51#define DEBUG_TYPE "x86-instr-info"
53#define GET_INSTRINFO_CTOR_DTOR
54#include "X86GenInstrInfo.inc"
60 cl::desc(
"Disable fusing of spill code into instructions"),
64 cl::desc(
"Print instructions that the allocator wants to"
65 " fuse, but the X86 backend currently can't"),
69 cl::desc(
"Re-materialize load from stub in PIC mode"),
73 cl::desc(
"Clearance between two register writes "
74 "for inserting XOR to avoid partial "
78 "undef-reg-clearance",
79 cl::desc(
"How many idle instructions we would like before "
80 "certain undef register reads"),
84void X86InstrInfo::anchor() {}
88 : X86::ADJCALLSTACKDOWN32),
89 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
90 : X86::ADJCALLSTACKUP32),
91 X86::CATCHRET, (STI.
is64Bit() ? X86::RET64 : X86::RET32)),
92 Subtarget(STI), RI(STI.getTargetTriple()) {}
101 if (!RC || !Subtarget.hasEGPR())
113 unsigned &SubIdx)
const {
114 switch (
MI.getOpcode()) {
117 case X86::MOVSX16rr8:
118 case X86::MOVZX16rr8:
119 case X86::MOVSX32rr8:
120 case X86::MOVZX32rr8:
121 case X86::MOVSX64rr8:
122 if (!Subtarget.is64Bit())
127 case X86::MOVSX32rr16:
128 case X86::MOVZX32rr16:
129 case X86::MOVSX64rr16:
130 case X86::MOVSX64rr32: {
131 if (
MI.getOperand(0).getSubReg() ||
MI.getOperand(1).getSubReg())
134 SrcReg =
MI.getOperand(1).getReg();
135 DstReg =
MI.getOperand(0).getReg();
136 switch (
MI.getOpcode()) {
139 case X86::MOVSX16rr8:
140 case X86::MOVZX16rr8:
141 case X86::MOVSX32rr8:
142 case X86::MOVZX32rr8:
143 case X86::MOVSX64rr8:
144 SubIdx = X86::sub_8bit;
146 case X86::MOVSX32rr16:
147 case X86::MOVZX32rr16:
148 case X86::MOVSX64rr16:
149 SubIdx = X86::sub_16bit;
151 case X86::MOVSX64rr32:
152 SubIdx = X86::sub_32bit;
162 if (
MI.mayLoad() ||
MI.mayStore())
167 if (
MI.isCopyLike() ||
MI.isInsertSubreg())
170 unsigned Opcode =
MI.getOpcode();
181 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
187 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
188 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
189 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
194 if (isBEXTR(Opcode) || isBZHI(Opcode))
197 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
198 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
201 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
202 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
208 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
216 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
219 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
229 switch (
MI.getOpcode()) {
242 case X86::IMUL64rmi32:
257 case X86::POPCNT16rm:
258 case X86::POPCNT32rm:
259 case X86::POPCNT64rm:
267 case X86::BLCFILL32rm:
268 case X86::BLCFILL64rm:
273 case X86::BLCMSK32rm:
274 case X86::BLCMSK64rm:
277 case X86::BLSFILL32rm:
278 case X86::BLSFILL64rm:
283 case X86::BLSMSK32rm:
284 case X86::BLSMSK64rm:
294 case X86::BEXTRI32mi:
295 case X86::BEXTRI64mi:
348 case X86::CVTTSD2SI64rm:
349 case X86::VCVTTSD2SI64rm:
350 case X86::VCVTTSD2SI64Zrm:
351 case X86::CVTTSD2SIrm:
352 case X86::VCVTTSD2SIrm:
353 case X86::VCVTTSD2SIZrm:
354 case X86::CVTTSS2SI64rm:
355 case X86::VCVTTSS2SI64rm:
356 case X86::VCVTTSS2SI64Zrm:
357 case X86::CVTTSS2SIrm:
358 case X86::VCVTTSS2SIrm:
359 case X86::VCVTTSS2SIZrm:
360 case X86::CVTSI2SDrm:
361 case X86::VCVTSI2SDrm:
362 case X86::VCVTSI2SDZrm:
363 case X86::CVTSI2SSrm:
364 case X86::VCVTSI2SSrm:
365 case X86::VCVTSI2SSZrm:
366 case X86::CVTSI642SDrm:
367 case X86::VCVTSI642SDrm:
368 case X86::VCVTSI642SDZrm:
369 case X86::CVTSI642SSrm:
370 case X86::VCVTSI642SSrm:
371 case X86::VCVTSI642SSZrm:
372 case X86::CVTSS2SDrm:
373 case X86::VCVTSS2SDrm:
374 case X86::VCVTSS2SDZrm:
375 case X86::CVTSD2SSrm:
376 case X86::VCVTSD2SSrm:
377 case X86::VCVTSD2SSZrm:
379 case X86::VCVTTSD2USI64Zrm:
380 case X86::VCVTTSD2USIZrm:
381 case X86::VCVTTSS2USI64Zrm:
382 case X86::VCVTTSS2USIZrm:
383 case X86::VCVTUSI2SDZrm:
384 case X86::VCVTUSI642SDZrm:
385 case X86::VCVTUSI2SSZrm:
386 case X86::VCVTUSI642SSZrm:
390 case X86::MOV8rm_NOREX:
394 case X86::MOVSX16rm8:
395 case X86::MOVSX32rm16:
396 case X86::MOVSX32rm8:
397 case X86::MOVSX32rm8_NOREX:
398 case X86::MOVSX64rm16:
399 case X86::MOVSX64rm32:
400 case X86::MOVSX64rm8:
401 case X86::MOVZX16rm8:
402 case X86::MOVZX32rm16:
403 case X86::MOVZX32rm8:
404 case X86::MOVZX32rm8_NOREX:
405 case X86::MOVZX64rm16:
406 case X86::MOVZX64rm8:
415 if (isFrameInstr(
MI)) {
418 if (!isFrameSetup(
MI))
429 for (
auto E =
MBB->
end();
I != E; ++
I) {
430 if (
I->getOpcode() == getCallFrameDestroyOpcode() ||
I->isCall())
436 if (
I->getOpcode() != getCallFrameDestroyOpcode())
439 return -(
I->getOperand(1).getImm());
444 switch (
MI.getOpcode()) {
463 int &FrameIndex)
const {
483 case X86::KMOVBkm_EVEX:
488 case X86::KMOVWkm_EVEX:
490 case X86::VMOVSHZrm_alt:
495 case X86::MOVSSrm_alt:
497 case X86::VMOVSSrm_alt:
499 case X86::VMOVSSZrm_alt:
501 case X86::KMOVDkm_EVEX:
507 case X86::MOVSDrm_alt:
509 case X86::VMOVSDrm_alt:
511 case X86::VMOVSDZrm_alt:
512 case X86::MMX_MOVD64rm:
513 case X86::MMX_MOVQ64rm:
515 case X86::KMOVQkm_EVEX:
530 case X86::VMOVAPSZ128rm:
531 case X86::VMOVUPSZ128rm:
532 case X86::VMOVAPSZ128rm_NOVLX:
533 case X86::VMOVUPSZ128rm_NOVLX:
534 case X86::VMOVAPDZ128rm:
535 case X86::VMOVUPDZ128rm:
536 case X86::VMOVDQU8Z128rm:
537 case X86::VMOVDQU16Z128rm:
538 case X86::VMOVDQA32Z128rm:
539 case X86::VMOVDQU32Z128rm:
540 case X86::VMOVDQA64Z128rm:
541 case X86::VMOVDQU64Z128rm:
544 case X86::VMOVAPSYrm:
545 case X86::VMOVUPSYrm:
546 case X86::VMOVAPDYrm:
547 case X86::VMOVUPDYrm:
548 case X86::VMOVDQAYrm:
549 case X86::VMOVDQUYrm:
550 case X86::VMOVAPSZ256rm:
551 case X86::VMOVUPSZ256rm:
552 case X86::VMOVAPSZ256rm_NOVLX:
553 case X86::VMOVUPSZ256rm_NOVLX:
554 case X86::VMOVAPDZ256rm:
555 case X86::VMOVUPDZ256rm:
556 case X86::VMOVDQU8Z256rm:
557 case X86::VMOVDQU16Z256rm:
558 case X86::VMOVDQA32Z256rm:
559 case X86::VMOVDQU32Z256rm:
560 case X86::VMOVDQA64Z256rm:
561 case X86::VMOVDQU64Z256rm:
564 case X86::VMOVAPSZrm:
565 case X86::VMOVUPSZrm:
566 case X86::VMOVAPDZrm:
567 case X86::VMOVUPDZrm:
568 case X86::VMOVDQU8Zrm:
569 case X86::VMOVDQU16Zrm:
570 case X86::VMOVDQA32Zrm:
571 case X86::VMOVDQU32Zrm:
572 case X86::VMOVDQA64Zrm:
573 case X86::VMOVDQU64Zrm:
585 case X86::KMOVBmk_EVEX:
590 case X86::KMOVWmk_EVEX:
599 case X86::KMOVDmk_EVEX:
607 case X86::MMX_MOVD64mr:
608 case X86::MMX_MOVQ64mr:
609 case X86::MMX_MOVNTQmr:
611 case X86::KMOVQmk_EVEX:
626 case X86::VMOVUPSZ128mr:
627 case X86::VMOVAPSZ128mr:
628 case X86::VMOVUPSZ128mr_NOVLX:
629 case X86::VMOVAPSZ128mr_NOVLX:
630 case X86::VMOVUPDZ128mr:
631 case X86::VMOVAPDZ128mr:
632 case X86::VMOVDQA32Z128mr:
633 case X86::VMOVDQU32Z128mr:
634 case X86::VMOVDQA64Z128mr:
635 case X86::VMOVDQU64Z128mr:
636 case X86::VMOVDQU8Z128mr:
637 case X86::VMOVDQU16Z128mr:
640 case X86::VMOVUPSYmr:
641 case X86::VMOVAPSYmr:
642 case X86::VMOVUPDYmr:
643 case X86::VMOVAPDYmr:
644 case X86::VMOVDQUYmr:
645 case X86::VMOVDQAYmr:
646 case X86::VMOVUPSZ256mr:
647 case X86::VMOVAPSZ256mr:
648 case X86::VMOVUPSZ256mr_NOVLX:
649 case X86::VMOVAPSZ256mr_NOVLX:
650 case X86::VMOVUPDZ256mr:
651 case X86::VMOVAPDZ256mr:
652 case X86::VMOVDQU8Z256mr:
653 case X86::VMOVDQU16Z256mr:
654 case X86::VMOVDQA32Z256mr:
655 case X86::VMOVDQU32Z256mr:
656 case X86::VMOVDQA64Z256mr:
657 case X86::VMOVDQU64Z256mr:
660 case X86::VMOVUPSZmr:
661 case X86::VMOVAPSZmr:
662 case X86::VMOVUPDZmr:
663 case X86::VMOVAPDZmr:
664 case X86::VMOVDQU8Zmr:
665 case X86::VMOVDQU16Zmr:
666 case X86::VMOVDQA32Zmr:
667 case X86::VMOVDQU32Zmr:
668 case X86::VMOVDQA64Zmr:
669 case X86::VMOVDQU64Zmr:
677 int &FrameIndex)
const {
686 if (
MI.getOperand(0).getSubReg() == 0 && isFrameOperand(
MI, 1, FrameIndex))
687 return MI.getOperand(0).getReg();
692 int &FrameIndex)
const {
701 cast<FixedStackPseudoSourceValue>(
Accesses.front()->getPseudoValue())
703 return MI.getOperand(0).getReg();
710 int &FrameIndex)
const {
720 isFrameOperand(
MI, 0, FrameIndex))
726 int &FrameIndex)
const {
735 cast<FixedStackPseudoSourceValue>(
Accesses.front()->getPseudoValue())
746 if (!BaseReg.isVirtual())
748 bool isPICBase =
false;
750 if (
DefMI.getOpcode() != X86::MOVPC32r)
752 assert(!isPICBase &&
"More than one PIC base?");
760 switch (
MI.getOpcode()) {
766 case X86::IMPLICIT_DEF:
769 case X86::LOAD_STACK_GUARD:
776 case X86::AVX1_SETALLONES:
777 case X86::AVX2_SETALLONES:
778 case X86::AVX512_128_SET0:
779 case X86::AVX512_256_SET0:
780 case X86::AVX512_512_SET0:
781 case X86::AVX512_512_SETALLONES:
782 case X86::AVX512_FsFLD0SD:
783 case X86::AVX512_FsFLD0SH:
784 case X86::AVX512_FsFLD0SS:
785 case X86::AVX512_FsFLD0F128:
790 case X86::FsFLD0F128:
798 case X86::MOV32ImmSExti8:
803 case X86::MOV64ImmSExti8:
805 case X86::V_SETALLONES:
811 case X86::PTILEZEROV:
815 case X86::MOV8rm_NOREX:
820 case X86::MOVSSrm_alt:
822 case X86::MOVSDrm_alt:
830 case X86::VMOVSSrm_alt:
832 case X86::VMOVSDrm_alt:
839 case X86::VMOVAPSYrm:
840 case X86::VMOVUPSYrm:
841 case X86::VMOVAPDYrm:
842 case X86::VMOVUPDYrm:
843 case X86::VMOVDQAYrm:
844 case X86::VMOVDQUYrm:
845 case X86::MMX_MOVD64rm:
846 case X86::MMX_MOVQ64rm:
847 case X86::VBROADCASTSSrm:
848 case X86::VBROADCASTSSYrm:
849 case X86::VBROADCASTSDYrm:
851 case X86::VPBROADCASTBZ128rm:
852 case X86::VPBROADCASTBZ256rm:
853 case X86::VPBROADCASTBZrm:
854 case X86::VBROADCASTF32X2Z256rm:
855 case X86::VBROADCASTF32X2Zrm:
856 case X86::VBROADCASTI32X2Z128rm:
857 case X86::VBROADCASTI32X2Z256rm:
858 case X86::VBROADCASTI32X2Zrm:
859 case X86::VPBROADCASTWZ128rm:
860 case X86::VPBROADCASTWZ256rm:
861 case X86::VPBROADCASTWZrm:
862 case X86::VPBROADCASTDZ128rm:
863 case X86::VPBROADCASTDZ256rm:
864 case X86::VPBROADCASTDZrm:
865 case X86::VBROADCASTSSZ128rm:
866 case X86::VBROADCASTSSZ256rm:
867 case X86::VBROADCASTSSZrm:
868 case X86::VPBROADCASTQZ128rm:
869 case X86::VPBROADCASTQZ256rm:
870 case X86::VPBROADCASTQZrm:
871 case X86::VBROADCASTSDZ256rm:
872 case X86::VBROADCASTSDZrm:
874 case X86::VMOVSSZrm_alt:
876 case X86::VMOVSDZrm_alt:
878 case X86::VMOVSHZrm_alt:
879 case X86::VMOVAPDZ128rm:
880 case X86::VMOVAPDZ256rm:
881 case X86::VMOVAPDZrm:
882 case X86::VMOVAPSZ128rm:
883 case X86::VMOVAPSZ256rm:
884 case X86::VMOVAPSZ128rm_NOVLX:
885 case X86::VMOVAPSZ256rm_NOVLX:
886 case X86::VMOVAPSZrm:
887 case X86::VMOVDQA32Z128rm:
888 case X86::VMOVDQA32Z256rm:
889 case X86::VMOVDQA32Zrm:
890 case X86::VMOVDQA64Z128rm:
891 case X86::VMOVDQA64Z256rm:
892 case X86::VMOVDQA64Zrm:
893 case X86::VMOVDQU16Z128rm:
894 case X86::VMOVDQU16Z256rm:
895 case X86::VMOVDQU16Zrm:
896 case X86::VMOVDQU32Z128rm:
897 case X86::VMOVDQU32Z256rm:
898 case X86::VMOVDQU32Zrm:
899 case X86::VMOVDQU64Z128rm:
900 case X86::VMOVDQU64Z256rm:
901 case X86::VMOVDQU64Zrm:
902 case X86::VMOVDQU8Z128rm:
903 case X86::VMOVDQU8Z256rm:
904 case X86::VMOVDQU8Zrm:
905 case X86::VMOVUPDZ128rm:
906 case X86::VMOVUPDZ256rm:
907 case X86::VMOVUPDZrm:
908 case X86::VMOVUPSZ128rm:
909 case X86::VMOVUPSZ256rm:
910 case X86::VMOVUPSZ128rm_NOVLX:
911 case X86::VMOVUPSZ256rm_NOVLX:
912 case X86::VMOVUPSZrm: {
918 MI.isDereferenceableInvariantLoad()) {
920 if (BaseReg == 0 || BaseReg == X86::RIP)
998 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
1008 unsigned ShiftAmtOperandIdx) {
1010 unsigned ShiftCountMask = (
MI.getDesc().TSFlags &
X86II::REX_W) ? 63 : 31;
1011 unsigned Imm =
MI.getOperand(ShiftAmtOperandIdx).getImm();
1012 return Imm & ShiftCountMask;
1023 return ShAmt < 4 && ShAmt > 0;
1030 bool &NoSignFlag,
bool &ClearsOverflowFlag) {
1031 if (!(CmpValDefInstr.
getOpcode() == X86::SUBREG_TO_REG &&
1032 CmpInstr.
getOpcode() == X86::TEST64rr) &&
1033 !(CmpValDefInstr.
getOpcode() == X86::COPY &&
1041 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1042 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1051 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1052 "is a user of COPY sub16bit.");
1054 if (CmpInstr.
getOpcode() == X86::TEST16rr) {
1063 if (!((VregDefInstr->
getOpcode() == X86::AND32ri ||
1064 VregDefInstr->
getOpcode() == X86::AND64ri32) &&
1069 if (CmpInstr.
getOpcode() == X86::TEST64rr) {
1083 assert(VregDefInstr &&
"Must have a definition (SSA)");
1093 if (X86::isAND(VregDefInstr->
getOpcode()) &&
1114 if (Instr.modifiesRegister(X86::EFLAGS,
TRI))
1118 *AndInstr = VregDefInstr;
1139 ClearsOverflowFlag =
true;
1147 unsigned &NewSrcSubReg,
bool &isKill,
1153 RC =
Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1155 RC =
Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1158 unsigned SubReg = Src.getSubReg();
1159 isKill =
MI.killsRegister(SrcReg,
nullptr);
1161 NewSrcSubReg = X86::NoSubRegister;
1165 if (
Opc != X86::LEA64_32r) {
1168 assert(!Src.isUndef() &&
"Undef op doesn't need optimization");
1185 assert(!Src.isUndef() &&
"Undef op doesn't need optimization");
1190 NewSrcSubReg = X86::NoSubRegister;
1216MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
unsigned MIOpc,
1220 bool Is8BitOp)
const {
1227 "Unexpected type for LEA transform");
1236 if (!Subtarget.is64Bit())
1239 unsigned Opcode = X86::LEA64_32r;
1254 unsigned SrcSubReg =
MI.getOperand(1).getSubReg();
1256 unsigned Src2SubReg;
1257 bool IsDead =
MI.getOperand(0).isDead();
1258 bool IsKill =
MI.getOperand(1).isKill();
1259 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1260 assert(!
MI.getOperand(1).isUndef() &&
"Undef op doesn't need optimization");
1272#define CASE_NF(OP) \
1280 unsigned ShAmt =
MI.getOperand(2).getImm();
1298 case X86::ADD8ri_DB:
1299 case X86::ADD16ri_DB:
1304 case X86::ADD8rr_DB:
1305 case X86::ADD16rr_DB: {
1306 Src2 =
MI.getOperand(2).getReg();
1307 Src2SubReg =
MI.getOperand(2).getSubReg();
1308 bool IsKill2 =
MI.getOperand(2).isKill();
1309 assert(!
MI.getOperand(2).isUndef() &&
"Undef op doesn't need optimization");
1313 addRegReg(MIB, InRegLEA,
true, X86::NoSubRegister, InRegLEA,
false,
1314 X86::NoSubRegister);
1316 if (Subtarget.is64Bit())
1317 InRegLEA2 =
RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1319 InRegLEA2 =
RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1322 ImpDef2 =
BuildMI(
MBB, &*MIB,
MI.getDebugLoc(),
get(X86::IMPLICIT_DEF),
1324 InsMI2 =
BuildMI(
MBB, &*MIB,
MI.getDebugLoc(),
get(TargetOpcode::COPY))
1327 addRegReg(MIB, InRegLEA,
true, X86::NoSubRegister, InRegLEA2,
true,
1328 X86::NoSubRegister);
1330 if (LV && IsKill2 && InsMI2)
1426 if (
MI.getNumOperands() > 2)
1427 if (
MI.getOperand(2).isReg() &&
MI.getOperand(2).isUndef())
1432 unsigned SrcSubReg, SrcSubReg2;
1433 bool Is64Bit = Subtarget.is64Bit();
1435 bool Is8BitOp =
false;
1436 unsigned NumRegOperands = 2;
1437 unsigned MIOpc =
MI.getOpcode();
1442 assert(
MI.getNumOperands() >= 3 &&
"Unknown shift instruction!");
1449 Src.getReg(), &X86::GR64_NOSPRegClass))
1452 NewMI =
BuildMI(MF,
MI.getDebugLoc(),
get(X86::LEA64r))
1462 assert(
MI.getNumOperands() >= 3 &&
"Unknown shift instruction!");
1467 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1473 isKill, ImplicitOp, LV, LIS))
1484 if (ImplicitOp.
getReg() != 0)
1485 MIB.
add(ImplicitOp);
1489 if (LV && SrcReg != Src.getReg())
1497 assert(
MI.getNumOperands() >= 3 &&
"Unknown shift instruction!");
1501 return convertToThreeAddressWithLEA(MIOpc,
MI, LV, LIS, Is8BitOp);
1505 assert(
MI.getNumOperands() >= 2 &&
"Unknown inc instruction!");
1506 unsigned Opc = (MIOpc == X86::INC64r || MIOpc == X86::INC64r_NF)
1508 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1512 isKill, ImplicitOp, LV, LIS))
1518 if (ImplicitOp.
getReg() != 0)
1519 MIB.
add(ImplicitOp);
1524 if (LV && SrcReg != Src.getReg())
1530 assert(
MI.getNumOperands() >= 2 &&
"Unknown dec instruction!");
1531 unsigned Opc = (MIOpc == X86::DEC64r || MIOpc == X86::DEC64r_NF)
1533 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1538 isKill, ImplicitOp, LV, LIS))
1544 if (ImplicitOp.
getReg() != 0)
1545 MIB.
add(ImplicitOp);
1550 if (LV && SrcReg != Src.getReg())
1560 return convertToThreeAddressWithLEA(MIOpc,
MI, LV, LIS, Is8BitOp);
1563 case X86::ADD64rr_DB:
1564 case X86::ADD32rr_DB: {
1565 assert(
MI.getNumOperands() >= 3 &&
"Unknown add instruction!");
1567 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_NF ||
1568 MIOpc == X86::ADD64rr_DB)
1571 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1577 isKill2, ImplicitOp2, LV, LIS))
1582 if (Src.getReg() == Src2.
getReg()) {
1587 SrcSubReg = SrcSubReg2;
1590 isKill, ImplicitOp, LV, LIS))
1595 if (ImplicitOp.
getReg() != 0)
1596 MIB.
add(ImplicitOp);
1597 if (ImplicitOp2.
getReg() != 0)
1598 MIB.
add(ImplicitOp2);
1601 addRegReg(MIB, SrcReg, isKill, SrcSubReg, SrcReg2, isKill2, SrcSubReg2);
1605 if (SrcReg2 != Src2.
getReg())
1607 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1614 case X86::ADD8rr_DB:
1618 case X86::ADD16rr_DB:
1619 return convertToThreeAddressWithLEA(MIOpc,
MI, LV, LIS, Is8BitOp);
1621 case X86::ADD64ri32_DB:
1622 assert(
MI.getNumOperands() >= 3 &&
"Unknown add instruction!");
1624 BuildMI(MF,
MI.getDebugLoc(),
get(X86::LEA64r)).add(Dest).add(Src),
1628 case X86::ADD32ri_DB: {
1629 assert(
MI.getNumOperands() >= 3 &&
"Unknown add instruction!");
1630 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1635 isKill, ImplicitOp, LV, LIS))
1642 if (ImplicitOp.
getReg() != 0)
1643 MIB.
add(ImplicitOp);
1648 if (LV && SrcReg != Src.getReg())
1653 case X86::ADD8ri_DB:
1657 case X86::ADD16ri_DB:
1658 return convertToThreeAddressWithLEA(MIOpc,
MI, LV, LIS, Is8BitOp);
1664 if (!
MI.getOperand(2).isImm())
1666 int64_t Imm =
MI.getOperand(2).getImm();
1667 if (!isInt<32>(-Imm))
1670 assert(
MI.getNumOperands() >= 3 &&
"Unknown add instruction!");
1671 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1676 isKill, ImplicitOp, LV, LIS))
1683 if (ImplicitOp.
getReg() != 0)
1684 MIB.
add(ImplicitOp);
1689 if (LV && SrcReg != Src.getReg())
1695 if (!
MI.getOperand(2).isImm())
1697 int64_t Imm =
MI.getOperand(2).getImm();
1698 if (!isInt<32>(-Imm))
1701 assert(
MI.getNumOperands() >= 3 &&
"Unknown sub instruction!");
1709 case X86::VMOVDQU8Z128rmk:
1710 case X86::VMOVDQU8Z256rmk:
1711 case X86::VMOVDQU8Zrmk:
1712 case X86::VMOVDQU16Z128rmk:
1713 case X86::VMOVDQU16Z256rmk:
1714 case X86::VMOVDQU16Zrmk:
1715 case X86::VMOVDQU32Z128rmk:
1716 case X86::VMOVDQA32Z128rmk:
1717 case X86::VMOVDQU32Z256rmk:
1718 case X86::VMOVDQA32Z256rmk:
1719 case X86::VMOVDQU32Zrmk:
1720 case X86::VMOVDQA32Zrmk:
1721 case X86::VMOVDQU64Z128rmk:
1722 case X86::VMOVDQA64Z128rmk:
1723 case X86::VMOVDQU64Z256rmk:
1724 case X86::VMOVDQA64Z256rmk:
1725 case X86::VMOVDQU64Zrmk:
1726 case X86::VMOVDQA64Zrmk:
1727 case X86::VMOVUPDZ128rmk:
1728 case X86::VMOVAPDZ128rmk:
1729 case X86::VMOVUPDZ256rmk:
1730 case X86::VMOVAPDZ256rmk:
1731 case X86::VMOVUPDZrmk:
1732 case X86::VMOVAPDZrmk:
1733 case X86::VMOVUPSZ128rmk:
1734 case X86::VMOVAPSZ128rmk:
1735 case X86::VMOVUPSZ256rmk:
1736 case X86::VMOVAPSZ256rmk:
1737 case X86::VMOVUPSZrmk:
1738 case X86::VMOVAPSZrmk:
1739 case X86::VBROADCASTSDZ256rmk:
1740 case X86::VBROADCASTSDZrmk:
1741 case X86::VBROADCASTSSZ128rmk:
1742 case X86::VBROADCASTSSZ256rmk:
1743 case X86::VBROADCASTSSZrmk:
1744 case X86::VPBROADCASTDZ128rmk:
1745 case X86::VPBROADCASTDZ256rmk:
1746 case X86::VPBROADCASTDZrmk:
1747 case X86::VPBROADCASTQZ128rmk:
1748 case X86::VPBROADCASTQZ256rmk:
1749 case X86::VPBROADCASTQZrmk: {
1754 case X86::VMOVDQU8Z128rmk:
1755 Opc = X86::VPBLENDMBZ128rmk;
1757 case X86::VMOVDQU8Z256rmk:
1758 Opc = X86::VPBLENDMBZ256rmk;
1760 case X86::VMOVDQU8Zrmk:
1761 Opc = X86::VPBLENDMBZrmk;
1763 case X86::VMOVDQU16Z128rmk:
1764 Opc = X86::VPBLENDMWZ128rmk;
1766 case X86::VMOVDQU16Z256rmk:
1767 Opc = X86::VPBLENDMWZ256rmk;
1769 case X86::VMOVDQU16Zrmk:
1770 Opc = X86::VPBLENDMWZrmk;
1772 case X86::VMOVDQU32Z128rmk:
1773 Opc = X86::VPBLENDMDZ128rmk;
1775 case X86::VMOVDQU32Z256rmk:
1776 Opc = X86::VPBLENDMDZ256rmk;
1778 case X86::VMOVDQU32Zrmk:
1779 Opc = X86::VPBLENDMDZrmk;
1781 case X86::VMOVDQU64Z128rmk:
1782 Opc = X86::VPBLENDMQZ128rmk;
1784 case X86::VMOVDQU64Z256rmk:
1785 Opc = X86::VPBLENDMQZ256rmk;
1787 case X86::VMOVDQU64Zrmk:
1788 Opc = X86::VPBLENDMQZrmk;
1790 case X86::VMOVUPDZ128rmk:
1791 Opc = X86::VBLENDMPDZ128rmk;
1793 case X86::VMOVUPDZ256rmk:
1794 Opc = X86::VBLENDMPDZ256rmk;
1796 case X86::VMOVUPDZrmk:
1797 Opc = X86::VBLENDMPDZrmk;
1799 case X86::VMOVUPSZ128rmk:
1800 Opc = X86::VBLENDMPSZ128rmk;
1802 case X86::VMOVUPSZ256rmk:
1803 Opc = X86::VBLENDMPSZ256rmk;
1805 case X86::VMOVUPSZrmk:
1806 Opc = X86::VBLENDMPSZrmk;
1808 case X86::VMOVDQA32Z128rmk:
1809 Opc = X86::VPBLENDMDZ128rmk;
1811 case X86::VMOVDQA32Z256rmk:
1812 Opc = X86::VPBLENDMDZ256rmk;
1814 case X86::VMOVDQA32Zrmk:
1815 Opc = X86::VPBLENDMDZrmk;
1817 case X86::VMOVDQA64Z128rmk:
1818 Opc = X86::VPBLENDMQZ128rmk;
1820 case X86::VMOVDQA64Z256rmk:
1821 Opc = X86::VPBLENDMQZ256rmk;
1823 case X86::VMOVDQA64Zrmk:
1824 Opc = X86::VPBLENDMQZrmk;
1826 case X86::VMOVAPDZ128rmk:
1827 Opc = X86::VBLENDMPDZ128rmk;
1829 case X86::VMOVAPDZ256rmk:
1830 Opc = X86::VBLENDMPDZ256rmk;
1832 case X86::VMOVAPDZrmk:
1833 Opc = X86::VBLENDMPDZrmk;
1835 case X86::VMOVAPSZ128rmk:
1836 Opc = X86::VBLENDMPSZ128rmk;
1838 case X86::VMOVAPSZ256rmk:
1839 Opc = X86::VBLENDMPSZ256rmk;
1841 case X86::VMOVAPSZrmk:
1842 Opc = X86::VBLENDMPSZrmk;
1844 case X86::VBROADCASTSDZ256rmk:
1845 Opc = X86::VBLENDMPDZ256rmbk;
1847 case X86::VBROADCASTSDZrmk:
1848 Opc = X86::VBLENDMPDZrmbk;
1850 case X86::VBROADCASTSSZ128rmk:
1851 Opc = X86::VBLENDMPSZ128rmbk;
1853 case X86::VBROADCASTSSZ256rmk:
1854 Opc = X86::VBLENDMPSZ256rmbk;
1856 case X86::VBROADCASTSSZrmk:
1857 Opc = X86::VBLENDMPSZrmbk;
1859 case X86::VPBROADCASTDZ128rmk:
1860 Opc = X86::VPBLENDMDZ128rmbk;
1862 case X86::VPBROADCASTDZ256rmk:
1863 Opc = X86::VPBLENDMDZ256rmbk;
1865 case X86::VPBROADCASTDZrmk:
1866 Opc = X86::VPBLENDMDZrmbk;
1868 case X86::VPBROADCASTQZ128rmk:
1869 Opc = X86::VPBLENDMQZ128rmbk;
1871 case X86::VPBROADCASTQZ256rmk:
1872 Opc = X86::VPBLENDMQZ256rmbk;
1874 case X86::VPBROADCASTQZrmk:
1875 Opc = X86::VPBLENDMQZrmbk;
1881 .
add(
MI.getOperand(2))
1883 .
add(
MI.getOperand(3))
1884 .
add(
MI.getOperand(4))
1885 .
add(
MI.getOperand(5))
1886 .
add(
MI.getOperand(6))
1887 .
add(
MI.getOperand(7));
1892 case X86::VMOVDQU8Z128rrk:
1893 case X86::VMOVDQU8Z256rrk:
1894 case X86::VMOVDQU8Zrrk:
1895 case X86::VMOVDQU16Z128rrk:
1896 case X86::VMOVDQU16Z256rrk:
1897 case X86::VMOVDQU16Zrrk:
1898 case X86::VMOVDQU32Z128rrk:
1899 case X86::VMOVDQA32Z128rrk:
1900 case X86::VMOVDQU32Z256rrk:
1901 case X86::VMOVDQA32Z256rrk:
1902 case X86::VMOVDQU32Zrrk:
1903 case X86::VMOVDQA32Zrrk:
1904 case X86::VMOVDQU64Z128rrk:
1905 case X86::VMOVDQA64Z128rrk:
1906 case X86::VMOVDQU64Z256rrk:
1907 case X86::VMOVDQA64Z256rrk:
1908 case X86::VMOVDQU64Zrrk:
1909 case X86::VMOVDQA64Zrrk:
1910 case X86::VMOVUPDZ128rrk:
1911 case X86::VMOVAPDZ128rrk:
1912 case X86::VMOVUPDZ256rrk:
1913 case X86::VMOVAPDZ256rrk:
1914 case X86::VMOVUPDZrrk:
1915 case X86::VMOVAPDZrrk:
1916 case X86::VMOVUPSZ128rrk:
1917 case X86::VMOVAPSZ128rrk:
1918 case X86::VMOVUPSZ256rrk:
1919 case X86::VMOVAPSZ256rrk:
1920 case X86::VMOVUPSZrrk:
1921 case X86::VMOVAPSZrrk: {
1926 case X86::VMOVDQU8Z128rrk:
1927 Opc = X86::VPBLENDMBZ128rrk;
1929 case X86::VMOVDQU8Z256rrk:
1930 Opc = X86::VPBLENDMBZ256rrk;
1932 case X86::VMOVDQU8Zrrk:
1933 Opc = X86::VPBLENDMBZrrk;
1935 case X86::VMOVDQU16Z128rrk:
1936 Opc = X86::VPBLENDMWZ128rrk;
1938 case X86::VMOVDQU16Z256rrk:
1939 Opc = X86::VPBLENDMWZ256rrk;
1941 case X86::VMOVDQU16Zrrk:
1942 Opc = X86::VPBLENDMWZrrk;
1944 case X86::VMOVDQU32Z128rrk:
1945 Opc = X86::VPBLENDMDZ128rrk;
1947 case X86::VMOVDQU32Z256rrk:
1948 Opc = X86::VPBLENDMDZ256rrk;
1950 case X86::VMOVDQU32Zrrk:
1951 Opc = X86::VPBLENDMDZrrk;
1953 case X86::VMOVDQU64Z128rrk:
1954 Opc = X86::VPBLENDMQZ128rrk;
1956 case X86::VMOVDQU64Z256rrk:
1957 Opc = X86::VPBLENDMQZ256rrk;
1959 case X86::VMOVDQU64Zrrk:
1960 Opc = X86::VPBLENDMQZrrk;
1962 case X86::VMOVUPDZ128rrk:
1963 Opc = X86::VBLENDMPDZ128rrk;
1965 case X86::VMOVUPDZ256rrk:
1966 Opc = X86::VBLENDMPDZ256rrk;
1968 case X86::VMOVUPDZrrk:
1969 Opc = X86::VBLENDMPDZrrk;
1971 case X86::VMOVUPSZ128rrk:
1972 Opc = X86::VBLENDMPSZ128rrk;
1974 case X86::VMOVUPSZ256rrk:
1975 Opc = X86::VBLENDMPSZ256rrk;
1977 case X86::VMOVUPSZrrk:
1978 Opc = X86::VBLENDMPSZrrk;
1980 case X86::VMOVDQA32Z128rrk:
1981 Opc = X86::VPBLENDMDZ128rrk;
1983 case X86::VMOVDQA32Z256rrk:
1984 Opc = X86::VPBLENDMDZ256rrk;
1986 case X86::VMOVDQA32Zrrk:
1987 Opc = X86::VPBLENDMDZrrk;
1989 case X86::VMOVDQA64Z128rrk:
1990 Opc = X86::VPBLENDMQZ128rrk;
1992 case X86::VMOVDQA64Z256rrk:
1993 Opc = X86::VPBLENDMQZ256rrk;
1995 case X86::VMOVDQA64Zrrk:
1996 Opc = X86::VPBLENDMQZrrk;
1998 case X86::VMOVAPDZ128rrk:
1999 Opc = X86::VBLENDMPDZ128rrk;
2001 case X86::VMOVAPDZ256rrk:
2002 Opc = X86::VBLENDMPDZ256rrk;
2004 case X86::VMOVAPDZrrk:
2005 Opc = X86::VBLENDMPDZrrk;
2007 case X86::VMOVAPSZ128rrk:
2008 Opc = X86::VBLENDMPSZ128rrk;
2010 case X86::VMOVAPSZ256rrk:
2011 Opc = X86::VBLENDMPSZ256rrk;
2013 case X86::VMOVAPSZrrk:
2014 Opc = X86::VBLENDMPSZrrk;
2020 .
add(
MI.getOperand(2))
2022 .
add(
MI.getOperand(3));
2033 for (
unsigned I = 0;
I < NumRegOperands; ++
I) {
2035 if (
Op.isReg() && (
Op.isDead() ||
Op.isKill()))
2062 unsigned SrcOpIdx2) {
2064 if (SrcOpIdx1 > SrcOpIdx2)
2067 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2073 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2075 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2077 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2086 unsigned Opc =
MI.getOpcode();
2095 "Intrinsic instructions can't commute operand 1");
2100 assert(Case < 3 &&
"Unexpected case number!");
2105 const unsigned Form132Index = 0;
2106 const unsigned Form213Index = 1;
2107 const unsigned Form231Index = 2;
2108 static const unsigned FormMapping[][3] = {
2113 {Form231Index, Form213Index, Form132Index},
2118 {Form132Index, Form231Index, Form213Index},
2123 {Form213Index, Form132Index, Form231Index}};
2125 unsigned FMAForms[3];
2131 for (
unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2132 if (
Opc == FMAForms[FormIndex])
2133 return FMAForms[FormMapping[Case][FormIndex]];
2139 unsigned SrcOpIdx2) {
2143 assert(Case < 3 &&
"Unexpected case value!");
2146 static const uint8_t SwapMasks[3][4] = {
2147 {0x04, 0x10, 0x08, 0x20},
2148 {0x02, 0x10, 0x08, 0x40},
2149 {0x02, 0x04, 0x20, 0x40},
2152 uint8_t Imm =
MI.getOperand(
MI.getNumOperands() - 1).getImm();
2154 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2155 SwapMasks[Case][2] | SwapMasks[Case][3]);
2157 if (Imm & SwapMasks[Case][0])
2158 NewImm |= SwapMasks[Case][1];
2159 if (Imm & SwapMasks[Case][1])
2160 NewImm |= SwapMasks[Case][0];
2161 if (Imm & SwapMasks[Case][2])
2162 NewImm |= SwapMasks[Case][3];
2163 if (Imm & SwapMasks[Case][3])
2164 NewImm |= SwapMasks[Case][2];
2165 MI.getOperand(
MI.getNumOperands() - 1).setImm(NewImm);
2171#define VPERM_CASES(Suffix) \
2172 case X86::VPERMI2##Suffix##Z128rr: \
2173 case X86::VPERMT2##Suffix##Z128rr: \
2174 case X86::VPERMI2##Suffix##Z256rr: \
2175 case X86::VPERMT2##Suffix##Z256rr: \
2176 case X86::VPERMI2##Suffix##Zrr: \
2177 case X86::VPERMT2##Suffix##Zrr: \
2178 case X86::VPERMI2##Suffix##Z128rm: \
2179 case X86::VPERMT2##Suffix##Z128rm: \
2180 case X86::VPERMI2##Suffix##Z256rm: \
2181 case X86::VPERMT2##Suffix##Z256rm: \
2182 case X86::VPERMI2##Suffix##Zrm: \
2183 case X86::VPERMT2##Suffix##Zrm: \
2184 case X86::VPERMI2##Suffix##Z128rrkz: \
2185 case X86::VPERMT2##Suffix##Z128rrkz: \
2186 case X86::VPERMI2##Suffix##Z256rrkz: \
2187 case X86::VPERMT2##Suffix##Z256rrkz: \
2188 case X86::VPERMI2##Suffix##Zrrkz: \
2189 case X86::VPERMT2##Suffix##Zrrkz: \
2190 case X86::VPERMI2##Suffix##Z128rmkz: \
2191 case X86::VPERMT2##Suffix##Z128rmkz: \
2192 case X86::VPERMI2##Suffix##Z256rmkz: \
2193 case X86::VPERMT2##Suffix##Z256rmkz: \
2194 case X86::VPERMI2##Suffix##Zrmkz: \
2195 case X86::VPERMT2##Suffix##Zrmkz:
2197#define VPERM_CASES_BROADCAST(Suffix) \
2198 VPERM_CASES(Suffix) \
2199 case X86::VPERMI2##Suffix##Z128rmb: \
2200 case X86::VPERMT2##Suffix##Z128rmb: \
2201 case X86::VPERMI2##Suffix##Z256rmb: \
2202 case X86::VPERMT2##Suffix##Z256rmb: \
2203 case X86::VPERMI2##Suffix##Zrmb: \
2204 case X86::VPERMT2##Suffix##Zrmb: \
2205 case X86::VPERMI2##Suffix##Z128rmbkz: \
2206 case X86::VPERMT2##Suffix##Z128rmbkz: \
2207 case X86::VPERMI2##Suffix##Z256rmbkz: \
2208 case X86::VPERMT2##Suffix##Z256rmbkz: \
2209 case X86::VPERMI2##Suffix##Zrmbkz: \
2210 case X86::VPERMT2##Suffix##Zrmbkz:
2223#undef VPERM_CASES_BROADCAST
2230#define VPERM_CASES(Orig, New) \
2231 case X86::Orig##Z128rr: \
2232 return X86::New##Z128rr; \
2233 case X86::Orig##Z128rrkz: \
2234 return X86::New##Z128rrkz; \
2235 case X86::Orig##Z128rm: \
2236 return X86::New##Z128rm; \
2237 case X86::Orig##Z128rmkz: \
2238 return X86::New##Z128rmkz; \
2239 case X86::Orig##Z256rr: \
2240 return X86::New##Z256rr; \
2241 case X86::Orig##Z256rrkz: \
2242 return X86::New##Z256rrkz; \
2243 case X86::Orig##Z256rm: \
2244 return X86::New##Z256rm; \
2245 case X86::Orig##Z256rmkz: \
2246 return X86::New##Z256rmkz; \
2247 case X86::Orig##Zrr: \
2248 return X86::New##Zrr; \
2249 case X86::Orig##Zrrkz: \
2250 return X86::New##Zrrkz; \
2251 case X86::Orig##Zrm: \
2252 return X86::New##Zrm; \
2253 case X86::Orig##Zrmkz: \
2254 return X86::New##Zrmkz;
2256#define VPERM_CASES_BROADCAST(Orig, New) \
2257 VPERM_CASES(Orig, New) \
2258 case X86::Orig##Z128rmb: \
2259 return X86::New##Z128rmb; \
2260 case X86::Orig##Z128rmbkz: \
2261 return X86::New##Z128rmbkz; \
2262 case X86::Orig##Z256rmb: \
2263 return X86::New##Z256rmb; \
2264 case X86::Orig##Z256rmbkz: \
2265 return X86::New##Z256rmbkz; \
2266 case X86::Orig##Zrmb: \
2267 return X86::New##Zrmb; \
2268 case X86::Orig##Zrmbkz: \
2269 return X86::New##Zrmbkz;
2287#undef VPERM_CASES_BROADCAST
2293 unsigned OpIdx2)
const {
2295 return std::exchange(NewMI,
false)
2296 ?
MI.getParent()->getParent()->CloneMachineInstr(&
MI)
2300 unsigned Opc =
MI.getOpcode();
2302#define CASE_ND(OP) \
2318#define FROM_TO_SIZE(A, B, S) \
2324 Opc = X86::B##_ND; \
2332 Opc = X86::A##_ND; \
2341 WorkingMI = CloneIfNew(
MI);
2350 WorkingMI = CloneIfNew(
MI);
2352 get(X86::PFSUBRrr ==
Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2354 case X86::BLENDPDrri:
2355 case X86::BLENDPSrri:
2356 case X86::PBLENDWrri:
2357 case X86::VBLENDPDrri:
2358 case X86::VBLENDPSrri:
2359 case X86::VBLENDPDYrri:
2360 case X86::VBLENDPSYrri:
2361 case X86::VPBLENDDrri:
2362 case X86::VPBLENDWrri:
2363 case X86::VPBLENDDYrri:
2364 case X86::VPBLENDWYrri: {
2369 case X86::BLENDPDrri:
2370 Mask = (int8_t)0x03;
2372 case X86::BLENDPSrri:
2373 Mask = (int8_t)0x0F;
2375 case X86::PBLENDWrri:
2376 Mask = (int8_t)0xFF;
2378 case X86::VBLENDPDrri:
2379 Mask = (int8_t)0x03;
2381 case X86::VBLENDPSrri:
2382 Mask = (int8_t)0x0F;
2384 case X86::VBLENDPDYrri:
2385 Mask = (int8_t)0x0F;
2387 case X86::VBLENDPSYrri:
2388 Mask = (int8_t)0xFF;
2390 case X86::VPBLENDDrri:
2391 Mask = (int8_t)0x0F;
2393 case X86::VPBLENDWrri:
2394 Mask = (int8_t)0xFF;
2396 case X86::VPBLENDDYrri:
2397 Mask = (int8_t)0xFF;
2399 case X86::VPBLENDWYrri:
2400 Mask = (int8_t)0xFF;
2406 int8_t Imm =
MI.getOperand(3).getImm() & Mask;
2407 WorkingMI = CloneIfNew(
MI);
2411 case X86::INSERTPSrri:
2412 case X86::VINSERTPSrri:
2413 case X86::VINSERTPSZrri: {
2414 unsigned Imm =
MI.getOperand(
MI.getNumOperands() - 1).getImm();
2415 unsigned ZMask = Imm & 15;
2416 unsigned DstIdx = (Imm >> 4) & 3;
2417 unsigned SrcIdx = (Imm >> 6) & 3;
2421 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2424 assert(AltIdx < 4 &&
"Illegal insertion index");
2425 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2426 WorkingMI = CloneIfNew(
MI);
2435 case X86::VMOVSSrr: {
2443 Opc = X86::BLENDPDrri;
2447 Opc = X86::BLENDPSrri;
2451 Opc = X86::VBLENDPDrri;
2455 Opc = X86::VBLENDPSrri;
2460 WorkingMI = CloneIfNew(
MI);
2466 assert(
Opc == X86::MOVSDrr &&
"Only MOVSD can commute to SHUFPD");
2467 WorkingMI = CloneIfNew(
MI);
2472 case X86::SHUFPDrri: {
2474 assert(
MI.getOperand(3).getImm() == 0x02 &&
"Unexpected immediate!");
2475 WorkingMI = CloneIfNew(
MI);
2480 case X86::PCLMULQDQrri:
2481 case X86::VPCLMULQDQrri:
2482 case X86::VPCLMULQDQYrri:
2483 case X86::VPCLMULQDQZrri:
2484 case X86::VPCLMULQDQZ128rri:
2485 case X86::VPCLMULQDQZ256rri: {
2488 unsigned Imm =
MI.getOperand(3).getImm();
2489 unsigned Src1Hi = Imm & 0x01;
2490 unsigned Src2Hi = Imm & 0x10;
2491 WorkingMI = CloneIfNew(
MI);
2495 case X86::VPCMPBZ128rri:
2496 case X86::VPCMPUBZ128rri:
2497 case X86::VPCMPBZ256rri:
2498 case X86::VPCMPUBZ256rri:
2499 case X86::VPCMPBZrri:
2500 case X86::VPCMPUBZrri:
2501 case X86::VPCMPDZ128rri:
2502 case X86::VPCMPUDZ128rri:
2503 case X86::VPCMPDZ256rri:
2504 case X86::VPCMPUDZ256rri:
2505 case X86::VPCMPDZrri:
2506 case X86::VPCMPUDZrri:
2507 case X86::VPCMPQZ128rri:
2508 case X86::VPCMPUQZ128rri:
2509 case X86::VPCMPQZ256rri:
2510 case X86::VPCMPUQZ256rri:
2511 case X86::VPCMPQZrri:
2512 case X86::VPCMPUQZrri:
2513 case X86::VPCMPWZ128rri:
2514 case X86::VPCMPUWZ128rri:
2515 case X86::VPCMPWZ256rri:
2516 case X86::VPCMPUWZ256rri:
2517 case X86::VPCMPWZrri:
2518 case X86::VPCMPUWZrri:
2519 case X86::VPCMPBZ128rrik:
2520 case X86::VPCMPUBZ128rrik:
2521 case X86::VPCMPBZ256rrik:
2522 case X86::VPCMPUBZ256rrik:
2523 case X86::VPCMPBZrrik:
2524 case X86::VPCMPUBZrrik:
2525 case X86::VPCMPDZ128rrik:
2526 case X86::VPCMPUDZ128rrik:
2527 case X86::VPCMPDZ256rrik:
2528 case X86::VPCMPUDZ256rrik:
2529 case X86::VPCMPDZrrik:
2530 case X86::VPCMPUDZrrik:
2531 case X86::VPCMPQZ128rrik:
2532 case X86::VPCMPUQZ128rrik:
2533 case X86::VPCMPQZ256rrik:
2534 case X86::VPCMPUQZ256rrik:
2535 case X86::VPCMPQZrrik:
2536 case X86::VPCMPUQZrrik:
2537 case X86::VPCMPWZ128rrik:
2538 case X86::VPCMPUWZ128rrik:
2539 case X86::VPCMPWZ256rrik:
2540 case X86::VPCMPUWZ256rrik:
2541 case X86::VPCMPWZrrik:
2542 case X86::VPCMPUWZrrik:
2543 WorkingMI = CloneIfNew(
MI);
2547 MI.getOperand(
MI.getNumOperands() - 1).getImm() & 0x7));
2550 case X86::VPCOMUBri:
2552 case X86::VPCOMUDri:
2554 case X86::VPCOMUQri:
2556 case X86::VPCOMUWri:
2557 WorkingMI = CloneIfNew(
MI);
2562 case X86::VCMPSDZrri:
2563 case X86::VCMPSSZrri:
2564 case X86::VCMPPDZrri:
2565 case X86::VCMPPSZrri:
2566 case X86::VCMPSHZrri:
2567 case X86::VCMPPHZrri:
2568 case X86::VCMPPHZ128rri:
2569 case X86::VCMPPHZ256rri:
2570 case X86::VCMPPDZ128rri:
2571 case X86::VCMPPSZ128rri:
2572 case X86::VCMPPDZ256rri:
2573 case X86::VCMPPSZ256rri:
2574 case X86::VCMPPDZrrik:
2575 case X86::VCMPPSZrrik:
2576 case X86::VCMPPDZ128rrik:
2577 case X86::VCMPPSZ128rrik:
2578 case X86::VCMPPDZ256rrik:
2579 case X86::VCMPPSZ256rrik:
2580 WorkingMI = CloneIfNew(
MI);
2583 MI.getOperand(
MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2585 case X86::VPERM2F128rri:
2586 case X86::VPERM2I128rri:
2590 WorkingMI = CloneIfNew(
MI);
2593 case X86::MOVHLPSrr:
2594 case X86::UNPCKHPDrr:
2595 case X86::VMOVHLPSrr:
2596 case X86::VUNPCKHPDrr:
2597 case X86::VMOVHLPSZrr:
2598 case X86::VUNPCKHPDZ128rr:
2599 assert(Subtarget.
hasSSE2() &&
"Commuting MOVHLP/UNPCKHPD requires SSE2!");
2604 case X86::MOVHLPSrr:
2605 Opc = X86::UNPCKHPDrr;
2607 case X86::UNPCKHPDrr:
2608 Opc = X86::MOVHLPSrr;
2610 case X86::VMOVHLPSrr:
2611 Opc = X86::VUNPCKHPDrr;
2613 case X86::VUNPCKHPDrr:
2614 Opc = X86::VMOVHLPSrr;
2616 case X86::VMOVHLPSZrr:
2617 Opc = X86::VUNPCKHPDZ128rr;
2619 case X86::VUNPCKHPDZ128rr:
2620 Opc = X86::VMOVHLPSZrr;
2623 WorkingMI = CloneIfNew(
MI);
2629 WorkingMI = CloneIfNew(
MI);
2630 unsigned OpNo =
MI.getDesc().getNumOperands() - 1;
2635 case X86::VPTERNLOGDZrri:
2636 case X86::VPTERNLOGDZrmi:
2637 case X86::VPTERNLOGDZ128rri:
2638 case X86::VPTERNLOGDZ128rmi:
2639 case X86::VPTERNLOGDZ256rri:
2640 case X86::VPTERNLOGDZ256rmi:
2641 case X86::VPTERNLOGQZrri:
2642 case X86::VPTERNLOGQZrmi:
2643 case X86::VPTERNLOGQZ128rri:
2644 case X86::VPTERNLOGQZ128rmi:
2645 case X86::VPTERNLOGQZ256rri:
2646 case X86::VPTERNLOGQZ256rmi:
2647 case X86::VPTERNLOGDZrrik:
2648 case X86::VPTERNLOGDZ128rrik:
2649 case X86::VPTERNLOGDZ256rrik:
2650 case X86::VPTERNLOGQZrrik:
2651 case X86::VPTERNLOGQZ128rrik:
2652 case X86::VPTERNLOGQZ256rrik:
2653 case X86::VPTERNLOGDZrrikz:
2654 case X86::VPTERNLOGDZrmikz:
2655 case X86::VPTERNLOGDZ128rrikz:
2656 case X86::VPTERNLOGDZ128rmikz:
2657 case X86::VPTERNLOGDZ256rrikz:
2658 case X86::VPTERNLOGDZ256rmikz:
2659 case X86::VPTERNLOGQZrrikz:
2660 case X86::VPTERNLOGQZrmikz:
2661 case X86::VPTERNLOGQZ128rrikz:
2662 case X86::VPTERNLOGQZ128rmikz:
2663 case X86::VPTERNLOGQZ256rrikz:
2664 case X86::VPTERNLOGQZ256rmikz:
2665 case X86::VPTERNLOGDZ128rmbi:
2666 case X86::VPTERNLOGDZ256rmbi:
2667 case X86::VPTERNLOGDZrmbi:
2668 case X86::VPTERNLOGQZ128rmbi:
2669 case X86::VPTERNLOGQZ256rmbi:
2670 case X86::VPTERNLOGQZrmbi:
2671 case X86::VPTERNLOGDZ128rmbikz:
2672 case X86::VPTERNLOGDZ256rmbikz:
2673 case X86::VPTERNLOGDZrmbikz:
2674 case X86::VPTERNLOGQZ128rmbikz:
2675 case X86::VPTERNLOGQZ256rmbikz:
2676 case X86::VPTERNLOGQZrmbikz: {
2677 WorkingMI = CloneIfNew(
MI);
2683 WorkingMI = CloneIfNew(
MI);
2689 WorkingMI = CloneIfNew(
MI);
2698bool X86InstrInfo::findThreeSrcCommutedOpIndices(
const MachineInstr &
MI,
2699 unsigned &SrcOpIdx1,
2700 unsigned &SrcOpIdx2,
2701 bool IsIntrinsic)
const {
2704 unsigned FirstCommutableVecOp = 1;
2705 unsigned LastCommutableVecOp = 3;
2706 unsigned KMaskOp = -1U;
2729 FirstCommutableVecOp = 3;
2731 LastCommutableVecOp++;
2732 }
else if (IsIntrinsic) {
2735 FirstCommutableVecOp = 2;
2738 if (
isMem(
MI, LastCommutableVecOp))
2739 LastCommutableVecOp--;
2744 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2745 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2746 SrcOpIdx1 == KMaskOp))
2748 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2749 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2750 SrcOpIdx2 == KMaskOp))
2755 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2756 SrcOpIdx2 == CommuteAnyOperandIndex) {
2757 unsigned CommutableOpIdx2 = SrcOpIdx2;
2761 if (SrcOpIdx1 == SrcOpIdx2)
2764 CommutableOpIdx2 = LastCommutableVecOp;
2765 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2767 CommutableOpIdx2 = SrcOpIdx1;
2771 Register Op2Reg =
MI.getOperand(CommutableOpIdx2).getReg();
2773 unsigned CommutableOpIdx1;
2774 for (CommutableOpIdx1 = LastCommutableVecOp;
2775 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2777 if (CommutableOpIdx1 == KMaskOp)
2783 if (Op2Reg !=
MI.getOperand(CommutableOpIdx1).getReg())
2788 if (CommutableOpIdx1 < FirstCommutableVecOp)
2793 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2802 unsigned &SrcOpIdx1,
2803 unsigned &SrcOpIdx2)
const {
2805 if (!
Desc.isCommutable())
2808 switch (
MI.getOpcode()) {
2813 case X86::VCMPSDrri:
2814 case X86::VCMPSSrri:
2815 case X86::VCMPPDrri:
2816 case X86::VCMPPSrri:
2817 case X86::VCMPPDYrri:
2818 case X86::VCMPPSYrri:
2819 case X86::VCMPSDZrri:
2820 case X86::VCMPSSZrri:
2821 case X86::VCMPPDZrri:
2822 case X86::VCMPPSZrri:
2823 case X86::VCMPSHZrri:
2824 case X86::VCMPPHZrri:
2825 case X86::VCMPPHZ128rri:
2826 case X86::VCMPPHZ256rri:
2827 case X86::VCMPPDZ128rri:
2828 case X86::VCMPPSZ128rri:
2829 case X86::VCMPPDZ256rri:
2830 case X86::VCMPPSZ256rri:
2831 case X86::VCMPPDZrrik:
2832 case X86::VCMPPSZrrik:
2833 case X86::VCMPPDZ128rrik:
2834 case X86::VCMPPSZ128rrik:
2835 case X86::VCMPPDZ256rrik:
2836 case X86::VCMPPSZ256rrik: {
2841 unsigned Imm =
MI.getOperand(3 + OpOffset).getImm() & 0x7;
2858 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2868 case X86::SHUFPDrri:
2870 if (
MI.getOperand(3).getImm() == 0x02)
2873 case X86::MOVHLPSrr:
2874 case X86::UNPCKHPDrr:
2875 case X86::VMOVHLPSrr:
2876 case X86::VUNPCKHPDrr:
2877 case X86::VMOVHLPSZrr:
2878 case X86::VUNPCKHPDZ128rr:
2882 case X86::VPTERNLOGDZrri:
2883 case X86::VPTERNLOGDZrmi:
2884 case X86::VPTERNLOGDZ128rri:
2885 case X86::VPTERNLOGDZ128rmi:
2886 case X86::VPTERNLOGDZ256rri:
2887 case X86::VPTERNLOGDZ256rmi:
2888 case X86::VPTERNLOGQZrri:
2889 case X86::VPTERNLOGQZrmi:
2890 case X86::VPTERNLOGQZ128rri:
2891 case X86::VPTERNLOGQZ128rmi:
2892 case X86::VPTERNLOGQZ256rri:
2893 case X86::VPTERNLOGQZ256rmi:
2894 case X86::VPTERNLOGDZrrik:
2895 case X86::VPTERNLOGDZ128rrik:
2896 case X86::VPTERNLOGDZ256rrik:
2897 case X86::VPTERNLOGQZrrik:
2898 case X86::VPTERNLOGQZ128rrik:
2899 case X86::VPTERNLOGQZ256rrik:
2900 case X86::VPTERNLOGDZrrikz:
2901 case X86::VPTERNLOGDZrmikz:
2902 case X86::VPTERNLOGDZ128rrikz:
2903 case X86::VPTERNLOGDZ128rmikz:
2904 case X86::VPTERNLOGDZ256rrikz:
2905 case X86::VPTERNLOGDZ256rmikz:
2906 case X86::VPTERNLOGQZrrikz:
2907 case X86::VPTERNLOGQZrmikz:
2908 case X86::VPTERNLOGQZ128rrikz:
2909 case X86::VPTERNLOGQZ128rmikz:
2910 case X86::VPTERNLOGQZ256rrikz:
2911 case X86::VPTERNLOGQZ256rmikz:
2912 case X86::VPTERNLOGDZ128rmbi:
2913 case X86::VPTERNLOGDZ256rmbi:
2914 case X86::VPTERNLOGDZrmbi:
2915 case X86::VPTERNLOGQZ128rmbi:
2916 case X86::VPTERNLOGQZ256rmbi:
2917 case X86::VPTERNLOGQZrmbi:
2918 case X86::VPTERNLOGDZ128rmbikz:
2919 case X86::VPTERNLOGDZ256rmbikz:
2920 case X86::VPTERNLOGDZrmbikz:
2921 case X86::VPTERNLOGQZ128rmbikz:
2922 case X86::VPTERNLOGQZ256rmbikz:
2923 case X86::VPTERNLOGQZrmbikz:
2924 return findThreeSrcCommutedOpIndices(
MI, SrcOpIdx1, SrcOpIdx2);
2925 case X86::VPDPWSSDYrr:
2926 case X86::VPDPWSSDrr:
2927 case X86::VPDPWSSDSYrr:
2928 case X86::VPDPWSSDSrr:
2929 case X86::VPDPWUUDrr:
2930 case X86::VPDPWUUDYrr:
2931 case X86::VPDPWUUDSrr:
2932 case X86::VPDPWUUDSYrr:
2933 case X86::VPDPBSSDSrr:
2934 case X86::VPDPBSSDSYrr:
2935 case X86::VPDPBSSDrr:
2936 case X86::VPDPBSSDYrr:
2937 case X86::VPDPBUUDSrr:
2938 case X86::VPDPBUUDSYrr:
2939 case X86::VPDPBUUDrr:
2940 case X86::VPDPBUUDYrr:
2941 case X86::VPDPBSSDSZ128r:
2942 case X86::VPDPBSSDSZ128rk:
2943 case X86::VPDPBSSDSZ128rkz:
2944 case X86::VPDPBSSDSZ256r:
2945 case X86::VPDPBSSDSZ256rk:
2946 case X86::VPDPBSSDSZ256rkz:
2947 case X86::VPDPBSSDSZr:
2948 case X86::VPDPBSSDSZrk:
2949 case X86::VPDPBSSDSZrkz:
2950 case X86::VPDPBSSDZ128r:
2951 case X86::VPDPBSSDZ128rk:
2952 case X86::VPDPBSSDZ128rkz:
2953 case X86::VPDPBSSDZ256r:
2954 case X86::VPDPBSSDZ256rk:
2955 case X86::VPDPBSSDZ256rkz:
2956 case X86::VPDPBSSDZr:
2957 case X86::VPDPBSSDZrk:
2958 case X86::VPDPBSSDZrkz:
2959 case X86::VPDPBUUDSZ128r:
2960 case X86::VPDPBUUDSZ128rk:
2961 case X86::VPDPBUUDSZ128rkz:
2962 case X86::VPDPBUUDSZ256r:
2963 case X86::VPDPBUUDSZ256rk:
2964 case X86::VPDPBUUDSZ256rkz:
2965 case X86::VPDPBUUDSZr:
2966 case X86::VPDPBUUDSZrk:
2967 case X86::VPDPBUUDSZrkz:
2968 case X86::VPDPBUUDZ128r:
2969 case X86::VPDPBUUDZ128rk:
2970 case X86::VPDPBUUDZ128rkz:
2971 case X86::VPDPBUUDZ256r:
2972 case X86::VPDPBUUDZ256rk:
2973 case X86::VPDPBUUDZ256rkz:
2974 case X86::VPDPBUUDZr:
2975 case X86::VPDPBUUDZrk:
2976 case X86::VPDPBUUDZrkz:
2977 case X86::VPDPWSSDZ128r:
2978 case X86::VPDPWSSDZ128rk:
2979 case X86::VPDPWSSDZ128rkz:
2980 case X86::VPDPWSSDZ256r:
2981 case X86::VPDPWSSDZ256rk:
2982 case X86::VPDPWSSDZ256rkz:
2983 case X86::VPDPWSSDZr:
2984 case X86::VPDPWSSDZrk:
2985 case X86::VPDPWSSDZrkz:
2986 case X86::VPDPWSSDSZ128r:
2987 case X86::VPDPWSSDSZ128rk:
2988 case X86::VPDPWSSDSZ128rkz:
2989 case X86::VPDPWSSDSZ256r:
2990 case X86::VPDPWSSDSZ256rk:
2991 case X86::VPDPWSSDSZ256rkz:
2992 case X86::VPDPWSSDSZr:
2993 case X86::VPDPWSSDSZrk:
2994 case X86::VPDPWSSDSZrkz:
2995 case X86::VPDPWUUDZ128r:
2996 case X86::VPDPWUUDZ128rk:
2997 case X86::VPDPWUUDZ128rkz:
2998 case X86::VPDPWUUDZ256r:
2999 case X86::VPDPWUUDZ256rk:
3000 case X86::VPDPWUUDZ256rkz:
3001 case X86::VPDPWUUDZr:
3002 case X86::VPDPWUUDZrk:
3003 case X86::VPDPWUUDZrkz:
3004 case X86::VPDPWUUDSZ128r:
3005 case X86::VPDPWUUDSZ128rk:
3006 case X86::VPDPWUUDSZ128rkz:
3007 case X86::VPDPWUUDSZ256r:
3008 case X86::VPDPWUUDSZ256rk:
3009 case X86::VPDPWUUDSZ256rkz:
3010 case X86::VPDPWUUDSZr:
3011 case X86::VPDPWUUDSZrk:
3012 case X86::VPDPWUUDSZrkz:
3013 case X86::VPMADD52HUQrr:
3014 case X86::VPMADD52HUQYrr:
3015 case X86::VPMADD52HUQZ128r:
3016 case X86::VPMADD52HUQZ128rk:
3017 case X86::VPMADD52HUQZ128rkz:
3018 case X86::VPMADD52HUQZ256r:
3019 case X86::VPMADD52HUQZ256rk:
3020 case X86::VPMADD52HUQZ256rkz:
3021 case X86::VPMADD52HUQZr:
3022 case X86::VPMADD52HUQZrk:
3023 case X86::VPMADD52HUQZrkz:
3024 case X86::VPMADD52LUQrr:
3025 case X86::VPMADD52LUQYrr:
3026 case X86::VPMADD52LUQZ128r:
3027 case X86::VPMADD52LUQZ128rk:
3028 case X86::VPMADD52LUQZ128rkz:
3029 case X86::VPMADD52LUQZ256r:
3030 case X86::VPMADD52LUQZ256rk:
3031 case X86::VPMADD52LUQZ256rkz:
3032 case X86::VPMADD52LUQZr:
3033 case X86::VPMADD52LUQZrk:
3034 case X86::VPMADD52LUQZrkz:
3035 case X86::VFMADDCPHZr:
3036 case X86::VFMADDCPHZrk:
3037 case X86::VFMADDCPHZrkz:
3038 case X86::VFMADDCPHZ128r:
3039 case X86::VFMADDCPHZ128rk:
3040 case X86::VFMADDCPHZ128rkz:
3041 case X86::VFMADDCPHZ256r:
3042 case X86::VFMADDCPHZ256rk:
3043 case X86::VFMADDCPHZ256rkz:
3044 case X86::VFMADDCSHZr:
3045 case X86::VFMADDCSHZrk:
3046 case X86::VFMADDCSHZrkz: {
3047 unsigned CommutableOpIdx1 = 2;
3048 unsigned CommutableOpIdx2 = 3;
3054 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3057 if (!
MI.getOperand(SrcOpIdx1).isReg() || !
MI.getOperand(SrcOpIdx2).isReg())
3067 return findThreeSrcCommutedOpIndices(
MI, SrcOpIdx1, SrcOpIdx2,
3074 unsigned CommutableOpIdx1 =
Desc.getNumDefs() + 1;
3075 unsigned CommutableOpIdx2 =
Desc.getNumDefs() + 2;
3078 if ((
MI.getDesc().getOperandConstraint(
Desc.getNumDefs(),
3093 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3097 if (!
MI.getOperand(SrcOpIdx1).isReg() ||
3098 !
MI.getOperand(SrcOpIdx2).isReg())
3110 unsigned Opcode =
MI->getOpcode();
3111 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3112 Opcode != X86::LEA64_32r)
3134 unsigned Opcode =
MI.getOpcode();
3135 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3163 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isSETZUCC(Opcode) ||
3164 X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) ||
3165 X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode)))
3187 return X86::isSETCC(
MI.getOpcode()) || X86::isSETZUCC(
MI.getOpcode())
3203 return X86::isCCMPCC(
MI.getOpcode()) || X86::isCTESTCC(
MI.getOpcode())
3234 enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF };
3265#define GET_X86_NF_TRANSFORM_TABLE
3266#define GET_X86_ND2NONND_TABLE
3267#include "X86GenInstrMapping.inc"
3272 return (
I == Table.
end() ||
I->OldOpc !=
Opc) ? 0U :
I->NewOpc;
3275#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
3277 static std::atomic<bool> NFTableChecked(
false);
3278 if (!NFTableChecked.load(std::memory_order_relaxed)) {
3280 "X86NFTransformTable is not sorted!");
3281 NFTableChecked.store(
true, std::memory_order_relaxed);
3288#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
3290 static std::atomic<bool> NDTableChecked(
false);
3291 if (!NDTableChecked.load(std::memory_order_relaxed)) {
3293 "X86ND2NonNDTableis not sorted!");
3294 NDTableChecked.store(
true, std::memory_order_relaxed);
3374std::pair<X86::CondCode, bool>
3377 bool NeedSwap =
false;
3378 switch (Predicate) {
3457 return std::make_pair(CC, NeedSwap);
3466#define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3560 switch (Imm & 0x3) {
3578 if (
Info.RegClass == X86::VR128RegClassID ||
3579 Info.RegClass == X86::VR128XRegClassID)
3581 if (
Info.RegClass == X86::VR256RegClassID ||
3582 Info.RegClass == X86::VR256XRegClassID)
3584 if (
Info.RegClass == X86::VR512RegClassID)
3591 return (Reg == X86::FPCW || Reg == X86::FPSW ||
3592 (Reg >= X86::ST0 && Reg <= X86::ST7));
3600 if (
MI.isCall() ||
MI.isInlineAsm())
3624#ifdef EXPENSIVE_CHECKS
3626 "Got false negative from X86II::getMemoryOperandNo()!");
3634 unsigned NumOps =
Desc.getNumOperands();
3636#ifdef EXPENSIVE_CHECKS
3638 "Expected no operands to have OPERAND_MEMORY type!");
3647 if (IsMemOp(
Desc.operands()[
I])) {
3648#ifdef EXPENSIVE_CHECKS
3652 "Expected all five operands in the memory reference to have "
3653 "OPERAND_MEMORY type!");
3665 "Unexpected number of operands!");
3668 if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3676 MI.getParent()->getParent()->getConstantPool()->getConstants();
3688 switch (
MI.getOpcode()) {
3689 case X86::TCRETURNdi:
3690 case X86::TCRETURNri:
3691 case X86::TCRETURNmi:
3692 case X86::TCRETURNdi64:
3693 case X86::TCRETURNri64:
3694 case X86::TCRETURNri64_ImpCall:
3695 case X86::TCRETURNmi64:
3714 if (Symbol ==
"__x86_indirect_thunk_r11")
3719 if (TailCall.getOpcode() != X86::TCRETURNdi &&
3720 TailCall.getOpcode() != X86::TCRETURNdi64) {
3738 TailCall.getOperand(1).getImm() != 0) {
3754 if (
I->isDebugInstr())
3757 assert(0 &&
"Can't find the branch to replace!");
3761 if (CC != BranchCond[0].
getImm())
3767 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3768 : X86::TCRETURNdi64cc;
3779 LiveRegs.addLiveOuts(
MBB);
3781 LiveRegs.stepForward(*MIB, Clobbers);
3782 for (
const auto &
C : Clobbers) {
3787 I->eraseFromParent();
3801 if (Succ->isEHPad() || (Succ ==
TBB && FallthroughBB))
3804 if (FallthroughBB && FallthroughBB !=
TBB)
3806 FallthroughBB = Succ;
3808 return FallthroughBB;
3811bool X86InstrInfo::analyzeBranchImpl(
3822 if (
I->isDebugInstr())
3827 if (!isUnpredicatedTerminator(*
I))
3836 if (
I->getOpcode() == X86::JMP_1) {
3840 TBB =
I->getOperand(0).getMBB();
3853 I->eraseFromParent();
3855 UnCondBrIter =
MBB.
end();
3860 TBB =
I->getOperand(0).getMBB();
3871 if (
I->findRegisterUseOperand(X86::EFLAGS,
nullptr)->isUndef())
3877 TBB =
I->getOperand(0).getMBB();
3891 auto NewTBB =
I->getOperand(0).getMBB();
3892 if (OldBranchCode == BranchCode &&
TBB == NewTBB)
3898 if (
TBB == NewTBB &&
3931 Cond[0].setImm(BranchCode);
3942 bool AllowModify)
const {
3944 return analyzeBranchImpl(
MBB,
TBB, FBB,
Cond, CondBranches, AllowModify);
3950 assert(MemRefBegin >= 0 &&
"instr should have memory operand");
3962 if (!Reg.isVirtual())
3967 unsigned Opcode =
MI->getOpcode();
3968 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3974 unsigned Opcode =
MI.getOpcode();
3977 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3985 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3987 if (!Reg.isVirtual())
3994 if (
Add->getOpcode() != X86::ADD64rr &&
Add->getOpcode() != X86::ADD32rr)
4007 MachineBranchPredicate &MBP,
4008 bool AllowModify)
const {
4009 using namespace std::placeholders;
4013 if (analyzeBranchImpl(
MBB, MBP.TrueDest, MBP.FalseDest,
Cond, CondBranches,
4017 if (
Cond.size() != 1)
4020 assert(MBP.TrueDest &&
"expected!");
4028 bool SingleUseCondition =
true;
4031 if (
MI.modifiesRegister(X86::EFLAGS,
TRI)) {
4036 if (
MI.readsRegister(X86::EFLAGS,
TRI))
4037 SingleUseCondition =
false;
4043 if (SingleUseCondition) {
4045 if (Succ->isLiveIn(X86::EFLAGS))
4046 SingleUseCondition =
false;
4049 MBP.ConditionDef = ConditionDef;
4050 MBP.SingleUseCondition = SingleUseCondition;
4057 const unsigned TestOpcode =
4058 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
4060 if (ConditionDef->
getOpcode() == TestOpcode &&
4067 ? MachineBranchPredicate::PRED_NE
4068 : MachineBranchPredicate::PRED_EQ;
4076 int *BytesRemoved)
const {
4077 assert(!BytesRemoved &&
"code size not handled");
4084 if (
I->isDebugInstr())
4086 if (
I->getOpcode() != X86::JMP_1 &&
4090 I->eraseFromParent();
4104 assert(
TBB &&
"insertBranch must not be told to insert a fallthrough");
4106 "X86 branch conditions have one component!");
4107 assert(!BytesAdded &&
"code size not handled");
4111 assert(!FBB &&
"Unconditional branch with multiple successors!");
4117 bool FallThru = FBB ==
nullptr;
4132 if (FBB ==
nullptr) {
4134 assert(FBB &&
"MBB cannot be the last block in function when the false "
4135 "body is a fall-through.");
4159 Register FalseReg,
int &CondCycles,
4160 int &TrueCycles,
int &FalseCycles)
const {
4164 if (
Cond.size() != 1)
4173 RI.getCommonSubClass(
MRI.getRegClass(TrueReg),
MRI.getRegClass(FalseReg));
4178 if (X86::GR16RegClass.hasSubClassEq(RC) ||
4179 X86::GR32RegClass.hasSubClassEq(RC) ||
4180 X86::GR64RegClass.hasSubClassEq(RC)) {
4201 assert(
Cond.size() == 1 &&
"Invalid Cond array");
4204 false , Subtarget.hasNDD());
4213 return X86::GR8_ABCD_HRegClass.contains(Reg);
4219 bool HasAVX = Subtarget.
hasAVX();
4221 bool HasEGPR = Subtarget.hasEGPR();
4228 if (X86::VK16RegClass.
contains(SrcReg)) {
4229 if (X86::GR64RegClass.
contains(DestReg)) {
4230 assert(Subtarget.hasBWI());
4231 return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4233 if (X86::GR32RegClass.
contains(DestReg))
4234 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4235 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4243 if (X86::VK16RegClass.
contains(DestReg)) {
4244 if (X86::GR64RegClass.
contains(SrcReg)) {
4245 assert(Subtarget.hasBWI());
4246 return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4248 if (X86::GR32RegClass.
contains(SrcReg))
4249 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4250 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4258 if (X86::GR64RegClass.
contains(DestReg)) {
4259 if (X86::VR128XRegClass.
contains(SrcReg))
4261 return HasAVX512 ? X86::VMOVPQIto64Zrr
4262 : HasAVX ? X86::VMOVPQIto64rr
4263 : X86::MOVPQIto64rr;
4264 if (X86::VR64RegClass.
contains(SrcReg))
4266 return X86::MMX_MOVD64from64rr;
4267 }
else if (X86::GR64RegClass.
contains(SrcReg)) {
4269 if (X86::VR128XRegClass.
contains(DestReg))
4270 return HasAVX512 ? X86::VMOV64toPQIZrr
4271 : HasAVX ? X86::VMOV64toPQIrr
4272 : X86::MOV64toPQIrr;
4274 if (X86::VR64RegClass.
contains(DestReg))
4275 return X86::MMX_MOVD64to64rr;
4281 if (X86::GR32RegClass.
contains(DestReg) &&
4282 X86::VR128XRegClass.contains(SrcReg))
4284 return HasAVX512 ? X86::VMOVPDI2DIZrr
4285 : HasAVX ? X86::VMOVPDI2DIrr
4288 if (X86::VR128XRegClass.
contains(DestReg) &&
4289 X86::GR32RegClass.contains(SrcReg))
4291 return HasAVX512 ? X86::VMOVDI2PDIZrr
4292 : HasAVX ? X86::VMOVDI2PDIrr
4301 bool RenamableDest,
bool RenamableSrc)
const {
4303 bool HasAVX = Subtarget.
hasAVX();
4304 bool HasVLX = Subtarget.hasVLX();
4305 bool HasEGPR = Subtarget.hasEGPR();
4307 if (X86::GR64RegClass.
contains(DestReg, SrcReg))
4309 else if (X86::GR32RegClass.
contains(DestReg, SrcReg))
4311 else if (X86::GR16RegClass.
contains(DestReg, SrcReg))
4313 else if (X86::GR8RegClass.
contains(DestReg, SrcReg)) {
4316 if ((
isHReg(DestReg) ||
isHReg(SrcReg)) && Subtarget.is64Bit()) {
4317 Opc = X86::MOV8rr_NOREX;
4320 "8-bit H register can not be copied outside GR8_NOREX");
4323 }
else if (X86::VR64RegClass.
contains(DestReg, SrcReg))
4324 Opc = X86::MMX_MOVQ64rr;
4325 else if (X86::VR128XRegClass.
contains(DestReg, SrcReg)) {
4327 Opc = X86::VMOVAPSZ128rr;
4328 else if (X86::VR128RegClass.
contains(DestReg, SrcReg))
4329 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4333 Opc = X86::VMOVAPSZrr;
4336 TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4338 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4340 }
else if (X86::VR256XRegClass.
contains(DestReg, SrcReg)) {
4342 Opc = X86::VMOVAPSZ256rr;
4343 else if (X86::VR256RegClass.
contains(DestReg, SrcReg))
4344 Opc = X86::VMOVAPSYrr;
4348 Opc = X86::VMOVAPSZrr;
4351 TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4353 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4355 }
else if (X86::VR512RegClass.
contains(DestReg, SrcReg))
4356 Opc = X86::VMOVAPSZrr;
4359 else if (X86::VK16RegClass.
contains(DestReg, SrcReg))
4360 Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4361 : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4371 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4379 LLVM_DEBUG(
dbgs() <<
"Cannot copy " << RI.getName(SrcReg) <<
" to "
4380 << RI.getName(DestReg) <<
'\n');
4384std::optional<DestSourcePair>
4386 if (
MI.isMoveReg()) {
4390 if (
MI.getOperand(0).isUndef() &&
MI.getOperand(0).getSubReg())
4391 return std::nullopt;
4395 return std::nullopt;
4400 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4402 return X86::MOVSHPrm;
4403 return X86::MOVSHPmr;
4408 bool IsStackAligned,
4410 bool HasAVX = STI.
hasAVX();
4412 bool HasVLX = STI.hasVLX();
4413 bool HasEGPR = STI.hasEGPR();
4415 assert(RC !=
nullptr &&
"Invalid target register class");
4420 assert(X86::GR8RegClass.hasSubClassEq(RC) &&
"Unknown 1-byte regclass");
4424 if (
isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4425 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4426 return Load ? X86::MOV8rm : X86::MOV8mr;
4428 if (X86::VK16RegClass.hasSubClassEq(RC))
4429 return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4430 : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4431 assert(X86::GR16RegClass.hasSubClassEq(RC) &&
"Unknown 2-byte regclass");
4432 return Load ? X86::MOV16rm : X86::MOV16mr;
4434 if (X86::GR32RegClass.hasSubClassEq(RC))
4435 return Load ? X86::MOV32rm : X86::MOV32mr;
4436 if (X86::FR32XRegClass.hasSubClassEq(RC))
4437 return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4438 : HasAVX ? X86::VMOVSSrm_alt
4440 : (HasAVX512 ? X86::VMOVSSZmr
4441 : HasAVX ? X86::VMOVSSmr
4443 if (X86::RFP32RegClass.hasSubClassEq(RC))
4444 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4445 if (X86::VK32RegClass.hasSubClassEq(RC)) {
4446 assert(STI.hasBWI() &&
"KMOVD requires BWI");
4447 return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4448 : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4452 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4453 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4454 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4455 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4456 X86::VK16PAIRRegClass.hasSubClassEq(RC))
4457 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4458 if (X86::FR16RegClass.hasSubClassEq(RC) ||
4459 X86::FR16XRegClass.hasSubClassEq(RC))
4463 if (X86::GR64RegClass.hasSubClassEq(RC))
4464 return Load ? X86::MOV64rm : X86::MOV64mr;
4465 if (X86::FR64XRegClass.hasSubClassEq(RC))
4466 return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4467 : HasAVX ? X86::VMOVSDrm_alt
4469 : (HasAVX512 ? X86::VMOVSDZmr
4470 : HasAVX ? X86::VMOVSDmr
4472 if (X86::VR64RegClass.hasSubClassEq(RC))
4473 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4474 if (X86::RFP64RegClass.hasSubClassEq(RC))
4475 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4476 if (X86::VK64RegClass.hasSubClassEq(RC)) {
4477 assert(STI.hasBWI() &&
"KMOVQ requires BWI");
4478 return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4479 : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4483 assert(X86::RFP80RegClass.hasSubClassEq(RC) &&
"Unknown 10-byte regclass");
4484 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4486 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4489 return Load ? (HasVLX ? X86::VMOVAPSZ128rm
4490 : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4491 : HasAVX ? X86::VMOVAPSrm
4493 : (HasVLX ? X86::VMOVAPSZ128mr
4494 : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4495 : HasAVX ? X86::VMOVAPSmr
4498 return Load ? (HasVLX ? X86::VMOVUPSZ128rm
4499 : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4500 : HasAVX ? X86::VMOVUPSrm
4502 : (HasVLX ? X86::VMOVUPSZ128mr
4503 : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4504 : HasAVX ? X86::VMOVUPSmr
4510 assert(X86::VR256XRegClass.hasSubClassEq(RC) &&
"Unknown 32-byte regclass");
4513 return Load ? (HasVLX ? X86::VMOVAPSZ256rm
4514 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4516 : (HasVLX ? X86::VMOVAPSZ256mr
4517 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4520 return Load ? (HasVLX ? X86::VMOVUPSZ256rm
4521 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4523 : (HasVLX ? X86::VMOVUPSZ256mr
4524 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4527 assert(X86::VR512RegClass.hasSubClassEq(RC) &&
"Unknown 64-byte regclass");
4530 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4532 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4534 assert(X86::TILERegClass.hasSubClassEq(RC) &&
"Unknown 1024-byte regclass");
4535 assert(STI.hasAMXTILE() &&
"Using 8*1024-bit register requires AMX-TILE");
4536#define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4539#undef GET_EGPR_IF_ENABLED
4541 assert(X86::TILEPAIRRegClass.hasSubClassEq(RC) &&
4542 "Unknown 2048-byte regclass");
4543 assert(STI.hasAMXTILE() &&
"Using 2048-bit register requires AMX-TILE");
4544 return Load ? X86::PTILEPAIRLOAD : X86::PTILEPAIRSTORE;
4548std::optional<ExtAddrMode>
4553 if (MemRefBegin < 0)
4554 return std::nullopt;
4559 if (!BaseOp.isReg())
4560 return std::nullopt;
4564 if (!DispMO.
isImm())
4565 return std::nullopt;
4591 ErrInfo =
"Scale factor in address must be 1, 2, 4 or 8";
4596 ErrInfo =
"Displacement in address must fit into 32-bit signed "
4606 int64_t &ImmVal)
const {
4612 if (
MI.isSubregToReg()) {
4616 if (!
MI.getOperand(1).isImm())
4618 unsigned FillBits =
MI.getOperand(1).getImm();
4619 unsigned SubIdx =
MI.getOperand(3).getImm();
4620 MovReg =
MI.getOperand(2).getReg();
4621 if (SubIdx != X86::sub_32bit || FillBits != 0)
4624 MovMI =
MRI.getUniqueVRegDef(MovReg);
4629 if (MovMI->
getOpcode() == X86::MOV32r0 &&
4635 if (MovMI->
getOpcode() != X86::MOV32ri &&
4649 if (!
MI->modifiesRegister(NullValueReg,
TRI))
4651 switch (
MI->getOpcode()) {
4658 assert(
MI->getOperand(0).isDef() &&
MI->getOperand(1).isUse() &&
4659 "expected for shift opcode!");
4660 return MI->getOperand(0).getReg() == NullValueReg &&
4661 MI->getOperand(1).getReg() == NullValueReg;
4666 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
4680 if (MemRefBegin < 0)
4687 if (!BaseOp->
isReg())
4700 if (!DispMO.
isImm())
4705 if (!BaseOp->
isReg())
4708 OffsetIsScalable =
false;
4712 Width = !
MemOp.memoperands_empty() ?
MemOp.memoperands().front()->getSize()
4720 bool IsStackAligned,
4735 case X86::TILELOADD:
4736 case X86::TILESTORED:
4737 case X86::TILELOADD_EVEX:
4738 case X86::TILESTORED_EVEX:
4739 case X86::PTILEPAIRLOAD:
4740 case X86::PTILEPAIRSTORE:
4748 bool isKill)
const {
4752 case X86::TILESTORED:
4753 case X86::TILESTORED_EVEX:
4754 case X86::PTILEPAIRSTORE: {
4767 case X86::TILELOADD:
4768 case X86::TILELOADD_EVEX:
4769 case X86::PTILEPAIRLOAD: {
4792 "Stack slot too small for store");
4794 unsigned Alignment = std::max<uint32_t>(
TRI->getSpillSize(*RC), 16);
4815 "Load size exceeds stack slot");
4816 unsigned Alignment = std::max<uint32_t>(
TRI->getSpillSize(*RC), 16);
4830 Register &SrcReg2, int64_t &CmpMask,
4831 int64_t &CmpValue)
const {
4832 switch (
MI.getOpcode()) {
4835 case X86::CMP64ri32:
4839 SrcReg =
MI.getOperand(0).getReg();
4841 if (
MI.getOperand(1).isImm()) {
4843 CmpValue =
MI.getOperand(1).getImm();
4845 CmpMask = CmpValue = 0;
4853 SrcReg =
MI.getOperand(1).getReg();
4862 SrcReg =
MI.getOperand(1).getReg();
4863 SrcReg2 =
MI.getOperand(2).getReg();
4871 SrcReg =
MI.getOperand(1).getReg();
4873 if (
MI.getOperand(2).isImm()) {
4875 CmpValue =
MI.getOperand(2).getImm();
4877 CmpMask = CmpValue = 0;
4884 SrcReg =
MI.getOperand(0).getReg();
4885 SrcReg2 =
MI.getOperand(1).getReg();
4893 SrcReg =
MI.getOperand(0).getReg();
4894 if (
MI.getOperand(1).getReg() != SrcReg)
4901 case X86::TEST64ri32:
4905 SrcReg =
MI.getOperand(0).getReg();
4915bool X86InstrInfo::isRedundantFlagInstr(
const MachineInstr &FlagI,
4917 int64_t ImmMask, int64_t ImmValue,
4919 int64_t *ImmDelta)
const {
4934 OIMask != ImmMask || OIValue != ImmValue)
4936 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4940 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4946 case X86::CMP64ri32:
4950 case X86::TEST64ri32:
4961 case X86::TEST8rr: {
4968 SrcReg == OISrcReg && ImmMask == OIMask) {
4969 if (OIValue == ImmValue) {
4972 }
else if (
static_cast<uint64_t>(ImmValue) ==
4973 static_cast<uint64_t>(OIValue) - 1) {
4976 }
else if (
static_cast<uint64_t>(ImmValue) ==
4977 static_cast<uint64_t>(OIValue) + 1) {
4995 bool &ClearsOverflowFlag) {
4997 ClearsOverflowFlag =
false;
5003 if (
MI.getOpcode() == X86::ADD64rm ||
MI.getOpcode() == X86::ADD32rm) {
5004 unsigned Flags =
MI.getOperand(5).getTargetFlags();
5010 switch (
MI.getOpcode()) {
5106 case X86::LZCNT16rr:
5107 case X86::LZCNT16rm:
5108 case X86::LZCNT32rr:
5109 case X86::LZCNT32rm:
5110 case X86::LZCNT64rr:
5111 case X86::LZCNT64rm:
5112 case X86::POPCNT16rr:
5113 case X86::POPCNT16rm:
5114 case X86::POPCNT32rr:
5115 case X86::POPCNT32rm:
5116 case X86::POPCNT64rr:
5117 case X86::POPCNT64rm:
5118 case X86::TZCNT16rr:
5119 case X86::TZCNT16rm:
5120 case X86::TZCNT32rr:
5121 case X86::TZCNT32rm:
5122 case X86::TZCNT64rr:
5123 case X86::TZCNT64rm:
5169 case X86::BLSMSK32rr:
5170 case X86::BLSMSK32rm:
5171 case X86::BLSMSK64rr:
5172 case X86::BLSMSK64rm:
5177 case X86::BLCFILL32rr:
5178 case X86::BLCFILL32rm:
5179 case X86::BLCFILL64rr:
5180 case X86::BLCFILL64rm:
5185 case X86::BLCIC32rr:
5186 case X86::BLCIC32rm:
5187 case X86::BLCIC64rr:
5188 case X86::BLCIC64rm:
5189 case X86::BLCMSK32rr:
5190 case X86::BLCMSK32rm:
5191 case X86::BLCMSK64rr:
5192 case X86::BLCMSK64rm:
5197 case X86::BLSFILL32rr:
5198 case X86::BLSFILL32rm:
5199 case X86::BLSFILL64rr:
5200 case X86::BLSFILL64rm:
5201 case X86::BLSIC32rr:
5202 case X86::BLSIC32rm:
5203 case X86::BLSIC64rr:
5204 case X86::BLSIC64rm:
5209 case X86::T1MSKC32rr:
5210 case X86::T1MSKC32rm:
5211 case X86::T1MSKC64rr:
5212 case X86::T1MSKC64rm:
5213 case X86::TZMSK32rr:
5214 case X86::TZMSK32rm:
5215 case X86::TZMSK64rr:
5216 case X86::TZMSK64rm:
5220 ClearsOverflowFlag =
true;
5222 case X86::BEXTR32rr:
5223 case X86::BEXTR64rr:
5224 case X86::BEXTR32rm:
5225 case X86::BEXTR64rm:
5226 case X86::BEXTRI32ri:
5227 case X86::BEXTRI32mi:
5228 case X86::BEXTRI64ri:
5229 case X86::BEXTRI64mi:
5240 switch (
MI.getOpcode()) {
5248 case X86::LZCNT16rr:
5249 case X86::LZCNT32rr:
5250 case X86::LZCNT64rr:
5252 case X86::POPCNT16rr:
5253 case X86::POPCNT32rr:
5254 case X86::POPCNT64rr:
5256 case X86::TZCNT16rr:
5257 case X86::TZCNT32rr:
5258 case X86::TZCNT64rr:
5272 case X86::BLSMSK32rr:
5273 case X86::BLSMSK64rr:
5305 unsigned NewOpcode = 0;
5306#define FROM_TO(A, B) \
5307 CASE_ND(A) NewOpcode = X86::B; \
5331 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5332 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5340 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5346 assert(SrcRegDef &&
"Must have a definition (SSA)");
5352 bool NoSignFlag =
false;
5353 bool ClearsOverflowFlag =
false;
5354 bool ShouldUpdateCC =
false;
5355 bool IsSwapped =
false;
5356 bool HasNF = Subtarget.hasNF();
5359 int64_t ImmDelta = 0;
5372 if (&Inst == SrcRegDef) {
5395 Subtarget, NoSignFlag, ClearsOverflowFlag)) {
5404 if (Inst.modifiesRegister(X86::EFLAGS,
TRI)) {
5415 Inst.getOperand(OpNo).getReg() == SrcReg) {
5416 ShouldUpdateCC =
true;
5427 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
5428 Inst, &IsSwapped, &ImmDelta)) {
5436 if (!Movr0Inst && Inst.
getOpcode() == X86::MOV32r0 &&
5437 Inst.registerDefIsDead(X86::EFLAGS,
TRI)) {
5451 if (HasNF && Inst.registerDefIsDead(X86::EFLAGS,
TRI) && !IsWithReloc) {
5456 InstsToUpdate.
push_back(std::make_pair(&Inst, NewOp));
5480 bool FlagsMayLiveOut =
true;
5485 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS,
TRI);
5486 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS,
TRI);
5488 if (!UseEFLAGS && ModifyEFLAGS) {
5490 FlagsMayLiveOut =
false;
5493 if (!UseEFLAGS && !ModifyEFLAGS)
5524 if (!ClearsOverflowFlag)
5543 ReplacementCC = NewCC;
5549 }
else if (IsSwapped) {
5556 ShouldUpdateCC =
true;
5557 }
else if (ImmDelta != 0) {
5558 unsigned BitWidth =
TRI->getRegSizeInBits(*
MRI->getRegClass(SrcReg));
5568 if (ImmDelta != 1 || CmpValue == 0)
5578 if (ImmDelta != 1 || CmpValue == 0)
5605 ShouldUpdateCC =
true;
5608 if (ShouldUpdateCC && ReplacementCC != OldCC) {
5612 OpsToUpdate.
push_back(std::make_pair(&Instr, ReplacementCC));
5614 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS,
TRI)) {
5616 FlagsMayLiveOut =
false;
5623 if ((
MI !=
nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5630 assert((
MI ==
nullptr ||
Sub ==
nullptr) &&
"Should not have Sub and MI set");
5637 if (&CmpMBB != SubBB)
5641 InsertE =
Sub->getParent()->rend();
5642 for (; InsertI != InsertE; ++InsertI) {
5644 if (!Instr->readsRegister(X86::EFLAGS,
TRI) &&
5645 Instr->modifiesRegister(X86::EFLAGS,
TRI)) {
5652 if (InsertI == InsertE)
5657 for (
auto &Inst : InstsToUpdate) {
5658 Inst.first->setDesc(
get(Inst.second));
5659 Inst.first->removeOperand(
5660 Inst.first->findRegisterDefOperandIdx(X86::EFLAGS,
nullptr));
5665 Sub->findRegisterDefOperand(X86::EFLAGS,
nullptr);
5666 assert(FlagDef &&
"Unable to locate a def EFLAGS operand");
5672 for (
auto &
Op : OpsToUpdate) {
5709#define FROM_TO(FROM, TO) \
5712 case X86::FROM##_ND: \
5713 return X86::TO##_ND;
5743#define FROM_TO(FROM, TO) \
5747 FROM_TO(CTEST64rr, CTEST64ri32)
5766 bool MakeChange)
const {
5773 if (
Reg.isVirtual())
5774 RC =
MRI->getRegClass(Reg);
5775 if ((
Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5776 (
Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5777 if (!isInt<32>(ImmVal))
5781 if (
UseMI.findRegisterUseOperand(Reg,
nullptr)->getSubReg())
5785 if (
UseMI.getMF()->getFunction().hasOptSize() &&
Reg.isVirtual() &&
5786 !
MRI->hasOneNonDBGUse(Reg))
5791 if (
Opc == TargetOpcode::COPY) {
5795 RC =
MRI->getRegClass(ToReg);
5796 bool GR32Reg = (ToReg.
isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5797 (ToReg.
isPhysical() && X86::GR32RegClass.contains(ToReg));
5798 bool GR64Reg = (ToReg.
isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5799 (ToReg.
isPhysical() && X86::GR64RegClass.contains(ToReg));
5800 bool GR8Reg = (ToReg.
isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5801 (ToReg.
isPhysical() && X86::GR8RegClass.contains(ToReg));
5810 if (isUInt<32>(ImmVal))
5811 NewOpc = X86::MOV32ri64;
5813 NewOpc = X86::MOV64ri;
5814 }
else if (GR32Reg) {
5815 NewOpc = X86::MOV32ri;
5819 if (
UseMI.getParent()->computeRegisterLiveness(
5828 UseMI.removeOperand(
5829 UseMI.findRegisterUseOperandIdx(Reg,
nullptr));
5837 NewOpc = X86::MOV8ri;
5847 if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5848 NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri ||
5849 NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND ||
5850 NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) &&
5851 UseMI.findRegisterUseOperandIdx(Reg,
nullptr) != 2)
5854 if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) ||
5855 (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) &&
5856 UseMI.findRegisterUseOperandIdx(Reg,
nullptr) != 1)
5859 using namespace X86;
5860 if (isSHL(
Opc) || isSHR(
Opc) || isSAR(
Opc) || isROL(
Opc) || isROR(
Opc) ||
5861 isRCL(
Opc) || isRCR(
Opc)) {
5862 unsigned RegIdx =
UseMI.findRegisterUseOperandIdx(Reg,
nullptr);
5865 if (!isInt<8>(ImmVal))
5872 UseMI.removeOperand(RegIdx);
5886 UseMI.registerDefIsDead(X86::EFLAGS,
nullptr)) {
5890 UseMI.setDesc(
get(TargetOpcode::COPY));
5891 UseMI.removeOperand(
5892 UseMI.findRegisterUseOperandIdx(Reg,
nullptr));
5893 UseMI.removeOperand(
5894 UseMI.findRegisterDefOperandIdx(X86::EFLAGS,
nullptr));
5895 UseMI.untieRegOperand(0);
5899 unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5900 unsigned ImmOpNum = 2;
5901 if (!
UseMI.getOperand(0).isDef()) {
5905 if (
Opc == TargetOpcode::COPY)
5909 commuteInstruction(
UseMI);
5913 UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal);
5917 if (
Reg.isVirtual() &&
MRI->use_nodbg_empty(Reg))
5931 return foldImmediateImpl(
UseMI, &
DefMI, Reg, ImmVal,
MRI,
true);
5943 assert(
Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.");
5963 assert(
Desc.getNumOperands() == 3 &&
"Expected two-addr instruction.");
5981 MIB->
setDesc(
TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5993 assert(Imm != 0 &&
"Using push/pop for 0 is not efficient.");
5996 int StackAdjustment;
5998 if (Subtarget.is64Bit()) {
6000 MIB->
getOpcode() == X86::MOV32ImmSExti8);
6014 StackAdjustment = 8;
6020 StackAdjustment = 4;
6032 bool EmitCFI = !TFL->
hasFP(MF) && NeedsDwarfCFI;
6079 MIB->
getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
6091 const MCInstrDesc &BroadcastDesc,
unsigned SubIdx) {
6094 if (
TRI->getEncodingValue(DestReg) < 16) {
6101 DestReg =
TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
6113 const MCInstrDesc &ExtractDesc,
unsigned SubIdx) {
6116 if (
TRI->getEncodingValue(SrcReg) < 16) {
6123 SrcReg =
TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
6146 if (
MI.getOpcode() == X86::MOVSHPrm) {
6147 NewOpc = HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
6149 if (Reg > X86::XMM15)
6150 NewOpc = X86::VMOVSSZrm;
6152 NewOpc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
6154 if (Reg > X86::XMM15)
6155 NewOpc = X86::VMOVSSZmr;
6163 bool HasAVX = Subtarget.
hasAVX();
6165 switch (
MI.getOpcode()) {
6172 case X86::MOV32ImmSExti8:
6173 case X86::MOV64ImmSExti8:
6175 case X86::SETB_C32r:
6177 case X86::SETB_C64r:
6185 case X86::FsFLD0F128:
6187 case X86::AVX_SET0: {
6188 assert(HasAVX &&
"AVX not supported");
6191 Register XReg =
TRI->getSubReg(SrcReg, X86::sub_xmm);
6197 case X86::AVX512_128_SET0:
6198 case X86::AVX512_FsFLD0SH:
6199 case X86::AVX512_FsFLD0SS:
6200 case X86::AVX512_FsFLD0SD:
6201 case X86::AVX512_FsFLD0F128: {
6202 bool HasVLX = Subtarget.hasVLX();
6205 if (HasVLX ||
TRI->getEncodingValue(SrcReg) < 16)
6207 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6210 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6214 case X86::AVX512_256_SET0:
6215 case X86::AVX512_512_SET0: {
6216 bool HasVLX = Subtarget.hasVLX();
6219 if (HasVLX ||
TRI->getEncodingValue(SrcReg) < 16) {
6220 Register XReg =
TRI->getSubReg(SrcReg, X86::sub_xmm);
6226 if (
MI.getOpcode() == X86::AVX512_256_SET0) {
6229 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6237 case X86::V_SETALLONES:
6239 get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6240 case X86::AVX2_SETALLONES:
6242 case X86::AVX1_SETALLONES: {
6249 case X86::AVX512_512_SETALLONES: {
6260 case X86::AVX512_512_SEXT_MASK_32:
6261 case X86::AVX512_512_SEXT_MASK_64: {
6265 unsigned Opc = (
MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6266 ? X86::VPTERNLOGQZrrikz
6267 : X86::VPTERNLOGDZrrikz;
6268 MI.removeOperand(1);
6273 .
addReg(MaskReg, MaskState)
6279 case X86::VMOVAPSZ128rm_NOVLX:
6281 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm);
6282 case X86::VMOVUPSZ128rm_NOVLX:
6284 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm);
6285 case X86::VMOVAPSZ256rm_NOVLX:
6287 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm);
6288 case X86::VMOVUPSZ256rm_NOVLX:
6290 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm);
6291 case X86::VMOVAPSZ128mr_NOVLX:
6293 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm);
6294 case X86::VMOVUPSZ128mr_NOVLX:
6296 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm);
6297 case X86::VMOVAPSZ256mr_NOVLX:
6299 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm);
6300 case X86::VMOVUPSZ256mr_NOVLX:
6302 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm);
6303 case X86::MOV32ri64: {
6305 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6306 MI.setDesc(
get(X86::MOV32ri));
6312 case X86::RDFLAGS32:
6313 case X86::RDFLAGS64: {
6314 unsigned Is64Bit =
MI.getOpcode() == X86::RDFLAGS64;
6318 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6326 "Unexpected register in operand! Should be EFLAGS.");
6329 "Unexpected register in operand! Should be DF.");
6332 MIB->
setDesc(
get(Is64Bit ? X86::POP64r : X86::POP32r));
6336 case X86::WRFLAGS32:
6337 case X86::WRFLAGS64: {
6338 unsigned Is64Bit =
MI.getOpcode() == X86::WRFLAGS64;
6342 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6343 .
addReg(
MI.getOperand(0).getReg());
6345 get(Is64Bit ? X86::POPF64 : X86::POPF32));
6346 MI.eraseFromParent();
6369 case TargetOpcode::LOAD_STACK_GUARD:
6375 case X86::SHLDROT32ri:
6377 case X86::SHLDROT64ri:
6379 case X86::SHRDROT32ri:
6381 case X86::SHRDROT64ri:
6383 case X86::ADD8rr_DB:
6386 case X86::ADD16rr_DB:
6389 case X86::ADD32rr_DB:
6392 case X86::ADD64rr_DB:
6395 case X86::ADD8ri_DB:
6398 case X86::ADD16ri_DB:
6401 case X86::ADD32ri_DB:
6404 case X86::ADD64ri32_DB:
6428 bool ForLoadFold =
false) {
6430 case X86::CVTSI2SSrr:
6431 case X86::CVTSI2SSrm:
6432 case X86::CVTSI642SSrr:
6433 case X86::CVTSI642SSrm:
6434 case X86::CVTSI2SDrr:
6435 case X86::CVTSI2SDrm:
6436 case X86::CVTSI642SDrr:
6437 case X86::CVTSI642SDrm:
6440 return !ForLoadFold;
6441 case X86::CVTSD2SSrr:
6442 case X86::CVTSD2SSrm:
6443 case X86::CVTSS2SDrr:
6444 case X86::CVTSS2SDrm:
6451 case X86::RCPSSr_Int:
6452 case X86::RCPSSm_Int:
6453 case X86::ROUNDSDri:
6454 case X86::ROUNDSDmi:
6455 case X86::ROUNDSSri:
6456 case X86::ROUNDSSmi:
6459 case X86::RSQRTSSr_Int:
6460 case X86::RSQRTSSm_Int:
6463 case X86::SQRTSSr_Int:
6464 case X86::SQRTSSm_Int:
6467 case X86::SQRTSDr_Int:
6468 case X86::SQRTSDm_Int:
6470 case X86::VFCMULCPHZ128rm:
6471 case X86::VFCMULCPHZ128rmb:
6472 case X86::VFCMULCPHZ128rmbkz:
6473 case X86::VFCMULCPHZ128rmkz:
6474 case X86::VFCMULCPHZ128rr:
6475 case X86::VFCMULCPHZ128rrkz:
6476 case X86::VFCMULCPHZ256rm:
6477 case X86::VFCMULCPHZ256rmb:
6478 case X86::VFCMULCPHZ256rmbkz:
6479 case X86::VFCMULCPHZ256rmkz:
6480 case X86::VFCMULCPHZ256rr:
6481 case X86::VFCMULCPHZ256rrkz:
6482 case X86::VFCMULCPHZrm:
6483 case X86::VFCMULCPHZrmb:
6484 case X86::VFCMULCPHZrmbkz:
6485 case X86::VFCMULCPHZrmkz:
6486 case X86::VFCMULCPHZrr:
6487 case X86::VFCMULCPHZrrb:
6488 case X86::VFCMULCPHZrrbkz:
6489 case X86::VFCMULCPHZrrkz:
6490 case X86::VFMULCPHZ128rm:
6491 case X86::VFMULCPHZ128rmb:
6492 case X86::VFMULCPHZ128rmbkz:
6493 case X86::VFMULCPHZ128rmkz:
6494 case X86::VFMULCPHZ128rr:
6495 case X86::VFMULCPHZ128rrkz:
6496 case X86::VFMULCPHZ256rm:
6497 case X86::VFMULCPHZ256rmb:
6498 case X86::VFMULCPHZ256rmbkz:
6499 case X86::VFMULCPHZ256rmkz:
6500 case X86::VFMULCPHZ256rr:
6501 case X86::VFMULCPHZ256rrkz:
6502 case X86::VFMULCPHZrm:
6503 case X86::VFMULCPHZrmb:
6504 case X86::VFMULCPHZrmbkz:
6505 case X86::VFMULCPHZrmkz:
6506 case X86::VFMULCPHZrr:
6507 case X86::VFMULCPHZrrb:
6508 case X86::VFMULCPHZrrbkz:
6509 case X86::VFMULCPHZrrkz:
6510 case X86::VFCMULCSHZrm:
6511 case X86::VFCMULCSHZrmkz:
6512 case X86::VFCMULCSHZrr:
6513 case X86::VFCMULCSHZrrb:
6514 case X86::VFCMULCSHZrrbkz:
6515 case X86::VFCMULCSHZrrkz:
6516 case X86::VFMULCSHZrm:
6517 case X86::VFMULCSHZrmkz:
6518 case X86::VFMULCSHZrr:
6519 case X86::VFMULCSHZrrb:
6520 case X86::VFMULCSHZrrbkz:
6521 case X86::VFMULCSHZrrkz:
6522 return Subtarget.hasMULCFalseDeps();
6523 case X86::VPERMDYrm:
6524 case X86::VPERMDYrr:
6525 case X86::VPERMQYmi:
6526 case X86::VPERMQYri:
6527 case X86::VPERMPSYrm:
6528 case X86::VPERMPSYrr:
6529 case X86::VPERMPDYmi:
6530 case X86::VPERMPDYri:
6531 case X86::VPERMDZ256rm:
6532 case X86::VPERMDZ256rmb:
6533 case X86::VPERMDZ256rmbkz:
6534 case X86::VPERMDZ256rmkz:
6535 case X86::VPERMDZ256rr:
6536 case X86::VPERMDZ256rrkz:
6537 case X86::VPERMDZrm:
6538 case X86::VPERMDZrmb:
6539 case X86::VPERMDZrmbkz:
6540 case X86::VPERMDZrmkz:
6541 case X86::VPERMDZrr:
6542 case X86::VPERMDZrrkz:
6543 case X86::VPERMQZ256mbi:
6544 case X86::VPERMQZ256mbikz:
6545 case X86::VPERMQZ256mi:
6546 case X86::VPERMQZ256mikz:
6547 case X86::VPERMQZ256ri:
6548 case X86::VPERMQZ256rikz:
6549 case X86::VPERMQZ256rm:
6550 case X86::VPERMQZ256rmb:
6551 case X86::VPERMQZ256rmbkz:
6552 case X86::VPERMQZ256rmkz:
6553 case X86::VPERMQZ256rr:
6554 case X86::VPERMQZ256rrkz:
6555 case X86::VPERMQZmbi:
6556 case X86::VPERMQZmbikz:
6557 case X86::VPERMQZmi:
6558 case X86::VPERMQZmikz:
6559 case X86::VPERMQZri:
6560 case X86::VPERMQZrikz:
6561 case X86::VPERMQZrm:
6562 case X86::VPERMQZrmb:
6563 case X86::VPERMQZrmbkz:
6564 case X86::VPERMQZrmkz:
6565 case X86::VPERMQZrr:
6566 case X86::VPERMQZrrkz:
6567 case X86::VPERMPSZ256rm:
6568 case X86::VPERMPSZ256rmb:
6569 case X86::VPERMPSZ256rmbkz:
6570 case X86::VPERMPSZ256rmkz:
6571 case X86::VPERMPSZ256rr:
6572 case X86::VPERMPSZ256rrkz:
6573 case X86::VPERMPSZrm:
6574 case X86::VPERMPSZrmb:
6575 case X86::VPERMPSZrmbkz:
6576 case X86::VPERMPSZrmkz:
6577 case X86::VPERMPSZrr:
6578 case X86::VPERMPSZrrkz:
6579 case X86::VPERMPDZ256mbi:
6580 case X86::VPERMPDZ256mbikz:
6581 case X86::VPERMPDZ256mi:
6582 case X86::VPERMPDZ256mikz:
6583 case X86::VPERMPDZ256ri:
6584 case X86::VPERMPDZ256rikz:
6585 case X86::VPERMPDZ256rm:
6586 case X86::VPERMPDZ256rmb:
6587 case X86::VPERMPDZ256rmbkz:
6588 case X86::VPERMPDZ256rmkz:
6589 case X86::VPERMPDZ256rr:
6590 case X86::VPERMPDZ256rrkz:
6591 case X86::VPERMPDZmbi:
6592 case X86::VPERMPDZmbikz:
6593 case X86::VPERMPDZmi:
6594 case X86::VPERMPDZmikz:
6595 case X86::VPERMPDZri:
6596 case X86::VPERMPDZrikz:
6597 case X86::VPERMPDZrm:
6598 case X86::VPERMPDZrmb:
6599 case X86::VPERMPDZrmbkz:
6600 case X86::VPERMPDZrmkz:
6601 case X86::VPERMPDZrr:
6602 case X86::VPERMPDZrrkz:
6603 return Subtarget.hasPERMFalseDeps();
6604 case X86::VRANGEPDZ128rmbi:
6605 case X86::VRANGEPDZ128rmbikz:
6606 case X86::VRANGEPDZ128rmi:
6607 case X86::VRANGEPDZ128rmikz:
6608 case X86::VRANGEPDZ128rri:
6609 case X86::VRANGEPDZ128rrikz:
6610 case X86::VRANGEPDZ256rmbi:
6611 case X86::VRANGEPDZ256rmbikz:
6612 case X86::VRANGEPDZ256rmi:
6613 case X86::VRANGEPDZ256rmikz:
6614 case X86::VRANGEPDZ256rri:
6615 case X86::VRANGEPDZ256rrikz:
6616 case X86::VRANGEPDZrmbi:
6617 case X86::VRANGEPDZrmbikz:
6618 case X86::VRANGEPDZrmi:
6619 case X86::VRANGEPDZrmikz:
6620 case X86::VRANGEPDZrri:
6621 case X86::VRANGEPDZrrib:
6622 case X86::VRANGEPDZrribkz:
6623 case X86::VRANGEPDZrrikz:
6624 case X86::VRANGEPSZ128rmbi:
6625 case X86::VRANGEPSZ128rmbikz:
6626 case X86::VRANGEPSZ128rmi:
6627 case X86::VRANGEPSZ128rmikz:
6628 case X86::VRANGEPSZ128rri:
6629 case X86::VRANGEPSZ128rrikz:
6630 case X86::VRANGEPSZ256rmbi:
6631 case X86::VRANGEPSZ256rmbikz:
6632 case X86::VRANGEPSZ256rmi:
6633 case X86::VRANGEPSZ256rmikz:
6634 case X86::VRANGEPSZ256rri:
6635 case X86::VRANGEPSZ256rrikz:
6636 case X86::VRANGEPSZrmbi:
6637 case X86::VRANGEPSZrmbikz:
6638 case X86::VRANGEPSZrmi:
6639 case X86::VRANGEPSZrmikz:
6640 case X86::VRANGEPSZrri:
6641 case X86::VRANGEPSZrrib:
6642 case X86::VRANGEPSZrribkz:
6643 case X86::VRANGEPSZrrikz:
6644 case X86::VRANGESDZrmi:
6645 case X86::VRANGESDZrmikz:
6646 case X86::VRANGESDZrri:
6647 case X86::VRANGESDZrrib:
6648 case X86::VRANGESDZrribkz:
6649 case X86::VRANGESDZrrikz:
6650 case X86::VRANGESSZrmi:
6651 case X86::VRANGESSZrmikz:
6652 case X86::VRANGESSZrri:
6653 case X86::VRANGESSZrrib:
6654 case X86::VRANGESSZrribkz:
6655 case X86::VRANGESSZrrikz:
6656 return Subtarget.hasRANGEFalseDeps();
6657 case X86::VGETMANTSSZrmi:
6658 case X86::VGETMANTSSZrmikz:
6659 case X86::VGETMANTSSZrri:
6660 case X86::VGETMANTSSZrrib:
6661 case X86::VGETMANTSSZrribkz:
6662 case X86::VGETMANTSSZrrikz:
6663 case X86::VGETMANTSDZrmi:
6664 case X86::VGETMANTSDZrmikz:
6665 case X86::VGETMANTSDZrri:
6666 case X86::VGETMANTSDZrrib:
6667 case X86::VGETMANTSDZrribkz:
6668 case X86::VGETMANTSDZrrikz:
6669 case X86::VGETMANTSHZrmi:
6670 case X86::VGETMANTSHZrmikz:
6671 case X86::VGETMANTSHZrri:
6672 case X86::VGETMANTSHZrrib:
6673 case X86::VGETMANTSHZrribkz:
6674 case X86::VGETMANTSHZrrikz:
6675 case X86::VGETMANTPSZ128rmbi:
6676 case X86::VGETMANTPSZ128rmbikz:
6677 case X86::VGETMANTPSZ128rmi:
6678 case X86::VGETMANTPSZ128rmikz:
6679 case X86::VGETMANTPSZ256rmbi:
6680 case X86::VGETMANTPSZ256rmbikz:
6681 case X86::VGETMANTPSZ256rmi:
6682 case X86::VGETMANTPSZ256rmikz:
6683 case X86::VGETMANTPSZrmbi:
6684 case X86::VGETMANTPSZrmbikz:
6685 case X86::VGETMANTPSZrmi:
6686 case X86::VGETMANTPSZrmikz:
6687 case X86::VGETMANTPDZ128rmbi:
6688 case X86::VGETMANTPDZ128rmbikz:
6689 case X86::VGETMANTPDZ128rmi:
6690 case X86::VGETMANTPDZ128rmikz:
6691 case X86::VGETMANTPDZ256rmbi:
6692 case X86::VGETMANTPDZ256rmbikz:
6693 case X86::VGETMANTPDZ256rmi:
6694 case X86::VGETMANTPDZ256rmikz:
6695 case X86::VGETMANTPDZrmbi:
6696 case X86::VGETMANTPDZrmbikz:
6697 case X86::VGETMANTPDZrmi:
6698 case X86::VGETMANTPDZrmikz:
6699 return Subtarget.hasGETMANTFalseDeps();
6700 case X86::VPMULLQZ128rm:
6701 case X86::VPMULLQZ128rmb:
6702 case X86::VPMULLQZ128rmbkz:
6703 case X86::VPMULLQZ128rmkz:
6704 case X86::VPMULLQZ128rr:
6705 case X86::VPMULLQZ128rrkz:
6706 case X86::VPMULLQZ256rm:
6707 case X86::VPMULLQZ256rmb:
6708 case X86::VPMULLQZ256rmbkz:
6709 case X86::VPMULLQZ256rmkz:
6710 case X86::VPMULLQZ256rr:
6711 case X86::VPMULLQZ256rrkz:
6712 case X86::VPMULLQZrm:
6713 case X86::VPMULLQZrmb:
6714 case X86::VPMULLQZrmbkz:
6715 case X86::VPMULLQZrmkz:
6716 case X86::VPMULLQZrr:
6717 case X86::VPMULLQZrrkz:
6718 return Subtarget.hasMULLQFalseDeps();
6720 case X86::POPCNT32rm:
6721 case X86::POPCNT32rr:
6722 case X86::POPCNT64rm:
6723 case X86::POPCNT64rr:
6724 return Subtarget.hasPOPCNTFalseDeps();
6725 case X86::LZCNT32rm:
6726 case X86::LZCNT32rr:
6727 case X86::LZCNT64rm:
6728 case X86::LZCNT64rr:
6729 case X86::TZCNT32rm:
6730 case X86::TZCNT32rr:
6731 case X86::TZCNT64rm:
6732 case X86::TZCNT64rr:
6733 return Subtarget.hasLZCNTFalseDeps();
6750 bool HasNDDPartialWrite =
false;
6753 if (!Reg.isVirtual())
6754 HasNDDPartialWrite =
6755 X86::GR8RegClass.contains(Reg) || X86::GR16RegClass.contains(Reg);
6768 bool ReadsReg =
false;
6769 if (Reg.isVirtual())
6770 ReadsReg = (MO.
readsReg() ||
MI.readsVirtualRegister(Reg));
6772 ReadsReg =
MI.readsRegister(Reg,
TRI);
6773 if (ReadsReg != HasNDDPartialWrite)
6787 bool ForLoadFold =
false) {
6790 case X86::MMX_PUNPCKHBWrr:
6791 case X86::MMX_PUNPCKHWDrr:
6792 case X86::MMX_PUNPCKHDQrr:
6793 case X86::MMX_PUNPCKLBWrr:
6794 case X86::MMX_PUNPCKLWDrr:
6795 case X86::MMX_PUNPCKLDQrr:
6796 case X86::MOVHLPSrr:
6797 case X86::PACKSSWBrr:
6798 case X86::PACKUSWBrr:
6799 case X86::PACKSSDWrr:
6800 case X86::PACKUSDWrr:
6801 case X86::PUNPCKHBWrr:
6802 case X86::PUNPCKLBWrr:
6803 case X86::PUNPCKHWDrr:
6804 case X86::PUNPCKLWDrr:
6805 case X86::PUNPCKHDQrr:
6806 case X86::PUNPCKLDQrr:
6807 case X86::PUNPCKHQDQrr:
6808 case X86::PUNPCKLQDQrr:
6809 case X86::SHUFPDrri:
6810 case X86::SHUFPSrri:
6816 return OpNum == 2 && !ForLoadFold;
6818 case X86::VMOVLHPSrr:
6819 case X86::VMOVLHPSZrr:
6820 case X86::VPACKSSWBrr:
6821 case X86::VPACKUSWBrr:
6822 case X86::VPACKSSDWrr:
6823 case X86::VPACKUSDWrr:
6824 case X86::VPACKSSWBZ128rr:
6825 case X86::VPACKUSWBZ128rr:
6826 case X86::VPACKSSDWZ128rr:
6827 case X86::VPACKUSDWZ128rr:
6828 case X86::VPERM2F128rri:
6829 case X86::VPERM2I128rri:
6830 case X86::VSHUFF32X4Z256rri:
6831 case X86::VSHUFF32X4Zrri:
6832 case X86::VSHUFF64X2Z256rri:
6833 case X86::VSHUFF64X2Zrri:
6834 case X86::VSHUFI32X4Z256rri:
6835 case X86::VSHUFI32X4Zrri:
6836 case X86::VSHUFI64X2Z256rri:
6837 case X86::VSHUFI64X2Zrri:
6838 case X86::VPUNPCKHBWrr:
6839 case X86::VPUNPCKLBWrr:
6840 case X86::VPUNPCKHBWYrr:
6841 case X86::VPUNPCKLBWYrr:
6842 case X86::VPUNPCKHBWZ128rr:
6843 case X86::VPUNPCKLBWZ128rr:
6844 case X86::VPUNPCKHBWZ256rr:
6845 case X86::VPUNPCKLBWZ256rr:
6846 case X86::VPUNPCKHBWZrr:
6847 case X86::VPUNPCKLBWZrr:
6848 case X86::VPUNPCKHWDrr:
6849 case X86::VPUNPCKLWDrr:
6850 case X86::VPUNPCKHWDYrr:
6851 case X86::VPUNPCKLWDYrr:
6852 case X86::VPUNPCKHWDZ128rr:
6853 case X86::VPUNPCKLWDZ128rr:
6854 case X86::VPUNPCKHWDZ256rr:
6855 case X86::VPUNPCKLWDZ256rr:
6856 case X86::VPUNPCKHWDZrr:
6857 case X86::VPUNPCKLWDZrr:
6858 case X86::VPUNPCKHDQrr:
6859 case X86::VPUNPCKLDQrr:
6860 case X86::VPUNPCKHDQYrr:
6861 case X86::VPUNPCKLDQYrr:
6862 case X86::VPUNPCKHDQZ128rr:
6863 case X86::VPUNPCKLDQZ128rr:
6864 case X86::VPUNPCKHDQZ256rr:
6865 case X86::VPUNPCKLDQZ256rr:
6866 case X86::VPUNPCKHDQZrr:
6867 case X86::VPUNPCKLDQZrr:
6868 case X86::VPUNPCKHQDQrr:
6869 case X86::VPUNPCKLQDQrr:
6870 case X86::VPUNPCKHQDQYrr:
6871 case X86::VPUNPCKLQDQYrr:
6872 case X86::VPUNPCKHQDQZ128rr:
6873 case X86::VPUNPCKLQDQZ128rr:
6874 case X86::VPUNPCKHQDQZ256rr:
6875 case X86::VPUNPCKLQDQZ256rr:
6876 case X86::VPUNPCKHQDQZrr:
6877 case X86::VPUNPCKLQDQZrr:
6881 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6883 case X86::VCVTSI2SSrr:
6884 case X86::VCVTSI2SSrm:
6885 case X86::VCVTSI2SSrr_Int:
6886 case X86::VCVTSI2SSrm_Int:
6887 case X86::VCVTSI642SSrr:
6888 case X86::VCVTSI642SSrm:
6889 case X86::VCVTSI642SSrr_Int:
6890 case X86::VCVTSI642SSrm_Int:
6891 case X86::VCVTSI2SDrr:
6892 case X86::VCVTSI2SDrm:
6893 case X86::VCVTSI2SDrr_Int:
6894 case X86::VCVTSI2SDrm_Int:
6895 case X86::VCVTSI642SDrr:
6896 case X86::VCVTSI642SDrm:
6897 case X86::VCVTSI642SDrr_Int:
6898 case X86::VCVTSI642SDrm_Int:
6900 case X86::VCVTSI2SSZrr:
6901 case X86::VCVTSI2SSZrm:
6902 case X86::VCVTSI2SSZrr_Int:
6903 case X86::VCVTSI2SSZrrb_Int:
6904 case X86::VCVTSI2SSZrm_Int:
6905 case X86::VCVTSI642SSZrr:
6906 case X86::VCVTSI642SSZrm:
6907 case X86::VCVTSI642SSZrr_Int:
6908 case X86::VCVTSI642SSZrrb_Int:
6909 case X86::VCVTSI642SSZrm_Int:
6910 case X86::VCVTSI2SDZrr:
6911 case X86::VCVTSI2SDZrm:
6912 case X86::VCVTSI2SDZrr_Int:
6913 case X86::VCVTSI2SDZrm_Int:
6914 case X86::VCVTSI642SDZrr:
6915 case X86::VCVTSI642SDZrm:
6916 case X86::VCVTSI642SDZrr_Int:
6917 case X86::VCVTSI642SDZrrb_Int:
6918 case X86::VCVTSI642SDZrm_Int:
6919 case X86::VCVTUSI2SSZrr:
6920 case X86::VCVTUSI2SSZrm:
6921 case X86::VCVTUSI2SSZrr_Int:
6922 case X86::VCVTUSI2SSZrrb_Int:
6923 case X86::VCVTUSI2SSZrm_Int:
6924 case X86::VCVTUSI642SSZrr:
6925 case X86::VCVTUSI642SSZrm:
6926 case X86::VCVTUSI642SSZrr_Int:
6927 case X86::VCVTUSI642SSZrrb_Int:
6928 case X86::VCVTUSI642SSZrm_Int:
6929 case X86::VCVTUSI2SDZrr:
6930 case X86::VCVTUSI2SDZrm:
6931 case X86::VCVTUSI2SDZrr_Int:
6932 case X86::VCVTUSI2SDZrm_Int:
6933 case X86::VCVTUSI642SDZrr:
6934 case X86::VCVTUSI642SDZrm:
6935 case X86::VCVTUSI642SDZrr_Int:
6936 case X86::VCVTUSI642SDZrrb_Int:
6937 case X86::VCVTUSI642SDZrm_Int:
6938 case X86::VCVTSI2SHZrr:
6939 case X86::VCVTSI2SHZrm:
6940 case X86::VCVTSI2SHZrr_Int:
6941 case X86::VCVTSI2SHZrrb_Int:
6942 case X86::VCVTSI2SHZrm_Int:
6943 case X86::VCVTSI642SHZrr:
6944 case X86::VCVTSI642SHZrm:
6945 case X86::VCVTSI642SHZrr_Int:
6946 case X86::VCVTSI642SHZrrb_Int:
6947 case X86::VCVTSI642SHZrm_Int:
6948 case X86::VCVTUSI2SHZrr:
6949 case X86::VCVTUSI2SHZrm:
6950 case X86::VCVTUSI2SHZrr_Int:
6951 case X86::VCVTUSI2SHZrrb_Int:
6952 case X86::VCVTUSI2SHZrm_Int:
6953 case X86::VCVTUSI642SHZrr:
6954 case X86::VCVTUSI642SHZrm:
6955 case X86::VCVTUSI642SHZrr_Int:
6956 case X86::VCVTUSI642SHZrrb_Int:
6957 case X86::VCVTUSI642SHZrm_Int:
6960 return OpNum == 1 && !ForLoadFold;
6961 case X86::VCVTSD2SSrr:
6962 case X86::VCVTSD2SSrm:
6963 case X86::VCVTSD2SSrr_Int:
6964 case X86::VCVTSD2SSrm_Int:
6965 case X86::VCVTSS2SDrr:
6966 case X86::VCVTSS2SDrm:
6967 case X86::VCVTSS2SDrr_Int:
6968 case X86::VCVTSS2SDrm_Int:
6970 case X86::VRCPSSr_Int:
6972 case X86::VRCPSSm_Int:
6973 case X86::VROUNDSDri:
6974 case X86::VROUNDSDmi:
6975 case X86::VROUNDSDri_Int:
6976 case X86::VROUNDSDmi_Int:
6977 case X86::VROUNDSSri:
6978 case X86::VROUNDSSmi:
6979 case X86::VROUNDSSri_Int:
6980 case X86::VROUNDSSmi_Int:
6981 case X86::VRSQRTSSr:
6982 case X86::VRSQRTSSr_Int:
6983 case X86::VRSQRTSSm:
6984 case X86::VRSQRTSSm_Int:
6986 case X86::VSQRTSSr_Int:
6988 case X86::VSQRTSSm_Int:
6990 case X86::VSQRTSDr_Int:
6992 case X86::VSQRTSDm_Int:
6994 case X86::VCVTSD2SSZrr:
6995 case X86::VCVTSD2SSZrr_Int:
6996 case X86::VCVTSD2SSZrrb_Int:
6997 case X86::VCVTSD2SSZrm:
6998 case X86::VCVTSD2SSZrm_Int:
6999 case X86::VCVTSS2SDZrr:
7000 case X86::VCVTSS2SDZrr_Int:
7001 case X86::VCVTSS2SDZrrb_Int:
7002 case X86::VCVTSS2SDZrm:
7003 case X86::VCVTSS2SDZrm_Int:
7004 case X86::VGETEXPSDZr:
7005 case X86::VGETEXPSDZrb:
7006 case X86::VGETEXPSDZm:
7007 case X86::VGETEXPSSZr:
7008 case X86::VGETEXPSSZrb:
7009 case X86::VGETEXPSSZm:
7010 case X86::VGETMANTSDZrri:
7011 case X86::VGETMANTSDZrrib:
7012 case X86::VGETMANTSDZrmi:
7013 case X86::VGETMANTSSZrri:
7014 case X86::VGETMANTSSZrrib:
7015 case X86::VGETMANTSSZrmi:
7016 case X86::VRNDSCALESDZrri:
7017 case X86::VRNDSCALESDZrri_Int:
7018 case X86::VRNDSCALESDZrrib_Int:
7019 case X86::VRNDSCALESDZrmi:
7020 case X86::VRNDSCALESDZrmi_Int:
7021 case X86::VRNDSCALESSZrri:
7022 case X86::VRNDSCALESSZrri_Int:
7023 case X86::VRNDSCALESSZrrib_Int:
7024 case X86::VRNDSCALESSZrmi:
7025 case X86::VRNDSCALESSZrmi_Int:
7026 case X86::VRCP14SDZrr:
7027 case X86::VRCP14SDZrm:
7028 case X86::VRCP14SSZrr:
7029 case X86::VRCP14SSZrm:
7030 case X86::VRCPSHZrr:
7031 case X86::VRCPSHZrm:
7032 case X86::VRSQRTSHZrr:
7033 case X86::VRSQRTSHZrm:
7034 case X86::VREDUCESHZrmi:
7035 case X86::VREDUCESHZrri:
7036 case X86::VREDUCESHZrrib:
7037 case X86::VGETEXPSHZr:
7038 case X86::VGETEXPSHZrb:
7039 case X86::VGETEXPSHZm:
7040 case X86::VGETMANTSHZrri:
7041 case X86::VGETMANTSHZrrib:
7042 case X86::VGETMANTSHZrmi:
7043 case X86::VRNDSCALESHZrri:
7044 case X86::VRNDSCALESHZrri_Int:
7045 case X86::VRNDSCALESHZrrib_Int:
7046 case X86::VRNDSCALESHZrmi:
7047 case X86::VRNDSCALESHZrmi_Int:
7048 case X86::VSQRTSHZr:
7049 case X86::VSQRTSHZr_Int:
7050 case X86::VSQRTSHZrb_Int:
7051 case X86::VSQRTSHZm:
7052 case X86::VSQRTSHZm_Int:
7053 case X86::VRCP28SDZr:
7054 case X86::VRCP28SDZrb:
7055 case X86::VRCP28SDZm:
7056 case X86::VRCP28SSZr:
7057 case X86::VRCP28SSZrb:
7058 case X86::VRCP28SSZm:
7059 case X86::VREDUCESSZrmi:
7060 case X86::VREDUCESSZrri:
7061 case X86::VREDUCESSZrrib:
7062 case X86::VRSQRT14SDZrr:
7063 case X86::VRSQRT14SDZrm:
7064 case X86::VRSQRT14SSZrr:
7065 case X86::VRSQRT14SSZrm:
7066 case X86::VRSQRT28SDZr:
7067 case X86::VRSQRT28SDZrb:
7068 case X86::VRSQRT28SDZm:
7069 case X86::VRSQRT28SSZr:
7070 case X86::VRSQRT28SSZrb:
7071 case X86::VRSQRT28SSZm:
7072 case X86::VSQRTSSZr:
7073 case X86::VSQRTSSZr_Int:
7074 case X86::VSQRTSSZrb_Int:
7075 case X86::VSQRTSSZm:
7076 case X86::VSQRTSSZm_Int:
7077 case X86::VSQRTSDZr:
7078 case X86::VSQRTSDZr_Int:
7079 case X86::VSQRTSDZrb_Int:
7080 case X86::VSQRTSDZm:
7081 case X86::VSQRTSDZm_Int:
7082 case X86::VCVTSD2SHZrr:
7083 case X86::VCVTSD2SHZrr_Int:
7084 case X86::VCVTSD2SHZrrb_Int:
7085 case X86::VCVTSD2SHZrm:
7086 case X86::VCVTSD2SHZrm_Int:
7087 case X86::VCVTSS2SHZrr:
7088 case X86::VCVTSS2SHZrr_Int:
7089 case X86::VCVTSS2SHZrrb_Int:
7090 case X86::VCVTSS2SHZrm:
7091 case X86::VCVTSS2SHZrm_Int:
7092 case X86::VCVTSH2SDZrr:
7093 case X86::VCVTSH2SDZrr_Int:
7094 case X86::VCVTSH2SDZrrb_Int:
7095 case X86::VCVTSH2SDZrm:
7096 case X86::VCVTSH2SDZrm_Int:
7097 case X86::VCVTSH2SSZrr:
7098 case X86::VCVTSH2SSZrr_Int:
7099 case X86::VCVTSH2SSZrrb_Int:
7100 case X86::VCVTSH2SSZrm:
7101 case X86::VCVTSH2SSZrm_Int:
7103 case X86::VMOVSSZrrk:
7104 case X86::VMOVSDZrrk:
7105 return OpNum == 3 && !ForLoadFold;
7106 case X86::VMOVSSZrrkz:
7107 case X86::VMOVSDZrrkz:
7108 return OpNum == 2 && !ForLoadFold;
7140 Register Reg =
MI.getOperand(OpNum).getReg();
7142 if (
MI.killsRegister(Reg,
TRI))
7145 if (X86::VR128RegClass.
contains(Reg)) {
7148 unsigned Opc = Subtarget.
hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
7152 MI.addRegisterKilled(Reg,
TRI,
true);
7153 }
else if (X86::VR256RegClass.
contains(Reg)) {
7156 Register XReg =
TRI->getSubReg(Reg, X86::sub_xmm);
7161 MI.addRegisterKilled(Reg,
TRI,
true);
7162 }
else if (X86::VR128XRegClass.
contains(Reg)) {
7164 if (!Subtarget.hasVLX())
7167 BuildMI(*
MI.getParent(),
MI,
MI.getDebugLoc(),
get(X86::VPXORDZ128rr), Reg)
7170 MI.addRegisterKilled(Reg,
TRI,
true);
7171 }
else if (X86::VR256XRegClass.
contains(Reg) ||
7172 X86::VR512RegClass.
contains(Reg)) {
7174 if (!Subtarget.hasVLX())
7178 Register XReg =
TRI->getSubReg(Reg, X86::sub_xmm);
7179 BuildMI(*
MI.getParent(),
MI,
MI.getDebugLoc(),
get(X86::VPXORDZ128rr), XReg)
7183 MI.addRegisterKilled(Reg,
TRI,
true);
7184 }
else if (X86::GR64RegClass.
contains(Reg)) {
7187 Register XReg =
TRI->getSubReg(Reg, X86::sub_32bit);
7192 MI.addRegisterKilled(Reg,
TRI,
true);
7193 }
else if (X86::GR32RegClass.
contains(Reg)) {
7197 MI.addRegisterKilled(Reg,
TRI,
true);
7198 }
else if ((X86::GR16RegClass.
contains(Reg) ||
7207 if (!
MI.definesRegister(SuperReg,
nullptr))
7213 int PtrOffset = 0) {
7214 unsigned NumAddrOps = MOs.
size();
7216 if (NumAddrOps < 4) {
7218 for (
unsigned i = 0; i != NumAddrOps; ++i)
7224 assert(MOs.
size() == 5 &&
"Unexpected memory operand list length");
7225 for (
unsigned i = 0; i != NumAddrOps; ++i) {
7227 if (i == 3 && PtrOffset != 0) {
7248 if (!Reg.isVirtual())
7251 auto *NewRC =
MRI.constrainRegClass(
7255 dbgs() <<
"WARNING: Unable to update register constraint for operand "
7256 <<
Idx <<
" of instruction:\n";
7275 unsigned NumOps =
MI.getDesc().getNumOperands() - 2;
7276 for (
unsigned i = 0; i != NumOps; ++i) {
7295 int PtrOffset = 0) {
7301 for (
unsigned i = 0, e =
MI.getNumOperands(); i != e; ++i) {
7304 assert(MO.
isReg() &&
"Expected to fold into reg operand!");
7328 MI.getDebugLoc(),
TII.get(Opcode));
7337 switch (
MI.getOpcode()) {
7338 case X86::INSERTPSrri:
7339 case X86::VINSERTPSrri:
7340 case X86::VINSERTPSZrri:
7344 unsigned Imm =
MI.getOperand(
MI.getNumOperands() - 1).getImm();
7345 unsigned ZMask =
Imm & 15;
7346 unsigned DstIdx = (
Imm >> 4) & 3;
7347 unsigned SrcIdx = (
Imm >> 6) & 3;
7351 unsigned RCSize =
TRI.getRegSizeInBits(*RC) / 8;
7352 if ((
Size == 0 ||
Size >= 16) && RCSize >= 16 &&
7353 (
MI.getOpcode() != X86::INSERTPSrri || Alignment >=
Align(4))) {
7354 int PtrOffset = SrcIdx * 4;
7355 unsigned NewImm = (DstIdx << 4) | ZMask;
7356 unsigned NewOpCode =
7357 (
MI.getOpcode() == X86::VINSERTPSZrri) ? X86::VINSERTPSZrmi
7358 : (
MI.getOpcode() == X86::VINSERTPSrri) ? X86::VINSERTPSrmi
7361 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt,
MI, *
this, PtrOffset);
7367 case X86::MOVHLPSrr:
7368 case X86::VMOVHLPSrr:
7369 case X86::VMOVHLPSZrr:
7376 unsigned RCSize =
TRI.getRegSizeInBits(*RC) / 8;
7377 if ((
Size == 0 ||
Size >= 16) && RCSize >= 16 && Alignment >=
Align(8)) {
7378 unsigned NewOpCode =
7379 (
MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm
7380 : (
MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7383 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt,
MI, *
this, 8);
7388 case X86::UNPCKLPDrr:
7395 unsigned RCSize =
TRI.getRegSizeInBits(*RC) / 8;
7396 if ((
Size == 0 ||
Size >= 16) && RCSize >= 16 && Alignment <
Align(16)) {
7398 fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt,
MI, *
this);
7405 makeM0Inst(*
this, (
Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs,
7417 !
MI.getOperand(1).isReg())
7425 if (
MI.getOperand(1).isUndef())
7434 unsigned Idx1)
const {
7435 unsigned Idx2 = CommuteAnyOperandIndex;
7439 bool HasDef =
MI.getDesc().getNumDefs();
7441 Register Reg1 =
MI.getOperand(Idx1).getReg();
7442 Register Reg2 =
MI.getOperand(Idx2).getReg();
7443 bool Tied1 = 0 ==
MI.getDesc().getOperandConstraint(Idx1,
MCOI::TIED_TO);
7444 bool Tied2 = 0 ==
MI.getDesc().getOperandConstraint(Idx2,
MCOI::TIED_TO);
7448 if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2))
7451 return commuteInstruction(
MI,
false, Idx1, Idx2) ? Idx2 : Idx1;
7456 dbgs() <<
"We failed to fuse operand " <<
Idx <<
" in " <<
MI;
7462 unsigned Size,
Align Alignment,
bool AllowCommute)
const {
7463 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7464 unsigned Opc =
MI.getOpcode();
7470 (
Opc == X86::CALL32r ||
Opc == X86::CALL64r ||
7471 Opc == X86::CALL64r_ImpCall ||
Opc == X86::PUSH16r ||
7472 Opc == X86::PUSH32r ||
Opc == X86::PUSH64r))
7481 unsigned NumOps =
MI.getDesc().getNumOperands();
7482 bool IsTwoAddr = NumOps > 1 && OpNum < 2 &&
MI.getOperand(0).isReg() &&
7483 MI.getOperand(1).isReg() &&
7484 MI.getOperand(0).getReg() ==
MI.getOperand(1).getReg();
7488 if (
Opc == X86::ADD32ri &&
7497 Opc != X86::ADD64rr)
7502 if (
MI.isCall() &&
MI.getCFIType())
7506 if (
auto *CustomMI = foldMemoryOperandCustom(MF,
MI, OpNum, MOs, InsertPt,
7522 unsigned Opcode =
I->DstOp;
7526 bool NarrowToMOV32rm =
false;
7530 unsigned RCSize =
TRI.getRegSizeInBits(*RC) / 8;
7538 if (Opcode != X86::MOV64rm || RCSize != 8 ||
Size != 4)
7540 if (
MI.getOperand(0).getSubReg() ||
MI.getOperand(1).getSubReg())
7542 Opcode = X86::MOV32rm;
7543 NarrowToMOV32rm =
true;
7553 :
fuseInst(MF, Opcode, OpNum, MOs, InsertPt,
MI, *
this);
7555 if (NarrowToMOV32rm) {
7571 unsigned CommuteOpIdx2 = commuteOperandsForFold(
MI, OpNum);
7572 if (CommuteOpIdx2 == OpNum) {
7582 commuteInstruction(
MI,
false, OpNum, CommuteOpIdx2);
7604 for (
auto Op : Ops) {
7609 if (
MI.getOpcode() == X86::MOV32r0 &&
SubReg == X86::sub_32bit)
7620 if (!RI.hasStackRealignment(MF))
7627 Size, Alignment,
true);
7629 if (Ops.
size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7630 unsigned NewOpc = 0;
7631 unsigned RCSize = 0;
7632 unsigned Opc =
MI.getOpcode();
7639 NewOpc = X86::CMP8ri;
7643 NewOpc = X86::CMP16ri;
7647 NewOpc = X86::CMP32ri;
7651 NewOpc = X86::CMP64ri32;
7660 MI.setDesc(
get(NewOpc));
7661 MI.getOperand(1).ChangeToImmediate(0);
7662 }
else if (Ops.
size() != 1)
7690 unsigned RegSize =
TRI.getRegSizeInBits(*RC);
7692 if ((
Opc == X86::MOVSSrm ||
Opc == X86::VMOVSSrm ||
Opc == X86::VMOVSSZrm ||
7693 Opc == X86::MOVSSrm_alt ||
Opc == X86::VMOVSSrm_alt ||
7694 Opc == X86::VMOVSSZrm_alt) &&
7700 case X86::CVTSS2SDrr_Int:
7701 case X86::VCVTSS2SDrr_Int:
7702 case X86::VCVTSS2SDZrr_Int:
7703 case X86::VCVTSS2SDZrrk_Int:
7704 case X86::VCVTSS2SDZrrkz_Int:
7705 case X86::CVTSS2SIrr_Int:
7706 case X86::CVTSS2SI64rr_Int:
7707 case X86::VCVTSS2SIrr_Int:
7708 case X86::VCVTSS2SI64rr_Int:
7709 case X86::VCVTSS2SIZrr_Int:
7710 case X86::VCVTSS2SI64Zrr_Int:
7711 case X86::CVTTSS2SIrr_Int:
7712 case X86::CVTTSS2SI64rr_Int:
7713 case X86::VCVTTSS2SIrr_Int:
7714 case X86::VCVTTSS2SI64rr_Int:
7715 case X86::VCVTTSS2SIZrr_Int:
7716 case X86::VCVTTSS2SI64Zrr_Int:
7717 case X86::VCVTSS2USIZrr_Int:
7718 case X86::VCVTSS2USI64Zrr_Int:
7719 case X86::VCVTTSS2USIZrr_Int:
7720 case X86::VCVTTSS2USI64Zrr_Int:
7721 case X86::RCPSSr_Int:
7722 case X86::VRCPSSr_Int:
7723 case X86::RSQRTSSr_Int:
7724 case X86::VRSQRTSSr_Int:
7725 case X86::ROUNDSSri_Int:
7726 case X86::VROUNDSSri_Int:
7727 case X86::COMISSrr_Int:
7728 case X86::VCOMISSrr_Int:
7729 case X86::VCOMISSZrr_Int:
7730 case X86::UCOMISSrr_Int:
7731 case X86::VUCOMISSrr_Int:
7732 case X86::VUCOMISSZrr_Int:
7733 case X86::ADDSSrr_Int:
7734 case X86::VADDSSrr_Int:
7735 case X86::VADDSSZrr_Int:
7736 case X86::CMPSSrri_Int:
7737 case X86::VCMPSSrri_Int:
7738 case X86::VCMPSSZrri_Int:
7739 case X86::DIVSSrr_Int:
7740 case X86::VDIVSSrr_Int:
7741 case X86::VDIVSSZrr_Int:
7742 case X86::MAXSSrr_Int:
7743 case X86::VMAXSSrr_Int:
7744 case X86::VMAXSSZrr_Int:
7745 case X86::MINSSrr_Int:
7746 case X86::VMINSSrr_Int:
7747 case X86::VMINSSZrr_Int:
7748 case X86::MULSSrr_Int:
7749 case X86::VMULSSrr_Int:
7750 case X86::VMULSSZrr_Int:
7751 case X86::SQRTSSr_Int:
7752 case X86::VSQRTSSr_Int:
7753 case X86::VSQRTSSZr_Int:
7754 case X86::SUBSSrr_Int:
7755 case X86::VSUBSSrr_Int:
7756 case X86::VSUBSSZrr_Int:
7757 case X86::VADDSSZrrk_Int:
7758 case X86::VADDSSZrrkz_Int:
7759 case X86::VCMPSSZrrik_Int:
7760 case X86::VDIVSSZrrk_Int:
7761 case X86::VDIVSSZrrkz_Int:
7762 case X86::VMAXSSZrrk_Int:
7763 case X86::VMAXSSZrrkz_Int:
7764 case X86::VMINSSZrrk_Int:
7765 case X86::VMINSSZrrkz_Int:
7766 case X86::VMULSSZrrk_Int:
7767 case X86::VMULSSZrrkz_Int:
7768 case X86::VSQRTSSZrk_Int:
7769 case X86::VSQRTSSZrkz_Int:
7770 case X86::VSUBSSZrrk_Int:
7771 case X86::VSUBSSZrrkz_Int:
7772 case X86::VFMADDSS4rr_Int:
7773 case X86::VFNMADDSS4rr_Int:
7774 case X86::VFMSUBSS4rr_Int:
7775 case X86::VFNMSUBSS4rr_Int:
7776 case X86::VFMADD132SSr_Int:
7777 case X86::VFNMADD132SSr_Int:
7778 case X86::VFMADD213SSr_Int:
7779 case X86::VFNMADD213SSr_Int:
7780 case X86::VFMADD231SSr_Int:
7781 case X86::VFNMADD231SSr_Int:
7782 case X86::VFMSUB132SSr_Int:
7783 case X86::VFNMSUB132SSr_Int:
7784 case X86::VFMSUB213SSr_Int:
7785 case X86::VFNMSUB213SSr_Int:
7786 case X86::VFMSUB231SSr_Int:
7787 case X86::VFNMSUB231SSr_Int:
7788 case X86::VFMADD132SSZr_Int:
7789 case X86::VFNMADD132SSZr_Int:
7790 case X86::VFMADD213SSZr_Int:
7791 case X86::VFNMADD213SSZr_Int:
7792 case X86::VFMADD231SSZr_Int:
7793 case X86::VFNMADD231SSZr_Int:
7794 case X86::VFMSUB132SSZr_Int:
7795 case X86::VFNMSUB132SSZr_Int:
7796 case X86::VFMSUB213SSZr_Int:
7797 case X86::VFNMSUB213SSZr_Int:
7798 case X86::VFMSUB231SSZr_Int:
7799 case X86::VFNMSUB231SSZr_Int:
7800 case X86::VFMADD132SSZrk_Int:
7801 case X86::VFNMADD132SSZrk_Int:
7802 case X86::VFMADD213SSZrk_Int:
7803 case X86::VFNMADD213SSZrk_Int:
7804 case X86::VFMADD231SSZrk_Int:
7805 case X86::VFNMADD231SSZrk_Int:
7806 case X86::VFMSUB132SSZrk_Int:
7807 case X86::VFNMSUB132SSZrk_Int:
7808 case X86::VFMSUB213SSZrk_Int:
7809 case X86::VFNMSUB213SSZrk_Int:
7810 case X86::VFMSUB231SSZrk_Int:
7811 case X86::VFNMSUB231SSZrk_Int:
7812 case X86::VFMADD132SSZrkz_Int:
7813 case X86::VFNMADD132SSZrkz_Int:
7814 case X86::VFMADD213SSZrkz_Int:
7815 case X86::VFNMADD213SSZrkz_Int:
7816 case X86::VFMADD231SSZrkz_Int:
7817 case X86::VFNMADD231SSZrkz_Int:
7818 case X86::VFMSUB132SSZrkz_Int:
7819 case X86::VFNMSUB132SSZrkz_Int:
7820 case X86::VFMSUB213SSZrkz_Int:
7821 case X86::VFNMSUB213SSZrkz_Int:
7822 case X86::VFMSUB231SSZrkz_Int:
7823 case X86::VFNMSUB231SSZrkz_Int:
7824 case X86::VFIXUPIMMSSZrri:
7825 case X86::VFIXUPIMMSSZrrik:
7826 case X86::VFIXUPIMMSSZrrikz:
7827 case X86::VFPCLASSSSZri:
7828 case X86::VFPCLASSSSZrik:
7829 case X86::VGETEXPSSZr:
7830 case X86::VGETEXPSSZrk:
7831 case X86::VGETEXPSSZrkz:
7832 case X86::VGETMANTSSZrri:
7833 case X86::VGETMANTSSZrrik:
7834 case X86::VGETMANTSSZrrikz:
7835 case X86::VRANGESSZrri:
7836 case X86::VRANGESSZrrik:
7837 case X86::VRANGESSZrrikz:
7838 case X86::VRCP14SSZrr:
7839 case X86::VRCP14SSZrrk:
7840 case X86::VRCP14SSZrrkz:
7841 case X86::VRCP28SSZr:
7842 case X86::VRCP28SSZrk:
7843 case X86::VRCP28SSZrkz:
7844 case X86::VREDUCESSZrri:
7845 case X86::VREDUCESSZrrik:
7846 case X86::VREDUCESSZrrikz:
7847 case X86::VRNDSCALESSZrri_Int:
7848 case X86::VRNDSCALESSZrrik_Int:
7849 case X86::VRNDSCALESSZrrikz_Int:
7850 case X86::VRSQRT14SSZrr:
7851 case X86::VRSQRT14SSZrrk:
7852 case X86::VRSQRT14SSZrrkz:
7853 case X86::VRSQRT28SSZr:
7854 case X86::VRSQRT28SSZrk:
7855 case X86::VRSQRT28SSZrkz:
7856 case X86::VSCALEFSSZrr:
7857 case X86::VSCALEFSSZrrk:
7858 case X86::VSCALEFSSZrrkz:
7865 if ((
Opc == X86::MOVSDrm ||
Opc == X86::VMOVSDrm ||
Opc == X86::VMOVSDZrm ||
7866 Opc == X86::MOVSDrm_alt ||
Opc == X86::VMOVSDrm_alt ||
7867 Opc == X86::VMOVSDZrm_alt) &&
7873 case X86::CVTSD2SSrr_Int:
7874 case X86::VCVTSD2SSrr_Int:
7875 case X86::VCVTSD2SSZrr_Int:
7876 case X86::VCVTSD2SSZrrk_Int:
7877 case X86::VCVTSD2SSZrrkz_Int:
7878 case X86::CVTSD2SIrr_Int:
7879 case X86::CVTSD2SI64rr_Int:
7880 case X86::VCVTSD2SIrr_Int:
7881 case X86::VCVTSD2SI64rr_Int:
7882 case X86::VCVTSD2SIZrr_Int:
7883 case X86::VCVTSD2SI64Zrr_Int:
7884 case X86::CVTTSD2SIrr_Int:
7885 case X86::CVTTSD2SI64rr_Int:
7886 case X86::VCVTTSD2SIrr_Int:
7887 case X86::VCVTTSD2SI64rr_Int:
7888 case X86::VCVTTSD2SIZrr_Int:
7889 case X86::VCVTTSD2SI64Zrr_Int:
7890 case X86::VCVTSD2USIZrr_Int:
7891 case X86::VCVTSD2USI64Zrr_Int:
7892 case X86::VCVTTSD2USIZrr_Int:
7893 case X86::VCVTTSD2USI64Zrr_Int:
7894 case X86::ROUNDSDri_Int:
7895 case X86::VROUNDSDri_Int:
7896 case X86::COMISDrr_Int:
7897 case X86::VCOMISDrr_Int:
7898 case X86::VCOMISDZrr_Int:
7899 case X86::UCOMISDrr_Int:
7900 case X86::VUCOMISDrr_Int:
7901 case X86::VUCOMISDZrr_Int:
7902 case X86::ADDSDrr_Int:
7903 case X86::VADDSDrr_Int:
7904 case X86::VADDSDZrr_Int:
7905 case X86::CMPSDrri_Int:
7906 case X86::VCMPSDrri_Int:
7907 case X86::VCMPSDZrri_Int:
7908 case X86::DIVSDrr_Int:
7909 case X86::VDIVSDrr_Int:
7910 case X86::VDIVSDZrr_Int:
7911 case X86::MAXSDrr_Int:
7912 case X86::VMAXSDrr_Int:
7913 case X86::VMAXSDZrr_Int:
7914 case X86::MINSDrr_Int:
7915 case X86::VMINSDrr_Int:
7916 case X86::VMINSDZrr_Int:
7917 case X86::MULSDrr_Int:
7918 case X86::VMULSDrr_Int:
7919 case X86::VMULSDZrr_Int:
7920 case X86::SQRTSDr_Int:
7921 case X86::VSQRTSDr_Int:
7922 case X86::VSQRTSDZr_Int:
7923 case X86::SUBSDrr_Int:
7924 case X86::VSUBSDrr_Int:
7925 case X86::VSUBSDZrr_Int:
7926 case X86::VADDSDZrrk_Int:
7927 case X86::VADDSDZrrkz_Int:
7928 case X86::VCMPSDZrrik_Int:
7929 case X86::VDIVSDZrrk_Int:
7930 case X86::VDIVSDZrrkz_Int:
7931 case X86::VMAXSDZrrk_Int:
7932 case X86::VMAXSDZrrkz_Int:
7933 case X86::VMINSDZrrk_Int:
7934 case X86::VMINSDZrrkz_Int:
7935 case X86::VMULSDZrrk_Int:
7936 case X86::VMULSDZrrkz_Int:
7937 case X86::VSQRTSDZrk_Int:
7938 case X86::VSQRTSDZrkz_Int:
7939 case X86::VSUBSDZrrk_Int:
7940 case X86::VSUBSDZrrkz_Int:
7941 case X86::VFMADDSD4rr_Int:
7942 case X86::VFNMADDSD4rr_Int:
7943 case X86::VFMSUBSD4rr_Int:
7944 case X86::VFNMSUBSD4rr_Int:
7945 case X86::VFMADD132SDr_Int:
7946 case X86::VFNMADD132SDr_Int:
7947 case X86::VFMADD213SDr_Int:
7948 case X86::VFNMADD213SDr_Int:
7949 case X86::VFMADD231SDr_Int:
7950 case X86::VFNMADD231SDr_Int:
7951 case X86::VFMSUB132SDr_Int:
7952 case X86::VFNMSUB132SDr_Int:
7953 case X86::VFMSUB213SDr_Int:
7954 case X86::VFNMSUB213SDr_Int:
7955 case X86::VFMSUB231SDr_Int:
7956 case X86::VFNMSUB231SDr_Int:
7957 case X86::VFMADD132SDZr_Int:
7958 case X86::VFNMADD132SDZr_Int:
7959 case X86::VFMADD213SDZr_Int:
7960 case X86::VFNMADD213SDZr_Int:
7961 case X86::VFMADD231SDZr_Int:
7962 case X86::VFNMADD231SDZr_Int:
7963 case X86::VFMSUB132SDZr_Int:
7964 case X86::VFNMSUB132SDZr_Int:
7965 case X86::VFMSUB213SDZr_Int:
7966 case X86::VFNMSUB213SDZr_Int:
7967 case X86::VFMSUB231SDZr_Int:
7968 case X86::VFNMSUB231SDZr_Int:
7969 case X86::VFMADD132SDZrk_Int:
7970 case X86::VFNMADD132SDZrk_Int:
7971 case X86::VFMADD213SDZrk_Int:
7972 case X86::VFNMADD213SDZrk_Int:
7973 case X86::VFMADD231SDZrk_Int:
7974 case X86::VFNMADD231SDZrk_Int:
7975 case X86::VFMSUB132SDZrk_Int:
7976 case X86::VFNMSUB132SDZrk_Int:
7977 case X86::VFMSUB213SDZrk_Int:
7978 case X86::VFNMSUB213SDZrk_Int:
7979 case X86::VFMSUB231SDZrk_Int:
7980 case X86::VFNMSUB231SDZrk_Int:
7981 case X86::VFMADD132SDZrkz_Int:
7982 case X86::VFNMADD132SDZrkz_Int:
7983 case X86::VFMADD213SDZrkz_Int:
7984 case X86::VFNMADD213SDZrkz_Int:
7985 case X86::VFMADD231SDZrkz_Int:
7986 case X86::VFNMADD231SDZrkz_Int:
7987 case X86::VFMSUB132SDZrkz_Int:
7988 case X86::VFNMSUB132SDZrkz_Int:
7989 case X86::VFMSUB213SDZrkz_Int:
7990 case X86::VFNMSUB213SDZrkz_Int:
7991 case X86::VFMSUB231SDZrkz_Int:
7992 case X86::VFNMSUB231SDZrkz_Int:
7993 case X86::VFIXUPIMMSDZrri:
7994 case X86::VFIXUPIMMSDZrrik:
7995 case X86::VFIXUPIMMSDZrrikz:
7996 case X86::VFPCLASSSDZri:
7997 case X86::VFPCLASSSDZrik:
7998 case X86::VGETEXPSDZr:
7999 case X86::VGETEXPSDZrk:
8000 case X86::VGETEXPSDZrkz:
8001 case X86::VGETMANTSDZrri:
8002 case X86::VGETMANTSDZrrik:
8003 case X86::VGETMANTSDZrrikz:
8004 case X86::VRANGESDZrri:
8005 case X86::VRANGESDZrrik:
8006 case X86::VRANGESDZrrikz:
8007 case X86::VRCP14SDZrr:
8008 case X86::VRCP14SDZrrk:
8009 case X86::VRCP14SDZrrkz:
8010 case X86::VRCP28SDZr:
8011 case X86::VRCP28SDZrk:
8012 case X86::VRCP28SDZrkz:
8013 case X86::VREDUCESDZrri:
8014 case X86::VREDUCESDZrrik:
8015 case X86::VREDUCESDZrrikz:
8016 case X86::VRNDSCALESDZrri_Int:
8017 case X86::VRNDSCALESDZrrik_Int:
8018 case X86::VRNDSCALESDZrrikz_Int:
8019 case X86::VRSQRT14SDZrr:
8020 case X86::VRSQRT14SDZrrk:
8021 case X86::VRSQRT14SDZrrkz:
8022 case X86::VRSQRT28SDZr:
8023 case X86::VRSQRT28SDZrk:
8024 case X86::VRSQRT28SDZrkz:
8025 case X86::VSCALEFSDZrr:
8026 case X86::VSCALEFSDZrrk:
8027 case X86::VSCALEFSDZrrkz:
8034 if ((
Opc == X86::VMOVSHZrm ||
Opc == X86::VMOVSHZrm_alt) &&
RegSize > 16) {
8039 case X86::VADDSHZrr_Int:
8040 case X86::VCMPSHZrri_Int:
8041 case X86::VDIVSHZrr_Int:
8042 case X86::VMAXSHZrr_Int:
8043 case X86::VMINSHZrr_Int:
8044 case X86::VMULSHZrr_Int:
8045 case X86::VSUBSHZrr_Int:
8046 case X86::VADDSHZrrk_Int:
8047 case X86::VADDSHZrrkz_Int:
8048 case X86::VCMPSHZrrik_Int:
8049 case X86::VDIVSHZrrk_Int:
8050 case X86::VDIVSHZrrkz_Int:
8051 case X86::VMAXSHZrrk_Int:
8052 case X86::VMAXSHZrrkz_Int:
8053 case X86::VMINSHZrrk_Int:
8054 case X86::VMINSHZrrkz_Int:
8055 case X86::VMULSHZrrk_Int:
8056 case X86::VMULSHZrrkz_Int:
8057 case X86::VSUBSHZrrk_Int:
8058 case X86::VSUBSHZrrkz_Int:
8059 case X86::VFMADD132SHZr_Int:
8060 case X86::VFNMADD132SHZr_Int:
8061 case X86::VFMADD213SHZr_Int:
8062 case X86::VFNMADD213SHZr_Int:
8063 case X86::VFMADD231SHZr_Int:
8064 case X86::VFNMADD231SHZr_Int:
8065 case X86::VFMSUB132SHZr_Int:
8066 case X86::VFNMSUB132SHZr_Int:
8067 case X86::VFMSUB213SHZr_Int:
8068 case X86::VFNMSUB213SHZr_Int:
8069 case X86::VFMSUB231SHZr_Int:
8070 case X86::VFNMSUB231SHZr_Int:
8071 case X86::VFMADD132SHZrk_Int:
8072 case X86::VFNMADD132SHZrk_Int:
8073 case X86::VFMADD213SHZrk_Int:
8074 case X86::VFNMADD213SHZrk_Int:
8075 case X86::VFMADD231SHZrk_Int:
8076 case X86::VFNMADD231SHZrk_Int:
8077 case X86::VFMSUB132SHZrk_Int:
8078 case X86::VFNMSUB132SHZrk_Int:
8079 case X86::VFMSUB213SHZrk_Int:
8080 case X86::VFNMSUB213SHZrk_Int:
8081 case X86::VFMSUB231SHZrk_Int:
8082 case X86::VFNMSUB231SHZrk_Int:
8083 case X86::VFMADD132SHZrkz_Int:
8084 case X86::VFNMADD132SHZrkz_Int:
8085 case X86::VFMADD213SHZrkz_Int:
8086 case X86::VFNMADD213SHZrkz_Int:
8087 case X86::VFMADD231SHZrkz_Int:
8088 case X86::VFNMADD231SHZrkz_Int:
8089 case X86::VFMSUB132SHZrkz_Int:
8090 case X86::VFNMSUB132SHZrkz_Int:
8091 case X86::VFMSUB213SHZrkz_Int:
8092 case X86::VFNMSUB213SHZrkz_Int:
8093 case X86::VFMSUB231SHZrkz_Int:
8094 case X86::VFNMSUB231SHZrkz_Int:
8111 for (
auto Op : Ops) {
8112 if (
MI.getOperand(
Op).getSubReg())
8150 case X86::AVX512_512_SET0:
8151 case X86::AVX512_512_SETALLONES:
8152 Alignment =
Align(64);
8154 case X86::AVX2_SETALLONES:
8155 case X86::AVX1_SETALLONES:
8157 case X86::AVX512_256_SET0:
8158 Alignment =
Align(32);
8161 case X86::V_SETALLONES:
8162 case X86::AVX512_128_SET0:
8163 case X86::FsFLD0F128:
8164 case X86::AVX512_FsFLD0F128:
8165 Alignment =
Align(16);
8169 case X86::AVX512_FsFLD0SD:
8170 Alignment =
Align(8);
8173 case X86::AVX512_FsFLD0SS:
8174 Alignment =
Align(4);
8177 case X86::AVX512_FsFLD0SH:
8178 Alignment =
Align(2);
8183 if (Ops.
size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8184 unsigned NewOpc = 0;
8185 switch (
MI.getOpcode()) {
8189 NewOpc = X86::CMP8ri;
8192 NewOpc = X86::CMP16ri;
8195 NewOpc = X86::CMP32ri;
8198 NewOpc = X86::CMP64ri32;
8202 MI.setDesc(
get(NewOpc));
8203 MI.getOperand(1).ChangeToImmediate(0);
8204 }
else if (Ops.
size() != 1)
8216 case X86::V_SETALLONES:
8217 case X86::AVX2_SETALLONES:
8218 case X86::AVX1_SETALLONES:
8220 case X86::AVX512_128_SET0:
8221 case X86::AVX512_256_SET0:
8222 case X86::AVX512_512_SET0:
8223 case X86::AVX512_512_SETALLONES:
8225 case X86::AVX512_FsFLD0SH:
8227 case X86::AVX512_FsFLD0SD:
8229 case X86::AVX512_FsFLD0SS:
8230 case X86::FsFLD0F128:
8231 case X86::AVX512_FsFLD0F128: {
8240 unsigned PICBase = 0;
8243 if (Subtarget.is64Bit()) {
8256 bool IsAllOnes =
false;
8259 case X86::AVX512_FsFLD0SS:
8263 case X86::AVX512_FsFLD0SD:
8266 case X86::FsFLD0F128:
8267 case X86::AVX512_FsFLD0F128:
8271 case X86::AVX512_FsFLD0SH:
8274 case X86::AVX512_512_SETALLONES:
8277 case X86::AVX512_512_SET0:
8281 case X86::AVX1_SETALLONES:
8282 case X86::AVX2_SETALLONES:
8285 case X86::AVX512_256_SET0:
8295 case X86::V_SETALLONES:
8299 case X86::AVX512_128_SET0:
8317 case X86::VPBROADCASTBZ128rm:
8318 case X86::VPBROADCASTBZ256rm:
8319 case X86::VPBROADCASTBZrm:
8320 case X86::VBROADCASTF32X2Z256rm:
8321 case X86::VBROADCASTF32X2Zrm:
8322 case X86::VBROADCASTI32X2Z128rm:
8323 case X86::VBROADCASTI32X2Z256rm:
8324 case X86::VBROADCASTI32X2Zrm:
8328#define FOLD_BROADCAST(SIZE) \
8329 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \
8330 LoadMI.operands_begin() + NumOps); \
8331 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, SIZE, \
8333 case X86::VPBROADCASTWZ128rm:
8334 case X86::VPBROADCASTWZ256rm:
8335 case X86::VPBROADCASTWZrm:
8337 case X86::VPBROADCASTDZ128rm:
8338 case X86::VPBROADCASTDZ256rm:
8339 case X86::VPBROADCASTDZrm:
8340 case X86::VBROADCASTSSZ128rm:
8341 case X86::VBROADCASTSSZ256rm:
8342 case X86::VBROADCASTSSZrm:
8344 case X86::VPBROADCASTQZ128rm:
8345 case X86::VPBROADCASTQZ256rm:
8346 case X86::VPBROADCASTQZrm:
8347 case X86::VBROADCASTSDZ256rm:
8348 case X86::VBROADCASTSDZrm:
8361 0, Alignment,
true);
8368 unsigned BitsSize,
bool AllowCommute)
const {
8372 ?
fuseInst(MF,
I->DstOp, OpNum, MOs, InsertPt,
MI, *
this)
8378 unsigned CommuteOpIdx2 = commuteOperandsForFold(
MI, OpNum);
8379 if (CommuteOpIdx2 == OpNum) {
8384 foldMemoryBroadcast(MF,
MI, CommuteOpIdx2, MOs, InsertPt, BitsSize,
8389 commuteInstruction(
MI,
false, OpNum, CommuteOpIdx2);
8404 if (!MMO->isStore()) {
8422 if (!MMO->isStore())
8425 if (!MMO->isLoad()) {
8443 assert((SpillSize == 64 || STI.hasVLX()) &&
8444 "Can't broadcast less than 64 bytes without AVX512VL!");
8446#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \
8448 switch (SpillSize) { \
8450 llvm_unreachable("Unknown spill size"); \
8484 unsigned Opc =
I->DstOp;
8488 if (UnfoldLoad && !FoldedLoad)
8490 UnfoldLoad &= FoldedLoad;
8491 if (UnfoldStore && !FoldedStore)
8493 UnfoldStore &= FoldedStore;
8500 if (!
MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8501 Subtarget.isUnalignedMem16Slow())
8510 for (
unsigned i = 0, e =
MI.getNumOperands(); i != e; ++i) {
8514 else if (
Op.isReg() &&
Op.isImplicit())
8530 unsigned Alignment = std::max<uint32_t>(
TRI.getSpillSize(*RC), 16);
8531 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8575 case X86::CMP64ri32:
8586 case X86::CMP64ri32:
8587 NewOpc = X86::TEST64rr;
8590 NewOpc = X86::TEST32rr;
8593 NewOpc = X86::TEST16rr;
8596 NewOpc = X86::TEST8rr;
8610 unsigned Alignment = std::max<uint32_t>(
TRI.getSpillSize(*DstRC), 16);
8611 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8627 if (!
N->isMachineOpcode())
8633 unsigned Opc =
I->DstOp;
8641 unsigned NumDefs = MCID.
NumDefs;
8642 std::vector<SDValue> AddrOps;
8643 std::vector<SDValue> BeforeOps;
8644 std::vector<SDValue> AfterOps;
8646 unsigned NumOps =
N->getNumOperands();
8647 for (
unsigned i = 0; i != NumOps - 1; ++i) {
8650 AddrOps.push_back(
Op);
8651 else if (i < Index - NumDefs)
8652 BeforeOps.push_back(
Op);
8653 else if (i > Index - NumDefs)
8654 AfterOps.push_back(
Op);
8656 SDValue Chain =
N->getOperand(NumOps - 1);
8657 AddrOps.push_back(Chain);
8662 EVT VT = *
TRI.legalclasstypes_begin(*RC);
8664 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8665 Subtarget.isUnalignedMem16Slow())
8675 unsigned Alignment = std::max<uint32_t>(
TRI.getSpillSize(*RC), 16);
8676 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8688 std::vector<EVT> VTs;
8692 VTs.push_back(*
TRI.legalclasstypes_begin(*DstRC));
8694 for (
unsigned i = 0, e =
N->getNumValues(); i != e; ++i) {
8695 EVT VT =
N->getValueType(i);
8696 if (VT != MVT::Other && i >= (
unsigned)MCID.
getNumDefs())
8700 BeforeOps.push_back(
SDValue(Load, 0));
8706 case X86::CMP64ri32:
8714 case X86::CMP64ri32:
8715 Opc = X86::TEST64rr;
8718 Opc = X86::TEST32rr;
8721 Opc = X86::TEST16rr;
8727 BeforeOps[1] = BeforeOps[0];
8736 AddrOps.push_back(
SDValue(NewNode, 0));
8737 AddrOps.push_back(Chain);
8739 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8740 Subtarget.isUnalignedMem16Slow())
8745 unsigned Alignment = std::max<uint32_t>(
TRI.getSpillSize(*RC), 16);
8746 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8749 dl, MVT::Other, AddrOps);
8762 unsigned *LoadRegIndex)
const {
8768 if (UnfoldLoad && !FoldedLoad)
8770 if (UnfoldStore && !FoldedStore)
8779 int64_t &Offset2)
const {
8783 auto IsLoadOpcode = [&](
unsigned Opcode) {
8795 case X86::MOVSSrm_alt:
8797 case X86::MOVSDrm_alt:
8798 case X86::MMX_MOVD64rm:
8799 case X86::MMX_MOVQ64rm:
8808 case X86::VMOVSSrm_alt:
8810 case X86::VMOVSDrm_alt:
8811 case X86::VMOVAPSrm:
8812 case X86::VMOVUPSrm:
8813 case X86::VMOVAPDrm:
8814 case X86::VMOVUPDrm:
8815 case X86::VMOVDQArm:
8816 case X86::VMOVDQUrm:
8817 case X86::VMOVAPSYrm:
8818 case X86::VMOVUPSYrm:
8819 case X86::VMOVAPDYrm:
8820 case X86::VMOVUPDYrm:
8821 case X86::VMOVDQAYrm:
8822 case X86::VMOVDQUYrm:
8824 case X86::VMOVSSZrm:
8825 case X86::VMOVSSZrm_alt:
8826 case X86::VMOVSDZrm:
8827 case X86::VMOVSDZrm_alt:
8828 case X86::VMOVAPSZ128rm:
8829 case X86::VMOVUPSZ128rm:
8830 case X86::VMOVAPSZ128rm_NOVLX:
8831 case X86::VMOVUPSZ128rm_NOVLX:
8832 case X86::VMOVAPDZ128rm:
8833 case X86::VMOVUPDZ128rm:
8834 case X86::VMOVDQU8Z128rm:
8835 case X86::VMOVDQU16Z128rm:
8836 case X86::VMOVDQA32Z128rm:
8837 case X86::VMOVDQU32Z128rm:
8838 case X86::VMOVDQA64Z128rm:
8839 case X86::VMOVDQU64Z128rm:
8840 case X86::VMOVAPSZ256rm:
8841 case X86::VMOVUPSZ256rm:
8842 case X86::VMOVAPSZ256rm_NOVLX:
8843 case X86::VMOVUPSZ256rm_NOVLX:
8844 case X86::VMOVAPDZ256rm:
8845 case X86::VMOVUPDZ256rm:
8846 case X86::VMOVDQU8Z256rm:
8847 case X86::VMOVDQU16Z256rm:
8848 case X86::VMOVDQA32Z256rm:
8849 case X86::VMOVDQU32Z256rm:
8850 case X86::VMOVDQA64Z256rm:
8851 case X86::VMOVDQU64Z256rm:
8852 case X86::VMOVAPSZrm:
8853 case X86::VMOVUPSZrm:
8854 case X86::VMOVAPDZrm:
8855 case X86::VMOVUPDZrm:
8856 case X86::VMOVDQU8Zrm:
8857 case X86::VMOVDQU16Zrm:
8858 case X86::VMOVDQA32Zrm:
8859 case X86::VMOVDQU32Zrm:
8860 case X86::VMOVDQA64Zrm:
8861 case X86::VMOVDQU64Zrm:
8863 case X86::KMOVBkm_EVEX:
8865 case X86::KMOVWkm_EVEX:
8867 case X86::KMOVDkm_EVEX:
8869 case X86::KMOVQkm_EVEX:
8879 auto HasSameOp = [&](
int I) {
8895 if (!Disp1 || !Disp2)
8898 Offset1 = Disp1->getSExtValue();
8899 Offset2 = Disp2->getSExtValue();
8904 int64_t Offset1, int64_t Offset2,
8905 unsigned NumLoads)
const {
8906 assert(Offset2 > Offset1);
8907 if ((Offset2 - Offset1) / 8 > 64)
8921 case X86::MMX_MOVD64rm:
8922 case X86::MMX_MOVQ64rm:
8931 if (Subtarget.is64Bit()) {
8934 }
else if (NumLoads) {
8957 unsigned Opcode =
MI.getOpcode();
8958 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8959 Opcode == X86::PLDTILECFGV)
8972 assert(
Cond.size() == 1 &&
"Invalid X86 branch condition!");
8982 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
8983 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
8984 RC == &X86::RFP80RegClass);
8997 return GlobalBaseReg;
9003 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
9005 return GlobalBaseReg;
9013 for (
const uint16_t(&Row)[3] : Table)
9014 if (Row[domain - 1] == opcode)
9022 for (
const uint16_t(&Row)[4] : Table)
9023 if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
9030 unsigned NewWidth,
unsigned *pNewMask =
nullptr) {
9031 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
9032 "Illegal blend mask scale");
9033 unsigned NewMask = 0;
9035 if ((OldWidth % NewWidth) == 0) {
9036 unsigned Scale = OldWidth / NewWidth;
9037 unsigned SubMask = (1u << Scale) - 1;
9038 for (
unsigned i = 0; i != NewWidth; ++i) {
9039 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
9041 NewMask |= (1u << i);
9042 else if (
Sub != 0x0)
9046 unsigned Scale = NewWidth / OldWidth;
9047 unsigned SubMask = (1u << Scale) - 1;
9048 for (
unsigned i = 0; i != OldWidth; ++i) {
9049 if (OldMask & (1 << i)) {
9050 NewMask |= (SubMask << (i * Scale));
9056 *pNewMask = NewMask;
9061 unsigned Opcode =
MI.getOpcode();
9062 unsigned NumOperands =
MI.getDesc().getNumOperands();
9064 auto GetBlendDomains = [&](
unsigned ImmWidth,
bool Is256) {
9066 if (
MI.getOperand(NumOperands - 1).isImm()) {
9067 unsigned Imm =
MI.getOperand(NumOperands - 1).getImm();
9069 validDomains |= 0x2;
9071 validDomains |= 0x4;
9072 if (!Is256 || Subtarget.
hasAVX2())
9073 validDomains |= 0x8;
9075 return validDomains;
9079 case X86::BLENDPDrmi:
9080 case X86::BLENDPDrri:
9081 case X86::VBLENDPDrmi:
9082 case X86::VBLENDPDrri:
9083 return GetBlendDomains(2,
false);
9084 case X86::VBLENDPDYrmi:
9085 case X86::VBLENDPDYrri:
9086 return GetBlendDomains(4,
true);
9087 case X86::BLENDPSrmi:
9088 case X86::BLENDPSrri:
9089 case X86::VBLENDPSrmi:
9090 case X86::VBLENDPSrri:
9091 case X86::VPBLENDDrmi:
9092 case X86::VPBLENDDrri:
9093 return GetBlendDomains(4,
false);
9094 case X86::VBLENDPSYrmi:
9095 case X86::VBLENDPSYrri:
9096 case X86::VPBLENDDYrmi:
9097 case X86::VPBLENDDYrri:
9098 return GetBlendDomains(8,
true);
9099 case X86::PBLENDWrmi:
9100 case X86::PBLENDWrri:
9101 case X86::VPBLENDWrmi:
9102 case X86::VPBLENDWrri:
9104 case X86::VPBLENDWYrmi:
9105 case X86::VPBLENDWYrri:
9106 return GetBlendDomains(8,
false);
9107 case X86::VPANDDZ128rr:
9108 case X86::VPANDDZ128rm:
9109 case X86::VPANDDZ256rr:
9110 case X86::VPANDDZ256rm:
9111 case X86::VPANDQZ128rr:
9112 case X86::VPANDQZ128rm:
9113 case X86::VPANDQZ256rr:
9114 case X86::VPANDQZ256rm:
9115 case X86::VPANDNDZ128rr:
9116 case X86::VPANDNDZ128rm:
9117 case X86::VPANDNDZ256rr:
9118 case X86::VPANDNDZ256rm:
9119 case X86::VPANDNQZ128rr:
9120 case X86::VPANDNQZ128rm:
9121 case X86::VPANDNQZ256rr:
9122 case X86::VPANDNQZ256rm:
9123 case X86::VPORDZ128rr:
9124 case X86::VPORDZ128rm:
9125 case X86::VPORDZ256rr:
9126 case X86::VPORDZ256rm:
9127 case X86::VPORQZ128rr:
9128 case X86::VPORQZ128rm:
9129 case X86::VPORQZ256rr:
9130 case X86::VPORQZ256rm:
9131 case X86::VPXORDZ128rr:
9132 case X86::VPXORDZ128rm:
9133 case X86::VPXORDZ256rr:
9134 case X86::VPXORDZ256rm:
9135 case X86::VPXORQZ128rr:
9136 case X86::VPXORQZ128rm:
9137 case X86::VPXORQZ256rr:
9138 case X86::VPXORQZ256rm:
9141 if (Subtarget.hasDQI())
9144 if (RI.getEncodingValue(
MI.getOperand(0).getReg()) >= 16)
9146 if (RI.getEncodingValue(
MI.getOperand(1).getReg()) >= 16)
9149 if (NumOperands == 3 &&
9150 RI.getEncodingValue(
MI.getOperand(2).getReg()) >= 16)
9155 case X86::MOVHLPSrr:
9162 if (
MI.getOperand(1).getReg() ==
MI.getOperand(2).getReg() &&
9163 MI.getOperand(0).getSubReg() == 0 &&
9164 MI.getOperand(1).getSubReg() == 0 &&
MI.getOperand(2).getSubReg() == 0)
9167 case X86::SHUFPDrri:
9173#include "X86ReplaceableInstrs.def"
9179 assert(dom &&
"Not an SSE instruction");
9181 unsigned Opcode =
MI.getOpcode();
9182 unsigned NumOperands =
MI.getDesc().getNumOperands();
9184 auto SetBlendDomain = [&](
unsigned ImmWidth,
bool Is256) {
9185 if (
MI.getOperand(NumOperands - 1).isImm()) {
9186 unsigned Imm =
MI.getOperand(NumOperands - 1).getImm() & 255;
9187 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
9188 unsigned NewImm = Imm;
9190 const uint16_t *table =
lookup(Opcode, dom, ReplaceableBlendInstrs);
9192 table =
lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9196 }
else if (
Domain == 2) {
9198 }
else if (
Domain == 3) {
9201 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
9202 table =
lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9206 assert(!Is256 &&
"128-bit vector expected");
9211 assert(table && table[
Domain - 1] &&
"Unknown domain op");
9213 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
9219 case X86::BLENDPDrmi:
9220 case X86::BLENDPDrri:
9221 case X86::VBLENDPDrmi:
9222 case X86::VBLENDPDrri:
9223 return SetBlendDomain(2,
false);
9224 case X86::VBLENDPDYrmi:
9225 case X86::VBLENDPDYrri:
9226 return SetBlendDomain(4,
true);
9227 case X86::BLENDPSrmi:
9228 case X86::BLENDPSrri:
9229 case X86::VBLENDPSrmi:
9230 case X86::VBLENDPSrri:
9231 case X86::VPBLENDDrmi:
9232 case X86::VPBLENDDrri:
9233 return SetBlendDomain(4,
false);
9234 case X86::VBLENDPSYrmi:
9235 case X86::VBLENDPSYrri:
9236 case X86::VPBLENDDYrmi:
9237 case X86::VPBLENDDYrri:
9238 return SetBlendDomain(8,
true);
9239 case X86::PBLENDWrmi:
9240 case X86::PBLENDWrri:
9241 case X86::VPBLENDWrmi:
9242 case X86::VPBLENDWrri:
9243 return SetBlendDomain(8,
false);
9244 case X86::VPBLENDWYrmi:
9245 case X86::VPBLENDWYrri:
9246 return SetBlendDomain(16,
true);
9247 case X86::VPANDDZ128rr:
9248 case X86::VPANDDZ128rm:
9249 case X86::VPANDDZ256rr:
9250 case X86::VPANDDZ256rm:
9251 case X86::VPANDQZ128rr:
9252 case X86::VPANDQZ128rm:
9253 case X86::VPANDQZ256rr:
9254 case X86::VPANDQZ256rm:
9255 case X86::VPANDNDZ128rr:
9256 case X86::VPANDNDZ128rm:
9257 case X86::VPANDNDZ256rr:
9258 case X86::VPANDNDZ256rm:
9259 case X86::VPANDNQZ128rr:
9260 case X86::VPANDNQZ128rm:
9261 case X86::VPANDNQZ256rr:
9262 case X86::VPANDNQZ256rm:
9263 case X86::VPORDZ128rr:
9264 case X86::VPORDZ128rm:
9265 case X86::VPORDZ256rr:
9266 case X86::VPORDZ256rm:
9267 case X86::VPORQZ128rr:
9268 case X86::VPORQZ128rm:
9269 case X86::VPORQZ256rr:
9270 case X86::VPORQZ256rm:
9271 case X86::VPXORDZ128rr:
9272 case X86::VPXORDZ128rm:
9273 case X86::VPXORDZ256rr:
9274 case X86::VPXORDZ256rm:
9275 case X86::VPXORQZ128rr:
9276 case X86::VPXORQZ128rm:
9277 case X86::VPXORQZ256rr:
9278 case X86::VPXORQZ256rm: {
9280 if (Subtarget.hasDQI())
9284 lookupAVX512(
MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9285 assert(table &&
"Instruction not found in table?");
9288 if (
Domain == 3 && (dom == 1 || table[3] ==
MI.getOpcode()))
9293 case X86::UNPCKHPDrr:
9294 case X86::MOVHLPSrr:
9297 MI.getOperand(1).getReg() ==
MI.getOperand(2).getReg() &&
9298 MI.getOperand(0).getSubReg() == 0 &&
9299 MI.getOperand(1).getSubReg() == 0 &&
9300 MI.getOperand(2).getSubReg() == 0) {
9301 commuteInstruction(
MI,
false);
9305 if (Opcode == X86::MOVHLPSrr)
9308 case X86::SHUFPDrri: {
9310 unsigned Imm =
MI.getOperand(3).getImm();
9311 unsigned NewImm = 0x44;
9316 MI.getOperand(3).setImm(NewImm);
9317 MI.setDesc(
get(X86::SHUFPSrri));
9325std::pair<uint16_t, uint16_t>
9328 unsigned opcode =
MI.getOpcode();
9334 return std::make_pair(domain, validDomains);
9336 if (
lookup(opcode, domain, ReplaceableInstrs)) {
9338 }
else if (
lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9339 validDomains = Subtarget.
hasAVX2() ? 0xe : 0x6;
9340 }
else if (
lookup(opcode, domain, ReplaceableInstrsFP)) {
9342 }
else if (
lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9346 return std::make_pair(0, 0);
9348 }
else if (
lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9350 }
else if (Subtarget.hasDQI() &&
9351 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9353 }
else if (Subtarget.hasDQI()) {
9355 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9356 if (domain == 1 || (domain == 3 && table[3] == opcode))
9363 return std::make_pair(domain, validDomains);
9369 assert(dom &&
"Not an SSE instruction");
9378 "256-bit vector operations only available in AVX2");
9379 table =
lookup(
MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9382 table =
lookup(
MI.getOpcode(), dom, ReplaceableInstrsFP);
9384 "Can only select PackedSingle or PackedDouble");
9388 "256-bit insert/extract only available in AVX2");
9389 table =
lookup(
MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9393 table =
lookupAVX512(
MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9395 if (table &&
Domain == 3 && table[3] ==
MI.getOpcode())
9399 assert((Subtarget.hasDQI() ||
Domain >= 3) &&
"Requires AVX-512DQ");
9400 table =
lookupAVX512(
MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9403 if (table &&
Domain == 3 && (dom == 1 || table[3] ==
MI.getOpcode()))
9407 assert((Subtarget.hasDQI() ||
Domain >= 3) &&
"Requires AVX-512DQ");
9408 table =
lookupAVX512(
MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9409 if (table &&
Domain == 3 && (dom == 1 || table[3] ==
MI.getOpcode()))
9412 assert(table &&
"Cannot change domain");
9438 case X86::DIVSDrm_Int:
9440 case X86::DIVSDrr_Int:
9442 case X86::DIVSSrm_Int:
9444 case X86::DIVSSrr_Int:
9450 case X86::SQRTSDm_Int:
9452 case X86::SQRTSDr_Int:
9454 case X86::SQRTSSm_Int:
9456 case X86::SQRTSSr_Int:
9460 case X86::VDIVPDYrm:
9461 case X86::VDIVPDYrr:
9464 case X86::VDIVPSYrm:
9465 case X86::VDIVPSYrr:
9467 case X86::VDIVSDrm_Int:
9469 case X86::VDIVSDrr_Int:
9471 case X86::VDIVSSrm_Int:
9473 case X86::VDIVSSrr_Int:
9476 case X86::VSQRTPDYm:
9477 case X86::VSQRTPDYr:
9480 case X86::VSQRTPSYm:
9481 case X86::VSQRTPSYr:
9483 case X86::VSQRTSDm_Int:
9485 case X86::VSQRTSDr_Int:
9487 case X86::VSQRTSSm_Int:
9489 case X86::VSQRTSSr_Int:
9491 case X86::VDIVPDZ128rm:
9492 case X86::VDIVPDZ128rmb:
9493 case X86::VDIVPDZ128rmbk:
9494 case X86::VDIVPDZ128rmbkz:
9495 case X86::VDIVPDZ128rmk:
9496 case X86::VDIVPDZ128rmkz:
9497 case X86::VDIVPDZ128rr:
9498 case X86::VDIVPDZ128rrk:
9499 case X86::VDIVPDZ128rrkz:
9500 case X86::VDIVPDZ256rm:
9501 case X86::VDIVPDZ256rmb:
9502 case X86::VDIVPDZ256rmbk:
9503 case X86::VDIVPDZ256rmbkz:
9504 case X86::VDIVPDZ256rmk:
9505 case X86::VDIVPDZ256rmkz:
9506 case X86::VDIVPDZ256rr:
9507 case X86::VDIVPDZ256rrk:
9508 case X86::VDIVPDZ256rrkz:
9509 case X86::VDIVPDZrrb:
9510 case X86::VDIVPDZrrbk:
9511 case X86::VDIVPDZrrbkz:
9512 case X86::VDIVPDZrm:
9513 case X86::VDIVPDZrmb:
9514 case X86::VDIVPDZrmbk:
9515 case X86::VDIVPDZrmbkz:
9516 case X86::VDIVPDZrmk:
9517 case X86::VDIVPDZrmkz:
9518 case X86::VDIVPDZrr:
9519 case X86::VDIVPDZrrk:
9520 case X86::VDIVPDZrrkz:
9521 case X86::VDIVPSZ128rm:
9522 case X86::VDIVPSZ128rmb:
9523 case X86::VDIVPSZ128rmbk:
9524 case X86::VDIVPSZ128rmbkz:
9525 case X86::VDIVPSZ128rmk:
9526 case X86::VDIVPSZ128rmkz:
9527 case X86::VDIVPSZ128rr:
9528 case X86::VDIVPSZ128rrk:
9529 case X86::VDIVPSZ128rrkz:
9530 case X86::VDIVPSZ256rm:
9531 case X86::VDIVPSZ256rmb:
9532 case X86::VDIVPSZ256rmbk:
9533 case X86::VDIVPSZ256rmbkz:
9534 case X86::VDIVPSZ256rmk:
9535 case X86::VDIVPSZ256rmkz:
9536 case X86::VDIVPSZ256rr:
9537 case X86::VDIVPSZ256rrk:
9538 case X86::VDIVPSZ256rrkz:
9539 case X86::VDIVPSZrrb:
9540 case X86::VDIVPSZrrbk:
9541 case X86::VDIVPSZrrbkz:
9542 case X86::VDIVPSZrm:
9543 case X86::VDIVPSZrmb:
9544 case X86::VDIVPSZrmbk:
9545 case X86::VDIVPSZrmbkz:
9546 case X86::VDIVPSZrmk:
9547 case X86::VDIVPSZrmkz:
9548 case X86::VDIVPSZrr:
9549 case X86::VDIVPSZrrk:
9550 case X86::VDIVPSZrrkz:
9551 case X86::VDIVSDZrm:
9552 case X86::VDIVSDZrr:
9553 case X86::VDIVSDZrm_Int:
9554 case X86::VDIVSDZrmk_Int:
9555 case X86::VDIVSDZrmkz_Int:
9556 case X86::VDIVSDZrr_Int:
9557 case X86::VDIVSDZrrk_Int:
9558 case X86::VDIVSDZrrkz_Int:
9559 case X86::VDIVSDZrrb_Int:
9560 case X86::VDIVSDZrrbk_Int:
9561 case X86::VDIVSDZrrbkz_Int:
9562 case X86::VDIVSSZrm:
9563 case X86::VDIVSSZrr:
9564 case X86::VDIVSSZrm_Int:
9565 case X86::VDIVSSZrmk_Int:
9566 case X86::VDIVSSZrmkz_Int:
9567 case X86::VDIVSSZrr_Int:
9568 case X86::VDIVSSZrrk_Int:
9569 case X86::VDIVSSZrrkz_Int:
9570 case X86::VDIVSSZrrb_Int:
9571 case X86::VDIVSSZrrbk_Int:
9572 case X86::VDIVSSZrrbkz_Int:
9573 case X86::VSQRTPDZ128m:
9574 case X86::VSQRTPDZ128mb:
9575 case X86::VSQRTPDZ128mbk:
9576 case X86::VSQRTPDZ128mbkz:
9577 case X86::VSQRTPDZ128mk:
9578 case X86::VSQRTPDZ128mkz:
9579 case X86::VSQRTPDZ128r:
9580 case X86::VSQRTPDZ128rk:
9581 case X86::VSQRTPDZ128rkz:
9582 case X86::VSQRTPDZ256m:
9583 case X86::VSQRTPDZ256mb:
9584 case X86::VSQRTPDZ256mbk:
9585 case X86::VSQRTPDZ256mbkz:
9586 case X86::VSQRTPDZ256mk:
9587 case X86::VSQRTPDZ256mkz:
9588 case X86::VSQRTPDZ256r:
9589 case X86::VSQRTPDZ256rk:
9590 case X86::VSQRTPDZ256rkz:
9591 case X86::VSQRTPDZm:
9592 case X86::VSQRTPDZmb:
9593 case X86::VSQRTPDZmbk:
9594 case X86::VSQRTPDZmbkz:
9595 case X86::VSQRTPDZmk:
9596 case X86::VSQRTPDZmkz:
9597 case X86::VSQRTPDZr:
9598 case X86::VSQRTPDZrb:
9599 case X86::VSQRTPDZrbk:
9600 case X86::VSQRTPDZrbkz:
9601 case X86::VSQRTPDZrk:
9602 case X86::VSQRTPDZrkz:
9603 case X86::VSQRTPSZ128m:
9604 case X86::VSQRTPSZ128mb:
9605 case X86::VSQRTPSZ128mbk:
9606 case X86::VSQRTPSZ128mbkz:
9607 case X86::VSQRTPSZ128mk:
9608 case X86::VSQRTPSZ128mkz:
9609 case X86::VSQRTPSZ128r:
9610 case X86::VSQRTPSZ128rk:
9611 case X86::VSQRTPSZ128rkz:
9612 case X86::VSQRTPSZ256m:
9613 case X86::VSQRTPSZ256mb:
9614 case X86::VSQRTPSZ256mbk:
9615 case X86::VSQRTPSZ256mbkz:
9616 case X86::VSQRTPSZ256mk:
9617 case X86::VSQRTPSZ256mkz:
9618 case X86::VSQRTPSZ256r:
9619 case X86::VSQRTPSZ256rk:
9620 case X86::VSQRTPSZ256rkz:
9621 case X86::VSQRTPSZm:
9622 case X86::VSQRTPSZmb:
9623 case X86::VSQRTPSZmbk:
9624 case X86::VSQRTPSZmbkz:
9625 case X86::VSQRTPSZmk:
9626 case X86::VSQRTPSZmkz:
9627 case X86::VSQRTPSZr:
9628 case X86::VSQRTPSZrb:
9629 case X86::VSQRTPSZrbk:
9630 case X86::VSQRTPSZrbkz:
9631 case X86::VSQRTPSZrk:
9632 case X86::VSQRTPSZrkz:
9633 case X86::VSQRTSDZm:
9634 case X86::VSQRTSDZm_Int:
9635 case X86::VSQRTSDZmk_Int:
9636 case X86::VSQRTSDZmkz_Int:
9637 case X86::VSQRTSDZr:
9638 case X86::VSQRTSDZr_Int:
9639 case X86::VSQRTSDZrk_Int:
9640 case X86::VSQRTSDZrkz_Int:
9641 case X86::VSQRTSDZrb_Int:
9642 case X86::VSQRTSDZrbk_Int:
9643 case X86::VSQRTSDZrbkz_Int:
9644 case X86::VSQRTSSZm:
9645 case X86::VSQRTSSZm_Int:
9646 case X86::VSQRTSSZmk_Int:
9647 case X86::VSQRTSSZmkz_Int:
9648 case X86::VSQRTSSZr:
9649 case X86::VSQRTSSZr_Int:
9650 case X86::VSQRTSSZrk_Int:
9651 case X86::VSQRTSSZrkz_Int:
9652 case X86::VSQRTSSZrb_Int:
9653 case X86::VSQRTSSZrbk_Int:
9654 case X86::VSQRTSSZrbkz_Int:
9656 case X86::VGATHERDPDYrm:
9657 case X86::VGATHERDPDZ128rm:
9658 case X86::VGATHERDPDZ256rm:
9659 case X86::VGATHERDPDZrm:
9660 case X86::VGATHERDPDrm:
9661 case X86::VGATHERDPSYrm:
9662 case X86::VGATHERDPSZ128rm:
9663 case X86::VGATHERDPSZ256rm:
9664 case X86::VGATHERDPSZrm:
9665 case X86::VGATHERDPSrm:
9666 case X86::VGATHERPF0DPDm:
9667 case X86::VGATHERPF0DPSm:
9668 case X86::VGATHERPF0QPDm:
9669 case X86::VGATHERPF0QPSm:
9670 case X86::VGATHERPF1DPDm:
9671 case X86::VGATHERPF1DPSm:
9672 case X86::VGATHERPF1QPDm:
9673 case X86::VGATHERPF1QPSm:
9674 case X86::VGATHERQPDYrm:
9675 case X86::VGATHERQPDZ128rm:
9676 case X86::VGATHERQPDZ256rm:
9677 case X86::VGATHERQPDZrm:
9678 case X86::VGATHERQPDrm:
9679 case X86::VGATHERQPSYrm:
9680 case X86::VGATHERQPSZ128rm:
9681 case X86::VGATHERQPSZ256rm:
9682 case X86::VGATHERQPSZrm:
9683 case X86::VGATHERQPSrm:
9684 case X86::VPGATHERDDYrm:
9685 case X86::VPGATHERDDZ128rm:
9686 case X86::VPGATHERDDZ256rm:
9687 case X86::VPGATHERDDZrm:
9688 case X86::VPGATHERDDrm:
9689 case X86::VPGATHERDQYrm:
9690 case X86::VPGATHERDQZ128rm:
9691 case X86::VPGATHERDQZ256rm:
9692 case X86::VPGATHERDQZrm:
9693 case X86::VPGATHERDQrm:
9694 case X86::VPGATHERQDYrm:
9695 case X86::VPGATHERQDZ128rm:
9696 case X86::VPGATHERQDZ256rm:
9697 case X86::VPGATHERQDZrm:
9698 case X86::VPGATHERQDrm:
9699 case X86::VPGATHERQQYrm:
9700 case X86::VPGATHERQQZ128rm:
9701 case X86::VPGATHERQQZ256rm:
9702 case X86::VPGATHERQQZrm:
9703 case X86::VPGATHERQQrm:
9704 case X86::VSCATTERDPDZ128mr:
9705 case X86::VSCATTERDPDZ256mr:
9706 case X86::VSCATTERDPDZmr:
9707 case X86::VSCATTERDPSZ128mr:
9708 case X86::VSCATTERDPSZ256mr:
9709 case X86::VSCATTERDPSZmr:
9710 case X86::VSCATTERPF0DPDm:
9711 case X86::VSCATTERPF0DPSm:
9712 case X86::VSCATTERPF0QPDm:
9713 case X86::VSCATTERPF0QPSm:
9714 case X86::VSCATTERPF1DPDm:
9715 case X86::VSCATTERPF1DPSm:
9716 case X86::VSCATTERPF1QPDm:
9717 case X86::VSCATTERPF1QPSm:
9718 case X86::VSCATTERQPDZ128mr:
9719 case X86::VSCATTERQPDZ256mr:
9720 case X86::VSCATTERQPDZmr:
9721 case X86::VSCATTERQPSZ128mr:
9722 case X86::VSCATTERQPSZ256mr:
9723 case X86::VSCATTERQPSZmr:
9724 case X86::VPSCATTERDDZ128mr:
9725 case X86::VPSCATTERDDZ256mr:
9726 case X86::VPSCATTERDDZmr:
9727 case X86::VPSCATTERDQZ128mr:
9728 case X86::VPSCATTERDQZ256mr:
9729 case X86::VPSCATTERDQZmr:
9730 case X86::VPSCATTERQDZ128mr:
9731 case X86::VPSCATTERQDZ256mr:
9732 case X86::VPSCATTERQDZmr:
9733 case X86::VPSCATTERQQZ128mr:
9734 case X86::VPSCATTERQQZ256mr:
9735 case X86::VPSCATTERQQZmr:
9745 unsigned UseIdx)
const {
9752 Inst.
getNumDefs() <= 2 &&
"Reassociation needs binary operators");
9762 assert((Inst.
getNumDefs() == 1 || FlagDef) &&
"Implicit def isn't flags?");
9763 if (FlagDef && !FlagDef->
isDead())
9774 bool Invert)
const {
9826 case X86::VPANDDZ128rr:
9827 case X86::VPANDDZ256rr:
9828 case X86::VPANDDZrr:
9829 case X86::VPANDQZ128rr:
9830 case X86::VPANDQZ256rr:
9831 case X86::VPANDQZrr:
9834 case X86::VPORDZ128rr:
9835 case X86::VPORDZ256rr:
9837 case X86::VPORQZ128rr:
9838 case X86::VPORQZ256rr:
9842 case X86::VPXORDZ128rr:
9843 case X86::VPXORDZ256rr:
9844 case X86::VPXORDZrr:
9845 case X86::VPXORQZ128rr:
9846 case X86::VPXORQZ256rr:
9847 case X86::VPXORQZrr:
9850 case X86::VANDPDYrr:
9851 case X86::VANDPSYrr:
9852 case X86::VANDPDZ128rr:
9853 case X86::VANDPSZ128rr:
9854 case X86::VANDPDZ256rr:
9855 case X86::VANDPSZ256rr:
9856 case X86::VANDPDZrr:
9857 case X86::VANDPSZrr:
9862 case X86::VORPDZ128rr:
9863 case X86::VORPSZ128rr:
9864 case X86::VORPDZ256rr:
9865 case X86::VORPSZ256rr:
9870 case X86::VXORPDYrr:
9871 case X86::VXORPSYrr:
9872 case X86::VXORPDZ128rr:
9873 case X86::VXORPSZ128rr:
9874 case X86::VXORPDZ256rr:
9875 case X86::VXORPSZ256rr:
9876 case X86::VXORPDZrr:
9877 case X86::VXORPSZrr:
9898 case X86::VPADDBYrr:
9899 case X86::VPADDWYrr:
9900 case X86::VPADDDYrr:
9901 case X86::VPADDQYrr:
9902 case X86::VPADDBZ128rr:
9903 case X86::VPADDWZ128rr:
9904 case X86::VPADDDZ128rr:
9905 case X86::VPADDQZ128rr:
9906 case X86::VPADDBZ256rr:
9907 case X86::VPADDWZ256rr:
9908 case X86::VPADDDZ256rr:
9909 case X86::VPADDQZ256rr:
9910 case X86::VPADDBZrr:
9911 case X86::VPADDWZrr:
9912 case X86::VPADDDZrr:
9913 case X86::VPADDQZrr:
9914 case X86::VPMULLWrr:
9915 case X86::VPMULLWYrr:
9916 case X86::VPMULLWZ128rr:
9917 case X86::VPMULLWZ256rr:
9918 case X86::VPMULLWZrr:
9919 case X86::VPMULLDrr:
9920 case X86::VPMULLDYrr:
9921 case X86::VPMULLDZ128rr:
9922 case X86::VPMULLDZ256rr:
9923 case X86::VPMULLDZrr:
9924 case X86::VPMULLQZ128rr:
9925 case X86::VPMULLQZ256rr:
9926 case X86::VPMULLQZrr:
9927 case X86::VPMAXSBrr:
9928 case X86::VPMAXSBYrr:
9929 case X86::VPMAXSBZ128rr:
9930 case X86::VPMAXSBZ256rr:
9931 case X86::VPMAXSBZrr:
9932 case X86::VPMAXSDrr:
9933 case X86::VPMAXSDYrr:
9934 case X86::VPMAXSDZ128rr:
9935 case X86::VPMAXSDZ256rr:
9936 case X86::VPMAXSDZrr:
9937 case X86::VPMAXSQZ128rr:
9938 case X86::VPMAXSQZ256rr:
9939 case X86::VPMAXSQZrr:
9940 case X86::VPMAXSWrr:
9941 case X86::VPMAXSWYrr:
9942 case X86::VPMAXSWZ128rr:
9943 case X86::VPMAXSWZ256rr:
9944 case X86::VPMAXSWZrr:
9945 case X86::VPMAXUBrr:
9946 case X86::VPMAXUBYrr:
9947 case X86::VPMAXUBZ128rr:
9948 case X86::VPMAXUBZ256rr:
9949 case X86::VPMAXUBZrr:
9950 case X86::VPMAXUDrr:
9951 case X86::VPMAXUDYrr:
9952 case X86::VPMAXUDZ128rr:
9953 case X86::VPMAXUDZ256rr:
9954 case X86::VPMAXUDZrr:
9955 case X86::VPMAXUQZ128rr:
9956 case X86::VPMAXUQZ256rr:
9957 case X86::VPMAXUQZrr:
9958 case X86::VPMAXUWrr:
9959 case X86::VPMAXUWYrr:
9960 case X86::VPMAXUWZ128rr:
9961 case X86::VPMAXUWZ256rr:
9962 case X86::VPMAXUWZrr:
9963 case X86::VPMINSBrr:
9964 case X86::VPMINSBYrr:
9965 case X86::VPMINSBZ128rr:
9966 case X86::VPMINSBZ256rr:
9967 case X86::VPMINSBZrr:
9968 case X86::VPMINSDrr:
9969 case X86::VPMINSDYrr:
9970 case X86::VPMINSDZ128rr:
9971 case X86::VPMINSDZ256rr:
9972 case X86::VPMINSDZrr:
9973 case X86::VPMINSQZ128rr:
9974 case X86::VPMINSQZ256rr:
9975 case X86::VPMINSQZrr:
9976 case X86::VPMINSWrr:
9977 case X86::VPMINSWYrr:
9978 case X86::VPMINSWZ128rr:
9979 case X86::VPMINSWZ256rr:
9980 case X86::VPMINSWZrr:
9981 case X86::VPMINUBrr:
9982 case X86::VPMINUBYrr:
9983 case X86::VPMINUBZ128rr:
9984 case X86::VPMINUBZ256rr:
9985 case X86::VPMINUBZrr:
9986 case X86::VPMINUDrr:
9987 case X86::VPMINUDYrr:
9988 case X86::VPMINUDZ128rr:
9989 case X86::VPMINUDZ256rr:
9990 case X86::VPMINUDZrr:
9991 case X86::VPMINUQZ128rr:
9992 case X86::VPMINUQZ256rr:
9993 case X86::VPMINUQZrr:
9994 case X86::VPMINUWrr:
9995 case X86::VPMINUWYrr:
9996 case X86::VPMINUWZ128rr:
9997 case X86::VPMINUWZ256rr:
9998 case X86::VPMINUWZrr:
10002 case X86::MAXCPDrr:
10003 case X86::MAXCPSrr:
10004 case X86::MAXCSDrr:
10005 case X86::MAXCSSrr:
10006 case X86::MINCPDrr:
10007 case X86::MINCPSrr:
10008 case X86::MINCSDrr:
10009 case X86::MINCSSrr:
10010 case X86::VMAXCPDrr:
10011 case X86::VMAXCPSrr:
10012 case X86::VMAXCPDYrr:
10013 case X86::VMAXCPSYrr:
10014 case X86::VMAXCPDZ128rr:
10015 case X86::VMAXCPSZ128rr:
10016 case X86::VMAXCPDZ256rr:
10017 case X86::VMAXCPSZ256rr:
10018 case X86::VMAXCPDZrr:
10019 case X86::VMAXCPSZrr:
10020 case X86::VMAXCSDrr:
10021 case X86::VMAXCSSrr:
10022 case X86::VMAXCSDZrr:
10023 case X86::VMAXCSSZrr:
10024 case X86::VMINCPDrr:
10025 case X86::VMINCPSrr:
10026 case X86::VMINCPDYrr:
10027 case X86::VMINCPSYrr:
10028 case X86::VMINCPDZ128rr:
10029 case X86::VMINCPSZ128rr:
10030 case X86::VMINCPDZ256rr:
10031 case X86::VMINCPSZ256rr:
10032 case X86::VMINCPDZrr:
10033 case X86::VMINCPSZrr:
10034 case X86::VMINCSDrr:
10035 case X86::VMINCSSrr:
10036 case X86::VMINCSDZrr:
10037 case X86::VMINCSSZrr:
10038 case X86::VMAXCPHZ128rr:
10039 case X86::VMAXCPHZ256rr:
10040 case X86::VMAXCPHZrr:
10041 case X86::VMAXCSHZrr:
10042 case X86::VMINCPHZ128rr:
10043 case X86::VMINCPHZ256rr:
10044 case X86::VMINCPHZrr:
10045 case X86::VMINCSHZrr:
10055 case X86::VADDPDrr:
10056 case X86::VADDPSrr:
10057 case X86::VADDPDYrr:
10058 case X86::VADDPSYrr:
10059 case X86::VADDPDZ128rr:
10060 case X86::VADDPSZ128rr:
10061 case X86::VADDPDZ256rr:
10062 case X86::VADDPSZ256rr:
10063 case X86::VADDPDZrr:
10064 case X86::VADDPSZrr:
10065 case X86::VADDSDrr:
10066 case X86::VADDSSrr:
10067 case X86::VADDSDZrr:
10068 case X86::VADDSSZrr:
10069 case X86::VMULPDrr:
10070 case X86::VMULPSrr:
10071 case X86::VMULPDYrr:
10072 case X86::VMULPSYrr:
10073 case X86::VMULPDZ128rr:
10074 case X86::VMULPSZ128rr:
10075 case X86::VMULPDZ256rr:
10076 case X86::VMULPSZ256rr:
10077 case X86::VMULPDZrr:
10078 case X86::VMULPSZrr:
10079 case X86::VMULSDrr:
10080 case X86::VMULSSrr:
10081 case X86::VMULSDZrr:
10082 case X86::VMULSSZrr:
10083 case X86::VADDPHZ128rr:
10084 case X86::VADDPHZ256rr:
10085 case X86::VADDPHZrr:
10086 case X86::VADDSHZrr:
10087 case X86::VMULPHZ128rr:
10088 case X86::VMULPHZ256rr:
10089 case X86::VMULPHZrr:
10090 case X86::VMULSHZrr:
10101static std::optional<ParamLoadedValue>
10104 Register DestReg =
MI.getOperand(0).getReg();
10105 Register SrcReg =
MI.getOperand(1).getReg();
10110 if (DestReg == DescribedReg)
10115 if (
unsigned SubRegIdx =
TRI->getSubRegIndex(DestReg, DescribedReg)) {
10116 Register SrcSubReg =
TRI->getSubReg(SrcReg, SubRegIdx);
10126 if (
MI.getOpcode() == X86::MOV8rr ||
MI.getOpcode() == X86::MOV16rr ||
10127 !
TRI->isSuperRegister(DestReg, DescribedReg))
10128 return std::nullopt;
10130 assert(
MI.getOpcode() == X86::MOV32rr &&
"Unexpected super-register case");
10134std::optional<ParamLoadedValue>
10141 switch (
MI.getOpcode()) {
10144 case X86::LEA64_32r: {
10146 if (!
TRI->isSuperRegisterEq(
MI.getOperand(0).getReg(), Reg))
10147 return std::nullopt;
10151 if (!
MI.getOperand(4).isImm() || !
MI.getOperand(2).isImm())
10152 return std::nullopt;
10161 if ((Op1.
isReg() && Op1.
getReg() ==
MI.getOperand(0).getReg()) ||
10162 Op2.
getReg() ==
MI.getOperand(0).getReg())
10163 return std::nullopt;
10164 else if ((Op1.
isReg() && Op1.
getReg() != X86::NoRegister &&
10165 TRI->regsOverlap(Op1.
getReg(),
MI.getOperand(0).getReg())) ||
10166 (Op2.
getReg() != X86::NoRegister &&
10167 TRI->regsOverlap(Op2.
getReg(),
MI.getOperand(0).getReg())))
10168 return std::nullopt;
10170 int64_t Coef =
MI.getOperand(2).getImm();
10171 int64_t
Offset =
MI.getOperand(4).getImm();
10174 if ((Op1.
isReg() && Op1.
getReg() != X86::NoRegister)) {
10176 }
else if (Op1.
isFI())
10179 if (
Op &&
Op->isReg() &&
Op->getReg() == Op2.
getReg() && Coef > 0) {
10184 if (
Op && Op2.
getReg() != X86::NoRegister) {
10185 int dwarfReg =
TRI->getDwarfRegNum(Op2.
getReg(),
false);
10187 return std::nullopt;
10188 else if (dwarfReg < 32) {
10189 Ops.
push_back(dwarf::DW_OP_breg0 + dwarfReg);
10208 if (((Op1.
isReg() && Op1.
getReg() != X86::NoRegister) || Op1.
isFI()) &&
10209 Op2.
getReg() != X86::NoRegister) {
10222 return std::nullopt;
10225 case X86::MOV64ri32:
10228 if (!
TRI->isSuperRegisterEq(
MI.getOperand(0).getReg(), Reg))
10229 return std::nullopt;
10236 case X86::XOR32rr: {
10239 if (!
TRI->isSuperRegisterEq(
MI.getOperand(0).getReg(), Reg))
10240 return std::nullopt;
10241 if (
MI.getOperand(1).getReg() ==
MI.getOperand(2).getReg())
10243 return std::nullopt;
10245 case X86::MOVSX64rr32: {
10252 if (!
TRI->isSubRegisterEq(
MI.getOperand(0).getReg(), Reg))
10253 return std::nullopt;
10262 if (Reg ==
MI.getOperand(0).getReg())
10265 assert(X86MCRegisterClasses[X86::GR32RegClassID].
contains(Reg) &&
10266 "Unhandled sub-register case for MOVSX64rr32");
10271 assert(!
MI.isMoveImmediate() &&
"Unexpected MoveImm instruction");
10288 assert(!OldFlagDef1 == !OldFlagDef2 &&
10289 "Unexpected instruction type for reassociation");
10291 if (!OldFlagDef1 || !OldFlagDef2)
10295 "Must have dead EFLAGS operand in reassociable instruction");
10302 assert(NewFlagDef1 && NewFlagDef2 &&
10303 "Unexpected operand in reassociable instruction");
10313std::pair<unsigned, unsigned>
10315 return std::make_pair(TF, 0u);
10320 using namespace X86II;
10321 static const std::pair<unsigned, const char *> TargetFlags[] = {
10322 {MO_GOT_ABSOLUTE_ADDRESS,
"x86-got-absolute-address"},
10323 {MO_PIC_BASE_OFFSET,
"x86-pic-base-offset"},
10324 {MO_GOT,
"x86-got"},
10325 {MO_GOTOFF,
"x86-gotoff"},
10326 {MO_GOTPCREL,
"x86-gotpcrel"},
10327 {MO_GOTPCREL_NORELAX,
"x86-gotpcrel-norelax"},
10328 {MO_PLT,
"x86-plt"},
10329 {MO_TLSGD,
"x86-tlsgd"},
10330 {MO_TLSLD,
"x86-tlsld"},
10331 {MO_TLSLDM,
"x86-tlsldm"},
10332 {MO_GOTTPOFF,
"x86-gottpoff"},
10333 {MO_INDNTPOFF,
"x86-indntpoff"},
10334 {MO_TPOFF,
"x86-tpoff"},
10335 {MO_DTPOFF,
"x86-dtpoff"},
10336 {MO_NTPOFF,
"x86-ntpoff"},
10337 {MO_GOTNTPOFF,
"x86-gotntpoff"},
10338 {MO_DLLIMPORT,
"x86-dllimport"},
10339 {MO_DARWIN_NONLAZY,
"x86-darwin-nonlazy"},
10340 {MO_DARWIN_NONLAZY_PIC_BASE,
"x86-darwin-nonlazy-pic-base"},
10341 {MO_TLVP,
"x86-tlvp"},
10342 {MO_TLVP_PIC_BASE,
"x86-tlvp-pic-base"},
10343 {MO_SECREL,
"x86-secrel"},
10344 {MO_COFFSTUB,
"x86-coffstub"}};
10361 if (!TM->isPositionIndependent())
10368 if (GlobalBaseReg == 0)
10380 PC =
RegInfo.createVirtualRegister(&X86::GR32RegClass);
10382 PC = GlobalBaseReg;
10384 if (STI.is64Bit()) {
10437 StringRef getPassName()
const override {
10438 return "X86 PIC Global Base Reg Initialization";
10467 &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
10478 bool Changed =
false;
10483 switch (
I->getOpcode()) {
10484 case X86::TLS_base_addr32:
10485 case X86::TLS_base_addr64:
10486 if (TLSBaseAddrReg)
10487 I = ReplaceTLSBaseAddrCall(*
I, TLSBaseAddrReg);
10489 I = SetRegister(*
I, &TLSBaseAddrReg);
10498 for (
auto &
I : *
Node) {
10499 Changed |= VisitNode(
I, TLSBaseAddrReg);
10511 const bool is64Bit = STI.is64Bit();
10517 TII->get(TargetOpcode::COPY),
is64Bit ? X86::RAX : X86::EAX)
10518 .
addReg(TLSBaseAddrReg);
10521 I.eraseFromParent();
10531 const bool is64Bit = STI.is64Bit();
10536 *TLSBaseAddrReg =
RegInfo.createVirtualRegister(
10537 is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10542 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10548 StringRef getPassName()
const override {
10549 return "Local Dynamic TLS Access Clean-up";
10560char LDTLSCleanup::ID = 0;
10562 return new LDTLSCleanup();
10595std::optional<std::unique_ptr<outliner::OutlinedFunction>>
10598 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
10599 unsigned MinRepeats)
const {
10600 unsigned SequenceSize = 0;
10601 for (
auto &
MI : RepeatedSequenceLocs[0]) {
10605 if (
MI.isDebugInstr() ||
MI.isKill())
10612 unsigned CFICount = 0;
10613 for (
auto &
I : RepeatedSequenceLocs[0]) {
10614 if (
I.isCFIInstruction())
10624 std::vector<MCCFIInstruction> CFIInstructions =
10625 C.getMF()->getFrameInstructions();
10627 if (CFICount > 0 && CFICount != CFIInstructions.size())
10628 return std::nullopt;
10632 if (RepeatedSequenceLocs[0].back().isTerminator()) {
10636 return std::make_unique<outliner::OutlinedFunction>(
10637 RepeatedSequenceLocs, SequenceSize,
10644 return std::nullopt;
10649 return std::make_unique<outliner::OutlinedFunction>(
10668 if (!OutlineFromLinkOnceODRs &&
F.hasLinkOnceODRLinkage())
10678 unsigned Flags)
const {
10682 if (
MI.isTerminator())
10696 if (
MI.modifiesRegister(X86::RSP, &RI) ||
MI.readsRegister(X86::RSP, &RI) ||
10697 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10698 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10702 if (
MI.readsRegister(X86::RIP, &RI) ||
10703 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10704 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10708 if (
MI.isCFIInstruction())
10734 .addGlobalAddress(M.getNamedValue(MF.
getName())));
10738 .addGlobalAddress(M.getNamedValue(MF.
getName())));
10747 bool AllowSideEffects)
const {
10752 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10756 if (
TRI.isGeneralPurposeRegister(MF, Reg)) {
10761 if (!AllowSideEffects)
10768 }
else if (X86::VR128RegClass.
contains(Reg)) {
10777 }
else if (X86::VR256RegClass.
contains(Reg)) {
10786 }
else if (X86::VR512RegClass.
contains(Reg)) {
10788 if (!ST.hasAVX512())
10795 }
else if (X86::VK1RegClass.
contains(Reg) || X86::VK2RegClass.
contains(Reg) ||
10797 X86::VK16RegClass.
contains(Reg)) {
10802 unsigned Op = ST.hasBWI() ? X86::KXORQkk : X86::KXORWkk;
10811 bool DoRegPressureReduce)
const {
10814 case X86::VPDPWSSDrr:
10815 case X86::VPDPWSSDrm:
10816 case X86::VPDPWSSDYrr:
10817 case X86::VPDPWSSDYrm: {
10818 if (!Subtarget.hasFastDPWSSD()) {
10824 case X86::VPDPWSSDZ128r:
10825 case X86::VPDPWSSDZ128m:
10826 case X86::VPDPWSSDZ256r:
10827 case X86::VPDPWSSDZ256m:
10828 case X86::VPDPWSSDZr:
10829 case X86::VPDPWSSDZm: {
10830 if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) {
10838 Patterns, DoRegPressureReduce);
10850 unsigned AddOpc = 0;
10851 unsigned MaddOpc = 0;
10854 assert(
false &&
"It should not reach here");
10860 case X86::VPDPWSSDrr:
10861 MaddOpc = X86::VPMADDWDrr;
10862 AddOpc = X86::VPADDDrr;
10864 case X86::VPDPWSSDrm:
10865 MaddOpc = X86::VPMADDWDrm;
10866 AddOpc = X86::VPADDDrr;
10868 case X86::VPDPWSSDZ128r:
10869 MaddOpc = X86::VPMADDWDZ128rr;
10870 AddOpc = X86::VPADDDZ128rr;
10872 case X86::VPDPWSSDZ128m:
10873 MaddOpc = X86::VPMADDWDZ128rm;
10874 AddOpc = X86::VPADDDZ128rr;
10880 case X86::VPDPWSSDYrr:
10881 MaddOpc = X86::VPMADDWDYrr;
10882 AddOpc = X86::VPADDDYrr;
10884 case X86::VPDPWSSDYrm:
10885 MaddOpc = X86::VPMADDWDYrm;
10886 AddOpc = X86::VPADDDYrr;
10888 case X86::VPDPWSSDZ256r:
10889 MaddOpc = X86::VPMADDWDZ256rr;
10890 AddOpc = X86::VPADDDZ256rr;
10892 case X86::VPDPWSSDZ256m:
10893 MaddOpc = X86::VPMADDWDZ256rm;
10894 AddOpc = X86::VPADDDZ256rr;
10900 case X86::VPDPWSSDZr:
10901 MaddOpc = X86::VPMADDWDZrr;
10902 AddOpc = X86::VPADDDZrr;
10904 case X86::VPDPWSSDZm:
10905 MaddOpc = X86::VPMADDWDZrm;
10906 AddOpc = X86::VPADDDZrr;
10918 InstrIdxForVirtReg.
insert(std::make_pair(NewReg, 0));
10940 DelInstrs, InstrIdxForVirtReg);
10944 InstrIdxForVirtReg);
10954 M.Base.FrameIndex = FI;
10955 M.getFullAddress(Ops);
10958#define GET_INSTRINFO_HELPERS
10959#include "X86GenInstrInfo.inc"
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineOutlinerClass
Constants defining how certain sequences should be outlined.
@ MachineOutlinerTailCall
Emit a save, restore, call, and return.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
DXIL Forward Handle Accesses
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
Module.h This file contains the declarations for the Module class.
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
Expand a single-def pseudo instruction to a two-addr instruction with two undef reads of the register...
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Provides some synthesis utilities to produce sequences of values.
static SPCC::CondCodes GetOppositeBranchCondition(SPCC::CondCodes CC)
#define FROM_TO(FROM, TO)
cl::opt< bool > X86EnableAPXForRelocation
static bool is64Bit(const char *name)
#define GET_EGPR_IF_ENABLED(OPC)
static bool isLEA(unsigned Opcode)
static void addOperands(MachineInstrBuilder &MIB, ArrayRef< MachineOperand > MOs, int PtrOffset=0)
static std::optional< ParamLoadedValue > describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, const TargetRegisterInfo *TRI)
If DescribedReg overlaps with the MOVrr instruction's destination register then, if possible,...
static cl::opt< unsigned > PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden)
static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI)
static unsigned CopyToFromAsymmetricReg(Register DestReg, Register SrcReg, const X86Subtarget &Subtarget)
static bool isConvertibleLEA(MachineInstr *MI)
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget)
static bool isAMXOpcode(unsigned Opc)
static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, Register Reg)
static void updateOperandRegConstraints(MachineFunction &MF, MachineInstr &NewMI, const TargetInstrInfo &TII)
static int getJumpTableIndexFromAddr(const MachineInstr &MI)
static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, unsigned NewWidth, unsigned *pNewMask=nullptr)
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne)
static unsigned getNewOpcFromTable(ArrayRef< X86TableEntry > Table, unsigned Opc)
static unsigned getStoreRegOpcode(Register SrcReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
#define FOLD_BROADCAST(SIZE)
static cl::opt< unsigned > UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden)
#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64)
static bool isTruncatedShiftCountForLEA(unsigned ShAmt)
Check whether the given shift count is appropriate can be represented by a LEA instruction.
static cl::opt< bool > ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden)
static SmallVector< MachineMemOperand *, 2 > extractLoadMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static MachineInstr * fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII)
static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx)
static bool canConvert2Copy(unsigned Opc)
static cl::opt< bool > NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions"), cl::Hidden)
static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx)
static bool isX87Reg(Register Reg)
Return true if the Reg is X87 register.
static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, Register Reg)
Expand a single-def pseudo instruction to a two-addr instruction with two k0 reads.
static bool isFrameLoadOpcode(int Opcode, TypeSize &MemBytes)
#define VPERM_CASES_BROADCAST(Suffix)
static std::pair< X86::CondCode, unsigned > isUseDefConvertible(const MachineInstr &MI)
Check whether the use can be converted to remove a comparison against zero.
static bool findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, const MachineRegisterInfo *MRI, MachineInstr **AndInstr, const TargetRegisterInfo *TRI, const X86Subtarget &ST, bool &NoSignFlag, bool &ClearsOverflowFlag)
static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
static unsigned getLoadRegOpcode(Register DestReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, bool ForLoadFold=false)
static MachineInstr * makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI)
#define GET_ND_IF_ENABLED(OPC)
static bool expandMOVSHP(MachineInstrBuilder &MIB, MachineInstr &MI, const TargetInstrInfo &TII, bool HasAVX)
static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, bool ForLoadFold=false)
Return true for all instructions that only update the first 32 or 64-bits of the destination register...
static const uint16_t * lookupAVX512(unsigned opcode, unsigned domain, ArrayRef< uint16_t[4]> Table)
static unsigned getLoadStoreRegOpcode(Register Reg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI, bool Load)
#define VPERM_CASES(Suffix)
#define FROM_TO_SIZE(A, B, S)
static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, bool &ClearsOverflowFlag)
Check whether the definition can be converted to remove a comparison against zero.
static MachineInstr * fuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset=0)
static X86::CondCode getSwappedCondition(X86::CondCode CC)
Assuming the flags are set by MI(a,b), return the condition code if we modify the instructions such t...
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode)
static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static MachineBasicBlock * getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB)
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF)
Check if LoadMI is a partial register load that we can't fold into MI because the latter uses content...
cl::opt< bool > X86EnableAPXForRelocation
static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI)
static bool isHReg(Register Reg)
Test if the given register is a physical h register.
static cl::opt< bool > PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden)
static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx)
static void genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstrIdxForVirtReg)
static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
This determines which of three possible cases of a three source commute the source indexes correspond...
static bool isFrameStoreOpcode(int Opcode, TypeSize &MemBytes)
static unsigned getTruncatedShiftCount(const MachineInstr &MI, unsigned ShiftAmtOperandIdx)
Check whether the shift count for a machine operand is non-zero.
static SmallVector< MachineMemOperand *, 2 > extractStoreMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, const TargetRegisterClass *RC, const X86Subtarget &STI)
static unsigned convertALUrr2ALUri(unsigned Opc)
Convert an ALUrr opcode to corresponding ALUri opcode.
static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI)
Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool isCommutableVPERMV3Instruction(unsigned Opcode)
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Base class for the actual dominator tree node.
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
FunctionPass class - This class is used to implement most global optimizations.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
LiveInterval - This class represents the liveness of a register, or stack slot.
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveInterval & getInterval(Register Reg)
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
LLVM_ABI void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
LLVM_ABI VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
static LocationSize precise(uint64_t Value)
bool usesWindowsCFI() const
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int64_t Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Instances of this class represent a single low-level machine instruction.
void setOpcode(unsigned Op)
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
unsigned getOpcode() const
Return the opcode number for this descriptor.
This holds information about one operand of a machine instruction, indicating the register class for ...
Wrapper class representing physical registers. Should be passed by value.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned pred_size() const
MachineInstrBundleIterator< const MachineInstr > const_iterator
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
LLVM_ABI LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, MCRegister Reg, const_iterator Before, unsigned Neighborhood=10) const
Return whether (physical) register Reg has been defined and not killed as of just before Before.
LLVM_ABI DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
pred_iterator pred_begin()
LLVM_ABI bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< succ_iterator > successors()
reverse_iterator rbegin()
@ LQR_Dead
Register is known to be fully dead.
LLVM_ABI bool isLiveIn(MCRegister Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
This class is a data container for one entry in a MachineConstantPool.
union llvm::MachineConstantPoolEntry::@205 Val
The constant itself.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
const Constant * ConstVal
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineConstantPool * getConstantPool()
getConstantPool - Return the constant pool object for the current function.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
const MachineBasicBlock & front() const
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addDisp(const MachineOperand &Disp, int64_t off, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
mop_iterator operands_begin()
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
bool isImplicitDef() const
const MachineBasicBlock * getParent() const
void dropDebugNumber()
Drop any variable location debugging information associated with this instruction.
LLVM_ABI void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol)
Set a symbol that will be emitted just prior to the instruction itself.
LLVM_ABI void addImplicitDefUseOperands(MachineFunction &MF)
Add all implicit def and use operands to this instruction.
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
LLVM_ABI unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr modifies (fully define or partially define) the specified register.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
void untieRegOperand(unsigned OpIdx)
Break any tie involving OpIdx.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI void eraseFromBundle()
Unlink 'this' from its basic block and delete it.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
LLVM_ABI void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
LLVM_ABI bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
void setFlag(MIFlag Flag)
Set a MI flag.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
LLVM_ABI void dump() const
const MachineOperand & getOperand(unsigned i) const
unsigned getNumDefs() const
Returns the total number of definitions.
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setImplicit(bool Val=true)
void setImm(int64_t immVal)
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
void setIsDead(bool Val=true)
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
LLVM_ABI void ChangeToRegister(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isDebug=false)
ChangeToRegister - Replace this operand with a new register operand of the specified value.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
int64_t getOffset() const
Return the offset from the symbol in this operand.
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
const TargetRegisterInfo * getTargetRegisterInfo() const
LLVM_ABI const TargetRegisterClass * constrainRegClass(Register Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
constrainRegClass - Constrain the register class of the specified virtual register to be a common sub...
A Module instance is used to store all the information related to an LLVM module.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
MachineFunction & getMachineFunction() const
SlotIndex - An opaque wrapper around machine indexes.
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Information about stack frame layout on the target.
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
bool isPositionIndependent() const
CodeModel::Model getCodeModel() const
Returns the code model.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const
Return the size in bits of a register from class RC.
Provide an instruction scheduling machine model to CodeGen passes.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Target - Wrapper for Target specific information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getZero()
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
static LLVM_ABI Type * getFP128Ty(LLVMContext &C)
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getHalfTy(LLVMContext &C)
SlotIndex def
The index of the defining instruction.
LLVM Value Representation.
bool has128ByteRedZone(const MachineFunction &MF) const
Return true if the function has a redzone (accessible bytes past the frame of the top of stack functi...
void BuildCFI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const MCCFIInstruction &CFIInst, MachineInstr::MIFlag Flag=MachineInstr::NoFlags) const
Wraps up getting a CFI index and building a MachineInstr for it.
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const override
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override
Check if there exists an earlier instruction that operates on the same source operands and sets eflag...
bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const override
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Overrides the isSchedulingBoundary from Codegen/TargetInstrInfo.cpp to make it capable of identifying...
MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override
const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const override
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const override
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
bool canInsertSelect(const MachineBasicBlock &, ArrayRef< MachineOperand > Cond, Register, Register, Register, int &, int &, int &) const override
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const override
unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const override
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
Returns true iff the routine could find two commutable operands in the given machine instruction.
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const override
static bool isDataInvariantLoad(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value l...
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned CommuteOpIdx1, unsigned CommuteOpIdx2) const override
bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override
const X86RegisterInfo & getRegisterInfo() const
getRegisterInfo - TargetInstrInfo is a superset of MRegister info.
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override
bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override
Returns true if we have preference on the operands order in MI, the commute decision is returned in C...
bool hasLiveCondCodeDef(MachineInstr &MI) const
True if MI has a condition code def, e.g.
std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const override
bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
convertToThreeAddress - This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_AD...
X86InstrInfo(X86Subtarget &STI)
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
bool expandPostRAPseudo(MachineInstr &MI) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
MCInst getNop() const override
Return the noop instruction to use for a noop.
outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const override
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const override
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
Fold a load or store of the specified stack slot into the specified machine instruction for the speci...
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const override
std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const override
Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isStoreToStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
bool isUnconditionalTailCall(const MachineInstr &MI) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const override
bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned LEAOpcode, bool AllowSP, Register &NewSrc, unsigned &NewSrcSubReg, bool &isKill, MachineOperand &ImplicitOp, LiveVariables *LV, LiveIntervals *LIS) const
Given an operand within a MachineInstr, insert preceding code to put it into the right format for a p...
Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isLoadFromStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const
int getSPAdjust(const MachineInstr &MI) const override
getSPAdjust - This returns the stack pointer adjustment made by this instruction.
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
Register getGlobalBaseReg(MachineFunction *MF) const
getGlobalBaseReg - Return a virtual register initialized with the the global base register value.
int getJumpTableIndex(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const override
This is an architecture-specific helper function of reassociateOps.
std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const override
bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const override
isCoalescableExtInstr - Return true if the instruction is a "coalescable" extension instruction.
void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Opc, Register Reg, int FrameIdx, bool isKill=false) const
void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstrIdxForVirtReg) const override
When getMachineCombinerPatterns() finds potential patterns, this function generates the instructions ...
bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const override
bool analyzeBranchPredicate(MachineBasicBlock &MBB, TargetInstrInfo::MachineBranchPredicate &MBP, bool AllowModify=false) const override
static bool isDataInvariant(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value o...
unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before certain undef register...
void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const override
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
int64_t getFrameAdjustment(const MachineInstr &I) const
Returns the stack pointer adjustment that happens inside the frame setup..destroy sequence (e....
bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override
uint16_t getExecutionDomainCustom(const MachineInstr &MI) const
bool isHighLatencyDef(int opc) const override
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override
foldImmediate - 'Reg' is known to be defined by a move immediate instruction, try to fold the immedia...
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
unsigned getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const
Returns an adjusted FMA opcode that must be used in FMA instruction that performs the same computatio...
bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const override
unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before a partial register upd...
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
Register getGlobalBaseReg() const
int getTCReturnAddrDelta() const
void setGlobalBaseReg(Register Reg)
unsigned getNumLocalDynamicTLSAccesses() const
bool getUsesRedZone() const
bool canRealignStack(const MachineFunction &MF) const override
const TargetRegisterClass * constrainRegClassToNonRex2(const TargetRegisterClass *RC) const
bool isPICStyleGOT() const
bool isTargetWin64() const
const X86InstrInfo * getInstrInfo() const override
const X86RegisterInfo * getRegisterInfo() const override
const X86FrameLowering * getFrameLowering() const override
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ X86
Windows x64, Windows Itanium (IA-64)
Reg
All possible values of the reg field in the ModR/M byte.
bool isKMergeMasked(uint64_t TSFlags)
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ SSEDomainShift
Execution domain for SSE instructions.
bool hasNewDataDest(uint64_t TSFlags)
@ MO_GOT_ABSOLUTE_ADDRESS
MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a relocation of: SYMBOL_LABEL + [.
@ MO_INDNTPOFF
MO_INDNTPOFF - On a symbol operand this indicates that the immediate is the absolute address of the G...
@ MO_GOTNTPOFF
MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry w...
@ MO_GOTTPOFF
MO_GOTTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry wi...
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
bool canUseApxExtendedReg(const MCInstrDesc &Desc)
bool isPseudo(uint64_t TSFlags)
bool isKMasked(uint64_t TSFlags)
int getMemoryOperandNo(uint64_t TSFlags)
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
CondCode getCondFromBranch(const MachineInstr &MI)
CondCode getCondFromCFCMov(const MachineInstr &MI)
CondCode getCondFromMI(const MachineInstr &MI)
Return the condition code of the instruction.
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
unsigned getSwappedVCMPImm(unsigned Imm)
Get the VCMP immediate if the opcodes are swapped.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
unsigned getSwappedVPCOMImm(unsigned Imm)
Get the VPCOM immediate if the opcodes are swapped.
bool isX87Instruction(MachineInstr &MI)
Check if the instruction is X87 instruction.
unsigned getNonNDVariant(unsigned Opc)
unsigned getVPCMPImmForCond(ISD::CondCode CC)
Get the VPCMP immediate for the given condition.
std::pair< CondCode, bool > getX86ConditionCode(CmpInst::Predicate Predicate)
Return a pair of condition code for the given predicate and whether the instruction operands should b...
CondCode getCondFromSETCC(const MachineInstr &MI)
unsigned getSwappedVPCMPImm(unsigned Imm)
Get the VPCMP immediate if the opcodes are swapped.
CondCode getCondFromCCMP(const MachineInstr &MI)
int getCCMPCondFlagsFromCondCode(CondCode CC)
int getCondSrcNoFromDesc(const MCInstrDesc &MCID)
Return the source operand # for condition code by MCID.
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand=false, bool HasNDD=false)
Return a cmov opcode for the given register size in bytes, and operand type.
unsigned getNFVariant(unsigned Opc)
unsigned getVectorRegisterWidth(const MCOperandInfo &Info)
Get the width of the vector register operand.
CondCode getCondFromCMov(const MachineInstr &MI)
initializer< Ty > init(const Ty &Val)
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
int popcount(T Value) noexcept
Count the number of set bits in a value.
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
MaybeAlign getAlign(const CallInst &I, unsigned Index)
static bool isAddMemInstrWithRelocation(const MachineInstr &MI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
static bool isMem(const MachineInstr &MI, unsigned Op)
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FunctionPass * createX86GlobalBaseRegPass()
This pass initializes a global base register for PIC on x86-32.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
static const MachineInstrBuilder & addRegReg(const MachineInstrBuilder &MIB, Register Reg1, bool isKill1, unsigned SubReg1, Register Reg2, bool isKill2, unsigned SubReg2)
addRegReg - This function is used to add a memory reference of the form: [Reg + Reg].
unsigned getDeadRegState(bool B)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
FunctionPass * createCleanupLocalDynamicTLSPass()
This pass combines multiple accesses to local-dynamic TLS variables so that the TLS base address for ...
const X86FoldTableEntry * lookupBroadcastFoldTable(unsigned RegOp, unsigned OpNum)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
const X86InstrFMA3Group * getFMA3Group(unsigned Opcode, uint64_t TSFlags)
Returns a reference to a group of FMA3 opcodes to where the given Opcode is included.
auto reverse(ContainerTy &&C)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
const X86FoldTableEntry * lookupTwoAddrFoldTable(unsigned RegOp)
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
static bool isMemInstrWithGOTPCREL(const MachineInstr &MI)
static const MachineInstrBuilder & addOffset(const MachineInstrBuilder &MIB, int Offset)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
unsigned getDefRegState(bool B)
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
@ Sub
Subtraction of integers.
unsigned getKillRegState(bool B)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
const X86FoldTableEntry * lookupUnfoldTable(unsigned MemOp)
constexpr unsigned BitWidth
bool matchBroadcastSize(const X86FoldTableEntry &Entry, unsigned BroadcastBits)
const X86FoldTableEntry * lookupFoldTable(unsigned RegOp, unsigned OpNum)
static const MachineInstrBuilder & addRegOffset(const MachineInstrBuilder &MIB, Register Reg, bool isKill, int Offset)
addRegOffset - This function is used to add a memory reference of the form [Reg + Offset],...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Description of the encoding of one expression Op.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
This represents a simple continuous liveness interval for a value.
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction's which are the last use of this virtual register (kill it) in the...
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
X86AddressMode - This struct holds a generalized full x86 address mode.
This class is used to group {132, 213, 231} forms of FMA opcodes together.
unsigned get213Opcode() const
Returns the 213 form of FMA opcode.
unsigned get231Opcode() const
Returns the 231 form of FMA opcode.
bool isIntrinsic() const
Returns true iff the group of FMA opcodes holds intrinsic opcodes.
unsigned get132Opcode() const
Returns the 132 form of FMA opcode.
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.