tf.raw_ops.ConditionalAccumulator
Stay organized with collections
Save and categorize content based on your preferences.
A conditional accumulator for aggregating gradients.
tf.raw_ops.ConditionalAccumulator(
dtype,
shape,
container='',
shared_name='',
reduction_type='MEAN',
name=None
)
The accumulator accepts gradients marked with local_step greater or
equal to the most recent global_step known to the accumulator. The
average can be extracted from the accumulator, provided sufficient
gradients have been accumulated. Extracting the average automatically
resets the aggregate to 0, and increments the global_step recorded by
the accumulator.
Args |
dtype
|
A tf.DType from: tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.qint16, tf.quint16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64 .
The type of the value being accumulated.
|
shape
|
A tf.TensorShape or list of ints .
The shape of the values, can be [], in which case shape is unknown.
|
container
|
An optional string . Defaults to "" .
If non-empty, this accumulator is placed in the given container.
Otherwise, a default container is used.
|
shared_name
|
An optional string . Defaults to "" .
If non-empty, this accumulator will be shared under the
given name across multiple sessions.
|
reduction_type
|
An optional string from: "MEAN", "SUM" . Defaults to "MEAN" .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type mutable string .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.ConditionalAccumulator\n\n\u003cbr /\u003e\n\nA conditional accumulator for aggregating gradients.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.ConditionalAccumulator`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/ConditionalAccumulator)\n\n\u003cbr /\u003e\n\n tf.raw_ops.ConditionalAccumulator(\n dtype,\n shape,\n container='',\n shared_name='',\n reduction_type='MEAN',\n name=None\n )\n\nThe accumulator accepts gradients marked with local_step greater or\nequal to the most recent global_step known to the accumulator. The\naverage can be extracted from the accumulator, provided sufficient\ngradients have been accumulated. Extracting the average automatically\nresets the aggregate to 0, and increments the global_step recorded by\nthe accumulator.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `dtype` | A [`tf.DType`](../../tf/dtypes/DType) from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.int64, tf.qint8, tf.quint8, tf.qint32, tf.bfloat16, tf.qint16, tf.quint16, tf.uint16, tf.complex128, tf.half, tf.uint32, tf.uint64`. The type of the value being accumulated. |\n| `shape` | A [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`. The shape of the values, can be \\[\\], in which case shape is unknown. |\n| `container` | An optional `string`. Defaults to `\"\"`. If non-empty, this accumulator is placed in the given container. Otherwise, a default container is used. |\n| `shared_name` | An optional `string`. Defaults to `\"\"`. If non-empty, this accumulator will be shared under the given name across multiple sessions. |\n| `reduction_type` | An optional `string` from: `\"MEAN\", \"SUM\"`. Defaults to `\"MEAN\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type mutable `string`. ||\n\n\u003cbr /\u003e"]]