45 cl::desc(
"Enable use of wide get active lane mask instructions"));
50 GetIntOrFpInductionDescriptor,
54 Plan->getVectorLoopRegion());
57 if (!VPBB->getParent())
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
65 VPValue *VPV = Ingredient.getVPSingleValue();
74 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
80 VPValue *Start = Plan->getOrAddLiveIn(
II->getStartValue());
84 Phi, Start, Step, &Plan->getVF(), *
II, Ingredient.getDebugLoc());
88 "only VPInstructions expected here");
93 *Load, Ingredient.getOperand(0),
nullptr ,
95 Ingredient.getDebugLoc());
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr ,
false ,
false ,
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
146 for (
auto &Recipe : *VPBB) {
150 WorkList.
insert({VPBB, Def});
156 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
159 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
160 if (SinkCandidate->
getParent() == SinkTo ||
165 if (!ScalarVFOnly && RepR->isSingleScalar())
170 bool NeedsDuplicating =
false;
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](
VPUser *U) {
178 if (UI->getParent() == SinkTo)
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
183 return NeedsDuplicating &&
186 if (!
all_of(SinkCandidate->
users(), CanSinkWithUser))
189 if (NeedsDuplicating) {
193 if (
auto *SinkCandidateRepR =
199 nullptr , *SinkCandidateRepR);
202 Clone = SinkCandidate->
clone();
214 WorkList.
insert({SinkTo, Def});
224 if (!EntryBB || EntryBB->size() != 1 ||
234 if (EntryBB->getNumSuccessors() != 2)
239 if (!Succ0 || !Succ1)
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
244 if (Succ0->getSingleSuccessor() == Succ1)
246 if (Succ1->getSingleSuccessor() == Succ0)
263 if (!Region1->isReplicator())
265 auto *MiddleBasicBlock =
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
272 if (!Region2 || !Region2->isReplicator())
277 if (!Mask1 || Mask1 != Mask2)
280 assert(Mask1 && Mask2 &&
"both region must have conditions");
286 if (TransformedRegions.
contains(Region1))
293 if (!Then1 || !Then2)
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
337 TransformedRegions.
insert(Region1);
340 return !TransformedRegions.
empty();
347 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->
getMask();
368 RecipeWithoutMask->getDebugLoc());
392 if (RepR->isPredicated())
411 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
425 if (!VPBB->getParent())
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
438 R.moveBefore(*PredVPBB, PredVPBB->
end());
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (
auto *Succ :
to_vector(VPBB->successors())) {
449 return !WorkList.
empty();
456 bool ShouldSimplify =
true;
457 while (ShouldSimplify) {
473 if (!
IV ||
IV->getTruncInst())
484 auto &Casts =
IV->getInductionDescriptor().getCastInsts();
488 for (
auto *U : FindMyCast->
users()) {
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
495 FindMyCast = FoundUserCast;
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
545 if (R.mayHaveSideEffects())
549 return all_of(R.definedValues(),
550 [](
VPValue *V) { return V->getNumUsers() == 0; });
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
569 if (*PhiR->user_begin() !=
Incoming->getDefiningRecipe() ||
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
588 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
604 if (ResultTy != StepTy) {
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
620 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
625 Users.insert_range(V->users());
627 return Users.takeVector();
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
670 Def->operands(),
true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
684 VPValue *StepV = PtrIV->getOperand(1);
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
699 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
700 return U->usesScalars(WideIV);
706 Plan,
ID.getKind(),
ID.getInductionOpcode(),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
715 WideIV->replaceUsesWithIf(Steps, [WideIV](
VPUser &U,
unsigned) {
716 return U.usesScalars(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
736 if (!Def || Def->getNumOperands() != 2)
744 auto IsWideIVInc = [&]() {
745 auto &
ID = WideIV->getInductionDescriptor();
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (
ID.getInductionOpcode()) {
750 case Instruction::Add:
752 case Instruction::FAdd:
755 case Instruction::FSub:
758 case Instruction::Sub: {
777 return IsWideIVInc() ? WideIV :
nullptr;
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
811 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType,
DL);
813 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane},
DL);
820 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue =
B.createDerivedIV(
829 Start, EndValue, Step);
849 assert(EndValue &&
"end value must have been pre-computed");
859 VPValue *Step = WideIV->getStepValue();
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {},
"ind.escape");
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
871 const auto &
ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
891 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
893 if (PredVPBB == MiddleVPBB)
895 ExitIRI->getOperand(Idx),
899 ExitIRI->getOperand(Idx), SE);
901 ExitIRI->setOperand(Idx, Escape);
918 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
931 while (!WorkList.
empty()) {
933 if (!Seen.
insert(Cur).second)
940 WorkList.
append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
953 if (!
Op->isLiveIn() || !
Op->getLiveInIRValue())
955 Ops.push_back(
Op->getLiveInIRValue());
967 return Folder.FoldSelect(
Ops[0],
Ops[1],
970 return Folder.FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
972 case Instruction::Select:
973 return Folder.FoldSelect(
Ops[0],
Ops[1],
Ops[2]);
974 case Instruction::ICmp:
975 case Instruction::FCmp:
978 case Instruction::GetElementPtr: {
982 RFlags.getGEPNoWrapFlags());
991 case Instruction::ExtractElement:
1000 VPlan *Plan = R.getParent()->getPlan();
1019 .Default([](
auto *) {
return false; }))
1026 PredPHI->replaceAllUsesWith(
Op);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(
A);
1043 : Instruction::ZExt;
1046 if (
auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1048 VPC->setUnderlyingValue(UnderlyingExt);
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1063 for (
VPUser *U :
A->users()) {
1065 for (
VPValue *VPV : R->definedValues())
1079 Def->replaceAllUsesWith(
X);
1080 Def->eraseFromParent();
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1090 return Def->replaceAllUsesWith(
X);
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1117 return Def->replaceAllUsesWith(
X);
1122 Def->setOperand(0,
C);
1123 Def->setOperand(1,
Y);
1124 Def->setOperand(2,
X);
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1138 return Def->replaceAllUsesWith(
A);
1141 return Def->replaceAllUsesWith(R.getOperand(0) ==
A ? R.getOperand(1)
1146 return Def->replaceAllUsesWith(
A);
1153 return match(U, m_CombineOr(m_Not(m_Specific(Cmp)),
1154 m_Select(m_Specific(Cmp), m_VPValue(),
1162 R->setOperand(1,
Y);
1163 R->setOperand(2,
X);
1167 R->replaceAllUsesWith(Cmp);
1172 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1173 Cmp->setDebugLoc(R.getDebugLoc());
1185 return Def->replaceAllUsesWith(Def->getOperand(1));
1191 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1192 Def->replaceAllUsesWith(
X);
1202 Def->setOperand(1, Def->getOperand(0));
1203 Def->setOperand(0,
Y);
1208 if (Phi->getOperand(0) == Phi->getOperand(1))
1209 Def->replaceAllUsesWith(Phi->getOperand(0));
1216 Def->replaceAllUsesWith(
1217 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1225 Def->replaceAllUsesWith(
1226 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1231 if (Phi->getNumOperands() == 1)
1232 Phi->replaceAllUsesWith(Phi->getOperand(0));
1243 if (VecPtr->isFirstPart()) {
1244 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1253 Steps->replaceAllUsesWith(Steps->getOperand(0));
1261 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1263 return PhiR && PhiR->isInLoop();
1269 Def->replaceAllUsesWith(
A);
1276 return U->usesScalars(A) || Def == U;
1278 return Def->replaceAllUsesWith(
A);
1307 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1314 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1315 true ,
nullptr , *RepR );
1316 Clone->insertBefore(RepOrWidenR);
1318 {Clone->getOperand(0)});
1319 Ext->insertBefore(Clone);
1320 Clone->setOperand(0, Ext);
1321 RepR->eraseFromParent();
1329 !
all_of(RepOrWidenR->users(), [RepOrWidenR](
const VPUser *U) {
1330 return U->usesScalars(RepOrWidenR) ||
1331 match(cast<VPRecipeBase>(U),
1332 m_ExtractLastElement(m_VPValue()));
1337 RepOrWidenR->operands(),
1339 Clone->insertBefore(RepOrWidenR);
1340 RepOrWidenR->replaceAllUsesWith(Clone);
1376 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1377 UniqueValues.
insert(Blend->getIncomingValue(0));
1378 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1380 UniqueValues.
insert(Blend->getIncomingValue(
I));
1382 if (UniqueValues.
size() == 1) {
1383 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1384 Blend->eraseFromParent();
1388 if (Blend->isNormalized())
1394 unsigned StartIndex = 0;
1395 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1400 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1407 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1409 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1410 if (
I == StartIndex)
1412 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1413 OperandsWithMask.
push_back(Blend->getMask(
I));
1418 OperandsWithMask, Blend->getDebugLoc());
1419 NewBlend->insertBefore(&R);
1421 VPValue *DeadMask = Blend->getMask(StartIndex);
1423 Blend->eraseFromParent();
1428 if (NewBlend->getNumOperands() == 3 &&
1430 VPValue *Inc0 = NewBlend->getOperand(0);
1431 VPValue *Inc1 = NewBlend->getOperand(1);
1432 VPValue *OldMask = NewBlend->getOperand(2);
1433 NewBlend->setOperand(0, Inc1);
1434 NewBlend->setOperand(1, Inc0);
1435 NewBlend->setOperand(2, NewMask);
1465 APInt MaxVal = AlignedTC - 1;
1468 unsigned NewBitWidth =
1474 bool MadeChange =
false;
1483 if (!WideIV || !WideIV->isCanonical() ||
1484 WideIV->hasMoreThanOneUniqueUser() ||
1485 NewIVTy == WideIV->getScalarType())
1490 if (!
match(*WideIV->user_begin(),
1497 auto *NewStart = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1498 WideIV->setStartValue(NewStart);
1499 auto *NewStep = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1500 WideIV->setStepValue(NewStep);
1506 Cmp->setOperand(1, NewBTC);
1520 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1522 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1535 const SCEV *VectorTripCount =
1540 "Trip count SCEV must be computable");
1560 auto *Term = &ExitingVPBB->
back();
1573 for (
unsigned Part = 0; Part < UF; ++Part) {
1580 Extracts[Part] = Ext;
1581 Ext->insertAfter(ALM);
1592 match(Phi->getBackedgeValue(),
1594 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1599 Phis[Part->getZExtValue()] = Phi;
1606 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1613 "Expected incoming values of Phi to be ActiveLaneMasks");
1619 EntryALM->setOperand(2, ALMMultiplier);
1620 LoopALM->setOperand(2, ALMMultiplier);
1624 ExtractFromALM(EntryALM, EntryExtracts);
1629 ExtractFromALM(LoopALM, LoopExtracts);
1631 Not->setOperand(0, LoopExtracts[0]);
1634 for (
unsigned Part = 0; Part < UF; ++Part) {
1635 Phis[Part]->setStartValue(EntryExtracts[Part]);
1636 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1649 auto *Term = &ExitingVPBB->
back();
1658 const SCEV *TripCount =
1661 "Trip count SCEV must be computable");
1664 if (TripCount->
isZero() ||
1684 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1685 return R->isCanonical();
1686 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1687 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1693 R->getScalarType());
1695 HeaderR.eraseFromParent();
1699 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1700 HeaderR.eraseFromParent();
1709 B->setParent(
nullptr);
1718 Term->getDebugLoc());
1722 Term->eraseFromParent();
1730 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
1731 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
1739 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
1757 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
1760 if (SinkCandidate == Previous)
1764 !Seen.
insert(SinkCandidate).second ||
1768 if (SinkCandidate->mayHaveSideEffects())
1777 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
1780 "only recipes with a single defined value expected");
1795 if (SinkCandidate == FOR)
1798 SinkCandidate->moveAfter(Previous);
1799 Previous = SinkCandidate;
1817 for (
VPUser *U : FOR->users()) {
1823 [&VPDT, HoistPoint](
VPUser *U) {
1824 auto *R = cast<VPRecipeBase>(U);
1825 return HoistPoint == R ||
1826 VPDT.properlyDominates(HoistPoint, R);
1828 "HoistPoint must dominate all users of FOR");
1830 auto NeedsHoisting = [HoistPoint, &VPDT,
1832 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1833 if (!HoistCandidate)
1839 "CFG in VPlan should still be flat, without replicate regions");
1841 if (!Visited.
insert(HoistCandidate).second)
1853 return HoistCandidate;
1858 return !HoistCandidate->mayHaveSideEffects();
1867 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
1870 "only recipes with a single defined value expected");
1871 if (!CanHoist(Current))
1882 if (
auto *R = NeedsHoisting(
Op))
1894 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
1914 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1917 while (
auto *PrevPhi =
1919 assert(PrevPhi->getParent() == FOR->getParent());
1921 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1939 {FOR, FOR->getBackedgeValue()});
1941 FOR->replaceAllUsesWith(RecurSplice);
1944 RecurSplice->setOperand(0, FOR);
1955 RecurKind RK = PhiR->getRecurrenceKind();
1962 RecWithFlags->dropPoisonGeneratingFlags();
1968struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
1970 return Def == getEmptyKey() || Def == getTombstoneKey();
1976 static std::optional<std::pair<bool, unsigned>>
1979 std::optional<std::pair<bool, unsigned>>>(R)
1982 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
1983 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
1984 return std::make_pair(
true,
I->getVectorIntrinsicID());
1986 .
Default([](
auto *) {
return std::nullopt; });
1990 static bool canHandle(
const VPSingleDefRecipe *Def) {
1994 auto C = getOpcodeOrIntrinsicID(Def);
1999 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
2000 C->second == Instruction::ExtractValue)))
2006 return !
Def->mayReadFromMemory();
2010 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
2011 const VPlan *Plan =
Def->getParent()->getPlan();
2012 VPTypeAnalysis TypeInfo(*Plan);
2014 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2018 if (RFlags->hasPredicate())
2024 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2027 if (
L->getVPDefID() !=
R->getVPDefID() ||
2028 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2030 !
equal(
L->operands(),
R->operands()))
2033 if (LFlags->hasPredicate() &&
2034 LFlags->getPredicate() !=
2037 const VPlan *Plan =
L->getParent()->getPlan();
2038 VPTypeAnalysis TypeInfo(*Plan);
2039 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2054 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2058 if (!VPDT.
dominates(V->getParent(), VPBB))
2063 Def->replaceAllUsesWith(V);
2081 return RepR && RepR->getOpcode() == Instruction::Alloca;
2091 if (CannotHoistRecipe(R))
2095 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2097 return !Op->isDefinedOutsideLoopRegions();
2100 R.moveBefore(*Preheader, Preheader->
end());
2122 VPValue *ResultVPV = R.getVPSingleValue();
2124 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2125 if (!NewResSizeInBits)
2138 (void)OldResSizeInBits;
2146 VPW->dropPoisonGeneratingFlags();
2148 if (OldResSizeInBits != NewResSizeInBits &&
2153 Ext->insertAfter(&R);
2155 Ext->setOperand(0, ResultVPV);
2156 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2159 "Only ICmps should not need extending the result.");
2168 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2169 auto *
Op = R.getOperand(Idx);
2170 unsigned OpSizeInBits =
2172 if (OpSizeInBits == NewResSizeInBits)
2174 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2175 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2179 : ProcessedIter->second;
2180 R.setOperand(Idx, NewOp);
2183 ProcessedIter->second = NewOp;
2184 if (!
Op->isLiveIn()) {
2199 if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.
getEntry() ||
2203 unsigned RemovedIdx;
2214 "There must be a single edge between VPBB and its successor");
2223 VPBB->back().eraseFromParent();
2284 VPValue *StartV = CanonicalIVPHI->getStartValue();
2286 auto *CanonicalIVIncrement =
2290 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2291 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2301 VPValue *TripCount, *IncrementValue;
2306 IncrementValue = CanonicalIVIncrement;
2312 IncrementValue = CanonicalIVPHI;
2316 auto *EntryIncrement = Builder.createOverflowingOp(
2324 {EntryIncrement, TC, ALMMultiplier},
DL,
2325 "active.lane.mask.entry");
2331 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2336 Builder.setInsertPoint(OriginalTerminator);
2337 auto *InLoopIncrement =
2339 {IncrementValue}, {
false,
false},
DL);
2341 {InLoopIncrement, TripCount, ALMMultiplier},
2342 DL,
"active.lane.mask.next");
2347 auto *NotMask = Builder.createNot(ALM,
DL);
2363 "Must have at most one VPWideCanonicalIVRecipe");
2365 auto *WideCanonicalIV =
2367 WideCanonicalIVs.
push_back(WideCanonicalIV);
2375 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2376 WideCanonicalIVs.
push_back(WidenOriginalIV);
2382 for (
auto *Wide : WideCanonicalIVs) {
2388 assert(VPI->getOperand(0) == Wide &&
2389 "WidenCanonicalIV must be the first operand of the compare");
2390 assert(!HeaderMask &&
"Multiple header masks found?");
2398 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2401 UseActiveLaneMaskForControlFlow) &&
2402 "DataAndControlFlowWithoutRuntimeCheck implies "
2403 "UseActiveLaneMaskForControlFlow");
2407 assert(FoundWidenCanonicalIVUser &&
2408 "Must have widened canonical IV when tail folding!");
2410 auto *WideCanonicalIV =
2413 if (UseActiveLaneMaskForControlFlow) {
2423 nullptr,
"active.lane.mask");
2449 assert(OrigMask &&
"Unmasked recipe when folding tail");
2454 return HeaderMask == OrigMask ? nullptr : OrigMask;
2458 auto GetNewAddr = [&CurRecipe, &EVL](
VPValue *Addr) ->
VPValue * {
2462 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2463 "VPVectorEndPointerRecipe with non-VF VF operand?");
2467 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2469 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2478 VPValue *NewMask = GetNewMask(L->getMask());
2479 VPValue *NewAddr = GetNewAddr(L->getAddr());
2488 VPValue *NewMask = GetNewMask(
IR->getMask());
2492 VPValue *NewMask = GetNewMask(Red->getCondOp());
2507 Intrinsic::vp_merge, {&AllOneMask,
LHS,
RHS, &EVL},
2523 "User of VF that we can't transform to EVL.");
2530 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2531 m_Specific(&Plan.getVFxUF()))) ||
2532 isa<VPWidenPointerInductionRecipe>(U);
2534 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2535 "increment of the canonical induction.");
2555 MaxEVL = Builder.createScalarZExtOrTrunc(
2559 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2560 VPValue *PrevEVL = Builder.createScalarPhi(
2574 Intrinsic::experimental_vp_splice,
2575 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2578 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2596 VPValue *EVLMask = Builder.createICmp(
2614 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2615 "New recipe must define the same number of values as the "
2620 for (
unsigned I = 0;
I < NumDefVal; ++
I) {
2621 VPValue *CurVPV = CurRecipe->getVPValue(
I);
2633 R->eraseFromParent();
2683 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
2688 VPValue *StartV = CanonicalIVPHI->getStartValue();
2692 EVLPhi->insertAfter(CanonicalIVPHI);
2693 VPBuilder Builder(Header, Header->getFirstNonPhi());
2696 VPPhi *AVLPhi = Builder.createScalarPhi(
2700 if (MaxSafeElements) {
2703 Plan.
getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2711 auto *CanonicalIVIncrement =
2713 Builder.setInsertPoint(CanonicalIVIncrement);
2717 OpVPEVL = Builder.createScalarZExtOrTrunc(
2718 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2720 auto *NextEVLIV = Builder.createOverflowingOp(
2721 Instruction::Add, {OpVPEVL, EVLPhi},
2722 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2723 CanonicalIVIncrement->hasNoSignedWrap()},
2724 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
2725 EVLPhi->addOperand(NextEVLIV);
2727 VPValue *NextAVL = Builder.createOverflowingOp(
2728 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
2736 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2737 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2751 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
2762 [[maybe_unused]]
bool FoundAVL =
2765 assert(FoundAVL &&
"Didn't find AVL?");
2773 [[maybe_unused]]
bool FoundAVLNext =
2776 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
2787 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2790 "Unexpected canonical iv");
2796 CanonicalIV->eraseFromParent();
2809 match(LatchExitingBr,
2812 "Unexpected terminator in EVL loop");
2820 LatchExitingBr->eraseFromParent();
2830 return R->getParent()->getParent() ||
2833 for (
const SCEV *Stride : StridesMap.
values()) {
2836 const APInt *StrideConst;
2837 if (!
match(PSE.
getSCEV(StrideV), m_scev_APInt(StrideConst)))
2842 Plan.
getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2854 unsigned BW = U->getType()->getScalarSizeInBits();
2865 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
2869 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
2874 while (!Worklist.
empty()) {
2877 if (!Visited.
insert(CurRec).second)
2899 RecWithFlags->isDisjoint()) {
2902 Instruction::Add, {
A,
B}, {
false,
false},
2903 RecWithFlags->getDebugLoc());
2904 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2905 RecWithFlags->replaceAllUsesWith(New);
2906 RecWithFlags->eraseFromParent();
2909 RecWithFlags->dropPoisonGeneratingFlags();
2914 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2915 "found instruction with poison generating flags not covered by "
2916 "VPRecipeWithIRFlags");
2921 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2933 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2934 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2935 if (AddrDef && WidenRec->isConsecutive() &&
2936 BlockNeedsPredication(UnderlyingInstr.
getParent()))
2937 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2939 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2943 InterleaveRec->getInterleaveGroup();
2944 bool NeedPredication =
false;
2946 I < NumMembers; ++
I) {
2949 NeedPredication |= BlockNeedsPredication(Member->getParent());
2952 if (NeedPredication)
2953 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2965 if (InterleaveGroups.empty())
2973 for (
const auto *IG : InterleaveGroups) {
2979 StoredValues.
push_back(StoreR->getStoredValue());
2980 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
2987 StoredValues.
push_back(StoreR->getStoredValue());
2991 bool NeedsMaskForGaps =
2992 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
2993 (!StoredValues.
empty() && !IG->isFull());
3005 VPValue *Addr = Start->getAddr();
3014 assert(IG->getIndex(IRInsertPos) != 0 &&
3015 "index of insert position shouldn't be zero");
3019 IG->getIndex(IRInsertPos),
3024 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3030 if (IG->isReverse()) {
3033 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3034 ReversePtr->insertBefore(InsertPos);
3038 InsertPos->getMask(), NeedsMaskForGaps,
3039 InterleaveMD, InsertPos->getDebugLoc());
3040 VPIG->insertBefore(InsertPos);
3043 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3046 if (!Member->getType()->isVoidTy()) {
3107 AddOp = Instruction::Add;
3108 MulOp = Instruction::Mul;
3110 AddOp =
ID.getInductionOpcode();
3111 MulOp = Instruction::FMul;
3112 Flags =
ID.getInductionBinOp()->getFastMathFlags();
3120 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3121 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3130 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3135 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3136 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3142 WidePHI->addOperand(
Init);
3143 WidePHI->insertBefore(WidenIVR);
3154 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3158 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3161 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3164 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3171 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3174 WidePHI->addOperand(
Next);
3202 VPlan *Plan = R->getParent()->getPlan();
3203 VPValue *Start = R->getStartValue();
3204 VPValue *Step = R->getStepValue();
3205 VPValue *VF = R->getVFValue();
3207 assert(R->getInductionDescriptor().getKind() ==
3209 "Not a pointer induction according to InductionDescriptor!");
3212 "Recipe should have been replaced");
3218 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3222 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3225 Offset = Builder.createNaryOp(Instruction::Mul, {
Offset, Step});
3226 VPValue *PtrAdd = Builder.createNaryOp(
3228 R->replaceAllUsesWith(PtrAdd);
3233 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3235 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3238 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3247 if (!R->isReplicator())
3251 R->dissolveToCFGLoop();
3276 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3277 Select = Builder.createSelect(Blend->getMask(
I),
3278 Blend->getIncomingValue(
I),
Select,
3279 R.getDebugLoc(),
"predphi");
3280 Blend->replaceAllUsesWith(
Select);
3300 ? Instruction::UIToFP
3301 : Instruction::Trunc;
3302 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3305 [[maybe_unused]]
auto *ConstStep =
3309 assert(!ConstStep || ConstStep->getValue() != 1);
3313 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3318 Flags = {VPI->getFastMathFlags()};
3323 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3325 VPI->replaceAllUsesWith(VectorStep);
3331 R->eraseFromParent();
3344 "unsupported early exit VPBB");
3356 "Terminator must be be BranchOnCond");
3357 VPValue *CondOfEarlyExitingVPBB =
3359 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3360 ? CondOfEarlyExitingVPBB
3361 : Builder.createNot(CondOfEarlyExitingVPBB);
3378 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3383 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3384 if (ExitIRI->getNumOperands() != 1) {
3387 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3390 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3391 if (!IncomingFromEarlyExit->
isLiveIn()) {
3395 "first.active.lane");
3398 nullptr,
"early.exit.value");
3399 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3409 "Unexpected terminator");
3410 auto *IsLatchExitTaken =
3412 LatchExitingBranch->getOperand(1));
3413 auto *AnyExitTaken = Builder.createNaryOp(
3414 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3416 LatchExitingBranch->eraseFromParent();
3426 Type *RedTy = Ctx.Types.inferScalarType(Red);
3427 VPValue *VecOp = Red->getVecOp();
3430 auto IsExtendedRedValidAndClampRange = [&](
unsigned Opcode,
bool isZExt,
3431 Type *SrcTy) ->
bool {
3437 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3442 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
3450 IsExtendedRedValidAndClampRange(
3453 Instruction::CastOps::ZExt,
3454 Ctx.Types.inferScalarType(
A)))
3472 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3475 Type *RedTy = Ctx.Types.inferScalarType(Red);
3478 auto IsMulAccValidAndClampRange =
3485 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3488 isZExt, Opcode, RedTy, SrcVecTy,
CostKind);
3493 ExtCost += Ext0->computeCost(VF, Ctx);
3495 ExtCost += Ext1->computeCost(VF, Ctx);
3497 ExtCost += OuterExt->computeCost(VF, Ctx);
3499 return MulAccCost.
isValid() &&
3500 MulAccCost < ExtCost + MulCost + RedCost;
3505 VPValue *VecOp = Red->getVecOp();
3516 if (RecipeA && RecipeB &&
3517 (RecipeA->getOpcode() == RecipeB->getOpcode() ||
A ==
B) &&
3520 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3521 Instruction::CastOps::ZExt,
3522 Mul, RecipeA, RecipeB,
nullptr)) {
3526 if (IsMulAccValidAndClampRange(
true,
Mul,
nullptr,
nullptr,
nullptr))
3540 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3541 Ext0->getOpcode() == Ext1->getOpcode() &&
3542 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3543 Instruction::CastOps::ZExt,
3544 Mul, Ext0, Ext1, Ext)) {
3546 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3547 Ext0->getDebugLoc());
3548 NewExt0->insertBefore(Ext0);
3553 Ext->getResultType(), *Ext1,
3554 Ext1->getDebugLoc());
3557 Mul->setOperand(0, NewExt0);
3558 Mul->setOperand(1, NewExt1);
3559 Red->setOperand(1,
Mul);
3572 auto IP = std::next(Red->getIterator());
3573 auto *VPBB = Red->getParent();
3583 Red->replaceAllUsesWith(AbstractR);
3614 for (
VPValue *VPV : VPValues) {
3616 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3624 if (
User->usesScalars(VPV))
3627 HoistPoint = HoistBlock->
begin();
3631 "All users must be in the vector preheader or dominated by it");
3636 VPV->replaceUsesWithIf(Broadcast,
3637 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
3638 return Broadcast != &U && !U.usesScalars(VPV);
3646 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
3647 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
3681 auto *TCMO = Builder.createNaryOp(
3710 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](
VPUser *U) {
3713 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3720 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3730 DefR->replaceUsesWithIf(
3731 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3733 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3742 bool RequiresScalarEpilogue) {
3744 assert(VectorTC.
isLiveIn() &&
"vector-trip-count must be a live-in");
3763 if (TailByMasking) {
3764 TC = Builder.createNaryOp(
3766 {TC, Builder.createNaryOp(
3778 Builder.createNaryOp(Instruction::URem, {TC, Step},
3787 if (RequiresScalarEpilogue) {
3789 "requiring scalar epilogue is not supported with fail folding");
3790 VPValue *IsZero = Builder.createICmp(
3792 R = Builder.createSelect(IsZero, Step, R);
3795 VPValue *Res = Builder.createNaryOp(
3814 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
3821 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3825 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
3830 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3840 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3848 const SCEV *Expr = ExpSCEV->getSCEV();
3851 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3856 ExpSCEV->eraseFromParent();
3859 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3860 "after any VPIRInstructions");
3863 auto EI = Entry->begin();
3873 return ExpandedSCEVs;
3893 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
3902 unsigned VectorRegWidth) {
3906 Type *GroupElementTy =
nullptr;
3910 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3911 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3918 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3919 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3926 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3927 GroupSize == VectorRegWidth;
3935 return RepR && RepR->isSingleScalar();
3939 unsigned VectorRegWidth) {
3965 if (R.mayWriteToMemory() && !InterleaveR)
3987 if (InterleaveR->getStoredValues().empty())
3992 auto *Member0 = InterleaveR->getStoredValues()[0];
3994 all_of(InterleaveR->getStoredValues(),
3995 [Member0](
VPValue *VPV) { return Member0 == VPV; })) {
4003 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4006 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4007 return IR && IR->getInterleaveGroup()->isFull() &&
4008 IR->getVPValue(Op.index()) == Op.value();
4017 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4020 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
4022 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4023 R->getNumOperands() > 2)
4026 [WideMember0, Idx =
I](
const auto &
P) {
4027 const auto &[OpIdx, OpV] = P;
4028 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4035 if (StoreGroups.
empty())
4041 auto *R = V->getDefiningRecipe();
4048 *
cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4049 LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4050 false, {}, LoadGroup->getDebugLoc());
4051 L->insertBefore(LoadGroup);
4057 assert(RepR->isSingleScalar() &&
4059 "must be a single scalar load");
4060 NarrowedOps.
insert(RepR);
4065 VPValue *PtrOp = WideLoad->getAddr();
4067 PtrOp = VecPtr->getOperand(0);
4072 nullptr, *WideLoad);
4073 N->insertBefore(WideLoad);
4079 for (
auto *StoreGroup : StoreGroups) {
4081 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4084 }
else if (
auto *WideMember0 =
4086 for (
unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4087 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4090 Res = NarrowOp(Member0);
4095 StoreGroup->getAddr(), Res,
nullptr,
true,
4096 false, {}, StoreGroup->getDebugLoc());
4097 S->insertBefore(StoreGroup);
4098 StoreGroup->eraseFromParent();
4108 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.
getUF()));
4116 Inc->setOperand(1, UF);
4118 Plan.
getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4135 "must have a BranchOnCond");
4138 if (VF.
isScalable() && VScaleForTuning.has_value())
4139 VectorStep *= *VScaleForTuning;
4140 assert(VectorStep > 0 &&
"trip count should not be zero");
4144 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
operand_iterator op_end()
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
VPValue * getSplatVFValue()
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
VPValue & getVectorTripCount()
The vector trip count.
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getTrue()
Return a VPValue wrapping i1 true.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...