LLVM 22.0.0git
VPlanTransforms.cpp
Go to the documentation of this file.
1//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a set of utility VPlan to VPlan transformations.
11///
12//===----------------------------------------------------------------------===//
13
14#include "VPlanTransforms.h"
15#include "VPRecipeBuilder.h"
16#include "VPlan.h"
17#include "VPlanAnalysis.h"
18#include "VPlanCFG.h"
19#include "VPlanDominatorTree.h"
20#include "VPlanHelpers.h"
21#include "VPlanPatternMatch.h"
22#include "VPlanUtils.h"
23#include "VPlanVerifier.h"
24#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/TypeSwitch.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/MDBuilder.h"
39
40using namespace llvm;
41using namespace VPlanPatternMatch;
42
44 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
45 cl::desc("Enable use of wide get active lane mask instructions"));
46
48 VPlanPtr &Plan,
50 GetIntOrFpInductionDescriptor,
51 const TargetLibraryInfo &TLI) {
52
54 Plan->getVectorLoopRegion());
56 // Skip blocks outside region
57 if (!VPBB->getParent())
58 break;
59 VPRecipeBase *Term = VPBB->getTerminator();
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
61 // Introduce each ingredient into VPlan.
62 for (VPRecipeBase &Ingredient :
63 make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
64
65 VPValue *VPV = Ingredient.getVPSingleValue();
66 if (!VPV->getUnderlyingValue())
67 continue;
68
70
71 VPRecipeBase *NewRecipe = nullptr;
72 if (auto *PhiR = dyn_cast<VPPhi>(&Ingredient)) {
73 auto *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
74 const auto *II = GetIntOrFpInductionDescriptor(Phi);
75 if (!II) {
76 NewRecipe = new VPWidenPHIRecipe(Phi, nullptr, PhiR->getDebugLoc());
77 for (VPValue *Op : PhiR->operands())
78 NewRecipe->addOperand(Op);
79 } else {
80 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
81 VPValue *Step =
83 NewRecipe = new VPWidenIntOrFpInductionRecipe(
84 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc());
85 }
86 } else {
87 assert(isa<VPInstruction>(&Ingredient) &&
88 "only VPInstructions expected here");
89 assert(!isa<PHINode>(Inst) && "phis should be handled above");
90 // Create VPWidenMemoryRecipe for loads and stores.
91 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
92 NewRecipe = new VPWidenLoadRecipe(
93 *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
94 false /*Consecutive*/, false /*Reverse*/, VPIRMetadata(*Load),
95 Ingredient.getDebugLoc());
96 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
97 NewRecipe = new VPWidenStoreRecipe(
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
100 VPIRMetadata(*Store), Ingredient.getDebugLoc());
102 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
103 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
104 Intrinsic::ID VectorID = getVectorIntrinsicIDForCall(CI, &TLI);
105 if (VectorID == Intrinsic::not_intrinsic)
106 return false;
107 NewRecipe = new VPWidenIntrinsicRecipe(
108 *CI, getVectorIntrinsicIDForCall(CI, &TLI),
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
110 CI->getDebugLoc());
111 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
112 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
113 } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
114 NewRecipe = new VPWidenCastRecipe(
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
116 } else {
117 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
118 }
119 }
120
121 NewRecipe->insertBefore(&Ingredient);
122 if (NewRecipe->getNumDefinedValues() == 1)
123 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
124 else
125 assert(NewRecipe->getNumDefinedValues() == 0 &&
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
128 }
129 }
130 return true;
131}
132
133static bool sinkScalarOperands(VPlan &Plan) {
134 auto Iter = vp_depth_first_deep(Plan.getEntry());
135 bool Changed = false;
136 // First, collect the operands of all recipes in replicate blocks as seeds for
137 // sinking.
140 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
141 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
142 continue;
143 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
144 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
145 continue;
146 for (auto &Recipe : *VPBB) {
147 for (VPValue *Op : Recipe.operands())
148 if (auto *Def =
149 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
150 WorkList.insert({VPBB, Def});
151 }
152 }
153
154 bool ScalarVFOnly = Plan.hasScalarVFOnly();
155 // Try to sink each replicate or scalar IV steps recipe in the worklist.
156 for (unsigned I = 0; I != WorkList.size(); ++I) {
157 VPBasicBlock *SinkTo;
158 VPSingleDefRecipe *SinkCandidate;
159 std::tie(SinkTo, SinkCandidate) = WorkList[I];
160 if (SinkCandidate->getParent() == SinkTo ||
161 SinkCandidate->mayHaveSideEffects() ||
162 SinkCandidate->mayReadOrWriteMemory())
163 continue;
164 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
165 if (!ScalarVFOnly && RepR->isSingleScalar())
166 continue;
167 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
168 continue;
169
170 bool NeedsDuplicating = false;
171 // All recipe users of the sink candidate must be in the same block SinkTo
172 // or all users outside of SinkTo must be uniform-after-vectorization (
173 // i.e., only first lane is used) . In the latter case, we need to duplicate
174 // SinkCandidate.
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](VPUser *U) {
177 auto *UI = cast<VPRecipeBase>(U);
178 if (UI->getParent() == SinkTo)
179 return true;
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
181 // We only know how to duplicate VPReplicateRecipes and
182 // VPScalarIVStepsRecipes for now.
183 return NeedsDuplicating &&
185 };
186 if (!all_of(SinkCandidate->users(), CanSinkWithUser))
187 continue;
188
189 if (NeedsDuplicating) {
190 if (ScalarVFOnly)
191 continue;
192 VPSingleDefRecipe *Clone;
193 if (auto *SinkCandidateRepR =
194 dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
195 // TODO: Handle converting to uniform recipes as separate transform,
196 // then cloning should be sufficient here.
197 Instruction *I = SinkCandidate->getUnderlyingInstr();
198 Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true,
199 nullptr /*Mask*/, *SinkCandidateRepR);
200 // TODO: add ".cloned" suffix to name of Clone's VPValue.
201 } else {
202 Clone = SinkCandidate->clone();
203 }
204
205 Clone->insertBefore(SinkCandidate);
206 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
207 return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
208 });
209 }
210 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
211 for (VPValue *Op : SinkCandidate->operands())
212 if (auto *Def =
213 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
214 WorkList.insert({SinkTo, Def});
215 Changed = true;
216 }
217 return Changed;
218}
219
220/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
221/// the mask.
223 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
224 if (!EntryBB || EntryBB->size() != 1 ||
225 !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
226 return nullptr;
227
228 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
229}
230
231/// If \p R is a triangle region, return the 'then' block of the triangle.
233 auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
234 if (EntryBB->getNumSuccessors() != 2)
235 return nullptr;
236
237 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
238 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
239 if (!Succ0 || !Succ1)
240 return nullptr;
241
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
243 return nullptr;
244 if (Succ0->getSingleSuccessor() == Succ1)
245 return Succ0;
246 if (Succ1->getSingleSuccessor() == Succ0)
247 return Succ1;
248 return nullptr;
249}
250
251// Merge replicate regions in their successor region, if a replicate region
252// is connected to a successor replicate region with the same predicate by a
253// single, empty VPBasicBlock.
255 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions;
256
257 // Collect replicate regions followed by an empty block, followed by another
258 // replicate region with matching masks to process front. This is to avoid
259 // iterator invalidation issues while merging regions.
262 vp_depth_first_deep(Plan.getEntry()))) {
263 if (!Region1->isReplicator())
264 continue;
265 auto *MiddleBasicBlock =
266 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
268 continue;
269
270 auto *Region2 =
271 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
272 if (!Region2 || !Region2->isReplicator())
273 continue;
274
275 VPValue *Mask1 = getPredicatedMask(Region1);
276 VPValue *Mask2 = getPredicatedMask(Region2);
277 if (!Mask1 || Mask1 != Mask2)
278 continue;
279
280 assert(Mask1 && Mask2 && "both region must have conditions");
281 WorkList.push_back(Region1);
282 }
283
284 // Move recipes from Region1 to its successor region, if both are triangles.
285 for (VPRegionBlock *Region1 : WorkList) {
286 if (TransformedRegions.contains(Region1))
287 continue;
288 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
289 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
290
291 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
292 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
293 if (!Then1 || !Then2)
294 continue;
295
296 // Note: No fusion-preventing memory dependencies are expected in either
297 // region. Such dependencies should be rejected during earlier dependence
298 // checks, which guarantee accesses can be re-ordered for vectorization.
299 //
300 // Move recipes to the successor region.
301 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
302 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
303
304 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
305 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
306
307 // Move VPPredInstPHIRecipes from the merge block to the successor region's
308 // merge block. Update all users inside the successor region to use the
309 // original values.
310 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
311 VPValue *PredInst1 =
312 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
314 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
315 return cast<VPRecipeBase>(&U)->getParent() == Then2;
316 });
317
318 // Remove phi recipes that are unused after merging the regions.
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
321 continue;
322 }
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
324 }
325
326 // Remove the dead recipes in Region1's entry block.
327 for (VPRecipeBase &R :
328 make_early_inc_range(reverse(*Region1->getEntryBasicBlock())))
329 R.eraseFromParent();
330
331 // Finally, remove the first region.
332 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
333 VPBlockUtils::disconnectBlocks(Pred, Region1);
334 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
335 }
336 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
337 TransformedRegions.insert(Region1);
338 }
339
340 return !TransformedRegions.empty();
341}
342
344 VPlan &Plan) {
345 Instruction *Instr = PredRecipe->getUnderlyingInstr();
346 // Build the triangular if-then region.
347 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() && "Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->getMask();
350 auto *MaskDef = BlockInMask->getDefiningRecipe();
351 auto *BOMRecipe = new VPBranchOnMaskRecipe(
352 BlockInMask, MaskDef ? MaskDef->getDebugLoc() : DebugLoc::getUnknown());
353 auto *Entry =
354 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
355
356 // Replace predicated replicate recipe with a replicate recipe without a
357 // mask but in the replicate region.
358 auto *RecipeWithoutMask = new VPReplicateRecipe(
359 PredRecipe->getUnderlyingInstr(),
360 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
361 PredRecipe->isSingleScalar(), nullptr /*Mask*/, *PredRecipe);
362 auto *Pred =
363 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
364
365 VPPredInstPHIRecipe *PHIRecipe = nullptr;
366 if (PredRecipe->getNumUsers() != 0) {
367 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask,
368 RecipeWithoutMask->getDebugLoc());
369 PredRecipe->replaceAllUsesWith(PHIRecipe);
370 PHIRecipe->setOperand(0, RecipeWithoutMask);
371 }
372 PredRecipe->eraseFromParent();
373 auto *Exiting =
374 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
376 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true);
377
378 // Note: first set Entry as region entry and then connect successors starting
379 // from it in order, to propagate the "parent" of each VPBasicBlock.
380 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
381 VPBlockUtils::connectBlocks(Pred, Exiting);
382
383 return Region;
384}
385
386static void addReplicateRegions(VPlan &Plan) {
389 vp_depth_first_deep(Plan.getEntry()))) {
390 for (VPRecipeBase &R : *VPBB)
391 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
392 if (RepR->isPredicated())
393 WorkList.push_back(RepR);
394 }
395 }
396
397 unsigned BBNum = 0;
398 for (VPReplicateRecipe *RepR : WorkList) {
399 VPBasicBlock *CurrentBlock = RepR->getParent();
400 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
401
402 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
403 SplitBlock->setName(
404 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
405 // Record predicated instructions for above packing optimizations.
407 Region->setParent(CurrentBlock->getParent());
409
410 VPRegionBlock *ParentRegion = Region->getParent();
411 if (ParentRegion && ParentRegion->getExiting() == CurrentBlock)
412 ParentRegion->setExiting(SplitBlock);
413 }
414}
415
416/// Remove redundant VPBasicBlocks by merging them into their predecessor if
417/// the predecessor has a single successor.
421 vp_depth_first_deep(Plan.getEntry()))) {
422 // Don't fold the blocks in the skeleton of the Plan into their single
423 // predecessors for now.
424 // TODO: Remove restriction once more of the skeleton is modeled in VPlan.
425 if (!VPBB->getParent())
426 continue;
427 auto *PredVPBB =
428 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
430 isa<VPIRBasicBlock>(PredVPBB))
431 continue;
432 WorkList.push_back(VPBB);
433 }
434
435 for (VPBasicBlock *VPBB : WorkList) {
436 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
437 for (VPRecipeBase &R : make_early_inc_range(*VPBB))
438 R.moveBefore(*PredVPBB, PredVPBB->end());
439 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (auto *Succ : to_vector(VPBB->successors())) {
445 VPBlockUtils::connectBlocks(PredVPBB, Succ);
446 }
447 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
448 }
449 return !WorkList.empty();
450}
451
453 // Convert masked VPReplicateRecipes to if-then region blocks.
455
456 bool ShouldSimplify = true;
457 while (ShouldSimplify) {
458 ShouldSimplify = sinkScalarOperands(Plan);
459 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
460 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
461 }
462}
463
464/// Remove redundant casts of inductions.
465///
466/// Such redundant casts are casts of induction variables that can be ignored,
467/// because we already proved that the casted phi is equal to the uncasted phi
468/// in the vectorized loop. There is no need to vectorize the cast - the same
469/// value can be used for both the phi and casts in the vector loop.
471 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
473 if (!IV || IV->getTruncInst())
474 continue;
475
476 // A sequence of IR Casts has potentially been recorded for IV, which
477 // *must be bypassed* when the IV is vectorized, because the vectorized IV
478 // will produce the desired casted value. This sequence forms a def-use
479 // chain and is provided in reverse order, ending with the cast that uses
480 // the IV phi. Search for the recipe of the last cast in the chain and
481 // replace it with the original IV. Note that only the final cast is
482 // expected to have users outside the cast-chain and the dead casts left
483 // over will be cleaned up later.
484 auto &Casts = IV->getInductionDescriptor().getCastInsts();
485 VPValue *FindMyCast = IV;
486 for (Instruction *IRCast : reverse(Casts)) {
487 VPSingleDefRecipe *FoundUserCast = nullptr;
488 for (auto *U : FindMyCast->users()) {
489 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
492 break;
493 }
494 }
495 FindMyCast = FoundUserCast;
496 }
497 FindMyCast->replaceAllUsesWith(IV);
498 }
499}
500
501/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
502/// recipe, if it exists.
504 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
505 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
506 for (VPUser *U : CanonicalIV->users()) {
508 if (WidenNewIV)
509 break;
510 }
511
512 if (!WidenNewIV)
513 return;
514
516 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
517 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
518
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
520 continue;
521
522 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
523 // everything WidenNewIV's users need. That is, WidenOriginalIV will
524 // generate a vector phi or all users of WidenNewIV demand the first lane
525 // only.
526 if (!vputils::onlyScalarValuesUsed(WidenOriginalIV) ||
527 vputils::onlyFirstLaneUsed(WidenNewIV)) {
528 WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
529 WidenNewIV->eraseFromParent();
530 return;
531 }
532 }
533}
534
535/// Returns true if \p R is dead and can be removed.
536static bool isDeadRecipe(VPRecipeBase &R) {
537 // Do remove conditional assume instructions as their conditions may be
538 // flattened.
539 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
543 return true;
544
545 if (R.mayHaveSideEffects())
546 return false;
547
548 // Recipe is dead if no user keeps the recipe alive.
549 return all_of(R.definedValues(),
550 [](VPValue *V) { return V->getNumUsers() == 0; });
551}
552
555 vp_post_order_deep(Plan.getEntry()))) {
556 // The recipes in the block are processed in reverse order, to catch chains
557 // of dead recipes.
558 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
559 if (isDeadRecipe(R)) {
560 R.eraseFromParent();
561 continue;
562 }
563
564 // Check if R is a dead VPPhi <-> update cycle and remove it.
565 auto *PhiR = dyn_cast<VPPhi>(&R);
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
567 continue;
568 VPValue *Incoming = PhiR->getOperand(1);
569 if (*PhiR->user_begin() != Incoming->getDefiningRecipe() ||
570 Incoming->getNumUsers() != 1)
571 continue;
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
575 }
576 }
577}
578
581 Instruction::BinaryOps InductionOpcode,
582 FPMathOperator *FPBinOp, Instruction *TruncI,
583 VPValue *StartV, VPValue *Step, DebugLoc DL,
584 VPBuilder &Builder) {
586 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
587 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV(
588 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx");
589
590 // Truncate base induction if needed.
591 VPTypeAnalysis TypeInfo(Plan);
592 Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
593 if (TruncI) {
594 Type *TruncTy = TruncI->getType();
595 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
596 "Not truncating.");
597 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL);
599 ResultTy = TruncTy;
600 }
601
602 // Truncate step if needed.
603 Type *StepTy = TypeInfo.inferScalarType(Step);
604 if (ResultTy != StepTy) {
605 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
606 "Not truncating.");
607 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
608 auto *VecPreheader =
610 VPBuilder::InsertPointGuard Guard(Builder);
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL);
613 }
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
615 &Plan.getVF(), DL);
616}
617
620 for (unsigned I = 0; I != Users.size(); ++I) {
622 if (isa<VPHeaderPHIRecipe>(Cur))
623 continue;
624 for (VPValue *V : Cur->definedValues())
625 Users.insert_range(V->users());
626 }
627 return Users.takeVector();
628}
629
630/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
631/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
632/// VPWidenPointerInductionRecipe will generate vectors only. If some users
633/// require vectors while other require scalars, the scalar uses need to extract
634/// the scalars from the generated vectors (Note that this is different to how
635/// int/fp inductions are handled). Legalize extract-from-ends using uniform
636/// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so
637/// the correct end value is available. Also optimize
638/// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by
639/// providing them scalar steps built on the canonical scalar IV and update the
640/// original IV's users. This is an optional optimization to reduce the needs of
641/// vector extracts.
644 bool HasOnlyVectorVFs = !Plan.hasScalarVFOnly();
645 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
646 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
647 auto *PhiR = dyn_cast<VPWidenInductionRecipe>(&Phi);
648 if (!PhiR)
649 continue;
650
651 // Try to narrow wide and replicating recipes to uniform recipes, based on
652 // VPlan analysis.
653 // TODO: Apply to all recipes in the future, to replace legacy uniformity
654 // analysis.
655 auto Users = collectUsersRecursively(PhiR);
656 for (VPUser *U : reverse(Users)) {
657 auto *Def = dyn_cast<VPSingleDefRecipe>(U);
658 auto *RepR = dyn_cast<VPReplicateRecipe>(U);
659 // Skip recipes that shouldn't be narrowed.
660 if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Def) ||
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
663 continue;
664
665 // Skip recipes that may have other lanes than their first used.
667 continue;
668
669 auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(),
670 Def->operands(), /*IsUniform*/ true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
673 }
674
675 // Replace wide pointer inductions which have only their scalars used by
676 // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
677 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
678 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
679 continue;
680
681 const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
682 VPValue *StartV =
683 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
684 VPValue *StepV = PtrIV->getOperand(1);
686 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
688
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
690 PtrIV->getDebugLoc(), "next.gep");
691
692 PtrIV->replaceAllUsesWith(PtrAdd);
693 continue;
694 }
695
696 // Replace widened induction with scalar steps for users that only use
697 // scalars.
698 auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(&Phi);
699 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
700 return U->usesScalars(WideIV);
701 }))
702 continue;
703
704 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
706 Plan, ID.getKind(), ID.getInductionOpcode(),
707 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
710
711 // Update scalar users of IV to use Step instead.
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
714 else
715 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
716 return U.usesScalars(WideIV);
717 });
718 }
719}
720
721/// Check if \p VPV is an untruncated wide induction, either before or after the
722/// increment. If so return the header IV (before the increment), otherwise
723/// return null.
725 ScalarEvolution &SE) {
726 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(VPV);
727 if (WideIV) {
728 // VPV itself is a wide induction, separately compute the end value for exit
729 // users if it is not a truncated IV.
730 auto *IntOrFpIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
732 }
733
734 // Check if VPV is an optimizable induction increment.
735 VPRecipeBase *Def = VPV->getDefiningRecipe();
736 if (!Def || Def->getNumOperands() != 2)
737 return nullptr;
738 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0));
739 if (!WideIV)
740 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1));
741 if (!WideIV)
742 return nullptr;
743
744 auto IsWideIVInc = [&]() {
745 auto &ID = WideIV->getInductionDescriptor();
746
747 // Check if VPV increments the induction by the induction step.
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (ID.getInductionOpcode()) {
750 case Instruction::Add:
751 return match(VPV, m_c_Add(m_Specific(WideIV), m_Specific(IVStep)));
752 case Instruction::FAdd:
754 m_Specific(IVStep)));
755 case Instruction::FSub:
756 return match(VPV, m_Binary<Instruction::FSub>(m_Specific(WideIV),
757 m_Specific(IVStep)));
758 case Instruction::Sub: {
759 // IVStep will be the negated step of the subtraction. Check if Step == -1
760 // * IVStep.
761 VPValue *Step;
762 if (!match(VPV, m_Sub(m_VPValue(), m_VPValue(Step))))
763 return false;
764 const SCEV *IVStepSCEV = vputils::getSCEVExprForVPValue(IVStep, SE);
765 const SCEV *StepSCEV = vputils::getSCEVExprForVPValue(Step, SE);
766 return !isa<SCEVCouldNotCompute>(IVStepSCEV) &&
767 !isa<SCEVCouldNotCompute>(StepSCEV) &&
768 IVStepSCEV == SE.getNegativeSCEV(StepSCEV);
769 }
770 default:
771 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
772 match(VPV, m_GetElementPtr(m_Specific(WideIV),
773 m_Specific(WideIV->getStepValue())));
774 }
775 llvm_unreachable("should have been covered by switch above");
776 };
777 return IsWideIVInc() ? WideIV : nullptr;
778}
779
780/// Attempts to optimize the induction variable exit values for users in the
781/// early exit block.
783 VPTypeAnalysis &TypeInfo,
784 VPBlockBase *PredVPBB,
785 VPValue *Op,
786 ScalarEvolution &SE) {
787 VPValue *Incoming, *Mask;
790 m_VPValue(Mask)),
792 return nullptr;
793
794 auto *WideIV = getOptimizableIVOf(Incoming, SE);
795 if (!WideIV)
796 return nullptr;
797
798 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
800 return nullptr;
801
802 // Calculate the final index.
803 VPValue *EndValue = Plan.getCanonicalIV();
804 auto CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
805 VPBuilder B(cast<VPBasicBlock>(PredVPBB));
806
807 DebugLoc DL = cast<VPInstruction>(Op)->getDebugLoc();
808 VPValue *FirstActiveLane =
809 B.createNaryOp(VPInstruction::FirstActiveLane, Mask, DL);
810 Type *FirstActiveLaneType = TypeInfo.inferScalarType(FirstActiveLane);
811 FirstActiveLane = B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType, DL);
813 EndValue = B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane}, DL);
814
815 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
816 // changed it means the exit is using the incremented value, so we need to
817 // add the step.
818 if (Incoming != WideIV) {
819 VPValue *One = Plan.getOrAddLiveIn(ConstantInt::get(CanonicalIVType, 1));
820 EndValue = B.createNaryOp(Instruction::Add, {EndValue, One}, DL);
821 }
822
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
824 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue = B.createDerivedIV(
828 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
829 Start, EndValue, Step);
830 }
831
832 return EndValue;
833}
834
835/// Attempts to optimize the induction variable exit values for users in the
836/// exit block coming from the latch in the original scalar loop.
838 VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op,
842 return nullptr;
843
844 auto *WideIV = getOptimizableIVOf(Incoming, SE);
845 if (!WideIV)
846 return nullptr;
847
848 VPValue *EndValue = EndValues.lookup(WideIV);
849 assert(EndValue && "end value must have been pre-computed");
850
851 // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it
852 // changed it means the exit is using the incremented value, so we don't
853 // need to subtract the step.
854 if (Incoming != WideIV)
855 return EndValue;
856
857 // Otherwise, subtract the step from the EndValue.
858 VPBuilder B(cast<VPBasicBlock>(PredVPBB)->getTerminator());
859 VPValue *Step = WideIV->getStepValue();
860 Type *ScalarTy = TypeInfo.inferScalarType(WideIV);
861 if (ScalarTy->isIntegerTy())
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {}, "ind.escape");
863 if (ScalarTy->isPointerTy()) {
864 Type *StepTy = TypeInfo.inferScalarType(Step);
865 auto *Zero = Plan.getOrAddLiveIn(ConstantInt::get(StepTy, 0));
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
868 DebugLoc::getUnknown(), "ind.escape");
869 }
870 if (ScalarTy->isFloatingPointTy()) {
871 const auto &ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
874 ? Instruction::FSub
875 : Instruction::FAdd,
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
877 }
878 llvm_unreachable("all possible induction types must be handled");
879 return nullptr;
880}
881
883 VPlan &Plan, DenseMap<VPValue *, VPValue *> &EndValues,
884 ScalarEvolution &SE) {
885 VPBlockBase *MiddleVPBB = Plan.getMiddleBlock();
886 VPTypeAnalysis TypeInfo(Plan);
887 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) {
888 for (VPRecipeBase &R : ExitVPBB->phis()) {
889 auto *ExitIRI = cast<VPIRPhi>(&R);
890
891 for (auto [Idx, PredVPBB] : enumerate(ExitVPBB->getPredecessors())) {
892 VPValue *Escape = nullptr;
893 if (PredVPBB == MiddleVPBB)
894 Escape = optimizeLatchExitInductionUser(Plan, TypeInfo, PredVPBB,
895 ExitIRI->getOperand(Idx),
896 EndValues, SE);
897 else
898 Escape = optimizeEarlyExitInductionUser(Plan, TypeInfo, PredVPBB,
899 ExitIRI->getOperand(Idx), SE);
900 if (Escape)
901 ExitIRI->setOperand(Idx, Escape);
902 }
903 }
904 }
905}
906
907/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
908/// them with already existing recipes expanding the same SCEV expression.
911
912 for (VPRecipeBase &R :
914 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
915 if (!ExpR)
916 continue;
917
918 const auto &[V, Inserted] = SCEV2VPV.try_emplace(ExpR->getSCEV(), ExpR);
919 if (Inserted)
920 continue;
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
923 }
924}
925
927 SmallVector<VPValue *> WorkList;
929 WorkList.push_back(V);
930
931 while (!WorkList.empty()) {
932 VPValue *Cur = WorkList.pop_back_val();
933 if (!Seen.insert(Cur).second)
934 continue;
936 if (!R)
937 continue;
938 if (!isDeadRecipe(*R))
939 continue;
940 WorkList.append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
942 }
943}
944
945/// Try to fold \p R using InstSimplifyFolder. Will succeed and return a
946/// non-nullptr Value for a handled \p Opcode if corresponding \p Operands are
947/// foldable live-ins.
948static Value *tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode,
950 const DataLayout &DL, VPTypeAnalysis &TypeInfo) {
952 for (VPValue *Op : Operands) {
953 if (!Op->isLiveIn() || !Op->getLiveInIRValue())
954 return nullptr;
955 Ops.push_back(Op->getLiveInIRValue());
956 }
957
958 InstSimplifyFolder Folder(DL);
959 if (Instruction::isBinaryOp(Opcode))
960 return Folder.FoldBinOp(static_cast<Instruction::BinaryOps>(Opcode), Ops[0],
961 Ops[1]);
962 if (Instruction::isCast(Opcode))
963 return Folder.FoldCast(static_cast<Instruction::CastOps>(Opcode), Ops[0],
964 TypeInfo.inferScalarType(R.getVPSingleValue()));
965 switch (Opcode) {
967 return Folder.FoldSelect(Ops[0], Ops[1],
970 return Folder.FoldBinOp(Instruction::BinaryOps::Xor, Ops[0],
972 case Instruction::Select:
973 return Folder.FoldSelect(Ops[0], Ops[1], Ops[2]);
974 case Instruction::ICmp:
975 case Instruction::FCmp:
976 return Folder.FoldCmp(cast<VPRecipeWithIRFlags>(R).getPredicate(), Ops[0],
977 Ops[1]);
978 case Instruction::GetElementPtr: {
979 auto &RFlags = cast<VPRecipeWithIRFlags>(R);
980 auto *GEP = cast<GetElementPtrInst>(RFlags.getUnderlyingInstr());
981 return Folder.FoldGEP(GEP->getSourceElementType(), Ops[0], drop_begin(Ops),
982 RFlags.getGEPNoWrapFlags());
983 }
986 return Folder.FoldGEP(IntegerType::getInt8Ty(TypeInfo.getContext()), Ops[0],
987 Ops[1],
988 cast<VPRecipeWithIRFlags>(R).getGEPNoWrapFlags());
989 // An extract of a live-in is an extract of a broadcast, so return the
990 // broadcasted element.
991 case Instruction::ExtractElement:
992 assert(!Ops[0]->getType()->isVectorTy() && "Live-ins should be scalar");
993 return Ops[0];
994 }
995 return nullptr;
996}
997
998/// Try to simplify recipe \p R.
999static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
1000 VPlan *Plan = R.getParent()->getPlan();
1001
1002 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
1003 if (!Def)
1004 return;
1005
1006 // Simplification of live-in IR values for SingleDef recipes using
1007 // InstSimplifyFolder.
1011 const DataLayout &DL =
1013 Value *V = tryToFoldLiveIns(*I, I->getOpcode(), I->operands(), DL,
1014 TypeInfo);
1015 if (V)
1016 I->replaceAllUsesWith(Plan->getOrAddLiveIn(V));
1017 return V;
1018 })
1019 .Default([](auto *) { return false; }))
1020 return;
1021
1022 // Fold PredPHI LiveIn -> LiveIn.
1023 if (auto *PredPHI = dyn_cast<VPPredInstPHIRecipe>(&R)) {
1024 VPValue *Op = PredPHI->getOperand(0);
1025 if (Op->isLiveIn())
1026 PredPHI->replaceAllUsesWith(Op);
1027 }
1028
1029 VPValue *A;
1030 if (match(Def, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
1031 Type *TruncTy = TypeInfo.inferScalarType(Def);
1032 Type *ATy = TypeInfo.inferScalarType(A);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(A);
1035 } else {
1036 // Don't replace a scalarizing recipe with a widened cast.
1037 if (isa<VPReplicateRecipe>(Def))
1038 return;
1039 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
1040
1041 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
1042 ? Instruction::SExt
1043 : Instruction::ZExt;
1044 auto *VPC =
1045 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
1046 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1047 // UnderlyingExt has distinct return type, used to retain legacy cost.
1048 VPC->setUnderlyingValue(UnderlyingExt);
1049 }
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1052 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
1053 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1056 }
1057 }
1058#ifndef NDEBUG
1059 // Verify that the cached type info is for both A and its users is still
1060 // accurate by comparing it to freshly computed types.
1061 VPTypeAnalysis TypeInfo2(*Plan);
1062 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
1063 for (VPUser *U : A->users()) {
1064 auto *R = cast<VPRecipeBase>(U);
1065 for (VPValue *VPV : R->definedValues())
1066 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
1067 }
1068#endif
1069 }
1070
1071 // Simplify (X && Y) || (X && !Y) -> X.
1072 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
1073 // && (Y || Z) and (X || !X) into true. This requires queuing newly created
1074 // recipes to be visited during simplification.
1075 VPValue *X, *Y, *Z;
1076 if (match(Def,
1079 Def->replaceAllUsesWith(X);
1080 Def->eraseFromParent();
1081 return;
1082 }
1083
1084 // x | 1 -> 1
1085 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_AllOnes())))
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1087
1088 // x | 0 -> x
1089 if (match(Def, m_c_BinaryOr(m_VPValue(X), m_ZeroInt())))
1090 return Def->replaceAllUsesWith(X);
1091
1092 // x & 0 -> 0
1093 if (match(Def, m_c_BinaryAnd(m_VPValue(X), m_ZeroInt())))
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) == X));
1095
1096 // x && false -> false
1097 if (match(Def, m_LogicalAnd(m_VPValue(X), m_False())))
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1099
1100 // (x && y) || (x && z) -> x && (y || z)
1101 VPBuilder Builder(Def);
1104 // Simplify only if one of the operands has one use to avoid creating an
1105 // extra recipe.
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(X, Builder.createOr(Y, Z)));
1110
1111 // x && !x -> 0
1113 return Def->replaceAllUsesWith(Plan->getOrAddLiveIn(
1115
1116 if (match(Def, m_Select(m_VPValue(), m_VPValue(X), m_Deferred(X))))
1117 return Def->replaceAllUsesWith(X);
1118
1119 // select !c, x, y -> select c, y, x
1120 VPValue *C;
1121 if (match(Def, m_Select(m_Not(m_VPValue(C)), m_VPValue(X), m_VPValue(Y)))) {
1122 Def->setOperand(0, C);
1123 Def->setOperand(1, Y);
1124 Def->setOperand(2, X);
1125 return;
1126 }
1127
1128 // Reassociate (x && y) && z -> x && (y && z) if x has multiple users. With
1129 // tail folding it is likely that x is a header mask and can be simplified
1130 // further.
1132 m_VPValue(Z))) &&
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(X, Builder.createLogicalAnd(Y, Z)));
1136
1137 if (match(Def, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
1138 return Def->replaceAllUsesWith(A);
1139
1140 if (match(Def, m_c_Mul(m_VPValue(A), m_SpecificInt(0))))
1141 return Def->replaceAllUsesWith(R.getOperand(0) == A ? R.getOperand(1)
1142 : R.getOperand(0));
1143
1144 if (match(Def, m_Not(m_VPValue(A)))) {
1145 if (match(A, m_Not(m_VPValue(A))))
1146 return Def->replaceAllUsesWith(A);
1147
1148 // Try to fold Not into compares by adjusting the predicate in-place.
1149 CmpPredicate Pred;
1150 if (match(A, m_Cmp(Pred, m_VPValue(), m_VPValue()))) {
1151 auto *Cmp = cast<VPRecipeWithIRFlags>(A);
1152 if (all_of(Cmp->users(), [&Cmp](VPUser *U) {
1153 return match(U, m_CombineOr(m_Not(m_Specific(Cmp)),
1154 m_Select(m_Specific(Cmp), m_VPValue(),
1155 m_VPValue())));
1156 })) {
1157 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
1158 for (VPUser *U : to_vector(Cmp->users())) {
1159 auto *R = cast<VPSingleDefRecipe>(U);
1160 if (match(R, m_Select(m_Specific(Cmp), m_VPValue(X), m_VPValue(Y)))) {
1161 // select (cmp pred), x, y -> select (cmp inv_pred), y, x
1162 R->setOperand(1, Y);
1163 R->setOperand(2, X);
1164 } else {
1165 // not (cmp pred) -> cmp inv_pred
1166 assert(match(R, m_Not(m_Specific(Cmp))) && "Unexpected user");
1167 R->replaceAllUsesWith(Cmp);
1168 }
1169 }
1170 // If Cmp doesn't have a debug location, use the one from the negation,
1171 // to preserve the location.
1172 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1173 Cmp->setDebugLoc(R.getDebugLoc());
1174 }
1175 }
1176 }
1177
1178 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0.
1179 if ((match(Def,
1181 match(Def,
1183 TypeInfo.inferScalarType(Def->getOperand(1)) ==
1184 TypeInfo.inferScalarType(Def))
1185 return Def->replaceAllUsesWith(Def->getOperand(1));
1186
1188 m_VPValue(X), m_SpecificInt(1)))) {
1189 Type *WideStepTy = TypeInfo.inferScalarType(Def);
1190 if (TypeInfo.inferScalarType(X) != WideStepTy)
1191 X = Builder.createWidenCast(Instruction::Trunc, X, WideStepTy);
1192 Def->replaceAllUsesWith(X);
1193 return;
1194 }
1195
1196 // For i1 vp.merges produced by AnyOf reductions:
1197 // vp.merge true, (or x, y), x, evl -> vp.merge y, true, x, evl
1199 m_VPValue(X), m_VPValue())) &&
1201 TypeInfo.inferScalarType(R.getVPSingleValue())->isIntegerTy(1)) {
1202 Def->setOperand(1, Def->getOperand(0));
1203 Def->setOperand(0, Y);
1204 return;
1205 }
1206
1207 if (auto *Phi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Def)) {
1208 if (Phi->getOperand(0) == Phi->getOperand(1))
1209 Def->replaceAllUsesWith(Phi->getOperand(0));
1210 return;
1211 }
1212
1213 // Look through ExtractLastElement (BuildVector ....).
1215 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1216 Def->replaceAllUsesWith(
1217 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1218 return;
1219 }
1220
1221 // Look through ExtractPenultimateElement (BuildVector ....).
1223 m_BuildVector()))) {
1224 auto *BuildVector = cast<VPInstruction>(R.getOperand(0));
1225 Def->replaceAllUsesWith(
1226 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1227 return;
1228 }
1229
1230 if (auto *Phi = dyn_cast<VPPhi>(Def)) {
1231 if (Phi->getNumOperands() == 1)
1232 Phi->replaceAllUsesWith(Phi->getOperand(0));
1233 return;
1234 }
1235
1236 // Some simplifications can only be applied after unrolling. Perform them
1237 // below.
1238 if (!Plan->isUnrolled())
1239 return;
1240
1241 // VPVectorPointer for part 0 can be replaced by their start pointer.
1242 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(&R)) {
1243 if (VecPtr->isFirstPart()) {
1244 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1245 return;
1246 }
1247 }
1248
1249 // VPScalarIVSteps for part 0 can be replaced by their start value, if only
1250 // the first lane is demanded.
1251 if (auto *Steps = dyn_cast<VPScalarIVStepsRecipe>(Def)) {
1252 if (Steps->isPart0() && vputils::onlyFirstLaneUsed(Steps)) {
1253 Steps->replaceAllUsesWith(Steps->getOperand(0));
1254 return;
1255 }
1256 }
1257 // Simplify redundant ReductionStartVector recipes after unrolling.
1258 VPValue *StartV;
1260 m_VPValue(StartV), m_VPValue(), m_VPValue()))) {
1261 Def->replaceUsesWithIf(StartV, [](const VPUser &U, unsigned Idx) {
1262 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&U);
1263 return PhiR && PhiR->isInLoop();
1264 });
1265 return;
1266 }
1267
1269 Def->replaceAllUsesWith(A);
1270 return;
1271 }
1272
1273 if (match(Def,
1275 vputils::isSingleScalar(A) && all_of(A->users(), [Def, A](VPUser *U) {
1276 return U->usesScalars(A) || Def == U;
1277 })) {
1278 return Def->replaceAllUsesWith(A);
1279 }
1280}
1281
1284 Plan.getEntry());
1285 VPTypeAnalysis TypeInfo(Plan);
1287 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1288 simplifyRecipe(R, TypeInfo);
1289 }
1290 }
1291}
1292
1294 if (Plan.hasScalarVFOnly())
1295 return;
1296
1297 // Try to narrow wide and replicating recipes to single scalar recipes,
1298 // based on VPlan analysis. Only process blocks in the loop region for now,
1299 // without traversing into nested regions, as recipes in replicate regions
1300 // cannot be converted yet.
1303 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
1305 continue;
1306 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1307 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1308 continue;
1309
1310 auto *RepOrWidenR = cast<VPSingleDefRecipe>(&R);
1311 if (RepR && isa<StoreInst>(RepR->getUnderlyingInstr()) &&
1312 vputils::isSingleScalar(RepR->getOperand(1))) {
1313 auto *Clone = new VPReplicateRecipe(
1314 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1315 true /*IsSingleScalar*/, nullptr /*Mask*/, *RepR /*Metadata*/);
1316 Clone->insertBefore(RepOrWidenR);
1318 {Clone->getOperand(0)});
1319 Ext->insertBefore(Clone);
1320 Clone->setOperand(0, Ext);
1321 RepR->eraseFromParent();
1322 continue;
1323 }
1324
1325 // Skip recipes that aren't single scalars or don't have only their
1326 // scalar results used. In the latter case, we would introduce extra
1327 // broadcasts.
1328 if (!vputils::isSingleScalar(RepOrWidenR) ||
1329 !all_of(RepOrWidenR->users(), [RepOrWidenR](const VPUser *U) {
1330 return U->usesScalars(RepOrWidenR) ||
1331 match(cast<VPRecipeBase>(U),
1332 m_ExtractLastElement(m_VPValue()));
1333 }))
1334 continue;
1335
1336 auto *Clone = new VPReplicateRecipe(RepOrWidenR->getUnderlyingInstr(),
1337 RepOrWidenR->operands(),
1338 true /*IsSingleScalar*/);
1339 Clone->insertBefore(RepOrWidenR);
1340 RepOrWidenR->replaceAllUsesWith(Clone);
1341 }
1342 }
1343}
1344
1345/// Try to see if all of \p Blend's masks share a common value logically and'ed
1346/// and remove it from the masks.
1348 if (Blend->isNormalized())
1349 return;
1350 VPValue *CommonEdgeMask;
1351 if (!match(Blend->getMask(0),
1352 m_LogicalAnd(m_VPValue(CommonEdgeMask), m_VPValue())))
1353 return;
1354 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1355 if (!match(Blend->getMask(I),
1356 m_LogicalAnd(m_Specific(CommonEdgeMask), m_VPValue())))
1357 return;
1358 for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++)
1359 Blend->setMask(I, Blend->getMask(I)->getDefiningRecipe()->getOperand(1));
1360}
1361
1362/// Normalize and simplify VPBlendRecipes. Should be run after simplifyRecipes
1363/// to make sure the masks are simplified.
1364static void simplifyBlends(VPlan &Plan) {
1367 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1368 auto *Blend = dyn_cast<VPBlendRecipe>(&R);
1369 if (!Blend)
1370 continue;
1371
1372 removeCommonBlendMask(Blend);
1373
1374 // Try to remove redundant blend recipes.
1375 SmallPtrSet<VPValue *, 4> UniqueValues;
1376 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
1377 UniqueValues.insert(Blend->getIncomingValue(0));
1378 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
1379 if (!match(Blend->getMask(I), m_False()))
1380 UniqueValues.insert(Blend->getIncomingValue(I));
1381
1382 if (UniqueValues.size() == 1) {
1383 Blend->replaceAllUsesWith(*UniqueValues.begin());
1384 Blend->eraseFromParent();
1385 continue;
1386 }
1387
1388 if (Blend->isNormalized())
1389 continue;
1390
1391 // Normalize the blend so its first incoming value is used as the initial
1392 // value with the others blended into it.
1393
1394 unsigned StartIndex = 0;
1395 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1396 // If a value's mask is used only by the blend then is can be deadcoded.
1397 // TODO: Find the most expensive mask that can be deadcoded, or a mask
1398 // that's used by multiple blends where it can be removed from them all.
1399 VPValue *Mask = Blend->getMask(I);
1400 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
1401 StartIndex = I;
1402 break;
1403 }
1404 }
1405
1406 SmallVector<VPValue *, 4> OperandsWithMask;
1407 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
1408
1409 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
1410 if (I == StartIndex)
1411 continue;
1412 OperandsWithMask.push_back(Blend->getIncomingValue(I));
1413 OperandsWithMask.push_back(Blend->getMask(I));
1414 }
1415
1416 auto *NewBlend =
1417 new VPBlendRecipe(cast_or_null<PHINode>(Blend->getUnderlyingValue()),
1418 OperandsWithMask, Blend->getDebugLoc());
1419 NewBlend->insertBefore(&R);
1420
1421 VPValue *DeadMask = Blend->getMask(StartIndex);
1422 Blend->replaceAllUsesWith(NewBlend);
1423 Blend->eraseFromParent();
1425
1426 /// Simplify BLEND %a, %b, Not(%mask) -> BLEND %b, %a, %mask.
1427 VPValue *NewMask;
1428 if (NewBlend->getNumOperands() == 3 &&
1429 match(NewBlend->getMask(1), m_Not(m_VPValue(NewMask)))) {
1430 VPValue *Inc0 = NewBlend->getOperand(0);
1431 VPValue *Inc1 = NewBlend->getOperand(1);
1432 VPValue *OldMask = NewBlend->getOperand(2);
1433 NewBlend->setOperand(0, Inc1);
1434 NewBlend->setOperand(1, Inc0);
1435 NewBlend->setOperand(2, NewMask);
1436 if (OldMask->getNumUsers() == 0)
1437 cast<VPInstruction>(OldMask)->eraseFromParent();
1438 }
1439 }
1440 }
1441}
1442
1443/// Optimize the width of vector induction variables in \p Plan based on a known
1444/// constant Trip Count, \p BestVF and \p BestUF.
1446 ElementCount BestVF,
1447 unsigned BestUF) {
1448 // Only proceed if we have not completely removed the vector region.
1449 if (!Plan.getVectorLoopRegion())
1450 return false;
1451
1452 if (!Plan.getTripCount()->isLiveIn())
1453 return false;
1456 if (!TC || !BestVF.isFixed())
1457 return false;
1458
1459 // Calculate the minimum power-of-2 bit width that can fit the known TC, VF
1460 // and UF. Returns at least 8.
1461 auto ComputeBitWidth = [](APInt TC, uint64_t Align) {
1462 APInt AlignedTC =
1465 APInt MaxVal = AlignedTC - 1;
1466 return std::max<unsigned>(PowerOf2Ceil(MaxVal.getActiveBits()), 8);
1467 };
1468 unsigned NewBitWidth =
1469 ComputeBitWidth(TC->getValue(), BestVF.getKnownMinValue() * BestUF);
1470
1471 LLVMContext &Ctx = Plan.getContext();
1472 auto *NewIVTy = IntegerType::get(Ctx, NewBitWidth);
1473
1474 bool MadeChange = false;
1475
1476 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1477 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
1478 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1479
1480 // Currently only handle canonical IVs as it is trivial to replace the start
1481 // and stop values, and we currently only perform the optimization when the
1482 // IV has a single use.
1483 if (!WideIV || !WideIV->isCanonical() ||
1484 WideIV->hasMoreThanOneUniqueUser() ||
1485 NewIVTy == WideIV->getScalarType())
1486 continue;
1487
1488 // Currently only handle cases where the single user is a header-mask
1489 // comparison with the backedge-taken-count.
1490 if (!match(*WideIV->user_begin(),
1491 m_ICmp(m_Specific(WideIV),
1494 continue;
1495
1496 // Update IV operands and comparison bound to use new narrower type.
1497 auto *NewStart = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1498 WideIV->setStartValue(NewStart);
1499 auto *NewStep = Plan.getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1500 WideIV->setStepValue(NewStep);
1501
1502 auto *NewBTC = new VPWidenCastRecipe(
1503 Instruction::Trunc, Plan.getOrCreateBackedgeTakenCount(), NewIVTy);
1504 Plan.getVectorPreheader()->appendRecipe(NewBTC);
1505 auto *Cmp = cast<VPInstruction>(*WideIV->user_begin());
1506 Cmp->setOperand(1, NewBTC);
1507
1508 MadeChange = true;
1509 }
1510
1511 return MadeChange;
1512}
1513
1514/// Return true if \p Cond is known to be true for given \p BestVF and \p
1515/// BestUF.
1517 ElementCount BestVF, unsigned BestUF,
1518 ScalarEvolution &SE) {
1520 return any_of(Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1521 &SE](VPValue *C) {
1522 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1523 });
1524
1525 auto *CanIV = Plan.getCanonicalIV();
1527 m_Specific(CanIV->getBackedgeValue()),
1528 m_Specific(&Plan.getVectorTripCount()))))
1529 return false;
1530
1531 // The compare checks CanIV + VFxUF == vector trip count. The vector trip
1532 // count is not conveniently available as SCEV so far, so we compare directly
1533 // against the original trip count. This is stricter than necessary, as we
1534 // will only return true if the trip count == vector trip count.
1535 const SCEV *VectorTripCount =
1537 if (isa<SCEVCouldNotCompute>(VectorTripCount))
1538 VectorTripCount = vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
1539 assert(!isa<SCEVCouldNotCompute>(VectorTripCount) &&
1540 "Trip count SCEV must be computable");
1541 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1542 const SCEV *C = SE.getElementCount(VectorTripCount->getType(), NumElements);
1543 return SE.isKnownPredicate(CmpInst::ICMP_EQ, VectorTripCount, C);
1544}
1545
1546/// Try to replace multiple active lane masks used for control flow with
1547/// a single, wide active lane mask instruction followed by multiple
1548/// extract subvector intrinsics. This applies to the active lane mask
1549/// instructions both in the loop and in the preheader.
1550/// Incoming values of all ActiveLaneMaskPHIs are updated to use the
1551/// new extracts from the first active lane mask, which has it's last
1552/// operand (multiplier) set to UF.
1554 unsigned UF) {
1555 if (!EnableWideActiveLaneMask || !VF.isVector() || UF == 1)
1556 return false;
1557
1558 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1559 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1560 auto *Term = &ExitingVPBB->back();
1561
1562 using namespace llvm::VPlanPatternMatch;
1564 m_VPValue(), m_VPValue(), m_VPValue())))))
1565 return false;
1566
1567 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1568 LLVMContext &Ctx = Plan.getContext();
1569
1570 auto ExtractFromALM = [&](VPInstruction *ALM,
1571 SmallVectorImpl<VPValue *> &Extracts) {
1572 DebugLoc DL = ALM->getDebugLoc();
1573 for (unsigned Part = 0; Part < UF; ++Part) {
1575 Ops.append({ALM, Plan.getOrAddLiveIn(
1576 ConstantInt::get(IntegerType::getInt64Ty(Ctx),
1577 VF.getKnownMinValue() * Part))});
1578 auto *Ext = new VPWidenIntrinsicRecipe(Intrinsic::vector_extract, Ops,
1580 Extracts[Part] = Ext;
1581 Ext->insertAfter(ALM);
1582 }
1583 };
1584
1585 // Create a list of each active lane mask phi, ordered by unroll part.
1587 for (VPRecipeBase &R : Header->phis()) {
1589 if (!Phi)
1590 continue;
1591 VPValue *Index = nullptr;
1592 match(Phi->getBackedgeValue(),
1594 assert(Index && "Expected index from ActiveLaneMask instruction");
1595
1596 auto *II = dyn_cast<VPInstruction>(Index);
1597 if (II && II->getOpcode() == VPInstruction::CanonicalIVIncrementForPart) {
1598 auto Part = cast<ConstantInt>(II->getOperand(1)->getLiveInIRValue());
1599 Phis[Part->getZExtValue()] = Phi;
1600 } else
1601 // Anything other than a CanonicalIVIncrementForPart is part 0
1602 Phis[0] = Phi;
1603 }
1604
1605 assert(all_of(Phis, [](VPActiveLaneMaskPHIRecipe *Phi) { return Phi; }) &&
1606 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1607
1608 auto *EntryALM = cast<VPInstruction>(Phis[0]->getStartValue());
1609 auto *LoopALM = cast<VPInstruction>(Phis[0]->getBackedgeValue());
1610
1611 assert((EntryALM->getOpcode() == VPInstruction::ActiveLaneMask &&
1612 LoopALM->getOpcode() == VPInstruction::ActiveLaneMask) &&
1613 "Expected incoming values of Phi to be ActiveLaneMasks");
1614
1615 // When using wide lane masks, the return type of the get.active.lane.mask
1616 // intrinsic is VF x UF (last operand).
1617 VPValue *ALMMultiplier =
1618 Plan.getOrAddLiveIn(ConstantInt::get(IntegerType::getInt64Ty(Ctx), UF));
1619 EntryALM->setOperand(2, ALMMultiplier);
1620 LoopALM->setOperand(2, ALMMultiplier);
1621
1622 // Create UF x extract vectors and insert into preheader.
1623 SmallVector<VPValue *> EntryExtracts(UF);
1624 ExtractFromALM(EntryALM, EntryExtracts);
1625
1626 // Create UF x extract vectors and insert before the loop compare & branch,
1627 // updating the compare to use the first extract.
1628 SmallVector<VPValue *> LoopExtracts(UF);
1629 ExtractFromALM(LoopALM, LoopExtracts);
1630 VPInstruction *Not = cast<VPInstruction>(Term->getOperand(0));
1631 Not->setOperand(0, LoopExtracts[0]);
1632
1633 // Update the incoming values of active lane mask phis.
1634 for (unsigned Part = 0; Part < UF; ++Part) {
1635 Phis[Part]->setStartValue(EntryExtracts[Part]);
1636 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1637 }
1638
1639 return true;
1640}
1641
1642/// Try to simplify the branch condition of \p Plan. This may restrict the
1643/// resulting plan to \p BestVF and \p BestUF.
1645 unsigned BestUF,
1647 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
1648 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
1649 auto *Term = &ExitingVPBB->back();
1650 VPValue *Cond;
1651 ScalarEvolution &SE = *PSE.getSE();
1652 if (match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) ||
1654 m_VPValue(), m_VPValue(), m_VPValue()))))) {
1655 // Try to simplify the branch condition if TC <= VF * UF when the latch
1656 // terminator is BranchOnCount or BranchOnCond where the input is
1657 // Not(ActiveLaneMask).
1658 const SCEV *TripCount =
1660 assert(!isa<SCEVCouldNotCompute>(TripCount) &&
1661 "Trip count SCEV must be computable");
1662 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
1663 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
1664 if (TripCount->isZero() ||
1665 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
1666 return false;
1667 } else if (match(Term, m_BranchOnCond(m_VPValue(Cond)))) {
1668 // For BranchOnCond, check if we can prove the condition to be true using VF
1669 // and UF.
1670 if (!isConditionTrueViaVFAndUF(Cond, Plan, BestVF, BestUF, SE))
1671 return false;
1672 } else {
1673 return false;
1674 }
1675
1676 // The vector loop region only executes once. If possible, completely remove
1677 // the region, otherwise replace the terminator controlling the latch with
1678 // (BranchOnCond true).
1679 // TODO: VPWidenIntOrFpInductionRecipe is only partially supported; add
1680 // support for other non-canonical widen induction recipes (e.g.,
1681 // VPWidenPointerInductionRecipe).
1682 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
1683 if (all_of(Header->phis(), [](VPRecipeBase &Phi) {
1684 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1685 return R->isCanonical();
1686 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1687 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1688 })) {
1689 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) {
1690 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&HeaderR)) {
1691 VPBuilder Builder(Plan.getVectorPreheader());
1692 VPValue *StepV = Builder.createNaryOp(VPInstruction::StepVector, {},
1693 R->getScalarType());
1694 HeaderR.getVPSingleValue()->replaceAllUsesWith(StepV);
1695 HeaderR.eraseFromParent();
1696 continue;
1697 }
1698 auto *Phi = cast<VPPhiAccessors>(&HeaderR);
1699 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1700 HeaderR.eraseFromParent();
1701 }
1702
1703 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor();
1704 VPBlockBase *Exit = VectorRegion->getSingleSuccessor();
1705 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion);
1706 VPBlockUtils::disconnectBlocks(VectorRegion, Exit);
1707
1708 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry()))
1709 B->setParent(nullptr);
1710
1711 VPBlockUtils::connectBlocks(Preheader, Header);
1712 VPBlockUtils::connectBlocks(ExitingVPBB, Exit);
1714 } else {
1715 // The vector region contains header phis for which we cannot remove the
1716 // loop region yet.
1717 auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getTrue()},
1718 Term->getDebugLoc());
1719 ExitingVPBB->appendRecipe(BOC);
1720 }
1721
1722 Term->eraseFromParent();
1723
1724 return true;
1725}
1726
1728 unsigned BestUF,
1730 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
1731 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
1732
1733 bool MadeChange = tryToReplaceALMWithWideALM(Plan, BestVF, BestUF);
1734 MadeChange |= simplifyBranchConditionForVFAndUF(Plan, BestVF, BestUF, PSE);
1735 MadeChange |= optimizeVectorInductionWidthForTCAndVFUF(Plan, BestVF, BestUF);
1736
1737 if (MadeChange) {
1738 Plan.setVF(BestVF);
1739 assert(Plan.getUF() == BestUF && "BestUF must match the Plan's UF");
1740 }
1741 // TODO: Further simplifications are possible
1742 // 1. Replace inductions with constants.
1743 // 2. Replace vector loop region with VPBasicBlock.
1744}
1745
1746/// Sink users of \p FOR after the recipe defining the previous value \p
1747/// Previous of the recurrence. \returns true if all users of \p FOR could be
1748/// re-arranged as needed or false if it is not possible.
1749static bool
1751 VPRecipeBase *Previous,
1752 VPDominatorTree &VPDT) {
1753 // Collect recipes that need sinking.
1756 Seen.insert(Previous);
1757 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
1758 // The previous value must not depend on the users of the recurrence phi. In
1759 // that case, FOR is not a fixed order recurrence.
1760 if (SinkCandidate == Previous)
1761 return false;
1762
1763 if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
1764 !Seen.insert(SinkCandidate).second ||
1765 VPDT.properlyDominates(Previous, SinkCandidate))
1766 return true;
1767
1768 if (SinkCandidate->mayHaveSideEffects())
1769 return false;
1770
1771 WorkList.push_back(SinkCandidate);
1772 return true;
1773 };
1774
1775 // Recursively sink users of FOR after Previous.
1776 WorkList.push_back(FOR);
1777 for (unsigned I = 0; I != WorkList.size(); ++I) {
1778 VPRecipeBase *Current = WorkList[I];
1779 assert(Current->getNumDefinedValues() == 1 &&
1780 "only recipes with a single defined value expected");
1781
1782 for (VPUser *User : Current->getVPSingleValue()->users()) {
1783 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
1784 return false;
1785 }
1786 }
1787
1788 // Keep recipes to sink ordered by dominance so earlier instructions are
1789 // processed first.
1790 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1791 return VPDT.properlyDominates(A, B);
1792 });
1793
1794 for (VPRecipeBase *SinkCandidate : WorkList) {
1795 if (SinkCandidate == FOR)
1796 continue;
1797
1798 SinkCandidate->moveAfter(Previous);
1799 Previous = SinkCandidate;
1800 }
1801 return true;
1802}
1803
1804/// Try to hoist \p Previous and its operands before all users of \p FOR.
1806 VPRecipeBase *Previous,
1807 VPDominatorTree &VPDT) {
1808 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
1809 return false;
1810
1811 // Collect recipes that need hoisting.
1812 SmallVector<VPRecipeBase *> HoistCandidates;
1814 VPRecipeBase *HoistPoint = nullptr;
1815 // Find the closest hoist point by looking at all users of FOR and selecting
1816 // the recipe dominating all other users.
1817 for (VPUser *U : FOR->users()) {
1818 auto *R = cast<VPRecipeBase>(U);
1819 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
1820 HoistPoint = R;
1821 }
1822 assert(all_of(FOR->users(),
1823 [&VPDT, HoistPoint](VPUser *U) {
1824 auto *R = cast<VPRecipeBase>(U);
1825 return HoistPoint == R ||
1826 VPDT.properlyDominates(HoistPoint, R);
1827 }) &&
1828 "HoistPoint must dominate all users of FOR");
1829
1830 auto NeedsHoisting = [HoistPoint, &VPDT,
1831 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
1832 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1833 if (!HoistCandidate)
1834 return nullptr;
1835 VPRegionBlock *EnclosingLoopRegion =
1836 HoistCandidate->getParent()->getEnclosingLoopRegion();
1837 assert((!HoistCandidate->getParent()->getParent() ||
1838 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
1839 "CFG in VPlan should still be flat, without replicate regions");
1840 // Hoist candidate was already visited, no need to hoist.
1841 if (!Visited.insert(HoistCandidate).second)
1842 return nullptr;
1843
1844 // Candidate is outside loop region or a header phi, dominates FOR users w/o
1845 // hoisting.
1846 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
1847 return nullptr;
1848
1849 // If we reached a recipe that dominates HoistPoint, we don't need to
1850 // hoist the recipe.
1851 if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
1852 return nullptr;
1853 return HoistCandidate;
1854 };
1855 auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
1856 // Avoid hoisting candidates with side-effects, as we do not yet analyze
1857 // associated dependencies.
1858 return !HoistCandidate->mayHaveSideEffects();
1859 };
1860
1861 if (!NeedsHoisting(Previous->getVPSingleValue()))
1862 return true;
1863
1864 // Recursively try to hoist Previous and its operands before all users of FOR.
1865 HoistCandidates.push_back(Previous);
1866
1867 for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
1868 VPRecipeBase *Current = HoistCandidates[I];
1869 assert(Current->getNumDefinedValues() == 1 &&
1870 "only recipes with a single defined value expected");
1871 if (!CanHoist(Current))
1872 return false;
1873
1874 for (VPValue *Op : Current->operands()) {
1875 // If we reach FOR, it means the original Previous depends on some other
1876 // recurrence that in turn depends on FOR. If that is the case, we would
1877 // also need to hoist recipes involving the other FOR, which may break
1878 // dependencies.
1879 if (Op == FOR)
1880 return false;
1881
1882 if (auto *R = NeedsHoisting(Op))
1883 HoistCandidates.push_back(R);
1884 }
1885 }
1886
1887 // Order recipes to hoist by dominance so earlier instructions are processed
1888 // first.
1889 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1890 return VPDT.properlyDominates(A, B);
1891 });
1892
1893 for (VPRecipeBase *HoistCandidate : HoistCandidates) {
1894 HoistCandidate->moveBefore(*HoistPoint->getParent(),
1895 HoistPoint->getIterator());
1896 }
1897
1898 return true;
1899}
1900
1902 VPBuilder &LoopBuilder) {
1903 VPDominatorTree VPDT;
1904 VPDT.recalculate(Plan);
1905
1907 for (VPRecipeBase &R :
1910 RecurrencePhis.push_back(FOR);
1911
1912 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
1914 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1915 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
1916 // to terminate.
1917 while (auto *PrevPhi =
1919 assert(PrevPhi->getParent() == FOR->getParent());
1920 assert(SeenPhis.insert(PrevPhi).second);
1921 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1922 }
1923
1924 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
1925 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
1926 return false;
1927
1928 // Introduce a recipe to combine the incoming and previous values of a
1929 // fixed-order recurrence.
1930 VPBasicBlock *InsertBlock = Previous->getParent();
1931 if (isa<VPHeaderPHIRecipe>(Previous))
1932 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
1933 else
1934 LoopBuilder.setInsertPoint(InsertBlock,
1935 std::next(Previous->getIterator()));
1936
1937 auto *RecurSplice =
1939 {FOR, FOR->getBackedgeValue()});
1940
1941 FOR->replaceAllUsesWith(RecurSplice);
1942 // Set the first operand of RecurSplice to FOR again, after replacing
1943 // all users.
1944 RecurSplice->setOperand(0, FOR);
1945 }
1946 return true;
1947}
1948
1950 for (VPRecipeBase &R :
1952 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
1953 if (!PhiR)
1954 continue;
1955 RecurKind RK = PhiR->getRecurrenceKind();
1956 if (RK != RecurKind::Add && RK != RecurKind::Mul && RK != RecurKind::Sub &&
1958 continue;
1959
1960 for (VPUser *U : collectUsersRecursively(PhiR))
1961 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
1962 RecWithFlags->dropPoisonGeneratingFlags();
1963 }
1964 }
1965}
1966
1967namespace {
1968struct VPCSEDenseMapInfo : public DenseMapInfo<VPSingleDefRecipe *> {
1969 static bool isSentinel(const VPSingleDefRecipe *Def) {
1970 return Def == getEmptyKey() || Def == getTombstoneKey();
1971 }
1972
1973 /// Get any instruction opcode or intrinsic ID data embedded in recipe \p R.
1974 /// Returns an optional pair, where the first element indicates whether it is
1975 /// an intrinsic ID.
1976 static std::optional<std::pair<bool, unsigned>>
1977 getOpcodeOrIntrinsicID(const VPSingleDefRecipe *R) {
1978 return TypeSwitch<const VPSingleDefRecipe *,
1979 std::optional<std::pair<bool, unsigned>>>(R)
1982 [](auto *I) { return std::make_pair(false, I->getOpcode()); })
1983 .Case<VPWidenIntrinsicRecipe>([](auto *I) {
1984 return std::make_pair(true, I->getVectorIntrinsicID());
1985 })
1986 .Default([](auto *) { return std::nullopt; });
1987 }
1988
1989 /// Returns true if recipe \p Def can be safely handed for CSE.
1990 static bool canHandle(const VPSingleDefRecipe *Def) {
1991 // We can extend the list of handled recipes in the future,
1992 // provided we account for the data embedded in them while checking for
1993 // equality or hashing.
1994 auto C = getOpcodeOrIntrinsicID(Def);
1995
1996 // The issue with (Insert|Extract)Value is that the index of the
1997 // insert/extract is not a proper operand in LLVM IR, and hence also not in
1998 // VPlan.
1999 if (!C || (!C->first && (C->second == Instruction::InsertValue ||
2000 C->second == Instruction::ExtractValue)))
2001 return false;
2002
2003 // During CSE, we can only handle recipes that don't read from memory: if
2004 // they read from memory, there could be an intervening write to memory
2005 // before the next instance is CSE'd, leading to an incorrect result.
2006 return !Def->mayReadFromMemory();
2007 }
2008
2009 /// Hash the underlying data of \p Def.
2010 static unsigned getHashValue(const VPSingleDefRecipe *Def) {
2011 const VPlan *Plan = Def->getParent()->getPlan();
2012 VPTypeAnalysis TypeInfo(*Plan);
2013 hash_code Result = hash_combine(
2014 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2015 TypeInfo.inferScalarType(Def), vputils::isSingleScalar(Def),
2016 hash_combine_range(Def->operands()));
2017 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(Def))
2018 if (RFlags->hasPredicate())
2019 return hash_combine(Result, RFlags->getPredicate());
2020 return Result;
2021 }
2022
2023 /// Check equality of underlying data of \p L and \p R.
2024 static bool isEqual(const VPSingleDefRecipe *L, const VPSingleDefRecipe *R) {
2025 if (isSentinel(L) || isSentinel(R))
2026 return L == R;
2027 if (L->getVPDefID() != R->getVPDefID() ||
2028 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2030 !equal(L->operands(), R->operands()))
2031 return false;
2032 if (auto *LFlags = dyn_cast<VPRecipeWithIRFlags>(L))
2033 if (LFlags->hasPredicate() &&
2034 LFlags->getPredicate() !=
2035 cast<VPRecipeWithIRFlags>(R)->getPredicate())
2036 return false;
2037 const VPlan *Plan = L->getParent()->getPlan();
2038 VPTypeAnalysis TypeInfo(*Plan);
2039 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2040 }
2041};
2042} // end anonymous namespace
2043
2044/// Perform a common-subexpression-elimination of VPSingleDefRecipes on the \p
2045/// Plan.
2047 VPDominatorTree VPDT(Plan);
2049
2051 vp_depth_first_deep(Plan.getEntry()))) {
2052 for (VPRecipeBase &R : *VPBB) {
2053 auto *Def = dyn_cast<VPSingleDefRecipe>(&R);
2054 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2055 continue;
2056 if (VPSingleDefRecipe *V = CSEMap.lookup(Def)) {
2057 // V must dominate Def for a valid replacement.
2058 if (!VPDT.dominates(V->getParent(), VPBB))
2059 continue;
2060 // Only keep flags present on both V and Def.
2061 if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(V))
2062 RFlags->intersectFlags(*cast<VPRecipeWithIRFlags>(Def));
2063 Def->replaceAllUsesWith(V);
2064 continue;
2065 }
2066 CSEMap[Def] = Def;
2067 }
2068 }
2069}
2070
2071/// Move loop-invariant recipes out of the vector loop region in \p Plan.
2072static void licm(VPlan &Plan) {
2073 VPBasicBlock *Preheader = Plan.getVectorPreheader();
2074
2075 // Return true if we do not know how to (mechanically) hoist a given recipe
2076 // out of a loop region. Does not address legality concerns such as aliasing
2077 // or speculation safety.
2078 auto CannotHoistRecipe = [](VPRecipeBase &R) {
2079 // Allocas cannot be hoisted.
2080 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
2081 return RepR && RepR->getOpcode() == Instruction::Alloca;
2082 };
2083
2084 // Hoist any loop invariant recipes from the vector loop region to the
2085 // preheader. Preform a shallow traversal of the vector loop region, to
2086 // exclude recipes in replicate regions.
2087 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2089 vp_depth_first_shallow(LoopRegion->getEntry()))) {
2090 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2091 if (CannotHoistRecipe(R))
2092 continue;
2093 // TODO: Relax checks in the future, e.g. we could also hoist reads, if
2094 // their memory location is not modified in the vector loop.
2095 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2096 any_of(R.operands(), [](VPValue *Op) {
2097 return !Op->isDefinedOutsideLoopRegions();
2098 }))
2099 continue;
2100 R.moveBefore(*Preheader, Preheader->end());
2101 }
2102 }
2103}
2104
2106 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
2107 // Keep track of created truncates, so they can be re-used. Note that we
2108 // cannot use RAUW after creating a new truncate, as this would could make
2109 // other uses have different types for their operands, making them invalidly
2110 // typed.
2112 VPTypeAnalysis TypeInfo(Plan);
2113 VPBasicBlock *PH = Plan.getVectorPreheader();
2116 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
2119 &R))
2120 continue;
2121
2122 VPValue *ResultVPV = R.getVPSingleValue();
2123 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
2124 unsigned NewResSizeInBits = MinBWs.lookup(UI);
2125 if (!NewResSizeInBits)
2126 continue;
2127
2128 // If the value wasn't vectorized, we must maintain the original scalar
2129 // type. Skip those here, after incrementing NumProcessedRecipes. Also
2130 // skip casts which do not need to be handled explicitly here, as
2131 // redundant casts will be removed during recipe simplification.
2133 continue;
2134
2135 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
2136 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
2137 assert(OldResTy->isIntegerTy() && "only integer types supported");
2138 (void)OldResSizeInBits;
2139
2140 auto *NewResTy = IntegerType::get(Plan.getContext(), NewResSizeInBits);
2141
2142 // Any wrapping introduced by shrinking this operation shouldn't be
2143 // considered undefined behavior. So, we can't unconditionally copy
2144 // arithmetic wrapping flags to VPW.
2145 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
2146 VPW->dropPoisonGeneratingFlags();
2147
2148 if (OldResSizeInBits != NewResSizeInBits &&
2149 !match(&R, m_ICmp(m_VPValue(), m_VPValue()))) {
2150 // Extend result to original width.
2151 auto *Ext =
2152 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
2153 Ext->insertAfter(&R);
2154 ResultVPV->replaceAllUsesWith(Ext);
2155 Ext->setOperand(0, ResultVPV);
2156 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
2157 } else {
2158 assert(match(&R, m_ICmp(m_VPValue(), m_VPValue())) &&
2159 "Only ICmps should not need extending the result.");
2160 }
2161
2162 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
2164 continue;
2165
2166 // Shrink operands by introducing truncates as needed.
2167 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
2168 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2169 auto *Op = R.getOperand(Idx);
2170 unsigned OpSizeInBits =
2172 if (OpSizeInBits == NewResSizeInBits)
2173 continue;
2174 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
2175 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.try_emplace(Op);
2176 VPWidenCastRecipe *NewOp =
2177 IterIsEmpty
2178 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
2179 : ProcessedIter->second;
2180 R.setOperand(Idx, NewOp);
2181 if (!IterIsEmpty)
2182 continue;
2183 ProcessedIter->second = NewOp;
2184 if (!Op->isLiveIn()) {
2185 NewOp->insertBefore(&R);
2186 } else {
2187 PH->appendRecipe(NewOp);
2188 }
2189 }
2190
2191 }
2192 }
2193}
2194
2198 VPValue *Cond;
2199 if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.getEntry() ||
2200 !match(&VPBB->back(), m_BranchOnCond(m_VPValue(Cond))))
2201 continue;
2202
2203 unsigned RemovedIdx;
2204 if (match(Cond, m_True()))
2205 RemovedIdx = 1;
2206 else if (match(Cond, m_False()))
2207 RemovedIdx = 0;
2208 else
2209 continue;
2210
2211 VPBasicBlock *RemovedSucc =
2212 cast<VPBasicBlock>(VPBB->getSuccessors()[RemovedIdx]);
2213 assert(count(RemovedSucc->getPredecessors(), VPBB) == 1 &&
2214 "There must be a single edge between VPBB and its successor");
2215 // Values coming from VPBB into phi recipes of RemoveSucc are removed from
2216 // these recipes.
2217 for (VPRecipeBase &R : RemovedSucc->phis())
2218 cast<VPPhiAccessors>(&R)->removeIncomingValueFor(VPBB);
2219
2220 // Disconnect blocks and remove the terminator. RemovedSucc will be deleted
2221 // automatically on VPlan destruction if it becomes unreachable.
2222 VPBlockUtils::disconnectBlocks(VPBB, RemovedSucc);
2223 VPBB->back().eraseFromParent();
2224 }
2225}
2226
2245
2246// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
2247// the loop terminator with a branch-on-cond recipe with the negated
2248// active-lane-mask as operand. Note that this turns the loop into an
2249// uncountable one. Only the existing terminator is replaced, all other existing
2250// recipes/users remain unchanged, except for poison-generating flags being
2251// dropped from the canonical IV increment. Return the created
2252// VPActiveLaneMaskPHIRecipe.
2253//
2254// The function uses the following definitions:
2255//
2256// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
2257// calculate-trip-count-minus-VF (original TC) : original TC
2258// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
2259// CanonicalIVPhi : CanonicalIVIncrement
2260// %StartV is the canonical induction start value.
2261//
2262// The function adds the following recipes:
2263//
2264// vector.ph:
2265// %TripCount = calculate-trip-count-minus-VF (original TC)
2266// [if DataWithControlFlowWithoutRuntimeCheck]
2267// %EntryInc = canonical-iv-increment-for-part %StartV
2268// %EntryALM = active-lane-mask %EntryInc, %TripCount
2269//
2270// vector.body:
2271// ...
2272// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
2273// ...
2274// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
2275// %ALM = active-lane-mask %InLoopInc, TripCount
2276// %Negated = Not %ALM
2277// branch-on-cond %Negated
2278//
2281 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
2282 VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
2283 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2284 VPValue *StartV = CanonicalIVPHI->getStartValue();
2285
2286 auto *CanonicalIVIncrement =
2287 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2288 // TODO: Check if dropping the flags is needed if
2289 // !DataAndControlFlowWithoutRuntimeCheck.
2290 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2291 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2292 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
2293 // we have to take unrolling into account. Each part needs to start at
2294 // Part * VF
2295 auto *VecPreheader = Plan.getVectorPreheader();
2296 VPBuilder Builder(VecPreheader);
2297
2298 // Create the ActiveLaneMask instruction using the correct start values.
2299 VPValue *TC = Plan.getTripCount();
2300
2301 VPValue *TripCount, *IncrementValue;
2303 // When the loop is guarded by a runtime overflow check for the loop
2304 // induction variable increment by VF, we can increment the value before
2305 // the get.active.lane mask and use the unmodified tripcount.
2306 IncrementValue = CanonicalIVIncrement;
2307 TripCount = TC;
2308 } else {
2309 // When avoiding a runtime check, the active.lane.mask inside the loop
2310 // uses a modified trip count and the induction variable increment is
2311 // done after the active.lane.mask intrinsic is called.
2312 IncrementValue = CanonicalIVPHI;
2313 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
2314 {TC}, DL);
2315 }
2316 auto *EntryIncrement = Builder.createOverflowingOp(
2317 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
2318 "index.part.next");
2319
2320 // Create the active lane mask instruction in the VPlan preheader.
2321 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2322 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2323 auto *EntryALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2324 {EntryIncrement, TC, ALMMultiplier}, DL,
2325 "active.lane.mask.entry");
2326
2327 // Now create the ActiveLaneMaskPhi recipe in the main loop using the
2328 // preheader ActiveLaneMask instruction.
2329 auto *LaneMaskPhi =
2331 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2332
2333 // Create the active lane mask for the next iteration of the loop before the
2334 // original terminator.
2335 VPRecipeBase *OriginalTerminator = EB->getTerminator();
2336 Builder.setInsertPoint(OriginalTerminator);
2337 auto *InLoopIncrement =
2338 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
2339 {IncrementValue}, {false, false}, DL);
2340 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
2341 {InLoopIncrement, TripCount, ALMMultiplier},
2342 DL, "active.lane.mask.next");
2343 LaneMaskPhi->addOperand(ALM);
2344
2345 // Replace the original terminator with BranchOnCond. We have to invert the
2346 // mask here because a true condition means jumping to the exit block.
2347 auto *NotMask = Builder.createNot(ALM, DL);
2348 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
2349 OriginalTerminator->eraseFromParent();
2350 return LaneMaskPhi;
2351}
2352
2353/// Collect the header mask with the pattern:
2354/// (ICMP_ULE, WideCanonicalIV, backedge-taken-count)
2355/// TODO: Introduce explicit recipe for header-mask instead of searching
2356/// for the header-mask pattern manually.
2358 SmallVector<VPValue *> WideCanonicalIVs;
2359 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2363 "Must have at most one VPWideCanonicalIVRecipe");
2364 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
2365 auto *WideCanonicalIV =
2366 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2367 WideCanonicalIVs.push_back(WideCanonicalIV);
2368 }
2369
2370 // Also include VPWidenIntOrFpInductionRecipes that represent a widened
2371 // version of the canonical induction.
2372 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
2373 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
2374 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
2375 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2376 WideCanonicalIVs.push_back(WidenOriginalIV);
2377 }
2378
2379 // Walk users of wide canonical IVs and find the single compare of the form
2380 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
2381 VPSingleDefRecipe *HeaderMask = nullptr;
2382 for (auto *Wide : WideCanonicalIVs) {
2383 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
2384 auto *VPI = dyn_cast<VPInstruction>(U);
2385 if (!VPI || !vputils::isHeaderMask(VPI, Plan))
2386 continue;
2387
2388 assert(VPI->getOperand(0) == Wide &&
2389 "WidenCanonicalIV must be the first operand of the compare");
2390 assert(!HeaderMask && "Multiple header masks found?");
2391 HeaderMask = VPI;
2392 }
2393 }
2394 return HeaderMask;
2395}
2396
2398 VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
2401 UseActiveLaneMaskForControlFlow) &&
2402 "DataAndControlFlowWithoutRuntimeCheck implies "
2403 "UseActiveLaneMaskForControlFlow");
2404
2405 auto *FoundWidenCanonicalIVUser = find_if(Plan.getCanonicalIV()->users(),
2407 assert(FoundWidenCanonicalIVUser &&
2408 "Must have widened canonical IV when tail folding!");
2409 VPSingleDefRecipe *HeaderMask = findHeaderMask(Plan);
2410 auto *WideCanonicalIV =
2411 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
2412 VPSingleDefRecipe *LaneMask;
2413 if (UseActiveLaneMaskForControlFlow) {
2416 } else {
2417 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
2418 VPValue *ALMMultiplier = Plan.getOrAddLiveIn(
2419 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
2420 LaneMask =
2421 B.createNaryOp(VPInstruction::ActiveLaneMask,
2422 {WideCanonicalIV, Plan.getTripCount(), ALMMultiplier},
2423 nullptr, "active.lane.mask");
2424 }
2425
2426 // Walk users of WideCanonicalIV and replace the header mask of the form
2427 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an active-lane-mask,
2428 // removing the old one to ensure there is always only a single header mask.
2429 HeaderMask->replaceAllUsesWith(LaneMask);
2430 HeaderMask->eraseFromParent();
2431}
2432
2433/// Try to optimize a \p CurRecipe masked by \p HeaderMask to a corresponding
2434/// EVL-based recipe without the header mask. Returns nullptr if no EVL-based
2435/// recipe could be created.
2436/// \p HeaderMask Header Mask.
2437/// \p CurRecipe Recipe to be transform.
2438/// \p TypeInfo VPlan-based type analysis.
2439/// \p AllOneMask The vector mask parameter of vector-predication intrinsics.
2440/// \p EVL The explicit vector length parameter of vector-predication
2441/// intrinsics.
2443 VPRecipeBase &CurRecipe,
2444 VPTypeAnalysis &TypeInfo,
2445 VPValue &AllOneMask, VPValue &EVL) {
2446 // FIXME: Don't transform recipes to EVL recipes if they're not masked by the
2447 // header mask.
2448 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
2449 assert(OrigMask && "Unmasked recipe when folding tail");
2450 // HeaderMask will be handled using EVL.
2451 VPValue *Mask;
2452 if (match(OrigMask, m_LogicalAnd(m_Specific(HeaderMask), m_VPValue(Mask))))
2453 return Mask;
2454 return HeaderMask == OrigMask ? nullptr : OrigMask;
2455 };
2456
2457 /// Adjust any end pointers so that they point to the end of EVL lanes not VF.
2458 auto GetNewAddr = [&CurRecipe, &EVL](VPValue *Addr) -> VPValue * {
2459 auto *EndPtr = dyn_cast<VPVectorEndPointerRecipe>(Addr);
2460 if (!EndPtr)
2461 return Addr;
2462 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2463 "VPVectorEndPointerRecipe with non-VF VF operand?");
2464 assert(
2465 all_of(EndPtr->users(),
2466 [](VPUser *U) {
2467 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2468 }) &&
2469 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2470 VPVectorEndPointerRecipe *EVLAddr = EndPtr->clone();
2471 EVLAddr->insertBefore(&CurRecipe);
2472 EVLAddr->setOperand(1, &EVL);
2473 return EVLAddr;
2474 };
2475
2478 VPValue *NewMask = GetNewMask(L->getMask());
2479 VPValue *NewAddr = GetNewAddr(L->getAddr());
2480 return new VPWidenLoadEVLRecipe(*L, NewAddr, EVL, NewMask);
2481 })
2482 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
2483 VPValue *NewMask = GetNewMask(S->getMask());
2484 VPValue *NewAddr = GetNewAddr(S->getAddr());
2485 return new VPWidenStoreEVLRecipe(*S, NewAddr, EVL, NewMask);
2486 })
2487 .Case<VPInterleaveRecipe>([&](VPInterleaveRecipe *IR) {
2488 VPValue *NewMask = GetNewMask(IR->getMask());
2489 return new VPInterleaveEVLRecipe(*IR, EVL, NewMask);
2490 })
2491 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
2492 VPValue *NewMask = GetNewMask(Red->getCondOp());
2493 return new VPReductionEVLRecipe(*Red, EVL, NewMask);
2494 })
2495 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
2496 VPValue *LHS, *RHS;
2497 // Transform select with a header mask condition
2498 // select(header_mask, LHS, RHS)
2499 // into vector predication merge.
2500 // vp.merge(all-true, LHS, RHS, EVL)
2501 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
2502 m_VPValue(RHS))))
2503 return nullptr;
2504 // Use all true as the condition because this transformation is
2505 // limited to selects whose condition is a header mask.
2506 return new VPWidenIntrinsicRecipe(
2507 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL},
2508 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
2509 })
2510 .Default([&](VPRecipeBase *R) { return nullptr; });
2511}
2512
2513/// Replace recipes with their EVL variants.
2515 VPTypeAnalysis TypeInfo(Plan);
2516 VPValue *AllOneMask = Plan.getTrue();
2517 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
2518 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
2519
2520 assert(all_of(Plan.getVF().users(),
2523 "User of VF that we can't transform to EVL.");
2524 Plan.getVF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2526 });
2527
2528 assert(all_of(Plan.getVFxUF().users(),
2529 [&Plan](VPUser *U) {
2530 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2531 m_Specific(&Plan.getVFxUF()))) ||
2532 isa<VPWidenPointerInductionRecipe>(U);
2533 }) &&
2534 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2535 "increment of the canonical induction.");
2536 Plan.getVFxUF().replaceUsesWithIf(&EVL, [](VPUser &U, unsigned Idx) {
2537 // Only replace uses in VPWidenPointerInductionRecipe; The increment of the
2538 // canonical induction must not be updated.
2540 });
2541
2542 // Defer erasing recipes till the end so that we don't invalidate the
2543 // VPTypeAnalysis cache.
2545
2546 // Create a scalar phi to track the previous EVL if fixed-order recurrence is
2547 // contained.
2548 bool ContainsFORs =
2550 if (ContainsFORs) {
2551 // TODO: Use VPInstruction::ExplicitVectorLength to get maximum EVL.
2552 VPValue *MaxEVL = &Plan.getVF();
2553 // Emit VPScalarCastRecipe in preheader if VF is not a 32 bits integer.
2554 VPBuilder Builder(LoopRegion->getPreheaderVPBB());
2555 MaxEVL = Builder.createScalarZExtOrTrunc(
2556 MaxEVL, Type::getInt32Ty(Plan.getContext()),
2557 TypeInfo.inferScalarType(MaxEVL), DebugLoc::getUnknown());
2558
2559 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2560 VPValue *PrevEVL = Builder.createScalarPhi(
2561 {MaxEVL, &EVL}, DebugLoc::getUnknown(), "prev.evl");
2562
2565 for (VPRecipeBase &R : *VPBB) {
2566 VPValue *V1, *V2;
2567 if (!match(&R,
2569 m_VPValue(V1), m_VPValue(V2))))
2570 continue;
2571 VPValue *Imm = Plan.getOrAddLiveIn(
2574 Intrinsic::experimental_vp_splice,
2575 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2576 TypeInfo.inferScalarType(R.getVPSingleValue()), R.getDebugLoc());
2577 VPSplice->insertBefore(&R);
2578 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2579 ToErase.push_back(&R);
2580 }
2581 }
2582 }
2583
2584 VPValue *HeaderMask = findHeaderMask(Plan);
2585 if (!HeaderMask)
2586 return;
2587
2588 // Replace header masks with a mask equivalent to predicating by EVL:
2589 //
2590 // icmp ule widen-canonical-iv backedge-taken-count
2591 // ->
2592 // icmp ult step-vector, EVL
2593 VPRecipeBase *EVLR = EVL.getDefiningRecipe();
2594 VPBuilder Builder(EVLR->getParent(), std::next(EVLR->getIterator()));
2595 Type *EVLType = TypeInfo.inferScalarType(&EVL);
2596 VPValue *EVLMask = Builder.createICmp(
2598 Builder.createNaryOp(VPInstruction::StepVector, {}, EVLType), &EVL);
2599 HeaderMask->replaceAllUsesWith(EVLMask);
2600 ToErase.push_back(HeaderMask->getDefiningRecipe());
2601
2602 // Try to optimize header mask recipes away to their EVL variants.
2603 // TODO: Split optimizeMaskToEVL out and move into
2604 // VPlanTransforms::optimize. transformRecipestoEVLRecipes should be run in
2605 // tryToBuildVPlanWithVPRecipes beforehand.
2606 for (VPUser *U : collectUsersRecursively(EVLMask)) {
2607 auto *CurRecipe = cast<VPRecipeBase>(U);
2608 VPRecipeBase *EVLRecipe =
2609 optimizeMaskToEVL(EVLMask, *CurRecipe, TypeInfo, *AllOneMask, EVL);
2610 if (!EVLRecipe)
2611 continue;
2612
2613 unsigned NumDefVal = EVLRecipe->getNumDefinedValues();
2614 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2615 "New recipe must define the same number of values as the "
2616 "original.");
2617 EVLRecipe->insertBefore(CurRecipe);
2619 EVLRecipe)) {
2620 for (unsigned I = 0; I < NumDefVal; ++I) {
2621 VPValue *CurVPV = CurRecipe->getVPValue(I);
2622 CurVPV->replaceAllUsesWith(EVLRecipe->getVPValue(I));
2623 }
2624 }
2625 ToErase.push_back(CurRecipe);
2626 }
2627 // Remove dead EVL mask.
2628 if (EVLMask->getNumUsers() == 0)
2629 ToErase.push_back(EVLMask->getDefiningRecipe());
2630
2631 for (VPRecipeBase *R : reverse(ToErase)) {
2632 SmallVector<VPValue *> PossiblyDead(R->operands());
2633 R->eraseFromParent();
2634 for (VPValue *Op : PossiblyDead)
2636 }
2637}
2638
2639/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
2640/// replaces all uses except the canonical IV increment of
2641/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
2642/// is used only for loop iterations counting after this transformation.
2643///
2644/// The function uses the following definitions:
2645/// %StartV is the canonical induction start value.
2646///
2647/// The function adds the following recipes:
2648///
2649/// vector.ph:
2650/// ...
2651///
2652/// vector.body:
2653/// ...
2654/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2655/// [ %NextEVLIV, %vector.body ]
2656/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2657/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
2658/// ...
2659/// %OpEVL = cast i32 %VPEVL to IVSize
2660/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2661/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2662/// ...
2663///
2664/// If MaxSafeElements is provided, the function adds the following recipes:
2665/// vector.ph:
2666/// ...
2667///
2668/// vector.body:
2669/// ...
2670/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
2671/// [ %NextEVLIV, %vector.body ]
2672/// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ]
2673/// %cmp = cmp ult %AVL, MaxSafeElements
2674/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
2675/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
2676/// ...
2677/// %OpEVL = cast i32 %VPEVL to IVSize
2678/// %NextEVLIV = add IVSize %OpEVL, %EVLPhi
2679/// %NextAVL = sub IVSize nuw %AVL, %OpEVL
2680/// ...
2681///
2683 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
2685
2686 auto *CanonicalIVPHI = Plan.getCanonicalIV();
2687 auto *CanIVTy = CanonicalIVPHI->getScalarType();
2688 VPValue *StartV = CanonicalIVPHI->getStartValue();
2689
2690 // Create the ExplicitVectorLengthPhi recipe in the main loop.
2691 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc::getUnknown());
2692 EVLPhi->insertAfter(CanonicalIVPHI);
2693 VPBuilder Builder(Header, Header->getFirstNonPhi());
2694 // Create the AVL (application vector length), starting from TC -> 0 in steps
2695 // of EVL.
2696 VPPhi *AVLPhi = Builder.createScalarPhi(
2697 {Plan.getTripCount()}, DebugLoc::getCompilerGenerated(), "avl");
2698 VPValue *AVL = AVLPhi;
2699
2700 if (MaxSafeElements) {
2701 // Support for MaxSafeDist for correct loop emission.
2702 VPValue *AVLSafe =
2703 Plan.getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2704 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
2705 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc::getUnknown(),
2706 "safe_avl");
2707 }
2708 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
2710
2711 auto *CanonicalIVIncrement =
2712 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
2713 Builder.setInsertPoint(CanonicalIVIncrement);
2714 VPValue *OpVPEVL = VPEVL;
2715
2716 auto *I32Ty = Type::getInt32Ty(Plan.getContext());
2717 OpVPEVL = Builder.createScalarZExtOrTrunc(
2718 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2719
2720 auto *NextEVLIV = Builder.createOverflowingOp(
2721 Instruction::Add, {OpVPEVL, EVLPhi},
2722 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2723 CanonicalIVIncrement->hasNoSignedWrap()},
2724 CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
2725 EVLPhi->addOperand(NextEVLIV);
2726
2727 VPValue *NextAVL = Builder.createOverflowingOp(
2728 Instruction::Sub, {AVLPhi, OpVPEVL}, {/*hasNUW=*/true, /*hasNSW=*/false},
2729 DebugLoc::getCompilerGenerated(), "avl.next");
2730 AVLPhi->addOperand(NextAVL);
2731
2732 transformRecipestoEVLRecipes(Plan, *VPEVL);
2733
2734 // Replace all uses of VPCanonicalIVPHIRecipe by
2735 // VPEVLBasedIVPHIRecipe except for the canonical IV increment.
2736 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2737 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2738 // TODO: support unroll factor > 1.
2739 Plan.setUF(1);
2740}
2741
2743 // Find EVL loop entries by locating VPEVLBasedIVPHIRecipe.
2744 // There should be only one EVL PHI in the entire plan.
2745 VPEVLBasedIVPHIRecipe *EVLPhi = nullptr;
2746
2749 for (VPRecipeBase &R : VPBB->phis())
2750 if (auto *PhiR = dyn_cast<VPEVLBasedIVPHIRecipe>(&R)) {
2751 assert(!EVLPhi && "Found multiple EVL PHIs. Only one expected");
2752 EVLPhi = PhiR;
2753 }
2754
2755 // Early return if no EVL PHI is found.
2756 if (!EVLPhi)
2757 return;
2758
2759 VPBasicBlock *HeaderVPBB = EVLPhi->getParent();
2760 VPValue *EVLIncrement = EVLPhi->getBackedgeValue();
2761 VPValue *AVL;
2762 [[maybe_unused]] bool FoundAVL =
2763 match(EVLIncrement,
2764 m_c_Add(m_ZExtOrSelf(m_EVL(m_VPValue(AVL))), m_Specific(EVLPhi)));
2765 assert(FoundAVL && "Didn't find AVL?");
2766
2767 // The AVL may be capped to a safe distance.
2768 VPValue *SafeAVL;
2769 if (match(AVL, m_Select(m_VPValue(), m_VPValue(SafeAVL), m_VPValue())))
2770 AVL = SafeAVL;
2771
2772 VPValue *AVLNext;
2773 [[maybe_unused]] bool FoundAVLNext =
2775 m_Specific(Plan.getTripCount()), m_VPValue(AVLNext)));
2776 assert(FoundAVLNext && "Didn't find AVL backedge?");
2777
2778 // Convert EVLPhi to concrete recipe.
2779 auto *ScalarR =
2780 VPBuilder(EVLPhi).createScalarPhi({EVLPhi->getStartValue(), EVLIncrement},
2781 EVLPhi->getDebugLoc(), "evl.based.iv");
2782 EVLPhi->replaceAllUsesWith(ScalarR);
2783 EVLPhi->eraseFromParent();
2784
2785 // Replace CanonicalIVInc with EVL-PHI increment.
2786 auto *CanonicalIV = cast<VPPhi>(&*HeaderVPBB->begin());
2787 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2788 assert(match(Backedge, m_c_Add(m_Specific(CanonicalIV),
2789 m_Specific(&Plan.getVFxUF()))) &&
2790 "Unexpected canonical iv");
2791 Backedge->replaceAllUsesWith(EVLIncrement);
2792
2793 // Remove unused phi and increment.
2794 VPRecipeBase *CanonicalIVIncrement = Backedge->getDefiningRecipe();
2795 CanonicalIVIncrement->eraseFromParent();
2796 CanonicalIV->eraseFromParent();
2797
2798 // Replace the use of VectorTripCount in the latch-exiting block.
2799 // Before: (branch-on-count EVLIVInc, VectorTripCount)
2800 // After: (branch-on-cond eq AVLNext, 0)
2801
2802 VPBasicBlock *LatchExiting =
2803 HeaderVPBB->getPredecessors()[1]->getEntryBasicBlock();
2804 auto *LatchExitingBr = cast<VPInstruction>(LatchExiting->getTerminator());
2805 // Skip single-iteration loop region
2806 if (match(LatchExitingBr, m_BranchOnCond(m_True())))
2807 return;
2808 assert(LatchExitingBr &&
2809 match(LatchExitingBr,
2810 m_BranchOnCount(m_VPValue(EVLIncrement),
2811 m_Specific(&Plan.getVectorTripCount()))) &&
2812 "Unexpected terminator in EVL loop");
2813
2814 Type *AVLTy = VPTypeAnalysis(Plan).inferScalarType(AVLNext);
2815 VPBuilder Builder(LatchExitingBr);
2816 VPValue *Cmp =
2817 Builder.createICmp(CmpInst::ICMP_EQ, AVLNext,
2819 Builder.createNaryOp(VPInstruction::BranchOnCond, Cmp);
2820 LatchExitingBr->eraseFromParent();
2821}
2822
2824 VPlan &Plan, PredicatedScalarEvolution &PSE,
2825 const DenseMap<Value *, const SCEV *> &StridesMap) {
2826 // Replace VPValues for known constant strides guaranteed by predicate scalar
2827 // evolution.
2828 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) {
2829 auto *R = cast<VPRecipeBase>(&U);
2830 return R->getParent()->getParent() ||
2831 R->getParent() == Plan.getVectorLoopRegion()->getSinglePredecessor();
2832 };
2833 for (const SCEV *Stride : StridesMap.values()) {
2834 using namespace SCEVPatternMatch;
2835 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
2836 const APInt *StrideConst;
2837 if (!match(PSE.getSCEV(StrideV), m_scev_APInt(StrideConst)))
2838 // Only handle constant strides for now.
2839 continue;
2840
2841 auto *CI =
2842 Plan.getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2843 if (VPValue *StrideVPV = Plan.getLiveIn(StrideV))
2844 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2845
2846 // The versioned value may not be used in the loop directly but through a
2847 // sext/zext. Add new live-ins in those cases.
2848 for (Value *U : StrideV->users()) {
2850 continue;
2851 VPValue *StrideVPV = Plan.getLiveIn(U);
2852 if (!StrideVPV)
2853 continue;
2854 unsigned BW = U->getType()->getScalarSizeInBits();
2855 APInt C =
2856 isa<SExtInst>(U) ? StrideConst->sext(BW) : StrideConst->zext(BW);
2857 VPValue *CI = Plan.getOrAddLiveIn(ConstantInt::get(U->getType(), C));
2858 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
2859 }
2860 }
2861}
2862
2864 VPlan &Plan,
2865 const std::function<bool(BasicBlock *)> &BlockNeedsPredication) {
2866 // Collect recipes in the backward slice of `Root` that may generate a poison
2867 // value that is used after vectorization.
2869 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
2871 Worklist.push_back(Root);
2872
2873 // Traverse the backward slice of Root through its use-def chain.
2874 while (!Worklist.empty()) {
2875 VPRecipeBase *CurRec = Worklist.pop_back_val();
2876
2877 if (!Visited.insert(CurRec).second)
2878 continue;
2879
2880 // Prune search if we find another recipe generating a widen memory
2881 // instruction. Widen memory instructions involved in address computation
2882 // will lead to gather/scatter instructions, which don't need to be
2883 // handled.
2885 VPHeaderPHIRecipe>(CurRec))
2886 continue;
2887
2888 // This recipe contributes to the address computation of a widen
2889 // load/store. If the underlying instruction has poison-generating flags,
2890 // drop them directly.
2891 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
2892 VPValue *A, *B;
2893 // Dropping disjoint from an OR may yield incorrect results, as some
2894 // analysis may have converted it to an Add implicitly (e.g. SCEV used
2895 // for dependence analysis). Instead, replace it with an equivalent Add.
2896 // This is possible as all users of the disjoint OR only access lanes
2897 // where the operands are disjoint or poison otherwise.
2898 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
2899 RecWithFlags->isDisjoint()) {
2900 VPBuilder Builder(RecWithFlags);
2901 VPInstruction *New = Builder.createOverflowingOp(
2902 Instruction::Add, {A, B}, {false, false},
2903 RecWithFlags->getDebugLoc());
2904 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2905 RecWithFlags->replaceAllUsesWith(New);
2906 RecWithFlags->eraseFromParent();
2907 CurRec = New;
2908 } else
2909 RecWithFlags->dropPoisonGeneratingFlags();
2910 } else {
2913 (void)Instr;
2914 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2915 "found instruction with poison generating flags not covered by "
2916 "VPRecipeWithIRFlags");
2917 }
2918
2919 // Add new definitions to the worklist.
2920 for (VPValue *Operand : CurRec->operands())
2921 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2922 Worklist.push_back(OpDef);
2923 }
2924 });
2925
2926 // Traverse all the recipes in the VPlan and collect the poison-generating
2927 // recipes in the backward slice starting at the address of a VPWidenRecipe or
2928 // VPInterleaveRecipe.
2929 auto Iter = vp_depth_first_deep(Plan.getEntry());
2931 for (VPRecipeBase &Recipe : *VPBB) {
2932 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
2933 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2934 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2935 if (AddrDef && WidenRec->isConsecutive() &&
2936 BlockNeedsPredication(UnderlyingInstr.getParent()))
2937 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2938 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
2939 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2940 if (AddrDef) {
2941 // Check if any member of the interleave group needs predication.
2942 const InterleaveGroup<Instruction> *InterGroup =
2943 InterleaveRec->getInterleaveGroup();
2944 bool NeedPredication = false;
2945 for (int I = 0, NumMembers = InterGroup->getNumMembers();
2946 I < NumMembers; ++I) {
2947 Instruction *Member = InterGroup->getMember(I);
2948 if (Member)
2949 NeedPredication |= BlockNeedsPredication(Member->getParent());
2950 }
2951
2952 if (NeedPredication)
2953 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2954 }
2955 }
2956 }
2957 }
2958}
2959
2961 VPlan &Plan,
2963 &InterleaveGroups,
2964 VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed) {
2965 if (InterleaveGroups.empty())
2966 return;
2967
2968 // Interleave memory: for each Interleave Group we marked earlier as relevant
2969 // for this VPlan, replace the Recipes widening its memory instructions with a
2970 // single VPInterleaveRecipe at its insertion point.
2971 VPDominatorTree VPDT;
2972 VPDT.recalculate(Plan);
2973 for (const auto *IG : InterleaveGroups) {
2974 auto *Start =
2975 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
2976 VPIRMetadata InterleaveMD(*Start);
2977 SmallVector<VPValue *, 4> StoredValues;
2978 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(Start))
2979 StoredValues.push_back(StoreR->getStoredValue());
2980 for (unsigned I = 1; I < IG->getFactor(); ++I) {
2981 Instruction *MemberI = IG->getMember(I);
2982 if (!MemberI)
2983 continue;
2984 VPWidenMemoryRecipe *MemoryR =
2985 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(MemberI));
2986 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(MemoryR))
2987 StoredValues.push_back(StoreR->getStoredValue());
2988 InterleaveMD.intersect(*MemoryR);
2989 }
2990
2991 bool NeedsMaskForGaps =
2992 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
2993 (!StoredValues.empty() && !IG->isFull());
2994
2995 Instruction *IRInsertPos = IG->getInsertPos();
2996 auto *InsertPos =
2997 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
2998
3000 if (auto *Gep = dyn_cast<GetElementPtrInst>(
3001 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
3002 NW = Gep->getNoWrapFlags().withoutNoUnsignedWrap();
3003
3004 // Get or create the start address for the interleave group.
3005 VPValue *Addr = Start->getAddr();
3006 VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
3007 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
3008 // We cannot re-use the address of member zero because it does not
3009 // dominate the insert position. Instead, use the address of the insert
3010 // position and create a PtrAdd adjusting it to the address of member
3011 // zero.
3012 // TODO: Hoist Addr's defining recipe (and any operands as needed) to
3013 // InsertPos or sink loads above zero members to join it.
3014 assert(IG->getIndex(IRInsertPos) != 0 &&
3015 "index of insert position shouldn't be zero");
3016 auto &DL = IRInsertPos->getDataLayout();
3017 APInt Offset(32,
3018 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
3019 IG->getIndex(IRInsertPos),
3020 /*IsSigned=*/true);
3021 VPValue *OffsetVPV =
3022 Plan.getOrAddLiveIn(ConstantInt::get(Plan.getContext(), -Offset));
3023 VPBuilder B(InsertPos);
3024 Addr = B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3025 }
3026 // If the group is reverse, adjust the index to refer to the last vector
3027 // lane instead of the first. We adjust the index from the first vector
3028 // lane, rather than directly getting the pointer for lane VF - 1, because
3029 // the pointer operand of the interleaved access is supposed to be uniform.
3030 if (IG->isReverse()) {
3031 auto *ReversePtr = new VPVectorEndPointerRecipe(
3032 Addr, &Plan.getVF(), getLoadStoreType(IRInsertPos),
3033 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3034 ReversePtr->insertBefore(InsertPos);
3035 Addr = ReversePtr;
3036 }
3037 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
3038 InsertPos->getMask(), NeedsMaskForGaps,
3039 InterleaveMD, InsertPos->getDebugLoc());
3040 VPIG->insertBefore(InsertPos);
3041
3042 unsigned J = 0;
3043 for (unsigned i = 0; i < IG->getFactor(); ++i)
3044 if (Instruction *Member = IG->getMember(i)) {
3045 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
3046 if (!Member->getType()->isVoidTy()) {
3047 VPValue *OriginalV = MemberR->getVPSingleValue();
3048 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
3049 J++;
3050 }
3051 MemberR->eraseFromParent();
3052 }
3053 }
3054}
3055
3056/// Expand a VPWidenIntOrFpInduction into executable recipes, for the initial
3057/// value, phi and backedge value. In the following example:
3058///
3059/// vector.ph:
3060/// Successor(s): vector loop
3061///
3062/// <x1> vector loop: {
3063/// vector.body:
3064/// WIDEN-INDUCTION %i = phi %start, %step, %vf
3065/// ...
3066/// EMIT branch-on-count ...
3067/// No successors
3068/// }
3069///
3070/// WIDEN-INDUCTION will get expanded to:
3071///
3072/// vector.ph:
3073/// ...
3074/// vp<%induction.start> = ...
3075/// vp<%induction.increment> = ...
3076///
3077/// Successor(s): vector loop
3078///
3079/// <x1> vector loop: {
3080/// vector.body:
3081/// ir<%i> = WIDEN-PHI vp<%induction.start>, vp<%vec.ind.next>
3082/// ...
3083/// vp<%vec.ind.next> = add ir<%i>, vp<%induction.increment>
3084/// EMIT branch-on-count ...
3085/// No successors
3086/// }
3087static void
3089 VPTypeAnalysis &TypeInfo) {
3090 VPlan *Plan = WidenIVR->getParent()->getPlan();
3091 VPValue *Start = WidenIVR->getStartValue();
3092 VPValue *Step = WidenIVR->getStepValue();
3093 VPValue *VF = WidenIVR->getVFValue();
3094 DebugLoc DL = WidenIVR->getDebugLoc();
3095
3096 // The value from the original loop to which we are mapping the new induction
3097 // variable.
3098 Type *Ty = TypeInfo.inferScalarType(WidenIVR);
3099
3100 const InductionDescriptor &ID = WidenIVR->getInductionDescriptor();
3103 // FIXME: The newly created binary instructions should contain nsw/nuw
3104 // flags, which can be found from the original scalar operations.
3105 VPIRFlags Flags;
3106 if (ID.getKind() == InductionDescriptor::IK_IntInduction) {
3107 AddOp = Instruction::Add;
3108 MulOp = Instruction::Mul;
3109 } else {
3110 AddOp = ID.getInductionOpcode();
3111 MulOp = Instruction::FMul;
3112 Flags = ID.getInductionBinOp()->getFastMathFlags();
3113 }
3114
3115 // If the phi is truncated, truncate the start and step values.
3116 VPBuilder Builder(Plan->getVectorPreheader());
3117 Type *StepTy = TypeInfo.inferScalarType(Step);
3118 if (Ty->getScalarSizeInBits() < StepTy->getScalarSizeInBits()) {
3119 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
3120 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty, DL);
3121 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty, DL);
3122 StepTy = Ty;
3123 }
3124
3125 // Construct the initial value of the vector IV in the vector loop preheader.
3126 Type *IVIntTy =
3128 VPValue *Init = Builder.createNaryOp(VPInstruction::StepVector, {}, IVIntTy);
3129 if (StepTy->isFloatingPointTy())
3130 Init = Builder.createWidenCast(Instruction::UIToFP, Init, StepTy);
3131
3132 VPValue *SplatStart = Builder.createNaryOp(VPInstruction::Broadcast, Start);
3133 VPValue *SplatStep = Builder.createNaryOp(VPInstruction::Broadcast, Step);
3134
3135 Init = Builder.createNaryOp(MulOp, {Init, SplatStep}, Flags);
3136 Init = Builder.createNaryOp(AddOp, {SplatStart, Init}, Flags,
3137 DebugLoc::getUnknown(), "induction");
3138
3139 // Create the widened phi of the vector IV.
3140 auto *WidePHI = new VPWidenPHIRecipe(WidenIVR->getPHINode(), nullptr,
3141 WidenIVR->getDebugLoc(), "vec.ind");
3142 WidePHI->addOperand(Init);
3143 WidePHI->insertBefore(WidenIVR);
3144
3145 // Create the backedge value for the vector IV.
3146 VPValue *Inc;
3147 VPValue *Prev;
3148 // If unrolled, use the increment and prev value from the operands.
3149 if (auto *SplatVF = WidenIVR->getSplatVFValue()) {
3150 Inc = SplatVF;
3151 Prev = WidenIVR->getLastUnrolledPartOperand();
3152 } else {
3153 if (VPRecipeBase *R = VF->getDefiningRecipe())
3154 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3155 // Multiply the vectorization factor by the step using integer or
3156 // floating-point arithmetic as appropriate.
3157 if (StepTy->isFloatingPointTy())
3158 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3159 DL);
3160 else
3161 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3162 TypeInfo.inferScalarType(VF), DL);
3163
3164 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3165 Inc = Builder.createNaryOp(VPInstruction::Broadcast, Inc);
3166 Prev = WidePHI;
3167 }
3168
3170 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3171 auto *Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3172 WidenIVR->getDebugLoc(), "vec.ind.next");
3173
3174 WidePHI->addOperand(Next);
3175
3176 WidenIVR->replaceAllUsesWith(WidePHI);
3177}
3178
3179/// Expand a VPWidenPointerInductionRecipe into executable recipes, for the
3180/// initial value, phi and backedge value. In the following example:
3181///
3182/// <x1> vector loop: {
3183/// vector.body:
3184/// EMIT ir<%ptr.iv> = WIDEN-POINTER-INDUCTION %start, %step, %vf
3185/// ...
3186/// EMIT branch-on-count ...
3187/// }
3188///
3189/// WIDEN-POINTER-INDUCTION will get expanded to:
3190///
3191/// <x1> vector loop: {
3192/// vector.body:
3193/// EMIT-SCALAR %pointer.phi = phi %start, %ptr.ind
3194/// EMIT %mul = mul %stepvector, %step
3195/// EMIT %vector.gep = wide-ptradd %pointer.phi, %mul
3196/// ...
3197/// EMIT %ptr.ind = ptradd %pointer.phi, %vf
3198/// EMIT branch-on-count ...
3199/// }
3201 VPTypeAnalysis &TypeInfo) {
3202 VPlan *Plan = R->getParent()->getPlan();
3203 VPValue *Start = R->getStartValue();
3204 VPValue *Step = R->getStepValue();
3205 VPValue *VF = R->getVFValue();
3206
3207 assert(R->getInductionDescriptor().getKind() ==
3209 "Not a pointer induction according to InductionDescriptor!");
3210 assert(TypeInfo.inferScalarType(R)->isPointerTy() && "Unexpected type.");
3211 assert(!R->onlyScalarsGenerated(Plan->hasScalableVF()) &&
3212 "Recipe should have been replaced");
3213
3214 VPBuilder Builder(R);
3215 DebugLoc DL = R->getDebugLoc();
3216
3217 // Build a scalar pointer phi.
3218 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start, DL, "pointer.phi");
3219
3220 // Create actual address geps that use the pointer phi as base and a
3221 // vectorized version of the step value (<step*0, ..., step*N>) as offset.
3222 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3223 Type *StepTy = TypeInfo.inferScalarType(Step);
3224 VPValue *Offset = Builder.createNaryOp(VPInstruction::StepVector, {}, StepTy);
3225 Offset = Builder.createNaryOp(Instruction::Mul, {Offset, Step});
3226 VPValue *PtrAdd = Builder.createNaryOp(
3227 VPInstruction::WidePtrAdd, {ScalarPtrPhi, Offset}, DL, "vector.gep");
3228 R->replaceAllUsesWith(PtrAdd);
3229
3230 // Create the backedge value for the scalar pointer phi.
3232 Builder.setInsertPoint(ExitingBB, ExitingBB->getTerminator()->getIterator());
3233 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.inferScalarType(VF),
3234 DL);
3235 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3236
3237 VPValue *InductionGEP =
3238 Builder.createPtrAdd(ScalarPtrPhi, Inc, DL, "ptr.ind");
3239 ScalarPtrPhi->addOperand(InductionGEP);
3240}
3241
3243 // Replace loop regions with explicity CFG.
3244 SmallVector<VPRegionBlock *> LoopRegions;
3246 vp_depth_first_deep(Plan.getEntry()))) {
3247 if (!R->isReplicator())
3248 LoopRegions.push_back(R);
3249 }
3250 for (VPRegionBlock *R : LoopRegions)
3251 R->dissolveToCFGLoop();
3252}
3253
3255 VPTypeAnalysis TypeInfo(Plan);
3258 vp_depth_first_deep(Plan.getEntry()))) {
3259 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3260 if (auto *WidenIVR = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
3261 expandVPWidenIntOrFpInduction(WidenIVR, TypeInfo);
3262 ToRemove.push_back(WidenIVR);
3263 continue;
3264 }
3265
3266 if (auto *WidenIVR = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
3267 expandVPWidenPointerInduction(WidenIVR, TypeInfo);
3268 ToRemove.push_back(WidenIVR);
3269 continue;
3270 }
3271
3272 // Expand VPBlendRecipe into VPInstruction::Select.
3273 VPBuilder Builder(&R);
3274 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
3275 VPValue *Select = Blend->getIncomingValue(0);
3276 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
3277 Select = Builder.createSelect(Blend->getMask(I),
3278 Blend->getIncomingValue(I), Select,
3279 R.getDebugLoc(), "predphi");
3280 Blend->replaceAllUsesWith(Select);
3281 ToRemove.push_back(Blend);
3282 }
3283
3284 if (auto *Expr = dyn_cast<VPExpressionRecipe>(&R)) {
3285 Expr->decompose();
3286 ToRemove.push_back(Expr);
3287 }
3288
3289 VPValue *VectorStep;
3290 VPValue *ScalarStep;
3292 m_VPValue(VectorStep), m_VPValue(ScalarStep))))
3293 continue;
3294
3295 // Expand WideIVStep.
3296 auto *VPI = cast<VPInstruction>(&R);
3297 Type *IVTy = TypeInfo.inferScalarType(VPI);
3298 if (TypeInfo.inferScalarType(VectorStep) != IVTy) {
3300 ? Instruction::UIToFP
3301 : Instruction::Trunc;
3302 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3303 }
3304
3305 [[maybe_unused]] auto *ConstStep =
3306 ScalarStep->isLiveIn()
3308 : nullptr;
3309 assert(!ConstStep || ConstStep->getValue() != 1);
3310 (void)ConstStep;
3311 if (TypeInfo.inferScalarType(ScalarStep) != IVTy) {
3312 ScalarStep =
3313 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3314 }
3315
3316 VPIRFlags Flags;
3317 if (IVTy->isFloatingPointTy())
3318 Flags = {VPI->getFastMathFlags()};
3319
3320 unsigned MulOpc =
3321 IVTy->isFloatingPointTy() ? Instruction::FMul : Instruction::Mul;
3322 VPInstruction *Mul = Builder.createNaryOp(
3323 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3324 VectorStep = Mul;
3325 VPI->replaceAllUsesWith(VectorStep);
3326 ToRemove.push_back(VPI);
3327 }
3328 }
3329
3330 for (VPRecipeBase *R : ToRemove)
3331 R->eraseFromParent();
3332}
3333
3335 VPBasicBlock *EarlyExitVPBB,
3336 VPlan &Plan,
3337 VPBasicBlock *HeaderVPBB,
3338 VPBasicBlock *LatchVPBB) {
3339 VPBlockBase *MiddleVPBB = LatchVPBB->getSuccessors()[0];
3340 if (!EarlyExitVPBB->getSinglePredecessor() &&
3341 EarlyExitVPBB->getPredecessors()[1] == MiddleVPBB) {
3342 assert(EarlyExitVPBB->getNumPredecessors() == 2 &&
3343 EarlyExitVPBB->getPredecessors()[0] == EarlyExitingVPBB &&
3344 "unsupported early exit VPBB");
3345 // Early exit operand should always be last phi operand. If EarlyExitVPBB
3346 // has two predecessors and EarlyExitingVPBB is the first, swap the operands
3347 // of the phis.
3348 for (VPRecipeBase &R : EarlyExitVPBB->phis())
3349 cast<VPIRPhi>(&R)->swapOperands();
3350 }
3351
3352 VPBuilder Builder(LatchVPBB->getTerminator());
3353 VPBlockBase *TrueSucc = EarlyExitingVPBB->getSuccessors()[0];
3354 assert(
3355 match(EarlyExitingVPBB->getTerminator(), m_BranchOnCond(m_VPValue())) &&
3356 "Terminator must be be BranchOnCond");
3357 VPValue *CondOfEarlyExitingVPBB =
3358 EarlyExitingVPBB->getTerminator()->getOperand(0);
3359 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3360 ? CondOfEarlyExitingVPBB
3361 : Builder.createNot(CondOfEarlyExitingVPBB);
3362
3363 // Split the middle block and have it conditionally branch to the early exit
3364 // block if CondToEarlyExit.
3365 VPValue *IsEarlyExitTaken =
3366 Builder.createNaryOp(VPInstruction::AnyOf, {CondToEarlyExit});
3367 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split");
3368 VPBasicBlock *VectorEarlyExitVPBB =
3369 Plan.createVPBasicBlock("vector.early.exit");
3370 VPBlockUtils::insertOnEdge(LatchVPBB, MiddleVPBB, NewMiddle);
3371 VPBlockUtils::connectBlocks(NewMiddle, VectorEarlyExitVPBB);
3372 NewMiddle->swapSuccessors();
3373
3374 VPBlockUtils::connectBlocks(VectorEarlyExitVPBB, EarlyExitVPBB);
3375
3376 // Update the exit phis in the early exit block.
3377 VPBuilder MiddleBuilder(NewMiddle);
3378 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3379 for (VPRecipeBase &R : EarlyExitVPBB->phis()) {
3380 auto *ExitIRI = cast<VPIRPhi>(&R);
3381 // Early exit operand should always be last, i.e., 0 if EarlyExitVPBB has
3382 // a single predecessor and 1 if it has two.
3383 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3384 if (ExitIRI->getNumOperands() != 1) {
3385 // The first of two operands corresponds to the latch exit, via MiddleVPBB
3386 // predecessor. Extract its last lane.
3387 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3388 }
3389
3390 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3391 if (!IncomingFromEarlyExit->isLiveIn()) {
3392 // Update the incoming value from the early exit.
3393 VPValue *FirstActiveLane = EarlyExitB.createNaryOp(
3394 VPInstruction::FirstActiveLane, {CondToEarlyExit}, nullptr,
3395 "first.active.lane");
3396 IncomingFromEarlyExit = EarlyExitB.createNaryOp(
3397 VPInstruction::ExtractLane, {FirstActiveLane, IncomingFromEarlyExit},
3398 nullptr, "early.exit.value");
3399 ExitIRI->setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3400 }
3401 }
3402 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken});
3403
3404 // Replace the condition controlling the non-early exit from the vector loop
3405 // with one exiting if either the original condition of the vector latch is
3406 // true or the early exit has been taken.
3407 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
3408 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
3409 "Unexpected terminator");
3410 auto *IsLatchExitTaken =
3411 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
3412 LatchExitingBranch->getOperand(1));
3413 auto *AnyExitTaken = Builder.createNaryOp(
3414 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3415 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
3416 LatchExitingBranch->eraseFromParent();
3417}
3418
3419/// This function tries convert extended in-loop reductions to
3420/// VPExpressionRecipe and clamp the \p Range if it is beneficial and
3421/// valid. The created recipe must be decomposed to its constituent
3422/// recipes before execution.
3423static VPExpressionRecipe *
3425 VFRange &Range) {
3426 Type *RedTy = Ctx.Types.inferScalarType(Red);
3427 VPValue *VecOp = Red->getVecOp();
3428
3429 // Clamp the range if using extended-reduction is profitable.
3430 auto IsExtendedRedValidAndClampRange = [&](unsigned Opcode, bool isZExt,
3431 Type *SrcTy) -> bool {
3433 [&](ElementCount VF) {
3434 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3436 InstructionCost ExtRedCost = Ctx.TTI.getExtendedReductionCost(
3437 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3438 CostKind);
3439 InstructionCost ExtCost =
3440 cast<VPWidenCastRecipe>(VecOp)->computeCost(VF, Ctx);
3441 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3442 return ExtRedCost.isValid() && ExtRedCost < ExtCost + RedCost;
3443 },
3444 Range);
3445 };
3446
3447 VPValue *A;
3448 // Match reduce(ext)).
3449 if (match(VecOp, m_ZExtOrSExt(m_VPValue(A))) &&
3450 IsExtendedRedValidAndClampRange(
3451 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()),
3452 cast<VPWidenCastRecipe>(VecOp)->getOpcode() ==
3453 Instruction::CastOps::ZExt,
3454 Ctx.Types.inferScalarType(A)))
3455 return new VPExpressionRecipe(cast<VPWidenCastRecipe>(VecOp), Red);
3456
3457 return nullptr;
3458}
3459
3460/// This function tries convert extended in-loop reductions to
3461/// VPExpressionRecipe and clamp the \p Range if it is beneficial
3462/// and valid. The created VPExpressionRecipe must be decomposed to its
3463/// constituent recipes before execution. Patterns of the
3464/// VPExpressionRecipe:
3465/// reduce.add(mul(...)),
3466/// reduce.add(mul(ext(A), ext(B))),
3467/// reduce.add(ext(mul(ext(A), ext(B)))).
3468static VPExpressionRecipe *
3470 VPCostContext &Ctx, VFRange &Range) {
3471 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
3472 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3473 return nullptr;
3474
3475 Type *RedTy = Ctx.Types.inferScalarType(Red);
3476
3477 // Clamp the range if using multiply-accumulate-reduction is profitable.
3478 auto IsMulAccValidAndClampRange =
3479 [&](bool isZExt, VPWidenRecipe *Mul, VPWidenCastRecipe *Ext0,
3480 VPWidenCastRecipe *Ext1, VPWidenCastRecipe *OuterExt) -> bool {
3482 [&](ElementCount VF) {
3484 Type *SrcTy =
3485 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3486 auto *SrcVecTy = cast<VectorType>(toVectorTy(SrcTy, VF));
3487 InstructionCost MulAccCost = Ctx.TTI.getMulAccReductionCost(
3488 isZExt, Opcode, RedTy, SrcVecTy, CostKind);
3489 InstructionCost MulCost = Mul->computeCost(VF, Ctx);
3490 InstructionCost RedCost = Red->computeCost(VF, Ctx);
3491 InstructionCost ExtCost = 0;
3492 if (Ext0)
3493 ExtCost += Ext0->computeCost(VF, Ctx);
3494 if (Ext1)
3495 ExtCost += Ext1->computeCost(VF, Ctx);
3496 if (OuterExt)
3497 ExtCost += OuterExt->computeCost(VF, Ctx);
3498
3499 return MulAccCost.isValid() &&
3500 MulAccCost < ExtCost + MulCost + RedCost;
3501 },
3502 Range);
3503 };
3504
3505 VPValue *VecOp = Red->getVecOp();
3506 VPValue *A, *B;
3507 // Try to match reduce.add(mul(...)).
3508 if (match(VecOp, m_Mul(m_VPValue(A), m_VPValue(B)))) {
3509 auto *RecipeA =
3510 dyn_cast_if_present<VPWidenCastRecipe>(A->getDefiningRecipe());
3511 auto *RecipeB =
3512 dyn_cast_if_present<VPWidenCastRecipe>(B->getDefiningRecipe());
3513 auto *Mul = cast<VPWidenRecipe>(VecOp->getDefiningRecipe());
3514
3515 // Match reduce.add(mul(ext, ext)).
3516 if (RecipeA && RecipeB &&
3517 (RecipeA->getOpcode() == RecipeB->getOpcode() || A == B) &&
3518 match(RecipeA, m_ZExtOrSExt(m_VPValue())) &&
3519 match(RecipeB, m_ZExtOrSExt(m_VPValue())) &&
3520 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3521 Instruction::CastOps::ZExt,
3522 Mul, RecipeA, RecipeB, nullptr)) {
3523 return new VPExpressionRecipe(RecipeA, RecipeB, Mul, Red);
3524 }
3525 // Match reduce.add(mul).
3526 if (IsMulAccValidAndClampRange(true, Mul, nullptr, nullptr, nullptr))
3527 return new VPExpressionRecipe(Mul, Red);
3528 }
3529 // Match reduce.add(ext(mul(ext(A), ext(B)))).
3530 // All extend recipes must have same opcode or A == B
3531 // which can be transform to reduce.add(zext(mul(sext(A), sext(B)))).
3533 m_ZExtOrSExt(m_VPValue()))))) {
3534 auto *Ext = cast<VPWidenCastRecipe>(VecOp->getDefiningRecipe());
3535 auto *Mul = cast<VPWidenRecipe>(Ext->getOperand(0)->getDefiningRecipe());
3536 auto *Ext0 =
3537 cast<VPWidenCastRecipe>(Mul->getOperand(0)->getDefiningRecipe());
3538 auto *Ext1 =
3539 cast<VPWidenCastRecipe>(Mul->getOperand(1)->getDefiningRecipe());
3540 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3541 Ext0->getOpcode() == Ext1->getOpcode() &&
3542 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3543 Instruction::CastOps::ZExt,
3544 Mul, Ext0, Ext1, Ext)) {
3545 auto *NewExt0 = new VPWidenCastRecipe(
3546 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3547 Ext0->getDebugLoc());
3548 NewExt0->insertBefore(Ext0);
3549
3550 VPWidenCastRecipe *NewExt1 = NewExt0;
3551 if (Ext0 != Ext1) {
3552 NewExt1 = new VPWidenCastRecipe(Ext1->getOpcode(), Ext1->getOperand(0),
3553 Ext->getResultType(), *Ext1,
3554 Ext1->getDebugLoc());
3555 NewExt1->insertBefore(Ext1);
3556 }
3557 Mul->setOperand(0, NewExt0);
3558 Mul->setOperand(1, NewExt1);
3559 Red->setOperand(1, Mul);
3560 return new VPExpressionRecipe(NewExt0, NewExt1, Mul, Red);
3561 }
3562 }
3563 return nullptr;
3564}
3565
3566/// This function tries to create abstract recipes from the reduction recipe for
3567/// following optimizations and cost estimation.
3569 VPCostContext &Ctx,
3570 VFRange &Range) {
3571 VPExpressionRecipe *AbstractR = nullptr;
3572 auto IP = std::next(Red->getIterator());
3573 auto *VPBB = Red->getParent();
3574 if (auto *MulAcc = tryToMatchAndCreateMulAccumulateReduction(Red, Ctx, Range))
3575 AbstractR = MulAcc;
3576 else if (auto *ExtRed = tryToMatchAndCreateExtendedReduction(Red, Ctx, Range))
3577 AbstractR = ExtRed;
3578 // Cannot create abstract inloop reduction recipes.
3579 if (!AbstractR)
3580 return;
3581
3582 AbstractR->insertBefore(*VPBB, IP);
3583 Red->replaceAllUsesWith(AbstractR);
3584}
3585
3596
3598 if (Plan.hasScalarVFOnly())
3599 return;
3600
3601#ifndef NDEBUG
3602 VPDominatorTree VPDT;
3603 VPDT.recalculate(Plan);
3604#endif
3605
3606 SmallVector<VPValue *> VPValues;
3609 append_range(VPValues, Plan.getLiveIns());
3610 for (VPRecipeBase &R : *Plan.getEntry())
3611 append_range(VPValues, R.definedValues());
3612
3613 auto *VectorPreheader = Plan.getVectorPreheader();
3614 for (VPValue *VPV : VPValues) {
3616 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3617 isa<Constant>(VPV->getLiveInIRValue())))
3618 continue;
3619
3620 // Add explicit broadcast at the insert point that dominates all users.
3621 VPBasicBlock *HoistBlock = VectorPreheader;
3622 VPBasicBlock::iterator HoistPoint = VectorPreheader->end();
3623 for (VPUser *User : VPV->users()) {
3624 if (User->usesScalars(VPV))
3625 continue;
3626 if (cast<VPRecipeBase>(User)->getParent() == VectorPreheader)
3627 HoistPoint = HoistBlock->begin();
3628 else
3629 assert(VPDT.dominates(VectorPreheader,
3630 cast<VPRecipeBase>(User)->getParent()) &&
3631 "All users must be in the vector preheader or dominated by it");
3632 }
3633
3634 VPBuilder Builder(cast<VPBasicBlock>(HoistBlock), HoistPoint);
3635 auto *Broadcast = Builder.createNaryOp(VPInstruction::Broadcast, {VPV});
3636 VPV->replaceUsesWithIf(Broadcast,
3637 [VPV, Broadcast](VPUser &U, unsigned Idx) {
3638 return Broadcast != &U && !U.usesScalars(VPV);
3639 });
3640 }
3641}
3642
3644 VPlan &Plan, ElementCount BestVF, unsigned BestUF,
3646 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
3647 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
3648
3649 VPValue *TC = Plan.getTripCount();
3650 // Skip cases for which the trip count may be non-trivial to materialize.
3651 // I.e., when a scalar tail is absent - due to tail folding, or when a scalar
3652 // tail is required.
3653 if (!Plan.hasScalarTail() ||
3655 Plan.getScalarPreheader() ||
3656 !TC->isLiveIn())
3657 return;
3658
3659 // Materialize vector trip counts for constants early if it can simply
3660 // be computed as (Original TC / VF * UF) * VF * UF.
3661 // TODO: Compute vector trip counts for loops requiring a scalar epilogue and
3662 // tail-folded loops.
3663 ScalarEvolution &SE = *PSE.getSE();
3664 auto *TCScev = SE.getSCEV(TC->getLiveInIRValue());
3665 if (!isa<SCEVConstant>(TCScev))
3666 return;
3667 const SCEV *VFxUF = SE.getElementCount(TCScev->getType(), BestVF * BestUF);
3668 auto VecTCScev = SE.getMulExpr(SE.getUDivExpr(TCScev, VFxUF), VFxUF);
3669 if (auto *ConstVecTC = dyn_cast<SCEVConstant>(VecTCScev))
3670 Plan.getVectorTripCount().setUnderlyingValue(ConstVecTC->getValue());
3671}
3672
3674 VPBasicBlock *VectorPH) {
3676 if (BTC->getNumUsers() == 0)
3677 return;
3678
3679 VPBuilder Builder(VectorPH, VectorPH->begin());
3680 auto *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3681 auto *TCMO = Builder.createNaryOp(
3682 Instruction::Sub,
3683 {Plan.getTripCount(), Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))},
3684 DebugLoc::getCompilerGenerated(), "trip.count.minus.1");
3685 BTC->replaceAllUsesWith(TCMO);
3686}
3687
3689 if (Plan.hasScalarVFOnly())
3690 return;
3691
3692 VPTypeAnalysis TypeInfo(Plan);
3693 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
3694 auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3696 auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
3697 vp_depth_first_shallow(LoopRegion->getEntry()));
3698 // Materialize Build(Struct)Vector for all replicating VPReplicateRecipes and
3699 // VPInstructions, excluding ones in replicate regions. Those are not
3700 // materialized explicitly yet. Those vector users are still handled in
3701 // VPReplicateRegion::execute(), via shouldPack().
3702 // TODO: materialize build vectors for replicating recipes in replicating
3703 // regions.
3704 for (VPBasicBlock *VPBB :
3705 concat<VPBasicBlock *>(VPBBsOutsideLoopRegion, VPBBsInsideLoopRegion)) {
3706 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
3708 continue;
3709 auto *DefR = cast<VPRecipeWithIRFlags>(&R);
3710 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](VPUser *U) {
3711 VPRegionBlock *ParentRegion =
3713 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3714 };
3715 if ((isa<VPReplicateRecipe>(DefR) &&
3716 cast<VPReplicateRecipe>(DefR)->isSingleScalar()) ||
3717 (isa<VPInstruction>(DefR) &&
3719 !cast<VPInstruction>(DefR)->doesGeneratePerAllLanes())) ||
3720 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3721 continue;
3722
3723 Type *ScalarTy = TypeInfo.inferScalarType(DefR);
3724 unsigned Opcode = ScalarTy->isStructTy()
3727 auto *BuildVector = new VPInstruction(Opcode, {DefR});
3728 BuildVector->insertAfter(DefR);
3729
3730 DefR->replaceUsesWithIf(
3731 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3732 VPUser &U, unsigned) {
3733 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3734 });
3735 }
3736 }
3737}
3738
3740 VPBasicBlock *VectorPHVPBB,
3741 bool TailByMasking,
3742 bool RequiresScalarEpilogue) {
3743 VPValue &VectorTC = Plan.getVectorTripCount();
3744 assert(VectorTC.isLiveIn() && "vector-trip-count must be a live-in");
3745 // There's nothing to do if there are no users of the vector trip count or its
3746 // IR value has already been set.
3747 if (VectorTC.getNumUsers() == 0 || VectorTC.getLiveInIRValue())
3748 return;
3749
3750 VPValue *TC = Plan.getTripCount();
3751 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(TC);
3752 VPBuilder Builder(VectorPHVPBB, VectorPHVPBB->begin());
3753 VPValue *Step = &Plan.getVFxUF();
3754
3755 // If the tail is to be folded by masking, round the number of iterations N
3756 // up to a multiple of Step instead of rounding down. This is done by first
3757 // adding Step-1 and then rounding down. Note that it's ok if this addition
3758 // overflows: the vector induction variable will eventually wrap to zero given
3759 // that it starts at zero and its Step is a power of two; the loop will then
3760 // exit, with the last early-exit vector comparison also producing all-true.
3761 // For scalable vectors the VF is not guaranteed to be a power of 2, but this
3762 // is accounted for in emitIterationCountCheck that adds an overflow check.
3763 if (TailByMasking) {
3764 TC = Builder.createNaryOp(
3765 Instruction::Add,
3766 {TC, Builder.createNaryOp(
3767 Instruction::Sub,
3768 {Step, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 1))})},
3769 DebugLoc::getCompilerGenerated(), "n.rnd.up");
3770 }
3771
3772 // Now we need to generate the expression for the part of the loop that the
3773 // vectorized body will execute. This is equal to N - (N % Step) if scalar
3774 // iterations are not required for correctness, or N - Step, otherwise. Step
3775 // is equal to the vectorization factor (number of SIMD elements) times the
3776 // unroll factor (number of SIMD instructions).
3777 VPValue *R =
3778 Builder.createNaryOp(Instruction::URem, {TC, Step},
3779 DebugLoc::getCompilerGenerated(), "n.mod.vf");
3780
3781 // There are cases where we *must* run at least one iteration in the remainder
3782 // loop. See the cost model for when this can happen. If the step evenly
3783 // divides the trip count, we set the remainder to be equal to the step. If
3784 // the step does not evenly divide the trip count, no adjustment is necessary
3785 // since there will already be scalar iterations. Note that the minimum
3786 // iterations check ensures that N >= Step.
3787 if (RequiresScalarEpilogue) {
3788 assert(!TailByMasking &&
3789 "requiring scalar epilogue is not supported with fail folding");
3790 VPValue *IsZero = Builder.createICmp(
3791 CmpInst::ICMP_EQ, R, Plan.getOrAddLiveIn(ConstantInt::get(TCTy, 0)));
3792 R = Builder.createSelect(IsZero, Step, R);
3793 }
3794
3795 VPValue *Res = Builder.createNaryOp(
3796 Instruction::Sub, {TC, R}, DebugLoc::getCompilerGenerated(), "n.vec");
3797 VectorTC.replaceAllUsesWith(Res);
3798}
3799
3801 ElementCount VFEC) {
3802 VPBuilder Builder(VectorPH, VectorPH->begin());
3803 Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(Plan.getTripCount());
3804 VPValue &VF = Plan.getVF();
3805 VPValue &VFxUF = Plan.getVFxUF();
3806 // Note that after the transform, Plan.getVF and Plan.getVFxUF should not be
3807 // used.
3808 // TODO: Assert that they aren't used.
3809
3810 // If there are no users of the runtime VF, compute VFxUF by constant folding
3811 // the multiplication of VF and UF.
3812 if (VF.getNumUsers() == 0) {
3813 VPValue *RuntimeVFxUF =
3814 Builder.createElementCount(TCTy, VFEC * Plan.getUF());
3815 VFxUF.replaceAllUsesWith(RuntimeVFxUF);
3816 return;
3817 }
3818
3819 // For users of the runtime VF, compute it as VF * vscale, and VFxUF as (VF *
3820 // vscale) * UF.
3821 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3823 VPValue *BC = Builder.createNaryOp(VPInstruction::Broadcast, RuntimeVF);
3825 BC, [&VF](VPUser &U, unsigned) { return !U.usesScalars(&VF); });
3826 }
3827 VF.replaceAllUsesWith(RuntimeVF);
3828
3829 VPValue *UF = Plan.getOrAddLiveIn(ConstantInt::get(TCTy, Plan.getUF()));
3830 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3831 VFxUF.replaceAllUsesWith(MulByUF);
3832}
3833
3836 const DataLayout &DL = SE.getDataLayout();
3837 SCEVExpander Expander(SE, DL, "induction", /*PreserveLCSSA=*/true);
3838
3839 auto *Entry = cast<VPIRBasicBlock>(Plan.getEntry());
3840 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3841 DenseMap<const SCEV *, Value *> ExpandedSCEVs;
3842 for (VPRecipeBase &R : make_early_inc_range(*Entry)) {
3844 continue;
3845 auto *ExpSCEV = dyn_cast<VPExpandSCEVRecipe>(&R);
3846 if (!ExpSCEV)
3847 break;
3848 const SCEV *Expr = ExpSCEV->getSCEV();
3849 Value *Res =
3850 Expander.expandCodeFor(Expr, Expr->getType(), EntryBB->getTerminator());
3851 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3852 VPValue *Exp = Plan.getOrAddLiveIn(Res);
3853 ExpSCEV->replaceAllUsesWith(Exp);
3854 if (Plan.getTripCount() == ExpSCEV)
3855 Plan.resetTripCount(Exp);
3856 ExpSCEV->eraseFromParent();
3857 }
3859 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3860 "after any VPIRInstructions");
3861 // Add IR instructions in the entry basic block but not in the VPIRBasicBlock
3862 // to the VPIRBasicBlock.
3863 auto EI = Entry->begin();
3864 for (Instruction &I : drop_end(*EntryBB)) {
3865 if (EI != Entry->end() && isa<VPIRInstruction>(*EI) &&
3866 &cast<VPIRInstruction>(&*EI)->getInstruction() == &I) {
3867 EI++;
3868 continue;
3869 }
3871 }
3872
3873 return ExpandedSCEVs;
3874}
3875
3876/// Returns true if \p V is VPWidenLoadRecipe or VPInterleaveRecipe that can be
3877/// converted to a narrower recipe. \p V is used by a wide recipe that feeds a
3878/// store interleave group at index \p Idx, \p WideMember0 is the recipe feeding
3879/// the same interleave group at index 0. A VPWidenLoadRecipe can be narrowed to
3880/// an index-independent load if it feeds all wide ops at all indices (\p OpV
3881/// must be the operand at index \p OpIdx for both the recipe at lane 0, \p
3882/// WideMember0). A VPInterleaveRecipe can be narrowed to a wide load, if \p V
3883/// is defined at \p Idx of a load interleave group.
3884static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx,
3885 VPValue *OpV, unsigned Idx) {
3886 auto *DefR = OpV->getDefiningRecipe();
3887 if (!DefR)
3888 return WideMember0->getOperand(OpIdx) == OpV;
3889 if (auto *W = dyn_cast<VPWidenLoadRecipe>(DefR))
3890 return !W->getMask() && WideMember0->getOperand(OpIdx) == OpV;
3891
3892 if (auto *IR = dyn_cast<VPInterleaveRecipe>(DefR))
3893 return IR->getInterleaveGroup()->isFull() && IR->getVPValue(Idx) == OpV;
3894 return false;
3895}
3896
3897/// Returns true if \p IR is a full interleave group with factor and number of
3898/// members both equal to \p VF. The interleave group must also access the full
3899/// vector width \p VectorRegWidth.
3901 unsigned VF, VPTypeAnalysis &TypeInfo,
3902 unsigned VectorRegWidth) {
3903 if (!InterleaveR)
3904 return false;
3905
3906 Type *GroupElementTy = nullptr;
3907 if (InterleaveR->getStoredValues().empty()) {
3908 GroupElementTy = TypeInfo.inferScalarType(InterleaveR->getVPValue(0));
3909 if (!all_of(InterleaveR->definedValues(),
3910 [&TypeInfo, GroupElementTy](VPValue *Op) {
3911 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3912 }))
3913 return false;
3914 } else {
3915 GroupElementTy =
3916 TypeInfo.inferScalarType(InterleaveR->getStoredValues()[0]);
3917 if (!all_of(InterleaveR->getStoredValues(),
3918 [&TypeInfo, GroupElementTy](VPValue *Op) {
3919 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3920 }))
3921 return false;
3922 }
3923
3924 unsigned GroupSize = GroupElementTy->getScalarSizeInBits() * VF;
3925 auto IG = InterleaveR->getInterleaveGroup();
3926 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3927 GroupSize == VectorRegWidth;
3928}
3929
3930/// Returns true if \p VPValue is a narrow VPValue.
3931static bool isAlreadyNarrow(VPValue *VPV) {
3932 if (VPV->isLiveIn())
3933 return true;
3934 auto *RepR = dyn_cast<VPReplicateRecipe>(VPV);
3935 return RepR && RepR->isSingleScalar();
3936}
3937
3939 unsigned VectorRegWidth) {
3940 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
3941 if (!VectorLoop)
3942 return;
3943
3944 VPTypeAnalysis TypeInfo(Plan);
3945
3946 unsigned VFMinVal = VF.getKnownMinValue();
3948 for (auto &R : *VectorLoop->getEntryBasicBlock()) {
3951 continue;
3952
3955 continue;
3956
3957 // Bail out on recipes not supported at the moment:
3958 // * phi recipes other than the canonical induction
3959 // * recipes writing to memory except interleave groups
3960 // Only support plans with a canonical induction phi.
3961 if (R.isPhi())
3962 return;
3963
3964 auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R);
3965 if (R.mayWriteToMemory() && !InterleaveR)
3966 return;
3967
3968 // Do not narrow interleave groups if there are VectorPointer recipes and
3969 // the plan was unrolled. The recipe implicitly uses VF from
3970 // VPTransformState.
3971 // TODO: Remove restriction once the VF for the VectorPointer offset is
3972 // modeled explicitly as operand.
3973 if (isa<VPVectorPointerRecipe>(&R) && Plan.getUF() > 1)
3974 return;
3975
3976 // All other ops are allowed, but we reject uses that cannot be converted
3977 // when checking all allowed consumers (store interleave groups) below.
3978 if (!InterleaveR)
3979 continue;
3980
3981 // Bail out on non-consecutive interleave groups.
3982 if (!isConsecutiveInterleaveGroup(InterleaveR, VFMinVal, TypeInfo,
3983 VectorRegWidth))
3984 return;
3985
3986 // Skip read interleave groups.
3987 if (InterleaveR->getStoredValues().empty())
3988 continue;
3989
3990 // Narrow interleave groups, if all operands are already matching narrow
3991 // ops.
3992 auto *Member0 = InterleaveR->getStoredValues()[0];
3993 if (isAlreadyNarrow(Member0) &&
3994 all_of(InterleaveR->getStoredValues(),
3995 [Member0](VPValue *VPV) { return Member0 == VPV; })) {
3996 StoreGroups.push_back(InterleaveR);
3997 continue;
3998 }
3999
4000 // For now, we only support full interleave groups storing load interleave
4001 // groups.
4002 if (all_of(enumerate(InterleaveR->getStoredValues()), [](auto Op) {
4003 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4004 if (!DefR)
4005 return false;
4006 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4007 return IR && IR->getInterleaveGroup()->isFull() &&
4008 IR->getVPValue(Op.index()) == Op.value();
4009 })) {
4010 StoreGroups.push_back(InterleaveR);
4011 continue;
4012 }
4013
4014 // Check if all values feeding InterleaveR are matching wide recipes, which
4015 // operands that can be narrowed.
4016 auto *WideMember0 = dyn_cast_or_null<VPWidenRecipe>(
4017 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4018 if (!WideMember0)
4019 return;
4020 for (const auto &[I, V] : enumerate(InterleaveR->getStoredValues())) {
4021 auto *R = dyn_cast_or_null<VPWidenRecipe>(V->getDefiningRecipe());
4022 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4023 R->getNumOperands() > 2)
4024 return;
4025 if (any_of(enumerate(R->operands()),
4026 [WideMember0, Idx = I](const auto &P) {
4027 const auto &[OpIdx, OpV] = P;
4028 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4029 }))
4030 return;
4031 }
4032 StoreGroups.push_back(InterleaveR);
4033 }
4034
4035 if (StoreGroups.empty())
4036 return;
4037
4038 // Convert InterleaveGroup \p R to a single VPWidenLoadRecipe.
4039 SmallPtrSet<VPValue *, 4> NarrowedOps;
4040 auto NarrowOp = [&NarrowedOps](VPValue *V) -> VPValue * {
4041 auto *R = V->getDefiningRecipe();
4042 if (!R || NarrowedOps.contains(V))
4043 return V;
4044 if (auto *LoadGroup = dyn_cast<VPInterleaveRecipe>(R)) {
4045 // Narrow interleave group to wide load, as transformed VPlan will only
4046 // process one original iteration.
4047 auto *L = new VPWidenLoadRecipe(
4048 *cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4049 LoadGroup->getAddr(), LoadGroup->getMask(), /*Consecutive=*/true,
4050 /*Reverse=*/false, {}, LoadGroup->getDebugLoc());
4051 L->insertBefore(LoadGroup);
4052 NarrowedOps.insert(L);
4053 return L;
4054 }
4055
4056 if (auto *RepR = dyn_cast<VPReplicateRecipe>(R)) {
4057 assert(RepR->isSingleScalar() &&
4058 isa<LoadInst>(RepR->getUnderlyingInstr()) &&
4059 "must be a single scalar load");
4060 NarrowedOps.insert(RepR);
4061 return RepR;
4062 }
4063 auto *WideLoad = cast<VPWidenLoadRecipe>(R);
4064
4065 VPValue *PtrOp = WideLoad->getAddr();
4066 if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(PtrOp))
4067 PtrOp = VecPtr->getOperand(0);
4068 // Narrow wide load to uniform scalar load, as transformed VPlan will only
4069 // process one original iteration.
4070 auto *N = new VPReplicateRecipe(&WideLoad->getIngredient(), {PtrOp},
4071 /*IsUniform*/ true,
4072 /*Mask*/ nullptr, *WideLoad);
4073 N->insertBefore(WideLoad);
4074 NarrowedOps.insert(N);
4075 return N;
4076 };
4077
4078 // Narrow operation tree rooted at store groups.
4079 for (auto *StoreGroup : StoreGroups) {
4080 VPValue *Res = nullptr;
4081 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4082 if (isAlreadyNarrow(Member0)) {
4083 Res = Member0;
4084 } else if (auto *WideMember0 =
4086 for (unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4087 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4088 Res = WideMember0;
4089 } else {
4090 Res = NarrowOp(Member0);
4091 }
4092
4093 auto *S = new VPWidenStoreRecipe(
4094 *cast<StoreInst>(StoreGroup->getInterleaveGroup()->getInsertPos()),
4095 StoreGroup->getAddr(), Res, nullptr, /*Consecutive=*/true,
4096 /*Reverse=*/false, {}, StoreGroup->getDebugLoc());
4097 S->insertBefore(StoreGroup);
4098 StoreGroup->eraseFromParent();
4099 }
4100
4101 // Adjust induction to reflect that the transformed plan only processes one
4102 // original iteration.
4103 auto *CanIV = Plan.getCanonicalIV();
4104 auto *Inc = cast<VPInstruction>(CanIV->getBackedgeValue());
4105 VPBuilder PHBuilder(Plan.getVectorPreheader());
4106
4107 VPValue *UF = Plan.getOrAddLiveIn(
4108 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.getUF()));
4109 if (VF.isScalable()) {
4110 VPValue *VScale = PHBuilder.createElementCount(
4111 CanIV->getScalarType(), ElementCount::getScalable(1));
4112 VPValue *VScaleUF = PHBuilder.createNaryOp(Instruction::Mul, {VScale, UF});
4113 Inc->setOperand(1, VScaleUF);
4114 Plan.getVF().replaceAllUsesWith(VScale);
4115 } else {
4116 Inc->setOperand(1, UF);
4118 Plan.getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4119 }
4120 removeDeadRecipes(Plan);
4121}
4122
4123/// Add branch weight metadata, if the \p Plan's middle block is terminated by a
4124/// BranchOnCond recipe.
4126 VPlan &Plan, ElementCount VF, std::optional<unsigned> VScaleForTuning) {
4127 VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock();
4128 auto *MiddleTerm =
4130 // Only add branch metadata if there is a (conditional) terminator.
4131 if (!MiddleTerm)
4132 return;
4133
4134 assert(MiddleTerm->getOpcode() == VPInstruction::BranchOnCond &&
4135 "must have a BranchOnCond");
4136 // Assume that `TripCount % VectorStep ` is equally distributed.
4137 unsigned VectorStep = Plan.getUF() * VF.getKnownMinValue();
4138 if (VF.isScalable() && VScaleForTuning.has_value())
4139 VectorStep *= *VScaleForTuning;
4140 assert(VectorStep > 0 && "trip count should not be zero");
4141 MDBuilder MDB(Plan.getContext());
4142 MDNode *BranchWeights =
4143 MDB.createBranchWeights({1, VectorStep - 1}, /*IsExpected=*/false);
4144 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
4145}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
@ Default
Hexagon Common GEP
iv Induction Variable Users
Definition IVUsers.cpp:48
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
licm
Definition LICM.cpp:381
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
static VPValue * optimizeLatchExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the exit block coming from the l...
static void removeCommonBlendMask(VPBlendRecipe *Blend)
Try to see if all of Blend's masks share a common value logically and'ed and remove it from the masks...
static void tryToCreateAbstractReductionRecipe(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries to create abstract recipes from the reduction recipe for following optimizations ...
static bool sinkScalarOperands(VPlan &Plan)
static bool simplifyBranchConditionForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Try to simplify the branch condition of Plan.
static Value * tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode, ArrayRef< VPValue * > Operands, const DataLayout &DL, VPTypeAnalysis &TypeInfo)
Try to fold R using InstSimplifyFolder.
static void removeRedundantInductionCasts(VPlan &Plan)
Remove redundant casts of inductions.
static bool tryToReplaceALMWithWideALM(VPlan &Plan, ElementCount VF, unsigned UF)
Try to replace multiple active lane masks used for control flow with a single, wide active lane mask ...
static VPExpressionRecipe * tryToMatchAndCreateExtendedReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static VPScalarIVStepsRecipe * createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, Instruction *TruncI, VPValue *StartV, VPValue *Step, DebugLoc DL, VPBuilder &Builder)
static bool sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Sink users of FOR after the recipe defining the previous value Previous of the recurrence.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan)
static VPActiveLaneMaskPHIRecipe * addVPLaneMaskPhiAndUpdateExitBranch(VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck)
static void expandVPWidenPointerInduction(VPWidenPointerInductionRecipe *R, VPTypeAnalysis &TypeInfo)
Expand a VPWidenPointerInductionRecipe into executable recipes, for the initial value,...
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL)
Replace recipes with their EVL variants.
static bool isDeadRecipe(VPRecipeBase &R)
Returns true if R is dead and can be removed.
static void legalizeAndOptimizeInductions(VPlan &Plan)
Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd (IndStart, ScalarIVSteps (0,...
static void addReplicateRegions(VPlan &Plan)
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo)
Try to simplify recipe R.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan)
Remove redundant EpxandSCEVRecipes in Plan's entry block by replacing them with already existing reci...
static bool isConditionTrueViaVFAndUF(VPValue *Cond, VPlan &Plan, ElementCount BestVF, unsigned BestUF, ScalarEvolution &SE)
Return true if Cond is known to be true for given BestVF and BestUF.
static bool isConsecutiveInterleaveGroup(VPInterleaveRecipe *InterleaveR, unsigned VF, VPTypeAnalysis &TypeInfo, unsigned VectorRegWidth)
Returns true if IR is a full interleave group with factor and number of members both equal to VF.
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Try to hoist Previous and its operands before all users of FOR.
static SmallVector< VPUser * > collectUsersRecursively(VPValue *V)
static void recursivelyDeleteDeadRecipes(VPValue *V)
static VPValue * optimizeEarlyExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, ScalarEvolution &SE)
Attempts to optimize the induction variable exit values for users in the early exit block.
cl::opt< bool > EnableWideActiveLaneMask("enable-wide-lane-mask", cl::init(false), cl::Hidden, cl::desc("Enable use of wide get active lane mask instructions"))
static VPWidenInductionRecipe * getOptimizableIVOf(VPValue *VPV, ScalarEvolution &SE)
Check if VPV is an untruncated wide induction, either before or after the increment.
static VPRegionBlock * createReplicateRegion(VPReplicateRecipe *PredRecipe, VPlan &Plan)
static VPBasicBlock * getPredicatedThenBlock(VPRegionBlock *R)
If R is a triangle region, return the 'then' block of the triangle.
static void simplifyBlends(VPlan &Plan)
Normalize and simplify VPBlendRecipes.
static bool isAlreadyNarrow(VPValue *VPV)
Returns true if VPValue is a narrow VPValue.
static bool optimizeVectorInductionWidthForTCAndVFUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF)
Optimize the width of vector induction variables in Plan based on a known constant Trip Count,...
VPValue * getPredicatedMask(VPRegionBlock *R)
If R is a region with a VPBranchOnMaskRecipe in the entry block, return the mask.
static VPExpressionRecipe * tryToMatchAndCreateMulAccumulateReduction(VPReductionRecipe *Red, VPCostContext &Ctx, VFRange &Range)
This function tries convert extended in-loop reductions to VPExpressionRecipe and clamp the Range if ...
static void expandVPWidenIntOrFpInduction(VPWidenIntOrFpInductionRecipe *WidenIVR, VPTypeAnalysis &TypeInfo)
Expand a VPWidenIntOrFpInduction into executable recipes, for the initial value, phi and backedge val...
static VPSingleDefRecipe * findHeaderMask(VPlan &Plan)
Collect the header mask with the pattern: (ICMP_ULE, WideCanonicalIV, backedge-taken-count) TODO: Int...
static VPRecipeBase * optimizeMaskToEVL(VPValue *HeaderMask, VPRecipeBase &CurRecipe, VPTypeAnalysis &TypeInfo, VPValue &AllOneMask, VPValue &EVL)
Try to optimize a CurRecipe masked by HeaderMask to a corresponding EVL-based recipe without the head...
static void removeRedundantCanonicalIVs(VPlan &Plan)
Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV recipe, if it exists.
static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx, VPValue *OpV, unsigned Idx)
Returns true if V is VPWidenLoadRecipe or VPInterleaveRecipe that can be converted to a narrower reci...
static void narrowToSingleScalarRecipes(VPlan &Plan)
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
BinaryOperator * Mul
static const uint32_t IV[8]
Definition blake3_impl.h:83
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getCompilerGenerated()
Definition DebugLoc.h:163
static DebugLoc getUnknown()
Definition DebugLoc.h:162
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1564
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
Definition MDBuilder.cpp:38
Metadata node.
Definition Metadata.h:1077
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
ValueT lookup(const KeyT &Key) const
Definition MapVector.h:99
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
RegionT * getParent() const
Get the parent of the Region.
Definition RegionInfo.h:362
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
iterator begin() const
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
op_range operands()
Definition User.h:292
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3464
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3751
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3826
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3778
iterator end()
Definition VPlan.h:3788
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3786
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3839
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition VPlan.cpp:591
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:664
const VPRecipeBase & back() const
Definition VPlan.h:3800
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2390
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
Definition VPlan.h:2424
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2414
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
Definition VPlan.h:2430
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
Definition VPlan.h:2410
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleHierarchicalPredecessor()
Definition VPlan.h:264
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:217
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:238
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition VPlanUtils.h:157
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:176
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:195
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:2921
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3407
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:3434
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:422
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:417
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:395
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:407
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3495
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
Definition VPlan.h:2966
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1964
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2012
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2001
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3904
BasicBlock * getIRBasicBlock() const
Definition VPlan.h:3928
Class to record and manage LLVM IR flags.
Definition VPlan.h:600
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
Helper to manage IR metadata for recipes.
Definition VPlan.h:940
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:981
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1058
@ FirstOrderRecurrenceSplice
Definition VPlan.h:987
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1011
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1008
@ CanonicalIVIncrementForPart
Definition VPlan.h:1001
@ CalculateTripCountMinusVF
Definition VPlan.h:999
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2531
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2552
A recipe for interleaved memory operations with vector-predication intrinsics.
Definition VPlan.h:2604
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2563
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3078
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
Definition VPlan.h:477
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
Definition VPlan.h:2799
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
Definition VPlan.h:2653
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3939
const VPBlockBase * getEntry() const
Definition VPlan.h:3975
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
Definition VPlan.h:3992
const VPBlockBase * getExiting() const
Definition VPlan.h:3987
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition VPlan.h:4000
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2843
bool isSingleScalar() const
Definition VPlan.h:2888
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
Definition VPlan.h:2912
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3641
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:197
operand_range operands()
Definition VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:241
operand_iterator op_end()
Definition VPlanValue.h:263
operand_iterator op_begin()
Definition VPlanValue.h:261
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:236
void addOperand(VPValue *Operand)
Definition VPlanValue.h:230
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:174
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void setUnderlyingValue(Value *Val)
Definition VPlanValue.h:184
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1400
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:169
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1404
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1830
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
Definition VPlan.h:1874
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3536
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1480
A recipe for handling GEP instructions.
Definition VPlan.h:1766
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2029
PHINode * getPHINode() const
Definition VPlan.h:2071
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2057
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2074
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2104
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
Definition VPlan.h:2185
A recipe for widening vector intrinsics.
Definition VPlan.h:1537
A common base class for widening memory operations.
Definition VPlan.h:3120
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3182
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3175
A recipe for widened phis.
Definition VPlan.h:2240
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1437
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4042
bool hasVF(ElementCount VF) const
Definition VPlan.h:4251
LLVMContext & getContext() const
Definition VPlan.h:4239
VPBasicBlock * getEntry()
Definition VPlan.h:4141
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition VPlan.h:4382
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4231
bool hasScalableVF() const
Definition VPlan.h:4252
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4237
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4234
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4203
VPValue * getTrue()
Return a VPValue wrapping i1 true.
Definition VPlan.h:4308
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
Definition VPlan.h:4224
unsigned getUF() const
Definition VPlan.h:4271
bool hasUF(unsigned UF) const
Definition VPlan.h:4269
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4193
void setVF(ElementCount VF)
Definition VPlan.h:4245
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
Definition VPlan.h:4284
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1034
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4217
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4166
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition VPlan.h:4372
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4293
bool hasScalarVFOnly() const
Definition VPlan.h:4262
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4184
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition VPlan.h:4323
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4347
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4189
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
Definition VPlan.h:4320
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4146
void setUF(unsigned UF)
Definition VPlan.h:4276
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
Definition VPlan.h:4424
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
IteratorT end() const
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
Definition APInt.cpp:2763
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:310
@ Offset
Definition DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1707
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2454
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2118
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:626
auto cast_or_null(const Y &Val)
Definition Casting.h:720
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1160
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
auto reverse(ContainerTy &&C)
Definition STLExtras.h:400
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
Definition VPlanCFG.h:236
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1632
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:317
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition STLExtras.h:1936
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1943
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1740
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:591
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2070
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:465
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2283
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
Definition VPlan.h:3242
A recipe for widening load operations, using the address to load from and an optional mask.
Definition VPlan.h:3202
A recipe for widening select instructions.
Definition VPlan.h:1720
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
Definition VPlan.h:3324
A recipe for widening store operations, using the stored value, the address to store to and an option...
Definition VPlan.h:3282
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createAndOptimizeReplicateRegions(VPlan &Plan)
Wrap predicated VPReplicateRecipes with a mask operand in an if-then region block and remove the mask...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void handleUncountableEarlyExit(VPBasicBlock *EarlyExitingVPBB, VPBasicBlock *EarlyExitVPBB, VPlan &Plan, VPBasicBlock *HeaderVPBB, VPBasicBlock *LatchVPBB)
Update Plan to account for the uncountable early exit from EarlyExitingVPBB to EarlyExitVPBB by.
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.