45 cl::desc(
"Enable use of wide get active lane mask instructions"));
50 GetIntOrFpInductionDescriptor,
54 Plan->getVectorLoopRegion());
57 if (!VPBB->getParent())
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
65 VPValue *VPV = Ingredient.getVPSingleValue();
74 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
80 VPValue *Start = Plan->getOrAddLiveIn(
II->getStartValue());
84 Phi, Start, Step, &Plan->getVF(), *
II, Ingredient.getDebugLoc());
88 "only VPInstructions expected here");
93 *Load, Ingredient.getOperand(0),
nullptr ,
95 Ingredient.getDebugLoc());
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr ,
false ,
false ,
109 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
115 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
126 "Only recpies with zero or one defined values expected");
127 Ingredient.eraseFromParent();
146 for (
auto &Recipe : *VPBB) {
150 WorkList.
insert({VPBB, Def});
156 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
159 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
160 if (SinkCandidate->
getParent() == SinkTo ||
165 if (!ScalarVFOnly && RepR->isSingleScalar())
170 bool NeedsDuplicating =
false;
175 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
176 SinkCandidate](
VPUser *U) {
178 if (UI->getParent() == SinkTo)
180 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
183 return NeedsDuplicating &&
186 if (!
all_of(SinkCandidate->
users(), CanSinkWithUser))
189 if (NeedsDuplicating) {
193 if (
auto *SinkCandidateRepR =
199 nullptr , *SinkCandidateRepR);
202 Clone = SinkCandidate->
clone();
214 WorkList.
insert({SinkTo, Def});
224 if (!EntryBB || EntryBB->size() != 1 ||
234 if (EntryBB->getNumSuccessors() != 2)
239 if (!Succ0 || !Succ1)
242 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
244 if (Succ0->getSingleSuccessor() == Succ1)
246 if (Succ1->getSingleSuccessor() == Succ0)
263 if (!Region1->isReplicator())
265 auto *MiddleBasicBlock =
267 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
272 if (!Region2 || !Region2->isReplicator())
277 if (!Mask1 || Mask1 != Mask2)
280 assert(Mask1 && Mask2 &&
"both region must have conditions");
286 if (TransformedRegions.
contains(Region1))
293 if (!Then1 || !Then2)
313 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
319 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
320 Phi1ToMove.eraseFromParent();
323 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
337 TransformedRegions.
insert(Region1);
340 return !TransformedRegions.
empty();
347 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
348 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
349 auto *BlockInMask = PredRecipe->
getMask();
368 RecipeWithoutMask->getDebugLoc());
392 if (RepR->isPredicated())
411 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
425 if (!VPBB->getParent())
429 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
438 R.moveBefore(*PredVPBB, PredVPBB->
end());
440 auto *ParentRegion = VPBB->getParent();
441 if (ParentRegion && ParentRegion->getExiting() == VPBB)
442 ParentRegion->setExiting(PredVPBB);
443 for (
auto *Succ :
to_vector(VPBB->successors())) {
449 return !WorkList.
empty();
456 bool ShouldSimplify =
true;
457 while (ShouldSimplify) {
473 if (!
IV ||
IV->getTruncInst())
484 auto &Casts =
IV->getInductionDescriptor().getCastInsts();
488 for (
auto *U : FindMyCast->
users()) {
490 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
491 FoundUserCast = UserCast;
495 FindMyCast = FoundUserCast;
519 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
540 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
542 if (IsConditionalAssume)
545 if (R.mayHaveSideEffects())
549 return all_of(R.definedValues(),
550 [](
VPValue *V) { return V->getNumUsers() == 0; });
566 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
569 if (*PhiR->user_begin() !=
Incoming->getDefiningRecipe() ||
572 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
573 PhiR->eraseFromParent();
574 Incoming->getDefiningRecipe()->eraseFromParent();
588 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
598 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
604 if (ResultTy != StepTy) {
611 Builder.setInsertPoint(VecPreheader);
612 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
614 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
620 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
625 Users.insert_range(V->users());
627 return Users.takeVector();
661 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
662 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
670 Def->operands(),
true);
671 Clone->insertAfter(Def);
672 Def->replaceAllUsesWith(Clone);
684 VPValue *StepV = PtrIV->getOperand(1);
687 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
689 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
699 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
700 return U->usesScalars(WideIV);
706 Plan,
ID.getKind(),
ID.getInductionOpcode(),
708 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
709 WideIV->getDebugLoc(), Builder);
712 if (!HasOnlyVectorVFs)
713 WideIV->replaceAllUsesWith(Steps);
715 WideIV->replaceUsesWithIf(Steps, [WideIV](
VPUser &U,
unsigned) {
716 return U.usesScalars(WideIV);
731 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
736 if (!Def || Def->getNumOperands() != 2)
744 auto IsWideIVInc = [&]() {
745 auto &
ID = WideIV->getInductionDescriptor();
748 VPValue *IVStep = WideIV->getStepValue();
749 switch (
ID.getInductionOpcode()) {
750 case Instruction::Add:
752 case Instruction::FAdd:
755 case Instruction::FSub:
758 case Instruction::Sub: {
777 return IsWideIVInc() ? WideIV :
nullptr;
799 if (WideIntOrFp && WideIntOrFp->getTruncInst())
811 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
812 FirstActiveLaneType,
DL);
813 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, FirstActiveLane},
DL);
820 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
823 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
825 VPValue *Start = WideIV->getStartValue();
826 VPValue *Step = WideIV->getStepValue();
827 EndValue =
B.createDerivedIV(
829 Start, EndValue, Step);
849 assert(EndValue &&
"end value must have been pre-computed");
859 VPValue *Step = WideIV->getStepValue();
862 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {},
"ind.escape");
866 return B.createPtrAdd(EndValue,
867 B.createNaryOp(Instruction::Sub, {Zero, Step}),
871 const auto &
ID = WideIV->getInductionDescriptor();
872 return B.createNaryOp(
873 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
876 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
891 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
893 if (PredVPBB == MiddleVPBB)
895 ExitIRI->getOperand(Idx),
899 ExitIRI->getOperand(Idx), SE);
901 ExitIRI->setOperand(Idx, Escape);
918 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
921 ExpR->replaceAllUsesWith(V->second);
922 ExpR->eraseFromParent();
931 while (!WorkList.
empty()) {
933 if (!Seen.
insert(Cur).second)
940 WorkList.
append(R->op_begin(), R->op_end());
941 R->eraseFromParent();
953 if (!
Op->isLiveIn() || !
Op->getLiveInIRValue())
955 Ops.push_back(
Op->getLiveInIRValue());
967 return Folder.FoldSelect(
Ops[0],
Ops[1],
970 return Folder.FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
972 case Instruction::Select:
973 return Folder.FoldSelect(
Ops[0],
Ops[1],
Ops[2]);
974 case Instruction::ICmp:
975 case Instruction::FCmp:
978 case Instruction::GetElementPtr: {
982 RFlags.getGEPNoWrapFlags());
991 case Instruction::ExtractElement:
1000 VPlan *Plan = R.getParent()->getPlan();
1019 .Default([](
auto *) {
return false; }))
1026 PredPHI->replaceAllUsesWith(
Op);
1033 if (TruncTy == ATy) {
1034 Def->replaceAllUsesWith(
A);
1043 : Instruction::ZExt;
1046 if (
auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1048 VPC->setUnderlyingValue(UnderlyingExt);
1050 VPC->insertBefore(&R);
1051 Def->replaceAllUsesWith(VPC);
1054 VPC->insertBefore(&R);
1055 Def->replaceAllUsesWith(VPC);
1063 for (
VPUser *U :
A->users()) {
1065 for (
VPValue *VPV : R->definedValues())
1079 Def->replaceAllUsesWith(
X);
1080 Def->eraseFromParent();
1086 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1090 return Def->replaceAllUsesWith(
X);
1094 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1098 return Def->replaceAllUsesWith(Def->getOperand(1));
1106 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1107 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1108 return Def->replaceAllUsesWith(
1109 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1117 return Def->replaceAllUsesWith(
X);
1122 Def->setOperand(0,
C);
1123 Def->setOperand(1,
Y);
1124 Def->setOperand(2,
X);
1133 X->hasMoreThanOneUniqueUser())
1134 return Def->replaceAllUsesWith(
1135 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1138 return Def->replaceAllUsesWith(
A);
1141 return Def->replaceAllUsesWith(R.getOperand(0) ==
A ? R.getOperand(1)
1146 return Def->replaceAllUsesWith(
A);
1161 R->setOperand(1,
Y);
1162 R->setOperand(2,
X);
1166 R->replaceAllUsesWith(Cmp);
1171 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1172 Cmp->setDebugLoc(R.getDebugLoc());
1182 return Def->replaceAllUsesWith(Def->getOperand(1));
1188 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1189 Def->replaceAllUsesWith(
X);
1199 Def->setOperand(1, Def->getOperand(0));
1200 Def->setOperand(0,
Y);
1205 if (Phi->getOperand(0) == Phi->getOperand(1))
1206 Def->replaceAllUsesWith(Phi->getOperand(0));
1213 Def->replaceAllUsesWith(
1214 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1222 Def->replaceAllUsesWith(
1223 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1228 if (Phi->getNumOperands() == 1)
1229 Phi->replaceAllUsesWith(Phi->getOperand(0));
1240 if (VecPtr->isFirstPart()) {
1241 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1250 Steps->replaceAllUsesWith(Steps->getOperand(0));
1258 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1260 return PhiR && PhiR->isInLoop();
1266 Def->replaceAllUsesWith(
A);
1276 [Def,
A](
VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1277 return Def->replaceAllUsesWith(
A);
1306 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1313 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1314 true ,
nullptr , *RepR );
1315 Clone->insertBefore(RepOrWidenR);
1317 {Clone->getOperand(0)});
1318 Ext->insertBefore(Clone);
1319 Clone->setOperand(0, Ext);
1320 RepR->eraseFromParent();
1328 !
all_of(RepOrWidenR->users(), [RepOrWidenR](
const VPUser *U) {
1329 return U->usesScalars(RepOrWidenR) ||
1330 match(cast<VPRecipeBase>(U),
1331 m_ExtractLastElement(m_VPValue()));
1336 RepOrWidenR->operands(),
1338 Clone->insertBefore(RepOrWidenR);
1339 RepOrWidenR->replaceAllUsesWith(Clone);
1375 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1376 UniqueValues.
insert(Blend->getIncomingValue(0));
1377 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1379 UniqueValues.
insert(Blend->getIncomingValue(
I));
1381 if (UniqueValues.
size() == 1) {
1382 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1383 Blend->eraseFromParent();
1387 if (Blend->isNormalized())
1393 unsigned StartIndex = 0;
1394 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1399 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1406 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1408 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1409 if (
I == StartIndex)
1411 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1412 OperandsWithMask.
push_back(Blend->getMask(
I));
1417 OperandsWithMask, Blend->getDebugLoc());
1418 NewBlend->insertBefore(&R);
1420 VPValue *DeadMask = Blend->getMask(StartIndex);
1422 Blend->eraseFromParent();
1427 if (NewBlend->getNumOperands() == 3 &&
1429 VPValue *Inc0 = NewBlend->getOperand(0);
1430 VPValue *Inc1 = NewBlend->getOperand(1);
1431 VPValue *OldMask = NewBlend->getOperand(2);
1432 NewBlend->setOperand(0, Inc1);
1433 NewBlend->setOperand(1, Inc0);
1434 NewBlend->setOperand(2, NewMask);
1464 APInt MaxVal = AlignedTC - 1;
1467 unsigned NewBitWidth =
1473 bool MadeChange =
false;
1482 if (!WideIV || !WideIV->isCanonical() ||
1483 WideIV->hasMoreThanOneUniqueUser() ||
1484 NewIVTy == WideIV->getScalarType())
1489 if (!
match(*WideIV->user_begin(),
1496 auto *NewStart = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1497 WideIV->setStartValue(NewStart);
1498 auto *NewStep = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1499 WideIV->setStepValue(NewStep);
1505 Cmp->setOperand(1, NewBTC);
1519 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1521 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1534 const SCEV *VectorTripCount =
1539 "Trip count SCEV must be computable");
1559 auto *Term = &ExitingVPBB->
back();
1572 for (
unsigned Part = 0; Part < UF; ++Part) {
1579 Extracts[Part] = Ext;
1580 Ext->insertAfter(ALM);
1591 match(Phi->getBackedgeValue(),
1593 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1606 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1613 "Expected incoming values of Phi to be ActiveLaneMasks");
1619 EntryALM->setOperand(2, ALMMultiplier);
1620 LoopALM->setOperand(2, ALMMultiplier);
1624 ExtractFromALM(EntryALM, EntryExtracts);
1629 ExtractFromALM(LoopALM, LoopExtracts);
1631 Not->setOperand(0, LoopExtracts[0]);
1634 for (
unsigned Part = 0; Part < UF; ++Part) {
1635 Phis[Part]->setStartValue(EntryExtracts[Part]);
1636 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1649 auto *Term = &ExitingVPBB->
back();
1658 const SCEV *TripCount =
1661 "Trip count SCEV must be computable");
1664 if (TripCount->
isZero() ||
1684 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1685 return R->isCanonical();
1686 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1687 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1693 R->getScalarType());
1695 HeaderR.eraseFromParent();
1699 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1700 HeaderR.eraseFromParent();
1709 B->setParent(
nullptr);
1718 Term->getDebugLoc());
1722 Term->eraseFromParent();
1730 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
1731 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
1739 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
1757 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
1760 if (SinkCandidate == Previous)
1764 !Seen.
insert(SinkCandidate).second ||
1768 if (SinkCandidate->mayHaveSideEffects())
1777 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
1780 "only recipes with a single defined value expected");
1795 if (SinkCandidate == FOR)
1798 SinkCandidate->moveAfter(Previous);
1799 Previous = SinkCandidate;
1817 for (
VPUser *U : FOR->users()) {
1823 [&VPDT, HoistPoint](
VPUser *U) {
1824 auto *R = cast<VPRecipeBase>(U);
1825 return HoistPoint == R ||
1826 VPDT.properlyDominates(HoistPoint, R);
1828 "HoistPoint must dominate all users of FOR");
1830 auto NeedsHoisting = [HoistPoint, &VPDT,
1832 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1833 if (!HoistCandidate)
1839 "CFG in VPlan should still be flat, without replicate regions");
1841 if (!Visited.
insert(HoistCandidate).second)
1853 return HoistCandidate;
1858 return !HoistCandidate->mayHaveSideEffects();
1867 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
1870 "only recipes with a single defined value expected");
1871 if (!CanHoist(Current))
1882 if (
auto *R = NeedsHoisting(
Op))
1894 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
1914 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1917 while (
auto *PrevPhi =
1919 assert(PrevPhi->getParent() == FOR->getParent());
1921 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1939 {FOR, FOR->getBackedgeValue()});
1941 FOR->replaceAllUsesWith(RecurSplice);
1944 RecurSplice->setOperand(0, FOR);
1955 RecurKind RK = PhiR->getRecurrenceKind();
1962 RecWithFlags->dropPoisonGeneratingFlags();
1968struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
1970 return Def == getEmptyKey() || Def == getTombstoneKey();
1976 static std::optional<std::pair<bool, unsigned>>
1979 std::optional<std::pair<bool, unsigned>>>(R)
1982 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
1983 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
1984 return std::make_pair(
true,
I->getVectorIntrinsicID());
1986 .
Default([](
auto *) {
return std::nullopt; });
1991 static Type *getGEPSourceElementType(
const VPSingleDefRecipe *R) {
1994 return TypeSwitch<const VPSingleDefRecipe *, Type *>(R)
1995 .Case<VPReplicateRecipe>([](
auto *
I) ->
Type * {
1997 return GEP->getSourceElementType();
2000 .Case<VPVectorPointerRecipe, VPWidenGEPRecipe>(
2001 [](
auto *
I) {
return I->getSourceElementType(); })
2002 .
Default([](
auto *) {
return nullptr; });
2006 static bool canHandle(
const VPSingleDefRecipe *Def) {
2012 ? std::make_pair(
false, Instruction::GetElementPtr)
2013 : getOpcodeOrIntrinsicID(
Def);
2018 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
2019 C->second == Instruction::ExtractValue)))
2025 return !
Def->mayReadFromMemory();
2029 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
2030 const VPlan *Plan =
Def->getParent()->getPlan();
2031 VPTypeAnalysis TypeInfo(*Plan);
2033 Def->getVPDefID(), getOpcodeOrIntrinsicID(Def),
2034 getGEPSourceElementType(Def), TypeInfo.inferScalarType(Def),
2037 if (RFlags->hasPredicate())
2043 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2046 if (
L->getVPDefID() !=
R->getVPDefID() ||
2047 getOpcodeOrIntrinsicID(L) != getOpcodeOrIntrinsicID(R) ||
2048 getGEPSourceElementType(L) != getGEPSourceElementType(R) ||
2050 !
equal(
L->operands(),
R->operands()))
2053 if (LFlags->hasPredicate() &&
2054 LFlags->getPredicate() !=
2057 const VPlan *Plan =
L->getParent()->getPlan();
2058 VPTypeAnalysis TypeInfo(*Plan);
2059 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2074 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2078 if (!VPDT.
dominates(V->getParent(), VPBB))
2083 Def->replaceAllUsesWith(V);
2101 return RepR && RepR->getOpcode() == Instruction::Alloca;
2111 if (CannotHoistRecipe(R))
2115 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
2117 return !Op->isDefinedOutsideLoopRegions();
2120 R.moveBefore(*Preheader, Preheader->
end());
2142 VPValue *ResultVPV = R.getVPSingleValue();
2144 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2145 if (!NewResSizeInBits)
2158 (void)OldResSizeInBits;
2166 VPW->dropPoisonGeneratingFlags();
2168 if (OldResSizeInBits != NewResSizeInBits &&
2173 Ext->insertAfter(&R);
2175 Ext->setOperand(0, ResultVPV);
2176 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2179 "Only ICmps should not need extending the result.");
2188 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2189 auto *
Op = R.getOperand(Idx);
2190 unsigned OpSizeInBits =
2192 if (OpSizeInBits == NewResSizeInBits)
2194 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2195 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2200 : ProcessedIter->second;
2201 R.setOperand(Idx, NewOp);
2204 ProcessedIter->second = NewOp;
2205 if (!
Op->isLiveIn()) {
2224 assert(VPBB->getNumSuccessors() == 2 &&
2225 "Two successors expected for BranchOnCond");
2226 unsigned RemovedIdx;
2237 "There must be a single edge between VPBB and its successor");
2246 VPBB->back().eraseFromParent();
2307 VPValue *StartV = CanonicalIVPHI->getStartValue();
2309 auto *CanonicalIVIncrement =
2313 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2314 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2324 VPValue *TripCount, *IncrementValue;
2329 IncrementValue = CanonicalIVIncrement;
2335 IncrementValue = CanonicalIVPHI;
2339 auto *EntryIncrement = Builder.createOverflowingOp(
2347 {EntryIncrement, TC, ALMMultiplier},
DL,
2348 "active.lane.mask.entry");
2354 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2359 Builder.setInsertPoint(OriginalTerminator);
2360 auto *InLoopIncrement =
2362 {IncrementValue}, {
false,
false},
DL);
2364 {InLoopIncrement, TripCount, ALMMultiplier},
2365 DL,
"active.lane.mask.next");
2370 auto *NotMask = Builder.createNot(ALM,
DL);
2386 "Must have at most one VPWideCanonicalIVRecipe");
2388 auto *WideCanonicalIV =
2390 WideCanonicalIVs.
push_back(WideCanonicalIV);
2398 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2399 WideCanonicalIVs.
push_back(WidenOriginalIV);
2405 for (
auto *Wide : WideCanonicalIVs) {
2411 assert(VPI->getOperand(0) == Wide &&
2412 "WidenCanonicalIV must be the first operand of the compare");
2413 assert(!HeaderMask &&
"Multiple header masks found?");
2421 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2424 UseActiveLaneMaskForControlFlow) &&
2425 "DataAndControlFlowWithoutRuntimeCheck implies "
2426 "UseActiveLaneMaskForControlFlow");
2430 assert(FoundWidenCanonicalIVUser &&
2431 "Must have widened canonical IV when tail folding!");
2433 auto *WideCanonicalIV =
2436 if (UseActiveLaneMaskForControlFlow) {
2446 nullptr,
"active.lane.mask");
2472 assert(OrigMask &&
"Unmasked recipe when folding tail");
2477 return HeaderMask == OrigMask ? nullptr : OrigMask;
2481 auto GetNewAddr = [&CurRecipe, &EVL](
VPValue *Addr) ->
VPValue * {
2485 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2486 "VPVectorEndPointerRecipe with non-VF VF operand?");
2490 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2492 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2501 VPValue *NewMask = GetNewMask(L->getMask());
2502 VPValue *NewAddr = GetNewAddr(L->getAddr());
2511 VPValue *NewMask = GetNewMask(
IR->getMask());
2515 VPValue *NewMask = GetNewMask(Red->getCondOp());
2530 Intrinsic::vp_merge, {&AllOneMask,
LHS,
RHS, &EVL},
2546 "User of VF that we can't transform to EVL.");
2553 return match(U, m_c_Add(m_Specific(Plan.getCanonicalIV()),
2554 m_Specific(&Plan.getVFxUF()))) ||
2555 isa<VPWidenPointerInductionRecipe>(U);
2557 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2558 "increment of the canonical induction.");
2578 MaxEVL = Builder.createScalarZExtOrTrunc(
2582 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2583 VPValue *PrevEVL = Builder.createScalarPhi(
2597 Intrinsic::experimental_vp_splice,
2598 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2601 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2619 VPValue *EVLMask = Builder.createICmp(
2637 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2638 "New recipe must define the same number of values as the "
2643 for (
unsigned I = 0;
I < NumDefVal; ++
I) {
2644 VPValue *CurVPV = CurRecipe->getVPValue(
I);
2656 R->eraseFromParent();
2706 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
2711 VPValue *StartV = CanonicalIVPHI->getStartValue();
2715 EVLPhi->insertAfter(CanonicalIVPHI);
2716 VPBuilder Builder(Header, Header->getFirstNonPhi());
2719 VPPhi *AVLPhi = Builder.createScalarPhi(
2723 if (MaxSafeElements) {
2726 Plan.
getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2734 auto *CanonicalIVIncrement =
2736 Builder.setInsertPoint(CanonicalIVIncrement);
2740 OpVPEVL = Builder.createScalarZExtOrTrunc(
2741 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2743 auto *NextEVLIV = Builder.createOverflowingOp(
2744 Instruction::Add, {OpVPEVL, EVLPhi},
2745 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2746 CanonicalIVIncrement->hasNoSignedWrap()},
2747 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
2748 EVLPhi->addOperand(NextEVLIV);
2750 VPValue *NextAVL = Builder.createOverflowingOp(
2751 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
2759 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2760 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2774 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
2785 [[maybe_unused]]
bool FoundAVL =
2788 assert(FoundAVL &&
"Didn't find AVL?");
2796 [[maybe_unused]]
bool FoundAVLNext =
2799 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
2810 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2813 "Unexpected canonical iv");
2819 CanonicalIV->eraseFromParent();
2832 match(LatchExitingBr,
2835 "Unexpected terminator in EVL loop");
2843 LatchExitingBr->eraseFromParent();
2853 return R->getParent()->getParent() ||
2856 for (
const SCEV *Stride : StridesMap.
values()) {
2859 const APInt *StrideConst;
2860 if (!
match(PSE.
getSCEV(StrideV), m_scev_APInt(StrideConst)))
2865 Plan.
getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2877 unsigned BW = U->getType()->getScalarSizeInBits();
2888 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
2892 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
2897 while (!Worklist.
empty()) {
2900 if (!Visited.
insert(CurRec).second)
2922 RecWithFlags->isDisjoint()) {
2925 Instruction::Add, {
A,
B}, {
false,
false},
2926 RecWithFlags->getDebugLoc());
2927 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
2928 RecWithFlags->replaceAllUsesWith(New);
2929 RecWithFlags->eraseFromParent();
2932 RecWithFlags->dropPoisonGeneratingFlags();
2937 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
2938 "found instruction with poison generating flags not covered by "
2939 "VPRecipeWithIRFlags");
2944 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
2956 Instruction &UnderlyingInstr = WidenRec->getIngredient();
2957 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
2958 if (AddrDef && WidenRec->isConsecutive() &&
2959 BlockNeedsPredication(UnderlyingInstr.
getParent()))
2960 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2962 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
2966 InterleaveRec->getInterleaveGroup();
2967 bool NeedPredication =
false;
2969 I < NumMembers; ++
I) {
2972 NeedPredication |= BlockNeedsPredication(Member->getParent());
2975 if (NeedPredication)
2976 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
2988 if (InterleaveGroups.empty())
2996 for (
const auto *IG : InterleaveGroups) {
3002 StoredValues.
push_back(StoreR->getStoredValue());
3003 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
3010 StoredValues.
push_back(StoreR->getStoredValue());
3014 bool NeedsMaskForGaps =
3015 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
3016 (!StoredValues.
empty() && !IG->isFull());
3028 VPValue *Addr = Start->getAddr();
3037 assert(IG->getIndex(IRInsertPos) != 0 &&
3038 "index of insert position shouldn't be zero");
3042 IG->getIndex(IRInsertPos),
3047 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3053 if (IG->isReverse()) {
3056 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3057 ReversePtr->insertBefore(InsertPos);
3061 InsertPos->getMask(), NeedsMaskForGaps,
3062 InterleaveMD, InsertPos->getDebugLoc());
3063 VPIG->insertBefore(InsertPos);
3066 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3069 if (!Member->getType()->isVoidTy()) {
3130 AddOp = Instruction::Add;
3131 MulOp = Instruction::Mul;
3133 AddOp =
ID.getInductionOpcode();
3134 MulOp = Instruction::FMul;
3135 Flags =
ID.getInductionBinOp()->getFastMathFlags();
3143 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3144 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3153 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3158 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3159 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3165 WidePHI->addOperand(
Init);
3166 WidePHI->insertBefore(WidenIVR);
3177 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3181 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3184 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3187 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3194 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3197 WidePHI->addOperand(
Next);
3225 VPlan *Plan = R->getParent()->getPlan();
3226 VPValue *Start = R->getStartValue();
3227 VPValue *Step = R->getStepValue();
3228 VPValue *VF = R->getVFValue();
3230 assert(R->getInductionDescriptor().getKind() ==
3232 "Not a pointer induction according to InductionDescriptor!");
3235 "Recipe should have been replaced");
3241 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3245 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3248 Offset = Builder.createNaryOp(Instruction::Mul, {
Offset, Step});
3249 VPValue *PtrAdd = Builder.createNaryOp(
3251 R->replaceAllUsesWith(PtrAdd);
3256 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3258 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3261 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3270 if (!R->isReplicator())
3274 R->dissolveToCFGLoop();
3299 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3300 Select = Builder.createSelect(Blend->getMask(
I),
3301 Blend->getIncomingValue(
I),
Select,
3302 R.getDebugLoc(),
"predphi");
3303 Blend->replaceAllUsesWith(
Select);
3323 ? Instruction::UIToFP
3324 : Instruction::Trunc;
3325 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3328 [[maybe_unused]]
auto *ConstStep =
3332 assert(!ConstStep || ConstStep->getValue() != 1);
3336 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3341 Flags = {VPI->getFastMathFlags()};
3346 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3348 VPI->replaceAllUsesWith(VectorStep);
3354 R->eraseFromParent();
3367 "unsupported early exit VPBB");
3379 "Terminator must be be BranchOnCond");
3380 VPValue *CondOfEarlyExitingVPBB =
3382 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3383 ? CondOfEarlyExitingVPBB
3384 : Builder.createNot(CondOfEarlyExitingVPBB);
3401 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3406 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3407 if (ExitIRI->getNumOperands() != 1) {
3410 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3413 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3414 if (!IncomingFromEarlyExit->
isLiveIn()) {
3418 "first.active.lane");
3421 nullptr,
"early.exit.value");
3422 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3432 "Unexpected terminator");
3433 auto *IsLatchExitTaken =
3435 LatchExitingBranch->getOperand(1));
3436 auto *AnyExitTaken = Builder.createNaryOp(
3437 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3439 LatchExitingBranch->eraseFromParent();
3449 Type *RedTy = Ctx.Types.inferScalarType(Red);
3450 VPValue *VecOp = Red->getVecOp();
3453 auto IsExtendedRedValidAndClampRange = [&](
unsigned Opcode,
bool isZExt,
3454 Type *SrcTy) ->
bool {
3460 Opcode, isZExt, RedTy, SrcVecTy, Red->getFastMathFlags(),
3465 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
3473 IsExtendedRedValidAndClampRange(
3476 Instruction::CastOps::ZExt,
3477 Ctx.Types.inferScalarType(
A)))
3495 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3498 Type *RedTy = Ctx.Types.inferScalarType(Red);
3501 auto IsMulAccValidAndClampRange =
3508 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3511 isZExt, Opcode, RedTy, SrcVecTy,
CostKind);
3516 ExtCost += Ext0->computeCost(VF, Ctx);
3518 ExtCost += Ext1->computeCost(VF, Ctx);
3520 ExtCost += OuterExt->computeCost(VF, Ctx);
3522 return MulAccCost.
isValid() &&
3523 MulAccCost < ExtCost + MulCost + RedCost;
3528 VPValue *VecOp = Red->getVecOp();
3539 if (RecipeA && RecipeB &&
3540 (RecipeA->getOpcode() == RecipeB->getOpcode() ||
A ==
B) &&
3543 IsMulAccValidAndClampRange(RecipeA->getOpcode() ==
3544 Instruction::CastOps::ZExt,
3545 Mul, RecipeA, RecipeB,
nullptr)) {
3549 if (IsMulAccValidAndClampRange(
true,
Mul,
nullptr,
nullptr,
nullptr))
3563 if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3564 Ext0->getOpcode() == Ext1->getOpcode() &&
3565 IsMulAccValidAndClampRange(Ext0->getOpcode() ==
3566 Instruction::CastOps::ZExt,
3567 Mul, Ext0, Ext1, Ext)) {
3569 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3570 *Ext0, Ext0->getDebugLoc());
3571 NewExt0->insertBefore(Ext0);
3576 Ext->getResultType(), *Ext1, *Ext1,
3577 Ext1->getDebugLoc());
3580 Mul->setOperand(0, NewExt0);
3581 Mul->setOperand(1, NewExt1);
3582 Red->setOperand(1,
Mul);
3595 auto IP = std::next(Red->getIterator());
3596 auto *VPBB = Red->getParent();
3606 Red->replaceAllUsesWith(AbstractR);
3637 for (
VPValue *VPV : VPValues) {
3639 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3647 if (
User->usesScalars(VPV))
3650 HoistPoint = HoistBlock->
begin();
3654 "All users must be in the vector preheader or dominated by it");
3659 VPV->replaceUsesWithIf(Broadcast,
3660 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
3661 return Broadcast != &U && !U.usesScalars(VPV);
3669 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
3670 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
3704 auto *TCMO = Builder.createNaryOp(
3733 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](
VPUser *U) {
3736 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3743 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3753 DefR->replaceUsesWithIf(
3754 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3756 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3765 bool RequiresScalarEpilogue) {
3767 assert(VectorTC.
isLiveIn() &&
"vector-trip-count must be a live-in");
3786 if (TailByMasking) {
3787 TC = Builder.createNaryOp(
3789 {TC, Builder.createNaryOp(
3801 Builder.createNaryOp(Instruction::URem, {TC, Step},
3810 if (RequiresScalarEpilogue) {
3812 "requiring scalar epilogue is not supported with fail folding");
3813 VPValue *IsZero = Builder.createICmp(
3815 R = Builder.createSelect(IsZero, Step, R);
3818 VPValue *Res = Builder.createNaryOp(
3837 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
3844 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
3848 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
3853 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
3863 BasicBlock *EntryBB = Entry->getIRBasicBlock();
3871 const SCEV *Expr = ExpSCEV->getSCEV();
3874 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
3879 ExpSCEV->eraseFromParent();
3882 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
3883 "after any VPIRInstructions");
3886 auto EI = Entry->begin();
3896 return ExpandedSCEVs;
3916 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
3925 unsigned VectorRegWidth) {
3929 Type *GroupElementTy =
nullptr;
3933 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3934 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3941 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
3942 return TypeInfo.inferScalarType(Op) == GroupElementTy;
3949 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
3950 GroupSize == VectorRegWidth;
3958 return RepR && RepR->isSingleScalar();
3962 unsigned VectorRegWidth) {
3988 if (R.mayWriteToMemory() && !InterleaveR)
4010 if (InterleaveR->getStoredValues().empty())
4015 auto *Member0 = InterleaveR->getStoredValues()[0];
4017 all_of(InterleaveR->getStoredValues(),
4018 [Member0](
VPValue *VPV) { return Member0 == VPV; })) {
4026 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4029 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4030 return IR && IR->getInterleaveGroup()->isFull() &&
4031 IR->getVPValue(Op.index()) == Op.value();
4040 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4043 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
4045 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4046 R->getNumOperands() > 2)
4049 [WideMember0, Idx =
I](
const auto &
P) {
4050 const auto &[OpIdx, OpV] = P;
4051 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4058 if (StoreGroups.
empty())
4064 auto *R = V->getDefiningRecipe();
4071 *
cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos()),
4072 LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4073 false, {}, LoadGroup->getDebugLoc());
4074 L->insertBefore(LoadGroup);
4080 assert(RepR->isSingleScalar() &&
4082 "must be a single scalar load");
4083 NarrowedOps.
insert(RepR);
4088 VPValue *PtrOp = WideLoad->getAddr();
4090 PtrOp = VecPtr->getOperand(0);
4095 nullptr, *WideLoad);
4096 N->insertBefore(WideLoad);
4102 for (
auto *StoreGroup : StoreGroups) {
4104 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4107 }
else if (
auto *WideMember0 =
4109 for (
unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4110 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4113 Res = NarrowOp(Member0);
4118 StoreGroup->getAddr(), Res,
nullptr,
true,
4119 false, {}, StoreGroup->getDebugLoc());
4120 S->insertBefore(StoreGroup);
4121 StoreGroup->eraseFromParent();
4131 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.
getUF()));
4139 Inc->setOperand(1, UF);
4141 Plan.
getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4158 "must have a BranchOnCond");
4161 if (VF.
isScalable() && VScaleForTuning.has_value())
4162 VectorStep *= *VScaleForTuning;
4163 assert(VectorStep > 0 &&
"trip count should not be zero");
4167 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
mir Rename Register Operands
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
virtual VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
operand_iterator op_end()
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
VPValue * getSplatVFValue()
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
VPValue & getVectorTripCount()
The vector trip count.
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getTrue()
Return a VPValue wrapping i1 true.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...