45 cl::desc(
"Enable use of wide get active lane mask instructions"));
50 GetIntOrFpInductionDescriptor,
54 Plan->getVectorLoopRegion());
57 if (!VPBB->getParent())
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
65 VPValue *VPV = Ingredient.getVPSingleValue();
74 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
80 VPValue *Start = Plan->getOrAddLiveIn(
II->getStartValue());
84 Phi, Start, Step, &Plan->getVF(), *
II, Ingredient.getDebugLoc());
88 "only VPInstructions expected here");
93 *Load, Ingredient.getOperand(0),
nullptr ,
95 Ingredient.getDebugLoc());
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr ,
false ,
false ,
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
146 for (
auto &Recipe : *VPBB) {
150 WorkList.
insert({VPBB, Def});
156 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
159 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
160 if (SinkCandidate->
getParent() == SinkTo ||
165 if (!ScalarVFOnly && RepR->isSingleScalar())
170 bool NeedsDuplicating =
false;
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](
VPUser *U) {
178 if (UI->getParent() == SinkTo)
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
183 return NeedsDuplicating &&
186 if (!
all_of(SinkCandidate->
users(), CanSinkWithUser))
189 if (NeedsDuplicating) {
193 if (
auto *SinkCandidateRepR =
199 nullptr , *SinkCandidateRepR);
202 Clone = SinkCandidate->
clone();
214 WorkList.
insert({SinkTo, Def});
224 if (!EntryBB || EntryBB->size() != 1 ||
234 if (EntryBB->getNumSuccessors() != 2)
239 if (!Succ0 || !Succ1)
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
244 if (Succ0->getSingleSuccessor() == Succ1)
246 if (Succ1->getSingleSuccessor() == Succ0)
263 if (!Region1->isReplicator())
265 auto *MiddleBasicBlock =
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
272 if (!Region2 || !Region2->isReplicator())
277 if (!Mask1 || Mask1 != Mask2)
280 assert(Mask1 && Mask2 &&
"both region must have conditions");
286 if (TransformedRegions.
contains(Region1))
293 if (!Then1 || !Then2)
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
337 TransformedRegions.
insert(Region1);
340 return !TransformedRegions.
empty();
347 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->
getMask();
368 RecipeWithoutMask->getDebugLoc());
392 if (RepR->isPredicated())
411 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
425 if (!VPBB->getParent())
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
438 R.moveBefore(*PredVPBB, PredVPBB->
end());
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (
auto *Succ :
to_vector(VPBB->successors())) {
449 return !WorkList.
empty();
456 bool ShouldSimplify =
true;
457 while (ShouldSimplify) {
473 if (!
IV ||
IV->getTruncInst())
484 auto &Casts =
IV->getInductionDescriptor().getCastInsts();
488 for (
auto *U : FindMyCast->
users()) {
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
495 FindMyCast = FoundUserCast;
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
545 if (R.mayHaveSideEffects())
549 return all_of(R.definedValues(),
550 [](
VPValue *V) { return V->getNumUsers() == 0; });
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
569 if (*PhiR->user_begin() !=
Incoming->getDefiningRecipe() ||
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
588 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
604 if (ResultTy != StepTy) {
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
620 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
625 Users.insert_range(V->users());
627 return Users.takeVector();
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
670 Def->operands(),
true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
684 VPValue *StepV = PtrIV->getOperand(1);
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
699 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
700 return U->usesScalars(WideIV);
706 Plan,
ID.getKind(),
ID.getInductionOpcode(),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
715 WideIV->replaceUsesWithIf(Steps, [WideIV](
VPUser &U,
unsigned) {
716 return U.usesScalars(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
736 if (!Def || Def->getNumOperands() != 2)
744 auto IsWideIVInc = [&]() {
745 auto &
ID = WideIV->getInductionDescriptor();
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (
ID.getInductionOpcode()) {
750 case Instruction::Add:
752 case Instruction::FAdd:
755 case Instruction::FSub:
758 case Instruction::Sub: {
777 return IsWideIVInc() ? WideIV :
nullptr;
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
811 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType,
DL);
813 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane},
DL);
820 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue =
B.createDerivedIV(
829 Start, EndValue, Step);
849 assert(EndValue &&
"end value must have been pre-computed");
859 VPValue *Step = WideIV->getStepValue();
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {},
"ind.escape");
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
871 const auto &
ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
891 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
893 if (PredVPBB == MiddleVPBB)
895 ExitIRI->getOperand(Idx),
899 ExitIRI->getOperand(Idx), SE);
901 ExitIRI->setOperand(Idx, Escape);
918 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
931 while (!WorkList.
empty()) {
933 if (!Seen.
insert(Cur).second)
940 WorkList.
append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
953 if (!
Op->isLiveIn() || !
Op->getLiveInIRValue())
955 Ops.push_back(
Op->getLiveInIRValue());
970 return Folder.
FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
972 case Instruction::Select:
974 case Instruction::ICmp:
975 case Instruction::FCmp:
978 case Instruction::GetElementPtr: {
982 RFlags.getGEPNoWrapFlags());
991 case Instruction::ExtractElement:
1000 VPlan *Plan = R.getParent()->getPlan();
1019 .Default([](
auto *) {
return false; }))
1026 PredPHI->replaceAllUsesWith(
Op);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(
A);
1043 : Instruction::ZExt;
1046 if (
auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1048 VPC->setUnderlyingValue(UnderlyingExt);
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1063 for (
VPUser *U :
A->users()) {
1065 for (
VPValue *VPV : R->definedValues())
1079 Def->replaceAllUsesWith(
X);
1080 Def->eraseFromParent();
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1090 return Def->replaceAllUsesWith(
X);
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1117 return Def->replaceAllUsesWith(
X);
1122 Def->setOperand(0,
C);
1123 Def->setOperand(1,
Y);
1124 Def->setOperand(2,
X);
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1138 return Def->replaceAllUsesWith(
A);
1141 return Def->replaceAllUsesWith(R.getOperand(0) ==
A ? R.getOperand(1)
1146 return Def->replaceAllUsesWith(
A);
1153 return match(U, m_CombineOr(m_Not(m_Specific(Cmp)),
1154 m_Select(m_Specific(Cmp), m_VPValue(),
1162 R->setOperand(1,
Y);
1163 R->setOperand(2,
X);
1167 R->replaceAllUsesWith(Cmp);
1172 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1173 Cmp->setDebugLoc(R.getDebugLoc());
1185 return Def->replaceAllUsesWith(Def->getOperand(1));
1191 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1192 Def->replaceAllUsesWith(
X);
1202 Def->setOperand(1, Def->getOperand(0));
1203 Def->setOperand(0,
Y);
1208 if (Phi->getOperand(0) == Phi->getOperand(1))
1209 Def->replaceAllUsesWith(Phi->getOperand(0));
1216 Def->replaceAllUsesWith(
1217 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1225 Def->replaceAllUsesWith(
1226 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1231 if (Phi->getNumOperands() == 1)
1232 Phi->replaceAllUsesWith(Phi->getOperand(0));
1243 if (VecPtr->isFirstPart()) {
1244 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1253 Steps->replaceAllUsesWith(Steps->getOperand(0));
1261 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1263 return PhiR && PhiR->isInLoop();
1269 Def->replaceAllUsesWith(
A);
1276 return U->usesScalars(A) || Def == U;
1278 return Def->replaceAllUsesWith(
A);
1307 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1315 !
all_of(RepOrWidenR->users(), [RepOrWidenR](
const VPUser *U) {
1316 return U->usesScalars(RepOrWidenR) ||
1317 match(cast<VPRecipeBase>(U),
1318 m_ExtractLastElement(m_VPValue()));
1323 RepOrWidenR->operands(),
1325 Clone->insertBefore(RepOrWidenR);
1326 RepOrWidenR->replaceAllUsesWith(Clone);
1362 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1363 UniqueValues.
insert(Blend->getIncomingValue(0));
1364 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1366 UniqueValues.
insert(Blend->getIncomingValue(
I));
1368 if (UniqueValues.
size() == 1) {
1369 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1370 Blend->eraseFromParent();
1374 if (Blend->isNormalized())
1380 unsigned StartIndex = 0;
1381 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1386 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1393 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1395 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1396 if (
I == StartIndex)
1398 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1399 OperandsWithMask.
push_back(Blend->getMask(
I));
1404 OperandsWithMask, Blend->getDebugLoc());
1405 NewBlend->insertBefore(&R);
1407 VPValue *DeadMask = Blend->getMask(StartIndex);
1409 Blend->eraseFromParent();
1414 if (NewBlend->getNumOperands() == 3 &&
1416 VPValue *Inc0 = NewBlend->getOperand(0);
1417 VPValue *Inc1 = NewBlend->getOperand(1);
1418 VPValue *OldMask = NewBlend->getOperand(2);
1419 NewBlend->setOperand(0, Inc1);
1420 NewBlend->setOperand(1, Inc0);
1421 NewBlend->setOperand(2, NewMask);
1451 APInt MaxVal = AlignedTC - 1;
1454 unsigned NewBitWidth =
1460 bool MadeChange =
false;
1469 if (!WideIV || !WideIV->isCanonical() ||
1470 WideIV->hasMoreThanOneUniqueUser() ||
1471 NewIVTy == WideIV->getScalarType())
1476 if (!
match(*WideIV->user_begin(),
1483 auto *NewStart = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1484 WideIV->setStartValue(NewStart);
1485 auto *NewStep = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1486 WideIV->setStepValue(NewStep);
1492 Cmp->setOperand(1, NewBTC);
1506 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1508 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1521 const SCEV *VectorTripCount =
1526 "Trip count SCEV must be computable");
1546 auto *Term = &ExitingVPBB->
back();
1559 for (
unsigned Part = 0; Part < UF; ++Part) {
1566 Extracts[Part] = Ext;
1567 Ext->insertAfter(ALM);
1578 match(Phi->getBackedgeValue(),
1580 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1585 Phis[Part->getZExtValue()] = Phi;
1592 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1599 "Expected incoming values of Phi to be ActiveLaneMasks");
1605 EntryALM->setOperand(2, ALMMultiplier);
1606 LoopALM->setOperand(2, ALMMultiplier);
1610 ExtractFromALM(EntryALM, EntryExtracts);
1615 ExtractFromALM(LoopALM, LoopExtracts);
1617 Not->setOperand(0, LoopExtracts[0]);
1620 for (
unsigned Part = 0; Part < UF; ++Part) {
1621 Phis[Part]->setStartValue(EntryExtracts[Part]);
1622 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1635 auto *Term = &ExitingVPBB->
back();
1644 const SCEV *TripCount =
1647 "Trip count SCEV must be computable");
1650 if (TripCount->
isZero() ||
1670 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1671 return R->isCanonical();
1672 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1673 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1679 R->getScalarType());
1681 HeaderR.eraseFromParent();
1685 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1686 HeaderR.eraseFromParent();
1695 B->setParent(
nullptr);
1704 Term->getDebugLoc());
1708 Term->eraseFromParent();
1716 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
1717 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
1725 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
1743 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
1746 if (SinkCandidate == Previous)
1750 !Seen.
insert(SinkCandidate).second ||
1754 if (SinkCandidate->mayHaveSideEffects())
1763 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
1766 "only recipes with a single defined value expected");
1781 if (SinkCandidate == FOR)
1784 SinkCandidate->moveAfter(Previous);
1785 Previous = SinkCandidate;
1803 for (
VPUser *U : FOR->users()) {
1809 [&VPDT, HoistPoint](
VPUser *U) {
1810 auto *R = cast<VPRecipeBase>(U);
1811 return HoistPoint == R ||
1812 VPDT.properlyDominates(HoistPoint, R);
1814 "HoistPoint must dominate all users of FOR");
1816 auto NeedsHoisting = [HoistPoint, &VPDT,
1818 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1819 if (!HoistCandidate)
1825 "CFG in VPlan should still be flat, without replicate regions");
1827 if (!Visited.
insert(HoistCandidate).second)
1839 return HoistCandidate;
1844 return !HoistCandidate->mayHaveSideEffects();
1853 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
1856 "only recipes with a single defined value expected");
1857 if (!CanHoist(Current))
1868 if (
auto *R = NeedsHoisting(
Op))
1880 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
1900 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1903 while (
auto *PrevPhi =
1905 assert(PrevPhi->getParent() == FOR->getParent());
1907 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1925 {FOR, FOR->getBackedgeValue()});
1927 FOR->replaceAllUsesWith(RecurSplice);
1930 RecurSplice->setOperand(0, FOR);
1941 RecurKind RK = PhiR->getRecurrenceKind();
1948 RecWithFlags->dropPoisonGeneratingFlags();
1954struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
1956 return Def == getEmptyKey() || Def == getTombstoneKey();
1962 static std::optional<std::pair<bool, unsigned>>
1965 std::optional<std::pair<bool, unsigned>>>(R)
1968 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
1969 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
1970 return std::make_pair(
true,
I->getVectorIntrinsicID());
1972 .
Default([](
auto *) {
return std::nullopt; });
1976 static bool canHandle(
const VPSingleDefRecipe *Def) {
1980 auto C = getOpcodeOrIntrinsicID(Def);
1985 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
1986 C->second == Instruction::ExtractValue)))
1992 return !
Def->mayReadFromMemory();
1996 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
1997 const VPlan *Plan =
Def->getParent()->getPlan();
1998 VPTypeAnalysis TypeInfo(*Plan);
2000 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2004 if (RFlags->hasPredicate())
2010 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2013 if (
L->getVPDefID() !=
R->getVPDefID() ||
2014 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2016 !
equal(
L->operands(),
R->operands()))
2019 if (LFlags->hasPredicate() &&
2020 LFlags->getPredicate() !=
2023 const VPlan *Plan =
L->getParent()->getPlan();
2024 VPTypeAnalysis TypeInfo(*Plan);
2025 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2040 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2044 if (!VPDT.
dominates(V->getParent(), VPBB))
2049 Def->replaceAllUsesWith(V);
2067 return RepR && RepR->getOpcode() == Instruction::Alloca;
2077 if (CannotHoistRecipe(R))
2081 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2083 return !Op->isDefinedOutsideLoopRegions();
2086 R.moveBefore(*Preheader, Preheader->
end());
2108 VPValue *ResultVPV = R.getVPSingleValue();
2110 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2111 if (!NewResSizeInBits)
2124 (void)OldResSizeInBits;
2132 VPW->dropPoisonGeneratingFlags();
2134 if (OldResSizeInBits != NewResSizeInBits &&
2139 Ext->insertAfter(&R);
2141 Ext->setOperand(0, ResultVPV);
2142 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2145 "Only ICmps should not need extending the result.");
2154 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2155 auto *
Op = R.getOperand(Idx);
2156 unsigned OpSizeInBits =
2158 if (OpSizeInBits == NewResSizeInBits)
2160 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2161 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2165 : ProcessedIter->second;
2166 R.setOperand(Idx, NewOp);
2169 ProcessedIter->second = NewOp;
2170 if (!
Op->isLiveIn()) {
2185 if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.
getEntry() ||
2189 unsigned RemovedIdx;
2200 "There must be a single edge between VPBB and its successor");
2209 VPBB->back().eraseFromParent();
2270 VPValue *StartV = CanonicalIVPHI->getStartValue();
2272 auto *CanonicalIVIncrement =
2276 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2277 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2287 VPValue *TripCount, *IncrementValue;
2292 IncrementValue = CanonicalIVIncrement;
2298 IncrementValue = CanonicalIVPHI;
2302 auto *EntryIncrement = Builder.createOverflowingOp(
2310 {EntryIncrement, TC, ALMMultiplier},
DL,
2311 "active.lane.mask.entry");
2317 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2322 Builder.setInsertPoint(OriginalTerminator);
2323 auto *InLoopIncrement =
2325 {IncrementValue}, {
false,
false},
DL);
2327 {InLoopIncrement, TripCount, ALMMultiplier},
2328 DL,
"active.lane.mask.next");
2333 auto *NotMask = Builder.createNot(ALM,
DL);
2349 "Must have at most one VPWideCanonicalIVRecipe");
2351 auto *WideCanonicalIV =
2353 WideCanonicalIVs.
push_back(WideCanonicalIV);
2361 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2362 WideCanonicalIVs.
push_back(WidenOriginalIV);
2368 for (
auto *Wide : WideCanonicalIVs) {
2374 assert(VPI->getOperand(0) == Wide &&
2375 "WidenCanonicalIV must be the first operand of the compare");
2376 assert(!HeaderMask &&
"Multiple header masks found?");
2384 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2387 UseActiveLaneMaskForControlFlow) &&
2388 "DataAndControlFlowWithoutRuntimeCheck implies "
2389 "UseActiveLaneMaskForControlFlow");
2393 assert(FoundWidenCanonicalIVUser &&
2394 "Must have widened canonical IV when tail folding!");
2396 auto *WideCanonicalIV =
2399 if (UseActiveLaneMaskForControlFlow) {
2409 nullptr,
"active.lane.mask");
2435 assert(OrigMask &&
"Unmasked recipe when folding tail");
2440 return HeaderMask == OrigMask ? nullptr : OrigMask;
2444 auto GetNewAddr = [&CurRecipe, &EVL](
VPValue *Addr) ->
VPValue * {
2448 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2449 "VPVectorEndPointerRecipe with non-VF VF operand?");
2453 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2455 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2464 VPValue *NewMask = GetNewMask(L->getMask());
2465 VPValue *NewAddr = GetNewAddr(L->getAddr());
2474 VPValue *NewMask = GetNewMask(
IR->getMask());
2478 VPValue *NewMask = GetNewMask(Red->getCondOp());
2493 Intrinsic::vp_merge, {&AllOneMask,
LHS,
RHS, &EVL},
2509 "User of VF that we can't transform to EVL.");
2516 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2517 m_Specific(&Plan.getVFxUF()))) ||
2518 isa<VPWidenPointerInductionRecipe>(U);
2520 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2521 "increment of the canonical induction.");
2541 MaxEVL = Builder.createScalarZExtOrTrunc(
2545 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2546 VPValue *PrevEVL = Builder.createScalarPhi(
2560 Intrinsic::experimental_vp_splice,
2561 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2564 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2582 VPValue *EVLMask = Builder.createICmp(
2600 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2601 "New recipe must define the same number of values as the "
2606 for (
unsigned I = 0;
I < NumDefVal; ++
I) {
2607 VPValue *CurVPV = CurRecipe->getVPValue(
I);
2619 R->eraseFromParent();
2669 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
2674 VPValue *StartV = CanonicalIVPHI->getStartValue();
2678 EVLPhi->insertAfter(CanonicalIVPHI);
2679 VPBuilder Builder(Header, Header->getFirstNonPhi());
2682 VPPhi *AVLPhi = Builder.createScalarPhi(
2686 if (MaxSafeElements) {
2689 Plan.
getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2697 auto *CanonicalIVIncrement =
2699 Builder.setInsertPoint(CanonicalIVIncrement);
2703 OpVPEVL = Builder.createScalarZExtOrTrunc(
2704 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2706 auto *NextEVLIV = Builder.createOverflowingOp(
2707 Instruction::Add, {OpVPEVL, EVLPhi},
2708 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2709 CanonicalIVIncrement->hasNoSignedWrap()},
2710 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
2711 EVLPhi->addOperand(NextEVLIV);
2713 VPValue *NextAVL = Builder.createOverflowingOp(
2714 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
2722 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2723 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2737 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
2748 [[maybe_unused]]
bool FoundAVL =
2751 assert(FoundAVL &&
"Didn't find AVL?");
2759 [[maybe_unused]]
bool FoundAVLNext =
2762 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
2773 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2776 "Unexpected canonical iv");
2782 CanonicalIV->eraseFromParent();
2795 match(LatchExitingBr,
2798 "Unexpected terminator in EVL loop");
2806 LatchExitingBr->eraseFromParent();
2816 return R->getParent()->getParent() ||
2819 for (
const SCEV *Stride : StridesMap.
values()) {
2822 const APInt *StrideConst;
2823 if (!
match(PSE.
getSCEV(StrideV), m_scev_APInt(StrideConst)))
2828 Plan.
getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2840 unsigned BW = U->getType()->getScalarSizeInBits();
2851 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
2855 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
2860 while (!Worklist.
empty()) {
2863 if (!Visited.
insert(CurRec).second)
2885 RecWithFlags->isDisjoint()) {
2888 Instruction::Add, {
A,
B}, {
false,
false},
2889 RecWithFlags->getDebugLoc());
2890 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2891 RecWithFlags->replaceAllUsesWith(New);
2892 RecWithFlags->eraseFromParent();
2895 RecWithFlags->dropPoisonGeneratingFlags();
2900 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2901 "found instruction with poison generating flags not covered by "
2902 "VPRecipeWithIRFlags");
2907 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2919 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2920 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2921 if (AddrDef && WidenRec->isConsecutive() &&
2922 BlockNeedsPredication(UnderlyingInstr.
getParent()))
2923 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2925 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2929 InterleaveRec->getInterleaveGroup();
2930 bool NeedPredication =
false;
2932 I < NumMembers; ++
I) {
2935 NeedPredication |= BlockNeedsPredication(Member->getParent());
2938 if (NeedPredication)
2939 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2951 if (InterleaveGroups.empty())
2959 for (
const auto *IG : InterleaveGroups) {
2965 StoredValues.
push_back(StoreR->getStoredValue());
2966 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
2973 StoredValues.
push_back(StoreR->getStoredValue());
2977 bool NeedsMaskForGaps =
2978 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
2979 (!StoredValues.
empty() && !IG->isFull());
2991 VPValue *Addr = Start->getAddr();
3000 assert(IG->getIndex(IRInsertPos) != 0 &&
3001 "index of insert position shouldn't be zero");
3005 IG->getIndex(IRInsertPos),
3010 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3016 if (IG->isReverse()) {
3019 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3020 ReversePtr->insertBefore(InsertPos);
3024 InsertPos->getMask(), NeedsMaskForGaps,
3025 InterleaveMD, InsertPos->getDebugLoc());
3026 VPIG->insertBefore(InsertPos);
3029 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3032 if (!Member->getType()->isVoidTy()) {
3093 AddOp = Instruction::Add;
3094 MulOp = Instruction::Mul;
3096 AddOp =
ID.getInductionOpcode();
3097 MulOp = Instruction::FMul;
3098 Flags =
ID.getInductionBinOp()->getFastMathFlags();
3106 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3107 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3116 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3121 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3122 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3128 WidePHI->addOperand(
Init);
3129 WidePHI->insertBefore(WidenIVR);
3140 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3144 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3147 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3150 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3157 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3160 WidePHI->addOperand(
Next);
3188 VPlan *Plan = R->getParent()->getPlan();
3189 VPValue *Start = R->getStartValue();
3190 VPValue *Step = R->getStepValue();
3191 VPValue *VF = R->getVFValue();
3193 assert(R->getInductionDescriptor().getKind() ==
3195 "Not a pointer induction according to InductionDescriptor!");
3198 "Recipe should have been replaced");
3204 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3208 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3211 Offset = Builder.createNaryOp(Instruction::Mul, {
Offset, Step});
3212 VPValue *PtrAdd = Builder.createNaryOp(
3214 R->replaceAllUsesWith(PtrAdd);
3219 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3221 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3224 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3233 if (!R->isReplicator())
3237 R->dissolveToCFGLoop();
3262 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3263 Select = Builder.createSelect(Blend->getMask(
I),
3264 Blend->getIncomingValue(
I),
Select,
3265 R.getDebugLoc(),
"predphi");
3266 Blend->replaceAllUsesWith(
Select);
3286 ? Instruction::UIToFP
3287 : Instruction::Trunc;
3288 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3291 [[maybe_unused]]
auto *ConstStep =
3295 assert(!ConstStep || ConstStep->getValue() != 1);
3299 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3304 Flags = {VPI->getFastMathFlags()};
3309 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3311 VPI->replaceAllUsesWith(VectorStep);
3317 R->eraseFromParent();
3330 "unsupported early exit VPBB");
3342 "Terminator must be be BranchOnCond");
3343 VPValue *CondOfEarlyExitingVPBB =
3345 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3346 ? CondOfEarlyExitingVPBB
3347 : Builder.createNot(CondOfEarlyExitingVPBB);
3364 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3369 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3370 if (ExitIRI->getNumOperands() != 1) {
3373 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3376 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3377 if (!IncomingFromEarlyExit->
isLiveIn()) {
3381 "first.active.lane");
3384 nullptr,
"early.exit.value");
3385 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3395 "Unexpected terminator");
3396 auto *IsLatchExitTaken =
3398 LatchExitingBranch->getOperand(1));
3399 auto *AnyExitTaken = Builder.createNaryOp(
3400 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3402 LatchExitingBranch->eraseFromParent();
3412 Type *RedTy = Ctx.Types.inferScalarType(Red);
3413 VPValue *VecOp = Red->getVecOp();
3416 auto IsExtendedRedValidAndClampRange = [&](
unsigned Opcode,
bool isZExt,
3417 Type *SrcTy) ->
bool {
3423 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3428 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
3436 IsExtendedRedValidAndClampRange(
3439 Instruction::CastOps::ZExt,
3440 Ctx.Types.inferScalarType(
A)))
3458 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3461 Type *RedTy = Ctx.Types.inferScalarType(Red);
3464 auto IsMulAccValidAndClampRange =
3471 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3474 isZExt, Opcode, RedTy, SrcVecTy,
CostKind);
3479 ExtCost += Ext0->computeCost(VF, Ctx);
3481 ExtCost += Ext1->computeCost(VF, Ctx);
3483 ExtCost += OuterExt->computeCost(VF, Ctx);
3485 return MulAccCost.
isValid() &&
3486 MulAccCost < ExtCost + MulCost + RedCost;
3491 VPValue *VecOp = Red->getVecOp();
3502 if (RecipeA && RecipeB &&
3503 (RecipeA->getOpcode() == RecipeB->getOpcode() ||
A ==
B) &&
3506 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3507 Instruction::CastOps::ZExt,
3508 Mul, RecipeA, RecipeB,
nullptr)) {
3512 if (IsMulAccValidAndClampRange(
true,
Mul,
nullptr,
nullptr,
nullptr))
3526 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3527 Ext0->getOpcode() == Ext1->getOpcode() &&
3528 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3529 Instruction::CastOps::ZExt,
3530 Mul, Ext0, Ext1, Ext)) {
3532 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3533 Ext0->getDebugLoc());
3534 NewExt0->insertBefore(Ext0);
3539 Ext->getResultType(), *Ext1,
3540 Ext1->getDebugLoc());
3543 Mul->setOperand(0, NewExt0);
3544 Mul->setOperand(1, NewExt1);
3545 Red->setOperand(1,
Mul);
3558 auto IP = std::next(Red->getIterator());
3559 auto *VPBB = Red->getParent();
3569 Red->replaceAllUsesWith(AbstractR);
3600 for (
VPValue *VPV : VPValues) {
3602 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3610 if (
User->usesScalars(VPV))
3613 HoistPoint = HoistBlock->
begin();
3617 "All users must be in the vector preheader or dominated by it");
3622 VPV->replaceUsesWithIf(Broadcast,
3623 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
3624 return Broadcast != &U && !U.usesScalars(VPV);
3632 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
3633 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
3667 auto *TCMO = Builder.createNaryOp(
3695 auto UsesVectorOrInsideReplicateRegion = [RepR, LoopRegion](
VPUser *U) {
3698 return !U->usesScalars(RepR) || ParentRegion != LoopRegion;
3700 if (!RepR || RepR->isSingleScalar() ||
3701 none_of(RepR->users(), UsesVectorOrInsideReplicateRegion))
3711 RepR->replaceUsesWithIf(
3712 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3714 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3723 bool RequiresScalarEpilogue) {
3725 assert(VectorTC.
isLiveIn() &&
"vector-trip-count must be a live-in");
3744 if (TailByMasking) {
3745 TC = Builder.createNaryOp(
3747 {TC, Builder.createNaryOp(
3759 Builder.createNaryOp(Instruction::URem, {TC, Step},
3768 if (RequiresScalarEpilogue) {
3770 "requiring scalar epilogue is not supported with fail folding");
3771 VPValue *IsZero = Builder.createICmp(
3773 R = Builder.createSelect(IsZero, Step, R);
3776 VPValue *Res = Builder.createNaryOp(
3795 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
3802 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3806 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
3811 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3821 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3829 const SCEV *Expr = ExpSCEV->getSCEV();
3832 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3837 ExpSCEV->eraseFromParent();
3840 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3841 "after any VPIRInstructions");
3844 auto EI = Entry->begin();
3854 return ExpandedSCEVs;
3874 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
3883 unsigned VectorRegWidth) {
3887 Type *GroupElementTy =
nullptr;
3891 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3892 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3899 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3900 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3907 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3908 GroupSize == VectorRegWidth;
3916 return RepR && RepR->isSingleScalar();
3920 unsigned VectorRegWidth) {
3946 if (R.mayWriteToMemory() && !InterleaveR)
3968 if (InterleaveR->getStoredValues().empty())
3973 auto *Member0 = InterleaveR->getStoredValues()[0];
3975 all_of(InterleaveR->getStoredValues(),
3976 [Member0](
VPValue *VPV) { return Member0 == VPV; })) {
3984 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
3987 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
3988 return IR && IR->getInterleaveGroup()->isFull() &&
3989 IR->getVPValue(Op.index()) == Op.value();
3998 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4001 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
4003 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4004 R->getNumOperands() > 2)
4007 [WideMember0, Idx =
I](
const auto &
P) {
4008 const auto &[OpIdx, OpV] = P;
4009 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4016 if (StoreGroups.
empty())
4022 auto *R = V->getDefiningRecipe();
4029 *
cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4030 LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4031 false, {}, LoadGroup->getDebugLoc());
4032 L->insertBefore(LoadGroup);
4038 assert(RepR->isSingleScalar() &&
4040 "must be a single scalar load");
4041 NarrowedOps.
insert(RepR);
4046 VPValue *PtrOp = WideLoad->getAddr();
4048 PtrOp = VecPtr->getOperand(0);
4053 nullptr, *WideLoad);
4054 N->insertBefore(WideLoad);
4060 for (
auto *StoreGroup : StoreGroups) {
4062 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4065 }
else if (
auto *WideMember0 =
4067 for (
unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4068 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4071 Res = NarrowOp(Member0);
4076 StoreGroup->getAddr(), Res,
nullptr,
true,
4077 false, {}, StoreGroup->getDebugLoc());
4078 S->insertBefore(StoreGroup);
4079 StoreGroup->eraseFromParent();
4089 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.
getUF()));
4097 Inc->setOperand(1, UF);
4099 Plan.
getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4116 "must have a BranchOnCond");
4119 if (VF.
isScalable() && VScaleForTuning.has_value())
4120 VectorStep *= *VScaleForTuning;
4121 assert(VectorStep > 0 &&
"trip count should not be zero");
4125 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
Value * FoldGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, GEPNoWrapFlags NW) const override
Value * FoldBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS) const override
Value * FoldSelect(Value *C, Value *True, Value *False) const override
Value * FoldCast(Instruction::CastOps Op, Value *V, Type *DestTy) const override
Value * FoldCmp(CmpInst::Predicate P, Value *LHS, Value *RHS) const override
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
operand_iterator op_end()
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
VPValue * getSplatVFValue()
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
VPValue & getVectorTripCount()
The vector trip count.
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getTrue()
Return a VPValue wrapping i1 true.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...