tf.train.Features
Stay organized with collections
Save and categorize content based on your preferences.
Used in tf.train.Example
protos. Contains the mapping from keys to Feature
.
Used in the notebooks
An Example
proto is a representation of the following python type:
Dict[str,
Union[List[bytes],
List[int64],
List[float]]]
This proto implements the Dict
.
int_feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))
float_feature = tf.train.Feature(
float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))
bytes_feature = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[b"abc", b"1234"]))
example = tf.train.Example(
features=tf.train.Features(feature={
'my_ints': int_feature,
'my_floats': float_feature,
'my_bytes': bytes_feature,
}))
Use tf.io.parse_example
to extract tensors from a serialized Example
proto:
tf.io.parse_example(
example.SerializeToString(),
features = {
'my_ints': tf.io.RaggedFeature(dtype=tf.int64),
'my_floats': tf.io.RaggedFeature(dtype=tf.float32),
'my_bytes': tf.io.RaggedFeature(dtype=tf.string)})
{'my_bytes': <tf.Tensor: shape=(2,), dtype=string,
numpy=array([b'abc', b'1234'], dtype=object)>,
'my_floats': <tf.Tensor: shape=(4,), dtype=float32,
numpy=array([1., 2., 3., 4.], dtype=float32)>,
'my_ints': <tf.Tensor: shape=(4,), dtype=int64,
numpy=array([1, 2, 3, 4])>}
Attributes |
feature
|
repeated FeatureEntry feature
|
Child Classes
class FeatureEntry
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.train.Features\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/core/example/feature.proto) |\n\nUsed in [`tf.train.Example`](../../tf/train/Example) protos. Contains the mapping from keys to `Feature`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.train.Features`](https://www.tensorflow.org/api_docs/python/tf/train/Features)\n\n\u003cbr /\u003e\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [TFRecord and tf.train.Example](https://www.tensorflow.org/tutorials/load_data/tfrecord) - [Graph regularization for sentiment classification using synthesized graphs](https://www.tensorflow.org/neural_structured_learning/tutorials/graph_keras_lstm_imdb) - [Graph-based Neural Structured Learning in TFX](https://www.tensorflow.org/tfx/tutorials/tfx/neural_structured_learning) - [Instance Segmentation with Model Garden](https://www.tensorflow.org/tfmodels/vision/instance_segmentation) - [Semantic Segmentation with Model Garden](https://www.tensorflow.org/tfmodels/vision/semantic_segmentation) |\n\nAn `Example` proto is a representation of the following python type: \n\n Dict[str,\n Union[List[bytes],\n List[int64],\n List[float]]]\n\nThis proto implements the `Dict`. \n\n int_feature = tf.train.Feature(\n int64_list=tf.train.Int64List(value=[1, 2, 3, 4]))\n float_feature = tf.train.Feature(\n float_list=tf.train.FloatList(value=[1., 2., 3., 4.]))\n bytes_feature = tf.train.Feature(\n bytes_list=tf.train.BytesList(value=[b\"abc\", b\"1234\"]))\n\n example = tf.train.Example(\n features=tf.train.Features(feature={\n 'my_ints': int_feature,\n 'my_floats': float_feature,\n 'my_bytes': bytes_feature,\n }))\n\nUse [`tf.io.parse_example`](../../tf/io/parse_example) to extract tensors from a serialized `Example` proto: \n\n tf.io.parse_example(\n example.SerializeToString(),\n features = {\n 'my_ints': tf.io.RaggedFeature(dtype=tf.int64),\n 'my_floats': tf.io.RaggedFeature(dtype=tf.float32),\n 'my_bytes': tf.io.RaggedFeature(dtype=tf.string)})\n {'my_bytes': \u003ctf.Tensor: shape=(2,), dtype=string,\n numpy=array([b'abc', b'1234'], dtype=object)\u003e,\n 'my_floats': \u003ctf.Tensor: shape=(4,), dtype=float32,\n numpy=array([1., 2., 3., 4.], dtype=float32)\u003e,\n 'my_ints': \u003ctf.Tensor: shape=(4,), dtype=int64,\n numpy=array([1, 2, 3, 4])\u003e}\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-----------|---------------------------------|\n| `feature` | `repeated FeatureEntry feature` |\n\n\u003cbr /\u003e\n\nChild Classes\n-------------\n\n[`class FeatureEntry`](../../tf/train/Features/FeatureEntry)"]]