tf.raw_ops.ParallelInterleaveDatasetV4
Stay organized with collections
Save and categorize content based on your preferences.
Creates a dataset that applies f
to the outputs of input_dataset
.
tf.raw_ops.ParallelInterleaveDatasetV4(
input_dataset,
other_arguments,
cycle_length,
block_length,
buffer_output_elements,
prefetch_input_elements,
num_parallel_calls,
f,
output_types,
output_shapes,
deterministic='default',
metadata='',
name=None
)
The resulting dataset is similar to the InterleaveDataset
, except that the
dataset will fetch records from the interleaved datasets in parallel.
The tf.data
Python API creates instances of this op from
Dataset.interleave()
when the num_parallel_calls
parameter of that method
is set to any value other than None
.
By default, the output of this dataset will be deterministic, which may result
in the dataset blocking if the next data item to be returned isn't available.
In order to avoid head-of-line blocking, one can either set the deterministic
attribute to "false", or leave it as "default" and set the
experimental_deterministic
parameter of tf.data.Options
to False
.
This can improve performance at the expense of non-determinism.
Args |
input_dataset
|
A Tensor of type variant .
Dataset that produces a stream of arguments for the function f .
|
other_arguments
|
A list of Tensor objects.
Additional arguments to pass to f beyond those produced by input_dataset .
Evaluated once when the dataset is instantiated.
|
cycle_length
|
A Tensor of type int64 .
Number of datasets (each created by applying f to the elements of
input_dataset ) among which the ParallelInterleaveDatasetV2 will cycle in a
round-robin fashion.
|
block_length
|
A Tensor of type int64 .
Number of elements at a time to produce from each interleaved invocation of a
dataset returned by f .
|
buffer_output_elements
|
A Tensor of type int64 .
The number of elements each iterator being interleaved should buffer (similar
to the .prefetch() transformation for each interleaved iterator).
|
prefetch_input_elements
|
A Tensor of type int64 .
Determines the number of iterators to prefetch, allowing buffers to warm up and
data to be pre-fetched without blocking the main thread.
|
num_parallel_calls
|
A Tensor of type int64 .
Determines the number of threads that should be used for fetching data from
input datasets in parallel. The Python API tf.data.experimental.AUTOTUNE
constant can be used to indicate that the level of parallelism should be autotuned.
|
f
|
A function decorated with @Defun.
A function mapping elements of input_dataset , concatenated with
other_arguments , to a Dataset variant that contains elements matching
output_types and output_shapes .
|
output_types
|
A list of tf.DTypes that has length >= 1 .
|
output_shapes
|
A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 .
|
deterministic
|
An optional string . Defaults to "default" .
A string indicating the op-level determinism to use. Deterministic controls
whether the interleave is allowed to return elements out of order if the next
element to be returned isn't available, but a later element is. Options are
"true", "false", and "default". "default" indicates that determinism should be
decided by the experimental_deterministic parameter of tf.data.Options .
|
metadata
|
An optional string . Defaults to "" .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type variant .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.ParallelInterleaveDatasetV4\n\n\u003cbr /\u003e\n\nCreates a dataset that applies `f` to the outputs of `input_dataset`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.ParallelInterleaveDatasetV4`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/ParallelInterleaveDatasetV4)\n\n\u003cbr /\u003e\n\n tf.raw_ops.ParallelInterleaveDatasetV4(\n input_dataset,\n other_arguments,\n cycle_length,\n block_length,\n buffer_output_elements,\n prefetch_input_elements,\n num_parallel_calls,\n f,\n output_types,\n output_shapes,\n deterministic='default',\n metadata='',\n name=None\n )\n\nThe resulting dataset is similar to the `InterleaveDataset`, except that the\ndataset will fetch records from the interleaved datasets in parallel.\n\nThe [`tf.data`](../../tf/data) Python API creates instances of this op from\n[`Dataset.interleave()`](../../tf/data/Dataset#interleave) when the `num_parallel_calls` parameter of that method\nis set to any value other than `None`.\n\nBy default, the output of this dataset will be deterministic, which may result\nin the dataset blocking if the next data item to be returned isn't available.\nIn order to avoid head-of-line blocking, one can either set the `deterministic`\nattribute to \"false\", or leave it as \"default\" and set the\n`experimental_deterministic` parameter of [`tf.data.Options`](../../tf/data/Options) to `False`.\nThis can improve performance at the expense of non-determinism.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_dataset` | A `Tensor` of type `variant`. Dataset that produces a stream of arguments for the function `f`. |\n| `other_arguments` | A list of `Tensor` objects. Additional arguments to pass to `f` beyond those produced by `input_dataset`. Evaluated once when the dataset is instantiated. |\n| `cycle_length` | A `Tensor` of type `int64`. Number of datasets (each created by applying `f` to the elements of `input_dataset`) among which the `ParallelInterleaveDatasetV2` will cycle in a round-robin fashion. |\n| `block_length` | A `Tensor` of type `int64`. Number of elements at a time to produce from each interleaved invocation of a dataset returned by `f`. |\n| `buffer_output_elements` | A `Tensor` of type `int64`. The number of elements each iterator being interleaved should buffer (similar to the `.prefetch()` transformation for each interleaved iterator). |\n| `prefetch_input_elements` | A `Tensor` of type `int64`. Determines the number of iterators to prefetch, allowing buffers to warm up and data to be pre-fetched without blocking the main thread. |\n| `num_parallel_calls` | A `Tensor` of type `int64`. Determines the number of threads that should be used for fetching data from input datasets in parallel. The Python API [`tf.data.experimental.AUTOTUNE`](../../tf/data/experimental#AUTOTUNE) constant can be used to indicate that the level of parallelism should be autotuned. |\n| `f` | A function decorated with @Defun. A function mapping elements of `input_dataset`, concatenated with `other_arguments`, to a Dataset variant that contains elements matching `output_types` and `output_shapes`. |\n| `output_types` | A list of `tf.DTypes` that has length `\u003e= 1`. |\n| `output_shapes` | A list of shapes (each a [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`) that has length `\u003e= 1`. |\n| `deterministic` | An optional `string`. Defaults to `\"default\"`. A string indicating the op-level determinism to use. Deterministic controls whether the interleave is allowed to return elements out of order if the next element to be returned isn't available, but a later element is. Options are \"true\", \"false\", and \"default\". \"default\" indicates that determinism should be decided by the `experimental_deterministic` parameter of [`tf.data.Options`](../../tf/data/Options). |\n| `metadata` | An optional `string`. Defaults to `\"\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `variant`. ||\n\n\u003cbr /\u003e"]]