LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
40#include <cassert>
41
42using namespace llvm;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
50 switch (getVPDefID()) {
51 case VPExpressionSC:
52 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
53 case VPInstructionSC:
54 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
55 case VPInterleaveEVLSC:
56 case VPInterleaveSC:
57 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
58 case VPWidenStoreEVLSC:
59 case VPWidenStoreSC:
60 return true;
61 case VPReplicateSC:
62 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
63 ->mayWriteToMemory();
64 case VPWidenCallSC:
65 return !cast<VPWidenCallRecipe>(this)
66 ->getCalledScalarFunction()
67 ->onlyReadsMemory();
68 case VPWidenIntrinsicSC:
69 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
70 case VPCanonicalIVPHISC:
71 case VPBranchOnMaskSC:
72 case VPFirstOrderRecurrencePHISC:
73 case VPReductionPHISC:
74 case VPScalarIVStepsSC:
75 case VPPredInstPHISC:
76 return false;
77 case VPBlendSC:
78 case VPReductionEVLSC:
79 case VPReductionSC:
80 case VPVectorPointerSC:
81 case VPWidenCanonicalIVSC:
82 case VPWidenCastSC:
83 case VPWidenGEPSC:
84 case VPWidenIntOrFpInductionSC:
85 case VPWidenLoadEVLSC:
86 case VPWidenLoadSC:
87 case VPWidenPHISC:
88 case VPWidenSC:
89 case VPWidenSelectSC: {
90 const Instruction *I =
91 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
92 (void)I;
93 assert((!I || !I->mayWriteToMemory()) &&
94 "underlying instruction may write to memory");
95 return false;
96 }
97 default:
98 return true;
99 }
100}
101
103 switch (getVPDefID()) {
104 case VPExpressionSC:
105 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
106 case VPInstructionSC:
107 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
108 case VPWidenLoadEVLSC:
109 case VPWidenLoadSC:
110 return true;
111 case VPReplicateSC:
112 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
113 ->mayReadFromMemory();
114 case VPWidenCallSC:
115 return !cast<VPWidenCallRecipe>(this)
116 ->getCalledScalarFunction()
117 ->onlyWritesMemory();
118 case VPWidenIntrinsicSC:
119 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
120 case VPBranchOnMaskSC:
121 case VPFirstOrderRecurrencePHISC:
122 case VPPredInstPHISC:
123 case VPScalarIVStepsSC:
124 case VPWidenStoreEVLSC:
125 case VPWidenStoreSC:
126 return false;
127 case VPBlendSC:
128 case VPReductionEVLSC:
129 case VPReductionSC:
130 case VPVectorPointerSC:
131 case VPWidenCanonicalIVSC:
132 case VPWidenCastSC:
133 case VPWidenGEPSC:
134 case VPWidenIntOrFpInductionSC:
135 case VPWidenPHISC:
136 case VPWidenSC:
137 case VPWidenSelectSC: {
138 const Instruction *I =
139 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
140 (void)I;
141 assert((!I || !I->mayReadFromMemory()) &&
142 "underlying instruction may read from memory");
143 return false;
144 }
145 default:
146 // FIXME: Return false if the recipe represents an interleaved store.
147 return true;
148 }
149}
150
152 switch (getVPDefID()) {
153 case VPExpressionSC:
154 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
155 case VPDerivedIVSC:
156 case VPFirstOrderRecurrencePHISC:
157 case VPPredInstPHISC:
158 case VPVectorEndPointerSC:
159 return false;
160 case VPInstructionSC:
161 return mayWriteToMemory();
162 case VPWidenCallSC: {
163 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
164 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
165 }
166 case VPWidenIntrinsicSC:
167 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
168 case VPBlendSC:
169 case VPReductionEVLSC:
170 case VPReductionSC:
171 case VPScalarIVStepsSC:
172 case VPVectorPointerSC:
173 case VPWidenCanonicalIVSC:
174 case VPWidenCastSC:
175 case VPWidenGEPSC:
176 case VPWidenIntOrFpInductionSC:
177 case VPWidenPHISC:
178 case VPWidenPointerInductionSC:
179 case VPWidenSC:
180 case VPWidenSelectSC: {
181 const Instruction *I =
182 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
183 (void)I;
184 assert((!I || !I->mayHaveSideEffects()) &&
185 "underlying instruction has side-effects");
186 return false;
187 }
188 case VPInterleaveEVLSC:
189 case VPInterleaveSC:
190 return mayWriteToMemory();
191 case VPWidenLoadEVLSC:
192 case VPWidenLoadSC:
193 case VPWidenStoreEVLSC:
194 case VPWidenStoreSC:
195 assert(
196 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
198 "mayHaveSideffects result for ingredient differs from this "
199 "implementation");
200 return mayWriteToMemory();
201 case VPReplicateSC: {
202 auto *R = cast<VPReplicateRecipe>(this);
203 return R->getUnderlyingInstr()->mayHaveSideEffects();
204 }
205 default:
206 return true;
207 }
208}
209
211 assert(!Parent && "Recipe already in some VPBasicBlock");
212 assert(InsertPos->getParent() &&
213 "Insertion position not in any VPBasicBlock");
214 InsertPos->getParent()->insert(this, InsertPos->getIterator());
215}
216
217void VPRecipeBase::insertBefore(VPBasicBlock &BB,
219 assert(!Parent && "Recipe already in some VPBasicBlock");
220 assert(I == BB.end() || I->getParent() == &BB);
221 BB.insert(this, I);
222}
223
225 assert(!Parent && "Recipe already in some VPBasicBlock");
226 assert(InsertPos->getParent() &&
227 "Insertion position not in any VPBasicBlock");
228 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
229}
230
232 assert(getParent() && "Recipe not in any VPBasicBlock");
234 Parent = nullptr;
235}
236
238 assert(getParent() && "Recipe not in any VPBasicBlock");
240}
241
244 insertAfter(InsertPos);
245}
246
252
254 // Get the underlying instruction for the recipe, if there is one. It is used
255 // to
256 // * decide if cost computation should be skipped for this recipe,
257 // * apply forced target instruction cost.
258 Instruction *UI = nullptr;
259 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
260 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
261 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
262 UI = IG->getInsertPos();
263 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
264 UI = &WidenMem->getIngredient();
265
266 InstructionCost RecipeCost;
267 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
268 RecipeCost = 0;
269 } else {
270 RecipeCost = computeCost(VF, Ctx);
271 if (UI && ForceTargetInstructionCost.getNumOccurrences() > 0 &&
272 RecipeCost.isValid())
274 }
275
276 LLVM_DEBUG({
277 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
278 dump();
279 });
280 return RecipeCost;
281}
282
284 VPCostContext &Ctx) const {
285 llvm_unreachable("subclasses should implement computeCost");
286}
287
289 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
291}
292
294 auto *VPI = dyn_cast<VPInstruction>(this);
295 return VPI && Instruction::isCast(VPI->getOpcode());
296}
297
300 VPCostContext &Ctx) const {
301 std::optional<unsigned> Opcode;
302 VPValue *Op = getOperand(0);
303 VPRecipeBase *OpR = Op->getDefiningRecipe();
304
305 // If the partial reduction is predicated, a select will be operand 0
306 using namespace llvm::VPlanPatternMatch;
308 OpR = Op->getDefiningRecipe();
309 }
310
311 Type *InputTypeA = nullptr, *InputTypeB = nullptr;
313 ExtBType = TTI::PR_None;
314
315 auto GetExtendKind = [](VPRecipeBase *R) {
316 if (!R)
317 return TTI::PR_None;
318 auto *WidenCastR = dyn_cast<VPWidenCastRecipe>(R);
319 if (!WidenCastR)
320 return TTI::PR_None;
321 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
322 return TTI::PR_ZeroExtend;
323 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
324 return TTI::PR_SignExtend;
325 return TTI::PR_None;
326 };
327
328 // Pick out opcode, type/ext information and use sub side effects from a widen
329 // recipe.
330 auto HandleWiden = [&](VPWidenRecipe *Widen) {
331 if (match(Widen, m_Sub(m_ZeroInt(), m_VPValue(Op)))) {
332 Widen = dyn_cast<VPWidenRecipe>(Op->getDefiningRecipe());
333 }
334 Opcode = Widen->getOpcode();
335 VPRecipeBase *ExtAR = Widen->getOperand(0)->getDefiningRecipe();
336 VPRecipeBase *ExtBR = Widen->getOperand(1)->getDefiningRecipe();
337 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->getOperand(0)
338 : Widen->getOperand(0));
339 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->getOperand(0)
340 : Widen->getOperand(1));
341 ExtAType = GetExtendKind(ExtAR);
342 ExtBType = GetExtendKind(ExtBR);
343 };
344
345 if (isa<VPWidenCastRecipe>(OpR)) {
346 InputTypeA = Ctx.Types.inferScalarType(OpR->getOperand(0));
347 ExtAType = GetExtendKind(OpR);
348 } else if (isa<VPReductionPHIRecipe>(OpR)) {
349 auto RedPhiOp1R = getOperand(1)->getDefiningRecipe();
350 if (isa<VPWidenCastRecipe>(RedPhiOp1R)) {
351 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
352 ExtAType = GetExtendKind(RedPhiOp1R);
353 } else if (auto Widen = dyn_cast<VPWidenRecipe>(RedPhiOp1R))
354 HandleWiden(Widen);
355 } else if (auto Widen = dyn_cast<VPWidenRecipe>(OpR)) {
356 HandleWiden(Widen);
357 } else if (auto Reduction = dyn_cast<VPPartialReductionRecipe>(OpR)) {
358 return Reduction->computeCost(VF, Ctx);
359 }
360 auto *PhiType = Ctx.Types.inferScalarType(getOperand(1));
361 return Ctx.TTI.getPartialReductionCost(getOpcode(), InputTypeA, InputTypeB,
362 PhiType, VF, ExtAType, ExtBType,
363 Opcode, Ctx.CostKind);
364}
365
367 auto &Builder = State.Builder;
368
369 assert(getOpcode() == Instruction::Add &&
370 "Unhandled partial reduction opcode");
371
372 Value *BinOpVal = State.get(getOperand(1));
373 Value *PhiVal = State.get(getOperand(0));
374 assert(PhiVal && BinOpVal && "Phi and Mul must be set");
375
376 Type *RetTy = PhiVal->getType();
377
378 CallInst *V =
379 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
380 {PhiVal, BinOpVal}, nullptr, "partial.reduce");
381
382 State.set(this, V);
383}
384
385#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
387 VPSlotTracker &SlotTracker) const {
388 O << Indent << "PARTIAL-REDUCE ";
390 O << " = " << Instruction::getOpcodeName(getOpcode()) << " ";
392}
393#endif
394
396 assert(OpType == Other.OpType && "OpType must match");
397 switch (OpType) {
398 case OperationType::OverflowingBinOp:
399 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
400 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
401 break;
402 case OperationType::Trunc:
403 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
404 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
405 break;
406 case OperationType::DisjointOp:
407 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
408 break;
409 case OperationType::PossiblyExactOp:
410 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
411 break;
412 case OperationType::GEPOp:
413 GEPFlags &= Other.GEPFlags;
414 break;
415 case OperationType::FPMathOp:
416 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
417 FMFs.NoInfs &= Other.FMFs.NoInfs;
418 break;
419 case OperationType::NonNegOp:
420 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
421 break;
422 case OperationType::Cmp:
423 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
424 break;
425 case OperationType::Other:
426 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
427 break;
428 }
429}
430
432 assert(OpType == OperationType::FPMathOp &&
433 "recipe doesn't have fast math flags");
434 FastMathFlags Res;
435 Res.setAllowReassoc(FMFs.AllowReassoc);
436 Res.setNoNaNs(FMFs.NoNaNs);
437 Res.setNoInfs(FMFs.NoInfs);
438 Res.setNoSignedZeros(FMFs.NoSignedZeros);
439 Res.setAllowReciprocal(FMFs.AllowReciprocal);
440 Res.setAllowContract(FMFs.AllowContract);
441 Res.setApproxFunc(FMFs.ApproxFunc);
442 return Res;
443}
444
445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
447#endif
448
449template <unsigned PartOpIdx>
450VPValue *
452 if (U.getNumOperands() == PartOpIdx + 1)
453 return U.getOperand(PartOpIdx);
454 return nullptr;
455}
456
457template <unsigned PartOpIdx>
459 if (auto *UnrollPartOp = getUnrollPartOperand(U))
460 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
461 return 0;
462}
463
464namespace llvm {
465template class VPUnrollPartAccessor<1>;
466template class VPUnrollPartAccessor<2>;
467template class VPUnrollPartAccessor<3>;
468}
469
471 const VPIRFlags &Flags, DebugLoc DL,
472 const Twine &Name)
473 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
474 VPIRMetadata(), Opcode(Opcode), Name(Name.str()) {
476 "Set flags not supported for the provided opcode");
477 assert((getNumOperandsForOpcode(Opcode) == -1u ||
478 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
479 "number of operands does not match opcode");
480}
481
482#ifndef NDEBUG
483unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
484 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
485 return 1;
486
487 if (Instruction::isBinaryOp(Opcode))
488 return 2;
489
490 switch (Opcode) {
493 return 0;
494 case Instruction::Alloca:
495 case Instruction::ExtractValue:
496 case Instruction::Freeze:
497 case Instruction::Load:
509 return 1;
510 case Instruction::ICmp:
511 case Instruction::FCmp:
512 case Instruction::Store:
520 return 2;
521 case Instruction::Select:
525 return 3;
527 return 4;
528 case Instruction::Call:
529 case Instruction::GetElementPtr:
530 case Instruction::PHI:
531 case Instruction::Switch:
532 // Cannot determine the number of operands from the opcode.
533 return -1u;
534 }
535 llvm_unreachable("all cases should be handled above");
536}
537#endif
538
542
543bool VPInstruction::canGenerateScalarForFirstLane() const {
545 return true;
547 return true;
548 switch (Opcode) {
549 case Instruction::Freeze:
550 case Instruction::ICmp:
551 case Instruction::PHI:
552 case Instruction::Select:
561 return true;
562 default:
563 return false;
564 }
565}
566
567/// Create a conditional branch using \p Cond branching to the successors of \p
568/// VPBB. Note that the first successor is always forward (i.e. not created yet)
569/// while the second successor may already have been created (if it is a header
570/// block and VPBB is a latch).
572 VPTransformState &State) {
573 // Replace the temporary unreachable terminator with a new conditional
574 // branch, hooking it up to backward destination (header) for latch blocks
575 // now, and to forward destination(s) later when they are created.
576 // Second successor may be backwards - iff it is already in VPBB2IRBB.
577 VPBasicBlock *SecondVPSucc = cast<VPBasicBlock>(VPBB->getSuccessors()[1]);
578 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
579 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
580 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
581 // First successor is always forward, reset it to nullptr
582 CondBr->setSuccessor(0, nullptr);
584 return CondBr;
585}
586
587Value *VPInstruction::generate(VPTransformState &State) {
588 IRBuilderBase &Builder = State.Builder;
589
591 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
592 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
593 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
594 auto *Res =
595 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
596 if (auto *I = dyn_cast<Instruction>(Res))
597 applyFlags(*I);
598 return Res;
599 }
600
601 switch (getOpcode()) {
602 case VPInstruction::Not: {
603 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
604 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
605 return Builder.CreateNot(A, Name);
606 }
607 case Instruction::ExtractElement: {
608 assert(State.VF.isVector() && "Only extract elements from vectors");
609 if (getOperand(1)->isLiveIn()) {
610 unsigned IdxToExtract =
611 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
612 return State.get(getOperand(0), VPLane(IdxToExtract));
613 }
614 Value *Vec = State.get(getOperand(0));
615 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
616 return Builder.CreateExtractElement(Vec, Idx, Name);
617 }
618 case Instruction::Freeze: {
620 return Builder.CreateFreeze(Op, Name);
621 }
622 case Instruction::FCmp:
623 case Instruction::ICmp: {
624 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
625 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
626 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
627 return Builder.CreateCmp(getPredicate(), A, B, Name);
628 }
629 case Instruction::PHI: {
630 llvm_unreachable("should be handled by VPPhi::execute");
631 }
632 case Instruction::Select: {
633 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
634 Value *Cond = State.get(getOperand(0), OnlyFirstLaneUsed);
635 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
636 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
637 return Builder.CreateSelect(Cond, Op1, Op2, Name);
638 }
640 // Get first lane of vector induction variable.
641 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
642 // Get the original loop tripcount.
643 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
644
645 // If this part of the active lane mask is scalar, generate the CMP directly
646 // to avoid unnecessary extracts.
647 if (State.VF.isScalar())
648 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
649 Name);
650
651 auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
652 auto PredTy = VectorType::get(
653 Int1Ty, State.VF * cast<ConstantInt>(getOperand(2)->getLiveInIRValue())
654 ->getZExtValue());
655 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
656 {PredTy, ScalarTC->getType()},
657 {VIVElem0, ScalarTC}, nullptr, Name);
658 }
660 // Generate code to combine the previous and current values in vector v3.
661 //
662 // vector.ph:
663 // v_init = vector(..., ..., ..., a[-1])
664 // br vector.body
665 //
666 // vector.body
667 // i = phi [0, vector.ph], [i+4, vector.body]
668 // v1 = phi [v_init, vector.ph], [v2, vector.body]
669 // v2 = a[i, i+1, i+2, i+3];
670 // v3 = vector(v1(3), v2(0, 1, 2))
671
672 auto *V1 = State.get(getOperand(0));
673 if (!V1->getType()->isVectorTy())
674 return V1;
675 Value *V2 = State.get(getOperand(1));
676 return Builder.CreateVectorSplice(V1, V2, -1, Name);
677 }
679 unsigned UF = getParent()->getPlan()->getUF();
680 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
681 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
682 Value *Sub = Builder.CreateSub(ScalarTC, Step);
683 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
684 Value *Zero = ConstantInt::get(ScalarTC->getType(), 0);
685 return Builder.CreateSelect(Cmp, Sub, Zero);
686 }
688 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
689 // be outside of the main loop.
690 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
691 // Compute EVL
692 assert(AVL->getType()->isIntegerTy() &&
693 "Requested vector length should be an integer.");
694
695 assert(State.VF.isScalable() && "Expected scalable vector factor.");
696 Value *VFArg = State.Builder.getInt32(State.VF.getKnownMinValue());
697
698 Value *EVL = State.Builder.CreateIntrinsic(
699 State.Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
700 {AVL, VFArg, State.Builder.getTrue()});
701 return EVL;
702 }
704 unsigned Part = getUnrollPart(*this);
705 auto *IV = State.get(getOperand(0), VPLane(0));
706 assert(Part != 0 && "Must have a positive part");
707 // The canonical IV is incremented by the vectorization factor (num of
708 // SIMD elements) times the unroll part.
709 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
710 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
712 }
714 Value *Cond = State.get(getOperand(0), VPLane(0));
715 auto *Br = createCondBranch(Cond, getParent(), State);
716 applyMetadata(*Br);
717 return Br;
718 }
720 // First create the compare.
721 Value *IV = State.get(getOperand(0), /*IsScalar*/ true);
722 Value *TC = State.get(getOperand(1), /*IsScalar*/ true);
723 Value *Cond = Builder.CreateICmpEQ(IV, TC);
724 return createCondBranch(Cond, getParent(), State);
725 }
727 return Builder.CreateVectorSplat(
728 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
729 }
731 // For struct types, we need to build a new 'wide' struct type, where each
732 // element is widened, i.e., we create a struct of vectors.
733 auto *StructTy =
735 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
736 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
737 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
738 FieldIndex++) {
739 Value *ScalarValue =
740 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
741 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
742 VectorValue =
743 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
744 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
745 }
746 }
747 return Res;
748 }
750 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
751 auto NumOfElements = ElementCount::getFixed(getNumOperands());
752 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
753 for (const auto &[Idx, Op] : enumerate(operands()))
754 Res = State.Builder.CreateInsertElement(Res, State.get(Op, true),
755 State.Builder.getInt32(Idx));
756 return Res;
757 }
759 if (State.VF.isScalar())
760 return State.get(getOperand(0), true);
761 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
763 // If this start vector is scaled then it should produce a vector with fewer
764 // elements than the VF.
765 ElementCount VF = State.VF.divideCoefficientBy(
766 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
767 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
768 Constant *Zero = Builder.getInt32(0);
769 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
770 Zero);
771 }
773 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
774 // and will be removed by breaking up the recipe further.
775 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
776 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
777 Value *ReducedPartRdx = State.get(getOperand(2));
778 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
779 ReducedPartRdx = Builder.CreateBinOp(
782 State.get(getOperand(Idx)), ReducedPartRdx, "bin.rdx");
783 return createAnyOfReduction(Builder, ReducedPartRdx,
784 State.get(getOperand(1), VPLane(0)), OrigPhi);
785 }
787 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
788 // and will be removed by breaking up the recipe further.
789 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
790 // Get its reduction variable descriptor.
791 RecurKind RK = PhiR->getRecurrenceKind();
793 "Unexpected reduction kind");
794 assert(!PhiR->isInLoop() &&
795 "In-loop FindLastIV reduction is not supported yet");
796
797 // The recipe's operands are the reduction phi, the start value, the
798 // sentinel value, followed by one operand for each part of the reduction.
799 unsigned UF = getNumOperands() - 3;
800 Value *ReducedPartRdx = State.get(getOperand(3));
801 RecurKind MinMaxKind;
804 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
805 else
806 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
807 for (unsigned Part = 1; Part < UF; ++Part)
808 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
809 State.get(getOperand(3 + Part)));
810
811 Value *Start = State.get(getOperand(1), true);
813 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
814 Sentinel);
815 }
817 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
818 // and will be removed by breaking up the recipe further.
819 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
820 // Get its reduction variable descriptor.
821
822 RecurKind RK = PhiR->getRecurrenceKind();
824 "should be handled by ComputeFindIVResult");
825
826 // The recipe's operands are the reduction phi, followed by one operand for
827 // each part of the reduction.
828 unsigned UF = getNumOperands() - 1;
829 VectorParts RdxParts(UF);
830 for (unsigned Part = 0; Part < UF; ++Part)
831 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
832
833 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
834 if (hasFastMathFlags())
836
837 // Reduce all of the unrolled parts into a single vector.
838 Value *ReducedPartRdx = RdxParts[0];
839 if (PhiR->isOrdered()) {
840 ReducedPartRdx = RdxParts[UF - 1];
841 } else {
842 // Floating-point operations should have some FMF to enable the reduction.
843 for (unsigned Part = 1; Part < UF; ++Part) {
844 Value *RdxPart = RdxParts[Part];
846 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
847 else {
849 // For sub-recurrences, each UF's reduction variable is already
850 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
851 if (RK == RecurKind::Sub)
852 Opcode = Instruction::Add;
853 else
854 Opcode =
856 ReducedPartRdx =
857 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
858 }
859 }
860 }
861
862 // Create the reduction after the loop. Note that inloop reductions create
863 // the target reduction in the loop using a Reduction recipe.
864 if (State.VF.isVector() && !PhiR->isInLoop()) {
865 // TODO: Support in-order reductions based on the recurrence descriptor.
866 // All ops in the reduction inherit fast-math-flags from the recurrence
867 // descriptor.
868 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
869 }
870
871 return ReducedPartRdx;
872 }
875 unsigned Offset = getOpcode() == VPInstruction::ExtractLastElement ? 1 : 2;
876 Value *Res;
877 if (State.VF.isVector()) {
878 assert(Offset <= State.VF.getKnownMinValue() &&
879 "invalid offset to extract from");
880 // Extract lane VF - Offset from the operand.
881 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
882 } else {
883 assert(Offset <= 1 && "invalid offset to extract from");
884 Res = State.get(getOperand(0));
885 }
887 Res->setName(Name);
888 return Res;
889 }
891 Value *A = State.get(getOperand(0));
892 Value *B = State.get(getOperand(1));
893 return Builder.CreateLogicalAnd(A, B, Name);
894 }
897 "can only generate first lane for PtrAdd");
898 Value *Ptr = State.get(getOperand(0), VPLane(0));
899 Value *Addend = State.get(getOperand(1), VPLane(0));
900 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
901 }
903 Value *Ptr =
905 Value *Addend = State.get(getOperand(1));
906 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
907 }
909 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
910 for (VPValue *Op : drop_begin(operands()))
911 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
912 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
913 }
915 Value *LaneToExtract = State.get(getOperand(0), true);
916 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
917 Value *Res = nullptr;
918 Value *RuntimeVF = getRuntimeVF(State.Builder, IdxTy, State.VF);
919
920 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
921 Value *VectorStart =
922 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
923 Value *VectorIdx = Idx == 1
924 ? LaneToExtract
925 : Builder.CreateSub(LaneToExtract, VectorStart);
926 Value *Ext = State.VF.isScalar()
927 ? State.get(getOperand(Idx))
928 : Builder.CreateExtractElement(
929 State.get(getOperand(Idx)), VectorIdx);
930 if (Res) {
931 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
932 Res = Builder.CreateSelect(Cmp, Ext, Res);
933 } else {
934 Res = Ext;
935 }
936 }
937 return Res;
938 }
940 if (getNumOperands() == 1) {
941 Value *Mask = State.get(getOperand(0));
942 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
943 true, Name);
944 }
945 // If there are multiple operands, create a chain of selects to pick the
946 // first operand with an active lane and add the number of lanes of the
947 // preceding operands.
948 Value *RuntimeVF =
949 getRuntimeVF(State.Builder, State.Builder.getInt64Ty(), State.VF);
950 unsigned LastOpIdx = getNumOperands() - 1;
951 Value *Res = nullptr;
952 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
953 Value *TrailingZeros =
954 State.VF.isScalar()
955 ? Builder.CreateZExt(
956 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
957 Builder.getFalse()),
958 Builder.getInt64Ty())
959 : Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(),
960 State.get(getOperand(Idx)),
961 true, Name);
962 Value *Current = Builder.CreateAdd(
963 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
964 if (Res) {
965 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
966 Res = Builder.CreateSelect(Cmp, Current, Res);
967 } else {
968 Res = Current;
969 }
970 }
971
972 return Res;
973 }
975 return State.get(getOperand(0), true);
976 default:
977 llvm_unreachable("Unsupported opcode for instruction");
978 }
979}
980
982 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
983 Type *ScalarTy = Ctx.Types.inferScalarType(this);
984 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
985 switch (Opcode) {
986 case Instruction::FNeg:
987 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
988 case Instruction::UDiv:
989 case Instruction::SDiv:
990 case Instruction::SRem:
991 case Instruction::URem:
992 case Instruction::Add:
993 case Instruction::FAdd:
994 case Instruction::Sub:
995 case Instruction::FSub:
996 case Instruction::Mul:
997 case Instruction::FMul:
998 case Instruction::FDiv:
999 case Instruction::FRem:
1000 case Instruction::Shl:
1001 case Instruction::LShr:
1002 case Instruction::AShr:
1003 case Instruction::And:
1004 case Instruction::Or:
1005 case Instruction::Xor: {
1008
1009 if (VF.isVector()) {
1010 // Certain instructions can be cheaper to vectorize if they have a
1011 // constant second vector operand. One example of this are shifts on x86.
1012 VPValue *RHS = getOperand(1);
1013 RHSInfo = Ctx.getOperandInfo(RHS);
1014
1015 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
1018 }
1019
1022 if (CtxI)
1023 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
1024 return Ctx.TTI.getArithmeticInstrCost(
1025 Opcode, ResultTy, Ctx.CostKind,
1026 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1027 RHSInfo, Operands, CtxI, &Ctx.TLI);
1028 }
1029 case Instruction::Freeze:
1030 // This opcode is unknown. Assume that it is the same as 'mul'.
1031 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1032 Ctx.CostKind);
1033 case Instruction::ExtractValue:
1034 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1035 Ctx.CostKind);
1036 case Instruction::ICmp:
1037 case Instruction::FCmp: {
1038 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
1039 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
1041 return Ctx.TTI.getCmpSelInstrCost(
1042 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
1043 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1044 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1045 }
1046 }
1047 llvm_unreachable("called for unsupported opcode");
1048}
1049
1051 VPCostContext &Ctx) const {
1053 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
1054 // TODO: Compute cost for VPInstructions without underlying values once
1055 // the legacy cost model has been retired.
1056 return 0;
1057 }
1058
1060 "Should only generate a vector value or single scalar, not scalars "
1061 "for all lanes.");
1063 getOpcode(),
1065 }
1066
1067 switch (getOpcode()) {
1068 case Instruction::Select: {
1069 // TODO: It may be possible to improve this by analyzing where the
1070 // condition operand comes from.
1072 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1073 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1074 if (!vputils::onlyFirstLaneUsed(this)) {
1075 CondTy = toVectorTy(CondTy, VF);
1076 VecTy = toVectorTy(VecTy, VF);
1077 }
1078 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1079 Ctx.CostKind);
1080 }
1081 case Instruction::ExtractElement:
1083 if (VF.isScalar()) {
1084 // ExtractLane with VF=1 takes care of handling extracting across multiple
1085 // parts.
1086 return 0;
1087 }
1088
1089 // Add on the cost of extracting the element.
1090 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1091 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1092 Ctx.CostKind);
1093 }
1094 case VPInstruction::AnyOf: {
1095 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1096 return Ctx.TTI.getArithmeticReductionCost(
1097 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1098 }
1100 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1101 if (VF.isScalar())
1102 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1104 CmpInst::ICMP_EQ, Ctx.CostKind);
1105 // Calculate the cost of determining the lane index.
1106 auto *PredTy = toVectorTy(ScalarTy, VF);
1107 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1108 Type::getInt64Ty(Ctx.LLVMCtx),
1109 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1110 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1111 }
1113 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1115 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1116 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1117
1118 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1119 cast<VectorType>(VectorTy),
1120 cast<VectorType>(VectorTy), Mask,
1121 Ctx.CostKind, VF.getKnownMinValue() - 1);
1122 }
1124 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1125 unsigned Multiplier =
1126 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1127 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1128 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1129 {ArgTy, ArgTy});
1130 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1131 }
1133 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1134 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1135 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1136 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1137 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1138 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1139 }
1141 // Add on the cost of extracting the element.
1142 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1143 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1144 VecTy, Ctx.CostKind, 0);
1145 }
1147 if (VF == ElementCount::getScalable(1))
1150 default:
1151 // TODO: Compute cost other VPInstructions once the legacy cost model has
1152 // been retired.
1154 "unexpected VPInstruction witht underlying value");
1155 return 0;
1156 }
1157}
1158
1170
1172 switch (getOpcode()) {
1173 case Instruction::PHI:
1177 return true;
1178 default:
1179 return isScalarCast();
1180 }
1181}
1182
1184 assert(!State.Lane && "VPInstruction executing an Lane");
1185 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1187 "Set flags not supported for the provided opcode");
1188 if (hasFastMathFlags())
1189 State.Builder.setFastMathFlags(getFastMathFlags());
1190 Value *GeneratedValue = generate(State);
1191 if (!hasResult())
1192 return;
1193 assert(GeneratedValue && "generate must produce a value");
1194 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1197 assert((((GeneratedValue->getType()->isVectorTy() ||
1198 GeneratedValue->getType()->isStructTy()) ==
1199 !GeneratesPerFirstLaneOnly) ||
1200 State.VF.isScalar()) &&
1201 "scalar value but not only first lane defined");
1202 State.set(this, GeneratedValue,
1203 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1204}
1205
1208 return false;
1209 switch (getOpcode()) {
1210 case Instruction::ExtractElement:
1211 case Instruction::Freeze:
1212 case Instruction::FCmp:
1213 case Instruction::ICmp:
1214 case Instruction::Select:
1215 case Instruction::PHI:
1227 case VPInstruction::Not:
1234 return false;
1235 default:
1236 return true;
1237 }
1238}
1239
1241 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1243 return vputils::onlyFirstLaneUsed(this);
1244
1245 switch (getOpcode()) {
1246 default:
1247 return false;
1248 case Instruction::ExtractElement:
1249 return Op == getOperand(1);
1250 case Instruction::PHI:
1251 return true;
1252 case Instruction::FCmp:
1253 case Instruction::ICmp:
1254 case Instruction::Select:
1255 case Instruction::Or:
1256 case Instruction::Freeze:
1257 case VPInstruction::Not:
1258 // TODO: Cover additional opcodes.
1259 return vputils::onlyFirstLaneUsed(this);
1268 return true;
1271 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1272 // operand, after replicating its operands only the first lane is used.
1273 // Before replicating, it will have only a single operand.
1274 return getNumOperands() > 1;
1276 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1278 return Op == getOperand(0);
1281 return Op == getOperand(1);
1283 return Op == getOperand(0);
1284 };
1285 llvm_unreachable("switch should return");
1286}
1287
1289 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1291 return vputils::onlyFirstPartUsed(this);
1292
1293 switch (getOpcode()) {
1294 default:
1295 return false;
1296 case Instruction::FCmp:
1297 case Instruction::ICmp:
1298 case Instruction::Select:
1299 return vputils::onlyFirstPartUsed(this);
1303 return true;
1304 };
1305 llvm_unreachable("switch should return");
1306}
1307
1308#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1310 VPSlotTracker SlotTracker(getParent()->getPlan());
1311 print(dbgs(), "", SlotTracker);
1312}
1313
1315 VPSlotTracker &SlotTracker) const {
1316 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1317
1318 if (hasResult()) {
1320 O << " = ";
1321 }
1322
1323 switch (getOpcode()) {
1324 case VPInstruction::Not:
1325 O << "not";
1326 break;
1328 O << "combined load";
1329 break;
1331 O << "combined store";
1332 break;
1334 O << "active lane mask";
1335 break;
1337 O << "EXPLICIT-VECTOR-LENGTH";
1338 break;
1340 O << "first-order splice";
1341 break;
1343 O << "branch-on-cond";
1344 break;
1346 O << "TC > VF ? TC - VF : 0";
1347 break;
1349 O << "VF * Part +";
1350 break;
1352 O << "branch-on-count";
1353 break;
1355 O << "broadcast";
1356 break;
1358 O << "buildstructvector";
1359 break;
1361 O << "buildvector";
1362 break;
1364 O << "extract-lane";
1365 break;
1367 O << "extract-last-element";
1368 break;
1370 O << "extract-penultimate-element";
1371 break;
1373 O << "compute-anyof-result";
1374 break;
1376 O << "compute-find-iv-result";
1377 break;
1379 O << "compute-reduction-result";
1380 break;
1382 O << "logical-and";
1383 break;
1385 O << "ptradd";
1386 break;
1388 O << "wide-ptradd";
1389 break;
1391 O << "any-of";
1392 break;
1394 O << "first-active-lane";
1395 break;
1397 O << "reduction-start-vector";
1398 break;
1400 O << "resume-for-epilogue";
1401 break;
1402 default:
1404 }
1405
1406 printFlags(O);
1408
1409 if (auto DL = getDebugLoc()) {
1410 O << ", !dbg ";
1411 DL.print(O);
1412 }
1413}
1414#endif
1415
1417 State.setDebugLocFrom(getDebugLoc());
1418 if (isScalarCast()) {
1419 Value *Op = State.get(getOperand(0), VPLane(0));
1420 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1421 Op, ResultTy);
1422 State.set(this, Cast, VPLane(0));
1423 return;
1424 }
1425 switch (getOpcode()) {
1427 Value *StepVector =
1428 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1429 State.set(this, StepVector);
1430 break;
1431 }
1432 case VPInstruction::VScale: {
1433 Value *VScale = State.Builder.CreateVScale(ResultTy);
1434 State.set(this, VScale, true);
1435 break;
1436 }
1437
1438 default:
1439 llvm_unreachable("opcode not implemented yet");
1440 }
1441}
1442
1443#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 VPSlotTracker &SlotTracker) const {
1446 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1448 O << " = ";
1449
1450 switch (getOpcode()) {
1452 O << "wide-iv-step ";
1454 break;
1456 O << "step-vector " << *ResultTy;
1457 break;
1459 O << "vscale " << *ResultTy;
1460 break;
1461 default:
1462 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1465 O << " to " << *ResultTy;
1466 }
1467}
1468#endif
1469
1471 State.setDebugLocFrom(getDebugLoc());
1472 PHINode *NewPhi = State.Builder.CreatePHI(
1473 State.TypeAnalysis.inferScalarType(this), 2, getName());
1474 unsigned NumIncoming = getNumIncoming();
1475 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1476 // TODO: Fixup all incoming values of header phis once recipes defining them
1477 // are introduced.
1478 NumIncoming = 1;
1479 }
1480 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1481 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1482 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1483 NewPhi->addIncoming(IncV, PredBB);
1484 }
1485 State.set(this, NewPhi, VPLane(0));
1486}
1487
1488#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1489void VPPhi::print(raw_ostream &O, const Twine &Indent,
1490 VPSlotTracker &SlotTracker) const {
1491 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1493 O << " = phi ";
1495}
1496#endif
1497
1498VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1499 if (auto *Phi = dyn_cast<PHINode>(&I))
1500 return new VPIRPhi(*Phi);
1501 return new VPIRInstruction(I);
1502}
1503
1505 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1506 "PHINodes must be handled by VPIRPhi");
1507 // Advance the insert point after the wrapped IR instruction. This allows
1508 // interleaving VPIRInstructions and other recipes.
1509 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1510}
1511
1513 VPCostContext &Ctx) const {
1514 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1515 // hence it does not contribute to the cost-modeling for the VPlan.
1516 return 0;
1517}
1518
1521 "can only update exiting operands to phi nodes");
1522 assert(getNumOperands() > 0 && "must have at least one operand");
1523 VPValue *Exiting = getOperand(0);
1524 if (Exiting->isLiveIn())
1525 return;
1526
1527 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastElement, {Exiting});
1528 setOperand(0, Exiting);
1529}
1530
1531#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1533 VPSlotTracker &SlotTracker) const {
1534 O << Indent << "IR " << I;
1535}
1536#endif
1537
1539 PHINode *Phi = &getIRPhi();
1540 for (const auto &[Idx, Op] : enumerate(operands())) {
1541 VPValue *ExitValue = Op;
1542 auto Lane = vputils::isSingleScalar(ExitValue)
1544 : VPLane::getLastLaneForVF(State.VF);
1545 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1546 auto *PredVPBB = Pred->getExitingBasicBlock();
1547 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1548 // Set insertion point in PredBB in case an extract needs to be generated.
1549 // TODO: Model extracts explicitly.
1550 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1551 Value *V = State.get(ExitValue, VPLane(Lane));
1552 // If there is no existing block for PredBB in the phi, add a new incoming
1553 // value. Otherwise update the existing incoming value for PredBB.
1554 if (Phi->getBasicBlockIndex(PredBB) == -1)
1555 Phi->addIncoming(V, PredBB);
1556 else
1557 Phi->setIncomingValueForBlock(PredBB, V);
1558 }
1559
1560 // Advance the insert point after the wrapped IR instruction. This allows
1561 // interleaving VPIRInstructions and other recipes.
1562 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1563}
1564
1566 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1567 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1568 "Number of phi operands must match number of predecessors");
1569 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1570 R->removeOperand(Position);
1571}
1572
1573#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1575 VPSlotTracker &SlotTracker) const {
1576 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1577 [this, &O, &SlotTracker](auto Op) {
1578 O << "[ ";
1579 Op.value()->printAsOperand(O, SlotTracker);
1580 O << ", ";
1581 getIncomingBlock(Op.index())->printAsOperand(O);
1582 O << " ]";
1583 });
1584}
1585#endif
1586
1587#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588void VPIRPhi::print(raw_ostream &O, const Twine &Indent,
1589 VPSlotTracker &SlotTracker) const {
1591
1592 if (getNumOperands() != 0) {
1593 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1595 [&O, &SlotTracker](auto Op) {
1596 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1597 O << " from ";
1598 std::get<1>(Op)->printAsOperand(O);
1599 });
1600 O << ")";
1601 }
1602}
1603#endif
1604
1606 : VPIRMetadata(I) {
1607 if (!LVer || !isa<LoadInst, StoreInst>(&I))
1608 return;
1609 const auto &[AliasScopeMD, NoAliasMD] = LVer->getNoAliasMetadataFor(&I);
1610 if (AliasScopeMD)
1611 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1612 if (NoAliasMD)
1613 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1614}
1615
1617 for (const auto &[Kind, Node] : Metadata)
1618 I.setMetadata(Kind, Node);
1619}
1620
1622 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1623 for (const auto &[KindA, MDA] : Metadata) {
1624 for (const auto &[KindB, MDB] : Other.Metadata) {
1625 if (KindA == KindB && MDA == MDB) {
1626 MetadataIntersection.emplace_back(KindA, MDA);
1627 break;
1628 }
1629 }
1630 }
1631 Metadata = std::move(MetadataIntersection);
1632}
1633
1635 assert(State.VF.isVector() && "not widening");
1636 assert(Variant != nullptr && "Can't create vector function.");
1637
1638 FunctionType *VFTy = Variant->getFunctionType();
1639 // Add return type if intrinsic is overloaded on it.
1641 for (const auto &I : enumerate(args())) {
1642 Value *Arg;
1643 // Some vectorized function variants may also take a scalar argument,
1644 // e.g. linear parameters for pointers. This needs to be the scalar value
1645 // from the start of the respective part when interleaving.
1646 if (!VFTy->getParamType(I.index())->isVectorTy())
1647 Arg = State.get(I.value(), VPLane(0));
1648 else
1649 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1650 Args.push_back(Arg);
1651 }
1652
1655 if (CI)
1656 CI->getOperandBundlesAsDefs(OpBundles);
1657
1658 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1659 applyFlags(*V);
1660 applyMetadata(*V);
1661 V->setCallingConv(Variant->getCallingConv());
1662
1663 if (!V->getType()->isVoidTy())
1664 State.set(this, V);
1665}
1666
1668 VPCostContext &Ctx) const {
1669 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1670 Variant->getFunctionType()->params(),
1671 Ctx.CostKind);
1672}
1673
1674#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1676 VPSlotTracker &SlotTracker) const {
1677 O << Indent << "WIDEN-CALL ";
1678
1679 Function *CalledFn = getCalledScalarFunction();
1680 if (CalledFn->getReturnType()->isVoidTy())
1681 O << "void ";
1682 else {
1684 O << " = ";
1685 }
1686
1687 O << "call";
1688 printFlags(O);
1689 O << " @" << CalledFn->getName() << "(";
1690 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1691 Op->printAsOperand(O, SlotTracker);
1692 });
1693 O << ")";
1694
1695 O << " (using library function";
1696 if (Variant->hasName())
1697 O << ": " << Variant->getName();
1698 O << ")";
1699}
1700#endif
1701
1703 assert(State.VF.isVector() && "not widening");
1704
1705 SmallVector<Type *, 2> TysForDecl;
1706 // Add return type if intrinsic is overloaded on it.
1707 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1708 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1710 for (const auto &I : enumerate(operands())) {
1711 // Some intrinsics have a scalar argument - don't replace it with a
1712 // vector.
1713 Value *Arg;
1714 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1715 State.TTI))
1716 Arg = State.get(I.value(), VPLane(0));
1717 else
1718 Arg = State.get(I.value(), onlyFirstLaneUsed(I.value()));
1719 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1720 State.TTI))
1721 TysForDecl.push_back(Arg->getType());
1722 Args.push_back(Arg);
1723 }
1724
1725 // Use vector version of the intrinsic.
1726 Module *M = State.Builder.GetInsertBlock()->getModule();
1727 Function *VectorF =
1728 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1729 assert(VectorF &&
1730 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1731
1734 if (CI)
1735 CI->getOperandBundlesAsDefs(OpBundles);
1736
1737 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1738
1739 applyFlags(*V);
1740 applyMetadata(*V);
1741
1742 if (!V->getType()->isVoidTy())
1743 State.set(this, V);
1744}
1745
1746/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1749 const VPRecipeWithIRFlags &R,
1750 ElementCount VF,
1751 VPCostContext &Ctx) {
1752 // Some backends analyze intrinsic arguments to determine cost. Use the
1753 // underlying value for the operand if it has one. Otherwise try to use the
1754 // operand of the underlying call instruction, if there is one. Otherwise
1755 // clear Arguments.
1756 // TODO: Rework TTI interface to be independent of concrete IR values.
1758 for (const auto &[Idx, Op] : enumerate(Operands)) {
1759 auto *V = Op->getUnderlyingValue();
1760 if (!V) {
1761 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1762 Arguments.push_back(UI->getArgOperand(Idx));
1763 continue;
1764 }
1765 Arguments.clear();
1766 break;
1767 }
1768 Arguments.push_back(V);
1769 }
1770
1771 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1772 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1773 SmallVector<Type *> ParamTys;
1774 for (const VPValue *Op : Operands) {
1775 ParamTys.push_back(VF.isVector()
1776 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1777 : Ctx.Types.inferScalarType(Op));
1778 }
1779
1780 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1781 FastMathFlags FMF =
1782 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1783 IntrinsicCostAttributes CostAttrs(
1784 ID, RetTy, Arguments, ParamTys, FMF,
1785 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1786 InstructionCost::getInvalid(), &Ctx.TLI);
1787 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1788}
1789
1791 VPCostContext &Ctx) const {
1793 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1794}
1795
1797 return Intrinsic::getBaseName(VectorIntrinsicID);
1798}
1799
1801 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1802 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1803 auto [Idx, V] = X;
1805 Idx, nullptr);
1806 });
1807}
1808
1809#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1811 VPSlotTracker &SlotTracker) const {
1812 O << Indent << "WIDEN-INTRINSIC ";
1813 if (ResultTy->isVoidTy()) {
1814 O << "void ";
1815 } else {
1817 O << " = ";
1818 }
1819
1820 O << "call";
1821 printFlags(O);
1822 O << getIntrinsicName() << "(";
1823
1825 Op->printAsOperand(O, SlotTracker);
1826 });
1827 O << ")";
1828}
1829#endif
1830
1832 IRBuilderBase &Builder = State.Builder;
1833
1834 Value *Address = State.get(getOperand(0));
1835 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1836 VectorType *VTy = cast<VectorType>(Address->getType());
1837
1838 // The histogram intrinsic requires a mask even if the recipe doesn't;
1839 // if the mask operand was omitted then all lanes should be executed and
1840 // we just need to synthesize an all-true mask.
1841 Value *Mask = nullptr;
1842 if (VPValue *VPMask = getMask())
1843 Mask = State.get(VPMask);
1844 else
1845 Mask =
1846 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1847
1848 // If this is a subtract, we want to invert the increment amount. We may
1849 // add a separate intrinsic in future, but for now we'll try this.
1850 if (Opcode == Instruction::Sub)
1851 IncAmt = Builder.CreateNeg(IncAmt);
1852 else
1853 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1854
1855 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1856 {VTy, IncAmt->getType()},
1857 {Address, IncAmt, Mask});
1858}
1859
1861 VPCostContext &Ctx) const {
1862 // FIXME: Take the gather and scatter into account as well. For now we're
1863 // generating the same cost as the fallback path, but we'll likely
1864 // need to create a new TTI method for determining the cost, including
1865 // whether we can use base + vec-of-smaller-indices or just
1866 // vec-of-pointers.
1867 assert(VF.isVector() && "Invalid VF for histogram cost");
1868 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1869 VPValue *IncAmt = getOperand(1);
1870 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1871 VectorType *VTy = VectorType::get(IncTy, VF);
1872
1873 // Assume that a non-constant update value (or a constant != 1) requires
1874 // a multiply, and add that into the cost.
1875 InstructionCost MulCost =
1876 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1877 if (IncAmt->isLiveIn()) {
1879
1880 if (CI && CI->getZExtValue() == 1)
1881 MulCost = TTI::TCC_Free;
1882 }
1883
1884 // Find the cost of the histogram operation itself.
1885 Type *PtrTy = VectorType::get(AddressTy, VF);
1886 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1887 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1888 Type::getVoidTy(Ctx.LLVMCtx),
1889 {PtrTy, IncTy, MaskTy});
1890
1891 // Add the costs together with the add/sub operation.
1892 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1893 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1894}
1895
1896#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1898 VPSlotTracker &SlotTracker) const {
1899 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1901
1902 if (Opcode == Instruction::Sub)
1903 O << ", dec: ";
1904 else {
1905 assert(Opcode == Instruction::Add);
1906 O << ", inc: ";
1907 }
1909
1910 if (VPValue *Mask = getMask()) {
1911 O << ", mask: ";
1912 Mask->printAsOperand(O, SlotTracker);
1913 }
1914}
1915
1917 VPSlotTracker &SlotTracker) const {
1918 O << Indent << "WIDEN-SELECT ";
1920 O << " = select ";
1921 printFlags(O);
1923 O << ", ";
1925 O << ", ";
1927 O << (isInvariantCond() ? " (condition is loop invariant)" : "");
1928}
1929#endif
1930
1932 // The condition can be loop invariant but still defined inside the
1933 // loop. This means that we can't just use the original 'cond' value.
1934 // We have to take the 'vectorized' value and pick the first lane.
1935 // Instcombine will make this a no-op.
1936 Value *Cond = State.get(getCond(), isInvariantCond());
1937
1938 Value *Op0 = State.get(getOperand(1));
1939 Value *Op1 = State.get(getOperand(2));
1940 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1941 State.set(this, Sel);
1942 if (auto *I = dyn_cast<Instruction>(Sel)) {
1944 applyFlags(*I);
1945 applyMetadata(*I);
1946 }
1947}
1948
1950 VPCostContext &Ctx) const {
1952 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1953 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1954 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1955
1956 VPValue *Op0, *Op1;
1957 using namespace llvm::VPlanPatternMatch;
1958 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1959 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1960 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1961 // select x, y, false --> x & y
1962 // select x, true, y --> x | y
1963 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1964 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1965
1967 if (all_of(operands(),
1968 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1969 Operands.append(SI->op_begin(), SI->op_end());
1970 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1971 return Ctx.TTI.getArithmeticInstrCost(
1972 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1973 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1974 }
1975
1976 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1977 if (!ScalarCond)
1978 CondTy = VectorType::get(CondTy, VF);
1979
1981 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1982 Pred = Cmp->getPredicate();
1983 return Ctx.TTI.getCmpSelInstrCost(
1984 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1985 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1986}
1987
1988VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1989 AllowReassoc = FMF.allowReassoc();
1990 NoNaNs = FMF.noNaNs();
1991 NoInfs = FMF.noInfs();
1992 NoSignedZeros = FMF.noSignedZeros();
1993 AllowReciprocal = FMF.allowReciprocal();
1994 AllowContract = FMF.allowContract();
1995 ApproxFunc = FMF.approxFunc();
1996}
1997
1998#if !defined(NDEBUG)
1999bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
2000 switch (OpType) {
2001 case OperationType::OverflowingBinOp:
2002 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2003 Opcode == Instruction::Mul ||
2004 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2005 case OperationType::Trunc:
2006 return Opcode == Instruction::Trunc;
2007 case OperationType::DisjointOp:
2008 return Opcode == Instruction::Or;
2009 case OperationType::PossiblyExactOp:
2010 return Opcode == Instruction::AShr;
2011 case OperationType::GEPOp:
2012 return Opcode == Instruction::GetElementPtr ||
2013 Opcode == VPInstruction::PtrAdd ||
2014 Opcode == VPInstruction::WidePtrAdd;
2015 case OperationType::FPMathOp:
2016 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2017 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2018 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2019 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2020 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2021 Opcode == VPInstruction::WideIVStep ||
2024 case OperationType::NonNegOp:
2025 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2026 case OperationType::Cmp:
2027 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2028 case OperationType::Other:
2029 return true;
2030 }
2031 llvm_unreachable("Unknown OperationType enum");
2032}
2033#endif
2034
2035#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2037 switch (OpType) {
2038 case OperationType::Cmp:
2040 break;
2041 case OperationType::DisjointOp:
2042 if (DisjointFlags.IsDisjoint)
2043 O << " disjoint";
2044 break;
2045 case OperationType::PossiblyExactOp:
2046 if (ExactFlags.IsExact)
2047 O << " exact";
2048 break;
2049 case OperationType::OverflowingBinOp:
2050 if (WrapFlags.HasNUW)
2051 O << " nuw";
2052 if (WrapFlags.HasNSW)
2053 O << " nsw";
2054 break;
2055 case OperationType::Trunc:
2056 if (TruncFlags.HasNUW)
2057 O << " nuw";
2058 if (TruncFlags.HasNSW)
2059 O << " nsw";
2060 break;
2061 case OperationType::FPMathOp:
2063 break;
2064 case OperationType::GEPOp:
2065 if (GEPFlags.isInBounds())
2066 O << " inbounds";
2067 else if (GEPFlags.hasNoUnsignedSignedWrap())
2068 O << " nusw";
2069 if (GEPFlags.hasNoUnsignedWrap())
2070 O << " nuw";
2071 break;
2072 case OperationType::NonNegOp:
2073 if (NonNegFlags.NonNeg)
2074 O << " nneg";
2075 break;
2076 case OperationType::Other:
2077 break;
2078 }
2079 O << " ";
2080}
2081#endif
2082
2084 auto &Builder = State.Builder;
2085 switch (Opcode) {
2086 case Instruction::Call:
2087 case Instruction::Br:
2088 case Instruction::PHI:
2089 case Instruction::GetElementPtr:
2090 case Instruction::Select:
2091 llvm_unreachable("This instruction is handled by a different recipe.");
2092 case Instruction::UDiv:
2093 case Instruction::SDiv:
2094 case Instruction::SRem:
2095 case Instruction::URem:
2096 case Instruction::Add:
2097 case Instruction::FAdd:
2098 case Instruction::Sub:
2099 case Instruction::FSub:
2100 case Instruction::FNeg:
2101 case Instruction::Mul:
2102 case Instruction::FMul:
2103 case Instruction::FDiv:
2104 case Instruction::FRem:
2105 case Instruction::Shl:
2106 case Instruction::LShr:
2107 case Instruction::AShr:
2108 case Instruction::And:
2109 case Instruction::Or:
2110 case Instruction::Xor: {
2111 // Just widen unops and binops.
2113 for (VPValue *VPOp : operands())
2114 Ops.push_back(State.get(VPOp));
2115
2116 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2117
2118 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2119 applyFlags(*VecOp);
2120 applyMetadata(*VecOp);
2121 }
2122
2123 // Use this vector value for all users of the original instruction.
2124 State.set(this, V);
2125 break;
2126 }
2127 case Instruction::ExtractValue: {
2128 assert(getNumOperands() == 2 && "expected single level extractvalue");
2129 Value *Op = State.get(getOperand(0));
2131 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2132 State.set(this, Extract);
2133 break;
2134 }
2135 case Instruction::Freeze: {
2136 Value *Op = State.get(getOperand(0));
2137 Value *Freeze = Builder.CreateFreeze(Op);
2138 State.set(this, Freeze);
2139 break;
2140 }
2141 case Instruction::ICmp:
2142 case Instruction::FCmp: {
2143 // Widen compares. Generate vector compares.
2144 bool FCmp = Opcode == Instruction::FCmp;
2145 Value *A = State.get(getOperand(0));
2146 Value *B = State.get(getOperand(1));
2147 Value *C = nullptr;
2148 if (FCmp) {
2149 // Propagate fast math flags.
2150 C = Builder.CreateFCmpFMF(
2151 getPredicate(), A, B,
2153 } else {
2154 C = Builder.CreateICmp(getPredicate(), A, B);
2155 }
2156 if (auto *I = dyn_cast<Instruction>(C))
2157 applyMetadata(*I);
2158 State.set(this, C);
2159 break;
2160 }
2161 default:
2162 // This instruction is not vectorized by simple widening.
2163 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2164 << Instruction::getOpcodeName(Opcode));
2165 llvm_unreachable("Unhandled instruction!");
2166 } // end of switch.
2167
2168#if !defined(NDEBUG)
2169 // Verify that VPlan type inference results agree with the type of the
2170 // generated values.
2171 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2172 State.get(this)->getType() &&
2173 "inferred type and type from generated instructions do not match");
2174#endif
2175}
2176
2178 VPCostContext &Ctx) const {
2179 switch (Opcode) {
2180 case Instruction::UDiv:
2181 case Instruction::SDiv:
2182 case Instruction::SRem:
2183 case Instruction::URem:
2184 // If the div/rem operation isn't safe to speculate and requires
2185 // predication, then the only way we can even create a vplan is to insert
2186 // a select on the second input operand to ensure we use the value of 1
2187 // for the inactive lanes. The select will be costed separately.
2188 case Instruction::FNeg:
2189 case Instruction::Add:
2190 case Instruction::FAdd:
2191 case Instruction::Sub:
2192 case Instruction::FSub:
2193 case Instruction::Mul:
2194 case Instruction::FMul:
2195 case Instruction::FDiv:
2196 case Instruction::FRem:
2197 case Instruction::Shl:
2198 case Instruction::LShr:
2199 case Instruction::AShr:
2200 case Instruction::And:
2201 case Instruction::Or:
2202 case Instruction::Xor:
2203 case Instruction::Freeze:
2204 case Instruction::ExtractValue:
2205 case Instruction::ICmp:
2206 case Instruction::FCmp:
2207 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2208 default:
2209 llvm_unreachable("Unsupported opcode for instruction");
2210 }
2211}
2212
2213#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2215 VPSlotTracker &SlotTracker) const {
2216 O << Indent << "WIDEN ";
2218 O << " = " << Instruction::getOpcodeName(Opcode);
2219 printFlags(O);
2221}
2222#endif
2223
2225 auto &Builder = State.Builder;
2226 /// Vectorize casts.
2227 assert(State.VF.isVector() && "Not vectorizing?");
2228 Type *DestTy = VectorType::get(getResultType(), State.VF);
2229 VPValue *Op = getOperand(0);
2230 Value *A = State.get(Op);
2231 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2232 State.set(this, Cast);
2233 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2234 applyFlags(*CastOp);
2235 applyMetadata(*CastOp);
2236 }
2237}
2238
2240 VPCostContext &Ctx) const {
2241 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2242 // the legacy cost model, including truncates/extends when evaluating a
2243 // reduction in a smaller type.
2244 if (!getUnderlyingValue())
2245 return 0;
2246 // Computes the CastContextHint from a recipes that may access memory.
2247 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2248 if (VF.isScalar())
2250 if (isa<VPInterleaveBase>(R))
2252 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2253 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2255 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2256 if (WidenMemoryRecipe == nullptr)
2258 if (!WidenMemoryRecipe->isConsecutive())
2260 if (WidenMemoryRecipe->isReverse())
2262 if (WidenMemoryRecipe->isMasked())
2265 };
2266
2267 VPValue *Operand = getOperand(0);
2269 // For Trunc/FPTrunc, get the context from the only user.
2270 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2272 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2273 CCH = ComputeCCH(StoreRecipe);
2274 }
2275 // For Z/Sext, get the context from the operand.
2276 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2277 Opcode == Instruction::FPExt) {
2278 if (Operand->isLiveIn())
2280 else if (Operand->getDefiningRecipe())
2281 CCH = ComputeCCH(Operand->getDefiningRecipe());
2282 }
2283
2284 auto *SrcTy =
2285 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2286 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2287 // Arm TTI will use the underlying instruction to determine the cost.
2288 return Ctx.TTI.getCastInstrCost(
2289 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2291}
2292
2293#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2295 VPSlotTracker &SlotTracker) const {
2296 O << Indent << "WIDEN-CAST ";
2298 O << " = " << Instruction::getOpcodeName(Opcode);
2299 printFlags(O);
2301 O << " to " << *getResultType();
2302}
2303#endif
2304
2306 VPCostContext &Ctx) const {
2307 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2308}
2309
2310/// A helper function that returns an integer or floating-point constant with
2311/// value C.
2313 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2314 : ConstantFP::get(Ty, C);
2315}
2316
2317#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2319 VPSlotTracker &SlotTracker) const {
2320 O << Indent;
2322 O << " = WIDEN-INDUCTION ";
2324
2325 if (auto *TI = getTruncInst())
2326 O << " (truncated to " << *TI->getType() << ")";
2327}
2328#endif
2329
2331 // The step may be defined by a recipe in the preheader (e.g. if it requires
2332 // SCEV expansion), but for the canonical induction the step is required to be
2333 // 1, which is represented as live-in.
2335 return false;
2338 auto *CanIV = cast<VPCanonicalIVPHIRecipe>(&*getParent()->begin());
2339 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2340 getScalarType() == CanIV->getScalarType();
2341}
2342
2343#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2345 VPSlotTracker &SlotTracker) const {
2346 O << Indent;
2348 O << " = DERIVED-IV ";
2349 getStartValue()->printAsOperand(O, SlotTracker);
2350 O << " + ";
2351 getOperand(1)->printAsOperand(O, SlotTracker);
2352 O << " * ";
2353 getStepValue()->printAsOperand(O, SlotTracker);
2354}
2355#endif
2356
2358 // Fast-math-flags propagate from the original induction instruction.
2359 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2360 if (hasFastMathFlags())
2361 State.Builder.setFastMathFlags(getFastMathFlags());
2362
2363 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2364 /// variable on which to base the steps, \p Step is the size of the step.
2365
2366 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2367 Value *Step = State.get(getStepValue(), VPLane(0));
2368 IRBuilderBase &Builder = State.Builder;
2369
2370 // Ensure step has the same type as that of scalar IV.
2371 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2372 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2373
2374 // We build scalar steps for both integer and floating-point induction
2375 // variables. Here, we determine the kind of arithmetic we will perform.
2378 if (BaseIVTy->isIntegerTy()) {
2379 AddOp = Instruction::Add;
2380 MulOp = Instruction::Mul;
2381 } else {
2382 AddOp = InductionOpcode;
2383 MulOp = Instruction::FMul;
2384 }
2385
2386 // Determine the number of scalars we need to generate for each unroll
2387 // iteration.
2388 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2389 // Compute the scalar steps and save the results in State.
2390 Type *IntStepTy =
2391 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2392 Type *VecIVTy = nullptr;
2393 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2394 if (!FirstLaneOnly && State.VF.isScalable()) {
2395 VecIVTy = VectorType::get(BaseIVTy, State.VF);
2396 UnitStepVec =
2397 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2398 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2399 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2400 }
2401
2402 unsigned StartLane = 0;
2403 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2404 if (State.Lane) {
2405 StartLane = State.Lane->getKnownLane();
2406 EndLane = StartLane + 1;
2407 }
2408 Value *StartIdx0;
2409 if (getUnrollPart(*this) == 0)
2410 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2411 else {
2412 StartIdx0 = State.get(getOperand(2), true);
2413 if (getUnrollPart(*this) != 1) {
2414 StartIdx0 =
2415 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2416 getUnrollPart(*this)));
2417 }
2418 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2419 }
2420
2421 if (!FirstLaneOnly && State.VF.isScalable()) {
2422 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2423 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2424 if (BaseIVTy->isFloatingPointTy())
2425 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2426 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2427 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2428 State.set(this, Add);
2429 // It's useful to record the lane values too for the known minimum number
2430 // of elements so we do those below. This improves the code quality when
2431 // trying to extract the first element, for example.
2432 }
2433
2434 if (BaseIVTy->isFloatingPointTy())
2435 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2436
2437 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2438 Value *StartIdx = Builder.CreateBinOp(
2439 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2440 // The step returned by `createStepForVF` is a runtime-evaluated value
2441 // when VF is scalable. Otherwise, it should be folded into a Constant.
2442 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2443 "Expected StartIdx to be folded to a constant when VF is not "
2444 "scalable");
2445 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2446 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2447 State.set(this, Add, VPLane(Lane));
2448 }
2449}
2450
2451#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2453 VPSlotTracker &SlotTracker) const {
2454 O << Indent;
2456 O << " = SCALAR-STEPS ";
2458}
2459#endif
2460
2462 assert(State.VF.isVector() && "not widening");
2463 // Construct a vector GEP by widening the operands of the scalar GEP as
2464 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2465 // results in a vector of pointers when at least one operand of the GEP
2466 // is vector-typed. Thus, to keep the representation compact, we only use
2467 // vector-typed operands for loop-varying values.
2468
2469 if (areAllOperandsInvariant()) {
2470 // If we are vectorizing, but the GEP has only loop-invariant operands,
2471 // the GEP we build (by only using vector-typed operands for
2472 // loop-varying values) would be a scalar pointer. Thus, to ensure we
2473 // produce a vector of pointers, we need to either arbitrarily pick an
2474 // operand to broadcast, or broadcast a clone of the original GEP.
2475 // Here, we broadcast a clone of the original.
2476 //
2477 // TODO: If at some point we decide to scalarize instructions having
2478 // loop-invariant operands, this special case will no longer be
2479 // required. We would add the scalarization decision to
2480 // collectLoopScalars() and teach getVectorValue() to broadcast
2481 // the lane-zero scalar value.
2483 for (unsigned I = 0, E = getNumOperands(); I != E; I++)
2484 Ops.push_back(State.get(getOperand(I), VPLane(0)));
2485
2486 auto *NewGEP =
2487 State.Builder.CreateGEP(getSourceElementType(), Ops[0], drop_begin(Ops),
2488 "", getGEPNoWrapFlags());
2489 Value *Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2490 State.set(this, Splat);
2491 } else {
2492 // If the GEP has at least one loop-varying operand, we are sure to
2493 // produce a vector of pointers unless VF is scalar.
2494 // The pointer operand of the new GEP. If it's loop-invariant, we
2495 // won't broadcast it.
2496 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2497
2498 // Collect all the indices for the new GEP. If any index is
2499 // loop-invariant, we won't broadcast it.
2501 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2502 VPValue *Operand = getOperand(I);
2503 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2504 }
2505
2506 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2507 // but it should be a vector, otherwise.
2508 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2509 "", getGEPNoWrapFlags());
2510 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2511 "NewGEP is not a pointer vector");
2512 State.set(this, NewGEP);
2513 }
2514}
2515
2516#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2518 VPSlotTracker &SlotTracker) const {
2519 O << Indent << "WIDEN-GEP ";
2520 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2521 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2522 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2523
2524 O << " ";
2526 O << " = getelementptr";
2527 printFlags(O);
2529}
2530#endif
2531
2532static Type *getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride,
2533 unsigned CurrentPart, IRBuilderBase &Builder) {
2534 // Use i32 for the gep index type when the value is constant,
2535 // or query DataLayout for a more suitable index type otherwise.
2536 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2537 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2538 ? DL.getIndexType(Builder.getPtrTy(0))
2539 : Builder.getInt32Ty();
2540}
2541
2543 auto &Builder = State.Builder;
2544 unsigned CurrentPart = getUnrollPart(*this);
2545 bool IsUnitStride = Stride == 1 || Stride == -1;
2546 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ true,
2547 IsUnitStride, CurrentPart, Builder);
2548
2549 // The wide store needs to start at the last vector element.
2550 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2551 if (IndexTy != RunTimeVF->getType())
2552 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2553 // NumElt = Stride * CurrentPart * RunTimeVF
2554 Value *NumElt = Builder.CreateMul(
2555 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2556 // LastLane = Stride * (RunTimeVF - 1)
2557 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2558 if (Stride != 1)
2559 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2560 Value *Ptr = State.get(getOperand(0), VPLane(0));
2561 Value *ResultPtr =
2562 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2563 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2565
2566 State.set(this, ResultPtr, /*IsScalar*/ true);
2567}
2568
2569#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2571 VPSlotTracker &SlotTracker) const {
2572 O << Indent;
2574 O << " = vector-end-pointer";
2575 printFlags(O);
2577}
2578#endif
2579
2581 auto &Builder = State.Builder;
2582 unsigned CurrentPart = getUnrollPart(*this);
2583 Type *IndexTy = getGEPIndexTy(State.VF.isScalable(), /*IsReverse*/ false,
2584 /*IsUnitStride*/ true, CurrentPart, Builder);
2585 Value *Ptr = State.get(getOperand(0), VPLane(0));
2586
2587 Value *Increment = createStepForVF(Builder, IndexTy, State.VF, CurrentPart);
2588 Value *ResultPtr = Builder.CreateGEP(getSourceElementType(), Ptr, Increment,
2589 "", getGEPNoWrapFlags());
2590
2591 State.set(this, ResultPtr, /*IsScalar*/ true);
2592}
2593
2594#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2596 VPSlotTracker &SlotTracker) const {
2597 O << Indent;
2599 O << " = vector-pointer ";
2600
2602}
2603#endif
2604
2606 VPCostContext &Ctx) const {
2607 // Handle cases where only the first lane is used the same way as the legacy
2608 // cost model.
2610 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2611
2612 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2613 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2614 return (getNumIncomingValues() - 1) *
2615 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2616 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2617}
2618
2619#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2621 VPSlotTracker &SlotTracker) const {
2622 O << Indent << "BLEND ";
2624 O << " =";
2625 if (getNumIncomingValues() == 1) {
2626 // Not a User of any mask: not really blending, this is a
2627 // single-predecessor phi.
2628 O << " ";
2629 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2630 } else {
2631 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2632 O << " ";
2633 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2634 if (I == 0)
2635 continue;
2636 O << "/";
2637 getMask(I)->printAsOperand(O, SlotTracker);
2638 }
2639 }
2640}
2641#endif
2642
2644 assert(!State.Lane && "Reduction being replicated.");
2645 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2648 "In-loop AnyOf reductions aren't currently supported");
2649 // Propagate the fast-math flags carried by the underlying instruction.
2650 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2651 State.Builder.setFastMathFlags(getFastMathFlags());
2652 Value *NewVecOp = State.get(getVecOp());
2653 if (VPValue *Cond = getCondOp()) {
2654 Value *NewCond = State.get(Cond, State.VF.isScalar());
2655 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2656 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2657
2658 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2659 if (State.VF.isVector())
2660 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2661
2662 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2663 NewVecOp = Select;
2664 }
2665 Value *NewRed;
2666 Value *NextInChain;
2667 if (IsOrdered) {
2668 if (State.VF.isVector())
2669 NewRed =
2670 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2671 else
2672 NewRed = State.Builder.CreateBinOp(
2674 PrevInChain, NewVecOp);
2675 PrevInChain = NewRed;
2676 NextInChain = NewRed;
2677 } else {
2678 PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2679 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2681 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2682 else
2683 NextInChain = State.Builder.CreateBinOp(
2685 PrevInChain, NewRed);
2686 }
2687 State.set(this, NextInChain, /*IsScalar*/ true);
2688}
2689
2691 assert(!State.Lane && "Reduction being replicated.");
2692
2693 auto &Builder = State.Builder;
2694 // Propagate the fast-math flags carried by the underlying instruction.
2695 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2696 Builder.setFastMathFlags(getFastMathFlags());
2697
2699 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2700 Value *VecOp = State.get(getVecOp());
2701 Value *EVL = State.get(getEVL(), VPLane(0));
2702
2703 Value *Mask;
2704 if (VPValue *CondOp = getCondOp())
2705 Mask = State.get(CondOp);
2706 else
2707 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2708
2709 Value *NewRed;
2710 if (isOrdered()) {
2711 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2712 } else {
2713 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2715 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2716 else
2717 NewRed = Builder.CreateBinOp(
2719 Prev);
2720 }
2721 State.set(this, NewRed, /*IsScalar*/ true);
2722}
2723
2725 VPCostContext &Ctx) const {
2726 RecurKind RdxKind = getRecurrenceKind();
2727 Type *ElementTy = Ctx.Types.inferScalarType(this);
2728 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2729 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2731 std::optional<FastMathFlags> OptionalFMF =
2732 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2733
2734 // TODO: Support any-of reductions.
2735 assert(
2737 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2738 "Any-of reduction not implemented in VPlan-based cost model currently.");
2739
2740 // Note that TTI should model the cost of moving result to the scalar register
2741 // and the BinOp cost in the getMinMaxReductionCost().
2744 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2745 }
2746
2747 // Note that TTI should model the cost of moving result to the scalar register
2748 // and the BinOp cost in the getArithmeticReductionCost().
2749 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2750 Ctx.CostKind);
2751}
2752
2754 ExpressionTypes ExpressionType,
2755 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2756 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2757 ExpressionRecipes(SetVector<VPSingleDefRecipe *>(
2758 ExpressionRecipes.begin(), ExpressionRecipes.end())
2759 .takeVector()),
2760 ExpressionType(ExpressionType) {
2761 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2762 assert(
2763 none_of(ExpressionRecipes,
2764 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2765 "expression cannot contain recipes with side-effects");
2766
2767 // Maintain a copy of the expression recipes as a set of users.
2768 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2769 for (auto *R : ExpressionRecipes)
2770 ExpressionRecipesAsSetOfUsers.insert(R);
2771
2772 // Recipes in the expression, except the last one, must only be used by
2773 // (other) recipes inside the expression. If there are other users, external
2774 // to the expression, use a clone of the recipe for external users.
2775 for (VPSingleDefRecipe *R : ExpressionRecipes) {
2776 if (R != ExpressionRecipes.back() &&
2777 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2778 return !ExpressionRecipesAsSetOfUsers.contains(U);
2779 })) {
2780 // There are users outside of the expression. Clone the recipe and use the
2781 // clone those external users.
2782 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2783 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2784 VPUser &U, unsigned) {
2785 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2786 });
2787 CopyForExtUsers->insertBefore(R);
2788 }
2789 if (R->getParent())
2790 R->removeFromParent();
2791 }
2792
2793 // Internalize all external operands to the expression recipes. To do so,
2794 // create new temporary VPValues for all operands defined by a recipe outside
2795 // the expression. The original operands are added as operands of the
2796 // VPExpressionRecipe itself.
2797 for (auto *R : ExpressionRecipes) {
2798 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2799 auto *Def = Op->getDefiningRecipe();
2800 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2801 continue;
2802 addOperand(Op);
2803 LiveInPlaceholders.push_back(new VPValue());
2804 R->setOperand(Idx, LiveInPlaceholders.back());
2805 }
2806 }
2807}
2808
2810 for (auto *R : ExpressionRecipes)
2811 R->insertBefore(this);
2812
2813 for (const auto &[Idx, Op] : enumerate(operands()))
2814 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2815
2816 replaceAllUsesWith(ExpressionRecipes.back());
2817 ExpressionRecipes.clear();
2818}
2819
2821 VPCostContext &Ctx) const {
2822 Type *RedTy = Ctx.Types.inferScalarType(this);
2823 auto *SrcVecTy = cast<VectorType>(
2824 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2825 assert(RedTy->isIntegerTy() &&
2826 "VPExpressionRecipe only supports integer types currently.");
2827 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2828 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2829 switch (ExpressionType) {
2830 case ExpressionTypes::ExtendedReduction: {
2831 return Ctx.TTI.getExtendedReductionCost(
2832 Opcode,
2833 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2834 Instruction::ZExt,
2835 RedTy, SrcVecTy, std::nullopt, Ctx.CostKind);
2836 }
2837 case ExpressionTypes::MulAccReduction:
2838 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2839 Ctx.CostKind);
2840
2841 case ExpressionTypes::ExtMulAccReduction:
2842 return Ctx.TTI.getMulAccReductionCost(
2843 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2844 Instruction::ZExt,
2845 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2846 }
2847 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2848}
2849
2851 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2852 return R->mayReadFromMemory() || R->mayWriteToMemory();
2853 });
2854}
2855
2857 assert(
2858 none_of(ExpressionRecipes,
2859 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2860 "expression cannot contain recipes with side-effects");
2861 return false;
2862}
2863
2864#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2865
2867 VPSlotTracker &SlotTracker) const {
2868 O << Indent << "EXPRESSION ";
2870 O << " = ";
2871 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2872 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2873
2874 switch (ExpressionType) {
2875 case ExpressionTypes::ExtendedReduction: {
2877 O << " +";
2878 O << " reduce." << Instruction::getOpcodeName(Opcode) << " (";
2880 Red->printFlags(O);
2881
2882 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2883 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2884 << *Ext0->getResultType();
2885 if (Red->isConditional()) {
2886 O << ", ";
2887 Red->getCondOp()->printAsOperand(O, SlotTracker);
2888 }
2889 O << ")";
2890 break;
2891 }
2892 case ExpressionTypes::MulAccReduction:
2893 case ExpressionTypes::ExtMulAccReduction: {
2895 O << " + ";
2896 O << "reduce."
2898 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2899 << " (";
2900 O << "mul";
2901 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2902 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2903 : ExpressionRecipes[0]);
2904 Mul->printFlags(O);
2905 if (IsExtended)
2906 O << "(";
2908 if (IsExtended) {
2909 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2910 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2911 << *Ext0->getResultType() << "), (";
2912 } else {
2913 O << ", ";
2914 }
2916 if (IsExtended) {
2917 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2918 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2919 << *Ext1->getResultType() << ")";
2920 }
2921 if (Red->isConditional()) {
2922 O << ", ";
2923 Red->getCondOp()->printAsOperand(O, SlotTracker);
2924 }
2925 O << ")";
2926 break;
2927 }
2928 }
2929}
2930
2932 VPSlotTracker &SlotTracker) const {
2933 O << Indent << "REDUCE ";
2935 O << " = ";
2937 O << " +";
2938 printFlags(O);
2939 O << " reduce."
2942 << " (";
2944 if (isConditional()) {
2945 O << ", ";
2947 }
2948 O << ")";
2949}
2950
2952 VPSlotTracker &SlotTracker) const {
2953 O << Indent << "REDUCE ";
2955 O << " = ";
2957 O << " +";
2958 printFlags(O);
2959 O << " vp.reduce."
2962 << " (";
2964 O << ", ";
2966 if (isConditional()) {
2967 O << ", ";
2969 }
2970 O << ")";
2971}
2972
2973#endif
2974
2975/// A helper function to scalarize a single Instruction in the innermost loop.
2976/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
2977/// operands from \p RepRecipe instead of \p Instr's operands.
2978static void scalarizeInstruction(const Instruction *Instr,
2979 VPReplicateRecipe *RepRecipe,
2980 const VPLane &Lane, VPTransformState &State) {
2981 assert((!Instr->getType()->isAggregateType() ||
2982 canVectorizeTy(Instr->getType())) &&
2983 "Expected vectorizable or non-aggregate type.");
2984
2985 // Does this instruction return a value ?
2986 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2987
2988 Instruction *Cloned = Instr->clone();
2989 if (!IsVoidRetTy) {
2990 Cloned->setName(Instr->getName() + ".cloned");
2991 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
2992 // The operands of the replicate recipe may have been narrowed, resulting in
2993 // a narrower result type. Update the type of the cloned instruction to the
2994 // correct type.
2995 if (ResultTy != Cloned->getType())
2996 Cloned->mutateType(ResultTy);
2997 }
2998
2999 RepRecipe->applyFlags(*Cloned);
3000 RepRecipe->applyMetadata(*Cloned);
3001
3002 if (RepRecipe->hasPredicate())
3003 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3004
3005 if (auto DL = RepRecipe->getDebugLoc())
3006 State.setDebugLocFrom(DL);
3007
3008 // Replace the operands of the cloned instructions with their scalar
3009 // equivalents in the new loop.
3010 for (const auto &I : enumerate(RepRecipe->operands())) {
3011 auto InputLane = Lane;
3012 VPValue *Operand = I.value();
3013 if (vputils::isSingleScalar(Operand))
3014 InputLane = VPLane::getFirstLane();
3015 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3016 }
3017
3018 // Place the cloned scalar in the new loop.
3019 State.Builder.Insert(Cloned);
3020
3021 State.set(RepRecipe, Cloned, Lane);
3022
3023 // If we just cloned a new assumption, add it the assumption cache.
3024 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3025 State.AC->registerAssumption(II);
3026
3027 assert(
3028 (RepRecipe->getParent()->getParent() ||
3029 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3030 all_of(RepRecipe->operands(),
3031 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3032 "Expected a recipe is either within a region or all of its operands "
3033 "are defined outside the vectorized region.");
3034}
3035
3038
3039 if (!State.Lane) {
3040 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3041 "must have already been unrolled");
3042 scalarizeInstruction(UI, this, VPLane(0), State);
3043 return;
3044 }
3045
3046 assert((State.VF.isScalar() || !isSingleScalar()) &&
3047 "uniform recipe shouldn't be predicated");
3048 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3049 scalarizeInstruction(UI, this, *State.Lane, State);
3050 // Insert scalar instance packing it into a vector.
3051 if (State.VF.isVector() && shouldPack()) {
3052 Value *WideValue =
3053 State.Lane->isFirstLane()
3054 ? PoisonValue::get(toVectorizedTy(UI->getType(), State.VF))
3055 : State.get(this);
3056 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3057 *State.Lane));
3058 }
3059}
3060
3062 // Find if the recipe is used by a widened recipe via an intervening
3063 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3064 return any_of(users(), [](const VPUser *U) {
3065 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3066 return !vputils::onlyScalarValuesUsed(PredR);
3067 return false;
3068 });
3069}
3070
3072 VPCostContext &Ctx) const {
3074 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3075 // transform, avoid computing their cost multiple times for now.
3076 Ctx.SkipCostComputation.insert(UI);
3077
3078 switch (UI->getOpcode()) {
3079 case Instruction::GetElementPtr:
3080 // We mark this instruction as zero-cost because the cost of GEPs in
3081 // vectorized code depends on whether the corresponding memory instruction
3082 // is scalarized or not. Therefore, we handle GEPs with the memory
3083 // instruction cost.
3084 return 0;
3085 case Instruction::Call: {
3086 auto *CalledFn =
3088
3091 for (const VPValue *ArgOp : ArgOps)
3092 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3093
3094 if (CalledFn->isIntrinsic())
3095 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3096 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3097 switch (CalledFn->getIntrinsicID()) {
3098 case Intrinsic::assume:
3099 case Intrinsic::lifetime_end:
3100 case Intrinsic::lifetime_start:
3101 case Intrinsic::sideeffect:
3102 case Intrinsic::pseudoprobe:
3103 case Intrinsic::experimental_noalias_scope_decl: {
3104 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3105 ElementCount::getFixed(1), Ctx) == 0 &&
3106 "scalarizing intrinsic should be free");
3107 return InstructionCost(0);
3108 }
3109 default:
3110 break;
3111 }
3112
3113 Type *ResultTy = Ctx.Types.inferScalarType(this);
3114 InstructionCost ScalarCallCost =
3115 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3116 if (isSingleScalar()) {
3117 if (CalledFn->isIntrinsic())
3118 ScalarCallCost = std::min(
3119 ScalarCallCost,
3120 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3121 ElementCount::getFixed(1), Ctx));
3122 return ScalarCallCost;
3123 }
3124
3125 if (VF.isScalable())
3127
3128 return ScalarCallCost * VF.getFixedValue() +
3129 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3130 }
3131 case Instruction::Add:
3132 case Instruction::Sub:
3133 case Instruction::FAdd:
3134 case Instruction::FSub:
3135 case Instruction::Mul:
3136 case Instruction::FMul:
3137 case Instruction::FDiv:
3138 case Instruction::FRem:
3139 case Instruction::Shl:
3140 case Instruction::LShr:
3141 case Instruction::AShr:
3142 case Instruction::And:
3143 case Instruction::Or:
3144 case Instruction::Xor:
3145 case Instruction::ICmp:
3146 case Instruction::FCmp:
3148 Ctx) *
3149 (isSingleScalar() ? 1 : VF.getFixedValue());
3150 case Instruction::SDiv:
3151 case Instruction::UDiv:
3152 case Instruction::SRem:
3153 case Instruction::URem: {
3154 InstructionCost ScalarCost =
3156 if (isSingleScalar())
3157 return ScalarCost;
3158
3159 ScalarCost = ScalarCost * VF.getFixedValue() +
3160 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3161 to_vector(operands()), VF);
3162 // If the recipe is not predicated (i.e. not in a replicate region), return
3163 // the scalar cost. Otherwise handle predicated cost.
3164 if (!getParent()->getParent()->isReplicator())
3165 return ScalarCost;
3166
3167 // Account for the phi nodes that we will create.
3168 ScalarCost += VF.getFixedValue() *
3169 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3170 // Scale the cost by the probability of executing the predicated blocks.
3171 // This assumes the predicated block for each vector lane is equally
3172 // likely.
3173 ScalarCost /= getPredBlockCostDivisor(Ctx.CostKind);
3174 return ScalarCost;
3175 }
3176 case Instruction::Load:
3177 case Instruction::Store: {
3178 if (isSingleScalar()) {
3179 bool IsLoad = UI->getOpcode() == Instruction::Load;
3180 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3181 Type *ScalarPtrTy = Ctx.Types.inferScalarType(getOperand(IsLoad ? 0 : 1));
3182 const Align Alignment = getLoadStoreAlignment(UI);
3183 unsigned AS = getLoadStoreAddressSpace(UI);
3185 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3186 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo, UI);
3187 return ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3188 ScalarPtrTy, nullptr, nullptr, Ctx.CostKind);
3189 }
3190 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3191 // predicated cases.
3192 break;
3193 }
3194 }
3195
3196 return Ctx.getLegacyCost(UI, VF);
3197}
3198
3199#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3201 VPSlotTracker &SlotTracker) const {
3202 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3203
3204 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3206 O << " = ";
3207 }
3208 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3209 O << "call";
3210 printFlags(O);
3211 O << "@" << CB->getCalledFunction()->getName() << "(";
3213 O, [&O, &SlotTracker](VPValue *Op) {
3214 Op->printAsOperand(O, SlotTracker);
3215 });
3216 O << ")";
3217 } else {
3219 printFlags(O);
3221 }
3222
3223 if (shouldPack())
3224 O << " (S->V)";
3225}
3226#endif
3227
3229 assert(State.Lane && "Branch on Mask works only on single instance.");
3230
3231 VPValue *BlockInMask = getOperand(0);
3232 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3233
3234 // Replace the temporary unreachable terminator with a new conditional branch,
3235 // whose two destinations will be set later when they are created.
3236 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3237 assert(isa<UnreachableInst>(CurrentTerminator) &&
3238 "Expected to replace unreachable terminator with conditional branch.");
3239 auto CondBr =
3240 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3241 CondBr->setSuccessor(0, nullptr);
3242 CurrentTerminator->eraseFromParent();
3243}
3244
3246 VPCostContext &Ctx) const {
3247 // The legacy cost model doesn't assign costs to branches for individual
3248 // replicate regions. Match the current behavior in the VPlan cost model for
3249 // now.
3250 return 0;
3251}
3252
3254 assert(State.Lane && "Predicated instruction PHI works per instance.");
3255 Instruction *ScalarPredInst =
3256 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3257 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3258 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3259 assert(PredicatingBB && "Predicated block has no single predecessor.");
3261 "operand must be VPReplicateRecipe");
3262
3263 // By current pack/unpack logic we need to generate only a single phi node: if
3264 // a vector value for the predicated instruction exists at this point it means
3265 // the instruction has vector users only, and a phi for the vector value is
3266 // needed. In this case the recipe of the predicated instruction is marked to
3267 // also do that packing, thereby "hoisting" the insert-element sequence.
3268 // Otherwise, a phi node for the scalar value is needed.
3269 if (State.hasVectorValue(getOperand(0))) {
3270 auto *VecI = cast<Instruction>(State.get(getOperand(0)));
3272 "Packed operands must generate an insertelement or insertvalue");
3273
3274 // If VectorI is a struct, it will be a sequence like:
3275 // %1 = insertvalue %unmodified, %x, 0
3276 // %2 = insertvalue %1, %y, 1
3277 // %VectorI = insertvalue %2, %z, 2
3278 // To get the unmodified vector we need to look through the chain.
3279 if (auto *StructTy = dyn_cast<StructType>(VecI->getType()))
3280 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3281 VecI = cast<InsertValueInst>(VecI->getOperand(0));
3282
3283 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3284 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB); // Unmodified vector.
3285 VPhi->addIncoming(VecI, PredicatedBB); // New vector with inserted element.
3286 if (State.hasVectorValue(this))
3287 State.reset(this, VPhi);
3288 else
3289 State.set(this, VPhi);
3290 // NOTE: Currently we need to update the value of the operand, so the next
3291 // predicated iteration inserts its generated value in the correct vector.
3292 State.reset(getOperand(0), VPhi);
3293 } else {
3294 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3295 return;
3296
3297 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3298 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3299 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3300 PredicatingBB);
3301 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3302 if (State.hasScalarValue(this, *State.Lane))
3303 State.reset(this, Phi, *State.Lane);
3304 else
3305 State.set(this, Phi, *State.Lane);
3306 // NOTE: Currently we need to update the value of the operand, so the next
3307 // predicated iteration inserts its generated value in the correct vector.
3308 State.reset(getOperand(0), Phi, *State.Lane);
3309 }
3310}
3311
3312#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3314 VPSlotTracker &SlotTracker) const {
3315 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3317 O << " = ";
3319}
3320#endif
3321
3323 VPCostContext &Ctx) const {
3325 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3326 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3327 ->getAddressSpace();
3328 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3329 ? Instruction::Load
3330 : Instruction::Store;
3331
3332 if (!Consecutive) {
3333 // TODO: Using the original IR may not be accurate.
3334 // Currently, ARM will use the underlying IR to calculate gather/scatter
3335 // instruction cost.
3336 assert(!Reverse &&
3337 "Inconsecutive memory access should not have the order.");
3338
3340 Type *PtrTy = Ptr->getType();
3341
3342 // If the address value is uniform across all lanes, then the address can be
3343 // calculated with scalar type and broadcast.
3345 PtrTy = toVectorTy(PtrTy, VF);
3346
3347 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3348 Ctx.CostKind) +
3349 Ctx.TTI.getGatherScatterOpCost(Opcode, Ty, Ptr, IsMasked, Alignment,
3350 Ctx.CostKind, &Ingredient);
3351 }
3352
3354 if (IsMasked) {
3355 Cost +=
3356 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind);
3357 } else {
3358 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3360 : getOperand(1));
3361 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3362 OpInfo, &Ingredient);
3363 }
3364 if (!Reverse)
3365 return Cost;
3366
3367 return Cost += Ctx.TTI.getShuffleCost(
3369 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3370}
3371
3373 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3374 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3375 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3376 bool CreateGather = !isConsecutive();
3377
3378 auto &Builder = State.Builder;
3379 Value *Mask = nullptr;
3380 if (auto *VPMask = getMask()) {
3381 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3382 // of a null all-one mask is a null mask.
3383 Mask = State.get(VPMask);
3384 if (isReverse())
3385 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3386 }
3387
3388 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3389 Value *NewLI;
3390 if (CreateGather) {
3391 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3392 "wide.masked.gather");
3393 } else if (Mask) {
3394 NewLI =
3395 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3396 PoisonValue::get(DataTy), "wide.masked.load");
3397 } else {
3398 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3399 }
3401 if (Reverse)
3402 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3403 State.set(this, NewLI);
3404}
3405
3406#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3408 VPSlotTracker &SlotTracker) const {
3409 O << Indent << "WIDEN ";
3411 O << " = load ";
3413}
3414#endif
3415
3416/// Use all-true mask for reverse rather than actual mask, as it avoids a
3417/// dependence w/o affecting the result.
3419 Value *EVL, const Twine &Name) {
3420 VectorType *ValTy = cast<VectorType>(Operand->getType());
3421 Value *AllTrueMask =
3422 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3423 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3424 {Operand, AllTrueMask, EVL}, nullptr, Name);
3425}
3426
3428 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3429 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3430 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3431 bool CreateGather = !isConsecutive();
3432
3433 auto &Builder = State.Builder;
3434 CallInst *NewLI;
3435 Value *EVL = State.get(getEVL(), VPLane(0));
3436 Value *Addr = State.get(getAddr(), !CreateGather);
3437 Value *Mask = nullptr;
3438 if (VPValue *VPMask = getMask()) {
3439 Mask = State.get(VPMask);
3440 if (isReverse())
3441 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3442 } else {
3443 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3444 }
3445
3446 if (CreateGather) {
3447 NewLI =
3448 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3449 nullptr, "wide.masked.gather");
3450 } else {
3451 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3452 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3453 }
3454 NewLI->addParamAttr(
3455 0, Attribute::getWithAlignment(NewLI->getContext(), Alignment));
3456 applyMetadata(*NewLI);
3457 Instruction *Res = NewLI;
3458 if (isReverse())
3459 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3460 State.set(this, Res);
3461}
3462
3464 VPCostContext &Ctx) const {
3465 if (!Consecutive || IsMasked)
3466 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3467
3468 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3469 // here because the EVL recipes using EVL to replace the tail mask. But in the
3470 // legacy model, it will always calculate the cost of mask.
3471 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3472 // don't need to compare to the legacy cost model.
3474 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3475 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3476 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3477 Instruction::Load, Ty, Alignment, AS, Ctx.CostKind);
3478 if (!Reverse)
3479 return Cost;
3480
3481 return Cost + Ctx.TTI.getShuffleCost(
3483 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3484}
3485
3486#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3488 VPSlotTracker &SlotTracker) const {
3489 O << Indent << "WIDEN ";
3491 O << " = vp.load ";
3493}
3494#endif
3495
3497 VPValue *StoredVPValue = getStoredValue();
3498 bool CreateScatter = !isConsecutive();
3499 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3500
3501 auto &Builder = State.Builder;
3502
3503 Value *Mask = nullptr;
3504 if (auto *VPMask = getMask()) {
3505 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3506 // of a null all-one mask is a null mask.
3507 Mask = State.get(VPMask);
3508 if (isReverse())
3509 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3510 }
3511
3512 Value *StoredVal = State.get(StoredVPValue);
3513 if (isReverse()) {
3514 // If we store to reverse consecutive memory locations, then we need
3515 // to reverse the order of elements in the stored value.
3516 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3517 // We don't want to update the value in the map as it might be used in
3518 // another expression. So don't call resetVectorValue(StoredVal).
3519 }
3520 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3521 Instruction *NewSI = nullptr;
3522 if (CreateScatter)
3523 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3524 else if (Mask)
3525 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3526 else
3527 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3528 applyMetadata(*NewSI);
3529}
3530
3531#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3533 VPSlotTracker &SlotTracker) const {
3534 O << Indent << "WIDEN store ";
3536}
3537#endif
3538
3540 VPValue *StoredValue = getStoredValue();
3541 bool CreateScatter = !isConsecutive();
3542 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3543
3544 auto &Builder = State.Builder;
3545
3546 CallInst *NewSI = nullptr;
3547 Value *StoredVal = State.get(StoredValue);
3548 Value *EVL = State.get(getEVL(), VPLane(0));
3549 if (isReverse())
3550 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3551 Value *Mask = nullptr;
3552 if (VPValue *VPMask = getMask()) {
3553 Mask = State.get(VPMask);
3554 if (isReverse())
3555 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3556 } else {
3557 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3558 }
3559 Value *Addr = State.get(getAddr(), !CreateScatter);
3560 if (CreateScatter) {
3561 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3562 Intrinsic::vp_scatter,
3563 {StoredVal, Addr, Mask, EVL});
3564 } else {
3565 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3566 Intrinsic::vp_store,
3567 {StoredVal, Addr, Mask, EVL});
3568 }
3569 NewSI->addParamAttr(
3570 1, Attribute::getWithAlignment(NewSI->getContext(), Alignment));
3571 applyMetadata(*NewSI);
3572}
3573
3575 VPCostContext &Ctx) const {
3576 if (!Consecutive || IsMasked)
3577 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3578
3579 // We need to use the getMaskedMemoryOpCost() instead of getMemoryOpCost()
3580 // here because the EVL recipes using EVL to replace the tail mask. But in the
3581 // legacy model, it will always calculate the cost of mask.
3582 // TODO: Using getMemoryOpCost() instead of getMaskedMemoryOpCost when we
3583 // don't need to compare to the legacy cost model.
3585 const Align Alignment = getLoadStoreAlignment(&Ingredient);
3586 unsigned AS = getLoadStoreAddressSpace(&Ingredient);
3587 InstructionCost Cost = Ctx.TTI.getMaskedMemoryOpCost(
3588 Instruction::Store, Ty, Alignment, AS, Ctx.CostKind);
3589 if (!Reverse)
3590 return Cost;
3591
3592 return Cost + Ctx.TTI.getShuffleCost(
3594 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3595}
3596
3597#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3599 VPSlotTracker &SlotTracker) const {
3600 O << Indent << "WIDEN vp.store ";
3602}
3603#endif
3604
3606 VectorType *DstVTy, const DataLayout &DL) {
3607 // Verify that V is a vector type with same number of elements as DstVTy.
3608 auto VF = DstVTy->getElementCount();
3609 auto *SrcVecTy = cast<VectorType>(V->getType());
3610 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3611 Type *SrcElemTy = SrcVecTy->getElementType();
3612 Type *DstElemTy = DstVTy->getElementType();
3613 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3614 "Vector elements must have same size");
3615
3616 // Do a direct cast if element types are castable.
3617 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3618 return Builder.CreateBitOrPointerCast(V, DstVTy);
3619 }
3620 // V cannot be directly casted to desired vector type.
3621 // May happen when V is a floating point vector but DstVTy is a vector of
3622 // pointers or vice-versa. Handle this using a two-step bitcast using an
3623 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3624 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3625 "Only one type should be a pointer type");
3626 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3627 "Only one type should be a floating point type");
3628 Type *IntTy =
3629 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3630 auto *VecIntTy = VectorType::get(IntTy, VF);
3631 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3632 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3633}
3634
3635/// Return a vector containing interleaved elements from multiple
3636/// smaller input vectors.
3638 const Twine &Name) {
3639 unsigned Factor = Vals.size();
3640 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3641
3642 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3643#ifndef NDEBUG
3644 for (Value *Val : Vals)
3645 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3646#endif
3647
3648 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3649 // must use intrinsics to interleave.
3650 if (VecTy->isScalableTy()) {
3651 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3652 return Builder.CreateVectorInterleave(Vals, Name);
3653 }
3654
3655 // Fixed length. Start by concatenating all vectors into a wide vector.
3656 Value *WideVec = concatenateVectors(Builder, Vals);
3657
3658 // Interleave the elements into the wide vector.
3659 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3660 return Builder.CreateShuffleVector(
3661 WideVec, createInterleaveMask(NumElts, Factor), Name);
3662}
3663
3664// Try to vectorize the interleave group that \p Instr belongs to.
3665//
3666// E.g. Translate following interleaved load group (factor = 3):
3667// for (i = 0; i < N; i+=3) {
3668// R = Pic[i]; // Member of index 0
3669// G = Pic[i+1]; // Member of index 1
3670// B = Pic[i+2]; // Member of index 2
3671// ... // do something to R, G, B
3672// }
3673// To:
3674// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3675// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3676// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3677// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3678//
3679// Or translate following interleaved store group (factor = 3):
3680// for (i = 0; i < N; i+=3) {
3681// ... do something to R, G, B
3682// Pic[i] = R; // Member of index 0
3683// Pic[i+1] = G; // Member of index 1
3684// Pic[i+2] = B; // Member of index 2
3685// }
3686// To:
3687// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3688// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3689// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3690// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3691// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3693 assert(!State.Lane && "Interleave group being replicated.");
3694 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3695 "Masking gaps for scalable vectors is not yet supported.");
3697 Instruction *Instr = Group->getInsertPos();
3698
3699 // Prepare for the vector type of the interleaved load/store.
3700 Type *ScalarTy = getLoadStoreType(Instr);
3701 unsigned InterleaveFactor = Group->getFactor();
3702 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3703
3704 VPValue *BlockInMask = getMask();
3705 VPValue *Addr = getAddr();
3706 Value *ResAddr = State.get(Addr, VPLane(0));
3707
3708 auto CreateGroupMask = [&BlockInMask, &State,
3709 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3710 if (State.VF.isScalable()) {
3711 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3712 assert(InterleaveFactor <= 8 &&
3713 "Unsupported deinterleave factor for scalable vectors");
3714 auto *ResBlockInMask = State.get(BlockInMask);
3715 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3716 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3717 }
3718
3719 if (!BlockInMask)
3720 return MaskForGaps;
3721
3722 Value *ResBlockInMask = State.get(BlockInMask);
3723 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3724 ResBlockInMask,
3725 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3726 "interleaved.mask");
3727 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3728 ShuffledMask, MaskForGaps)
3729 : ShuffledMask;
3730 };
3731
3732 const DataLayout &DL = Instr->getDataLayout();
3733 // Vectorize the interleaved load group.
3734 if (isa<LoadInst>(Instr)) {
3735 Value *MaskForGaps = nullptr;
3736 if (needsMaskForGaps()) {
3737 MaskForGaps =
3738 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3739 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3740 }
3741
3742 Instruction *NewLoad;
3743 if (BlockInMask || MaskForGaps) {
3744 Value *GroupMask = CreateGroupMask(MaskForGaps);
3745 Value *PoisonVec = PoisonValue::get(VecTy);
3746 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3747 Group->getAlign(), GroupMask,
3748 PoisonVec, "wide.masked.vec");
3749 } else
3750 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3751 Group->getAlign(), "wide.vec");
3752 applyMetadata(*NewLoad);
3753 // TODO: Also manage existing metadata using VPIRMetadata.
3754 Group->addMetadata(NewLoad);
3755
3757 if (VecTy->isScalableTy()) {
3758 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3759 // so must use intrinsics to deinterleave.
3760 assert(InterleaveFactor <= 8 &&
3761 "Unsupported deinterleave factor for scalable vectors");
3762 NewLoad = State.Builder.CreateIntrinsic(
3763 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3764 NewLoad->getType(), NewLoad,
3765 /*FMFSource=*/nullptr, "strided.vec");
3766 }
3767
3768 auto CreateStridedVector = [&InterleaveFactor, &State,
3769 &NewLoad](unsigned Index) -> Value * {
3770 assert(Index < InterleaveFactor && "Illegal group index");
3771 if (State.VF.isScalable())
3772 return State.Builder.CreateExtractValue(NewLoad, Index);
3773
3774 // For fixed length VF, use shuffle to extract the sub-vectors from the
3775 // wide load.
3776 auto StrideMask =
3777 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3778 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3779 "strided.vec");
3780 };
3781
3782 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3783 Instruction *Member = Group->getMember(I);
3784
3785 // Skip the gaps in the group.
3786 if (!Member)
3787 continue;
3788
3789 Value *StridedVec = CreateStridedVector(I);
3790
3791 // If this member has different type, cast the result type.
3792 if (Member->getType() != ScalarTy) {
3793 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3794 StridedVec =
3795 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3796 }
3797
3798 if (Group->isReverse())
3799 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3800
3801 State.set(VPDefs[J], StridedVec);
3802 ++J;
3803 }
3804 return;
3805 }
3806
3807 // The sub vector type for current instruction.
3808 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3809
3810 // Vectorize the interleaved store group.
3811 Value *MaskForGaps =
3812 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3813 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3814 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3815 ArrayRef<VPValue *> StoredValues = getStoredValues();
3816 // Collect the stored vector from each member.
3817 SmallVector<Value *, 4> StoredVecs;
3818 unsigned StoredIdx = 0;
3819 for (unsigned i = 0; i < InterleaveFactor; i++) {
3820 assert((Group->getMember(i) || MaskForGaps) &&
3821 "Fail to get a member from an interleaved store group");
3822 Instruction *Member = Group->getMember(i);
3823
3824 // Skip the gaps in the group.
3825 if (!Member) {
3826 Value *Undef = PoisonValue::get(SubVT);
3827 StoredVecs.push_back(Undef);
3828 continue;
3829 }
3830
3831 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3832 ++StoredIdx;
3833
3834 if (Group->isReverse())
3835 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3836
3837 // If this member has different type, cast it to a unified type.
3838
3839 if (StoredVec->getType() != SubVT)
3840 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3841
3842 StoredVecs.push_back(StoredVec);
3843 }
3844
3845 // Interleave all the smaller vectors into one wider vector.
3846 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3847 Instruction *NewStoreInstr;
3848 if (BlockInMask || MaskForGaps) {
3849 Value *GroupMask = CreateGroupMask(MaskForGaps);
3850 NewStoreInstr = State.Builder.CreateMaskedStore(
3851 IVec, ResAddr, Group->getAlign(), GroupMask);
3852 } else
3853 NewStoreInstr =
3854 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
3855
3856 applyMetadata(*NewStoreInstr);
3857 // TODO: Also manage existing metadata using VPIRMetadata.
3858 Group->addMetadata(NewStoreInstr);
3859}
3860
3861#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3863 VPSlotTracker &SlotTracker) const {
3865 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
3866 IG->getInsertPos()->printAsOperand(O, false);
3867 O << ", ";
3869 VPValue *Mask = getMask();
3870 if (Mask) {
3871 O << ", ";
3872 Mask->printAsOperand(O, SlotTracker);
3873 }
3874
3875 unsigned OpIdx = 0;
3876 for (unsigned i = 0; i < IG->getFactor(); ++i) {
3877 if (!IG->getMember(i))
3878 continue;
3879 if (getNumStoreOperands() > 0) {
3880 O << "\n" << Indent << " store ";
3882 O << " to index " << i;
3883 } else {
3884 O << "\n" << Indent << " ";
3886 O << " = load from index " << i;
3887 }
3888 ++OpIdx;
3889 }
3890}
3891#endif
3892
3894 assert(!State.Lane && "Interleave group being replicated.");
3895 assert(State.VF.isScalable() &&
3896 "Only support scalable VF for EVL tail-folding.");
3898 "Masking gaps for scalable vectors is not yet supported.");
3900 Instruction *Instr = Group->getInsertPos();
3901
3902 // Prepare for the vector type of the interleaved load/store.
3903 Type *ScalarTy = getLoadStoreType(Instr);
3904 unsigned InterleaveFactor = Group->getFactor();
3905 assert(InterleaveFactor <= 8 &&
3906 "Unsupported deinterleave/interleave factor for scalable vectors");
3907 ElementCount WideVF = State.VF * InterleaveFactor;
3908 auto *VecTy = VectorType::get(ScalarTy, WideVF);
3909
3910 VPValue *Addr = getAddr();
3911 Value *ResAddr = State.get(Addr, VPLane(0));
3912 Value *EVL = State.get(getEVL(), VPLane(0));
3913 Value *InterleaveEVL = State.Builder.CreateMul(
3914 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
3915 /* NUW= */ true, /* NSW= */ true);
3916 LLVMContext &Ctx = State.Builder.getContext();
3917
3918 Value *GroupMask = nullptr;
3919 if (VPValue *BlockInMask = getMask()) {
3920 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
3921 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
3922 } else {
3923 GroupMask =
3924 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
3925 }
3926
3927 // Vectorize the interleaved load group.
3928 if (isa<LoadInst>(Instr)) {
3929 CallInst *NewLoad = State.Builder.CreateIntrinsic(
3930 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
3931 "wide.vp.load");
3932 NewLoad->addParamAttr(0,
3933 Attribute::getWithAlignment(Ctx, Group->getAlign()));
3934
3935 applyMetadata(*NewLoad);
3936 // TODO: Also manage existing metadata using VPIRMetadata.
3937 Group->addMetadata(NewLoad);
3938
3939 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3940 // so must use intrinsics to deinterleave.
3941 NewLoad = State.Builder.CreateIntrinsic(
3942 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3943 NewLoad->getType(), NewLoad,
3944 /*FMFSource=*/nullptr, "strided.vec");
3945
3946 const DataLayout &DL = Instr->getDataLayout();
3947 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3948 Instruction *Member = Group->getMember(I);
3949 // Skip the gaps in the group.
3950 if (!Member)
3951 continue;
3952
3953 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
3954 // If this member has different type, cast the result type.
3955 if (Member->getType() != ScalarTy) {
3956 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3957 StridedVec =
3958 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3959 }
3960
3961 State.set(getVPValue(J), StridedVec);
3962 ++J;
3963 }
3964 return;
3965 } // End for interleaved load.
3966
3967 // The sub vector type for current instruction.
3968 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3969 // Vectorize the interleaved store group.
3970 ArrayRef<VPValue *> StoredValues = getStoredValues();
3971 // Collect the stored vector from each member.
3972 SmallVector<Value *, 4> StoredVecs;
3973 const DataLayout &DL = Instr->getDataLayout();
3974 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
3975 Instruction *Member = Group->getMember(I);
3976 // Skip the gaps in the group.
3977 if (!Member) {
3978 StoredVecs.push_back(PoisonValue::get(SubVT));
3979 continue;
3980 }
3981
3982 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3983 // If this member has different type, cast it to a unified type.
3984 if (StoredVec->getType() != SubVT)
3985 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3986
3987 StoredVecs.push_back(StoredVec);
3988 ++StoredIdx;
3989 }
3990
3991 // Interleave all the smaller vectors into one wider vector.
3992 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3993 CallInst *NewStore =
3994 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
3995 {IVec, ResAddr, GroupMask, InterleaveEVL});
3996 NewStore->addParamAttr(1,
3997 Attribute::getWithAlignment(Ctx, Group->getAlign()));
3998
3999 applyMetadata(*NewStore);
4000 // TODO: Also manage existing metadata using VPIRMetadata.
4001 Group->addMetadata(NewStore);
4002}
4003
4004#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4006 VPSlotTracker &SlotTracker) const {
4008 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4009 IG->getInsertPos()->printAsOperand(O, false);
4010 O << ", ";
4012 O << ", ";
4014 if (VPValue *Mask = getMask()) {
4015 O << ", ";
4016 Mask->printAsOperand(O, SlotTracker);
4017 }
4018
4019 unsigned OpIdx = 0;
4020 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4021 if (!IG->getMember(i))
4022 continue;
4023 if (getNumStoreOperands() > 0) {
4024 O << "\n" << Indent << " vp.store ";
4026 O << " to index " << i;
4027 } else {
4028 O << "\n" << Indent << " ";
4030 O << " = vp.load from index " << i;
4031 }
4032 ++OpIdx;
4033 }
4034}
4035#endif
4036
4038 VPCostContext &Ctx) const {
4039 Instruction *InsertPos = getInsertPos();
4040 // Find the VPValue index of the interleave group. We need to skip gaps.
4041 unsigned InsertPosIdx = 0;
4042 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4043 if (auto *Member = IG->getMember(Idx)) {
4044 if (Member == InsertPos)
4045 break;
4046 InsertPosIdx++;
4047 }
4048 Type *ValTy = Ctx.Types.inferScalarType(
4049 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4050 : getStoredValues()[InsertPosIdx]);
4051 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4052 unsigned AS = getLoadStoreAddressSpace(InsertPos);
4053
4054 unsigned InterleaveFactor = IG->getFactor();
4055 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4056
4057 // Holds the indices of existing members in the interleaved group.
4059 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4060 if (IG->getMember(IF))
4061 Indices.push_back(IF);
4062
4063 // Calculate the cost of the whole interleaved group.
4064 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4065 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4066 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4067
4068 if (!IG->isReverse())
4069 return Cost;
4070
4071 return Cost + IG->getNumMembers() *
4072 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4073 VectorTy, VectorTy, {}, Ctx.CostKind,
4074 0);
4075}
4076
4077#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4079 VPSlotTracker &SlotTracker) const {
4080 O << Indent << "EMIT ";
4082 O << " = CANONICAL-INDUCTION ";
4084}
4085#endif
4086
4088 return IsScalarAfterVectorization &&
4089 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4090}
4091
4092#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4094 VPSlotTracker &SlotTracker) const {
4095 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4096 "unexpected number of operands");
4097 O << Indent << "EMIT ";
4099 O << " = WIDEN-POINTER-INDUCTION ";
4101 O << ", ";
4103 O << ", ";
4105 if (getNumOperands() == 5) {
4106 O << ", ";
4108 O << ", ";
4110 }
4111}
4112
4114 VPSlotTracker &SlotTracker) const {
4115 O << Indent << "EMIT ";
4117 O << " = EXPAND SCEV " << *Expr;
4118}
4119#endif
4120
4122 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4123 Type *STy = CanonicalIV->getType();
4124 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4125 ElementCount VF = State.VF;
4126 Value *VStart = VF.isScalar()
4127 ? CanonicalIV
4128 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4129 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4130 if (VF.isVector()) {
4131 VStep = Builder.CreateVectorSplat(VF, VStep);
4132 VStep =
4133 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4134 }
4135 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4136 State.set(this, CanonicalVectorIV);
4137}
4138
4139#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4141 VPSlotTracker &SlotTracker) const {
4142 O << Indent << "EMIT ";
4144 O << " = WIDEN-CANONICAL-INDUCTION ";
4146}
4147#endif
4148
4150 auto &Builder = State.Builder;
4151 // Create a vector from the initial value.
4152 auto *VectorInit = getStartValue()->getLiveInIRValue();
4153
4154 Type *VecTy = State.VF.isScalar()
4155 ? VectorInit->getType()
4156 : VectorType::get(VectorInit->getType(), State.VF);
4157
4158 BasicBlock *VectorPH =
4159 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4160 if (State.VF.isVector()) {
4161 auto *IdxTy = Builder.getInt32Ty();
4162 auto *One = ConstantInt::get(IdxTy, 1);
4163 IRBuilder<>::InsertPointGuard Guard(Builder);
4164 Builder.SetInsertPoint(VectorPH->getTerminator());
4165 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4166 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4167 VectorInit = Builder.CreateInsertElement(
4168 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4169 }
4170
4171 // Create a phi node for the new recurrence.
4172 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4173 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4174 Phi->addIncoming(VectorInit, VectorPH);
4175 State.set(this, Phi);
4176}
4177
4180 VPCostContext &Ctx) const {
4181 if (VF.isScalar())
4182 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4183
4184 return 0;
4185}
4186
4187#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4189 VPSlotTracker &SlotTracker) const {
4190 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4192 O << " = phi ";
4194}
4195#endif
4196
4198 // Reductions do not have to start at zero. They can start with
4199 // any loop invariant values.
4200 VPValue *StartVPV = getStartValue();
4201
4202 // In order to support recurrences we need to be able to vectorize Phi nodes.
4203 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4204 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4205 // this value when we vectorize all of the instructions that use the PHI.
4206 BasicBlock *VectorPH =
4207 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4208 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4209 Value *StartV = State.get(StartVPV, ScalarPHI);
4210 Type *VecTy = StartV->getType();
4211
4212 BasicBlock *HeaderBB = State.CFG.PrevBB;
4213 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4214 "recipe must be in the vector loop header");
4215 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4216 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4217 State.set(this, Phi, IsInLoop);
4218
4219 Phi->addIncoming(StartV, VectorPH);
4220}
4221
4222#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4224 VPSlotTracker &SlotTracker) const {
4225 O << Indent << "WIDEN-REDUCTION-PHI ";
4226
4228 O << " = phi ";
4230 if (VFScaleFactor != 1)
4231 O << " (VF scaled by 1/" << VFScaleFactor << ")";
4232}
4233#endif
4234
4236 Value *Op0 = State.get(getOperand(0));
4237 Type *VecTy = Op0->getType();
4238 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4239 State.set(this, VecPhi);
4240}
4241
4242#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4244 VPSlotTracker &SlotTracker) const {
4245 O << Indent << "WIDEN-PHI ";
4246
4248 O << " = phi ";
4250}
4251#endif
4252
4253// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
4254// remove VPActiveLaneMaskPHIRecipe.
4256 BasicBlock *VectorPH =
4257 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4258 Value *StartMask = State.get(getOperand(0));
4259 PHINode *Phi =
4260 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4261 Phi->addIncoming(StartMask, VectorPH);
4262 State.set(this, Phi);
4263}
4264
4265#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4267 VPSlotTracker &SlotTracker) const {
4268 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4269
4271 O << " = phi ";
4273}
4274#endif
4275
4276#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4278 VPSlotTracker &SlotTracker) const {
4279 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4280
4282 O << " = phi ";
4284}
4285#endif
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition Compiler.h:404
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:271
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2571
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2625
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2559
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2618
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2637
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2036
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2463
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1805
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2329
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
LLVMContext & getContext() const
Definition IRBuilder.h:203
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
Definition IRBuilder.h:1725
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2341
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2439
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
Vector takeVector()
Clear the SetVector and return the underlying vector.
Definition SetVector.h:93
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3764
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:3817
iterator end()
Definition VPlan.h:3801
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3830
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2432
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2427
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:165
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:356
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:302
void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:126
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:424
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:419
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:397
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:409
friend class VPValue
Definition VPlanValue.h:303
unsigned getVPDefID() const
Definition VPlanValue.h:429
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3641
VPValue * getStartValue() const
Definition VPlan.h:3640
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2014
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1710
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
Definition VPlan.h:600
FastMathFlagsTy FMFs
Definition VPlan.h:664
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:658
CmpInst::Predicate CmpPredicate
Definition VPlan.h:657
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:662
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:822
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:659
CmpInst::Predicate getPredicate() const
Definition VPlan.h:804
ExactFlagsTy ExactFlags
Definition VPlan.h:661
bool hasNoSignedWrap() const
Definition VPlan.h:846
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:816
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:819
DisjointFlagsTy DisjointFlags
Definition VPlan.h:660
unsigned AllFlags
Definition VPlan.h:665
bool hasNoUnsignedWrap() const
Definition VPlan.h:835
NonNegFlagsTy NonNegFlags
Definition VPlan.h:663
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:767
Instruction & getInstruction() const
Definition VPlan.h:1375
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1350
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetada object with MD, keeping only metadata nodes that are common to both.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Definition VPlan.h:1100
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1060
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1016
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1050
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1063
@ FirstOrderRecurrenceSplice
Definition VPlan.h:989
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1054
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1013
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1010
@ VScale
Returns the value for vscale.
Definition VPlan.h:1065
@ CanonicalIVIncrementForPart
Definition VPlan.h:1003
bool hasResult() const
Definition VPlan.h:1139
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1179
unsigned getOpcode() const
Definition VPlan.h:1119
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2542
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2546
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2544
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2536
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2565
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2530
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2639
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2658
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2609
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
Definition VPlan.h:2796
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1265
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:3908
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1290
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1257
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:405
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2841
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2738
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2742
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2744
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2734
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2740
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2856
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2901
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
Definition VPlan.h:2930
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
Definition VPlan.h:3706
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:523
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:930
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1455
operand_range operands()
Definition VPlanValue.h:267
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:243
unsigned getNumOperands() const
Definition VPlanValue.h:237
operand_iterator op_begin()
Definition VPlanValue.h:263
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:238
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:282
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1409
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
friend class VPExpressionRecipe
Definition VPlanValue.h:53
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1451
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:140
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:176
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:98
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1412
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:171
user_range users()
Definition VPlanValue.h:134
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
Definition VPlan.h:1914
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
operand_range args()
Definition VPlan.h:1667
Function * getCalledScalarFunction() const
Definition VPlan.h:1663
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1536
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
Definition VPlan.h:1811
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2070
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2181
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2190
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1601
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1604
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3144
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3141
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3181
Instruction & Ingredient
Definition VPlan.h:3135
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3138
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3195
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3188
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3185
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1439
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4284
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1046
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2211
auto cast_or_null(const Y &Val)
Definition Casting.h:720
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:325
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1412
PHINode & getIRPhi()
Definition VPlan.h:1420
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:875
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:876
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:293
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3268
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
Definition VPlan.h:1756
VPValue * getCond() const
Definition VPlan.h:1752
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3349
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3352
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3313
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.