}, DebugLoc::getUnknown(), "prev.evl");
2582
2585 for (VPRecipeBase &R : *VPBB) {
2586 VPValue *V1, *V2;
2587 if (!match(&R,
2589 m_VPValue(V1), m_VPValue(V2))))
2590 continue;
2591 VPValue *Imm = Plan.getOrAddLiveIn(
2594 Intrinsic::experimental_vp_splice,
2595 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2596 TypeInfo.inferScalarType(R.getVPSingleValue()), R.getDebugLoc());
2597 VPSplice->insertBefore(&R);
2598 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2599 ToErase.push_back(&R);
2600 }
2601 }
2602 }
2603
2604 VPValue *HeaderMask = findHeaderMask(Plan);
2605 if (!HeaderMask)
2606 return;
2607
2608 // Replace header masks with a mask equivalent to predicating by EVL:
2609 //
2610 // icmp ule widen-canonical-iv backedge-taken-count
2611 // ->
2612 // icmp ult step-vector, EVL
2613 VPRecipeBase *EVLR = EVL.getDefiningRecipe();
2614 VPBuilder Builder(EVLR->getParent(), std::next(EVLR->getIterator()));
2615 Type *EVLType = TypeInfo.inferScalarType(&EVL);
2616 VPValue *EVLMask = Builder.createICmp(
2618 Builder.createNaryOp(VPInstruction::StepVector, {}, EVLType), &EVL);
2619 HeaderMask->replaceAllUsesWith(EVLMask);
2620 ToErase.push_back(HeaderMask->getDefiningRecipe());
2621
2622 // Try to optimize header mask recipes away to their EVL variants.
2623 // TODO: Split optimizeMaskToEVL out and move into
2624 // VPlanTransforms::optimize. transformRecipestoEVLRecipes should be run in
2625 // tryToBuildVPlanWithVPRecipes beforehand.
2626 for (VPUser *U : collectUsersRecursively(EVLMask)) {
2627 auto *CurRecipe = cast<VPRecipeBase>(U);
2628 VPRecipeBase *EVLRecipe =
2629 optimizeMaskToEVL(EVLMask, *CurRecipe, TypeInfo, *AllOneMask, EVL);
2630 if (!EVLRecipe)
2631 continue;
2632
2633 unsigned NumDefVal = EVLRecipe->getNumDefinedValues();
2634 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2635 "New recipe must define the same number of values as the "
2636 "original.");
2637 EVLRecipe->insertBefore(CurRecipe);
2639 EVLRecipe)) {
2640 for (unsigned I = 0; I < NumDefVal; ++I) {
2641 VPValue *CurVPV = CurRecipe->getVPValue(I);
2642 CurVPV->replaceAllUsesWith(EVLRecipe->getVPValue(I));
2643 }
2644 }
2645 ToErase.push_back(CurRecipe);
2646 }
2647 // Remove dead EVL mask.
2648 if (EVLMask->getNumUsers() == 0)
2649 ToErase.push_back(EVLMask->getDefiningRecipe());
2650
2651 for (VPRecipeBase *R : reverse(ToErase)) {
2652 SmallVector<VPValue *> PossiblyDead(R->operands());
2653 R->eraseFromParent();
2654 for (VPValue *Op : PossiblyDead)
2656 }
2657}
2658
2659/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
2660/// replaces all uses except the canonical IV increment of
2661/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
2662/// is used only for loop iterations counting after this transformation.
2663///
2664/// The function uses the following definitions:
2665/// %StartV is the canonical induction start value.
2666///
2667/// The function adds the following recipes:
2668///
2669/// vector.ph:
2670/// ...
2671///
2672/// vector.body:
2673/// ...
2674/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2675/// [ %NextEVLIV, %vector.body ]
2676/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2677/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
2678/// ...
2679/// %OpEVL = cast i32 %VPEVL to IVSize
2680/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2681/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2682/// ...
2683///
2684/// If MaxSafeElements is provided, the function adds the following recipes:
2685/// vector.ph:
2686/// ...
2687///
2688/// vector.body:
2689/// ...
2690/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2691/// [ %NextEVLIV, %vector.body ]
2692/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2693/// %cmp = cmp ult %AVL, MaxSafeElements
2694/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
2695/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
2696/// ...
2697/// %OpEVL = cast i32 %VPEVL to IVSize
2698/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2699/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2700/// ...
2701///
2703 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
2705
2706 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2707 auto *CanIVTy = CanonicalIVPHI->getScalarType();
2708 VPValue *StartV = CanonicalIVPHI->getStartValue();
2709
2710 // Create the ExplicitVectorLengthPhi recipe in the main loop.
2711 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc::getUnknown());
2712 EVLPhi->insertAfter(CanonicalIVPHI);
2713 VPBuilder Builder(Header, Header->getFirstNonPhi());
2714 // Create the AVL (application vector length), starting from TC -> 0 in steps
2715 // of EVL.
2716 VPPhi *AVLPhi = Builder.createScalarPhi(
2717 {Plan.getTripCount()}, DebugLoc::getCompilerGenerated(), "avl");
2718 VPValue *AVL = AVLPhi;
2719
2720 if (MaxSafeElements) {
2721 // Support for MaxSafeDist for correct loop emission.
2722 VPValue *AVLSafe =
2723 Plan.getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2724 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
2725 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc::getUnknown(),
2726 "safe_avl");
2727 }
2728 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
2730
2731 auto *CanonicalIVIncrement =
2732 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2733 Builder.setInsertPoint(CanonicalIVIncrement);
2734 VPValue *OpVPEVL = VPEVL;
2735
2736 auto *I32Ty = Type::getInt32Ty(Plan.getContext());
2737 OpVPEVL = Builder.createScalarZExtOrTrunc(
2738 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2739
2740 auto *NextEVLIV = Builder.createOverflowingOp(
2741 Instruction::Add, {OpVPEVL, EVLPhi},
2742 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2743 CanonicalIVIncrement->hasNoSignedWrap()},
2744 CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
2745 EVLPhi->addOperand(NextEVLIV);
2746
2747 VPValue *NextAVL = Builder.createOverflowingOp(
2748 Instruction::Sub, {AVLPhi, OpVPEVL}, {/*hasNUW=*/true, /*hasNSW=*/false},
2749 DebugLoc::getCompilerGenerated(), "avl.next");
2750 AVLPhi->addOperand(NextAVL);
2751
2752 transformRecipestoEVLRecipes(Plan, *VPEVL);
2753
2754 // Replace all uses of VPCanonicalIVPHIRecipe by
2755 // VPEVLBasedIVPHIRecipe except for the canonical IV increment.
2756 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2757 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2758 // TODO: support unroll factor > 1.
2759 Plan.setUF(1);
2760}
2761
2763 // Find EVL loop entries by locating VPEVLBasedIVPHIRecipe.
2764 // There should be only one EVL PHI in the entire plan.
2765 VPEVLBasedIVPHIRecipe *EVLPhi = nullptr;
2766
2769 for (VPRecipeBase &R : VPBB->phis())
2770 if (auto *PhiR = dyn_cast<VPEVLBasedIVPHIRecipe>(&R)) {
2771 assert(!EVLPhi && "Found multiple EVL PHIs. Only one expected");
2772 EVLPhi = PhiR;
2773 }
2774
2775 // Early return if no EVL PHI is found.
2776 if (!EVLPhi)
2777 return;
2778
2779 VPBasicBlock *HeaderVPBB = EVLPhi->getParent();
2780 VPValue *EVLIncrement = EVLPhi->getBackedgeValue();
2781 VPValue *AVL;
2782 [[maybe_unused]] bool FoundAVL =
2783 match(EVLIncrement,
2784 m_c_Add(m_ZExtOrSelf(m_EVL(m_VPValue(AVL))), m_Specific(EVLPhi)));
2785 assert(FoundAVL && "Didn't find AVL?");
2786
2787 // The AVL may be capped to a safe distance.
2788 VPValue *SafeAVL;
2789 if (match(AVL, m_Select(m_VPValue(), m_VPValue(SafeAVL), m_VPValue())))
2790 AVL = SafeAVL;
2791
2792 VPValue *AVLNext;
2793 [[maybe_unused]] bool FoundAVLNext =
2795 m_Specific(Plan.getTripCount()), m_VPValue(AVLNext)));
2796 assert(FoundAVLNext && "Didn't find AVL backedge?");
2797
2798 // Convert EVLPhi to concrete recipe.
2799 auto *ScalarR =
2800 VPBuilder(EVLPhi).createScalarPhi({EVLPhi->getStartValue(), EVLIncrement},
2801 EVLPhi->getDebugLoc(), "evl.based.iv");
2802 EVLPhi->replaceAllUsesWith(ScalarR);
2803 EVLPhi->eraseFromParent();
2804
2805 // Replace CanonicalIVInc with EVL-PHI increment.
2806 auto *CanonicalIV = cast<VPPhi>(&*HeaderVPBB->begin());
2807 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2808 assert(match(Backedge, m_c_Add(m_Specific(CanonicalIV),
2809 m_Specific(&Plan.getVFxUF()))) &&
2810 "Unexpected canonical iv");
2811 Backedge->replaceAllUsesWith(EVLIncrement);
2812
2813 // Remove unused phi and increment.
2814 VPRecipeBase *CanonicalIVIncrement = Backedge->getDefiningRecipe();
2815 CanonicalIVIncrement->eraseFromParent();
2816 CanonicalIV->eraseFromParent();
2817
2818 // Replace the use of VectorTripCount in the latch-exiting block.
2819 // Before: (branch-on-count EVLIVInc, VectorTripCount)
2820 // After: (branch-on-cond eq AVLNext, 0)
2821
2822 VPBasicBlock *LatchExiting =
2823 HeaderVPBB->getPredecessors()[1]->getEntryBasicBlock();
2824 auto *LatchExitingBr = cast<VPInstruction>(LatchExiting->getTerminator());
2825 // Skip single-iteration loop region
2826 if (match(LatchExitingBr, m_BranchOnCond(m_True())))
2827 return;
2828 assert(LatchExitingBr &&
2829 match(LatchExitingBr,
2830 m_BranchOnCount(m_VPValue(EVLIncrement),
2831 m_Specific(&Plan.getVectorTripCount()))) &&
2832 "Unexpected terminator in EVL loop");
2833
2834 Type *AVLTy = VPTypeAnalysis(Plan).inferScalarType(AVLNext);
2835 VPBuilder Builder(LatchExitingBr);
2836 VPValue *Cmp =
2837 Builder.createICmp(CmpInst::ICMP_EQ, AVLNext,
2839 Builder.createNaryOp(VPInstruction::BranchOnCond, Cmp);
2840 LatchExitingBr->eraseFromParent();
2841}
2842
2844 VPlan &Plan, PredicatedScalarEvolution &PSE,
2845 const DenseMap<Value *, const SCEV *> &StridesMap) {
2846 // Replace VPValues for known constant strides guaranteed by predicate scalar
2847 // evolution.
2848 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) {
2849 auto *R = cast<VPRecipeBase>(&U);
2850 return R->getParent()->getParent() ||
2851 R->getParent() == Plan.getVectorLoopRegion()->getSinglePredecessor();
2852 };
2853 for (const SCEV *Stride : StridesMap.values()) {
2854 using namespace SCEVPatternMatch;
2855 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
2856 const APInt *StrideConst;
2857 if (!match(PSE.getSCEV(StrideV), m_scev_APInt(StrideConst)))
2858 // Only handle constant strides for now.
2859 continue;
2860
2861 auto *CI =
2862 Plan.getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2863 if (VPValue *StrideVPV = Plan.getLiveIn(StrideV))
2864 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2865
2866 // The versioned value may not be used in the loop directly but through a
2867 // sext/zext. Add new live-ins in those cases.
2868 for (Value *U : StrideV->users()) {
2870 continue;
2871 VPValue *StrideVPV = Plan.getLiveIn(U);
2872 if (!StrideVPV)
2873 continue;
2874 unsigned BW = U->getType()->getScalarSizeInBits();
2875 APInt C =
2876 isa<SExtInst>(U) ? StrideConst->sext(BW) : StrideConst->zext(BW);
2877 VPValue *CI = Plan.getOrAddLiveIn(ConstantInt::get(U->getType(), C));
2878 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2879 }
2880 }
2881}
2882
2884 VPlan &Plan,
2885 const std::function<bool(BasicBlock *)> &BlockNeedsPredication) {
2886 // Collect recipes in the backward slice of `Root` that may generate a poison
2887 // value that is used after vectorization.
2889 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
2891 Worklist.push_back(Root);
2892
2893 // Traverse the backward slice of Root through its use-def chain.
2894 while (!Worklist.empty()) {
2895 VPRecipeBase *CurRec = Worklist.pop_back_val();
2896
2897 if (!Visited.insert(CurRec).second)
2898 continue;
2899
2900 // Prune search if we find another recipe generating a widen memory
2901 // instruction. Widen memory instructions involved in address computation
2902 // will lead to gather/scatter instructions, which don't need to be
2903 // handled.
2905 VPHeaderPHIRecipe>(CurRec))
2906 continue;
2907
2908 // This recipe contributes to the address computation of a widen
2909 // load/store. If the underlying instruction has poison-generating flags,
2910 // drop them directly.
2911 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
2912 VPValue *A, *B;
2913 // Dropping disjoint from an OR may yield incorrect results, as some
2914 // analysis may have converted it to an Add implicitly (e.g. SCEV used
2915 // for dependence analysis). Instead, replace it with an equivalent Add.
2916 // This is possible as all users of the disjoint OR only access lanes
2917 // where the operands are disjoint or poison otherwise.
2918 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
2919 RecWithFlags->isDisjoint()) {
2920 VPBuilder Builder(RecWithFlags);
2921 VPInstruction *New = Builder.createOverflowingOp(
2922 Instruction::Add, {A, B}, {false, false},
2923 RecWithFlags->getDebugLoc());
2924 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2925 RecWithFlags->replaceAllUsesWith(New);
2926 RecWithFlags->eraseFromParent();
2927 CurRec = New;
2928 } else
2929 RecWithFlags->dropPoisonGeneratingFlags();
2930 } else {
2933 (void)Instr;
2934 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2935 "found instruction with poison generating flags not covered by "
2936 "VPRecipeWithIRFlags");
2937 }
2938
2939 // Add new definitions to the worklist.
2940 for (VPValue *Operand : CurRec->operands())
2941 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2942 Worklist.push_back(OpDef);
2943 }
2944 });
2945
2946 // Traverse all the recipes in the VPlan and collect the poison-generating
2947 // recipes in the backward slice starting at the address of a VPWidenRecipe or
2948 // VPInterleaveRecipe.
2949 auto Iter = vp_depth_first_deep(Plan.getEntry());
2951 for (VPRecipeBase &Recipe : *VPBB) {
2952 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
2953 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2954 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2955 if (AddrDef && WidenRec->isConsecutive() &&
2956 BlockNeedsPredication(UnderlyingInstr.getParent()))
2957 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2958 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
2959 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2960 if (AddrDef) {
2961 // Check if any member of the interleave group needs predication.
2962 const InterleaveGroup<Instruction> *InterGroup =
2963 InterleaveRec->getInterleaveGroup();
2964 bool NeedPredication = false;
2965 for (int I = 0, NumMembers = InterGroup->getNumMembers();
2966 I < NumMembers; ++I) {
2967 Instruction *Member = InterGroup->getMember(I);
2968 if (Member)
2969 NeedPredication |= BlockNeedsPredication(Member->getParent());
2970 }
2971
2972 if (NeedPredication)
2973 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2974 }
2975 }
2976 }
2977 }
2978}
2979
2981 VPlan &Plan,
2983 &InterleaveGroups,
2984 VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed) {
2985 if (InterleaveGroups.empty())
2986 return;
2987
2988 // Interleave memory: for each Interleave Group we marked earlier as relevant
2989 // for this VPlan, replace the Recipes widening its memory instructions with a
2990 // single VPInterleaveRecipe at its insertion point.
2991 VPDominatorTree VPDT;
2992 VPDT.recalculate(Plan);
2993 for (const auto *IG : InterleaveGroups) {
2994 auto *Start =
2995 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
2996 VPIRMetadata InterleaveMD(*Start);
2997 SmallVector<VPValue *, 4> StoredValues;
2998 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(Start))
2999 StoredValues.push_back(StoreR->getStoredValue());
3000 for (unsigned I = 1; I < IG->getFactor(); ++I) {
3001 Instruction *MemberI = IG->getMember(I);
3002 if (!MemberI)
3003 continue;
3004 VPWidenMemoryRecipe *MemoryR =
3005 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(MemberI));
3006 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(MemoryR))
3007 StoredValues.push_back(StoreR->getStoredValue());
3008 InterleaveMD.intersect(*MemoryR);
3009 }
3010
3011 bool NeedsMaskForGaps =
3012 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
3013 (!StoredValues.empty() && !IG->isFull());
3014
3015 Instruction *IRInsertPos = IG->getInsertPos();
3016 auto *InsertPos =
3017 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
3018
3020 if (auto *Gep = dyn_cast<GetElementPtrInst>(
3021 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
3022 NW = Gep->getNoWrapFlags().withoutNoUnsignedWrap();
3023
3024 // Get or create the start address for the interleave group.
3025 VPValue *Addr = Start->getAddr();
3026 VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
3027 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
3028 // We cannot re-use the address of member zero because it does not
3029 // dominate the insert position. Instead, use the address of the insert
3030 // position and create a PtrAdd adjusting it to the address of member
3031 // zero.
3032 // TODO: Hoist Addr's defining recipe (and any operands as needed) to
3033 // InsertPos or sink loads above zero members to join it.
3034 assert(IG->getIndex(IRInsertPos) != 0 &&
3035 "index of insert position shouldn't be zero");
3036 auto &DL = IRInsertPos->getDataLayout();
3037 APInt Offset(32,
3038 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
3039 IG->getIndex(IRInsertPos),
3040 /*IsSigned=*/true);
3041 VPValue *OffsetVPV =
3042 Plan.getOrAddLiveIn(ConstantInt::get(Plan.getContext(), -Offset));
3043 VPBuilder B(InsertPos);
3044 Addr = B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3045 }
3046 // If the group is reverse, adjust the index to refer to the last vector
3047 // lane instead of the first. We adjust the index from the first vector
3048 // lane, rather than directly getting the pointer for lane VF - 1, because
3049 // the pointer operand of the interleaved access is supposed to be uniform.
3050 if (IG->isReverse()) {
3051 auto *ReversePtr = new VPVectorEndPointerRecipe(
3052 Addr, &Plan.getVF(), getLoadStoreType(IRInsertPos),
3053 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3054 ReversePtr->insertBefore(InsertPos);
3055 Addr = ReversePtr;
3056 }
3057 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
3058 InsertPos->getMask(), NeedsMaskForGaps,
3059 InterleaveMD, InsertPos->getDebugLoc());
3060 VPIG->insertBefore(InsertPos);
3061
3062 unsigned J = 0;
3063 for (unsigned i = 0; i < IG->getFactor(); ++i)
3064 if (Instruction *Member = IG->getMember(i)) {
3065 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
3066 if (!Member->getType()->isVoidTy()) {
3067 VPValue *OriginalV = MemberR->getVPSingleValue();
3068 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
3069 J++;
3070 }
3071 MemberR->eraseFromParent();
3072 }
3073 }
3074}
3075
3076/// Expand a VPWidenIntOrFpInduction into executable recipes, for the initial
3077/// value, phi and backedge value. In the following example:
3078///
3079/// vector.ph:
3080/// Successor(s): vector loop
3081///
3082/// <x1> vector loop: {
3083/// vector.body:
3084/// WIDEN-INDUCTION %i = phi %start, %step, %vf
3085/// ...
3086/// EMIT branch-on-count ...
3087/// No successors
3088/// }
3089///
3090/// WIDEN-INDUCTION will get expanded to:
3091///
3092/// vector.ph:
3093/// ...
3094/// vp<%induction.start> = ...
3095/// vp<%induction.increment> = ...
3096///
3097/// Successor(s): vector loop
3098///
3099/// <x1> vector loop: {
3100/// vector.body:
3101/// ir<%i> = WIDEN-PHI vp<%induction.start>, vp<%vec.ind.next>
3102/// ...
3103/// vp<%vec.ind.next> = add ir<%i>, vp<%induction.increment>
3104/// EMIT branch-on-count ...
3105/// No successors
3106/// }
3107static void
3109 VPTypeAnalysis &TypeInfo) {
3110 VPlan *Plan = WidenIVR->getParent()->getPlan();
3111 VPValue *Start = WidenIVR->getStartValue();
3112 VPValue *Step = WidenIVR->getStepValue();
3113 VPValue *VF = WidenIVR->getVFValue();
3114 DebugLoc DL = WidenIVR->getDebugLoc();
3115
3116 // The value from the original loop to which we are mapping the new induction
3117 // variable.
3118 Type *Ty = TypeInfo.inferScalarType(WidenIVR);
3119
3120 const InductionDescriptor &ID = WidenIVR->getInductionDescriptor();
3123 // FIXME: The newly created binary instructions should contain nsw/nuw
3124 // flags, which can be found from the original scalar operations.
3125 VPIRFlags Flags;
3126 if (ID.getKind() == InductionDescriptor::IK_IntInduction) {
3127 AddOp = Instruction::Add;
3128 MulOp = Instruction::Mul;
3129 } else {
3130 AddOp = ID.getInductionOpcode();
3131 MulOp = Instruction::FMul;
3132 Flags = ID.getInductionBinOp()->getFastMathFlags();
3133 }
3134
3135 // If the phi is truncated, truncate the start and step values.
3136 VPBuilder Builder(Plan->getVectorPreheader());
3137 Type *StepTy = TypeInfo.inferScalarType(Step);
3138 if (Ty->getScalarSizeInBits() < StepTy->getScalarSizeInBits()) {
3139 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
3140 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty, DL);
3141 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty, DL);
3142 StepTy = Ty;
3143 }
3144
3145 // Construct the initial value of the vector IV in the vector loop preheader.
3146 Type *IVIntTy =
3148 VPValue *Init = Builder.createNaryOp(VPInstruction::StepVector, {}, IVIntTy);
3149 if (StepTy->isFloatingPointTy())
3150 Init = Builder.createWidenCast(Instruction::UIToFP, Init, StepTy);
3151
3152 VPValue *SplatStart = Builder.createNaryOp(VPInstruction::Broadcast, Start);
3153 VPValue *SplatStep = Builder.createNaryOp(VPInstruction::Broadcast, Step);
3154
3155 Init = Builder.createNaryOp(MulOp, {Init, SplatStep}, Flags);
3156 Init = Builder.createNaryOp(AddOp, {SplatStart, Init}, Flags,
3157 DebugLoc::getUnknown(), "induction");
3158
3159 // Create the widened phi of the vector IV.
3160 auto *WidePHI = new VPWidenPHIRecipe(WidenIVR->getPHINode(), nullptr,
3161 WidenIVR->getDebugLoc(), "vec.ind");
3162 WidePHI->addOperand(Init);
3163 WidePHI->insertBefore(WidenIVR);
3164
3165 // Create the backedge value for the vector IV.
3166 VPValue *Inc;
3167 VPValue *Prev;
3168 // If unrolled, use the increment and prev value from the operands.
3169 if (auto *SplatVF = WidenIVR->getSplatVFValue()) {
3170 Inc = SplatVF;
3171 Prev = WidenIVR->getLastUnrolledPartOperand();
3172 } else {
3173 if (VPRecipeBase *R = VF->getDefiningRecipe())
3174 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3175 // Multiply the vectorization factor by the step using integer or
3176 // floating-point arithmetic as appropriate.
3177 if (StepTy->isFloatingPointTy())
3178 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3179 DL);
3180 else
3181 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3182 TypeInfo.inferScalarType(VF), DL);
3183
3184 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3185 Inc = Builder.createNaryOp(VPInstruction::Broadcast, Inc);
3186 Prev = WidePHI;
3187 }
3188
3190 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3191 auto *Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3192 WidenIVR->getDebugLoc(), "vec.ind.next");
3193
3194 WidePHI->addOperand(Next);
3195
3196 WidenIVR->replaceAllUsesWith(WidePHI);
3197}
3198
3199/// Expand a VPWidenPointerInductionRecipe into executable recipes, for the
3200/// initial value, phi and backedge value. In the following example:
3201///
3202/// <x1> vector loop: {
3203/// vector.body:
3204/// EMIT ir<%ptr.iv> = WIDEN-POINTER-INDUCTION %start, %step, %vf
3205/// ...
3206/// EMIT branch-on-count ...
3207/// }
3208///
3209/// WIDEN-POINTER-INDUCTION will get expanded to:
3210///
3211/// <x1> vector loop: {
3212/// vector.body:
3213/// EMIT-SCALAR %pointer.phi = phi %start, %ptr.ind
3214/// EMIT %mul = mul %stepvector, %step
3215/// EMIT %vector.gep = wide-ptradd %pointer.phi, %mul
3216/// ...
3217/// EMIT %ptr.ind = ptradd %pointer.phi, %vf
3218/// EMIT branch-on-count ...
3219/// }
3221 VPTypeAnalysis &TypeInfo) {
3222 VPlan *Plan = R->getParent()->getPlan();
3223 VPValue *Start = R->getStartValue();
3224 VPValue *Step = R->getStepValue();
3225 VPValue *VF = R->getVFValue();
3226
3227 assert(R->getInductionDescriptor().getKind() ==
3229 "Not a pointer induction according to InductionDescriptor!");
3230 assert(TypeInfo.inferScalarType(R)->isPointerTy() && "Unexpected type.");
3231 assert(!R->onlyScalarsGenerated(Plan->hasScalableVF()) &&
3232 "Recipe should have been replaced");
3233
3234 VPBuilder Builder(R);
3235 DebugLoc DL = R->getDebugLoc();
3236
3237 // Build a scalar pointer phi.
3238 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start, DL, "pointer.phi");
3239
3240 // Create actual address geps that use the pointer phi as base and a
3241 // vectorized version of the step value (<step*0, ..., step*N>) as offset.
3242 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3243 Type *StepTy = TypeInfo.inferScalarType(Step);
3244 VPValue *Offset = Builder.createNaryOp(VPInstruction::StepVector, {}, StepTy);
3245 Offset = Builder.createNaryOp(Instruction::Mul, {Offset, Step});
3246 VPValue *PtrAdd = Builder.createNaryOp(
3247 VPInstruction::WidePtrAdd, {ScalarPtrPhi, Offset}, DL, "vector.gep");
3248 R->replaceAllUsesWith(PtrAdd);
3249
3250 // Create the backedge value for the scalar pointer phi.
3252 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3253 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.inferScalarType(VF),
3254 DL);
3255 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3256
3257 VPValue *InductionGEP =
3258 Builder.createPtrAdd(ScalarPtrPhi, Inc, DL, "ptr.ind");
3259 ScalarPtrPhi->addOperand(InductionGEP);
3260}
3261
3263 // Replace loop regions with explicity CFG.
3264 SmallVector<VPRegionBlock *> LoopRegions;
3266 vp_depth_first_deep(Plan.getEntry()))) {
3267 if (!R->isReplicator())
3268 LoopRegions.push_back(R);
3269 }
3270 for (VPRegionBlock *R : LoopRegions)
3271 R->dissolveToCFGLoop();
3272}
3273
3275 VPTypeAnalysis TypeInfo(Plan);
3278 vp_depth_first_deep(Plan.getEntry()))) {
3279 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3280 if (auto *WidenIVR = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
3281 expandVPWidenIntOrFpInduction(WidenIVR, TypeInfo);
3282 ToRemove.push_back(WidenIVR);
3283 continue;
3284 }
3285
3286 if (auto *WidenIVR = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
3287 expandVPWidenPointerInduction(WidenIVR, TypeInfo);
3288 ToRemove.push_back(WidenIVR);
3289 continue;
3290 }
3291
3292 // Expand VPBlendRecipe into VPInstruction::Select.
3293 VPBuilder Builder(&R);
3294 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
3295 VPValue *Select = Blend->getIncomingValue(0);
3296 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
3297 Select = Builder.createSelect(Blend->getMask(I),
3298 Blend->getIncomingValue(I), Select,
3299 R.getDebugLoc(), "predphi");
3300 Blend->replaceAllUsesWith(Select);
3301 ToRemove.push_back(Blend);
3302 }
3303
3304 if (auto *Expr = dyn_cast<VPExpressionRecipe>(&R)) {
3305 Expr->decompose();
3306 ToRemove.push_back(Expr);
3307 }
3308
3309 VPValue *VectorStep;
3310 VPValue *ScalarStep;
3312 m_VPValue(VectorStep), m_VPValue(ScalarStep))))
3313 continue;
3314
3315 // Expand WideIVStep.
3316 auto *VPI = cast<VPInstruction>(&R);
3317 Type *IVTy = TypeInfo.inferScalarType(VPI);
3318 if (TypeInfo.inferScalarType(VectorStep) != IVTy) {
3320 ? Instruction::UIToFP
3321 : Instruction::Trunc;
3322 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3323 }
3324
3325 [[maybe_unused]] auto *ConstStep =
3326 ScalarStep->isLiveIn()
3328 : nullptr;
3329 assert(!ConstStep || ConstStep->getValue() != 1);
3330 (void)ConstStep;
3331 if (TypeInfo.inferScalarType(ScalarStep) != IVTy) {
3332 ScalarStep =
3333 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3334 }
3335
3336 VPIRFlags Flags;
3337 if (IVTy->isFloatingPointTy())
3338 Flags = {VPI->getFastMathFlags()};
3339
3340 unsigned MulOpc =
3341 IVTy->isFloatingPointTy() ? Instruction::FMul : Instruction::Mul;
3342 VPInstruction *Mul = Builder.createNaryOp(
3343 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3344 VectorStep = Mul;
3345 VPI->replaceAllUsesWith(VectorStep);
3346 ToRemove.push_back(VPI);
3347 }
3348 }
3349
3350 for (VPRecipeBase *R : ToRemove)
3351 R->eraseFromParent();
3352}
3353
3355 VPBasicBlock *EarlyExitVPBB,
3356 VPlan &Plan,
3357 VPBasicBlock *HeaderVPBB,
3358 VPBasicBlock *LatchVPBB) {
3359 VPBlockBase *MiddleVPBB = LatchVPBB->getSuccessors()[0];
3360 if (!EarlyExitVPBB->getSinglePredecessor() &&
3361 EarlyExitVPBB->getPredecessors()[1] == MiddleVPBB) {
3362 assert(EarlyExitVPBB->getNumPredecessors() == 2 &&
3363 EarlyExitVPBB->getPredecessors()[0] == EarlyExitingVPBB &&
3364 "unsupported early exit VPBB");
3365 // Early exit operand should always be last phi operand. If EarlyExitVPBB
3366 // has two predecessors and EarlyExitingVPBB is the first, swap the operands
3367 // of the phis.
3368 for (VPRecipeBase &R : EarlyExitVPBB->phis())
3369 cast<VPIRPhi>(&R)->swapOperands();
3370 }
3371
3372 VPBuilder Builder(LatchVPBB->getTerminator());
3373 VPBlockBase *TrueSucc = EarlyExitingVPBB->getSuccessors()[0];
3374 assert(
3375 match(EarlyExitingVPBB->getTerminator(), m_BranchOnCond(m_VPValue())) &&
3376 "Terminator must be be BranchOnCond");
3377 VPValue *CondOfEarlyExitingVPBB =
3378 EarlyExitingVPBB->getTerminator()->getOperand(0);
3379 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3380 ? CondOfEarlyExitingVPBB
3381 : Builder.createNot(CondOfEarlyExitingVPBB);
3382
3383 // Split the middle block and have it conditionally branch to the early exit
3384 // block if CondToEarlyExit.
3385 VPValue *IsEarlyExitTaken =
3386 Builder.createNaryOp(VPInstruction::AnyOf, {CondToEarlyExit});
3387 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split");
3388 VPBasicBlock *VectorEarlyExitVPBB =
3389 Plan.createVPBasicBlock("vector.early.exit");
3390 VPBlockUtils::insertOnEdge(LatchVPBB, MiddleVPBB, NewMiddle);
3391 VPBlockUtils::connectBlocks(NewMiddle, VectorEarlyExitVPBB);
3392 NewMiddle->swapSuccessors();
3393
3394 VPBlockUtils::connectBlocks(VectorEarlyExitVPBB, EarlyExitVPBB);
3395
3396 // Update the exit phis in the early exit block.
3397 VPBuilder MiddleBuilder(NewMiddle);
3398 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3399 for (VPRecipeBase &R : EarlyExitVPBB->phis()) {
3400 auto *ExitIRI = cast<VPIRPhi>(&R);
3401 // Early exit operand should always be last, i.e., 0 if EarlyExitVPBB has
3402 // a single predecessor and 1 if it has two.
3403 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3404 if (ExitIRI->getNumOperands() != 1) {
3405 // The first of two operands corresponds to the latch exit, via MiddleVPBB
3406 // predecessor. Extract its last lane.
3407 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3408 }
3409
3410 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3411 if (!IncomingFromEarlyExit->isLiveIn()) {
3412 // Update the incoming value from the early exit.
3413 VPValue *FirstActiveLane = EarlyExitB.createNaryOp(
3414 VPInstruction::FirstActiveLane, {CondToEarlyExit}, nullptr,
3415 "first.active.lane");
3416 IncomingFromEarlyExit = EarlyExitB.createNaryOp(
3417 VPInstruction::ExtractLane, {FirstActiveLane, IncomingFromEarlyExit},
3418 nullptr, "early.exit.value");
3419 ExitIRI->setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3420 }
3421 }
3422 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken});
3423
3424 // Replace the condition controlling the non-early exit from the vector loop
3425 // with one exiting if either the original condition of the vector latch is
3426 // true or the early exit has been taken.
3427 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
3428 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
3429 "Unexpected terminator");
3430 auto *IsLatchExitTaken =
3431 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
3432 LatchExitingBranch->getOperand(1));
3433 auto *AnyExitTaken = Builder.createNaryOp(
3434 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3435 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
3436 LatchExitingBranch->eraseFromParent();
3437}
3438
3439/// This function tries convert extended in-loop reductions to
3440/// VPExpressionRecipe and clamp the \p Range if it is beneficial and
3441/// valid. The created recipe must be decomposed to its constituent
3442/// recipes before execution.
3443static VPExpressionRecipe *
3445 VFRange &Range) {
3446 Type *RedTy = Ctx.Types.inferScalarType(Red);
3447 VPValue *VecOp = Red->getVecOp();
3448
3449 // Clamp the range if using extended-reduction is profitable.
3450 auto IsExtendedRedValidAndClampRange = [&](unsigned Opcode, bool isZExt,
3451 Type *SrcTy) -> bool {
3453 [&](ElementCount VF) {
3454 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3456 InstructionCost ExtRedCost = Ctx.TTI.getExtendedReductionCost(
3457 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3458 CostKind);
3459 InstructionCost ExtCost =
3460 cast<VPWidenCastRecipe>(VecOp)->computeCost(VF, Ctx);
3461 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3462 return ExtRedCost.isValid() && ExtRedCost < ExtCost + RedCost;
3463 },
3464 Range);
3465 };
3466
3467 VPValue *A;
3468 // Match reduce(ext)).
3469 if (match(VecOp, m_ZExtOrSExt(m_VPValue(A))) &&
3470 IsExtendedRedValidAndClampRange(
3471 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()),
3472 cast<VPWidenCastRecipe>(VecOp)->getOpcode() ==
3473 Instruction::CastOps::ZExt,
3474 Ctx.Types.inferScalarType(A)))
3475 return new VPExpressionRecipe(cast<VPWidenCastRecipe>(VecOp), Red);
3476
3477 return nullptr;
3478}
3479
3480/// This function tries convert extended in-loop reductions to
3481/// VPExpressionRecipe and clamp the \p Range if it is beneficial
3482/// and valid. The created VPExpressionRecipe must be decomposed to its
3483/// constituent recipes before execution. Patterns of the
3484/// VPExpressionRecipe:
3485/// reduce.add(mul(...)),
3486/// reduce.add(mul(ext(A), ext(B))),
3487/// reduce.add(ext(mul(ext(A), ext(B)))).
3488static VPExpressionRecipe *
3490 VPCostContext &Ctx, VFRange &Range) {
3491 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
3492 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3493 return nullptr;
3494
3495 Type *RedTy = Ctx.Types.inferScalarType(Red);
3496
3497 // Clamp the range if using multiply-accumulate-reduction is profitable.
3498 auto IsMulAccValidAndClampRange =
3499 [&](bool isZExt, VPWidenRecipe *Mul, VPWidenCastRecipe *Ext0,
3500 VPWidenCastRecipe *Ext1, VPWidenCastRecipe *OuterExt) -> bool {
3502 [&](ElementCount VF) {
3504 Type *SrcTy =
3505 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3506 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3507 InstructionCost MulAccCost = Ctx.TTI.getMulAccReductionCost(
3508 isZExt, Opcode, RedTy, SrcVecTy, CostKind);
3509 InstructionCost MulCost = Mul->computeCost(VF, Ctx);
3510 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3511 InstructionCost ExtCost = 0;
3512 if (Ext0)
3513 ExtCost += Ext0->computeCost(VF, Ctx);
3514 if (Ext1)
3515 ExtCost += Ext1->computeCost(VF, Ctx);
3516 if (OuterExt)
3517 ExtCost += OuterExt->computeCost(VF, Ctx);
3518
3519 return MulAccCost.isValid() &&
3520 MulAccCost < ExtCost + MulCost + RedCost;
3521 },
3522 Range);
3523 };
3524
3525 VPValue *VecOp = Red->getVecOp();
3526 VPValue *A, *B;
3527 // Try to match reduce.add(mul(...)).
3528 if (match(VecOp, m_Mul(m_VPValue(A), m_VPValue(B)))) {
3529 auto *RecipeA =
3530 dyn_cast_if_present<VPWidenCastRecipe>(A->getDefiningRecipe());
3531 auto *RecipeB =
3532 dyn_cast_if_present<VPWidenCastRecipe>(B->getDefiningRecipe());
3533 auto *Mul = cast<VPWidenRecipe>(VecOp->getDefiningRecipe());
3534
3535 // Match reduce.add(mul(ext, ext)).
3536 if (RecipeA && RecipeB &&
3537 (RecipeA->getOpcode() == RecipeB->getOpcode() || A == B) &&
3538 match(RecipeA, m_ZExtOrSExt(m_VPValue())) &&
3539 match(RecipeB, m_ZExtOrSExt(m_VPValue())) &&
3540 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3541 Instruction::CastOps::ZExt,
3542 Mul, RecipeA, RecipeB, nullptr)) {
3543 return new VPExpressionRecipe(RecipeA, RecipeB, Mul, Red);
3544 }
3545 // Match reduce.add(mul).
3546 if (IsMulAccValidAndClampRange(true, Mul, nullptr, nullptr, nullptr))
3547 return new VPExpressionRecipe(Mul, Red);
3548 }
3549 // Match reduce.add(ext(mul(ext(A), ext(B)))).
3550 // All extend recipes must have same opcode or A == B
3551 // which can be transform to reduce.add(zext(mul(sext(A), sext(B)))).
3553 m_ZExtOrSExt(m_VPValue()))))) {
3554 auto *Ext = cast<VPWidenCastRecipe>(VecOp->getDefiningRecipe());
3555 auto *Mul = cast<VPWidenRecipe>(Ext->getOperand(0)->getDefiningRecipe());
3556 auto *Ext0 =
3557 cast<VPWidenCastRecipe>(Mul->getOperand(0)->getDefiningRecipe());
3558 auto *Ext1 =
3559 cast<VPWidenCastRecipe>(Mul->getOperand(1)->getDefiningRecipe());
3560 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3561 Ext0->getOpcode() == Ext1->getOpcode() &&
3562 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3563 Instruction::CastOps::ZExt,
3564 Mul, Ext0, Ext1, Ext)) {
3565 auto *NewExt0 = new VPWidenCastRecipe(
3566 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3567 Ext0->getDebugLoc());
3568 NewExt0->insertBefore(Ext0);
3569
3570 VPWidenCastRecipe *NewExt1 = NewExt0;
3571 if (Ext0 != Ext1) {
3572 NewExt1 = new VPWidenCastRecipe(Ext1->getOpcode(), Ext1->getOperand(0),
3573 Ext->getResultType(), *Ext1,
3574 Ext1->getDebugLoc());
3575 NewExt1->insertBefore(Ext1);
3576 }
3577 Mul->setOperand(0, NewExt0);
3578 Mul->setOperand(1, NewExt1);
3579 Red->setOperand(1, Mul);
3580 return new VPExpressionRecipe(NewExt0, NewExt1, Mul, Red);
3581 }
3582 }
3583 return nullptr;
3584}
3585
3586/// This function tries to create abstract recipes from the reduction recipe for
3587/// following optimizations and cost estimation.
3589 VPCostContext &Ctx,
3590 VFRange &Range) {
3591 VPExpressionRecipe *AbstractR = nullptr;
3592 auto IP = std::next(Red->getIterator());
3593 auto *VPBB = Red->getParent();
3594 if (auto *MulAcc = tryToMatchAndCreateMulAccumulateReduction(Red, Ctx, Range))
3595 AbstractR = MulAcc;
3596 else if (auto *ExtRed = tryToMatchAndCreateExtendedReduction(Red, Ctx, Range))
3597 AbstractR = ExtRed;
3598 // Cannot create abstract inloop reduction recipes.
3599 if (!AbstractR)
3600 return;
3601
3602 AbstractR->insertBefore(*VPBB, IP);
3603 Red->replaceAllUsesWith(AbstractR);
3604}
3605
3616
3618 if (Plan.hasScalarVFOnly())
3619 return;
3620
3621#ifndef NDEBUG
3622 VPDominatorTree VPDT;
3623 VPDT.recalculate(Plan);
3624#endif
3625
3626 SmallVector<VPValue *> VPValues;
3629 append_range(VPValues, Plan.getLiveIns());
3630 for (VPRecipeBase &R : *Plan.getEntry())
3631 append_range(VPValues, R.definedValues());
3632
3633 auto *VectorPreheader = Plan.getVectorPreheader();
3634 for (VPValue *VPV : VPValues) {
3636 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3637 isa<Constant>(VPV->getLiveInIRValue())))
3638 continue;
3639
3640 // Add explicit broadcast at the insert point that dominates all users.
3641 VPBasicBlock *HoistBlock = VectorPreheader;
3642 VPBasicBlock::iterator HoistPoint = VectorPreheader->end();
3643 for (VPUser *User : VPV->users()) {
3644 if (User->usesScalars(VPV))
3645 continue;
3646 if (cast<VPRecipeBase>(User)->getParent() == VectorPreheader)
3647 HoistPoint = HoistBlock->begin();
3648 else
3649 assert(VPDT.dominates(VectorPreheader,
3650 cast<VPRecipeBase>(User)->getParent()) &&
3651 "All users must be in the vector preheader or dominated by it");
3652 }
3653
3654 VPBuilder Builder(cast<VPBasicBlock>(HoistBlock), HoistPoint);
3655 auto *Broadcast = Builder.createNaryOp(VPInstruction::Broadcast, {VPV});
3656 VPV->replaceUsesWithIf(Broadcast,
3657 [VPV, Broadcast](VPUser &U, unsigned Idx) {
3658 return Broadcast != &U && !U.usesScalars(VPV);
3659 });
3660 }
3661}
3662
3664 VPlan &Plan, ElementCount BestVF, unsigned BestUF,
3666 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
3667 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
3668
3669 VPValue *TC = Plan.getTripCount();
3670 // Skip cases for which the trip count may be non-trivial to materialize.
3671 // I.e., when a scalar tail is absent - due to tail folding, or when a scalar
3672 // tail is required.
3673 if (!Plan.hasScalarTail() ||
3675 Plan.getScalarPreheader() ||
3676 !TC->isLiveIn())
3677 return;
3678
3679 // Materialize vector trip counts for constants early if it can simply
3680 // be computed as (Original TC / VF * UF) * VF * UF.
3681 // TODO: Compute vector trip counts for loops requiring a scalar epilogue and
3682 // tail-folded loops.
3683 ScalarEvolution &SE = *PSE.getSE();
3684 auto *TCScev = SE.getSCEV(TC->getLiveInIRValue());
3685 if (!isa<SCEVConstant>(TCScev))
3686 return;
3687 const SCEV *VFxUF = SE.getElementCount(TCScev->getType(), BestVF * BestUF);
3688 auto VecTCScev = SE.getMulExpr(SE.getUDivExpr(TCScev, VFxUF), VFxUF);
3689 if (auto *ConstVecTC = dyn_cast<SCEVConstant>(VecTCScev))
3690 Plan.getVectorTripCount().setUnderlyingValue(ConstVecTC->getValue());
3691}
3692
3694 VPBasicBlock *VectorPH) {
3696 if (BTC->getNumUsers() == 0)
3697 return;
3698
3699 VPBuilder Builder(VectorPH, VectorPH->begin());
3700 auto *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3701 auto *TCMO = Builder.createNaryOp(
3702 Instruction::Sub,
3703 {Plan.getTripCount(), Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))},
3704 DebugLoc::getCompilerGenerated(), "trip.count.minus.1");
3705 BTC->replaceAllUsesWith(TCMO);
3706}
3707
3709 if (Plan.hasScalarVFOnly())
3710 return;
3711
3712 VPTypeAnalysis TypeInfo(Plan);
3713 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
3714 auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3716 auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3717 vp_depth_first_shallow(LoopRegion->getEntry()));
3718 // Materialize Build(Struct)Vector for all replicating VPReplicateRecipes and
3719 // VPInstructions, excluding ones in replicate regions. Those are not
3720 // materialized explicitly yet. Those vector users are still handled in
3721 // VPReplicateRegion::execute(), via shouldPack().
3722 // TODO: materialize build vectors for replicating recipes in replicating
3723 // regions.
3724 for (VPBasicBlock *VPBB :
3725 concat<VPBasicBlock *>(VPBBsOutsideLoopRegion, VPBBsInsideLoopRegion)) {
3726 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3728 continue;
3729 auto *DefR = cast<VPRecipeWithIRFlags>(&R);
3730 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](VPUser *U) {
3731 VPRegionBlock *ParentRegion =
3733 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3734 };
3735 if ((isa<VPReplicateRecipe>(DefR) &&
3736 cast<VPReplicateRecipe>(DefR)->isSingleScalar()) ||
3737 (isa<VPInstruction>(DefR) &&
3739 !cast<VPInstruction>(DefR)->doesGeneratePerAllLanes())) ||
3740 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3741 continue;
3742
3743 Type *ScalarTy = TypeInfo.inferScalarType(DefR);
3744 unsigned Opcode = ScalarTy->isStructTy()
3747 auto *BuildVector = new VPInstruction(Opcode, {DefR});
3748 BuildVector->insertAfter(DefR);
3749
3750 DefR->replaceUsesWithIf(
3751 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3752 VPUser &U, unsigned) {
3753 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3754 });
3755 }
3756 }
3757}
3758
3760 VPBasicBlock *VectorPHVPBB,
3761 bool TailByMasking,
3762 bool RequiresScalarEpilogue) {
3763 VPValue &VectorTC = Plan.getVectorTripCount();
3764 assert(VectorTC.isLiveIn() && "vector-trip-count must be a live-in");
3765 // There's nothing to do if there are no users of the vector trip count or its
3766 // IR value has already been set.
3767 if (VectorTC.getNumUsers() == 0 || VectorTC.getLiveInIRValue())
3768 return;
3769
3770 VPValue *TC = Plan.getTripCount();
3771 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(TC);
3772 VPBuilder Builder(VectorPHVPBB, VectorPHVPBB->begin());
3773 VPValue *Step = &Plan.getVFxUF();
3774
3775 // If the tail is to be folded by masking, round the number of iterations N
3776 // up to a multiple of Step instead of rounding down. This is done by first
3777 // adding Step-1 and then rounding down. Note that it's ok if this addition
3778 // overflows: the vector induction variable will eventually wrap to zero given
3779 // that it starts at zero and its Step is a power of two; the loop will then
3780 // exit, with the last early-exit vector comparison also producing all-true.
3781 // For scalable vectors the VF is not guaranteed to be a power of 2, but this
3782 // is accounted for in emitIterationCountCheck that adds an overflow check.
3783 if (TailByMasking) {
3784 TC = Builder.createNaryOp(
3785 Instruction::Add,
3786 {TC, Builder.createNaryOp(
3787 Instruction::Sub,
3788 {Step, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))})},
3789 DebugLoc::getCompilerGenerated(), "n.rnd.up");
3790 }
3791
3792 // Now we need to generate the expression for the part of the loop that the
3793 // vectorized body will execute. This is equal to N - (N % Step) if scalar
3794 // iterations are not required for correctness, or N - Step, otherwise. Step
3795 // is equal to the vectorization factor (number of SIMD elements) times the
3796 // unroll factor (number of SIMD instructions).
3797 VPValue *R =
3798 Builder.createNaryOp(Instruction::URem, {TC, Step},
3799 DebugLoc::getCompilerGenerated(), "n.mod.vf");
3800
3801 // There are cases where we *must* run at least one iteration in the remainder
3802 // loop. See the cost model for when this can happen. If the step evenly
3803 // divides the trip count, we set the remainder to be equal to the step. If
3804 // the step does not evenly divide the trip count, no adjustment is necessary
3805 // since there will already be scalar iterations. Note that the minimum
3806 // iterations check ensures that N >= Step.
3807 if (RequiresScalarEpilogue) {
3808 assert(!TailByMasking &&
3809 "requiring scalar epilogue is not supported with fail folding");
3810 VPValue *IsZero = Builder.createICmp(
3811 CmpInst::ICMP_EQ, R, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 0)));
3812 R = Builder.createSelect(IsZero, Step, R);
3813 }
3814
3815 VPValue *Res = Builder.createNaryOp(
3816 Instruction::Sub, {TC, R}, DebugLoc::getCompilerGenerated(), "n.vec");
3817 VectorTC.replaceAllUsesWith(Res);
3818}
3819
3821 ElementCount VFEC) {
3822 VPBuilder Builder(VectorPH, VectorPH->begin());
3823 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3824 VPValue &VF = Plan.getVF();
3825 VPValue &VFxUF = Plan.getVFxUF();
3826 // Note that after the transform, Plan.getVF and Plan.getVFxUF should not be
3827 // used.
3828 // TODO: Assert that they aren't used.
3829
3830 // If there are no users of the runtime VF, compute VFxUF by constant folding
3831 // the multiplication of VF and UF.
3832 if (VF.getNumUsers() == 0) {
3833 VPValue *RuntimeVFxUF =
3834 Builder.createElementCount(TCTy, VFEC * Plan.getUF());
3835 VFxUF.replaceAllUsesWith(RuntimeVFxUF);
3836 return;
3837 }
3838
3839 // For users of the runtime VF, compute it as VF * vscale, and VFxUF as (VF *
3840 // vscale) * UF.
3841 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3843 VPValue *BC = Builder.createNaryOp(VPInstruction::Broadcast, RuntimeVF);
3845 BC, [&VF](VPUser &U, unsigned) { return !U.usesScalars(&VF); });
3846 }
3847 VF.replaceAllUsesWith(RuntimeVF);
3848
3849 VPValue *UF = Plan.getOrAddLiveIn(ConstantInt::get(TCTy, Plan.getUF()));
3850 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3851 VFxUF.replaceAllUsesWith(MulByUF);
3852}
3853
3856 const DataLayout &DL = SE.getDataLayout();
3857 SCEVExpander Expander(SE, DL, "induction", /*PreserveLCSSA=*/true);
3858
3859 auto *Entry = cast<VPIRBasicBlock>(Plan.getEntry());
3860 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3861 DenseMap<const SCEV *, Value *> ExpandedSCEVs;
3862 for (VPRecipeBase &R : make_early_inc_range(*Entry)) {
3864 continue;
3865 auto *ExpSCEV = dyn_cast<VPExpandSCEVRecipe>(&R);
3866 if (!ExpSCEV)
3867 break;
3868 const SCEV *Expr = ExpSCEV->getSCEV();
3869 Value *Res =
3870 Expander.expandCodeFor(Expr, Expr->getType(), EntryBB->getTerminator());
3871 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3872 VPValue *Exp = Plan.getOrAddLiveIn(Res);
3873 ExpSCEV->replaceAllUsesWith(Exp);
3874 if (Plan.getTripCount() == ExpSCEV)
3875 Plan.resetTripCount(Exp);
3876 ExpSCEV->eraseFromParent();
3877 }
3879 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3880 "after any VPIRInstructions");
3881 // Add IR instructions in the entry basic block but not in the VPIRBasicBlock
3882 // to the VPIRBasicBlock.
3883 auto EI = Entry->begin();
3884 for (Instruction &I : drop_end(*EntryBB)) {
3885 if (EI != Entry->end() && isa<VPIRInstruction>(*EI) &&
3886 &cast<VPIRInstruction>(&*EI)->getInstruction() == &I) {
3887 EI++;
3888 continue;
3889 }
3891 }
3892
3893 return ExpandedSCEVs;
3894}
3895
3896/// Returns true if \p V is VPWidenLoadRecipe or VPInterleaveRecipe that can be
3897/// converted to a narrower recipe. \p V is used by a wide recipe that feeds a
3898/// store interleave group at index \p Idx, \p WideMember0 is the recipe feeding
3899/// the same interleave group at index 0. A VPWidenLoadRecipe can be narrowed to
3900/// an index-independent load if it feeds all wide ops at all indices (\p OpV
3901/// must be the operand at index \p OpIdx for both the recipe at lane 0, \p
3902/// WideMember0). A VPInterleaveRecipe can be narrowed to a wide load, if \p V
3903/// is defined at \p Idx of a load interleave group.
3904static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx,
3905 VPValue *OpV, unsigned Idx) {
3906 auto *DefR = OpV->getDefiningRecipe();
3907 if (!DefR)
3908 return WideMember0->getOperand(OpIdx) == OpV;
3909 if (auto *W = dyn_cast<VPWidenLoadRecipe>(DefR))
3910 return !W->getMask() && WideMember0->getOperand(OpIdx) == OpV;
3911
3912 if (auto *IR = dyn_cast<VPInterleaveRecipe>(DefR))
3913 return IR->getInterleaveGroup()->isFull() && IR->getVPValue(Idx) == OpV;
3914 return false;
3915}
3916
3917/// Returns true if \p IR is a full interleave group with factor and number of
3918/// members both equal to \p VF. The interleave group must also access the full
3919/// vector width \p VectorRegWidth.
3921 unsigned VF, VPTypeAnalysis &TypeInfo,
3922 unsigned VectorRegWidth) {
3923 if (!InterleaveR)
3924 return false;
3925
3926 Type *GroupElementTy = nullptr;
3927 if (InterleaveR->getStoredValues().empty()) {
3928 GroupElementTy = TypeInfo.inferScalarType(InterleaveR->getVPValue(0));
3929 if (!all_of(InterleaveR->definedValues(),
3930 [&TypeInfo, GroupElementTy](VPValue *Op) {
3931 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3932 }))
3933 return false;
3934 } else {
3935 GroupElementTy =
3936 TypeInfo.inferScalarType(InterleaveR->getStoredValues()[0]);
3937 if (!all_of(InterleaveR->getStoredValues(),
3938 [&TypeInfo, GroupElementTy](VPValue *Op) {
3939 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3940 }))
3941 return false;
3942 }
3943
3944 unsigned GroupSize = GroupElementTy->getScalarSizeInBits() * VF;
3945 auto IG = InterleaveR->getInterleaveGroup();
3946 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3947 GroupSize == VectorRegWidth;
3948}
3949
3950/// Returns true if \p VPValue is a narrow VPValue.
3951static bool isAlreadyNarrow(VPValue *VPV) {
3952 if (VPV->isLiveIn())
3953 return true;
3954 auto *RepR = dyn_cast<VPReplicateRecipe>(VPV);
3955 return RepR && RepR->isSingleScalar();
3956}
3957
3959 unsigned VectorRegWidth) {
3960 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
3961 if (!VectorLoop)
3962 return;
3963
3964 VPTypeAnalysis TypeInfo(Plan);
3965
3966 unsigned VFMinVal = VF.getKnownMinValue();
3968 for (auto &R : *VectorLoop->getEntryBasicBlock()) {
3971 continue;
3972
3975 continue;
3976
3977 // Bail out on recipes not supported at the moment:
3978 // * phi recipes other than the canonical induction
3979 // * recipes writing to memory except interleave groups
3980 // Only support plans with a canonical induction phi.
3981 if (R.isPhi())
3982 return;
3983
3984 auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R);
3985 if (R.mayWriteToMemory() && !InterleaveR)
3986 return;
3987
3988 // Do not narrow interleave groups if there are VectorPointer recipes and
3989 // the plan was unrolled. The recipe implicitly uses VF from
3990 // VPTransformState.
3991 // TODO: Remove restriction once the VF for the VectorPointer offset is
3992 // modeled explicitly as operand.
3993 if (isa<VPVectorPointerRecipe>(&R) && Plan.getUF() > 1)
3994 return;
3995
3996 // All other ops are allowed, but we reject uses that cannot be converted
3997 // when checking all allowed consumers (store interleave groups) below.
3998 if (!InterleaveR)
3999 continue;
4000
4001 // Bail out on non-consecutive interleave groups.
4002 if (!isConsecutiveInterleaveGroup(InterleaveR, VFMinVal, TypeInfo,
4003 VectorRegWidth))
4004 return;
4005
4006 // Skip read interleave groups.
4007 if (InterleaveR->getStoredValues().empty())
4008 continue;
4009
4010 // Narrow interleave groups, if all operands are already matching narrow
4011 // ops.
4012 auto *Member0 = InterleaveR->getStoredValues()[0];
4013 if (isAlreadyNarrow(Member0) &&
4014 all_of(InterleaveR->getStoredValues(),
4015 [Member0](VPValue *VPV) { return Member0 == VPV; })) {
4016 StoreGroups.push_back(InterleaveR);
4017 continue;
4018 }
4019
4020 // For now, we only support full interleave groups storing load interleave
4021 // groups.
4022 if (all_of(enumerate(InterleaveR->getStoredValues()), [](auto Op) {
4023 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4024 if (!DefR)
4025 return false;
4026 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4027 return IR && IR->getInterleaveGroup()->isFull() &&
4028 IR->getVPValue(Op.index()) == Op.value();
4029 })) {
4030 StoreGroups.push_back(InterleaveR);
4031 continue;
4032 }
4033
4034 // Check if all values feeding InterleaveR are matching wide recipes, which
4035 // operands that can be narrowed.
4036 auto *WideMember0 = dyn_cast_or_null<VPWidenRecipe>(
4037 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4038 if (!WideMember0)
4039 return;
4040 for (const auto &[I, V] : enumerate(InterleaveR->getStoredValues())) {
4041 auto *R = dyn_cast_or_null<VPWidenRecipe>(V->getDefiningRecipe());
4042 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4043 R->getNumOperands() > 2)
4044 return;
4045 if (any_of(enumerate(R->operands()),
4046 [WideMember0, Idx = I](const auto &P) {
4047 const auto &[OpIdx, OpV] = P;
4048 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4049 }))
4050 return;
4051 }
4052 StoreGroups.push_back(InterleaveR);
4053 }
4054
4055 if (StoreGroups.empty())
4056 return;
4057
4058 // Convert InterleaveGroup \p R to a single VPWidenLoadRecipe.
4059 SmallPtrSet<VPValue *, 4> NarrowedOps;
4060 auto NarrowOp = [&NarrowedOps](VPValue *V) -> VPValue * {
4061 auto *R = V->getDefiningRecipe();
4062 if (!R || NarrowedOps.contains(V))
4063 return V;
4064 if (auto *LoadGroup = dyn_cast<VPInterleaveRecipe>(R)) {
4065 // Narrow interleave group to wide load, as transformed VPlan will only
4066 // process one original iteration.
4067 auto *L = new VPWidenLoadRecipe(
4068 *cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4069 LoadGroup->getAddr(), LoadGroup->getMask(), /*Consecutive=*/true,
4070 /*Reverse=*/false, {}, LoadGroup->getDebugLoc());
4071 L->insertBefore(LoadGroup);
4072 NarrowedOps.insert(L);
4073 return L;
4074 }
4075
4076 if (auto *RepR = dyn_cast<VPReplicateRecipe>(R)) {
4077 assert(RepR->isSingleScalar() &&
4078 isa<LoadInst>(RepR->getUnderlyingInstr()) &&
4079 "must be a single scalar load");
4080 NarrowedOps.insert(RepR);
4081 return RepR;
4082 }
4083 auto *WideLoad = cast<VPWidenLoadRecipe>(R);
4084
4085 VPValue *PtrOp = WideLoad->getAddr();
4086 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(PtrOp))
4087 PtrOp = VecPtr->getOperand(0);
4088 // Narrow wide load to uniform scalar load, as transformed VPlan will only
4089 // process one original iteration.
4090 auto *N = new VPReplicateRecipe(&WideLoad->getIngredient(), {PtrOp},
4091 /*IsUniform*/ true,
4092 /*Mask*/ nullptr, *WideLoad);
4093 N->insertBefore(WideLoad);
4094 NarrowedOps.insert(N);
4095 return N;
4096 };
4097
4098 // Narrow operation tree rooted at store groups.
4099 for (auto *StoreGroup : StoreGroups) {
4100 VPValue *Res = nullptr;
4101 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4102 if (isAlreadyNarrow(Member0)) {
4103 Res = Member0;
4104 } else if (auto *WideMember0 =
4106 for (unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4107 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4108 Res = WideMember0;
4109 } else {
4110 Res = NarrowOp(Member0);
4111 }
4112
4113 auto *S = new VPWidenStoreRecipe(
4114 *cast<StoreInst>(StoreGroup->getInterleaveGroup()->getInsertPos()),
4115 StoreGroup->getAddr(), Res, nullptr, /*Consecutive=*/true,
4116 /*Reverse=*/false, {}, StoreGroup->getDebugLoc());
4117 S->insertBefore(StoreGroup);
4118 StoreGroup->eraseFromParent();
4119 }
4120
4121 // Adjust induction to reflect that the transformed plan only processes one
4122 // original iteration.
4123 auto *CanIV = Plan.getCanonicalIV();
4124 auto *Inc = cast<VPInstruction>(CanIV->getBackedgeValue());
4125 VPBuilder PHBuilder(Plan.getVectorPreheader());
4126
4127 VPValue *UF = Plan.getOrAddLiveIn(
4128 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.getUF()));
4129 if (VF.isScalable()) {
4130 VPValue *VScale = PHBuilder.createElementCount(
4131 CanIV->getScalarType(), ElementCount::getScalable(1));
4132 VPValue *VScaleUF = PHBuilder.createNaryOp(Instruction::Mul, {VScale, UF});
4133 Inc->setOperand(1, VScaleUF);
4134 Plan.getVF().replaceAllUsesWith(VScale);
4135 } else {
4136 Inc->setOperand(1, UF);
4138 Plan.getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4139 }
4140 removeDeadRecipes(Plan);
4141}
4142
4143/// Add branch weight metadata, if the \p Plan's middle block is terminated by a
4144/// BranchOnCond recipe.
4146 VPlan &Plan, ElementCount VF, std::optional<unsigned> VScaleForTuning) {
4147 VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock();
4148 auto *MiddleTerm =
4150 // Only add branch metadata if there is a (conditional) terminator.
4151 if (!MiddleTerm)
4152 return;
4153
4154 assert(MiddleTerm->getOpcode() == VPInstruction::BranchOnCond &&
4155 "must have a BranchOnCond");
4156 // Assume that `TripCount % VectorStep ` is equally distributed.
4157 unsigned VectorStep = Plan.getUF() * VF.getKnownMinValue();
4158 if (VF.isScalable() && VScaleForTuning.has_value())
4159 VectorStep *= *VScaleForTuning;
4160 assert(VectorStep > 0 && "trip count should not be zero");
4161 MDBuilder MDB(Plan.getContext());
4162 MDNode *BranchWeights =
4163 MDB.createBranchWeights({1, VectorStep - 1}, /*IsExpected=*/false);
4164 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
4165}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
@ Default
Hexagon Common GEP
iv Induction Variable Users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
licm
Definition LICM.cpp:381
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
static VPValue * optimizeLatchExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the exit block coming from the l...
static void removeCommonBlendMask(VPBlendRecipe *Blend)
Try to see if all of Blend's masks share a common value logically and'ed and remove it from the masks...
static void tryToCreateAbstractReductionRecipe(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries to create abstract recipes from the reduction recipe for following optimizations ...
static bool sinkScalarOperands(VPlan &Plan)
static bool simplifyBranchConditionForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Try to simplify the branch condition of Plan.
static Value * tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode, ArrayRef< VPValue * > Operands, const DataLayout &DL, VPTypeAnalysis &TypeInfo)
Try to fold R using InstSimplifyFolder.
static void removeRedundantInductionCasts(VPlan &Plan)
Remove redundant casts of inductions.
static bool tryToReplaceALMWithWideALM(VPlan &Plan, ElementCount VF, unsigned UF)
Try to replace multiple active lane masks used for control flow with a single, wide active lane mask ...
static VPExpressionRecipe * tryToMatchAndCreateExtendedReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static VPScalarIVStepsRecipe * createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, Instruction *TruncI, VPValue *StartV, VPValue *Step, DebugLoc DL, VPBuilder &Builder)
static bool sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Sink users of FOR after the recipe defining the previous value Previous of the recurrence.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan)
static VPActiveLaneMaskPHIRecipe * addVPLaneMaskPhiAndUpdateExitBranch(VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck)
static void expandVPWidenPointerInduction(VPWidenPointerInductionRecipe *R, VPTypeAnalysis &TypeInfo)
Expand a VPWidenPointerInductionRecipe into executable recipes, for the initial value,...
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL)
Replace recipes with their EVL variants.
static bool isDeadRecipe(VPRecipeBase &R)
Returns true if R is dead and can be removed.
static void legalizeAndOptimizeInductions(VPlan &Plan)
Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd (IndStart, ScalarIVSteps (0,...
static void addReplicateRegions(VPlan &Plan)
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo)
Try to simplify recipe R.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan)
Remove redundant EpxandSCEVRecipes in Plan's entry block by replacing them with already existing reci...
static bool isConditionTrueViaVFAndUF(VPValue *Cond, VPlan &Plan, ElementCount BestVF, unsigned BestUF, ScalarEvolution &SE)
Return true if Cond is known to be true for given BestVF and BestUF.
static bool isConsecutiveInterleaveGroup(VPInterleaveRecipe *InterleaveR, unsigned VF, VPTypeAnalysis &TypeInfo, unsigned VectorRegWidth)
Returns true if IR is a full interleave group with factor and number of members both equal to VF.
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Try to hoist Previous and its operands before all users of FOR.
static SmallVector< VPUser * > collectUsersRecursively(VPValue *V)
static void recursivelyDeleteDeadRecipes(VPValue *V)
static VPValue * optimizeEarlyExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the early exit block.
cl::opt< bool > EnableWideActiveLaneMask("enable-wide-lane-mask", cl::init(false), cl::Hidden, cl::desc("Enable use of wide get active lane mask instructions"))
static VPWidenInductionRecipe * getOptimizableIVOf(VPValue *VPV, ScalarEvolution &SE)
Check if VPV is an untruncated wide induction, either before or after the increment.
static VPRegionBlock * createReplicateRegion(VPReplicateRecipe *PredRecipe, VPlan &Plan)
static VPBasicBlock * getPredicatedThenBlock(VPRegionBlock *R)
If R is a triangle region, return the 'then' block of the triangle.
static void simplifyBlends(VPlan &Plan)
Normalize and simplify VPBlendRecipes.
static bool isAlreadyNarrow(VPValue *VPV)
Returns true if VPValue is a narrow VPValue.
static bool optimizeVectorInductionWidthForTCAndVFUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF)
Optimize the width of vector induction variables in Plan based on a known constant Trip Count,...
VPValue * getPredicatedMask(VPRegionBlock *R)
If R is a region with a VPBranchOnMaskRecipe in the entry block, return the mask.
static VPExpressionRecipe * tryToMatchAndCreateMulAccumulateReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static void expandVPWidenIntOrFpInduction(VPWidenIntOrFpInductionRecipe *WidenIVR, VPTypeAnalysis &TypeInfo)
Expand a VPWidenIntOrFpInduction into executable recipes, for the initial value, phi and backedge val...
static VPSingleDefRecipe * findHeaderMask(VPlan &Plan)
Collect the header mask with the pattern: (ICMP_ULE, WideCanonicalIV, backedge-taken-count) TODO: Int...
static VPRecipeBase * optimizeMaskToEVL(VPValue *HeaderMask, VPRecipeBase &CurRecipe, VPTypeAnalysis &TypeInfo, VPValue &AllOneMask, VPValue &EVL)
Try to optimize a CurRecipe masked by HeaderMask to a corresponding EVL-based recipe without the head...
static void removeRedundantCanonicalIVs(VPlan &Plan)
Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV recipe, if it exists.
static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx, VPValue *OpV, unsigned Idx)
Returns true if V is VPWidenLoadRecipe or VPInterleaveRecipe that can be converted to a narrower reci...
static void narrowToSingleScalarRecipes(VPlan &Plan)
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
BinaryOperator * Mul
static const uint32_t IV[8]
Definition blake3_impl.h:83
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getCompilerGenerated()
Definition DebugLoc.h:163
static DebugLoc getUnknown()
Definition DebugLoc.h:162
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1564
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
Definition MDBuilder.cpp:38
Metadata node.
Definition Metadata.h:1077
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
ValueT lookup(const KeyT &Key) const
Definition MapVector.h:99
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
RegionT * getParent() const
Get the parent of the Region.
Definition RegionInfo.h:362
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
iterator begin() const
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
op_range operands()
Definition User.h:292
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3468
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3755
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3830
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3782
iterator end()
Definition VPlan.h:3792
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3790
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3843
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition VPlan.cpp:591
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:664
const VPRecipeBase & back() const
Definition VPlan.h:3804
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2394
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
Definition VPlan.h:2428
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2418
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
Definition VPlan.h:2434
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
Definition VPlan.h:2414
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleHierarchicalPredecessor()
Definition VPlan.h:264
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:217
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:238
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition VPlanUtils.h:157
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:176
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:195
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:2925
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3411
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:3438
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:422
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:417
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:395
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:407
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3499
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
Definition VPlan.h:2970
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1968
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2016
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2005
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3908
BasicBlock * getIRBasicBlock() const
Definition VPlan.h:3932
Class to record and manage LLVM IR flags.
Definition VPlan.h:600
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
Helper to manage IR metadata for recipes.
Definition VPlan.h:939
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:980
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1057
@ FirstOrderRecurrenceSplice
Definition VPlan.h:986
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1010
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1007
@ CanonicalIVIncrementForPart
Definition VPlan.h:1000
@ CalculateTripCountMinusVF
Definition VPlan.h:998
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2535
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2556
A recipe for interleaved memory operations with vector-predication intrinsics.
Definition VPlan.h:2608
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2567
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3082
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
Definition VPlan.h:477
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
Definition VPlan.h:2803
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
Definition VPlan.h:2657
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3943
const VPBlockBase * getEntry() const
Definition VPlan.h:3979
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
Definition VPlan.h:3996
const VPBlockBase * getExiting() const
Definition VPlan.h:3991
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition VPlan.h:4004
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2847
bool isSingleScalar() const
Definition VPlan.h:2892
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
Definition VPlan.h:2916
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3645
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:197
operand_range operands()
Definition VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:241
operand_iterator op_end()
Definition VPlanValue.h:263
operand_iterator op_begin()
Definition VPlanValue.h:261
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:236
void addOperand(VPValue *Operand)
Definition VPlanValue.h:230
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:174
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void setUnderlyingValue(Value *Val)
Definition VPlanValue.h:184
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1400
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:169
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1404
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1832
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
Definition VPlan.h:1876
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3540
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1479
A recipe for handling GEP instructions.
Definition VPlan.h:1765
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2033
PHINode * getPHINode() const
Definition VPlan.h:2075
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2061
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2078
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2108
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
Definition VPlan.h:2189
A recipe for widening vector intrinsics.
Definition VPlan.h:1536
A common base class for widening memory operations.
Definition VPlan.h:3124
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3186
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3179
A recipe for widened phis.
Definition VPlan.h:2244
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1436
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4046
bool hasVF(ElementCount VF) const
Definition VPlan.h:4255
LLVMContext & getContext() const
Definition VPlan.h:4243
VPBasicBlock * getEntry()
Definition VPlan.h:4145
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition VPlan.h:4386
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4235
bool hasScalableVF() const
Definition VPlan.h:4256
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4241
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4238
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4207
VPValue * getTrue()
Return a VPValue wrapping i1 true.
Definition VPlan.h:4312
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
Definition VPlan.h:4228
unsigned getUF() const
Definition VPlan.h:4275
bool hasUF(unsigned UF) const
Definition VPlan.h:4273
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4197
void setVF(ElementCount VF)
Definition VPlan.h:4249
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
Definition VPlan.h:4288
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1034
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4221
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4170
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition VPlan.h:4376
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4297
bool hasScalarVFOnly() const
Definition VPlan.h:4266
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4188
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition VPlan.h:4327
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4351
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4193
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
Definition VPlan.h:4324
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4150
void setUF(unsigned UF)
Definition VPlan.h:4280
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
Definition VPlan.h:4428
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
IteratorT end() const
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
Definition APInt.cpp:2763
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
@ Offset
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2454
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2118
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
auto cast_or_null(const Y &Val)
Definition Casting.h:720
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1160
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
auto reverse(ContainerTy &&C)
Definition STLExtras.h:400
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
Definition VPlanCFG.h:236
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1632
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:317
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition STLExtras.h:1936
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1943
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1740
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2070
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2287
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
Definition VPlan.h:3246
A recipe for widening load operations, using the address to load from and an optional mask.
Definition VPlan.h:3206
A recipe for widening select instructions.
Definition VPlan.h:1719
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
Definition VPlan.h:3328
A recipe for widening store operations, using the stored value, the address to store to and an option...
Definition VPlan.h:3286
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createAndOptimizeReplicateRegions(VPlan &Plan)
Wrap predicated VPReplicateRecipes with a mask operand in an if-then region block and remove the mask...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void handleUncountableEarlyExit(VPBasicBlock *EarlyExitingVPBB, VPBasicBlock *EarlyExitVPBB, VPlan &Plan, VPBasicBlock *HeaderVPBB, VPBasicBlock *LatchVPBB)
Update Plan to account for the uncountable early exit from EarlyExitingVPBB to EarlyExitVPBB by.
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.