159#define LV_NAME "loop-vectorize"
160#define DEBUG_TYPE LV_NAME
170 "llvm.loop.vectorize.followup_vectorized";
172 "llvm.loop.vectorize.followup_epilogue";
175STATISTIC(LoopsVectorized,
"Number of loops vectorized");
176STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
177STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
181 cl::desc(
"Enable vectorization of epilogue loops."));
185 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
186 "1 is specified, forces the given VF for all applicable epilogue "
190 "epilogue-vectorization-minimum-VF",
cl::Hidden,
191 cl::desc(
"Only loops with vectorization factor equal to or larger than "
192 "the specified value are considered for epilogue vectorization."));
198 cl::desc(
"Loops with a constant trip count that is smaller than this "
199 "value are vectorized only if no scalar iteration overheads "
204 cl::desc(
"The maximum allowed number of runtime memory checks"));
220 "prefer-predicate-over-epilogue",
223 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
227 "Don't tail-predicate loops, create scalar epilogue"),
229 "predicate-else-scalar-epilogue",
230 "prefer tail-folding, create scalar epilogue if tail "
233 "predicate-dont-vectorize",
234 "prefers tail-folding, don't attempt vectorization if "
235 "tail-folding fails.")));
238 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
241 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
243 TailFoldingStyle::Data,
"data",
244 "Create lane mask for data only, using active.lane.mask intrinsic"),
245 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
246 "data-without-lane-mask",
247 "Create lane mask with compare/stepvector"),
248 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
249 "Create lane mask using active.lane.mask intrinsic, and use "
250 "it for both data and control flow"),
251 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
252 "data-and-control-without-rt-check",
253 "Similar to data-and-control, but remove the runtime check"),
254 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
255 "Use predicated EVL instructions for tail folding. If EVL "
256 "is unsupported, fallback to data-without-lane-mask.")));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
357 cl::desc(
"Enable VPlan-native vectorization path with "
358 "support for outer loop vectorization."));
362#ifdef EXPENSIVE_CHECKS
368 cl::desc(
"Verfiy VPlans after VPlan transforms."));
378 "Build VPlan for every supported loop nest in the function and bail "
379 "out right after the build (stress test the VPlan H-CFG construction "
380 "in the VPlan-native vectorization path)."));
384 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
387 cl::desc(
"Run the Loop vectorization passes"));
390 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
392 "Override cost based safe divisor widening for div/rem instructions"));
395 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
397 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
402 "Enable vectorization of early exit loops with uncountable exits."));
421 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
430static std::optional<unsigned>
432 bool CanUseConstantMax =
true) {
442 if (!CanUseConstantMax)
454class GeneratedRTChecks;
550 "Trying to access AdditionalBypassBlock but it has not been set");
585 Value *MainVectorTripCount);
719 "A high UF for the epilogue loop is likely not beneficial.");
741 EPI.MainLoopVF,
EPI.MainLoopVF,
EPI.MainLoopUF, LVL,
836 if (
I->getDebugLoc() != Empty)
837 return I->getDebugLoc();
839 for (
Use &
Op :
I->operands()) {
841 if (OpInst->getDebugLoc() != Empty)
842 return OpInst->getDebugLoc();
845 return I->getDebugLoc();
854 dbgs() <<
"LV: " << Prefix << DebugMsg;
876 if (
I &&
I->getDebugLoc())
877 DL =
I->getDebugLoc();
895 return B.CreateElementCount(Ty, VF);
906 <<
"loop not vectorized: " << OREMsg);
929 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
935 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
937 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
994 initializeVScaleForTuning();
1086 "Profitable to scalarize relevant only for VF > 1.");
1089 "cost-model should not be used for outer loops (in VPlan-native path)");
1091 auto Scalars = InstsToScalarize.find(VF);
1092 assert(Scalars != InstsToScalarize.end() &&
1093 "VF not yet analyzed for scalarization profitability");
1094 return Scalars->second.contains(
I);
1101 "cost-model should not be used for outer loops (in VPlan-native path)");
1105 if (isa<PseudoProbeInst>(
I))
1111 auto UniformsPerVF = Uniforms.find(VF);
1112 assert(UniformsPerVF != Uniforms.end() &&
1113 "VF not yet analyzed for uniformity");
1114 return UniformsPerVF->second.count(
I);
1121 "cost-model should not be used for outer loops (in VPlan-native path)");
1125 auto ScalarsPerVF = Scalars.find(VF);
1126 assert(ScalarsPerVF != Scalars.end() &&
1127 "Scalar values are not calculated for VF");
1128 return ScalarsPerVF->second.count(
I);
1134 return VF.
isVector() && MinBWs.contains(
I) &&
1156 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1178 WideningDecisions[std::make_pair(
I, VF)] =
1179 std::make_pair(W, InsertPosCost);
1181 WideningDecisions[std::make_pair(
I, VF)] =
1182 std::make_pair(W, OtherMemberCost);
1194 "cost-model should not be used for outer loops (in VPlan-native path)");
1196 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1197 auto Itr = WideningDecisions.
find(InstOnVF);
1198 if (Itr == WideningDecisions.
end())
1200 return Itr->second.first;
1207 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1209 "The cost is not calculated");
1210 return WideningDecisions[InstOnVF].second;
1223 std::optional<unsigned> MaskPos,
1226 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1233 return CallWideningDecisions.
at(std::make_pair(CI, VF));
1241 auto *Trunc = dyn_cast<TruncInst>(
I);
1254 Value *
Op = Trunc->getOperand(0);
1274 if (VF.
isScalar() || Uniforms.contains(VF))
1277 collectLoopUniforms(VF);
1279 collectLoopScalars(VF);
1299 bool LI = isa<LoadInst>(V);
1300 bool SI = isa<StoreInst>(V);
1315 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1316 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1327 return ScalarCost < SafeDivisorCost;
1351 std::pair<InstructionCost, InstructionCost>
1379 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1386 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1387 "from latch block\n");
1392 "interleaved group requires scalar epilogue\n");
1395 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1404 auto RequiresScalarEpilogue = [
this](
ElementCount VF) {
1407 bool IsRequired =
all_of(
Range, RequiresScalarEpilogue);
1409 (IsRequired ||
none_of(
Range, RequiresScalarEpilogue)) &&
1410 "all VFs in range must agree on whether a scalar epilogue is required");
1422 if (!ChosenTailFoldingStyle)
1424 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1425 : ChosenTailFoldingStyle->second;
1433 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1435 ChosenTailFoldingStyle =
1441 ChosenTailFoldingStyle = std::make_pair(
1464 ChosenTailFoldingStyle =
1469 <<
"LV: Preference for VP intrinsics indicated. Will "
1470 "not try to generate VP Intrinsics "
1472 ?
"since interleave count specified is greater than 1.\n"
1473 :
"due to non-interleaving reasons.\n"));
1508 return InLoopReductions.contains(Phi);
1535 WideningDecisions.
clear();
1536 CallWideningDecisions.
clear();
1555 const unsigned IC)
const;
1565 Type *VectorTy)
const;
1575 unsigned NumPredStores = 0;
1579 std::optional<unsigned> VScaleForTuning;
1584 void initializeVScaleForTuning() {
1589 auto Max = Attr.getVScaleRangeMax();
1590 if (Max && Min == Max) {
1591 VScaleForTuning = Max;
1606 bool FoldTailByMasking);
1611 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1612 unsigned SmallestType,
1613 unsigned WidestType,
1615 bool FoldTailByMasking);
1619 bool isScalableVectorizationAllowed();
1623 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1669 PredicatedBBsAfterVectorization;
1682 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1683 ChosenTailFoldingStyle;
1686 std::optional<bool> IsScalableVectorizationAllowed;
1692 std::optional<unsigned> MaxSafeElements;
1726 ScalarCostsTy &ScalarCosts,
1752 std::pair<InstWidening, InstructionCost>>;
1754 DecisionList WideningDecisions;
1756 using CallDecisionList =
1759 CallDecisionList CallWideningDecisions;
1783 Ops, [
this, VF](
Value *V) {
return this->needsExtract(V, VF); }));
1844class GeneratedRTChecks {
1850 Value *SCEVCheckCond =
nullptr;
1858 Value *MemRuntimeCheckCond =
nullptr;
1867 bool CostTooHigh =
false;
1868 const bool AddBranchWeights;
1870 Loop *OuterLoop =
nullptr;
1882 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1883 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"),
1884 AddBranchWeights(AddBranchWeights), PSE(PSE), CostKind(CostKind) {}
1912 nullptr,
"vector.scevcheck");
1919 if (RtPtrChecking.Need) {
1920 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1921 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1924 auto DiffChecks = RtPtrChecking.getDiffChecks();
1926 Value *RuntimeVF =
nullptr;
1931 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1937 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1940 assert(MemRuntimeCheckCond &&
1941 "no RT checks generated although RtPtrChecking "
1942 "claimed checks are required");
1945 if (!MemCheckBlock && !SCEVCheckBlock)
1955 if (SCEVCheckBlock) {
1961 if (MemCheckBlock) {
1969 if (MemCheckBlock) {
1973 if (SCEVCheckBlock) {
1979 OuterLoop =
L->getParentLoop();
1983 if (SCEVCheckBlock || MemCheckBlock)
1996 if (SCEVCheckBlock->getTerminator() == &
I)
2002 if (MemCheckBlock) {
2005 if (MemCheckBlock->getTerminator() == &
I)
2027 unsigned BestTripCount = 2;
2031 PSE, OuterLoop,
false))
2032 BestTripCount = *EstimatedTC;
2034 BestTripCount = std::max(BestTripCount, 1U);
2038 NewMemCheckCost = std::max(*NewMemCheckCost.
getValue(),
2041 if (BestTripCount > 1)
2043 <<
"We expect runtime memory checks to be hoisted "
2044 <<
"out of the outer loop. Cost reduced from "
2045 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2047 MemCheckCost = NewMemCheckCost;
2051 RTCheckCost += MemCheckCost;
2054 if (SCEVCheckBlock || MemCheckBlock)
2055 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2063 ~GeneratedRTChecks() {
2067 SCEVCleaner.markResultUsed();
2069 if (!MemRuntimeCheckCond)
2070 MemCheckCleaner.markResultUsed();
2072 if (MemRuntimeCheckCond) {
2073 auto &SE = *MemCheckExp.
getSE();
2080 I.eraseFromParent();
2083 MemCheckCleaner.cleanup();
2084 SCEVCleaner.cleanup();
2087 SCEVCheckBlock->eraseFromParent();
2088 if (MemRuntimeCheckCond)
2089 MemCheckBlock->eraseFromParent();
2102 SCEVCheckCond =
nullptr;
2103 if (
auto *
C = dyn_cast<ConstantInt>(
Cond))
2114 SCEVCheckBlock->getTerminator()->eraseFromParent();
2115 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2116 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2123 if (AddBranchWeights)
2126 return SCEVCheckBlock;
2135 if (!MemRuntimeCheckCond)
2144 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2151 if (AddBranchWeights) {
2155 MemCheckBlock->getTerminator()->setDebugLoc(
2156 Pred->getTerminator()->getDebugLoc());
2159 MemRuntimeCheckCond =
nullptr;
2160 return MemCheckBlock;
2166 return Style == TailFoldingStyle::Data ||
2167 Style == TailFoldingStyle::DataAndControlFlow ||
2168 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2172 return Style == TailFoldingStyle::DataAndControlFlow ||
2173 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2203 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2209 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2229 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2239 for (
Loop *InnerL : L)
2261 ?
B.CreateSExtOrTrunc(Index, StepTy)
2262 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2263 if (CastedIndex != Index) {
2265 Index = CastedIndex;
2275 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2276 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2279 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2282 return B.CreateAdd(
X,
Y);
2288 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2289 "Types don't match!");
2290 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2293 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2296 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2297 if (XVTy && !isa<VectorType>(
Y->getType()))
2298 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2299 return B.CreateMul(
X,
Y);
2302 switch (InductionKind) {
2304 assert(!isa<VectorType>(Index->getType()) &&
2305 "Vector indices not supported for integer inductions yet");
2307 "Index type does not match StartValue type");
2308 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2309 return B.CreateSub(StartValue, Index);
2314 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2316 assert(!isa<VectorType>(Index->getType()) &&
2317 "Vector indices not supported for FP inductions yet");
2320 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2321 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2322 "Original bin op should be defined for FP induction");
2324 Value *MulExp =
B.CreateFMul(Step, Index);
2325 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2339 if (
F.hasFnAttribute(Attribute::VScaleRange))
2340 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2342 return std::nullopt;
2351 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2353 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2355 Type *IdxTy =
Cost->Legal->getWidestInductionType();
2356 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2361 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2364 std::optional<unsigned> MaxVScale =
2368 MaxVF *= *MaxVScale;
2371 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2392 assert(!Instr->getType()->isAggregateType() &&
"Can't handle vectors");
2395 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2399 Cloned->
setName(Instr->getName() +
".cloned");
2404 "inferred type and type from generated instructions do not match");
2410 if (
auto DL = Instr->getDebugLoc())
2416 auto InputLane = Lane;
2427 State.
set(RepRecipe, Cloned, Lane);
2430 if (
auto *
II = dyn_cast<AssumeInst>(Cloned))
2435 bool IfPredicateInstr = Parent ? Parent->
isReplicator() :
false;
2439 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
2440 "Expected a recipe is either within a region or all of its operands "
2441 "are defined outside the vectorized region.");
2442 if (IfPredicateInstr)
2466 if (
Cost->foldTailByMasking()) {
2468 "VF*UF must be a power of 2 when folding tail by masking");
2502 "Unexpected successor");
2505 PreVectorPH = CheckVPIRBB;
2529 auto CreateStep = [&]() ->
Value * {
2544 Value *Step = CreateStep();
2555 TripCountSCEV, SE.
getSCEV(Step))) {
2568 Value *MaxUIntTripCount =
2569 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2583 "TC check is expected to dominate Bypass");
2599 if (!SCEVCheckBlock)
2605 "Cannot SCEV check stride or overflow when optimizing for size");
2607 "Should already be a bypass block due to iteration count check");
2612 return SCEVCheckBlock;
2631 "Cannot emit memory checks when optimizing for size, unless forced "
2637 <<
"Code-size may be reduced by not forcing "
2638 "vectorization, or by source-code modifications "
2639 "eliminating the need for runtime checks "
2640 "(e.g., adding 'restrict').";
2649 return MemCheckBlock;
2659 assert(!R.isPhi() &&
"Tried to move phi recipe to end of block");
2660 R.moveBefore(*IRVPBB, IRVPBB->
end());
2672 "loops not exiting via the latch without required epilogue?");
2676 LI,
nullptr,
Twine(Prefix) +
"middle.block");
2680 nullptr,
Twine(Prefix) +
"scalar.ph");
2687 const SCEV2ValueTy &ExpandedSCEVs) {
2688 const SCEV *Step =
ID.getStep();
2689 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2690 return C->getValue();
2691 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2692 return U->getValue();
2693 auto I = ExpandedSCEVs.find(Step);
2694 assert(
I != ExpandedSCEVs.end() &&
"SCEV must be expanded at this point");
2704 auto *Cmp = L->getLatchCmpInst();
2706 InstsToIgnore.
insert(Cmp);
2707 for (
const auto &KV : IL) {
2714 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2716 [&](
const User *U) { return U == IV || U == Cmp; }))
2717 InstsToIgnore.
insert(IVInst);
2722 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount) {
2723 assert(MainVectorTripCount &&
"Must have bypass information");
2729 PHINode *OrigPhi = InductionEntry.first;
2734 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
2735 if (OrigPhi != OldInduction) {
2736 auto *BinOp =
II.getInductionBinOp();
2738 if (isa_and_nonnull<FPMathOperator>(BinOp))
2742 EndValueFromAdditionalBypass =
2744 II.getStartValue(), Step,
II.getKind(), BinOp);
2745 EndValueFromAdditionalBypass->
setName(
"ind.end");
2752 "entry for OrigPhi already exits");
2758 const SCEV2ValueTy &ExpandedSCEVs) {
2819struct CSEDenseMapInfo {
2821 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2822 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2834 assert(canHandle(
I) &&
"Unknown instruction!");
2836 I->value_op_end()));
2840 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2841 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2843 return LHS->isIdenticalTo(
RHS);
2854 if (!CSEDenseMapInfo::canHandle(&In))
2860 In.replaceAllUsesWith(V);
2861 In.eraseFromParent();
2875 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2883 for (
auto &ArgOp : CI->
args())
2884 Tys.push_back(ArgOp->getType());
2892 return std::min(ScalarCallCost, IntrinsicCost);
2894 return ScalarCallCost;
2907 assert(
ID &&
"Expected intrinsic call!");
2910 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2911 FMF = FPMO->getFastMathFlags();
2917 std::back_inserter(ParamTys),
2918 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2921 dyn_cast<IntrinsicInst>(CI));
2940 for (
PHINode &PN : Exit->phis())
2990 auto IsBlockOfUsePredicated = [&](
Use &U) ->
bool {
2991 auto *
I = cast<Instruction>(U.getUser());
2993 if (
auto *Phi = dyn_cast<PHINode>(
I))
2994 BB = Phi->getIncomingBlock(
2996 return BB == PredBB;
3007 Worklist.
insert(InstsToReanalyze.
begin(), InstsToReanalyze.
end());
3008 InstsToReanalyze.
clear();
3011 while (!Worklist.
empty()) {
3018 if (!
I || isa<PHINode>(
I) || !VectorLoop->contains(
I) ||
3019 I->mayHaveSideEffects() ||
I->mayReadFromMemory())
3027 if (
I->getParent() == PredBB) {
3028 Worklist.
insert(
I->op_begin(),
I->op_end());
3042 I->moveBefore(PredBB->getFirstInsertionPt());
3043 Worklist.
insert(
I->op_begin(),
I->op_end());
3054 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3059 PHINode *NewPhi = cast<PHINode>(State.
get(VPPhi));
3071void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
3076 "This function should not be visited twice for the same VF");
3082 Scalars[VF].
insert(Uniforms[VF].begin(), Uniforms[VF].end());
3101 "Widening decision should be ready at this moment");
3102 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
3103 if (
Ptr == Store->getValueOperand())
3106 "Ptr is neither a value or pointer operand");
3112 auto IsLoopVaryingGEP = [&](
Value *
V) {
3123 if (!IsLoopVaryingGEP(
Ptr))
3128 auto *
I = cast<Instruction>(
Ptr);
3135 if (IsScalarUse(MemAccess,
Ptr) &&
3136 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
3139 PossibleNonScalarPtrs.
insert(
I);
3156 for (
auto &
I : *BB) {
3157 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
3158 EvaluatePtrUse(Load,
Load->getPointerOperand());
3159 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
3160 EvaluatePtrUse(Store,
Store->getPointerOperand());
3161 EvaluatePtrUse(Store,
Store->getValueOperand());
3164 for (
auto *
I : ScalarPtrs)
3165 if (!PossibleNonScalarPtrs.
count(
I)) {
3173 auto ForcedScalar = ForcedScalars.
find(VF);
3174 if (ForcedScalar != ForcedScalars.
end())
3175 for (
auto *
I : ForcedScalar->second) {
3176 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
3185 while (
Idx != Worklist.
size()) {
3187 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
3189 auto *Src = cast<Instruction>(Dst->getOperand(0));
3191 auto *J = cast<Instruction>(U);
3192 return !TheLoop->contains(J) || Worklist.count(J) ||
3193 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3194 IsScalarUse(J, Src));
3197 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
3204 auto *Ind = Induction.first;
3205 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3214 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
3216 return Induction.second.getKind() ==
3218 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
3224 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3225 auto *I = cast<Instruction>(U);
3226 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3227 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3235 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3241 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3242 auto *I = cast<Instruction>(U);
3243 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3244 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3246 if (!ScalarIndUpdate)
3251 Worklist.
insert(IndUpdate);
3252 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
3253 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
3267 switch(
I->getOpcode()) {
3270 case Instruction::Call:
3273 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(
I), VF))
3275 case Instruction::Load:
3276 case Instruction::Store: {
3288 case Instruction::UDiv:
3289 case Instruction::SDiv:
3290 case Instruction::SRem:
3291 case Instruction::URem: {
3309 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
3322 switch(
I->getOpcode()) {
3325 "instruction should have been considered by earlier checks");
3326 case Instruction::Call:
3330 "should have returned earlier for calls not needing a mask");
3332 case Instruction::Load:
3335 case Instruction::Store: {
3343 case Instruction::UDiv:
3344 case Instruction::SDiv:
3345 case Instruction::SRem:
3346 case Instruction::URem:
3352std::pair<InstructionCost, InstructionCost>
3355 assert(
I->getOpcode() == Instruction::UDiv ||
3356 I->getOpcode() == Instruction::SDiv ||
3357 I->getOpcode() == Instruction::SRem ||
3358 I->getOpcode() == Instruction::URem);
3367 ScalarizationCost = 0;
3382 ScalarizationCost += getScalarizationOverhead(
I, VF);
3402 Value *Op2 =
I->getOperand(1);
3411 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3413 return {ScalarizationCost, SafeDivisorCost};
3420 "Decision should not be set yet.");
3422 assert(Group &&
"Must have a group.");
3423 unsigned InterleaveFactor = Group->getFactor();
3427 auto &
DL =
I->getDataLayout();
3435 if (VF.
isScalable() && InterleaveFactor != 2)
3440 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3441 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
3446 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
3448 if (MemberNI != ScalarNI)
3451 if (MemberNI && ScalarNI &&
3452 ScalarTy->getPointerAddressSpace() !=
3453 MemberTy->getPointerAddressSpace())
3462 bool PredicatedAccessRequiresMasking =
3465 bool LoadAccessWithGapsRequiresEpilogMasking =
3466 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3468 bool StoreAccessWithGapsRequiresMasking =
3469 isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor());
3470 if (!PredicatedAccessRequiresMasking &&
3471 !LoadAccessWithGapsRequiresEpilogMasking &&
3472 !StoreAccessWithGapsRequiresMasking)
3479 "Masked interleave-groups for predicated accesses are not enabled.");
3481 if (Group->isReverse())
3493 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3509 auto &
DL =
I->getDataLayout();
3516void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3523 "This function should not be visited twice for the same VF");
3527 Uniforms[VF].
clear();
3535 auto IsOutOfScope = [&](
Value *V) ->
bool {
3547 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3548 if (IsOutOfScope(
I)) {
3555 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3559 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3572 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3574 AddToWorklistIfAllowed(Cmp);
3583 if (PrevVF.isVector()) {
3584 auto Iter = Uniforms.
find(PrevVF);
3585 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3590 if (isa<LoadInst>(
I))
3601 "Widening decision should be ready at this moment");
3603 if (IsUniformMemOpUse(
I))
3606 return (WideningDecision ==
CM_Widen ||
3615 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3631 for (
auto &
I : *BB) {
3633 switch (
II->getIntrinsicID()) {
3634 case Intrinsic::sideeffect:
3635 case Intrinsic::experimental_noalias_scope_decl:
3636 case Intrinsic::assume:
3637 case Intrinsic::lifetime_start:
3638 case Intrinsic::lifetime_end:
3640 AddToWorklistIfAllowed(&
I);
3649 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3650 assert(IsOutOfScope(EVI->getAggregateOperand()) &&
3651 "Expected aggregate value to be loop invariant");
3652 AddToWorklistIfAllowed(EVI);
3661 if (IsUniformMemOpUse(&
I))
3662 AddToWorklistIfAllowed(&
I);
3664 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3671 for (
auto *V : HasUniformUse) {
3672 if (IsOutOfScope(V))
3674 auto *
I = cast<Instruction>(V);
3675 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3676 auto *UI = cast<Instruction>(U);
3677 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3679 if (UsersAreMemAccesses)
3680 AddToWorklistIfAllowed(
I);
3687 while (
Idx != Worklist.
size()) {
3690 for (
auto *OV :
I->operand_values()) {
3692 if (IsOutOfScope(OV))
3696 auto *
OP = dyn_cast<PHINode>(OV);
3701 auto *OI = cast<Instruction>(OV);
3703 auto *J = cast<Instruction>(U);
3704 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3706 AddToWorklistIfAllowed(OI);
3718 auto *Ind = Induction.first;
3719 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3723 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3724 auto *I = cast<Instruction>(U);
3725 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3726 IsVectorizedMemAccessUse(I, Ind);
3733 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3734 auto *I = cast<Instruction>(U);
3735 return I == Ind || Worklist.count(I) ||
3736 IsVectorizedMemAccessUse(I, IndUpdate);
3738 if (!UniformIndUpdate)
3742 AddToWorklistIfAllowed(Ind);
3743 AddToWorklistIfAllowed(IndUpdate);
3754 "runtime pointer checks needed. Enable vectorization of this "
3755 "loop with '#pragma clang loop vectorize(enable)' when "
3756 "compiling with -Os/-Oz",
3757 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3763 "runtime SCEV checks needed. Enable vectorization of this "
3764 "loop with '#pragma clang loop vectorize(enable)' when "
3765 "compiling with -Os/-Oz",
3766 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3773 "runtime stride == 1 checks needed. Enable vectorization of "
3774 "this loop without such check by compiling with -Os/-Oz",
3775 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3782bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3783 if (IsScalableVectorizationAllowed)
3784 return *IsScalableVectorizationAllowed;
3786 IsScalableVectorizationAllowed =
false;
3792 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3796 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3799 std::numeric_limits<ElementCount::ScalarTy>::max());
3810 "Scalable vectorization not supported for the reduction "
3811 "operations found in this loop.",
3823 "for all element types found in this loop.",
3830 "for safe distance analysis.",
3835 IsScalableVectorizationAllowed =
true;
3840LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3841 if (!isScalableVectorizationAllowed())
3845 std::numeric_limits<ElementCount::ScalarTy>::max());
3847 return MaxScalableVF;
3855 "Max legal vector width too small, scalable vectorization "
3859 return MaxScalableVF;
3863 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3865 unsigned SmallestType, WidestType;
3872 unsigned MaxSafeElements =
3876 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3878 this->MaxSafeElements = MaxSafeElements;
3880 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3882 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3887 auto MaxSafeUserVF =
3888 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3905 <<
" is unsafe, clamping to max safe VF="
3906 << MaxSafeFixedVF <<
".\n");
3911 <<
"User-specified vectorization factor "
3912 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3913 <<
" is unsafe, clamping to maximum safe vectorization factor "
3914 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3916 return MaxSafeFixedVF;
3921 <<
" is ignored because scalable vectors are not "
3927 <<
"User-specified vectorization factor "
3928 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3929 <<
" is ignored because the target does not support scalable "
3930 "vectors. The compiler will pick a more suitable value.";
3934 <<
" is unsafe. Ignoring scalable UserVF.\n");
3939 <<
"User-specified vectorization factor "
3940 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3941 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3942 "more suitable value.";
3947 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3948 <<
" / " << WidestType <<
" bits.\n");
3953 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3954 MaxSafeFixedVF, FoldTailByMasking))
3958 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3959 MaxSafeScalableVF, FoldTailByMasking))
3960 if (MaxVF.isScalable()) {
3961 Result.ScalableVF = MaxVF;
3962 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3975 "Not inserting runtime ptr check for divergent target",
3976 "runtime pointer checks needed. Not enabled for divergent target",
3977 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3986 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3989 "loop trip count is one, irrelevant for vectorization",
3998 if (!isa<SCEVCouldNotCompute>(BTC) &&
4004 "Trip count computation wrapped",
4005 "backedge-taken count is -1, loop trip count wrapped to 0",
4010 switch (ScalarEpilogueStatus) {
4012 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4017 dbgs() <<
"LV: vector predicate hint/switch found.\n"
4018 <<
"LV: Not allowing scalar epilogue, creating predicated "
4019 <<
"vector loop.\n");
4026 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4028 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
4047 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4048 "scalar epilogue instead.\n");
4050 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4061 "No decisions should have been taken at this point");
4071 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4076 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4077 *MaxPowerOf2RuntimeVF,
4080 MaxPowerOf2RuntimeVF = std::nullopt;
4083 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4085 "MaxFixedVF must be a power of 2");
4086 unsigned MaxVFtimesIC =
4087 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4095 "Invalid loop count");
4097 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
4103 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
4117 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4118 "try to generate VP Intrinsics with scalable vector "
4124 "Expected scalable vector factor.");
4134 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4135 "scalar epilogue instead.\n");
4141 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
4147 "unable to calculate the loop count due to complex control flow",
4153 "Cannot optimize for size and vectorize at the same time.",
4154 "cannot optimize for size and vectorize at the same time. "
4155 "Enable vectorization of this loop with '#pragma clang loop "
4156 "vectorize(enable)' when compiling with -Os/-Oz",
4161ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4162 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
4164 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
4172 "Scalable flags must match");
4180 ComputeScalableMaxVF);
4181 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4183 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
4185 if (!MaxVectorElementCount) {
4187 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
4188 <<
" vector registers.\n");
4192 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4193 if (MaxVectorElementCount.isScalable() &&
4197 WidestRegisterMinEC *= Min;
4206 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4214 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
4215 "exceeding the constant trip count: "
4216 << ClampedUpperTripCount <<
"\n");
4218 ClampedUpperTripCount,
4219 FoldTailByMasking ? MaxVectorElementCount.isScalable() :
false);
4232 ComputeScalableMaxVF);
4233 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4247 for (
int I = RUs.size() - 1;
I >= 0; --
I) {
4248 const auto &MLU = RUs[
I].MaxLocalUsers;
4249 if (
all_of(MLU, [&](
decltype(MLU.front()) &LU) {
4250 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4260 <<
") with target's minimum: " << MinVF <<
'\n');
4278 std::optional<unsigned> VScale) {
4282 EstimatedVF *= *VScale;
4283 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
4287bool LoopVectorizationPlanner::isMoreProfitable(
4289 const unsigned MaxTripCount)
const {
4294 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
4295 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
4297 if (
A.Width.isScalable())
4298 EstimatedWidthA *= *VScale;
4299 if (
B.Width.isScalable())
4300 EstimatedWidthB *= *VScale;
4307 A.Width.isScalable() && !
B.Width.isScalable();
4318 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4320 auto GetCostForTC = [MaxTripCount,
this](
unsigned VF,
4332 return VectorCost *
divideCeil(MaxTripCount, VF);
4333 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4336 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
4337 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
4338 return CmpFn(RTCostA, RTCostB);
4341bool LoopVectorizationPlanner::isMoreProfitable(
4344 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount);
4349 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4351 for (
const auto &Plan : VPlans) {
4355 precomputeCosts(*Plan, VF, CostCtx);
4357 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4358 for (
auto &R : *VPBB) {
4359 if (!R.cost(VF, CostCtx).isValid())
4365 if (InvalidCosts.
empty())
4373 for (
auto &Pair : InvalidCosts)
4374 if (!Numbering.
count(Pair.first))
4375 Numbering[Pair.first] =
I++;
4378 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4379 if (Numbering[
A.first] != Numbering[
B.first])
4380 return Numbering[
A.first] < Numbering[
B.first];
4381 const auto &
LHS =
A.second;
4382 const auto &
RHS =
B.second;
4383 return std::make_tuple(
LHS.isScalable(),
LHS.getKnownMinValue()) <
4384 std::make_tuple(
RHS.isScalable(),
RHS.getKnownMinValue());
4396 Subset =
Tail.take_front(1);
4403 [](
const auto *R) {
return Instruction::PHI; })
4404 .Case<VPWidenSelectRecipe>(
4405 [](
const auto *R) {
return Instruction::Select; })
4406 .Case<VPWidenStoreRecipe>(
4407 [](
const auto *R) {
return Instruction::Store; })
4408 .Case<VPWidenLoadRecipe>(
4409 [](
const auto *R) {
return Instruction::Load; })
4410 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4411 [](
const auto *R) {
return Instruction::Call; })
4414 [](
const auto *R) {
return R->getOpcode(); })
4416 return R->getStoredValues().empty() ? Instruction::Load
4417 : Instruction::Store;
4425 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4426 std::string OutString;
4428 assert(!Subset.empty() &&
"Unexpected empty range");
4429 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4430 for (
const auto &Pair : Subset)
4431 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4433 if (Opcode == Instruction::Call) {
4435 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4436 Name =
Int->getIntrinsicName();
4438 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4440 WidenCall ? WidenCall->getCalledScalarFunction()
4441 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4442 ->getLiveInIRValue());
4445 OS <<
" call to " <<
Name;
4450 Tail =
Tail.drop_front(Subset.size());
4454 Subset =
Tail.take_front(Subset.size() + 1);
4455 }
while (!
Tail.empty());
4468 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4477 switch (R.getVPDefID()) {
4478 case VPDef::VPDerivedIVSC:
4479 case VPDef::VPScalarIVStepsSC:
4480 case VPDef::VPScalarCastSC:
4481 case VPDef::VPReplicateSC:
4482 case VPDef::VPInstructionSC:
4483 case VPDef::VPCanonicalIVPHISC:
4484 case VPDef::VPVectorPointerSC:
4485 case VPDef::VPReverseVectorPointerSC:
4486 case VPDef::VPExpandSCEVSC:
4487 case VPDef::VPEVLBasedIVPHISC:
4488 case VPDef::VPPredInstPHISC:
4489 case VPDef::VPBranchOnMaskSC:
4491 case VPDef::VPReductionSC:
4492 case VPDef::VPActiveLaneMaskPHISC:
4493 case VPDef::VPWidenCallSC:
4494 case VPDef::VPWidenCanonicalIVSC:
4495 case VPDef::VPWidenCastSC:
4496 case VPDef::VPWidenGEPSC:
4497 case VPDef::VPWidenIntrinsicSC:
4498 case VPDef::VPWidenSC:
4499 case VPDef::VPWidenSelectSC:
4500 case VPDef::VPBlendSC:
4501 case VPDef::VPFirstOrderRecurrencePHISC:
4502 case VPDef::VPWidenPHISC:
4503 case VPDef::VPWidenIntOrFpInductionSC:
4504 case VPDef::VPWidenPointerInductionSC:
4505 case VPDef::VPReductionPHISC:
4506 case VPDef::VPInterleaveSC:
4507 case VPDef::VPWidenLoadEVLSC:
4508 case VPDef::VPWidenLoadSC:
4509 case VPDef::VPWidenStoreEVLSC:
4510 case VPDef::VPWidenStoreSC:
4516 auto WillWiden = [&
TTI, VF](
Type *ScalarTy) {
4534 if (R.getNumDefinedValues() == 0 &&
4535 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4544 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4546 if (!Visited.
insert({ScalarTy}).second)
4548 if (WillWiden(ScalarTy))
4559 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4560 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4562 [](std::unique_ptr<VPlan> &
P) {
4565 "Expected Scalar VF to be a candidate");
4572 if (ForceVectorization &&
4573 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4580 for (
auto &
P : VPlans) {
4592 <<
" costs: " << (Candidate.Cost / Width));
4593 if (VF.isScalable())
4601 <<
"LV: Not considering vector loop of width " << VF
4602 <<
" because it will not generate any vector instructions.\n");
4606 if (isMoreProfitable(Candidate, ChosenFactor))
4607 ChosenFactor = Candidate;
4613 "There are conditional stores.",
4614 "store that is conditionally executed prevents vectorization",
4615 "ConditionalStore", ORE, OrigLoop);
4616 ChosenFactor = ScalarCost;
4620 !isMoreProfitable(ChosenFactor, ScalarCost))
dbgs()
4621 <<
"LV: Vectorization seems to be not beneficial, "
4622 <<
"but was forced by a user.\n");
4623 return ChosenFactor;
4627bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4632 [&](
PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4642 if (!OrigLoop->
contains(cast<Instruction>(U)))
4646 if (!OrigLoop->
contains(cast<Instruction>(U)))
4680 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4692 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4697 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4698 "epilogue is allowed.\n");
4704 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4705 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4706 "is not a supported candidate.\n");
4711 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4714 return {ForcedEC, 0, 0};
4716 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4724 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4729 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4742 const SCEV *RemainingIterations =
nullptr;
4743 unsigned MaxTripCount = 0;
4744 for (
auto &NextVF : ProfitableVFs) {
4751 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4753 (NextVF.Width.isScalable() &&
4755 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4761 if (!MainLoopVF.
isScalable() && !NextVF.Width.isScalable()) {
4763 if (!RemainingIterations) {
4766 assert(!isa<SCEVCouldNotCompute>(TC) &&
4767 "Trip count SCEV must be computable");
4777 << MaxTripCount <<
"\n");
4781 SE.
getConstant(TCType, NextVF.Width.getKnownMinValue()),
4782 RemainingIterations))
4786 if (Result.Width.isScalar() ||
4787 isMoreProfitable(NextVF, Result, MaxTripCount))
4793 << Result.Width <<
"\n");
4797std::pair<unsigned, unsigned>
4799 unsigned MinWidth = -1U;
4800 unsigned MaxWidth = 8;
4813 MaxWidth = std::min<unsigned>(
4814 MaxWidth, std::min<unsigned>(
4820 MinWidth = std::min<unsigned>(
4821 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4822 MaxWidth = std::max<unsigned>(
4823 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4826 return {MinWidth, MaxWidth};
4834 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4842 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4847 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4861 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4862 T = ST->getValueOperand()->getType();
4865 "Expected the load/store/recurrence type to be sized");
4894 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4895 "Unroll factor forced to be 1.\n");
4914 if (LoopCost == 0) {
4916 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4926 for (
auto &Pair : R.MaxLocalUsers) {
4927 Pair.second = std::max(Pair.second, 1U);
4941 unsigned IC = UINT_MAX;
4943 for (
const auto &Pair : R.MaxLocalUsers) {
4948 <<
" register class\n");
4956 unsigned MaxLocalUsers = Pair.second;
4957 unsigned LoopInvariantRegs = 0;
4958 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end())
4959 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4961 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4965 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4966 std::max(1U, (MaxLocalUsers - 1)));
4969 IC = std::min(IC, TmpIC);
4989 unsigned AvailableTC =
5001 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
5002 unsigned InterleaveCountLB =
bit_floor(std::max(
5003 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5004 MaxInterleaveCount = InterleaveCountLB;
5006 if (InterleaveCountUB != InterleaveCountLB) {
5007 unsigned TailTripCountUB =
5008 (AvailableTC % (EstimatedVF * InterleaveCountUB));
5009 unsigned TailTripCountLB =
5010 (AvailableTC % (EstimatedVF * InterleaveCountLB));
5013 if (TailTripCountUB == TailTripCountLB)
5014 MaxInterleaveCount = InterleaveCountUB;
5016 }
else if (BestKnownTC && *BestKnownTC > 0) {
5020 ? (*BestKnownTC) - 1
5028 MaxInterleaveCount =
bit_floor(std::max(
5029 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5032 assert(MaxInterleaveCount > 0 &&
5033 "Maximum interleave count must be greater than 0");
5037 if (IC > MaxInterleaveCount)
5038 IC = MaxInterleaveCount;
5041 IC = std::max(1u, IC);
5043 assert(IC > 0 &&
"Interleave count must be greater than 0.");
5047 if (VF.
isVector() && HasReductions) {
5048 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
5056 bool ScalarInterleavingRequiresPredication =
5058 return Legal->blockNeedsPredication(BB);
5060 bool ScalarInterleavingRequiresRuntimePointerCheck =
5066 <<
"LV: IC is " << IC <<
'\n'
5067 <<
"LV: VF is " << VF <<
'\n');
5068 const bool AggressivelyInterleaveReductions =
5070 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5071 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
5075 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
5082 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5083 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5089 bool HasSelectCmpReductions =
5092 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5093 RecurKind RK = RdxDesc.getRecurrenceKind();
5094 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
5095 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK);
5097 if (HasSelectCmpReductions) {
5098 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
5108 bool HasOrderedReductions =
5110 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5111 return RdxDesc.isOrdered();
5113 if (HasOrderedReductions) {
5115 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
5120 SmallIC = std::min(SmallIC,
F);
5121 StoresIC = std::min(StoresIC,
F);
5122 LoadsIC = std::min(LoadsIC,
F);
5126 std::max(StoresIC, LoadsIC) > SmallIC) {
5128 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
5129 return std::max(StoresIC, LoadsIC);
5134 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
5138 return std::max(IC / 2, SmallIC);
5141 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
5147 if (AggressivelyInterleaveReductions) {
5197 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5201 for (
Value *U :
I.operands()) {
5202 auto *Instr = dyn_cast<Instruction>(U);
5213 LoopInvariants.
insert(Instr);
5218 EndPoint[Instr] = IdxToInstr.
size();
5236 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
5238 const auto &TTICapture =
TTI;
5242 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
5247 for (
unsigned int Idx = 0, Sz = IdxToInstr.
size();
Idx < Sz; ++
Idx) {
5251 InstrList &
List = TransposeEnds[
Idx];
5266 for (
unsigned J = 0, E = VFs.
size(); J < E; ++J) {
5274 if (VFs[J].isScalar()) {
5275 for (
auto *Inst : OpenIntervals) {
5284 for (
auto *Inst : OpenIntervals) {
5297 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]);
5302 for (
const auto &Pair :
RegUsage) {
5303 auto &Entry = MaxUsages[J][Pair.first];
5304 Entry = std::max(Entry, Pair.second);
5309 << OpenIntervals.
size() <<
'\n');
5321 for (
auto *Inst : LoopInvariants) {
5324 bool IsScalar =
all_of(Inst->users(), [&](
User *U) {
5325 auto *I = cast<Instruction>(U);
5326 return TheLoop != LI->getLoopFor(I->getParent()) ||
5327 isScalarAfterVectorization(I, VFs[Idx]);
5333 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5337 dbgs() <<
"LV(REG): VF = " << VFs[
Idx] <<
'\n';
5338 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[
Idx].
size()
5340 for (
const auto &pair : MaxUsages[
Idx]) {
5341 dbgs() <<
"LV(REG): RegisterClass: "
5345 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
5347 for (
const auto &pair : Invariant) {
5348 dbgs() <<
"LV(REG): RegisterClass: "
5362bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
5373 "Expecting a scalar emulated instruction");
5374 return isa<LoadInst>(
I) ||
5375 (isa<StoreInst>(
I) &&
5392 PredicatedBBsAfterVectorization[VF].
clear();
5409 !useEmulatedMaskMemRefHack(&
I, VF) &&
5410 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5414 for (
const auto &[
I,
_] : ScalarCosts) {
5415 auto *CI = dyn_cast<CallInst>(
I);
5416 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5419 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI];
5423 PredicatedBBsAfterVectorization[VF].
insert(BB);
5425 if (Pred->getSingleSuccessor() == BB)
5426 PredicatedBBsAfterVectorization[VF].
insert(Pred);
5435 "Instruction marked uniform-after-vectorization will be predicated");
5453 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5472 for (
Use &U :
I->operands())
5473 if (
auto *J = dyn_cast<Instruction>(U.get()))
5485 while (!Worklist.
empty()) {
5489 if (ScalarCosts.contains(
I))
5518 for (
Use &U :
I->operands())
5519 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5521 "Instruction has non-scalar type");
5522 if (CanBeScalarized(J))
5524 else if (needsExtract(J, VF)) {
5526 cast<VectorType>(
toVectorTy(J->getType(), VF)),
5537 Discount += VectorCost - ScalarCost;
5538 ScalarCosts[
I] = ScalarCost;
5554 ValuesToIgnoreForVF);
5561 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5574 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5575 << VF <<
" For instruction: " <<
I <<
'\n');
5603 const Loop *TheLoop) {
5605 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5611 auto *SE = PSE.
getSE();
5612 unsigned NumOperands = Gep->getNumOperands();
5613 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5616 !
Legal->isInductionVariable(Opd))
5625LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5628 "Scalarization cost of instruction implies vectorization.");
5658 Cost += getScalarizationOverhead(
I, VF);
5674 if (useEmulatedMaskMemRefHack(
I, VF))
5684LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5687 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5692 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5693 "Stride should be 1 or -1 for consecutive memory access");
5705 bool Reverse = ConsecutiveStride < 0;
5713LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5718 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5721 if (isa<LoadInst>(
I)) {
5734 (IsLoopInvariantStoreValue
5741LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5744 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5755LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5758 assert(Group &&
"Fail to get an interleaved access group.");
5762 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5765 unsigned InterleaveFactor = Group->getFactor();
5770 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5771 if (Group->getMember(IF))
5775 bool UseMaskForGaps =
5777 (isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor()));
5779 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5783 if (Group->isReverse()) {
5786 "Reverse masked interleaved access not supported.");
5787 Cost += Group->getNumMembers() *
5794std::optional<InstructionCost>
5800 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5801 return std::nullopt;
5802 auto *VectorTy = cast<VectorType>(Ty);
5819 return std::nullopt;
5830 if (!InLoopReductionImmediateChains.
count(RetI))
5831 return std::nullopt;
5835 Instruction *LastChain = InLoopReductionImmediateChains.
at(RetI);
5837 while (!isa<PHINode>(ReductionPhi))
5838 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5870 : dyn_cast<Instruction>(RetI->
getOperand(1));
5875 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5888 bool IsUnsigned = isa<ZExtInst>(Op0);
5905 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5906 return I == RetI ? RedCost : 0;
5910 bool IsUnsigned = isa<ZExtInst>(RedOp);
5919 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5920 return I == RetI ? RedCost : 0;
5921 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5926 bool IsUnsigned = isa<ZExtInst>(Op0);
5949 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5950 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5958 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5959 return I == RetI ? RedCost : 0;
5968 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5969 return I == RetI ? RedCost : 0;
5973 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5977LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5995LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
6008 if (!
RetTy->isVoidTy() &&
6030 for (
auto *V : filterExtractingOperands(Ops, VF))
6033 filterExtractingOperands(Ops, VF), Tys,
CostKind);
6055 auto IsLegalToScalarize = [&]() {
6069 if (isa<LoadInst>(
I))
6074 auto &SI = cast<StoreInst>(
I);
6087 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
6093 if (GatherScatterCost < ScalarizationCost)
6105 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6106 "Expected consecutive stride.");
6115 unsigned NumAccesses = 1;
6118 assert(Group &&
"Fail to get an interleaved access group.");
6124 NumAccesses = Group->getNumMembers();
6126 InterleaveCost = getInterleaveGroupCost(&
I, VF);
6131 ? getGatherScatterCost(&
I, VF) * NumAccesses
6135 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
6141 if (InterleaveCost <= GatherScatterCost &&
6142 InterleaveCost < ScalarizationCost) {
6144 Cost = InterleaveCost;
6145 }
else if (GatherScatterCost < ScalarizationCost) {
6147 Cost = GatherScatterCost;
6150 Cost = ScalarizationCost;
6184 while (!Worklist.
empty()) {
6186 for (
auto &
Op :
I->operands())
6187 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
6188 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
6189 AddrDefs.
insert(InstOp).second)
6193 for (
auto *
I : AddrDefs) {
6194 if (isa<LoadInst>(
I)) {
6208 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
6225 "Trying to set a vectorization decision for a scalar VF");
6227 auto ForcedScalar = ForcedScalars.
find(VF);
6242 for (
auto &ArgOp : CI->
args())
6260 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
6261 ForcedScalar->second.contains(CI)) ||
6272 for (
Type *ScalarTy : ScalarTys)
6281 std::nullopt, *RedCost);
6287 bool UsesMask =
false;
6293 if (
Info.Shape.VF != VF)
6297 if (MaskRequired && !
Info.isMasked())
6301 bool ParamsOk =
true;
6303 switch (Param.ParamKind) {
6322 dyn_cast<SCEVAddRecExpr>(SE->
getSCEV(ScalarParam));
6324 if (!SAR || SAR->getLoop() !=
TheLoop) {
6330 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6358 if (VecFunc && UsesMask && !MaskRequired)
6379 if (VectorCost <=
Cost) {
6384 if (IntrinsicCost <=
Cost) {
6385 Cost = IntrinsicCost;
6400 auto *OpI = dyn_cast<Instruction>(
Op);
6417 return InstsToScalarize[VF][
I];
6420 auto ForcedScalar = ForcedScalars.
find(VF);
6421 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
6422 auto InstSet = ForcedScalar->second;
6423 if (InstSet.count(
I))
6433 auto HasSingleCopyAfterVectorization = [
this](
Instruction *
I,
6438 auto Scalarized = InstsToScalarize.
find(VF);
6439 assert(Scalarized != InstsToScalarize.
end() &&
6440 "VF not yet analyzed for scalarization profitability");
6441 return !Scalarized->second.count(
I) &&
6443 auto *UI = cast<Instruction>(U);
6444 return !Scalarized->second.count(UI);
6447 (void)HasSingleCopyAfterVectorization;
6456 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6457 I->getOpcode() == Instruction::PHI ||
6458 (
I->getOpcode() == Instruction::BitCast &&
6459 I->getType()->isPointerTy()) ||
6460 HasSingleCopyAfterVectorization(
I, VF));
6470 switch (
I->getOpcode()) {
6471 case Instruction::GetElementPtr:
6477 case Instruction::Br: {
6484 bool ScalarPredicatedBB =
false;
6490 ScalarPredicatedBB =
true;
6492 if (ScalarPredicatedBB) {
6516 case Instruction::Switch: {
6519 auto *Switch = cast<SwitchInst>(
I);
6520 return Switch->getNumCases() *
6523 toVectorTy(Switch->getCondition()->getType(), VF),
6527 case Instruction::PHI: {
6528 auto *Phi = cast<PHINode>(
I);
6540 cast<VectorType>(VectorTy), Mask,
CostKind,
6548 Type *ResultTy = Phi->getType();
6552 auto *HeaderUser = cast_if_present<PHINode>(
6553 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6554 auto *Phi = dyn_cast<PHINode>(U);
6555 if (Phi && Phi->getParent() == TheLoop->getHeader())
6561 auto Iter = ReductionVars.
find(HeaderUser);
6562 if (Iter != ReductionVars.end() &&
6564 Iter->second.getRecurrenceKind()))
6567 return (Phi->getNumIncomingValues() - 1) *
6569 Instruction::Select,
toVectorTy(ResultTy, VF),
6579 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6580 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6586 case Instruction::UDiv:
6587 case Instruction::SDiv:
6588 case Instruction::URem:
6589 case Instruction::SRem:
6593 ScalarCost : SafeDivisorCost;
6597 case Instruction::Add:
6598 case Instruction::Sub: {
6606 if (!
RHS ||
RHS->getZExtValue() != 1)
6612 Type *ScalarTy =
I->getType();
6616 {PtrTy, ScalarTy, MaskTy});
6624 case Instruction::FAdd:
6625 case Instruction::FSub:
6626 case Instruction::Mul:
6627 case Instruction::FMul:
6628 case Instruction::FDiv:
6629 case Instruction::FRem:
6630 case Instruction::Shl:
6631 case Instruction::LShr:
6632 case Instruction::AShr:
6633 case Instruction::And:
6634 case Instruction::Or:
6635 case Instruction::Xor: {
6639 if (
I->getOpcode() == Instruction::Mul &&
6652 Value *Op2 =
I->getOperand(1);
6655 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6665 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6668 case Instruction::FNeg: {
6671 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6672 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6673 I->getOperand(0),
I);
6675 case Instruction::Select: {
6677 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6680 const Value *Op0, *Op1;
6697 Type *CondTy = SI->getCondition()->getType();
6702 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6703 Pred = Cmp->getPredicate();
6705 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6706 {TTI::OK_AnyValue, TTI::OP_None},
I);
6708 case Instruction::ICmp:
6709 case Instruction::FCmp: {
6710 Type *ValTy =
I->getOperand(0)->getType();
6713 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6714 (void)Op0AsInstruction;
6716 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6717 "if both the operand and the compare are marked for "
6718 "truncation, they must have the same bitwidth");
6724 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6725 {TTI::OK_AnyValue, TTI::OP_None},
6726 {TTI::OK_AnyValue, TTI::OP_None},
I);
6728 case Instruction::Store:
6729 case Instruction::Load: {
6734 "CM decision should be taken at this point");
6741 return getMemoryInstructionCost(
I, VF);
6743 case Instruction::BitCast:
6744 if (
I->getType()->isPointerTy())
6747 case Instruction::ZExt:
6748 case Instruction::SExt:
6749 case Instruction::FPToUI:
6750 case Instruction::FPToSI:
6751 case Instruction::FPExt:
6752 case Instruction::PtrToInt:
6753 case Instruction::IntToPtr:
6754 case Instruction::SIToFP:
6755 case Instruction::UIToFP:
6756 case Instruction::Trunc:
6757 case Instruction::FPTrunc: {
6760 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6761 "Expected a load or a store!");
6787 unsigned Opcode =
I->getOpcode();
6790 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6792 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6793 CCH = ComputeCCH(Store);
6796 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6797 Opcode == Instruction::FPExt) {
6798 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6799 CCH = ComputeCCH(Load);
6806 auto *Trunc = cast<TruncInst>(
I);
6808 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6815 Type *SrcScalarTy =
I->getOperand(0)->getType();
6816 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6827 (
I->getOpcode() == Instruction::ZExt ||
6828 I->getOpcode() == Instruction::SExt))
6834 case Instruction::Call:
6836 case Instruction::ExtractValue:
6838 case Instruction::Alloca:
6861 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6862 return RequiresScalarEpilogue &&
6874 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6877 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6878 SI->getValueOperand());
6887 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6888 return VecValuesToIgnore.contains(U) ||
6889 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6898 if (Group->getInsertPos() == &
I)
6901 DeadInterleavePointerOps.
push_back(PointerOp);
6906 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6907 if (Br->isConditional())
6914 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6915 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6917 Instruction *UI = cast<Instruction>(U);
6918 return !VecValuesToIgnore.contains(U) &&
6919 (!isAccessInterleaved(UI) ||
6920 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6924 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
6927 for (
const auto &[
_, Ops] : DeadInvariantStoreOps) {
6941 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
6944 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6945 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
6948 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
6956 if ((ThenEmpty && ElseEmpty) ||
6958 ElseBB->
phis().empty()) ||
6960 ThenBB->
phis().empty())) {
6969 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
6972 return !VecValuesToIgnore.contains(U) &&
6973 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6984 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6988 DeadOps.
append(
Op->op_begin(),
Op->op_end());
7029 bool InLoop = !ReductionOperations.
empty();
7032 InLoopReductions.
insert(Phi);
7035 for (
auto *
I : ReductionOperations) {
7036 InLoopReductionImmediateChains[
I] = LastChain;
7040 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
7041 <<
" reduction for phi: " << *Phi <<
"\n");
7054 unsigned WidestType;
7063 unsigned N =
RegSize.getKnownMinValue() / WidestType;
7084 <<
"overriding computed VF.\n");
7089 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
7090 <<
"not supported by the target.\n");
7092 "Scalable vectorization requested but not supported by the target",
7093 "the scalable user-specified vectorization width for outer-loop "
7094 "vectorization cannot be used because the target does not support "
7095 "scalable vectors.",
7096 "ScalableVFUnfeasible", ORE, OrigLoop);
7101 "VF needs to be a power of two");
7103 <<
"VF " << VF <<
" to build VPlans.\n");
7110 return {VF, 0 , 0 };
7114 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
7115 "VPlan-native path.\n");
7133 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
7134 "which requires masked-interleaved support.\n");
7150 "UserVF ignored because it may be larger than the maximal safe VF",
7151 "InvalidUserVF", ORE, OrigLoop);
7154 "VF needs to be a power of two");
7160 buildVPlansWithVPRecipes(UserVF, UserVF);
7165 "InvalidCost", ORE, OrigLoop);
7179 for (
const auto &VF : VFCandidates) {
7228 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
7229 for (
Value *
Op : IVInsts[
I]->operands()) {
7230 auto *OpI = dyn_cast<Instruction>(
Op);
7231 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
7237 for (
User *U :
IV->users()) {
7238 auto *CI = cast<Instruction>(U);
7259 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
7260 <<
": induction instruction " << *IVInst <<
"\n";
7262 Cost += InductionCost;
7276 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
7279 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
7280 ExitInstrs.
insert(CondI);
7284 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
7291 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
7292 <<
": exit condition instruction " << *CondI <<
"\n";
7296 auto *OpI = dyn_cast<Instruction>(
Op);
7297 if (!OpI ||
any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
7298 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7299 !ExitInstrs.contains(cast<Instruction>(U));
7317 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7320 auto IsZExtOrSExt = [](
const unsigned Opcode) ->
bool {
7321 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt;
7330 for (
auto *ChainOp : ChainOps) {
7331 for (
Value *
Op : ChainOp->operands()) {
7332 if (
auto *
I = dyn_cast<Instruction>(
Op)) {
7333 ChainOpsAndOperands.insert(
I);
7334 if (
I->getOpcode() == Instruction::Mul) {
7335 auto *Ext0 = dyn_cast<Instruction>(
I->getOperand(0));
7336 auto *Ext1 = dyn_cast<Instruction>(
I->getOperand(1));
7337 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 &&
7338 Ext0->getOpcode() == Ext1->getOpcode()) {
7339 ChainOpsAndOperands.insert(Ext0);
7340 ChainOpsAndOperands.insert(Ext1);
7349 auto ReductionCost =
7355 "reduction op visited multiple times");
7357 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7358 <<
":\n in-loop reduction " << *
I <<
"\n");
7359 Cost += *ReductionCost;
7374 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
7381 for (
Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7387 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
7388 <<
": forced scalar " << *ForcedScalar <<
"\n";
7392 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7397 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7398 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7417 <<
" (Estimated cost per lane: ");
7419 double CostPerLane = double(*
Cost.
getValue()) / EstimatedWidth;
7438 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
7439 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7440 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7441 return &WidenMem->getIngredient();
7447 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
7449 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7450 auto *IG =
IR->getInterleaveGroup();
7451 unsigned NumMembers = IG->getNumMembers();
7452 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7460 if (isa<VPPartialReductionRecipe>(&R))
7470 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7472 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7473 if (isa<PHINode>(&I) && BB == TheLoop->getHeader())
7475 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7485 VPlan &FirstPlan = *VPlans[0];
7491 ?
"Reciprocal Throughput\n"
7493 ?
"Instruction Latency\n"
7496 ?
"Code Size and Latency\n"
7501 "More than a single plan/VF w/o any plan having scalar VF");
7505 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7510 if (ForceVectorization) {
7517 for (
auto &
P : VPlans) {
7524 <<
"LV: Not considering vector loop of width " << VF
7525 <<
" because it will not generate any vector instructions.\n");
7531 if (isMoreProfitable(CurrentFactor, BestFactor))
7532 BestFactor = CurrentFactor;
7535 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7536 ProfitableVFs.push_back(CurrentFactor);
7554 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7557 CostCtx, OrigLoop) ||
7559 CostCtx, OrigLoop)) &&
7560 " VPlan cost model and legacy cost model disagreed");
7562 "when vectorizing, the scalar cost must be computed.");
7573 bool IsUnrollMetadata =
false;
7574 MDNode *LoopID = L->getLoopID();
7578 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7580 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7582 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7588 if (!IsUnrollMetadata) {
7590 LLVMContext &Context = L->getHeader()->getContext();
7593 MDString::get(Context,
"llvm.loop.unroll.runtime.disable"));
7599 L->setLoopID(NewLoopID);
7609 auto *EpiRedResult = dyn_cast<VPInstruction>(R);
7610 if (!EpiRedResult ||
7614 auto *EpiRedHeaderPhi =
7615 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7617 EpiRedHeaderPhi->getRecurrenceDescriptor();
7618 Value *MainResumeValue =
7619 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7622 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7624 "AnyOf expected to start with ICMP_NE");
7626 "AnyOf expected to start by comparing main resume value to original "
7628 MainResumeValue = Cmp->getOperand(0);
7632 Value *Cmp, *OrigResumeV;
7633 bool IsExpectedPattern =
7640 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7641 (void)IsExpectedPattern;
7642 MainResumeValue = OrigResumeV;
7644 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7649 using namespace VPlanPatternMatch;
7650 auto IsResumePhi = [](
VPUser *U) {
7652 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue()));
7655 "ResumePhi must have a single user");
7656 auto *EpiResumePhiVPI =
7657 cast<VPInstruction>(*
find_if(EpiRedResult->users(), IsResumePhi));
7658 auto *EpiResumePhi = cast<PHINode>(State.
get(EpiResumePhiVPI,
true));
7659 EpiResumePhi->setIncomingValueForBlock(
7668 "Trying to execute plan with unsupported VF");
7670 "Trying to execute plan with unsupported UF");
7672 ((VectorizingEpilogue && ExpandedSCEVs) ||
7673 (!VectorizingEpilogue && !ExpandedSCEVs)) &&
7674 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7688#ifdef EXPENSIVE_CHECKS
7689 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7700 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7701 "count during epilogue vectorization");
7709 if (VectorizingEpilogue)
7715 std::unique_ptr<LoopVersioning> LVer =
nullptr;
7723 LVer = std::make_unique<LoopVersioning>(
7726 State.
LVer = &*LVer;
7751 if (VectorizingEpilogue) {
7753 "Epilogue vectorisation not yet supported with early exits");
7757 &R, State, State.
CFG.
VPBB2IRBB[MiddleVPBB], BypassBlock);
7761 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
7763 Inc->setIncomingValueForBlock(BypassBlock, V);
7773 std::optional<MDNode *> VectorizedLoopID =
7779 if (VectorizedLoopID) {
7780 L->setLoopID(*VectorizedLoopID);
7806 cast<BranchInst>(State.
CFG.
VPBB2IRBB[MiddleVPBB]->getTerminator());
7807 if (MiddleTerm->isConditional() &&
7811 assert(TripCount > 0 &&
"trip count should not be zero");
7812 const uint32_t Weights[] = {1, TripCount - 1};
7827 const SCEV2ValueTy &ExpandedSCEVs) {
7862 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7872 dbgs() <<
"intermediate fn:\n"
7880 assert(Bypass &&
"Expected valid bypass basic block.");
7901 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7905 DT,
LI,
nullptr,
"vector.ph");
7910 "TC check is expected to dominate Bypass");
7927 return TCCheckBlock;
7938 const SCEV2ValueTy &ExpandedSCEVs) {
7946 nullptr,
"vec.epilog.iter.check",
true);
7948 VecEpilogueIterationCountCheck);
7954 "expected this to be saved from the previous pass.");
7982 for (
PHINode &Phi : VecEpilogueIterationCountCheck->
phis())
7985 for (
PHINode *Phi : PhisInBlock) {
7987 Phi->replaceIncomingBlockWith(
7989 VecEpilogueIterationCountCheck);
7996 return EPI.EpilogueIterationCountCheck == IncB;
8019 "Expected trip count to have been saved in the first pass.");
8023 "saved trip count does not dominate insertion point.");
8034 Value *CheckMinIters =
8038 "min.epilog.iters.check");
8044 unsigned EpilogueLoopStep =
8050 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
8051 const uint32_t Weights[] = {EstimatedSkipCount,
8052 MainLoopStep - EstimatedSkipCount};
8072 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
8087 return getVPValueOrAddLiveIn(
Op);
8099 "unsupported switch either exiting loop or continuing to header");
8104 BasicBlock *DefaultDst = SI->getDefaultDest();
8106 for (
auto &
C : SI->cases()) {
8108 assert(!EdgeMaskCache.
contains({Src, Dst}) &&
"Edge masks already created");
8111 if (Dst == DefaultDst)
8113 auto &Compares = Dst2Compares[Dst];
8121 VPValue *DefaultMask =
nullptr;
8122 for (
const auto &[Dst, Conds] : Dst2Compares) {
8131 EdgeMaskCache[{Src, Dst}] = Mask;
8137 DefaultMask = DefaultMask ? Builder.
createOr(DefaultMask, Mask) : Mask;
8141 DefaultMask = Builder.
createNot(DefaultMask);
8145 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
8152 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8154 if (ECEntryIt != EdgeMaskCache.
end())
8155 return ECEntryIt->second;
8157 if (
auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
8159 assert(EdgeMaskCache.
contains(Edge) &&
"Mask for Edge not created?");
8160 return EdgeMaskCache[Edge];
8166 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8167 assert(BI &&
"Unexpected terminator found");
8169 return EdgeMaskCache[Edge] = SrcMask;
8178 return EdgeMaskCache[Edge] = SrcMask;
8181 assert(EdgeMask &&
"No Edge Mask found for condition");
8193 return EdgeMaskCache[Edge] = EdgeMask;
8200 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8202 assert(ECEntryIt != EdgeMaskCache.
end() &&
8203 "looking up mask for edge which has not been created");
8204 return ECEntryIt->second;
8212 BlockMaskCache[Header] =
nullptr;
8224 HeaderVPBB->
insert(
IV, NewInsertionPoint);
8231 BlockMaskCache[Header] = BlockMask;
8237 assert(BCEntryIt != BlockMaskCache.
end() &&
8238 "Trying to access mask for block without one.");
8239 return BCEntryIt->second;
8243 assert(OrigLoop->
contains(BB) &&
"Block is not a part of a loop");
8244 assert(BlockMaskCache.
count(BB) == 0 &&
"Mask for block already computed");
8246 "Loop header must have cached block mask");
8252 for (
auto *Predecessor :
8256 BlockMaskCache[BB] = EdgeMask;
8261 BlockMask = EdgeMask;
8265 BlockMask = Builder.
createOr(BlockMask, EdgeMask, {});
8268 BlockMaskCache[BB] = BlockMask;
8274 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
8275 "Must be called with either a load or store");
8281 "CM decision should be taken at this point.");
8307 auto *
GEP = dyn_cast<GetElementPtrInst>(
8308 Ptr->getUnderlyingValue()->stripPointerCasts());
8322 GEP ?
GEP->getNoWrapFlags()
8326 Builder.
insert(VectorPtr);
8329 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
8347 "step must be loop invariant");
8351 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8354 TruncI->getDebugLoc());
8356 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
8358 IndDesc, Phi->getDebugLoc());
8368 *PSE.
getSE(), *OrigLoop);
8381 Phi->getDebugLoc());
8395 auto IsOptimizableIVTruncate =
8403 IsOptimizableIVTruncate(
I),
Range)) {
8405 auto *
Phi = cast<PHINode>(
I->getOperand(0));
8416 unsigned NumIncoming =
Phi->getNumIncomingValues();
8425 for (
unsigned In = 0;
In < NumIncoming;
In++) {
8430 assert(In == 0 &&
"Both null and non-null edge masks found");
8432 "Distinct incoming values with one having a full mask");
8453 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
8454 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
8455 ID == Intrinsic::pseudoprobe ||
8456 ID == Intrinsic::experimental_noalias_scope_decl))
8462 bool ShouldUseVectorIntrinsic =
8469 if (ShouldUseVectorIntrinsic)
8474 std::optional<unsigned> MaskPos;
8496 Variant = Decision.Variant;
8497 MaskPos = Decision.MaskPos;
8504 if (ShouldUseVectorCall) {
8505 if (MaskPos.has_value()) {
8520 Ops.insert(Ops.
begin() + *MaskPos, Mask);
8531 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
8532 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
8547 switch (
I->getOpcode()) {
8550 case Instruction::SDiv:
8551 case Instruction::UDiv:
8552 case Instruction::SRem:
8553 case Instruction::URem: {
8561 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
8567 case Instruction::Add:
8568 case Instruction::And:
8569 case Instruction::AShr:
8570 case Instruction::FAdd:
8571 case Instruction::FCmp:
8572 case Instruction::FDiv:
8573 case Instruction::FMul:
8574 case Instruction::FNeg:
8575 case Instruction::FRem:
8576 case Instruction::FSub:
8577 case Instruction::ICmp:
8578 case Instruction::LShr:
8579 case Instruction::Mul:
8580 case Instruction::Or:
8581 case Instruction::Select:
8582 case Instruction::Shl:
8583 case Instruction::Sub:
8584 case Instruction::Xor:
8585 case Instruction::Freeze:
8592 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
8593 if (!
Op->isLiveIn())
8595 Value *
V =
Op->getUnderlyingValue();
8596 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
8598 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
8604 if (
I->getOpcode() == Instruction::Mul)
8605 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
8607 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
8614VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
8617 unsigned Opcode =
HI->Update->getOpcode();
8618 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
8619 "Histogram update operation must be an Add or Sub");
8634 HI->Store->getDebugLoc());
8640 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8642 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8660 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
8662 case Intrinsic::assume:
8663 case Intrinsic::lifetime_start:
8664 case Intrinsic::lifetime_end:
8686 VPValue *BlockInMask =
nullptr;
8687 if (!IsPredicated) {
8691 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8702 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8703 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8704 "Should not predicate a uniform recipe");
8715 PartialReductionChains;
8717 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
8718 PartialReductionChains);
8727 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
8728 PartialReductionBinOps.
insert(PartialRdx.BinOp);
8730 auto ExtendIsOnlyUsedByPartialReductions =
8732 return all_of(Extend->users(), [&](
const User *U) {
8733 return PartialReductionBinOps.contains(U);
8739 for (
auto Pair : PartialReductionChains) {
8741 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
8742 ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB))
8743 ScaledReductionMap.
insert(std::make_pair(Chain.
Reduction, Pair.second));
8747bool VPRecipeBuilder::getScaledReductions(
8749 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8761 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8765 Value *
Op = Update->getOperand(0);
8766 Value *PhiOp = Update->getOperand(1);
8773 if (
auto *OpInst = dyn_cast<Instruction>(
Op)) {
8774 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8775 PHI = Chains.rbegin()->first.Reduction;
8777 Op = Update->getOperand(0);
8778 PhiOp = Update->getOperand(1);
8786 auto *BinOp = dyn_cast<BinaryOperator>(
Op);
8787 if (!BinOp || !BinOp->hasOneUse())
8796 Instruction *ExtA = cast<Instruction>(BinOp->getOperand(0));
8797 Instruction *ExtB = cast<Instruction>(BinOp->getOperand(1));
8806 unsigned TargetScaleFactor =
8807 PHI->getType()->getPrimitiveSizeInBits().getKnownScalarFactor(
8808 A->getType()->getPrimitiveSizeInBits());
8813 Update->getOpcode(),
A->getType(),
B->getType(),
PHI->getType(),
8814 VF, OpAExtend, OpBExtend,
8815 std::make_optional(BinOp->getOpcode()));
8819 Chains.push_back(std::make_pair(Chain, TargetScaleFactor));
8833 if (
auto *Phi = dyn_cast<PHINode>(Instr)) {
8834 if (Phi->getParent() != OrigLoop->
getHeader())
8837 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8843 "can only widen reductions and fixed-order recurrences here");
8852 unsigned ScaleFactor =
8865 PhisToFix.push_back(PhiRecipe);
8869 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8878 if (
auto *CI = dyn_cast<CallInst>(Instr))
8881 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8883 return tryToWidenHistogram(*HistInfo,
Operands);
8885 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8891 if (!shouldWiden(Instr,
Range))
8894 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8898 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8903 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8908 return tryToWiden(Instr,
Operands, VPBB);
8915 "Unexpected number of operands for partial reduction");
8920 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8921 isa<VPPartialReductionRecipe>(BinOpRecipe))
8928void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8932 auto MaxVFTimes2 = MaxVF * 2;
8934 VFRange SubRange = {VF, MaxVFTimes2};
8935 if (
auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8948 VPlans.push_back(std::move(Plan));
8958 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8965 Header->insert(CanonicalIVPHI, Header->begin());
8970 Instruction::Add, {CanonicalIVPHI, &Plan.
getVFxUF()}, {HasNUW,
false},
DL,
8972 CanonicalIVPHI->
addOperand(CanonicalIVIncrement);
8985 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8988 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8995 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8997 ID.getKind(), dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
8998 Start, VectorTC, Step);
9010 auto *ResumePhiRecipe =
9013 return ResumePhiRecipe;
9024 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor());
9028 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9033 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR);
9034 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction());
9040 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.
getRecipe(ScalarPhiI));
9041 if (
auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
9043 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
9046 "Expected a ResumePhi");
9047 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
9048 ScalarPhiIRI->addOperand(ResumePhi);
9054 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
9055 "should only skip truncated wide inductions");
9062 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
9063 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
9065 "Cannot handle loops with uncountable early exits");
9069 "vector.recur.extract");
9070 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
9073 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
9086 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R);
9089 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction());
9093 assert(ExitIRI->getNumOperands() ==
9094 ExitVPBB->getPredecessors().size() &&
9095 "early-exit must update exit values on construction");
9099 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB);
9101 ExitIRI->addOperand(V);
9104 assert(V->getDefiningRecipe()->getParent()->getEnclosingLoopRegion() &&
9105 "Only recipes defined inside a region should need fixing.");
9106 ExitUsersToFix.
insert(ExitIRI);
9109 return ExitUsersToFix;
9117 if (ExitUsersToFix.
empty())
9121 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9126 assert(ExitIRI->getNumOperands() == 1 &&
9127 ExitIRI->getParent()->getSinglePredecessor() == MiddleVPBB &&
9128 "exit values from early exits must be fixed when branch to "
9129 "early-exit is added");
9130 ExitIRI->extractLastLaneOfOperand(
B);
9143 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
9144 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9149 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
9154 "Cannot handle loops with uncountable early exits");
9227 if (ExitIRI->getOperand(0) != FOR)
9231 "vector.recur.extract.for.phi");
9233 ExitUsersToFix.remove(ExitIRI);
9239LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &
Range) {
9254 bool RequiresScalarEpilogueCheck =
9261 PSE, RequiresScalarEpilogueCheck,
9268 bool IVUpdateMayOverflow =
false;
9302 "Unsupported interleave factor for scalable vectors");
9307 InterleaveGroups.
insert(IG);
9325 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
9326 return Legal->blockNeedsPredication(BB) || NeedsBlends;
9329 RecipeBuilder.collectScaledReductions(
Range);
9331 auto *MiddleVPBB = Plan->getMiddleBlock();
9336 if (VPBB != HeaderVPBB)
9340 if (VPBB == HeaderVPBB)
9341 RecipeBuilder.createHeaderMask();
9342 else if (NeedsMasks)
9343 RecipeBuilder.createBlockInMask(BB);
9350 auto *
Phi = dyn_cast<PHINode>(Instr);
9351 if (Phi &&
Phi->getParent() == HeaderBB) {
9352 Operands.push_back(Plan->getOrAddLiveIn(
9355 auto OpRange = RecipeBuilder.mapToVPValues(
Instr->operands());
9356 Operands = {OpRange.begin(), OpRange.end()};
9363 if ((SI = dyn_cast<StoreInst>(&
I)) &&
9371 Recipe->insertBefore(*MiddleVPBB, MBIP);
9376 RecipeBuilder.tryToCreateWidenRecipe(Instr,
Operands,
Range, VPBB);
9378 Recipe = RecipeBuilder.handleReplication(Instr,
Operands,
Range);
9380 RecipeBuilder.setRecipe(Instr, Recipe);
9381 if (isa<VPHeaderPHIRecipe>(Recipe)) {
9392 "unexpected recipe needs moving");
9405 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
9406 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
9407 "entry block must be set to a VPRegionBlock having a non-empty entry "
9409 RecipeBuilder.fixHeaderPhis();
9415 auto *IVInc = cast<Instruction>(
9420 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
9425 if (
auto *UncountableExitingBlock =
9428 *PSE.
getSE(), OrigLoop, UncountableExitingBlock,
9444 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
9450 InterleaveGroups, RecipeBuilder,
9455 Plan->setName(
"Initial VPlan");
9460 auto *
R = cast<VPRecipeBase>(&U);
9461 return R->getParent()->getParent() ||
9463 Plan->getVectorLoopRegion()->getSinglePredecessor();
9466 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
9467 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.
getSCEV(StrideV));
9472 auto *CI = Plan->getOrAddLiveIn(
9473 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
9474 if (
VPValue *StrideVPV = Plan->getLiveIn(StrideV))
9480 if (!isa<SExtInst, ZExtInst>(U))
9482 VPValue *StrideVPV = Plan->getLiveIn(U);
9485 unsigned BW =
U->getType()->getScalarSizeInBits();
9486 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
9487 : ScevStride->getAPInt().zext(BW);
9488 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(
U->getType(),
C));
9493 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
9497 BlockNeedsPredication);
9509 bool WithoutRuntimeCheck =
9512 WithoutRuntimeCheck);
9530 true,
false, OrigLoop);
9534 HCFGBuilder.buildHierarchicalCFG();
9542 *PSE.
getSE(), *TLI);
9554 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9555 if (isa<VPCanonicalIVPHIRecipe>(&R))
9557 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
9558 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
9582void LoopVectorizationPlanner::adjustRecipesForReductions(
9584 using namespace VPlanPatternMatch;
9585 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
9591 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9592 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
9600 "AnyOf and FindLast reductions are not allowed for in-loop reductions");
9605 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
9608 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
9609 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
9610 assert((UserRecipe->getParent() == MiddleVPBB ||
9611 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
9612 "U must be either in the loop region, the middle block or the "
9613 "scalar preheader.");
9616 Worklist.
insert(UserRecipe);
9629 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9632 unsigned IndexOfFirstOperand;
9640 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9641 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9642 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
9643 CurrentLink->getOperand(2) == PreviousLink &&
9644 "expected a call where the previous link is the added operand");
9652 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9654 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
9657 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9658 if (PhiR->isInLoop() && Blend) {
9659 assert(Blend->getNumIncomingValues() == 2 &&
9660 "Blend must have 2 incoming values");
9661 if (Blend->getIncomingValue(0) == PhiR)
9662 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9664 assert(Blend->getIncomingValue(1) == PhiR &&
9665 "PhiR must be an operand of the blend");
9666 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9672 if (isa<VPWidenRecipe>(CurrentLink)) {
9673 assert(isa<CmpInst>(CurrentLinkI) &&
9674 "need to have the compare of the select");
9677 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9678 "must be a select recipe");
9679 IndexOfFirstOperand = 1;
9682 "Expected to replace a VPWidenSC");
9683 IndexOfFirstOperand = 0;
9688 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9689 ? IndexOfFirstOperand + 1
9690 : IndexOfFirstOperand;
9691 VecOp = CurrentLink->getOperand(VecOpId);
9692 assert(VecOp != PreviousLink &&
9693 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9694 (VecOpId - IndexOfFirstOperand)) ==
9696 "PreviousLink must be the operand other than VecOp");
9705 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp,
9712 CurrentLink->replaceAllUsesWith(RedRecipe);
9714 PreviousLink = RedRecipe;
9721 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9734 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9735 "reduction recipe must be defined before latch");
9737 std::optional<FastMathFlags> FMFs =
9744 return isa<VPInstruction>(&U) &&
9745 cast<VPInstruction>(&U)->getOpcode() ==
9760 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9769 Trunc->
insertAfter(NewExitingVPV->getDefiningRecipe());
9770 Extnd->insertAfter(Trunc);
9772 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9773 NewExitingVPV = Extnd;
9793 FinalReductionResult, [](
VPUser &
User,
unsigned) {
9794 auto *Parent = cast<VPRecipeBase>(&
User)->getParent();
9795 return Parent && !Parent->getParent();
9797 FinalReductionResult->insertBefore(*MiddleVPBB, IP);
9806 return isa<VPWidenSelectRecipe>(U) ||
9807 (isa<VPReplicateRecipe>(U) &&
9808 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9809 Instruction::Select);
9815 for (
unsigned I = 0;
I != CmpR->getNumOperands(); ++
I)
9816 if (CmpR->getOperand(
I) == PhiR)
9824 if (
Select->getOperand(1) == PhiR)
9827 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9846 R->eraseFromParent();
9852 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9863 cast_if_present<BinaryOperator>(FPBinOp));
9869 assert((DerivedIV != Index ||
9871 "IV didn't need transforming?");
9879 "uniform recipe shouldn't be predicated");
9885 if (State.
Lane->isFirstLane()) {
9904 if (isa<StoreInst>(UI) &&
9914 for (
unsigned Lane = 0; Lane < EndLane; ++Lane)
9980 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9984 Function *
F = L->getHeader()->getParent();
9990 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9995 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
10015 bool AddBranchWeights =
10017 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(),
10020 VF.
Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan);
10022 << L->getHeader()->getParent()->getName() <<
"\"\n");
10042 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
10043 if (S->getValueOperand()->getType()->isFloatTy())
10053 while (!Worklist.
empty()) {
10055 if (!L->contains(
I))
10057 if (!Visited.
insert(
I).second)
10064 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
10067 I->getDebugLoc(), L->getHeader())
10068 <<
"floating point conversion changes vector width. "
10069 <<
"Mixed floating point precision requires an up/down "
10070 <<
"cast that will negatively impact performance.";
10073 for (
Use &
Op :
I->operands())
10074 if (
auto *OpI = dyn_cast<Instruction>(
Op))
10083 std::optional<unsigned> VScale) {
10094 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
10150 uint64_t MinTC = std::max(MinTC1, MinTC2);
10152 MinTC =
alignTo(MinTC, IntVF);
10156 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
10164 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
10165 "trip count < minimum profitable VF ("
10176 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10178 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10191 if (isa<VPCanonicalIVPHIRecipe>(&R))
10194 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
10198 auto *VPIRInst = cast<VPIRInstruction>(&R);
10199 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction());
10214 using namespace VPlanPatternMatch;
10221 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>(
10229 "vec.epilog.resume.val");
10236 const SCEV2ValueTy &ExpandedSCEVs,
10240 Header->setName(
"vec.epilog.vector.body");
10249 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
10252 auto *ExpandedVal =
10253 Plan.
getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10257 ExpandR->eraseFromParent();
10263 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
10270 BasicBlock *MainMiddle = find_singleton<BasicBlock>(
10273 if (BB != EPI.MainLoopIterationCountCheck &&
10274 BB != EPI.EpilogueIterationCountCheck &&
10275 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck)
10280 Type *IdxTy =
IV->getScalarType();
10281 PHINode *EPResumeVal = find_singleton<PHINode>(
10282 L->getLoopPreheader()->phis(),
10284 if (P.getType() == IdxTy &&
10285 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount &&
10287 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck),
10292 assert(EPResumeVal &&
"must have a resume value for the canonical IV");
10296 return isa<VPScalarIVStepsRecipe>(U) ||
10297 isa<VPScalarCastRecipe>(U) ||
10298 isa<VPDerivedIVRecipe>(U) ||
10299 cast<VPInstruction>(U)->getOpcode() ==
10302 "the canonical IV should only be used by its increment or "
10303 "ScalarIVSteps when resetting the start value");
10304 IV->setOperand(0, VPV);
10308 Value *ResumeV =
nullptr;
10310 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10311 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
10312 ->getIncomingValueForBlock(L->getLoopPreheader());
10314 ReductionPhi->getRecurrenceDescriptor();
10341 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
10346 assert(ResumeV &&
"Must have a resume value");
10348 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10354 "VPlan-native path is not enabled. Only process inner loops.");
10357 << L->getHeader()->getParent()->getName() <<
"' from "
10358 << L->getLocStr() <<
"\n");
10363 dbgs() <<
"LV: Loop hints:"
10374 Function *
F = L->getHeader()->getParent();
10385 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent vectorization.\n");
10396 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
10403 "early exit is not enabled",
10404 "UncountableEarlyExitLoopsDisabled",
ORE, L);
10410 "types is not yet supported",
10411 "StructCallVectorizationUnsupported",
ORE, L);
10420 if (!L->isInnermost())
10424 assert(L->isInnermost() &&
"Inner loop expected.");
10434 if (UseInterleaved)
10441 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
10443 "requiring a scalar epilogue is unsupported",
10444 "UncountableEarlyExitUnsupported",
ORE, L);
10458 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10459 <<
"This loop is worth vectorizing only if no scalar "
10460 <<
"iteration overheads are incurred.");
10462 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10475 LLVM_DEBUG(
dbgs() <<
" But the target considers the trip count too "
10476 "small to consider vectorizing.\n");
10478 "The trip count is below the minial threshold value.",
10479 "loop trip count is too low, avoiding vectorization",
10480 "LowTripCount",
ORE, L);
10489 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10491 "Can't vectorize when the NoImplicitFloat attribute is used",
10492 "loop not vectorized due to NoImplicitFloat attribute",
10493 "NoImplicitFloat",
ORE, L);
10505 "Potentially unsafe FP op prevents vectorization",
10506 "loop not vectorized due to unsafe FP support.",
10507 "UnsafeFP",
ORE, L);
10512 bool AllowOrderedReductions;
10522 ExactFPMathInst->getDebugLoc(),
10523 ExactFPMathInst->getParent())
10524 <<
"loop not vectorized: cannot prove it is safe to reorder "
10525 "floating-point operations";
10527 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10528 "reorder floating-point operations\n");
10534 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10537 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10545 LVP.
plan(UserVF, UserIC);
10552 bool AddBranchWeights =
10554 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(),
10560 unsigned SelectedIC = std::max(IC, UserIC);
10567 bool ForceVectorization =
10569 if (!ForceVectorization &&
10574 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10576 <<
"loop not vectorized: cannot prove it is safe to reorder "
10577 "memory operations";
10586 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10587 bool VectorizeLoop =
true, InterleaveLoop =
true;
10589 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10590 VecDiagMsg = std::make_pair(
10591 "VectorizationNotBeneficial",
10592 "the cost-model indicates that vectorization is not beneficial");
10593 VectorizeLoop =
false;
10599 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10600 "interleaving should be avoided up front\n");
10601 IntDiagMsg = std::make_pair(
10602 "InterleavingAvoided",
10603 "Ignoring UserIC, because interleaving was avoided up front");
10604 InterleaveLoop =
false;
10605 }
else if (IC == 1 && UserIC <= 1) {
10608 IntDiagMsg = std::make_pair(
10609 "InterleavingNotBeneficial",
10610 "the cost-model indicates that interleaving is not beneficial");
10611 InterleaveLoop =
false;
10613 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10614 IntDiagMsg.second +=
10615 " and is explicitly disabled or interleave count is set to 1";
10617 }
else if (IC > 1 && UserIC == 1) {
10620 dbgs() <<
"LV: Interleaving is beneficial but is explicitly disabled.");
10621 IntDiagMsg = std::make_pair(
10622 "InterleavingBeneficialButDisabled",
10623 "the cost-model indicates that interleaving is beneficial "
10624 "but is explicitly disabled or interleave count is set to 1");
10625 InterleaveLoop =
false;
10631 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10632 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10633 <<
"to histogram operations.\n");
10634 IntDiagMsg = std::make_pair(
10635 "HistogramPreventsScalarInterleaving",
10636 "Unable to interleave without vectorization due to constraints on "
10637 "the order of histogram operations");
10638 InterleaveLoop =
false;
10642 IC = UserIC > 0 ? UserIC : IC;
10646 if (!VectorizeLoop && !InterleaveLoop) {
10650 L->getStartLoc(), L->getHeader())
10651 << VecDiagMsg.second;
10655 L->getStartLoc(), L->getHeader())
10656 << IntDiagMsg.second;
10661 if (!VectorizeLoop && InterleaveLoop) {
10665 L->getStartLoc(), L->getHeader())
10666 << VecDiagMsg.second;
10668 }
else if (VectorizeLoop && !InterleaveLoop) {
10670 <<
") in " << L->getLocStr() <<
'\n');
10673 L->getStartLoc(), L->getHeader())
10674 << IntDiagMsg.second;
10676 }
else if (VectorizeLoop && InterleaveLoop) {
10678 <<
") in " << L->getLocStr() <<
'\n');
10682 bool DisableRuntimeUnroll =
false;
10683 MDNode *OrigLoopID = L->getLoopID();
10685 using namespace ore;
10686 if (!VectorizeLoop) {
10687 assert(IC > 1 &&
"interleave count should not be 1 or 0");
10700 <<
"interleaved loop (interleaved count: "
10701 << NV(
"InterleaveCount", IC) <<
")";
10711 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10721 EPI, &LVL, &CM,
BFI,
PSI, Checks,
10724 *BestMainPlan, MainILV,
DT,
false);
10733 Checks, BestEpiPlan);
10738 DT,
true, &ExpandedSCEVs);
10739 ++LoopsEpilogueVectorized;
10742 DisableRuntimeUnroll =
true;
10746 PSI, Checks, BestPlan);
10754 DisableRuntimeUnroll =
true;
10765 "DT not preserved correctly");
10767 std::optional<MDNode *> RemainderLoopID =
10770 if (RemainderLoopID) {
10771 L->setLoopID(*RemainderLoopID);
10773 if (DisableRuntimeUnroll)
10797 bool Changed =
false, CFGChanged =
false;
10804 for (
const auto &L : *
LI)
10805 Changed |= CFGChanged |=
10816 LoopsAnalyzed += Worklist.
size();
10819 while (!Worklist.
empty()) {
10864 if (!Result.MadeAnyChange)
10878 if (Result.MadeCFGChange) {
10894 OS, MapClassName2PassName);
10897 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10898 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static void addRuntimeUnrollDisableMetaData(Loop *L)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
const char LLVMLoopVectorizeFollowupAll[]
static SetVector< VPIRInstruction * > collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan)
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, SetVector< VPIRInstruction * > &ExitUsersToFix)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
static unsigned getEstimatedRuntimeVF(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the vectorization factor at runtime.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static Type * maybeVectorizeType(Type *Elt, ElementCount VF)
static std::optional< unsigned > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static void fixReductionScalarResumeWhenVectorizingEpilog(VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, BasicBlock *BypassBlock)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, const EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static void addUsersInExitBlocks(VPlan &Plan, const SetVector< VPIRInstruction * > &ExitUsersToFix)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(false), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
int64_t getSExtValue() const
Get sign extended value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void printDebugTracesAtEnd() override
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
virtual BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
bool areSafetyChecksAdded()
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
virtual BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
DenseMap< PHINode *, Value * > Induction2AdditionalBypassValue
Mapping of induction phis to their additional bypass values.
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
Create and record the values for induction variables to resume coming from the additional bypass bloc...
VPBlockBase * VectorPHVPB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
LoopVectorizationLegality * Legal
The legality analysis.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
Value * getInductionAdditionalBypassValue(PHINode *OrigPhi) const
induction header phi.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
bool OptForSizeBasedOnProfile
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
unsigned UF
The vectorization unroll factor to use.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
unsigned getNumStores() const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
RecurrenceSet & getFixedOrderRecurrences()
Return the fixed-order recurrences found in the loop.
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasStructVectorCall() const
Returns true if there is at least one function call in the loop which returns a struct type and needs...
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
unsigned getNumLoads() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block, if there is exactly one.
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
Value * getSentinelValue() const
Returns the sentinel value for FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
ArrayRef< value_type > getArrayRef() const
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
value_type pop_back_val()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
void insert(VPRecipeBase *R)
Insert R at the current insertion point.
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getFirstLane()
A recipe for forming partial reductions.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
VPValue * getVPValueOrAddLiveIn(Value *V)
void createHeaderMask()
Create the mask for the vector loop header block.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
A recipe to compute the pointers for widened memory accesses of IndexTy in reverse order.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void replaceAllUsesWith(VPValue *New)
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for handling phis that are widened in the vector loop.
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
auto getExitBlocks()
Return an iterator range over the VPIRBasicBlock wrapping the exit blocks of the VPlan,...
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
void setEntry(VPBasicBlock *VPBB)
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
int getNumOccurrences() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
ID ArrayRef< Type * > Tys
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
const_iterator begin(StringRef path LLVM_LIFETIME_BOUND, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path LLVM_LIFETIME_BOUND)
Get end iterator over path.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
auto pred_end(const MachineBasicBlock *BB)
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
auto map_range(ContainerTy &&C, FuncTy F)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
cl::opt< bool > VerifyEachVPlan("vplan-verify-each", cl::init(false), cl::Hidden, cl::desc("Verfiy VPlans after VPlan transforms."))
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
auto pred_begin(const MachineBasicBlock *BB)
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
BasicBlock * SCEVSafetyCheck
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MemSafetyCheck
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
std::optional< unsigned > MaskPos
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
LoopVectorizeResult runImpl(Function &F)
bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static bool HoistRuntimeChecks