tf.image.stateless_random_hue
Stay organized with collections
Save and categorize content based on your preferences.
Adjust the hue of RGB images by a random factor deterministically.
tf.image.stateless_random_hue(
image, max_delta, seed
)
Equivalent to adjust_hue()
but uses a delta
randomly picked in the
interval [-max_delta, max_delta)
.
Guarantees the same results given the same seed
independent of how many
times the function is called, and independent of global seed settings (e.g.
tf.random.set_seed
).
max_delta
must be in the interval [0, 0.5]
.
Usage Example:
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
seed = (1, 2)
tf.image.stateless_random_hue(x, 0.2, seed)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[ 1.6514902, 1. , 3. ],
[ 4.65149 , 4. , 6. ]],
[[ 7.65149 , 7. , 9. ],
[10.65149 , 10. , 12. ]]], dtype=float32)>
Args |
image
|
RGB image or images. The size of the last dimension must be 3.
|
max_delta
|
float. The maximum value for the random delta.
|
seed
|
A shape [2] Tensor, the seed to the random number generator. Must have
dtype int32 or int64 .
|
Returns |
Adjusted image(s), same shape and DType as image .
|
Raises |
ValueError
|
if max_delta is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.image.stateless_random_hue\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/image_ops_impl.py#L2685-L2733) |\n\nAdjust the hue of RGB images by a random factor deterministically. \n\n tf.image.stateless_random_hue(\n image, max_delta, seed\n )\n\nEquivalent to `adjust_hue()` but uses a `delta` randomly picked in the\ninterval `[-max_delta, max_delta)`.\n\nGuarantees the same results given the same `seed` independent of how many\ntimes the function is called, and independent of global seed settings (e.g.\n[`tf.random.set_seed`](../../tf/random/set_seed)).\n\n`max_delta` must be in the interval `[0, 0.5]`.\n\n#### Usage Example:\n\n x = [[[1.0, 2.0, 3.0],\n [4.0, 5.0, 6.0]],\n [[7.0, 8.0, 9.0],\n [10.0, 11.0, 12.0]]]\n seed = (1, 2)\n tf.image.stateless_random_hue(x, 0.2, seed)\n \u003ctf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=\n array([[[ 1.6514902, 1. , 3. ],\n [ 4.65149 , 4. , 6. ]],\n [[ 7.65149 , 7. , 9. ],\n [10.65149 , 10. , 12. ]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|----------------------------------------------------------------------------------------------------|\n| `image` | RGB image or images. The size of the last dimension must be 3. |\n| `max_delta` | float. The maximum value for the random delta. |\n| `seed` | A shape \\[2\\] Tensor, the seed to the random number generator. Must have dtype `int32` or `int64`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Adjusted image(s), same shape and DType as `image`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------|\n| `ValueError` | if `max_delta` is invalid. |\n\n\u003cbr /\u003e"]]